
Application-Aware Scheduling of a Magnetohydrodynamics Application
in the Legion Metasystem

Holly Dail
�

Graziano Obertelli
�

Francine Berman
�

Rich Wolski
�

Andrew Grimshaw
�

�
Computer Science and Engineering Department

University of California, San Diego�����	��
���������	��
������	������� �!���#" $&%('*)�+,%('-��)��.��+

�
Department of Computer Science

University of Tennessee�/
%(�0$1%('*)�+�243#)��.��+
�

Department of Computer Science
University of Virginia���/
��5'-���	67$78�
9�/��
9�:
��)��.��+

Abstract

Computational Grids have become an important and
popular computing platform for both scientific and commer-
cial distributed computing communities. However, users of
such systems typically find achievement of application ex-
ecution performance remains challenging. Although Grid
infrastructures such as Legion and Globus provide basic re-
source selection functionality, work allocation functional-
ity, and scheduling mechanisms, applications must interpret
system performance information in terms of their own re-
quirements in order to develop performance-efficient sched-
ules.

We describe a new high-performance scheduler that in-
corporates dynamic system information, application re-
quirements, and a detailed performance model in order to
create performance efficient schedules. While the sched-
uler is designed to provide improved performance for a
magneto hydrodynamics simulation in the Legion Compu-
tational Grid infrastructure, the design is generalizable to
other systems and other data-parallel, iterative codes. We
describe the adaptive performance model, resource selec-
tion strategies, and scheduling policies employed by the
scheduler. We demonstrate the improvement in application
performance achieved by the scheduler in dedicated and
shared Legion environments.

This research was supported in part by DARPA Contract#N66001-
97-C-8531, DoD Modernization Contract 9720733-00, and NSF/NPACI
Grant ASC-9619020

1. Introduction

Computational Grids [7] are rapidly becoming an impor-
tant and popular computing platform for both scientific and
commercial distributed computing communities. Grids in-
tegrate independently administered machines, storage sys-
tems, databases, networks, and scientific instruments with
the goal of providing greater delivered application perfor-
mance than can be obtained from any single site. There
are many critical research challenges in the development of
Computational Grids as an effective computing platform.
For users, both performance and programmability of the un-
derlying infrastructure are essential to the successful imple-
mentation of applications in Grid environments.

The Legion Computational Grid infrastructure [11] pro-
vides a sophisticated object-oriented programming envi-
ronment that promotes application programmability by
enabling transparent access to Grid resources. Legion
provides basic resource selection, work allocation, and
scheduling mechanisms. In order to achieve desired per-
formance levels, applications (or their users) must inter-
pret system performance information in terms of require-
ments specific to the target application. Application Level
Scheduling (AppLeS) [3] is an established methodology
for developing adaptive, distributed programs that execute
in dynamically changing and heterogeneous execution set-
tings. The ultimate goal of this work is to draw upon the
AppLeS and Legion Computational Grid research efforts to
design an adaptive application scheduler for regular itera-
tive stencil codes in Legion environments.

We consider a general class of regular, data-parallel sten-
cil codes which require repeated applications of relatively

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
Application-Aware Scheduling of a Magnetohydrodynamics Application
in the Legion Metasystem

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Virginia,Department of Computer Science,151 Engineer’s
Way,Cahrlottesville,VA,22094-4740

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

13

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

constant-time operations. Many of these codes have the fol-
lowing structure:

Initialization

Loop over an n-dimensional mesh

Finalization

in which the basic activity of the loop is a stencil based com-
putation. In other words the data items in the n-dimensional
mesh are updated based on the values of their nearest neigh-
bors in the mesh. Such codes are common in scientific com-
puting and include parallel implementations of matrix oper-
ations as well as routines found in packages such as ScaLA-
PACK [18].

In this paper we focus on the development of an adaptive
strategy for scheduling a regular, data-parallel stencil code
called PMHD3D on the Legion Grid infrastructure. The
primary contributions of this paper are:

� We describe an adaptive performance model for
PMHD3D and demonstrate its ability to predict appli-
cation performance in initial experiments. The perfor-
mance model represents the application’s requirements
for computation, communication, overhead, and mem-
ory, and could easily be extended to serve more gener-
ally as a framework for regular iterative stencil codes
in Grid environments.

� We couple the PMHD3D performance model with re-
source selection strategies, schedule selection policies,
and deployment software to form an AppLeS sched-
uler for PMHD3D.

� In order to satisfy the requirements of the PMHD3D
performance model we implement and utilize a new
memory sensor as part of the Network Weather Ser-
vice (NWS)[22]. The sensor collects measurements
and produces forecasts of the amount of free memory
available on a processor.

� We demonstrate the ability of the AppLeS method-
ology to provide enhanced performance for the
PMHD3D application, using the Legion software in-
frastructure as a platform for high-performance appli-
cation execution.

In the next section we discuss the structure of the target
application and the environment that we used as a test-bed.
In Section 3, we discuss the AppLeS we have designed for
PMHD3D and provide a generalizable performance model.
Section 4 provides experimental results and demonstrates
performance improvements we achieved via AppLeS using
Legion. In Sections 5 and 6 we review related work and
investigate possible new directions, respectively.

2. Research Components: AppLeS, NWS,
PMHD3D and Legion

In order to build a high-performance scheduler for
PMHD3D we leveraged application characteristics, dy-
namic resource information from NWS, the AppLeS
methodology, and the Legion system infrastructure. In this
section we explain each of these components in detail.

2.1. AppLeS

The AppLeS project focuses on the development of a
methodology and software for achieving application per-
formance via adaptive scheduling [1]. For individual ap-
plications, an AppLeS is an agent that integrates with the
application and uses dynamic and application-specific in-
formation to develop and deploy a customized adaptive ap-
plication schedule. For structurally similar classes of appli-
cations, an AppLeS template provides a “pluggable” frame-
work which comprises a class-specific performance model,
scheduling model, and deployment module. An applica-
tion from the class can be instantiated within the template
to form a performance-oriented self-scheduling application
targeted to the underlying Grid resources.

AppLeS schedulers often rely on available tools in order
to deploy the schedule or to gather information on resources
or environment. AppLeS commonly depends on the Net-
work Weather Service (NWS) (see Section 2.4) to provide
dynamic predictions of resource load and availability. To-
gether, AppLeS and the Network Weather Service can be
used to adapt application performance to the deliverable ca-
pacities of Grid resources at execution time. In this project
AppLeS uses Legion to execute a schedule and the Internet
Backplane Protocol (IBP) [13] to effectively cache the data
coming from NWS.

2.2. PMHD3D

The target application for this work, PMHD3D [12, 15],
is a magnetohydrodynamics simulation developed at the
University of Virginia Department of Astronomy by John
F. Hawley and ported to Legion by Greg Lindhal. The code
is an MPI FORTRAN stencil-based application and shares
many characteristics with other stencil codes. The code is
structured as a three-dimensional mesh of data, upon which
the same computation is iteratively performed on each point
using data from its neighbors. PMHD3D alternates between
CPU-intensive computation and communication (between
“slab” neighbors and for barrier synchronizations).

At startup PMHD3D reads a configuration file that spec-
ifies the problem size and the target number of processors.
Since the other two dimensions are fixed in PMHD3D’s
three-dimensional mesh, we refer to the height of the mesh

Resource Resource Resource

work
division

Schedule
Creation&
Selection

Performance
Model

Scheduler Enactor Collection

Resource
Selection

Legion

Using Legion

Using AppLeS

USER # procs

PMHD3D PMHD3D

IBP

AppLeS

NWS

Figure 1. PMHD3D run-time scenarios with and without AppLeS.

as the problem size. In order to allocate work among proces-
sors in the computation the mesh is divided into horizontal
slabs such that each processor receives a slab. For load bal-
ancing purposes each processor can be assigned a different
amount of work (by dividing the work into slabs of vary-
ing height). The AppLeS scheduler determines the optimal
height of each slab depending on the raw speed of the pro-
cessor and on NWS forecasts of CPU load, the amount of
free memory, and network conditions. AppLeS is dynamic
in the sense that the data used by the scheduler is computed
and collected just before execution, but once the schedule is
created and implemented, the execution currently proceeds
without interaction with the AppLeS.

2.3. Legion

Legion, a project at the University of Virginia, is de-
signed to provide users with a transparent, secure, and re-
liable interface to resources in a wide-area system, both at
the programming interface level as well as at the end-user
level [9, 14]. Both the programmer and the end-user have
coherent and seamless access to all the resources and ser-
vices managed by Legion. Legion addresses challenging
issues in Computational Grid research such as parallelism,
fault-tolerance, security, autonomy, heterogeneity, legacy
code management, resource management, and access trans-
parency.

Legion provides mechanisms and facilities, leaving to
the programmer the implementation of the policies to be
enforced for a particular task. Following this idea, schedul-
ing in Legion is flexible and can be tailored to suit applica-

tions with different requirements. The main Legion compo-
nents involved in scheduling are the collection, the enactor,
the scheduler, and the hosts which will execute the sched-
ule [5]. The collection provides information about the avail-
able resources and the scheduler selects the resources to be
used in a schedule. The schedule is then given to the enac-
tor, which contacts the host objects involved in the sched-
ule and attempts to execute the application. This scheme
provides scheduling flexibility; for example, in case of host
failures, the enactor can ask the scheduler for a new sched-
ule and continue despite the failure, the collection can re-
turn subsets of the resources depending on the user and/or
the application, or the hosts can refuse to serve a specific
user.

Legion currently provides default implementations of all
the objects described herein. Moreover, new objects can
be developed and used rather than the default ones. Note
that the PMHD3D AppLeS is developed “on top” of Le-
gion, and uses default Legion objects. We would expect
the performance improvement for such a code to conserva-
tively bound from below that which would be achievable if
the AppLeS were structured as a Legion object. We plan
to eventually develop the AppLeS described here as a Le-
gion scheduling object for a class of regular, iterative, data-
parallel applications.

2.4. Network Weather Service

The Network Weather Service [17, 22] is a distributed
system that periodically monitors and dynamically fore-
casts the performance various network and computational

resources can deliver. NWS is composed of sensors, mem-
ories and forecasters. Sensors measure the availability of
the resource, for example CPU availability, and then record
the measurement in a NWS memory. In response to a query,
the NWS software will return a time series of measurements
from any activated sensor in the system. This time series
can then be passed to the NWS forecaster which predicts
the future availability of the resource. The forecaster tests
a variety of predictors and returns the result and expected
error of the most accurate predictor. To obtain better per-
formance for PMHD3D we developed a memory sensor
that measures the available free memory of a machine. The
sensor has been extended and is now part of NWS.

2.5. Interactions Among System Components

PMHD3D can directly access Legion’s scheduling fa-
cilities or can use AppLeS to obtain a more performance-
efficient schedule. Figure 1 shows the interactions among
components in each of these scenarios. The dotted line rep-
resents the scheduling of a PMHD3D run without AppLeS
facilities: the user supplies the number of processors, the
processor list, and the associated problem size per proces-
sor and the rest of the scheduling process is supplied by a
default scheduler within the Legion infrastructure.

When the application uses AppLeS for scheduling, the
interactions among components can instead be represented
by the solid lines in Figure 1. In this case the user sup-
plies only the problem size of interest. AppLeS collects
the list of available resources from the environment (via the
Legion collection object or, in our case, via the Legion con-
text space), and then queries NWS to obtain updated per-
formance and availability predictions for the available re-
sources. As the figure shows, AppLeS collects the NWS
predictions as an IBP client: the predictions are pushed into
the IBP server by a separate process.

AppLeS then creates a performance-promoting adaptive
schedule and asks the Legion scheduler to execute it. The
schedule is adaptive because AppLeS assigns a different
amount of work to each processor depending on their pre-
dicted performance. As is suggested by the figure, the
PMHD3D AppLeS is built on top of Legion facilities. A fu-
ture goal is to integrate the AppLeS as an alternative sched-
uler in Legion for the class of regular, data-parallel, stencil
applications.

3. The PMHD3D AppLeS

The general AppLeS approach is to create good sched-
ules for an application by incorporating application spe-
cific characteristics, system characteristics, and dynamic
resource performance data in scheduling decisions. The
PMHD3D AppLeS draws upon the general AppLeS

methodology [3] and the experience gained building an Ap-
pLeS for a structurally similar Jacobi-2D application [2].

Conceptually, the PMHD3D AppLeS can be decom-
posed into three components:

� a performance model that accurately represents ap-
plication performance within the Computational Grid
environment;

� a resource selection strategy that identifies poten-
tially performance-efficient candidate resource sets
from those that are available at run time;

� a schedule creation and selection strategy that cre-
ates a good schedule for each of the various candidate
resource sets and then selects the most performance-
efficient schedule.

The overall strategy and organization of the scheduler
will be discussed here but the details of each component are
reserved for the following sections.

An accurate performance model (Section 3.1) is funda-
mental for the development of good schedules. The per-
formance model is used in two important ways, the first of
which is to guide the creation of schedules for specific re-
source sets. For example, load balancing is a necessary con-
dition developing an efficient schedule but is difficult or im-
possible to achieve without an estimate of the relative costs
of computation on various resources. An accurate perfor-
mance model is also necessary for selection of the highest
performance schedule from a set of candidate schedules.

The resource selection strategy (Section 3.2) produces
several orderings of available resources based on differ-
ent concepts of “desirability” of resources to PMHD3D.
Our definitions of desirability incorporate Legion re-
source discovery results, dynamic resource availability from
NWS, dynamic performance forecasts from NWS, and
application-specific performance data for each resource.
Once complete, the ordered lists of resources are passed on
to the schedule creation and selection component of the Ap-
pLeS.

The schedule creation step (Section 3.3) takes the pro-
posed resource lists and creates a good schedule for each
based on the constraints the system and application im-
pose. System constraints are characteristics such as avail-
able memory of the resources while the application con-
straints are characteristics such as the amount of memory re-
quired for the application to remain in main memory. Once
all schedules have been created the performance model is
used to select the highest performance schedule (the one in
which the execution time is expected to be the lowest).

The decomposition of the scheduling process into these
disjoint steps provides an overly simplistic view of the in-
teractions between steps. In reality the scheduling process

1 Rset = getResourceSet() \\ Available resources obtained from Legion
2 NWS_data = NWS(Rset) \\ NWS forecasts of resource performance
3 C = getScheduleConstraints() \\ Obtain scheduling constraints for simplex
4 for (balance = {0, 0.5, 1}) \\ Select for CPU power, connectivity, both
5 S = sort(Rset, balance, maxP) \\ Returns list of hosts sorted by desirability
6 for (n = 2..maxP) \\ Searching for correct number of processors
7 sched = findSched(n, S, NWS_data, C) \\ Use simplex to find schedule on S using C
8 while (sched is not found) \\ Simplex was unsolvable with S and C
9 "Schedule constraints are too restrictive"
10 relaxConstraints (C) \\ More schedule flexibility, more possible error
11 sched = findSched(n, S, NWS_data, C) \\ Try to find schedule again
12 endwhile \\ Found a feasible schedule
13 if (cost(sched) < best) \\ If best one so far keep it, else throw away
14 best = sched
15 endif
16 endfor
17 endfor
18 run(best) \\ Best schedule found, run it

Figure 2. PMHD3D AppLeS pseudo-code.

requires more complicated interactions. To accurately rep-
resent the true interaction of the scheduling components we
present a pseudo-code version of the PMHD3D AppLeS
strategy in Figure 2. The steps shown in Figure 2 will be-
come clearer in the following sections.

3.1. Performance Model

The goal of the performance model is to accurately pre-
dict the execution time of PMHD3D. Since the run-time
may vary somewhat from processor to processor, we take
the maximum run-time of any processor involved in the
computation as the overall run-time. During every iteration
each processor computes on its slab of data, communicates
with its neighbors, and synchronizes with all other proces-
sors.

Formally, the running time for processor
�

is given by:
�������	��
�������	��
�
��������������

where
�	��
� �

,
�	��
�
 �

and
������� �

are the predicted com-
putation time, the predicted communication time, and the
estimated overhead for � � , respectively.

Computation time is directly related to the units of work
assigned to a processor (in other words the height of the
slab) and to the speed of that processor. The computation
time for � � is:

�	��
������� ���! "#�$ ��% �'& �
where � � is the amount of work allocated to processor � �
(dynamically determined by the scheduling process),

 (" �
is a benchmark for the application-specific speed of � � ’s
processor configuration, and

$ ��% �'& �
is a forecast of the CPU

load on processor � � (obtained from dynamic NWS fore-
casts). To obtain the benchmarks, we run PMHD3D on

dedicated machines with various problem sizes and vari-
able number of hosts. Execution times were proportional
to problem size and are given in terms of seconds per point
on each platform.

Communication time is modeled as the time required
for transferring data to neighboring processors across the
available network. This represents communication for all
iterations and accounts for both the time to establish a con-
nection and the time to transfer the messages. To simplify
the communication model, we have not attempted to di-
rectly predict synchronization time or the time a processor
waits for a communication partner. We hope instead to cap-
ture the effect of these communication costs in our estimate
of overhead costs, which we discuss shortly. Communica-
tion time is then:
�	��
�
 � ��") +*-,/. �10 �32�4 ��. �50 �167498 ��":��, & �50 �;2�4 � & �50 �1674<8

where
")

is the total megabytes transfered,
"

is the num-
ber of messages transfered, and

. �>=
and

& �>=
are predictions

of available bandwidth and latency from � � to � = , respec-
tively. Predictions of available bandwidth and latency be-
tween pairs of processors are obtained from dynamic NWS
forecasts. To provide an estimate of the number of mes-
sages transferred (

"
) and the megabytes transferred (

")
)

we examined post-execution program performance reports
provided by Legion. For a variety of problem sizes and re-
source set sizes the number of megabytes transferred var-
ied by less than 5% so we used an average value for all
runs. Data transfer does not significantly vary with prob-
lem size because the problem size affects only the height of
the grid while the decomposition is performed horizontally.
Data transfer costs also do not vary with number of proces-
sors because each processor must communicate with only
its neighbors, regardless of the total number of processors.
Although the number of messages transferred varied more

significantly from run-to-run we also used an average value
for this variable. This approximation did not adversely af-
fect our scheduling ability in the environments we tested; in
cases where communication costs are more severe a model
could be developed to approximate the expected number of
messages transferred.

The overhead factor
��� ��� �

is included in the perfor-
mance model to capture application and system behav-
ior that cannot be accounted for by a simple commu-
nication/computation model. For example, a processor
will likely spend time synchronizing with other processors,
waiting for neighbor processors for data communication,
and waiting for system delays. System overheads are as-
sociated with specifics of the hardware and Legion infras-
tructure such as the time required to resolve the physical
location of a data object needed by the application. The
overhead for PMHD3D can be estimated by:

������� � � ��������� � ����� � .
	 ��� � * ���� � �� ���� ���
where � is the number of processors involved in the com-
putation and

��� � .
	 ��� �
is the height of the PMHD3D mesh.��� ��� �

was estimated empirically using data from
����

individual application executions with problem sizes vary-
ing from

����
to

����
and with resource set sizes vary-

ing between
�

and � � . To determine the effect of the num-
ber of processors on overhead runs, runs were grouped by
problem size and the corresponding execution times plot-
ted against number of processors. For each set of runs per-
formed with the same problem size, a quadratic fit was per-
formed on the difference between the actual execution time
and the predicted execution time (without the overhead fac-
tor). The quadratic factor varied between

�� ���
and

�� ����
with a mean of

�� ����
(standard deviation of

�� � ���). To
determine the effect of problem size on overhead we used
the same runs but did a linear datafit on the predicted/actual
execution time difference with problem size.

3.2. Resource Selection

Resource selection is the process of selecting a set
of target resources (processors in this case) that will be
performance-efficient. Finding the optimal set of resources
requires comparing all possible schedules on all possible
subsets of the resource pool - clearly an inefficient pro-
cess as the resource pool becomes large. Instead, we create
several ordered lists of resources by employing a heuristic
to sort candidate resources in terms of several definitions
of resource desirability. Resource desirability is based on
how resource characteristics such as computational speed
and network connectivity will affect the performance of
PMHD3D.

The resource selection process begins by querying Le-
gion to discover the available set of resources. Effec-

tive evaluation of the desirability of each resource requires
application-specific performance information as well as dy-
namic resource performance information. As of this writ-
ing, Legion collection objects report available resources and
their static configurations but do not provide up-to-date dy-
namic information on availability, load, or connectivity. Ac-
cordingly, the list of available resources reported by Legion
is used to query NWS for dynamic forecasts of resource
availability, CPU load, and free memory for each host and
of latency and bandwidth between all pairs of hosts. To ob-
tain the computational cost per unit of the PMHD3D grid
on each type of resource we used the benchmarking method
described in Section 3.1.

Once the available resource lists and the dynamic sys-
tem characteristics are collected, the list can be ordered in
terms of desirability. We use three definitions of desirability
of a resource: desirability based on connectivity, desirabil-
ity based on computational power, and desirability based
equally on the two characteristics. Connectivity is approx-
imated by computing the latency and bandwidth between
the resource in question and all other resources in the re-
source pool: as a metric we calculate the amount of time
(seconds) it would take for the resource in question to ex-
change a packet of size 1 byte to and from every other host.
Computational power is measured by the time (seconds) it
would take the host to compute 1 point for 1 iteration based
on the NWS predictions and the benchmarks we discussed
earlier. The balanced strategy orders the resources based on
an average of computational power and connectivity.

The resource set is sorted into � resource lists using the
� notions of resource desirability. We then create subsets of
the lists by selecting the � most desirable hosts from each
list where � � � �����
�% � � and n is even. We select multiple
subsets from each list because it is often impossible to know
the optimal number of hosts a priori. Once the subsets have
been created the resulting group of proposed resource sets
are passed on to the schedule creation step described in the
next section. Although the approach described here is not
guaranteed to find the optimal resource set, the methodol-
ogy provides a scalable and performance-efficient approach
to resource selection.

3.3. Schedule Creation and Selection

For each of the proposed resource sets, a schedule is de-
veloped. Essentially, schedule development on a given re-
source set for PMHD3D reduces to finding a work alloca-
tion that provides good time balancing. As in Section 3.1
work allocation is represented by � � and is the height of the
slab given to processor � � .

One of the most important characteristics for any solu-
tion to this problem is time balancing: all processors should
finish at the same time. Using the notation from Section 3.1,

� � � ���;2�4 � ������� ��� � , � � � 8��
and, since all of the

work must be allocated, we also have � � � � �)� � � .
	 ��� �
.

Taken together we have � equations in � unknowns and the
problem can be solved with a basic linear solver. This ap-
proach was successful for the Jacobi-2D AppLeS [2] but is
not powerful enough to incorporate several additional con-
straints required to develop good schedules for PMHD3D.

One of the important constraints for PMHD3D perfor-
mance is the amount of memory available for the applica-
tion. There is a limit to the size of problem that can be
placed on a machine because if the computation spills out
of memory, performance can drop by two orders of magni-
tude. To quantify this constraint a benchmark for applica-
tion memory usage must be obtained by observing memory
usage for varying problem sizes on each type of resource.
Formally, this constraint becomes:

 "
���
�� � � �	� ")�
 $ � % �'& �

where
")��
 $ � % �'& �

is the available memory for processor�
(provided by the NWS memory sensor) and

 "
���
 �
is

the memory benchmark (megabytes/unit) recorded for pro-
cessor

�
’s architecture.

We formalize the work allocation constraints as a Lin-
ear Programming problem (from now on simply LP), solv-
able with the simplex method [6]. In short, LP solves the
problem of finding an extreme (maximum or minimum) of
a function
 , � 4 � � � �

��� � � ��� 8 where the unknowns have to
satisfy a set of constraints , � 4 � � � �

� ��� � ��� 8�� .
and both

the objective function and the constraints are linear. The
simplex is a well-known method used to solve LP prob-
lems. The simplex formulation requires that constraints are
expressed in standard form; that is the constraints must be
expressed as equalities and each variable is assigned a non-
negativity sign restriction. There is a simple procedure that
can be used to transform LP problems into a standard form
equivalent.

We modified the time balancing equations to provide
some flexibility for the constraints specification: expected
execution time for any processor in the computation must
fall within a small percentage of the expected total running
time. This flexibility is beneficial, especially as additional
constraints such as memory limits are incorporated into the
problem formulation. The constraints are initially very rigid
but can be relaxed in cases where no solution can be found
given the initial constraints. The time balancing equations
and the application memory requirements form the applica-
tion constraints on which the simplex has to operate. The
simplex formulation also requires specification of an objec-
tive function where the goal of the solver is to maximize the
objective function while satisfying the simplex constraints.
We use � � � � as the objective function and search for a so-
lution where all work is allocated.

For each of the proposed resource sets the simplex is

used to create the best schedule possible for that resource
set. We use a library [16] which provides a fast and easy to
use implementation of the simplex. There are several bene-
fits of using linear programming and the simplex method to
create a good schedule:

� Linear programming is well known and commonly
used so that fast and reliable algorithms are readily
available.

� Once the constraints are formalized as a linear pro-
gramming problem, adding additional constraints is
trivial. For example, the FORTRAN compiler used to
compile PMHD3D enforced a limit on the maximum
size of arrays, therefore limiting the maximum units
of work that could be allocated to any processor. This
constraint was easily added to the problem formaliza-
tion.

� The linear programming problem can be extended to
give integer solutions, although the problem then be-
comes much more difficult. Currently the solver com-
putes real values for work allocation and we redis-
tribute the fractional work portions. In some problems
a linear solution may be required for additional accu-
racy.

� In the case that a solution cannot be found, the simplex
method provides important feedback. For this applica-
tion, the simplex could not find a solution if the con-
straints were too restrictive. In this case the simplex is
reiterated with successively relaxed constraints until a
solution can be reached.

Once the proposed schedules are identified, schedule se-
lection is surprisingly simple. The performance model is
used to evaluate the expected execution time of each pro-
posed schedule, and the schedule with the lowest estimated
execution time is selected and implemented.

4. Results

The PMHD3D AppLeS has been implemented and we
present results to investigate the usefulness of the method-
ology. The goals of these experiments were to:

� Evaluate the accuracy of our performance prediction
model.

� Evaluate the ability of the PMHD3D AppLeS to pro-
mote application performance in a multi-user Legion
environment.

The previous sections stressed the importance of the per-
formance model for effective scheduling. In Section 4.2 we
explain in detail results demonstrating the accuracy of the

performance model. In Section 4.3 we present evidence that
the scheduling methodology and implementation are effec-
tive in practice. Before discussing these results we first out-
line our experimental design.

4.1. Experimental Design

To evaluate the PMHD3D AppLeS, we conducted ex-
periments on the University of Virginia Centurion Cluster,
a large cluster of machines maintained by the Legion team
(see [4] for more information on the cluster). The Centu-
rion Cluster is continuously upgraded for new Legion ver-
sion releases; during the 3-month period of the experiments,
we used Legion versions 1.5 through 1.6.1. The cluster it-
self is composed of 128 Alphas and 128 Dual-Pentium II
PCs; 12 fast Ethernet switches and a gigaswitch connect
the whole cluster. Although we employed both Alphas and
Pentiums during the development and initial testing process,
we had multiple difficulties with Alpha Linux kernel insta-
bilities and a faulty network driver which made our data
for the Alphas machines unreliable. The results presented
here are based only on the 400 MHz Dual Pentium II ma-
chines. We didn’t employ the second processor on the Dual
Pentium: therefore when we talk about host or machine we
consider the machines to be uniprocessors. It is worth not-
ing that many users only use one processor per node so that
even a computationally intensive user will not affect CPU
availability as much as might be expected. However, the
two processors on each Dual Pentium machine utilize the
same memory, sometimes leading to performance degrada-
tion due to overloaded memory systems. Inclusion of mem-
ory constraints in the performance model helped the Ap-
pLeS scheduler avoid overloaded memory systems.

We restricted our experiments to 34 machines for practi-
cal reasons: the dynamic information collected from NWS
includes a large amount of data, even for a relatively small
cluster. Limiting the resource pool did not impact inves-
tigations of application performance or schedule efficiency
because, as will become clear, the parallelism available in
PMHD3D for the problem sizes studied here is well below
the 34 machine limit. As explained in Section 2.5 we used
an IBP server running at all times at UCSD, while AppLeS
acted as an IBP client retrieving the forecasts. This setup
allowed us to obtain updated predictions for a large number
of resources in a reasonable amount of time. On average it
took less than 4 seconds to retrieve the data, with a mini-
mum of 2.5 seconds and a maximum of 8.5 seconds.

To test the performance of PMHD3D under a variety
of conditions, experiments were typically performed with
maximum resource set sizes (from now on called resource
pool or simply pool) of

� � ������� � � and problem sizes of���� � � �������� ���� . Problem size is the height of the data
grid used by PMHD3D. The pool is the maximum num-

ber of machines the scheduler is allowed to employ. We
test varying pool sizes to simulate conditions under which
a user may be limited to a certain number of resources by
cost or access considerations. Although our overall resource
pool contains 34 machines in total, the maximum pool size
we simulate is only 26. This choice was practical: we fre-
quently found unavailable or inaccessible machines in our
overall resource pool and so were never able to access all
34 machines at one time. Note also that the scheduler may
determine that utilizing the entire pool is not the most per-
formance efficient choice. In this case the pool is larger than
the number of target resources.

The experiments presented in Section 4.2 were con-
ducted under unloaded conditions while those presented in
Section 4.3 were conducted under loaded conditions. The
ambient load present during most of our loaded runs con-
sisted of heavy use of some machines and light use of oth-
ers. In order to investigate application performance we
report performance results based on application execution
time. However, there is a cost associated with using Ap-
pLeS to develop a schedule. We analyzed

� � runs in detail
and the dominant scheduling cost is associated with query-
ing the Legion Collection and the Legion context space.
The time required to access NWS and IBP is on average less
than 4 seconds. Once the system and performance informa-
tion has been collected, the AppLeS required on average
roughly 1 second to order the resources, create schedules,
and select the best schedule.

4.2. Performance Model Validation

The performance model is the basis for determining a
good work allocation and, more importantly, provides the
basis for selecting a final schedule among those that have
been considered. We tested model accuracy for a variety of
problem sizes and target resource sets (see Figure 3). For
the 62 runs shown in this figure the model accurately pre-
dicts execution time within 1.5%, on average. The perfor-
mance model consistently achieved this level of accuracy
for other runs taken under similar conditions. Notice that as
the problem size becomes larger, the smallest pool that we
test also increases (i.e. the smallest pool for a problem size
of 2000 is of size

�
while for a problem size of 6000 it is� �). This experimental setup was required by a limit in the

g77 FORTRAN compiler we employed: no more than 507
work units could be allocated to any one processor during
the computation.

Figure 3 demonstrates the importance of selecting an ap-
propriate number of target resources for PMHD3D. For ex-
ample, for a problem size of 1000 the minimal execution
time is achieved when the application is run on 10 proces-
sors. If fewer processors are used, the amount of work per
processor is high and the overall execution time is higher.

4 6 8 10 12 14 16 18 20 22 24 26
40

50

60

70

80

90

100

110

120

Size: 1000

Size: 2000

Size: 3000

Size: 4000

Size: 5000

Size: 6000

Number of processors

E
xe

cu
tio

n
tim

e
(s

)

Figure 3. Model predictions (dashed lines) and observed execution time (solid lines) for a variety of
problem sizes and pool sizes.

Table 1. Number of resources to target for
various problem sizes under unloaded con-
ditions. Optimal is the best choice, range in-
dicates close to optimal choices.�������

1000 2000 3000 4000 5000 6000
�	��
��

10 12 14 16 18 18
������� �

8-12 12-14 14-16 14-18 16-18 18-20

If more processors are used, the added communication and
system overheads cannot be offset by the advantage of the
additional computational power. Significantly, the perfor-
mance model accurately tracks the knee (i.e. inflection
point) in the curve and is thus capable of predicting the cor-
rect number of target resources, at least under these con-
ditions. We report the optimal number of target resources
for all problem sizes tested in Table 1. As will be obvious
in Section 4.3, the optimal number of processors may vary
with resource performance and dynamic system conditions
as well as with problem size.

Figure 4 demonstrates the scheduling advantage of accu-
rately predicting the correct number of processors to target.
In these experiments the PMHD3D AppLeS was allowed to
select any number of processors up to the maximum pool

size. The PMHD3D AppLeS selects the maximum num-
ber of resources for each resource pool up to and including
a size of

���
. For resource pools of size � and larger the

optimal number of hosts is
���

and the PMHD3D AppLeS
correctly selects only

���
hosts.

10 12 14 16 18 20 22 24 26

80

100

120

Maximum Allowed Processors

T
im

e
(s

)

Execution Time
Predicted Execution Time
Pool Size Chosen

10 12 14 16 18 20 22 24 26
10

15

20

A
pp

Le
S

 P
ro

ce
ss

or
s

Figure 4. PMHD3D AppLeS predicted and ac-
tual execution times for a problem size of
5000.

4.3. Performance Results

Once we verified that the performance model is accu-
rate in a predictable environment (i.e. where resources
are dedicated), we turned our attention to considering the

performance of the AppLeS in a more dynamic, unpre-
dictable, multi-user environment. We begin by investigat-
ing the ability of PMHD3D AppLeS to compare available
resources and select desirable hosts (computationally fast,
well-connected, or both). To provide a comparison point we
test the performance of another available scheduler, namely
the default Legion scheduler. We conducted experiments in
runs, namely back-to-back PMHD3D executions using the
same resource pool and the same problem size but utiliz-
ing the PMHD3D AppLeS scheduler first and the default
Legion scheduler second.

5 10 15 20 25

40

60

80

100

120

140

T
im

e
(s

)

Maximum Allowed Processors

Execution Time w/o AppLeS
Execution Time w/ AppLeS
Predicted Execution Time

Figure 5. PMHD3D performance attained with
and without the AppLeS scheduler for a prob-
lem size of 1000.

In Fig. 5 we show a series of runs comparing the
two schedulers for a problem size of 1000. Clearly, the
PMHD3D AppLeS provides a performance advantage for
all resource set sizes tested. However, it is notable that the
two execution time curves follow the same trend only when
the resource pool is in the range of 4-12 hosts. When more
resources are added to the pool the execution time achieved
with the PMHD3D AppLeS remains constant while the de-
fault Legion scheduler execution time diverges. The default
Legion scheduler allocates all available resources, a less
than optimal strategy for PMHD3D. In Table 2 we report
the typical number of processors selected by AppLeS for
different problem sizes and resource set sizes.

For pool sizes of
� � � � performance achieved via the

PMHD3D AppLeS is consistently � � � � seconds lower
than that achieved via the default scheduler. In this range
of pool sizes, the PMHD3D AppLeS selects the maximum
number of hosts available and so uses the same number of
resources as the default Legion scheduler. The performance
advantage is achieved by selecting “desirable” resources,
i.e. resources that are computationally fast and/or well-
connected. Figure 6 illustrates the load of all available ma-
chines just before scheduling occurred for the 18-processor
run shown in Figure 5. Clearly, the PMHD3D AppLeS se-
lects lightly loaded hosts (i.e. those hosts with high avail-
ability) while the default scheduler selects several loaded
hosts. It is the load on these selected machines that causes

Table 2. Hosts chosen by PMHD3D AppLeS.
The Legion default scheduler always selects
the maximum number of hosts.

Problem Size
� ��� �	��
 ��

1000 2000 4000 5000 6000
4 4 4
6 6 6
8 8 8 8

10 10 10 10 10
12 10 12 12 12 12
14 10 12 14 14 14
16 10 12 14 16 16
18 10 12 16 16 18
20 10 12 14 18 20
22 10 12 14 18 20
24 10 14 14 18 18
26 10 14 14 18 18

a performance disadvantage for the default scheduler. In a
more heterogeneous network environment the connectivity
of the hosts would also play an important role in host selec-
tion and resulting performance.

We obtained 83 runs comparing the default Legion
scheduler to the PMHD3D AppLeS for a variety of problem
sizes (1000-6000) and pool sizes (4-26). Figure 7 shows a
histogram of the percent improvement the PMHD3D Ap-
pLeS achieved over the default Legion scheduler for the 83
runs (the average improvement was 30%).

Note that in a few runs there was little or no advantage
to using the PMHD3D AppLeS. In these cases the proces-
sors were essentially idle and the pool size was below the
optimal number so that the schedulers selected the same
number of processors. In one run the PMHD3D AppLeS-
determined schedule was considerably slower than that de-
termined by the default Legion scheduler. In this case the
scheduler created a schedule based on incorrect system in-
formation: NWS forecasts of CPU availability were unable
to a predict a sudden change in load on several machines
and the resulting schedule was poorly load balanced.

The Legion default scheduler was designed to provide
general scheduling services, not the specialized services we
include in the PMHD3D AppLeS. It is therefore not sur-
prising that the AppLeS is better able to promote applica-
tion performance. In fact, the PMHD3D AppLeS could be
developed as a Legion object for scheduling regular, iter-
ative, data-parallel computations, and this is a focus of fu-
ture work. Using the PMHD3D AppLeS and the Legion de-
fault scheduling strategy as extremes, we wanted to explore
a third alternative for scheduling – that of what a “smart
user” might do: In a typical user scenario for a cluster of
machines a user will have access to a large number of ma-
chines and will typically do a back-of-the-envelope static

0 5 10 15 20 25 30 35
0

0.5

1

C
P

U
 A

va
ila

bi
lit

y

Processor ID

Unavailable Hosts
Hosts selected by AppLeS
Hosts selected by default scheduler

Figure 6. A snapshot of CPU availability taken
during scheduling for the 18-processor run
shown in Figure 5.

−40 −20 0 20 40 60 80
0

5

10

15

20

Percent Improvement

N
um

be
r

of
 R

un
s

Figure 7. Range of performance improvement
obtained by PMHD3D AppLeS.

calculation to determine an appropriate number of target re-
sources given the granularity of the application. Although a
user may correctly determine the number of hosts to target,
accurate information on resource load and availability will
be difficult or impossible to obtain and interpret prior to or
at compile-time.

To simulate this user scenario, we developed a third
scheduling method called the smart user. The smart user
selects an appropriate number of hosts but does not select
hosts based on desirability. Experiments were performed
for problem sizes ranging from

����
to

����
with a pool

size of 26 hosts. Figure 8 shows the performance obtained
by the PMHD3D AppLeS, the default Legion scheduler,
and that obtained by the smart user. In these experiments,
the PMHD3D AppLeS provides a significant performance
advantage over both alternatives.

5. Related Work

The PMHD3D AppLeS is an adaptation and extension of
previous work targeting the structurally similar Jacobi-2D
application ([2],[3]). Jacobi-2D is a data-parallel, stencil-
based iterative code, as is PMHD3D. Both applications al-
low non-uniform work distribution, however Jacobi-2D em-
ploys strip decomposition (using strip widths) for its 2-

1000 2000 3000 4000 5000 6000
0

50

100

150

200

Problem Size

E
xe

cu
tio

n
T

im
e

(s
)

Default Legion Scheduling
Smart User Scheduling
AppLeS Scheduling

Figure 8. Performance obtained by three
schedulers when each was given access to
at most 26 processors.

dimensional grid while PMHD3D employs slab decompo-
sition (using slab height) for its 3-dimensional grid. While
the applications are structurally similar, PMHD3D required
tighter constraints on memory availability and a more com-
plex performance model. Additionally, PMHD3D was tar-
geted for a much larger resource set (34 machines vs. 8).
The availability of a larger resource pool for this work mo-
tivated the introduction of the quadratic overhead term in
the PMHD3D performance model. Previous AppLeS work
has not included the additional overhead of using extra ma-
chines in scheduling decisions.

As part of our previous work, we developed an AppLeS
for Complib and the Mentat distributed programming en-
vironment. Complib implements a genetic sequencing al-
gorithm for libraries of sequences. It is particularly diffi-
cult to schedule because of its highly data dependent exe-
cution profile. The implementation of Complib we chose
was for Mentat [8] which is an early prototype of the Le-
gion Grid software infrastructure. By combining a fixed
initial distribution strategy (based on a combination of ap-
plication characteristics and NWS forecasts) with a shared
work-queue distribution strategy, the Complib AppLeS was
able to achieve large performance improvements in dif-
ferent Grid settings [20]. In addition to AppLeS for Le-
gion/Mentat applications, we have developed AppLeS for a
variety of Grid infrastructures and applications [19, 21, 7].

In [10], the authors describe a scheduler targeting data
parallel “stencil” applications that use the Mentat program-
ming system. They specifically examine Gaussian elimi-
nation using a master/slave work-distribution methodology.
While it is difficult to compare the performance of each sys-
tem, their approach differs from AppLeS in that it requires
more extensive modification of the application and it does
not incorporate dynamic information.

6. New Directions

An ultimate goal is to offer the PMHD3D AppLeS agent
within the Legion framework as a default scheduler for it-
erative, regular, stencil-based distributed applications. In
particular, the scheduler’s performance model is flexible
enough to incorporate the requirements and constraints of
other stencil applications and the characteristics of other
platforms. To use this model for other appropriate appli-
cations, good predictions of megabytes transferred, number
of messages initiated, overhead factor, benchmarks for pro-
gram CPU and memory utilization over the different target
architectures, as well as access to dynamic system infor-
mation from NWS or a similar system would be required.
Once obtained, these characteristics are used as inputs to
the model without changing the model structure.

Portability and heterogeneity are also important. The
AppLeS itself is written in C and Perl and has been com-
piled successfully and executed on various architectures and
systems (Pentium, Alpha, Linux and Solaris). Initial results
indicate that the scheduler can be used effectively on dif-
ferent target environments without changes to the structure
of the performance model. For example, we used mpich on
a local cluster for initial development and debugging. The
schedule worked well with only the previously described
changes in model input parameters.

Acknowledgements

The authors would like to express their gratitude to the
reviewers for their comments and suggestions. The insight
and focus provided by their comments improved the paper
greatly. We thank the NWS team and Jim Hayes in particu-
lar for sharing their NWS expertise with us. We also thank
the Legion team and Norman Francis Beekwilder in partic-
ular for sharing their Legion expertise with us.

References

[1] Application-Level Scheduling.
http://apples.ucsd.edu.

[2] F. Berman and R. Wolski. Scheduling from the perspec-
tive of the application. In Proceedings of High-Performance
Distributed Computing Conference, 1996.

[3] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao.
Application level scheduling on distributed heterogeneous
networks. In Proceedings of Supercomputing, 1996.

[4] Virginia Centurion Cluster. http://
legion.virginia.edu/centurion/facts.

[5] S. J. Chapin, D. Katramatos, J. Karpovich, and
A. Grimshaw. Resource management in Legion. In
Journal of Future Generation Computing Systems,
volume 15, 1999. page583-594 vol 15.

[6] D. Dantzig. Programming of interdependent activities, ii,
mathematical model. Activity Analysis of Production and
Allocation, July-October 1949.

[7] I. Foster and C. Kesselman, editors. The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann Pub-
lishers, July 1998.

[8] A. Grimshaw. Easy-to-use object-oriented parallel program-
ming with mentat. IEEE Computer, May 1993.

[9] A. Grimshaw, A. Ferrari, F. Knabe, and M. Humphrey.
Wide-area computing: Resource sharing on a large scale.
In IEEE Computer 32(5), volume 32(5), May 1999. page
29-37.

[10] A. Grimshaw, J. Weissman, E. West, and E. J. Loyot. Meta-
systems: an approach combining parallel processing and
heterogeneous distributed computer systems. Journal of
Parallel and Distributed Computing, June 1994.

[11] A. Grimshaw and W. Wulf. Legion–a view from 50,000 feet.
In Proceedings of High-Performance Distributed Comput-
ing Conference, 1996.

[12] John Hawley. http://www.astro.virginia.edu/
� jh8h.

[13] Internet Backplane Protocol.
http://www.cs.utk.edu/ � elwasif/IBP.

[14] Legion. http://legion.virginia.edu.
[15] G. Lindhal. Private communication.
[16] W. Naylor. wnlib. ftp://ftp.rahul.net/pub/spiketech/softlib/

wnlib/wnlib.tar.Z.
[17] Network Weather Service. http://nws.npaci.edu/.
[18] ScaLAPACK. http://www.netlib.org/

scalapack/scalapack home.html.
[19] S. Smallen, W. Cirne, J. Frey, F. Berman, R. Wolski, M.-H.

Su, C. Kesselman, S. Young, and M. Ellisman. Combining
workstations and supercomputers to support grid applica-
tions: The parallel tomography experience. Heterogeneous
Computing Workshop, May 2000. To appear.

[20] N. Spring and R. Wolski. Application level scheduling:
Gene sequence library comparison. In Proceedings of ACM
International Conference on Supercomputing 1998, July
1998.

[21] A. Su, F. Berman, R. Wolski, and M. M. Strout. Using Ap-
pLeS to schedule simple SARA on the computational grid.
International Journal of High Performance Computing Ap-
plications, 13(3):253–262, 1999.

[22] R. Wolski. Dynamically forecasting network performance
using the network weather service. Cluster Computing,
1998.

Holly Dail is currently a M.S. student in the Department
of Computer Science and Engineering at the University of
California San Diego. She received a B.S. in Physics and a
B.S. in Oceanography from the University of Washington
in 1996. Her current research interests focus on achieving
application performance in Computational Grid environ-
ments.

Graziano Obertelli is currently an Analyst Programmer
in the Department of Computer Science and Engineering

at the University of California, San Diego. He received
his Laurea in Computer Science at Univerità degli Studi,
Milano.

Francine Berman is a Professor of Computer Science and
Engineering at the University of California, San Diego. She
is also a Senior Fellow at the San Diego Supercomputer
Center, Fellow of the ACM, and founder of the Parallel
Computation Laboratory at UCSD. Her research interests
over the last two decades have focused on parallel and
distributed computation, and in particular the areas of
programming environments, tools, and models that support
high-performance computing. She received her B.A. from
the University of California, Los Angeles, her M.S. and
Ph.D. from the University of Washington.

Rich Wolski is an Assistant Professor in the Depart-
ment of Computer Science at the University Tennessee,
Knoxville and a partner in the National Partnership for
Advanced Computational Infrastructure. His research
interests include parallel and distributed computing, on-line
performance analysis techniques and software, compiler
runtime system, and dynamic scheduling. He received his
B.S. from the California Polytechnic University, San Luis
Obispo and his M.S. and Ph.D. from the University of
California at Davis/Livermore Campus.

Andrew S. Grimshaw is an Associate Professor of
Computer Science and director of the Institute of Parallel
Computation at the University of Virginia. His research
interests include high-performance parallel computing,
heterogeneous parallel computing, compilers for parallel
systems, operating systems, and high-performance parallel
I/O. He is the chief designer and architect of Mentat and
Legion. Grimshaw received his M.S. and Ph.D. from the
University of Illinois at Urbana-Champaign in 1986 and
1988 respectively.

