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Award Number W81XWH-05-1-0031 
A. Introduction 

The proposal for DOD Award #W81XWH-05-1-0031 focused on the systematic mapping of large-
scale genetic alterations in prostate cancer, and relating these mutations to prostate cancer progression. 
To that end, the proposal suggested the application of single nucleotide polymorphism (SNP) array 
technology to characterize large-scale genetic alterations in the prostate cancer genome. 

1. High-resolution single nucleotide polymorphism arrays 
SNPs are the most common genetic variation in the human genome; more than 6,000,000 have been 

identified (Sachidanandam et al., 2001). The use of single-nucleotide polymorphisms to study the 
germline genetic susceptibility to disease is well appreciated and an evolving technology designed to 
conduct such studies is the use of oligonucleotide arrays to interrogate these SNP markers in a high-
throughput, highly parallel fashion (Cutler et al., 2001; Matsuzaki et al., 2004; Matsuzaki et al., 2004). 
These oligonucleotide arrays specifically detect the two different alleles of each SNP (Figure 1). The 

most advanced commercially available 100K arrays 
detect 116,204 SNPs.  With a median intermarker 
distance of 8.9 kb, this represents greater than 5 SNPs 
per gene, affording state-of-the art resolution for large-
scale genotyping purposes (Craig and Stephan, 2005). 

To prepare target for the 100K arrays, genomic DNA 
is digested with XbaI or HindIII (in separate reactions). 
HindIII and XbaI linkers are ligated and single-primer 
PCR amplification is carried out to amplify fragments 
ranging from 200-2000 bp, resulting in a partial genome 
representation. The fragments are labeled with 
streptavidin, fragmented and hybridized to arrays that 
contain the 58,000 probe sets for either the XbaI or 
HindIII digest. The probe set for each SNP consists of 
10 perfect match (pm) probes to each allele, along with 
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Figure 1: View of a probe set for a single SNP
showing a homozygous “A” call.  For each SNP,
40 oligonucleotide probes are tiled onto SNP arrays
interrogating 116,204 SNPs across the genome.
These include perfect match (pm) and mismatch
(mm) probes directed against each allele. The SNP
position slides 5’ to 3’ among the pm or mm probes
to each allele. The fluorescence pattern indicates
which alleles are present; the fluorescence intensity
indicates the quantity of bound DNA. 
10 mismatch (mm) probes, for a total of 40 probes. A 
etailed description of the protocols and technology for these 100K SNP arrays is available at 
ww.affymetrix.com/support/technical/datasheets/100k_datasheet.pdf. 

The scale and precision with which high-density SNP arrays interrogate independent alleles 
rompted our group (led by William Sellers and Matthew Meyerson) to spearhead efforts applying this 

echnology to the analysis of somatic genetic alterations present in human malignancies.  Several 
eatures of SNP arrays suggested that they might constitute an ideal platform for cancer genomic 
nalyses: 1, determination of allele status across cancer genomes provided a basis for large-scale, high-
recision loss of heterozygosity (LOH) analysis; 2, probe set hybridization yielded a signal whose 

ntensity also reflected the copy number at that locus; and 3, the resolution afforded by SNP array marker 
ensities exceeded that of most CGH options. 

a. High-resolution loss of heterozygosity analysis 
The somatic conversion of heterozygous germline alleles to a homozygous state (LOH) may occur 

hrough hemizygous deletion alone (resulting in concomitant copy loss) or followed by gene duplication 
copy-neutral LOH).  Interestingly, copy-neutral LOH, which is undetectable by conventional CGH 
ethods, represents up to 80% of LOH events in some tumor sets (Huang et al., 2004), and the primary 
echanism of LOH in particular genomic regions of individual cancer types (Irving et al., 2005; 

acqueline A. Langdon, 2005). Considerable experimental evidence supports the notion that LOH 
epresents a key mechanism for tumor suppressor inactivation.  Indeed, nearly all common tumor 
uppressor genes occur in regions that frequently undergo LOH (prominent examples include p16, 
TEN, pRB, and p53). 

Published data by the Sellers and Meyerson groups and by others demonstrate that SNP arrays 
rovide high-resolution maps of LOH when one compares the pattern of heterozygosity in the 
onstitutional germline DNA to the pattern seen in the tumor (Allinen et al., 2004; Dumur et al., 2003; 
oque et al., 2003; Janne et al., 2004; Lieberfarb et al., 2003; Lindblad-Toh et al., 2000; Mei et al., 2000; 
aez et al., 2004; Primdahl et al., 2002; Schubert et al., 2002; Wang et al., 2004). More recently, we 
ave developed methods of analyzing homozygous allele frequencies and regions of linkage 
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Award Number W81XWH-05-1-0031 
disequilibrium to map regions of LOH without the use of paired normal germline DNA samples 
(Beroukhim et. al., in review and Body, below). This has allowed us to map LOH in cell lines and 
xenografts and to determine the similarity or differences in this data compared to authentic human 
tumors. 

b. Genome-wide maps of copy number aberrations 
Our group and others have found that comparison of signal intensities derived from each SNP probe 

(instead of allele call data) to corresponding signal data from normal genomes allows determination of 
copy number changes present within tumor samples (Bignell et al., 2004; Zhao et al., 2004). The 
concordance with quantitative PCR has generally been excellent, though high-level copy number gains 
are often underestimated on SNP arrays, presumably due to saturation effects. Various cancer genomes 
are now beginning to be mapped in this way (Rubin et al., 2004; Zhou et al., 2004), including analyses by 
our group, using 100K arrays, of the lung cancer genome (Zhao et al., 2005) and of the NCI60 cell line 
set (Garraway et al., 2005). The high resolution of the 100K arrays allowed the discovery, in this latter 
case, of the novel oncogene MITF in melanoma cell lines and metastatic samples. 
 

To that end, the specific aims proposed were:  
 

1. To isolate DNA from 50 localized and 50 metastatic prostate cancers after laser-capture 
microdissection, along with DNA from corresponding germline tissue. 

2. To generate genome-wide high-resolution maps of LOH and copy-number alterations using 
SNP arrays containing probes for 100,000 markers. 

3. To identify and validate candidate somatic genetic alterations differing in prevalence between 
localized and metastatic cancers, and develop markers for clinical association studies. 
 
In the 11 months since the beginning of the award, significant progress has been made in all 3 

specific aims.  However, unanticipated difficulties have also arisen with respect to Specific Aim 1.  The 
progress and difficulties will be outlined in the next section. 
 
 
B. Body 
 

1. Specific aim #1: To isolate DNA from 50 localized and 50 metastatic prostate cancers 
after laser-capture microdissection, along with DNA from corresponding germline 
tissue. 

Reconstitution experiments have shown (Lindblad-Toh et al., 2000) that contamination of cancer cells 
with greater than 10% normal cell genomes results in a significant degradation in the ability to determine 
LOH. Prostate cancers tend to have large concentrations of intervening stroma. Thus, to apply SNP 
array technology to the study of prostate cancer, samples must be enriched for tumor. In this aim, we 
attempt to preserve the detection of both LOH events and copy number changes in prostate samples 
using laser capture microdissection (LCM)-based methods for tumor enrichment.  

Our experience has shown that LCM of 2 mm2 of prostate tissue takes between 2-4 hours and yields 
50-100 ng of DNA. A 100K SNP array set requires 500 ng of DNA; to produce this amount of DNA on a 
large number of tumors quickly becomes prohibitively time-consuming. Fortunately, several methods of 
whole genome amplification (WGA) exist (Hughes et al., 2005). Among the most promising of these is 
multiple displacement amplification (MDA) (Dean et al., 2002), which makes use of a polymerase with 
exonuclease activity and random primers to perform isothermal amplification, with yields as high as 
10,000-fold or greater. As opposed to PCR-based methods, the DNA produced has long fragment 
lengths and low error rates. We have shown (Paez et al., 2004) that, using 10 ng of high-quality template 
DNA, one can produce tens of micrograms of DNA with MDA methods using the Φ29 polymerase. The 
DNA product preserves genotyping information with 99.8% accuracy, and copy numbers determined 
from this DNA are 87% concordant with the unamplified template DNA. Much of the 13% discordance in 
copy number estimates was not functionally important, as it was due to lower saturation levels in WGA 
DNA—meaning very high amplifications (copy number 6 or greater) were not seen to be as high in WGA 
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Award Number W81XWH-05-1-0031 
as unamplified DNA—although they were noted to be high in both groups. Therefore, we have attempted 
to apply MDA to DNA obtained from laser-capture mcirodissected tissue 

 
This section will describe progress in 3 sub-aims: 

a. Characterization of LCM and WGA conditions for optimal reproducibility 
b. Collection of primary and metastatic tumors for microdissection 
c. Production of high-quality DNA from whole genome amplification of DNA obtained from 

laser-capture microdissected tumors and germline tissue 
 

a. Characterization of LCM and WGA conditions for optimal reproducibility 
Early on, we found that DNA from LCM can also serve as a template for WGA, providing product that 

gives similar results on SNP arrays to unamplified DNA. Among four highly enriched tumors, high-density 
SNP array data was obtained after either macrodissection (either a 2 mm cubic biopsy of tissue, or tissue 
needle-dissected from a glass slide) or laser capture microdissection. Overall call rates, reflecting the 
percentage of SNPs for which genotypes could be assigned, averaged 93.7% and 93.6% for 
macrodissected and microdissected tissue, respectively. Moreover, concordance rates between 
genotype calls from macrodissected and microdissected tissue averaged 98.2%. Although this 
concordance rate is slightly worse than that obtained with the highest quality DNA (99.85% in our hands 
(Paez et al., 2004)), it is high enough to accurately assign regions of LOH (Figure 2). 
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Figure 2: High-quality SNP 
Likewise, the ability to identify copy number aberrations is 
reserved (Figures 2,3). The main concern here is due to the potential 
neven nature of amplification by WGA. In fact, we know that certain 
egions of the genome are better represented in WGA product than 
thers, with up to 6-fold variations between different regions (Dean et 
l., 2002). As long as these biases are consistent, however, 
ormalization against control samples that have undergone whole 
enome amplification under similar conditions will correct for them, 

eaving only the underlying signal intensity changes reflecting copy 
umber aberrations inherent in the sample. To test how consistent 

hese biases are along a range of WGA conditions, DNA obtained 
rom laser capture microdissected benign prostate tissue was 
mplified under varying conditions.  

Specifically, as the amount of WGA template was increased from 
 ng to 64, the SNP array signal intensities became more similar to 
namplfiied controls (Table 1). However, signal intensities from 
CM/WGA were highly consistent, when compared against DNA 
ndergoing LCM/WGA under similar conditions (mean variance 0.11, same as unamplified controls; 

Figure 3: Preservation of signal
intensity variations after laser
capture microdissection and
whole genome amplification.
Normalized signal intensities for a
second highly pure tumor are
displayed (as in Figure 5, right
panel), along with graphs of those
signal intensities on either side. Both
amplifications and deletions appear
highly reproducible after laser
capture microdissection and whole
genome amplification. 

 

array data generated after laser 
capture microdissection and 
whole genome amplification. 
Top: Data generated from a highly 
pure tumor after macrodissection 
is displayed alongside data from 
the same sample after LCM and 
WGA. Genotype calls are 
displayed in the left panel (yellow 
– AB (het), red – AA, blue – BB, 
white – No Call), LOH inferences 
in the middle panel (blue – LOH, 
yellow – retention), and signal 
intensities in the right panel (red – 
high, white – normal, blue – low). 
A homozygous deletion on chr. 8 
(gray arrow) and regions of LOH 
(black and white arrows) are 
indicated. 
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Table 1). Moreover, this 
consistency remained even 
when DNA from LCM was 
whole genome amplified on 
different days (variance = 
0.12), or using different lots 
of polymerase, dNTP, and 
random primers (variance = 
0.10). Finally, the signal 
intensities from LCM/WGA 
appear robust to 2-fold 
changes in amount of DNA 
template (variance = 0.13). 

 
b. Collection of 

primary and 
metastatic 
tumors for 
microdissecti
on 

 

Table 1.  Mean variance between normalized SNP array signal intensities obtained from 
WGA product using various amounts of template DNA, versus signal intensities from 
unamplified DNA. Template DNA used for WGA was produced from LCM of benign 
prostate tissue. 

Template 
amount 4 ng 8 ng 16 ng 32 ng 64 ng Unamplified* 

Variance 
from 

unamplified 
DNA 

0.30 0.26 0.24 0.23 0.23 0.11 

Variance 
from 

similarly 
prepared 

DNA 

- 0.13 - 0.09 - 0.11 

*Variance between normalized signal intensities from repeat SNP arrays using the same 
unamplified DNA 

Through the Gelb Center at the Dana-Farber Cancer Institute, we have IRB- approved access to 
several hundred fresh frozen primary prostate cancers, along with uninvolved seminal vesicles. To date, 
Gleason 3+3 (n=19), 3+4 (n=12), 4+3 (n=7), Gleason 4+4 (n=11), and Gleason 4+5 (n=1) have been 
selected for microdissection and analysis. 

Metastatic tumors are being obtained from several sources. Through our collaborator, Dr Mark Rubin, 
we have obtained hormone-naïve lymph node metastases from 6 individuals, with sufficient tumor to 
obtain adequate amounts of DNA. Dr Rubin has also coordinated the gathering of metastatic tissue from 
18 individuals, obtained through the rapid autopsy program at the University of Michigan. Through Dr 
Steven Balk, we have obtained multiple bone marrow biopsy specimens, and found that 3 contain 
sufficient tumor for microdissection. In addition, Dr Mary-Ellen Taplin has provided a further 8 bone 
marrow biopsy samples. Recently, we have initiated a collaboration with Dr Lawrence True and his 
colleagues at the University of Washington, and through them have obtained metastatic tissue from 20 
individuals, garnered through their rapid autopsy program, along with primary prostate tissue from the 
majority of these individuals. Histologic characterization and microdissection of all of these samples is 
underway. 

 
c. Production of high-quality DNA from whole genome amplification of DNA obtained 

from laser-capture microdissected tumors and germline tissue 
 
With tumors collected and optimal conditions for LCM and WGA determined, we initiated data 

collection by performing LCM on primary tumors along with germline tissue from paired seminal vesicles.  
Unfortunately, we soon came to find that histology affects the quality of DNA obtained after LCM and 
WGA.  For instance, in one experiment we performed LCM and WGA on 3 primary prostate cancers 
along with paired uninvolved seminal vesicles.  In each case, 32 ng of DNA was used from the laser 
captured cells as template for WGA, and 250 ng of WGA product was used for restriction digest, 
amplification, and hybridization to 50K Xba arrays.  WGA was performed using the same reagents and at 
the same time, for all samples.  However, genotyping call rates were excellent for the germline DNA 
obtained from the seminal vesicles, ranging from 95-98%, and were low for the tumors, ranging from 85-
90%.  Moreover, signal intensity profiles were much noisier for the tumor DNA (data not shown), 
precluding high-resolution copy number analysis. 

As both the tumor and normal seminal vesicle were resected from the patient simultaneously, the 
cause of the difference in DNA quality between them is likely due to the differing histology between the 
tumor and normal tissue and resulting differences in the laser capture process itself. Namely, small nests 
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of cancer cells have to be captured from the tumor, whereas large regions of normal tissue could be 
captured.  The result is that the captured tumor cells, on average, lie closer to the line cut by the laser. 
We are testing the possibility that the laser itself is damaging DNA. In the meantime, we have purchased 
an Arcturus Veritas laser capture microdissection machine, and have begun experiments with capturing 
cells using an infrared rather than ultraviolet laser, which is likely to reduce radiation damage. 

In case this approach does not work, we are also collecting highly pure primary tumors, for which we 
can microdissect sufficient numbers of tumor cells so as to not require whole genome amplification. Prior 
experiments have shown even in cases where WGA DNA performs poorly on the SNP arrays due to 
slight degradation of the template DNA, the unamplified template DNA will still perform well (data not 
shown). 
 

2. Specific aim #2: To generate genome-wide high-resolution maps of LOH and copy-
number alterations using SNP arrays containing probes for 100,000 markers. 

 
While optimizing the LCM methods, unamplified DNA 

was used to produce 100K SNP array data from 45 
prostate cancers, including 11 primary tumors, 4 hormone-
naïve lymph node metastases, 7 hormone-refractory 
metastases, 7 cell lines, and 16 xenografts. 
 

a. Generation of LOH maps 
 
In the application for this award, we described a 

method we had developed to identify regions of LOH 
without the use of paired normal DNA. Although we are 
obtaining paired normal DNA for all primary and metastatic 
tumors in this study, we also have SNP array data from 
prostate cancer model systems for which paired normal 
DNA is unavailable. The method used to determine LOH 
without paired normal DNA was originally developed using 
data from SNP arrays probing 10,000 loci throughout the 
genome. When applying the method to 100K SNP array 
data, we found that the haplotype structure of the genome 
reduced the specificity of the method, and improved the 
method to take this haplotype structure into account 
(Beroukhim et al, in review; Appendix I). 

Those regions that most frequently undergo LOH are 
most likely to influence tumor survival, through the 
presence of tumor suppressor genes (TSGs). In fact, our 
analysis of the frequency of LOH in 34 prostate cancer 
samples revealed that several tumor suppressor genes lay 
at regions of peak LOH frequency, compared to the rest of 
the genome (Figure 7). Here, we use as a measure of LOH 
frequency the “LOH probability mean”, which refers to the 
mean probability with which LOH occurred at each SNP 
locus, averaged across all 34 samples. 

 
b. Generation of copy-number maps 

 
For the generation of copy-number estimates, both 

systematic and random errors in signal intensity data have 
to be minimized. We found that the main source of 
systematic error is batch effect, whereby a batch of samples that simultaneously undergo DNA digestion, 
amplification, labeling, and hybridization to arrays, will have similar signal intensity alterations (high or 

Figure 4: Frequency of LOH across the
prostate cancer genome. The mean LOH
probability across 34 prostate cancer samples is
plotted along the left for all chromosomes. Peak
regions of LOH are noted, and data from
chromosomes 8, 13, and 17 are highlighted on the
right. These data are displayed as in Figure 2.
Note that in this view, SNPs are visualized
proportional to physical distance along the
chromosome and most SNPs are not projected
due to proximity to their neighbors. The red dotted
lines indicate the approximate chromosomal
positions of putative TSGs. 
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low signal intensity) compared to samples processed at other times. This, in turn, leads to the 
appearance of amplicons and deletions restricted to that batch (Figure 5). Strict control of experimental 
conditions and normalization against reference samples from the same batch can minimize, but tend not 
to eliminate, these batch effects. In turn, these batch effects can lead to the identification of spurious 
regions of recurrent amplification and deletion. 

We posited that the identifying characteristic of an alteration due to batch effect is that the alteration 
consistently occurs within one batch, and consistently does not occur within other batches of similar 
samples. Therefore, for each batch containing at least 5 samples, we identified the distribution of signal 
intensities for each SNP, and compared this using a T-test with the distribution of signal intensities in all 
other batches. When the p value was less than 0.001, we considered that the SNP had undergone a 
systematic alteration due to batch effect, and subtracted a constant amount from the signal intensities at 
that SNP for all samples in the batch, so that the mean signal in that batch equaled the mean signal in all 
other batches (Figure 5). 

Whereas systematic errors can lead to the identification of spurious regions of amplification and 
deletion, random errors tend to reduce our sensitivity to identifying regions of real importance. Most 
importantly, the error in the signal intensity measured at a given SNP can lead to that SNP being 
spuriously identified as amplified or deleted, leading to downstream errors in estimates of the frequency 
of lesions at that SNP locus. A variety of smoothers, developed for CGH data, reduce noise levels at 
each locus by involving information from neighboring loci (Lai et al., 2005). We have found GLAD (Hupe 
et al., 2004), which identifies segments with a constant copy number and averages the signal intensities 
across all loci in each segment, provides the most accurate results in a reasonable amount of 
computational time (data not shown). Several alternative software packages (dChipSNP, CNAT, CNAG, 
GIM) (Bignell et al., 2004; Ishikawa et al., 2005; Nannya et al., 2005; Zhao et al., 2004) also exist to 
convert probe-level data into overall SNP-specific signal intensities. Preliminary results seem to point to 
CNAG as producing the most optimal signal-to-noise ratios (data not shown). 
 

Figure 5: Batch effect and correction. Signal intensity data are displayed for 61 samples, each as a column. These samples
were run in 7 batches, designated by different colors in the top panel. The normalized intensities for a set of 40 consecutive
SNPs are displayed (as in Figure 2) in the middle panel. In the batch designated in blue (top panel), several adjacent SNPs
appear to have consistently high signal intensities, giving the false appearance of a recurrent amplicon. Data corrected for this
batch effect are displayed in the bottom panel. 

c. Identification of significant copy-number aberrations 
 
We posited that information as to the importance of a region in sustaining cancer lay not only in the 

frequency with which that region undergoes lesions, but also the also in the amplitude of the lesions that 
occur. Therefore, we designed scores for amplification and deletion that included both sources of 
information. Namely, for each SNP locus we calculate: 
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 Amp = famp x log2(Ŝamp), and 

 
Figure 6: Regions of significant amplification and deletion in a set of 45 prostate cancers. FDR-corrected q values (log
scale, left), associated with Amp and Del scores across the genome, are displayed. Regions with a q value less than 0.01
(red line) were considered significantly altered. Among amplifications, the most significant region overlaps the androgen
receptor (labeled as AR). Among deletions, the region containing PTEN scored as most significant. 

 Del = fdel x -log2(Ŝdel)    (1) 
where famp and fdel represent the frequency of amplification and deletion, respectively, and Ŝamp and Ŝdel 
represent the average normalized signal intensity of samples with amplifications and deletions. 

The significance of each particular Amp or Del score is then determined by comparing it to similar 
scores determined from all permutations of the data, allowing the calculation of p values and, to correct 
for multiple hypothesis testing, False Discovery Rate (FDR) q values (Benjamini and Hochberg, 1995). 

When applied to our data from 45 prostate cancers, we obtained the Amp and Del scores displayed 
in Figure 9. Regions of amplification and deletion having q values less than 0.01 (i.e. having less than a 
1% probability of occurring by chance alone) were designated as significant. The region surrounding the 
androgen receptor is the most significantly amplified, whereas the region surrounding PTEN is the most 
significantly deleted. Interestingly, PTEN deletions (including homozygous deletions) are highly 
significant (Figure 6), but LOH of broader areas of 10q is not as common (Figure 5). Conversely, LOH of 
17p is very common (Figure 5), but deletions of this region are less significant (Figure 6)—due in part to 
a high prevalence of copy neutral LOH at this locus. These results underline the importance of obtaining 
independent maps of deletional and LOH events. 

Multiple other regions of significant amplification and deletion are seen, although the targets of most 
of these regions are not known. By adding higher-resolution data from larger numbers of tumors, 
including more primary and metastatic tissue samples, the locations of the most significant regions will 
become increasingly refined. 
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3. Specific aim #3: To identify and 
validate candidate somatic 
genetic alterations differing in 
prevalence between localized 
and metastatic cancers, and 
develop markers for clinical 
association studies. 

 
The analysis in the prior section not only 

identified the significant regions of 
amplification and deletion in these 45 prostate 
cancer samples; to do so, each sample had to 
be independently characterized as to the 
lesions it harbors. Thus, we can immediately 
identify correlations between the presence of 
any two or more lesions, as well as 
correlations between the presence of a set of 
lesions and phenotype. Although the sample 
set is small, we have begun this analysis in the 
setting of prostate cancer progression. 
Namely, we can begin to distinguish genetic 
lesions that are equally prevalent between 
primary prostate cancers and metastases, from t
hormone-refractory prostate cancer (Figure 7, Ta
seen in metastases, whereas loss of 8p, 16q, a
metastases. As expected, androgen receptor (A
samples, with only one hormone-naïve lymph no
However, while high-level amplifications of AR ha
in 2 of the 7 samples with AR amplification. 
overexpression of AR is required for hormon
Interestingly, 21q22 loss also appears more pre
naïve samples for which we have data. 

Despite the small numbers of samples in thi
have already attained statistical significance, a
hypothesis testing. 

 
4. Key Research Accomplishments 

 
• Developed method for determination of LO

haplotype structure 
• Developed methods for reducing signal-inte

effects 
• Developed methods for identifying significant r
• Correlated several regions with progressive ca

 
5. Reportable Outcomes 

 
• Manuscript in review: Beroukhim R, Lin M, P

EP, Mellinghoff IK, Hofer MD, Descazeaud A, 
C, “Inferring Loss-of-Heterozygosity From Tum
Arrays”. 

• Publication: Mellinghoff IK, Wang MY, Vivanco
K, Huang JH, Chute DJ, Riggs BL, Horvath S
Table 2.  Prevalence of selected lesions in prostate cancer 
samples of varying stages. 

Lesion Primaries (n=11) Mets (n=11) p-value 

9p loss 0 8 0.001 

PTEN loss 0 8 0.001 

18q loss 1 8 0.008 

13q loss 5 8 0.39 

8p loss 9 9 1 

16q23 loss 9 9 1 

17p loss 8 8 1 

    

 hormone-naïve* 
(n=15) 

hormone-refractory 
(n=7) 

 
p-value 

AR amp 1 6 0.0006 

21q22 loss 3 6 0.007 

* includes primaries   
The two groups differ   
The two groups are similar  
hose that are more common among hormone-naïve or 
ble 2). For example, loss of 9p and PTEN were only 
nd 17p were equally prevalent among primaries and 
R) amplification tends to occur in hormone-refractory 
de metastasis having a low-level amplification of AR. 
ve been reported, low-level gene duplications are seen 
This accords well with the finding that only modest 
e resistance to be achieved (Chen et al., 2004). 
valent among the hormone-refractory than hormone-

s preliminary dataset, the p values for several lesions 
lthough they have not been corrected for multiple 

H without paired normals that takes into account 

nsity errors, including systematic errors due to batch 

egions of copy-number aberration 
ncer 

ark Y, Hao K, Zhao X, Garraway LA, Fox EA, Hochberg 
Rubin MA, Meyerson M, Wong WH, Sellers WR, and Li 

ors Without Paired Normals Using High-Density SNP 

 I, Haas-Kogan DA, Zhu S, Dia EQ, Lu KV, Yoshimoto 
, Liau LM, Cavenee WK, Rao PN, Beroukhim R, Peck 
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Award Number W81XWH-05-1-0031 
TC, Lee JC, Sellers WR, 
Stokoe D, Prados M, 
Cloughesy TF, Sawyers CL, 
Mischel PS, “Molecular 
determinants of the response 

of glioblastomas to EGFR kinase 
inhibitors”, NEJM. 
2005;353:2012-24. 

• Publication: Garraway LA, 
Weir BA, Zhao X, Widlund H, 
Beroukhim R, Berger A, 
Rimm D, Rubin MA, Fisher 
DE, Meyerson ML, Sellers 
WR, "’Lineage Addiction’ in 
Human Cancer: Lessons from 
Integrated Genomics”, Cold 
Spring Harb Symp Quant Biol. 
2005;70:1-10. 

• Publication: Koochekpour S, 
Zhuang YJ, Beroukhim R, 
Hsieh CL, Hofer MD, Zhau 
HE, Hiraiwa M, Pattan DY, 
Ware JL, Luftig RB, Sandhoff 

K, Sawyers CL, Pienta KJ, Rubin 
MA, Vessella RL, Sellers WR, 
Sartor O, “Amplification and 
overexpression of prosaposin 

in prostate cancer”, Genes 
Chromosomes Cancer. 2005; 
44:351-64. 

• Publication: Garraway LA, 
Widlund HR, Rubin MA, Getz 

G, Berger AJ, Ramaswamy S, 
Beroukhim R, Milner DA, 
Granter SR, Du J, Lee C, 
Wagner SN, Li C, Golub TR, 
Rimm DL, Meyerson ML, 
Fisher DE, Sellers WR, 
“Integrative genomic analyses 
identify MITF as a lineage 
survival oncogene amplified in 
malignant melanoma”, Nature. 
2005; 436:117-22 

• Publication: Zhao X, Weir BA, 
LaFramboise T, Lin M, 
Beroukhim R, Garraway L, 
Beheshti J, Lee JC, Naoki K, 
Richards WG, Sugarbaker D, 
Chen F, Rubin MA, Janne PA, 
Girard L, Minna J, Christiani D, 

Li C, Sellers WR, Meyerson M, 
“Homozygous deletions and 

chromosome amplifications in human lung carcinomas revealed by single nucleotide polymorphism 
array analysis”, Cancer Res. 2005; 65:5561-70. 

 Figure 7: View of selected lesions across prostate cancer 
samples of varying stages. Signal intensity data are displayed 
(as in Figure 2) for regions of chromosomes 16q, 10q, and X. 
Upper Panel: Hemizygous loss (with LOH; seen here in blue) is a 
frequent event in primary and metastatic prostate cancers. Green 
arrows label samples observed to have loss. Although ATBF1 has 
been suggested as the targeted tumor suppressor gene(Sun et al., 
2005), the most frequent focus of deletion in our samples is 
located more towards the q terminus (question mark). 
Middle Panel: Homozygous and hemizygous losses of PTEN are 
seen in 2 hormone-naïve and 6 hormone-refractory metastases 
(purple arrows), but not in any of the primary cancers examined to 
date. 
Bottom Panel: High-level gains of the androgen receptor are seen 
in 4 hormone-refractory metastases; another 2 have low-level 
amplifications, as does one hormone-naïve metastasis (red 
arrows). None of the primary cancers examined to date appear to 
have any level of androgen receptor amplification. 
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6. Conclusions 
 

In the 11 months since the beginning of the award, significant progress has been made in all 3 
specific aims of this grant, including determination of LOH and copy number maps using 100K SNP array 
data from 45 prostate tumors, and use of these maps to identify chromosomal aberrations that appear to 
be playing a significant role in prostate cancer. Some of these regions appear to correlate with prostate 
cancer progression. However, unanticipated difficulties have also arisen with respect to laser capture 
microdissection of primary prostate tissue, which appears to provide lower-quality DNA than laser 
capture microdissection of paired normal tissue. The reasons for these difficulties are being investigated, 
and modifications to the LCM protocol, that will avoid these difficulties, are possible. 
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ABSTRACT 

Background: Loss of heterozygosity (LOH) of chromosomal regions bearing tumor suppressors 

is a key event in the evolution of epithelial and mesenchymal tumors. Identification of these 

regions usually relies on genotyping tumor and counterpart normal DNA and noting regions 

where heterozygous alleles in the normal become homozygous in the tumor. However, paired 

normal samples for tumors and cell lines are often not available. With the advent of 

oligonucleotide arrays that simultaneously assay thousands of single nucleotide polymorphism 

(SNP) markers, genotyping can now be done at high enough resolution to allow identification of 

LOH events by the absence of heterozygous loci, without comparison to normal controls.  

Methodology/Principle Findings: We describe a Hidden Markov Model based method to identify 

LOH from unpaired tumor samples, taking into account SNP intermarker distances, SNP-specific 

heterozygosity rates, and the haplotype structure of the human genome. When we applied the 

method to data genotyped on 100K arrays, we correctly identified 99% of SNP markers as either 

retention or loss. We also correctly identified 81% of the regions of LOH, including 98% of 

regions greater than 3 Mb. By integrating copy number analysis into the method, we were able to 

distinguish LOH from allelic imbalance. Application of this method to data from a set of prostate 

samples without paired normals identified known regions of prevalent LOH.  

Conclusions/Significance: We have developed a method for analyzing high-density 

oligonucleotide SNP array data to accurately identify of regions of LOH and retention in tumors 

without the need for paired normal samples.  
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INTRODUCTION 

Loss of heterozygosity (LOH) refers to change from a state of heterozygosity in a normal 

genome to a homozygous state in a paired tumor genome. LOH is most often regarded as a 

mechanism for disabling tumor suppressor genes (TSGs) during the course of oncogenesis [1,2]. 

Although LOH is often thought to result from copy-loss events such as hemizygous deletions, a 

large proportion of LOH results from copy-neutral events such as chromosomal duplications 

[3,4]. Analyzing LOH data across multiple tumor samples can point to loci harboring TSGs or 

identify subtypes of tumors with different somatic genetic profiles [5,6].  

 

Single nucleotide polymorphisms (SNPs) are the most common genetic variation in the human 

genome and can be used to search for germline genetic contributions to disease. To that end, 

oligonucleotide SNP arrays have been developed to simultaneously genotype thousands of SNP 

markers across the human genome [7-9]. The density, distribution, and allele specificity of SNPs 

makes them attractive for high-resolution analyses of LOH and copy number alterations in 

cancer genomes [3,6,10-15]. 

 

Traditionally, LOH analyses require the comparison of the genotypes of the tumor and its normal 

germline counterpart. However, for cell lines, xenograft, leukemia and archival samples, paired 

normal DNA is often unavailable. Current generations of SNP arrays provide high enough 

marker density to make it feasible to identify regions of LOH by the absence of heterozygous 

loci (which we call inferred LOH), rather than by comparison to the paired normal. For example, 

the homozygosity mapping of deletions (HOMOD) method was developed to use highly 

polymorphic microsatellite markers to identify regions of hemizygous deletion in unpaired tumor 
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cell lines [16], and a simple method of inferring LOH using the product of the probability of 

homozygosity in neighboring SNPs was able to identify 80% of LOH in 10K SNP array data 

from one sample [3,17]. SNP markers are less polymorphic than microsatellite markers, however, 

and the haplotype structure may render closely located SNP dependent in their genotype calls. 

We hypothesized that a method that infers LOH with high accuracy would have to account for 

not only the varied heterozygosity rates of SNP markers, but also their varied intermarker 

distances, as well as genotyping errors and the interdependence of SNP alleles based on the 

haplotype structure of the genome. 

 

We approached this problem by developing a Hidden Markov Model (HMM) to infer LOH. 

HMMs are appropriate for inferring the unobserved underlying states that give rise to an 

observed chain of data, using multiple sources of information. They have been used to model 

biological data in diverse applications such as sequence analysis [18-20], linkage studies [21,22] 

and array comparative genomic hybridization [15,23]. SNP genotypes along a chromosome are 

chain-like and thus suitable for HMM analysis. The model we developed incorporates SNP 

intermarker distances, SNP-specific heterozygosity rates, and genotyping error rate. We show 

that it accurately identifies regions of LOH in unpaired tumors.  We find that when genotyping 

data is obtained at very high densities (100,000 markers across the genome), regions of false 

LOH are identified unless the haplotype block structure of the genome is taken into account and 

used to modify the HMM accordingly. Integrating copy number analysis allows the distinction of 

LOH from allelic imbalance. Application of this method to data from prostate cell lines, 

xenografts, and metastases lacking paired normals identifies known regions of prevalent LOH, 

containing known and putative TSGs.  
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METHODS 

Tumor samples and paired normals. We used data from Early Access 10K, Mapping 10K and 

100K SNP arrays (Affymetrix) (referred to as 10K, 11K and 100K arrays respectively) 

interrogating, respectively, 10,044; 11,555; and 116,204 SNP loci on all chromosomes except Y, 

with an average intermarker distance of 210 kb (11K array) and 23.6 kb (100K array) and 

average heterozygosity rate of 0.38 (11K array) and 0.27 (100K array) [7-9]. 10K array data 

from paired tumor/normal lung and breast cancer cell lines were previously published [6,15]. 

11K data was obtained from prostate tumors, cell lines, and xenografts.  100K data was obtained 

from prostate tumors, gliomas, and lung cancer cell lines, along with paired normal DNA from 

(respectively) seminal vesicles, normal brain, and EBV-transformed lymphocytes. Tumor DNA 

was isolated from frozen tissue having >90% tumor content. DNA preparation and genotyping 

were performed according to manufacturer’s instructions. Insufficient DNA was available in the 

case of one prostate tumor, four EBV-transformed lymphocytes, and the paired normal for one 

glioma. In these cases 20 ng of DNA was subjected to whole genome amplification [24] using 

the REPLI-g kit (Qiagen).  

 

Reference normal samples. The heterozygosity rates for each SNP and the dependence 

information between the genotypes of neighboring SNPs were estimated from sets of normal 

samples; the haplotype correction was also performed against separate sets of normal samples 

(see Supplemental Methods). All these reference samples were from individuals unrelated to the 

tumor samples under evaluation. The estimated parameters are stored in genome information 

files available from the dChip website. 
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Observed LOH calls from paired normal and tumor samples. dChipSNP [12,25] was used to 

read CEL and TXT files containing the probe intensities and genotype calls (heterozygous AB, 

homozygous AA or BB, or missing genotype “No Call”) [26]. The paired normal and tumor data 

were combined to make LOH calls for each SNP marker: loss (AB in normal, AA or BB in 

tumor), retention (AB in normal and tumor, or No Call in normal and AB in tumor), 

noninformative (AA or BB in normal, and the same genotype or No Call in tumor) or conflict 

(e.g. AA in normal, and AB or BB in tumor). A HMM was used to infer copy numbers at each 

SNP position from the probe level intensity data of the SNP arrays [15]. The positions of the 

SNP markers, genes, and cytobands were based on Affymetrix annotation files 

(www.affymetrix.com) and the UCSC human genome assembly (http://genome.ucsc.edu/). 

 

RESULTS 

A basic HMM for inferring LOH from unpaired tumor samples 

The components of a HMM are the unobserved states, the observed measurements, the emission 

probabilities connecting these two, the transition probabilities between the unobserved states, 

and the initial probabilities of the states at the beginning of the chain (Figure 1). To infer LOH in 

unpaired tumor samples, we implemented a HMM with two unobserved states: loss (LOSS) and 

retention (RET) and the observed genotypes, reduced to homozygous (Hom; AA or BB), 

heterozygous (Het; AB), and “No Call”. We conceptualize that the observed genotypes are 

generated by the unobserved LOH states according to the emission probabilities of the HMM.  

 

http://www.affymetrix.com/
http://genome.ucsc.edu/
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Emission probabilities. For a SNP under the RET state, we observe Het calls with a probability 

equal to the heterozygosity rate of each SNP, which we estimated from normal samples (see 

Methods). For a SNP under the LOSS state, we always observe a Hom call unless a genotyping 

or SNP mapping error has occurred. Since genotyping errors occur at a rate < 0.01 [7], we set the 

emission probability of a Het call under the LOSS state to 0.01. The emission probability of the 

Hom call at a SNP is 1 minus the emission probability of the Het call at the SNP. A SNP with 

“No Call” could have had either an unobserved Hom or Het call, and is therefore emitted with a 

probability of 1 regardless of its underlying LOH state. As a result, a “No Call” does not bias the 

inference towards either LOSS or RET.  

 

Initial probabilities. These probabilities (denoted by 0(RET)P  and 0(LOSS)P  = 1 − 0(RET)P ) 

specify the probabilities of RET and LOSS for the p-terminal marker on a chromosome. They 

also specify the probabilities of the RET and LOSS states for any marker, if no other information 

exists for that marker. Assuming Het markers are observed in regions of LOSS only as a result of 

genotyping or mapping errors, the observed proportion of Het markers in a tumor sample is 

( 0(RET)P *Average heterozygosity rate + 0(LOSS)P * SNP error rate). As the SNP error rate is 

small the 2nd term can be omitted. Therefore we estimate 0(RET)P by dividing the proportion of 

Het markers by the average heterozygosity rate of SNPs in the population.  

 

Transition probabilities. These probabilities describe the dependence between the LOH states of 

adjacent markers. For any two adjacent SNP markers, we first define θ as the probability that the 

state of the first marker does not inform the state of the second (i.e. that the LOH state of the 2nd 

marker is distributed according to the Initial LOH state probabilities).  Empirically, nearby 
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markers tend to have the same LOSS or RET state, while distant markers do not. To capture this 

observation we calculate θ using an increasing function 2(1 )deθ −= − , where d is the physical 

distance (in the unit of 100 megabases (Mb) ~= 1 Morgan) between the two adjacent SNP 

markers. With probability 1 − θ, the two markers have the same LOH state. Therefore, the 

marker-specific transition probabilities of the 2nd marker being LOSS given the LOH state of the 

1st marker are:  

0(LOSS | LOSS) (LOSS) (1 )P Pθ θ= ⋅ + −  and 0(LOSS | RET) (LOSS)P Pθ= ⋅  (Equation 1) 

The probability of RET at the 2nd marker is 1 minus these two probabilities. This transition 

probability model is the same as those used in the “Instability-Selection” model for LOH 

analysis [27,28], and is reminiscent of Haldane’s map function in linkage analysis [22]. We used 

a fixed scaling of d, instead of estimating it as in the “Instability-Selection” model, but this does 

not affect the method performance (see below). In addition, the empirical transition frequencies 

estimated from observed LOH calls in paired normal and tumor samples agreed well with the 

transition probabilities estimated by this model (Figure 2).  

 

Inferring LOH states. The HMM and these emission, initial, and transition probabilities specify 

the joint probability of the observed SNP genotypes and the unobserved LOH states in one 

chromosome of a sample. We applied the Forward-Backward algorithm [20] separately to each 

chromosome of each sample to obtain the LOSS probability for each SNP given all the genotype 

data on the chromosome. Alternatively, the Viterbi algorithm can be used; we found this gave 

similar LOH calls in 98.8% of SNPs (data not shown). LOSS and RET calls were made using the 

least stringent threshold: LOSS if the SNP has a probability of LOSS greater than 0.5 and RET 

otherwise. 
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An alternative inference method for HMM is the Baum-Welch algorithm [20], which estimates 

the model parameters together with unobserved LOH states by an iterative procedure. We chose 

not to use this algorithm as there are many parameters in the model (e.g. the transition 

probabilities depend both on the LOH states and on the distance between adjacent markers), but 

relatively few data points at each SNP position to estimate these parameters. This could lead the 

Baum-Welch algorithm to converge to local maxima when estimating optimal model parameters. 

Instead, we set biologically reasonable model parameters as above, with smooth transition 

probabilities that agree with the observed data (Figure 2). In addition, we show that the model 

inference accuracy is robust to the specified parameters in the initial, emission, and transition 

probabilities (see below). 

 

The performance of the basic HMM. We compared tumor-only inferred LOH to the observed 

LOH calls determined by paired analysis of tumor and normal genotypes, using 10K SNP array 

data from autosomes of 14 lung and breast cancer and EBV-transformed normal cell line pairs  

[15] (Figure 3A). Here, 17,511 of 17,922 markers observed as LOSS in tumor/normal pairs were 

called LOSS in unpaired tumors by the HMM (for a sensitivity of 97.7%), and 15,962 of 16,364 

markers that were observed as RET in tumor/normal pairs were called RET in unpaired tumors 

(for a specificity of 97.5%) (Supplemental Table 1A).  

 

This initial analysis does not, however, account for the SNPs that are homozygous in both tumor 

and the paired normal, and thus are noninformative.  A string of such homozygous SNPs may be 

falsely called LOSS in the HMM analyses of unpaired tumors, but not accounted for in the above 
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comparison of observed and inferred LOH states (the red arrows in Figure 3A point to two 

examples). To estimate the extent of such potentially falsely inferred LOH, we assigned an LOH 

state (LOSS or RET) to those noninformative markers for which the first informative marker on 

either side had the same LOH state. For example, a noninformative marker would be assigned a 

LOSS state if the nearest flanking informative markers were both in the LOSS state. In this 

analysis, the noninformative makers assigned a RET state were falsely inferred as LOSS at a rate 

of 6.8% (10K array) (Supplemental Table 1A). Not surprisingly, false inferences of RET were 

rare, occurring at a rate of 0.3%. Taking into account the noninformative markers in this way, the 

overall sensitivity remained high at 99.1%, but the specificity dropped to 94.3%. As an 

alternative approach to the use of flanking markers, we also inferred the LOH states of 

uninformative markers through the application of an HMM to the paired tumor/normal data, with 

nearly identical results (Supplemental Methods and Supplemental Table 2). 

 

Linkage disequilibrium attenuates the performance of the basic HMM at high SNP density 

With these methods in place, we next applied the basic HMM to 100K SNP array data from 2 

prostate cancers and 2 lung cancer cell lines along with paired normal DNA, which were not 

included in the 10K dataset.  Here, the number of noninformative regions inferred as LOSS 

increased significantly (Figure 3B). When noninformative marker status was assigned as above, 

many of these regions were deemed false regions of LOSS, and the specificity of the HMM 

decreased to 92.4% (Supplemental Table 1B).  Furthermore, when 100K SNP array data derived 

from normal samples alone were analyzed,  the basic HMM identified multiple regions of LOH 

that by definition are false (Figure 4A). We found that this occurred because, at high SNP 

densities regions of linkage disequilibrium (LD) are probed multiple times, resulting in strings of 
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homozygous SNPs. Specifically, if both parental chromosomes share the same haplotype, an 

extended stretch of homozygous genotypes will result. Therefore the assumption, inherent in the 

basic HMM, of independence between allele calls of adjacent or nearby SNPs becomes 

erroneous, leading to false inferences of LOH. An example is shown in Figure 4B, where the 

examination of an area of false LOH reveals the presence of a region of LD (dashed red box; also 

identified in the HapMap Project, www.hapmap.org). 

 

HMM and haplotype correction that incorporate LD information  

As indicated above, within a region of LD, the observed genotype of any marker depends not 

only on the underlying LOH state, but also on the genotypes of the adjacent markers (i.e. the two 

markers are dependent in genotype, indicated by the broken arrows in Figure 1). Here we 

account for many of these LD-induced SNP dependencies using an extension of the basic HMM 

(referred to herein as the Linkage Disequilibrium HMM or LD-HMM). 

 

Expanded states and emission probabilities. We use the same observed Het and Hom genotypes 

of the tumor sample as in the basic HMM, but expand the unobserved LOH states for a SNP 

marker from the previous two states (LOSS or RET) to four states: Homozygous Loss (Hom 

LOSS), Heterozygous Loss (Het LOSS), Homozygous Retention (Hom RET) and Heterozygous 

Retention (Het RET). Here Hom and Het represent the SNP marker’s genotype in the 

unobserved normal sample. For example, “Hom LOSS” represents that the SNP is homozygous 

in normal and LOH in tumor. The state “Hom LOSS”, “Het LOSS” and “Hom RET” will result 

in homozygous genotype calls in the tumor unless genotyping or mapping error occurs, so the 

emission probability of the Hom genotype from these three states is set to (1 – SNP error rate). 

http://www.hapmap.org
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The state “Het RET” will result in a heterozygous SNP call in the tumor unless a genotyping or 

mapping error happens, so the emission probability of the Hom genotype from this state is set to 

the SNP error rate. The emission probability of the Het genotype is 1 minus that of the Hom 

genotype. 

 

Transition probabilities. The transition probabilities now reflect both the probability of a state 

change from RET to LOSS (LOH state), and a state change from Het to Hom (genotype state). 

We estimated genotype dependencies as the probability, for each SNP marker, of the next 

adjacent SNP marker towards q-arm being Hom (or Het), given the current SNP marker being 

Hom (or Het), in a reference set of normal samples (see Methods). We denoted these conditional 

probabilities for SNP i by 1 iP( Hom| Hom)iU U+ = =  and 1 iP( Het| Het)iU U+ = = . 

1 iP( Het| Hom)iU U+ = =  and 1 iP( Hom| Het)iU U+ = =  are 1 minus the previous two probabilities 

respectively. When there were not enough data to estimate these probabilities at a marker, the 

SNP-specific heterozygosity rate was estimated from the reference set and used as the 

unconditional probabilities [e.g., replacing 1P( Het| Hom)i iU U+ = =  by Het)P( 1 =+iU , the 

heterozygosity rate of marker i+1]. Next, we built the transition probabilities by combining the 

above genotype dependence probabilities with the probability of an LOH state change. We 

denote the underlying LOH state of marker i by iiVU  where iU  is either Hom or Het and iV  is 

either LOSS or RET. Suppose the current SNP i is in the “Hom LOSS” state while the next SNP 

i+1 is in the “Het RET” state. For this to happen two independent events must occur: a 

homozygous genotype is followed by a heterozygous genotype in the normal with the probability 

1P( Het| Hom)i iU U+ = = estimated as above, and the LOH state changes from LOSS to RET in 

the tumor with the probability )LOSS|RET( 1 ==+ ii VVP as specified in the transition probability 
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of the basic HMM. The transition probability from “Hom LOSS” to “Het RET” is then the 

product of these two probabilities. In general, the transition probability of going from LOH state 

iiVU  to 11 ++ ii VU  is )|()|()|( 1111 iiiiiiii VVPUUPVUVUP ++++ = .  

 

Inferring LOH states. With the addition of the initial probabilities (which are the same as the 

basic HMM), the HMM parameters were fully specified and the Forward-Backward algorithm 

was used to obtain the probability of the LOH state being LOSS (either “Hom LOSS” or “Het 

LOSS”) for every SNP, given all the observed SNP calls along one chromosome of a tumor 

sample.  Application of the LD-HMM to the 100K dataset of normals, in place of the basic 

HMM, reduced the frequency of loss calls from 4.7% to 1.5% of markers (Figure 4C). Likewise, 

application of the LD-HMM to the 100K training dataset improved the specificity of LOSS calls 

from 92.2% to 97.4%, while only decreasing the sensitivity from 99.8% to 99.6% (Supplemental 

Table 1).  

 

Empirical haplotype correction. We posited that the remaining regions of falsely inferred LOH 

resulted from three specific deficiencies of the LD-HMM. First, regions of LD might be present 

in a relatively small subset of patients [29]. Across the population as a whole, the genotypes of 

the neighboring SNPs within these LD regions correlate only weakly, and thus are not taken into 

account by the LD-HMM. Second, LD may happen between markers that are not immediately 

adjacent.  Finally, in the LD-HMM, the dependency information among SNPs are estimated for 

the reduced genotype calls (Hom/Het) rather than from real genotypes. To try to address these 

concerns we also developed an empirical haplotype correction method, in which we applied a 

computational correction to the inferred LOH regions from either the basic or LD-HMMs (herein 
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referred to as HC-HMM and HC/LD-HMM, for the haplotype-corrected versions of the basic 

and LD-HMMs). For every putative LOH region called by HMM (LOH probability > 0.5 for all 

the SNP markers in the region but ≤ 0.5 for the SNPs at the boundaries of the region; containing 

mostly Hom SNP genotypes), we determine whether over 95% of the homozygous markers in 

this region in an unrelated normal reference sample are genotypically identical to the LOH 

region of the tumor sample. If this is the case, then the tumor sample is likely to share its 

haplotype structure with the reference sample in this region. Thus, homozygosity is likely due to 

LD rather than LOH, and the region is removed by setting the LOH probability of all the SNPs in 

the region to the LOH probability of the SNP marker just outside the bottom boundary of the 

region. This haplotype correction further improved specificity over the LD-HMM, in both the 

training 10K and 100K datasets, without significant loss of sensitivity (Figure 3, Supplemental 

Tables 1A and B). 

 

The HC/LD-HMM infers LOH with high accuracy in a 100K validation dataset 

To validate these results, we extended the analysis to a set of 100K data obtained from 2 lung 

cancer cell lines and 6 gliomas with paired normals, that had not been used in any of our prior 

analyses.  Here, the sensitivity and specificity of the HC/LD-HMM were 98.7% and 99.3% 

respectively (Table 1 and Supplemental Table 1C). Compared to the basic HMM, the HC/LD-

HMM led a greater than 8-fold reduction of potentially false LOH inferred at noninformative 

markers in the 100K data, but remained highly sensitive for real LOH events. Interestingly, once 

the haplotype block structure of the human genome is taken into account, the performance of 

HMM-based inferred LOH is better for 100K data than 10K data, presumably due to the denser 

SNP coverage of the 100K array.  
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LOH inference is robust to model parameter specifications 

The methods described above rely on the empirical estimates of a number of the parameters used 

in the initial, emission, and transition probabilities of the HMM. To assess whether the tumor-

only inference methods were unduly influenced by these estimates, we tested the performance of 

the basic and LD-HMMs as we varied these parameters. Specifically, the accuracy of the model 

results, as judged against observed LOH in the paired tumor/normal data, changed by less than 

0.3% as the SNP error rate was varied from 0.1% to 1% (10K array). Moreover, when the SNP-

specific heterozygosity rates were replaced by an average heterozygosity rate, that was varied 

from 0.1 to 0.5 (10K array) or from 0.1 to 0.27 (100K array), the accuracy of the model results 

changed by less than 5% and 0.5% respectively. We also found that varying the scaling factor d 

from 50 Mb to 200 Mb changed the LOH inferences of only 2% of SNP markers. These results 

suggest that the basic and LD-HMMs should be able to provide accurate LOH inferences in 

datasets that have different error rates, heterozygosity rates, or LOH-retention transition 

frequencies from the sample sets presented here. 

 

Resolution of the HC/LD-HMM 

The above analyses suggest that these methods are robust for inferring LOH on a per marker 

basis. We next asked whether the HC/LD-HMM was equally effective in detecting regions of 

LOH and whether detection of such regions was influenced by their size. To this end, we 

compared the ability of the tumor-only LOH analysis to identify LOH regions observed from 

comparing paired normal and tumor samples (Table 2). Here, we define a LOH region in the 

paired analysis as containing at least three LOH markers with any number of intervening 
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noninformative markers, and with boundaries defined in each direction by 2 consecutive 

retention markers. We considered such a region to have been “identified” by the tumor-only 

method, if that method inferred a probability of LOH > 0.5 for more than 90% of the SNP 

markers in the region. In the 100K datasets (both training and validation), the majority of regions 

of LOH observed in paired tumor/normal analysis are >3 Mb or are covered by at least 100 SNP 

markers, and >95% of these regions were identified using the unpaired analysis.  Not 

surprisingly, smaller regions of LOH were detected less frequently.  Overall, 80.8% of the 

regions of LOH identified in tumor/normal pairs were also identified in unmatched tumors in the 

100K SNP data (Table 2). A similar analysis of the 10K data suggests higher sensitivity for 

smaller regions, apparently due to fewer such regions being identified by the tumor/normal 

paired analysis (Supplemental Table 3). 

 

Integrating with copy number analysis to distinguish allelic imbalance 

As mentioned in the introduction, LOH arises due to complete loss of one allele through 

hemizygous deletion (copy loss) or through gene duplication (copy neutral). On the other hand, 

heterozygous loci can erroneously be assigned a homozygous genotype in settings of allele 

specific amplification (allelic imbalance).  This will occur whether or not LOH is determined 

using paired normals, and may present paradoxical results, with recurrently amplified oncogenes 

seen as potential TSGs.  To address this issue we determined the copy number at each SNP locus 

using the probe level signal intensity data [15] and correlated the results with the LOH analysis. 

We found that among the observed LOH from normal/tumor pairs or the inferred LOH from 

unpaired tumors (using the basic HMM), about 70% of SNPs have copy number 2 (copy neutral 

LOH), 20% have copy number 1 (copy loss LOH), and 10% have copy number 3 or above 
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(amplification with possible allelic imbalance) (Figure 5). In contrast, among SNPs with 

observed retention from normal/tumor pairs or inferred retention from unpaired tumors, a lower 

percentage of markers have copy loss, and a higher percentage have amplifications (Figure 5). 

The combined LOH and copy number analysis can thus distinguish true LOH from those caused 

by amplification or allelic imbalance, which can be excluded from downstream LOH analysis. In 

addition, the copy number analysis can be used to distinguish LOH events caused by copy 

neutral gene conversion and copy number loss (Figure 5) [10,15].  In short, the vast majority of 

the regions of LOH detected using SNP arrays either by paired or unpaired analysis arises from 

copy neutral or copy loss events. Interestingly, the high frequency of copy-neutral LOH observed 

in these samples and others [3] suggests that LOH and copy number analyses provide 

independent sets of information pointing to TSGs. 

 

Common LOH regions in a set of prostate cancer samples 

Models of human cancer including xenografts and cell lines rarely are accompanied by paired 

normal samples.  The utility of such models may be enhanced if we can ascertain the patterns of 

LOH in such models and relate them to those seen in actual human tumors. To this end, we next 

asked whether the HC/LD-HMM could detect regions of common LOH using 11K SNP array 

data from 34 prostate cell lines, xenografts, and metastases where the corresponding normal 

DNA was unavailable (Beroukhim et al, in preparation). We first scored each SNP by averaging 

the probability of LOH over all 34 samples (Figure 6, blue curves). The regions with the highest 

average probability of LOH correspond to known regions of frequent LOH, with several known 

and postulated TSGs lying in or near the regions with peak LOH scores (Figure 6, Supplemental 
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Table 4). These data suggest that the tumor-only LOH and copy number inference can be used to 

detect regions of true LOH where paired samples are not available. 

 
DISCUSSION 

We have developed an HMM-based method to infer the probability of LOH events from tumor 

samples without matched normals. The method utilizes several sources of information, including 

intermarker distances, SNP genotyping and mapping error rates, and haplotype information. 

LOH inferences using only tumor samples agree well with LOH patterns determined by analysis 

of tumor/normal pairs in two different array types (10K and 100K), three different tissue types 

(lung, glioma, and prostate), and in both cell lines and tumors, in test and in validation datasets. 

The inferences are robust to model parameter specifications. LOH is resolved to about 3 Mb or 

100 SNPs in 100K array data. This method makes it feasible to use SNP array technology to map 

LOH in tumor samples for which normal DNA is unavailable.  Given that genotyping paired 

normals samples constitutes up to half the cost of LOH mapping experiments, this method also 

makes it feasible to perform these experiments at a much lower cost per sample, at the expense 

of slightly reduced accuracy. 

 

One advantage of a model-based approach over the existing tumor-only LOH inference methods 

[3,16] is its extensibility. The basic HMM was developed using average heterozygosity rates, but 

readily extended it to incorporate the SNP-specific heterozygosity rates and haplotype 

information as they became available. In addition, rather than making definitive calls the 

algorithm infers the probability of LOH at each marker of a sample.  This SNP specific 

probability can then be used in further downstream analyses, such as identifying regions of 

shared LOH and sample clustering [5,25,27]. For example, a high probability of LOH across 
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many samples can indicate potential TSGs (Figure 6).  The HMM approach can also be used to 

infer LOH probabilities for paired normal and tumor samples (see Supplemental Results), 

unifying the LOH analysis for paired tumor/normal and unpaired tumor samples. 

 

At higher SNP densities, where the haplotype structure of the human genome becomes relevant, 

an approach that considers the dependence among multiple SNPs in a region of LD is necessary 

in addition to the LD-HMM. We used a haplotype correction that compared regions of inferred 

putative LOH to a set of reference normal samples to reduced false LOH inference. This method 

will work only if the reference samples have similar haplotypes to the tumor sample. As more 

data becomes available and the analyses are extended to other ethnic groups, it may become 

useful to utilize the data from the HapMap project to identify the haplotypes of each tumor prior 

to LOH analysis [30].  

 

False designation of regions of LOH due to allelic imbalance may lead to paradoxical results, 

with recurrently amplified oncogenes seen as potential TSGs.  SNP arrays, by providing signal 

intensity along with genotyping data, allow such regions to be identified.  We can thus integrate 

these data to exclude regions of putative LOH with high copy numbers, as likely due to allelic 

imbalance.  At the interpretive level, our finding that LOH is often copy-neutral suggests that 

LOH and copy loss should be considered independently when predicting the presence of a TSG, 

and may best be used in conjoined analyses. 

 

The ability to identify regions of LOH in tumors without paired normal DNA allows LOH 

mapping in the many model systems lacking paired normal DNA, including cell lines and 
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xenografts. As such model systems are the platform for experiments aimed at understanding the 

biology of human tumors, it is critical that we understand their genetic relationship to real human 

tumors. As an example, among the prostate cancer samples, LOH at the NKX3.1 locus is more 

prevalent among real tumors and xenografts than among cell lines, LOH at the p53 locus is more 

prevalent among xenografts than among real tumors or cell lines, and LOH at the Rb locus is 

equally prevalent in all three groups (Figure 6). Larger sample numbers are required to see 

whether these differences are statistically significant. Such studies of the prevalence of regions of 

LOH across model systems compared to real tumors may indicate systematic faults in the ability 

of model systems to reflect in vivo cancer biology and guide the use and development of 

appropriate models based on genetic organization. 

 

SNP array analysis of cancer genomes provides a single platform for copy number and LOH 

analysis. As these arrays move to higher resolution (500K), accounting for the haplotype 

structure of the human genome in the analysis of these data will be of greater import.  The 

methods described herein, should be readily extensible to both the higher density arrays and to 

the increasingly detailed information describing the haplotype structure of the human genome.  

The software package, dChipSNP, is freely available at www.dchip.org. 
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TABLES 

Table 1. The number and proportion of SNP markers in the 100K validation dataset with LOSS 

or RET in tumor/normal pairs (LOH states were assigned to noninformative markers to agree 

with the nearest flanking informative markers), inferred as LOSS or RET by the basic HMM and 

HC/LD-HMM applied to the unpaired tumors. 

 
Basic HMM HC/LD-HMM 

 
LOSS RET LOSS RET 

LOSS 

(171407) 

170190 

(99.3%) 

1217 

(0.7%) 

169129 

(98.7%) 

2278 

(1.3%) Tumor/normal 

pairs RET 

(702157) 

42417 

(6.0%) 

659740 

(94.0%) 

4791 

(0.7%) 

697366 

(99.3%) 
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Table 2. Percentage of LOH regions, identified in analysis of 100K data from tumor/normal 

pairs, that were also identified by the HC/LD-HMM applied to unpaired tumors, by size of 

region and the number of SNPs probed. 

 

A. 

Size of region 

(Mb) 

Number of regions 

(per cent of total) 

Number of informative 

SNPs (mean ± sd)* 

Proportion identified by 

tumor only 

≤ 1 54 (20.4%) 5.5 ± 4.4 40.7% 

1 – 3 43 (16.2%) 10.2 ± 7.3 65.1% 

3-10 46 (17.4%) 31 ± 23 91.3% 

> 10 122 (46.0%) 437 ± 412 100% 

All 265 (100%) 210 ± 350 80.8% 

 

B. 

Number of SNPs 

in region 

Number of regions 

(per cent of total) 

Number of informative 

SNPs (mean ± sd)* 

Proportion identified by 

tumor only 

1 – 40 48 (18.1%) 4.6 ± 2.6 25.0% 

40 – 100 42 (15.8%) 9.3 ± 5.6 71.4% 

100+ 175 (66.0%) 314 ± 392 98.3% 

All 265 (100%) 210 ± 350 80.8% 

 

*”sd” represents standard deviation 
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FIGURE LEGENDS 
 

Figure 1. The elements comprising the HMM for LOH inference. Unobserved LOH states 

(LOSS or RET) of SNP markers generate observed genotype calls via emission probabilities. 

The solid arrows indicate the transition probabilities between LOH states, and the dashed arrows 

indicate LD-induced dependencies between consecutive SNP genotypes. 

 

Figure 2. Comparison of empirically determined LOH transition probabilities (circles) to 

transition probabilities predicted by Equation 1 (black line) between retained loci (top panel) and 

loss loci (bottom panel). 

 

Figure 3. Comparison of HMM-based LOH inferred from unpaired tumors to observed LOH 

based on tumor/normal pairs. A) Results from 10K SNP array data. Each column represents a 

sample, with SNP markers from chromosome 10 displayed from the p terminus (top) to the q 

terminus (bottom) (not all markers are displayed at this resolution). Tumor/normal observations 

(left panel) represent direct comparisons of tumor to normal genotypes. Here, SNP markers 

observed as having undergone LOH are indicated in blue, retention is shown in yellow, and 

noninformative SNPs are indicated in grey. Inferences from unpaired tumor data represent the 

probability of each SNP having undergone LOH, as made by the basic HMM (middle panel) and 

HC/LD-HMM (right panel). Here, a high probability of LOH (LOSS) is also indicated in blue, a 

high probability of retention (RET) is indicated in yellow, and indeterminate SNPs with an 

almost equal probability of either state are indicated in white.  Occasionally, regions that are 

noninformative in the tumor/normal comparison are falsely inferred as LOH by the basic HMM 

in the unpaired data (red arrows); some of these false regions are corrected by the HC/LD-HMM 
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(green arrows). B) Results from 100K SNP array data. Panels are shown as in A.  Data from 

chromosome 21 are shown to highlight the detection of false LOH in the analysis of unpaired 

tumor data, and are not representative of the frequency of true LOH events in this sample set. 

Almost all of regions falsely inferred as LOH by the basic HMM are correctly inferred by the 

HC/LD-HMM. The blue arrows indicate a region of true LOH, which is correctly identified by 

both the basic and HC/LD-HMM. 

 

Figure 4. Accounting for linkage disequilibrium by the LD-HMM significantly reduces false 

LOH inferences from data obtained at high marker density. A) Inferences from the basic HMM 

applied to 100K SNP array data are shown for chromosome 4 in normal samples. Data are shown 

as in Figure 3. B) The genotypes of one region of falsely inferred LOH reveal a region of linkage 

disequilibrium (dashed red box), also identified by the HapMap project. The sample in column D 

contains one haplotype, the samples in columns E−K contain another haplotype, and the samples 

in columns A−C are heterozygous. C) Improved LOH inferences after application of the LD-

HMM. 

 

Figure 5. The proportion (y-axis) of the LOH (blue) or retention (red) markers observed from 

normal/tumor pairs in the 10K data, categorized by the inferred copy number at the same SNP 

markers (x-axis).  

 

Figure 6. Inferred LOH in prostate cancer samples identifies regions of LOH known to be 

frequent in prostate cancer. The mean LOH probability across 34 prostate cancer samples is 

plotted along the left for all chromosomes. Peak regions of LOH are noted, and data from 
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chromosomes 8, 13, and 17 are highlighted on the right. These data are displayed as in Figure 3. 

Note that in this view, SNPs are visualized proportional to physical distance along the 

chromosome and most SNPs are not projected due to proximity to their neighbors. The red 

dotted lines indicate the approximate chromosomal positions of putative TSGs.  
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