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1.0 Summary 
 
Systems biology modules were developed for Bio-SPICE. The modules were of two types – cell 

models and data/model integrators. Selected modules were made available through Bio-SPICE as 

components of the Dashboard while others were designed to be stand-alone or available as a web 

service.  

Cell models are Karyote and CellX. The former is an ordinary differential equation model of 

a compartmented cell which can simulate both eukaryotic and prokaryotic cells. The reactions 

allowed in each compartment and the membrane transport processes accounted for are general in 

character. A companion website (sysbio.indiana.edu) was set up that allows users to create files 

for Karyote input. These include single and multiple cell (suspension and tissue) models. 

Karyote was demonstrated using yeast and the parasite T. brucei, the causative agent in sleeping 

sickness. 

CellX is a partial differential equation-based cell model. In its Bio-SPICE implementation it 

is designed for prokaryotic cell simulation. Reaction-transport equations are solved in the cell 

interior (3-D), on or within the cell membrane (2-D), and a boundary continuity equation 

accounts for processes of exchange between the interior and the membrane. CellX was 

demonstrated for the self-organized plane of division in E. coli via Min protein reaction-transport 

processes. 

Data/model integration modules were also developed. These modules allow a user to directly 

extract cell modeling information from multiplex data (e.g. cDNA microarray, NMR and 

proteomics). The microarray-based modules were made part of Bio-SPICE. One of these 

modules, FTF, is designed to extract transcriptional regulatory information from cDNA 

microarray data in time series or steady states for cells in various extracellular conditions. The 

KAGAN module uses cDNA microarray data to refine a transcriptional regulatory network and 

calibrate associated rate and binding constants. Our transcriptional regulatory network 

construction modules (FTF and KAGAN) are built on the estimation of transcription factor 

profiles. Most other methods of microarray data analysis are based on the assumption that 

protein profiles are in step with profiles of the encoding RNA – an assumption that has been 

shown experimentally to be untrue in a number of cases where detailed proteomics and RNA 

expression data were both available.  
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FTF is highly CPU efficient so that many networks can be tested to arrive at one which is 

most consistent with the available microarray data. We demonstrated that FTF is ideally nested 

in an overall workflow aimed at transcriptional regulatory network construction. In this way 

FTF, combined with promoter analysis, gene ontology and phylogenic similarity can be used to 

greatly increase the number of transcriptional factor/gene regulatory interactions discovered. 

FTF with gene ontology was used with a dataset of 336 microarrays on B cells to create a very 

large network for these cells (posted at sysbio.indiana.edu). 

KAGAN, the second microarray-based transcriptional regulatory network construction 

module developed and installed at Bio-SPICE, can refine an input network and calibrate the 

transcription and RNA degradation rate constants, as well as transcription factor/gene binding 

constants. 

As FTF is optimized for network construction, and KAGAN is designed to take a network 

and refine and calibrate the associated biochemical kinetic parameters, they are ideally suited for 

a two step network inference workflow. This has been implemented at sysbio.indiana.edu. 

For FTF, KAGAN, and our bioinformatics modules, it is necessary to have a preliminary 

network/training set. To serve users we have created the GeneDat database containing over 

13,000 transcription factor/gene regulatory interactions for mammalian (mostly human) cells. It 

also contains what we believe to be state-of-the-art network information for E. coli and B. 

subtilis. With each transcription factor/gene regulatory interaction a variety of annotations are 

provided.          
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2.0  Introduction 
 

The modeling systems developed in this Bio-SPICE project have distinct levels of physics and 

chemistry according to the phenomena they address. In this report the Bio-SPICE modules 

developed at CCVT are described in some detail. There modules are as follows. 

The Karyote system solves ordinary differential equations: a cell is divided into 

compartments within each of which user-specified reactions take place and between which 

molecules are exchanged by active and passive processes. A detailed tutorial with 15 instructive 

mechanistic models is provided as are datasets for yeast glycolysis and T. brucei (the causative 

agent of sleeping sickness) oxidative and anoxic glycolysis. Karyote has special features such as 

the ability to construct models involving suspensions of various types of cells (e.g. blood) and 

the unification of two cell models into one, more comprehensive one. Karyote is SBML 

compatible (i.e. SBML files can be created for use by other simulators or received from others as 

input files). 

FTF and KAGAN are unique microarray data analysis modules for the construction of gene 

regulatory networks. FTF focuses on network structure (i.e. it delineates the transcription factors 

regulating each gene). KAGAN focuses on calibrating rate coefficients for transcription and 

RNA degradation, transcription factor/gene binding constants, and network structure refinement. 

GeneDat is a database of over 13,000 experimentally-verified up/down transcription 

factor/gene regulatory interactions (mostly human) annotated with species, cell line, and data 

source. Software associated with GeneDat launches queries that automatically provide a 

preliminary regulatory network for FTF, KAGAN, or other network analysis/improvement 

modules. 

CellX has most of the features of Karyote. In addition, 3-D concentration distributions within 

the cell and 2-D distributions along the cell inner surface are computed using finite element 

methods. 
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3.0  Karyote Cell Analyzer 
Overview 

The Karyote Cell Analyzer (KCA) is based on the principles of chemistry and physics as 

formulated for single and multiple cell systems. It is designed for fundamental studies into the 

workings of a cell and for applications of this understanding in drug and vaccine design, 

treatment optimization, refined diagnoses of complex diseases like cancer, environmental 

analysis, and biotechnical process engineering. The input to KCA is the network of biochemical 

processes and rate/equilibrium data, intracellular architecture, membrane transport properties, 

initial cell state and conditions in the extracellular medium. The output of KCA is the 

concentration timecourse of all chemical species in all compartments (and all cells for a 

multicellular simulation). 

Karyote Cell Analyzer Functionality 

KCA simulates compartmentalized cellular reaction-transport processes. Ordinary differential 

equations are solved in each compartment and active and passive molecular transfer between 

compartments is accounted for. All processes are fully coupled through the dependence of rate 

laws on composition. Solution techniques include multiple timescale analysis and a stiff solver 

package with method switching for efficiency. Reactions designated as fast are maintained close 

to equilibrium or steady state as coupled processes may indicate. Mass conservation errors made 

by assuming rate laws in the form of polynomial ratios are avoided. Both rate and equilibrium 

constants must be supplied for finite rate processes while only equilibrium constants are to be 

provided for fast, equilibrated ones; when subsets of fast reactions are in steady state balance 

(with a nonzero net overall rate) both forward and reverse rate constants must be provided.  

Many physico-chemical processes underlying cell behavior are accounted for in KCA. In 

these notes we familiarize the user with them by illustrating how to run KCA via examples as 

described in Explaining KCA Though Simple Cell Models, below. In KCA one may consider a 

cell to be a single compartment reactor or may divide it into compartments within each of which 

specialized reactions take place. One may build very extensive reaction networks, including 

equilibrated reactions or cycles of reactions in steady-state balance that have great complexity. 

One may vary parameters in the membrane flux laws or create transcompartmental reactions that 

simultaneously involve chemical species on both sides of a membrane (e.g. catalysis or ion 
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pumps). As KCA computations are hierarchical one may construct systems with compartments 

within compartments and thereby model multi-cellular systems (e.g. cell suspensions, tissues or 

embryos).  

 

Quantity Units 

Time seconds 
Volume liters 
Area (decimeters)2 
Concentration millimole/liter 
equilibrium constant for m-th order forward, n-th order reverse action (millimole/liter)n-m-1sec-1 
rate coefficient for n-th order reverse action (liter/millimole)n-1 
KM membrane permeability factor millimoles/liter 

VM maximum permeability decimeter (sec)-1 

φ  membrane asymmetry parameter none 

Table 1. Units for input or output variables in KCA. 
 

The nature of a KCA cell model is suggested in Fig. 1. The system is divided into 

compartments (i.e. cytosol and organelles). These subsystems are separated by membranes 

across which molecules can be exchanged. Molecules can only exchange between compartments 

that the user specifies to have a common membrane of given surface area; thus surface areas 

Aα ′ α between compartments α  and ′ α are used to define system configuration, and similarly for 

the volume Vα of compartment α . This allows the user to define complex intra-cellular 

architectures or multi-cellular systems (i.e. consisting of compartments within compartments in a 

hierarchical fashion). Many of the general chemical kinetics concepts used in KCA are reviewed 

in the following sections and in a mini-course on Chemical Kinetics available at 

sysbio.indiana.edu. 

 

Figure 1 – Cell divided into compartments 
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Figure 1:  In Karyote the cell is divided into compartments labeled α = 1, 2, ⋅⋅ ⋅ separated by 
membranes.  For each compartment ordinary differential reaction-transport equations are used to 
simulate the evolution of descriptive variables (e.g. concentrations and electrical potentials). 
   

Mathematical Formulation 

Publications that contain more technical details about the KCA include Ortoleva et al. (2003); 

Weitzke and Ortoleva (2003); Sayyed-Ahmad et al. (2003); and Navid and Ortoleva (2004). 

These and other papers are available through our website (sysbio.indiana.edu).  

In KCA the cell is divided into NC  compartments labeled , C1 2, Nα = L . In compartment α , 

each molecular species ,i 1 2, N= L  is described by its concentration ci
α . Conservation of mass 

implies 

  
 
Vα dci

α

dt
= Aα ′α Ji

α ′α

′α ≠α

Nc

∑ + Vα νil
α

l =1

Nr

∑ Wl
α . (1) 

Aα ′α = boundary surface area separating compartments α and ′α  

Ji
α ′α  = net flux of species i from α′  to ( )iJααα ′= −  

N , Nc , Nr  = number of chemical species, compartments and reactions, respectively 

Vα  = volume of compartment α  

Wk
α  = rate of reaction k in compartment α  

νik
α     = stoichiometric coefficient for species i in reaction k in compartment α . 

In KCA the last term is divided into fast and slow contributions to take advantage of multiple 

scale methods. Let ε  be a small parameter. Then the net reaction rate (the last term in (1) 

divided by Vα ), denoted Ri
α , is written Ri

α = ν il
αs

l =1

Ns

∑ Wl
αs + 1

ε ν il
α f

l =1

N f

∑ Wl
α f . 

As ε → 0  the system is driven close to equilibrium (so that Wl
α f = 0 ) or linear combinations of 

the  Wl
α f  vanish (to express steady-state cycles). Furthermore minority species (e.g. enzymes) 

impart another element of stiffness to the cell simulation problem. Thus in KCA species are 

divided into majority and minority categories. The latter have concentrations that scale with ε  in 

our formalism. The resulting multi-scale analysis avoids difficulties in numerical simulations, 

especially when minority species participate in fast reactions. This minority/majority separation 
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allows for greater computational efficiencies. As the use of this option places more burden on the 

user (i.e. discriminating minority versus majority species), we do not include it in this Bio-

SPICE release. 

Rates of reaction are of the mass-action form: 

  i i

i i

i i
0 0

Rate k Q c cν ν

ν ν

−

> <

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∏ ∏  (2) 

where k is the reverse rate coefficient, Q is the equilibrium constant (i.e. kQ is the forward rate 

coefficient) and ν i  is the stoichiometric coefficient (i.e. ν i > 0 for products and < 0 for reactants. 

The passive flux law is in the form 

  [ ]passiveJ h c c′= −  (3) 

  h =
KM

2 VM

KM
2 + KM c + ′c( )+ φc ′c⎡⎣ ⎤⎦

 (4) 

for a given membrane and species; c and ′c  are concentrations on either side of the membrane 

(see Table 1 for other variables). 

Intramembrane enzymatic and active transport processes are accounted for as 

transcompartmental reactions. For example, 

( ) ( ) ( ) ( )2A cytosol B mitochrondrion C cytosol 3D mitochrondrion+ +�  

Again the rate law is assumed to be of the mass action form. The dependence of the rate of such 

processes on the area of the membrane is accounted for, i.e. the transcompartmental reactions 

and passive flux law contributions are added in computing iJαα′ .  

The user can choose between explicit integration, Runge-Kutta integration (both using 

multiple timescale separation techniques discussed in Ortoleva (1992) and Weitzke and Ortoleva 

(2003)), and implicit integration. We use the double precision VODE 

(www.llnl.gov/CASC/download/download_home.html) as the implicit integrator. 

The Web-based Karyote Cell Modeling System 

The Karyote Cell Modeling System (KCMS) performs a multiplicity of functions in support of 

DARPA Bio-SPICE activities by familiarizing beginning and advanced researchers with 
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concepts in cell modeling. As new computational biology modules are developed and tested at 

CCVT they are in the web-based system at sysbio.indiana.edu. 

Essential features of the web-based KCMS system include: 

• Cell Assembler (to build a cell model and create an SBML KCA input file); 

• Cell Unification (to integrate existing cell models, pathways or subsystems into a more 

comprehensive model and create an SBML file); 

• Multi-Cellular System (to build a suspension or other multi-cellular configuration from 

single cell models and create an SBML file); 

• Information Theory (to calibrate a model using NMR, spectral, microarray, electrical 

potentiometry and other datasets individually or simultaneously in static or time series – 

only microarray data analysis is installed at this writing); and 

• Run the Cell Model (to derive information about the response of a cell to changes in 

extra-cellular conditions and other stimuli or interaction with other cells).These functions 

are continuously being improved. 
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4.0  Transcriptional Regulatory Network Construction 
 
Overview 
Two modules for constructing transcriptional regulatory networks using cDNA microarray data 

were developed for Bio-SPICE. In this section they are described and it is shown how they can 

be used in a wider strategy that introduces several bioinformatics modules in order to close the 

gap between the great complexity of a transcriptional regulatory network and the information 

needed to do so.  

 A number of techniques have been proposed to infer transcriptional regulatory networks 

(TRNs) using cDNA microarray-monitored expression profiles. Among them are principal 

component analysis (Holter et al. 2000, 2001) and independent component analysis 

(Liebermeister 2002). Network component analysis (NCA) differs from other techniques in that 

the structure of the gene regulatory network is assumed to be known (Liao et al. 2003). 

Therefore, NCA’s use is limited to cases in which the network is fairly well known and has 

strong structural limitations. In reality, only an incomplete and possibly biased TRN is available 

for any cell due to the experimental conditions imposed. Gardner et al. (2003) proposed a 

methodology to construct the gene-gene control network structure of small networks using 

microarray data, limiting the number of interactions per gene. We tested a similar approach for 

large networks and showed that even when there are just a few interactions per gene, there can be 

thousands of networks that are consistent with a given microarray dataset to within essentially 

the same accuracy. Kyoda et al. (2000) developed a methodology that employs mutation 

experiments to arrive at the TRN. However, it is questionable whether their approach can be 

applied to large TRNs. Liang et al. (1998) presented a methodology for Boolean networks and 

applied it to a small 50 gene system with at most 3 interactions per gene. Boolean networks are 

an oversimplification of gene expression as they use a binary approximation fully on or off 

(Huang 1999). Cluster analysis is based on statistical techniques wherein correlations are sought 

between the responses of genes (e.g. Azuaje 2002; Bolshakova and Azuaje 2003). However the 

coordination can be extremely complex and circuitous, i.e. genes may be involved in a multi-

branch feedback loop involving several transcription factors (TFs) made, or activated/deactivated 

by their resulting translated proteins. These time-delayed, complex relationships are revealed by 

our method as it discovers and quantifies many of these feedback relationships. Although cluster 
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analysis might suggest groups of genes that have related functionalities, it is not an accurate 

methodology for suggesting TF/gene regulatory interactions. D’Haeseleer et al. (2000) applied 

clustering based on correlation of microarray data. To assess the feasibility of inferring networks 

using expression data only, we used two independent gene expression datasets and a TRN for 

E.coli (http://ecocyc.com). Fig. 2 shows the probability of correlation between two random genes 

and that for known TF/gene interactions. The similarity of these distributions demonstrates that a 

successful reconstruction of the network using expression data alone does not seem likely. 

Mutual information (Basso et al. 2005) seems to have similar limitations. 

 If TRN construction from microarray data is unfeasible because of the insufficient 

information in this data, then the solution is to use as much additional information as possible to 

rule out spurious networks. Segal et al. (2003) assumed that genes in the same pathway are 

similarly regulated and their protein products often interact. This led them to the use of protein-

protein interaction information in their predictions. Brazma et al. (1998) studied the similarities 

of the upstream regions of genes that have a similar expression profile. A similar study was 

presented by Haverty et al. (2004) who used statistical methods for identifying overabundant TF 

binding motifs (from TRANSFAC and JASPER) and microarray data to infer the TRN. The 

methodology we have developed is the only one that computes TF activity profiles, correlates 

them with microarray monitored RNA profiles, and integrates the results with promoter, gene 

ontology, and phylogenic analyses as follows. 

Network inference using a similarity measure assumes that the activity of a TF is represented 

by the expression of its encoding gene. Failure to observe such a high correlation for E. coli (Fig. 

2) shows that this assumption does not hold. Therefore, in order to use expression data to 

construct a TRN, we estimate TF activities independent of the expression profile of the encoding 

gene. This is a major shift in strategy. Our approach not only suggests highly probable TF/gene 

interactions, but also TF activities which can be used to establish the sense (up versus down) of 

the regulation and to explore post-translational reactions that create or modify TFs. 
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Figure 2:   Probability distribution for correlation (Pearson) between a random pair and known 
F/generegulatory interaction for E.coli.  

 
Square markers refer to the dataset obtained from the U. of Oklahoma E.coli database (89 datasets; 
http://chase.ou.edu/macro/). Diamond markers refer to the datasets obtained from the NIH omnibus service (GSE7, 
GSE8, GSE9; 65 datasets). The solid and hollow markers show the probability distribution for correlation between a 
random gene pair and known gene/TF regulatory interaction, respectively. As these probability distributions are 
indistinguishable, it does not seem feasible to construct the TRN using expression data alone. We also calculated 
probability distributions for mutual information which yielded similar findings. 
 

FTF: A Statistical Approach to Estimate TF Activity Profiles 
In designing our microarray-based TRN discovery approach, we addressed the following 

challenges: 

• omnipresent noise/uncertainty in the data; 

• vastness of the TRN; 

• many regulatory mechanisms (e.g. from TF/gene binding to phosphorylation and histone 

interactions); and 

• sparseness of the data (relative to the vastness of a TRN) imposed by the cost of 

microarray data acquisition.  

Thus, we have developed FTF (Fast Transcription Factor) for network construction via TF 

activity estimation, statistical arguments, and a preliminary TRN. FTF is based on the following 

notions: 
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• gene expression data is usually error-prone and thus some consensus method is needed 

whereby results from a variety of genes are synthesized to derive regulatory information 

on a given gene; 

• a method based on TFs has the advantage that microarray noise, and error in a user-

supplied TRN, can be overcome by statistics ─ i.e. the regulation of many genes by a 

given TF; 

• due to data uncertainty sparsity, there is not usually sufficient information to 

simultaneously obtain the structure of the TRN and the associated transcription and RNA 

degradation rate coefficients (as needed in steady-state or time-dependent chemical 

kinetic methods);  

• network discovery requires many automated trials of possible networks to identify those 

that are most consistent with the data, so the algorithm must be extremely efficient; and 

• thus the objective of FTF is to discover the structure of the TRN by taking advantage of 

the statistical robustness allowed by a TF-based statistical analysis.  

The essential equation on which FTF is based was arrived at empirically after extensive 

numerical experimentation with synthetic data for which we know the TRN, TF activities, and 

the statistics of noise added to the expression data: 

 ( )
gN

r s r s
n n i i in in

i 1
T T H m m b Ψ

=

− = −∑ , (5) 

where =r
nT activity of TF n at condition or time r , =r

im microarray response for gene i  at 

condition r , =inb TRN ( 1 1inb = + − for gene i  up/down regulated by TF n , inb 0=  for no 

regulation), ( )H x 1= ±  for orx 0> < , = 0 for x = 0, and /( )i iL L 1
in n2 M 2Ψ −=  for iL = number of 

TFs controlling gene i , and nM  = number of genes TF n regulates. If there are cDNAN  time 

points or conditions, then one can write 21NN cDNAcDNA /)( +×  equations for the cDNAN  activities 

r
nT  , , cDNAr 1 2 N= L , for each of the TFN  TFs. Therefore TF activities are obtained from the 

solution of (5) via a least squares fit.  

 Our synthetic examples with large TRNs show that, despite the simplicity of this approach, the 

constructed TF activities are reliable. For example, for a TRN that has the properties shown in 

Fig. 3, even when we eliminate 50% of the TRN to create a “preliminary TRN”, 90% of the 
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constructed TF activities have a correlation coefficient of at least 0.70 with the actual TF 

activities used to generate the synthetic expression data (with 20 or more microarray 

experiments).  

a)  b)  

Figure 3:  Properties of TRNs used in the synthetic examples.   

Networks that consist of 1000 genes and 100 TFs are generated using the probability distribution for the number of 
genes regulated by a TF shown in (a). The corresponding probability distribution for the number of regulators per 
gene is shown in (b). The average number of regulators per gene is 3.62, 5.22, and 7.02 for Networks 1, 2 and 3, 
respectively. Equal likelihood is chosen for up/down regulation.  

a)  b)  

Figure 4:  Effect of TRN properties.  

 
We used Networks 1, 2 and 3 of Fig. 3 to generate 100 synthetic expression datasets, and eliminated 50% of the 
TF/gene interactions in the TRN. Shown is the percentage of the deleted network recovered as a function of success 
rate. As the number of TF/gene interactions increases, percentage of the network that can be recovered decreases. b) 
Same as a) except we used Network 1 and eliminated 25%, 50%, and 75% of the network. As one would intuitively 
expect, higher percentage of the deleted network is recoverable when a more complete network is known.  
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a)  b)  

Figure 5:  Reconstruction of TRNs.  

 
We have used the Network 1 of Fig. 3 and generated synthetic expression data. Then, we eliminated 50% of the 
network (randomly), and used FTF to reconstruct the deleted network. Fig. a) shows the percentage of the deleted 
network recovered as a function of success rate, a measure of the likelihood that an interaction is correct, as 
estimated from the training set (known interactions). As the number of microarray experiments increases, a higher 
percentage of the network can be reconstructed. However, full reconstruction requires too many experiments. Fig. b) 
shows success rate as a function of the absolute value of the linear correlation between the constructed TF activities 
and gene expression data.  

The essence of this approach is to estimate TF activities from a preliminary TRN (training 

set) and expression data.  Once approximate TF activities are constructed, we calculate their 

correlation with the expression profiles of the genes they might regulate, and rank plausible 

TF/gene interactions. Results from synthetic examples using a network of 1000 genes and 100 

TFs are encouraging (Figs. 4-5).  

Gene Ontology 
We use the biological process ontology developed by the Gene Ontology (GO) consortium 

(www.geneontology.org) and hypothesize that a gene pair is more likely to be regulated in the 

same manner as the similarity between their GO descriptions increases. As a gene product might 

be assigned multiple GO terms, we use the maximum similarity between all possible 

combinations. Use of GO similarity has already been shown to provide information about 

functional modules in E.coli (Wu et al. 2005). We have extended this methodology to construct 

to construct TRNs. Details on integration of GO into a TRN construction strategy are given 

below. 

Phylogenic Similarity Analysis 

In the phylogenetic profile algorithm, we first seek orthologous genes (in a set of N sequenced 

and annotated bacterial genomes) for each gene in the bacterium of interest. For each gene, we 
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construct a vector of length N whose i-th element is assigned 0 (no orthologous gene is found in 

bacterium i) or n (orthologous gene is found in bacterium i and its order in the genome is n). The 

hypothesis is that if two vectors (for a gene pair) show a high level of similarity, this gene pair is 

likely to be similarly regulated. In our implementation we use 230 genomes from 

ftp://ftp.ncbi.nih.gov/genomes/Bacteria/. As operons are an important feature of bacterial 

genomes, this approach is very likely to provide functional relationships as already shown for 

E.coli (Wu et al. 2005). The vectors noted above can be used to develop various measures of 

similarity that yield a probability for the accuracy of any suggested TF/gene regulatory 

interaction discovered. TRN enhancement for phylogenic similarity and GO, any regulatory 

information from a given gene is taken to be allocable to another which has a high phylogenetic 

similarity score. 

Multiple TRN Construction Methodology  

Each of the above individual method provides a score for each suggested TF/gene interaction. 

The statistical significance of the score is assessed by the ratio of the probability of that score in 

the training set to that in the random set. To meet the objective of genome-wide TRN discovery 

we seek an approach that integrates sufficient information to delineate the many TF/gene 

interactions and to eliminate spurious ones. In an attempt to develop an objective integration of 

the three methods (FTF, phylogenic similarity, GO) for a united TRN discovery workflow, we 

hypothesize that the sum of the logs of the Bayesian-like ratios for a given TF/gene interaction 

provides a reliable success measure. Application of the approach to E.coli is shown in Fig. 6. The 

results are posted at sysbio.indiana.edu. The microarray dataset was gathered from NIH omnibus 

service (GSE7, GSE8, GSE9; 65 datasets). 

 

 

 



 16

a) b)  

c) d)  

Figure 6:  Probability distribution as a function of a) GO, b) phylogenic similarity, c) FTF scores.  

In comparison with Fig. 2 (correlation based on gene-gene correlations), the probability distributions for the training 
and random sets can be easily distinguished. d) the probability distributions for the logarithm of the multiplication of 
Bayesian ratios.  
 
 We have applied this methodology using the 336 microarrays on B cells (GEO: GSE 2350, 

submitted by K. Basso) using a preliminary TRN constructed from our GeneDat database, FTF 

and GO similarity. Over 15,000 predicted TF/gene interactions were discovered and are posted at 

http://systemsbiology.indiana.edu. The final comparison of the probability distributions for the 

training and random sets are shown in Fig. 7. The B Cell microarray dataset was also used by 

Basso et al. (2005) to make predictions for the MYC TF. Our prediction set spans 489 TFs for 

which we had a preliminary TRN in the GeneDat database.  
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Figure 7:  Probability distributions for the final score. 

Predictions were made using 9589 genes and 489 TFs by using 336 microarray B Cell datasets and over 37 million 
gene-gene GO similarity measure. Over 15,000 TF/gene pairs were found to be statistically significant. Our 
predictions are available at http://systemsbiology.indiana.edu. 
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5.0  KAGAN: Karyote Gene Analyzer 
 
Overview 

cDNA microarray and other multiplex data hold promise for addressing the challenges of cellular 

complexity, refined diagnoses and the discovery of well-targeted treatments. A novel approach to 

the construction and quantification of TRNs was developed that integrates microarray data and 

cell modeling through information theory. This approach was implemented as the KAGAN Bio-

SPICE contribution. KAGAN complements FTF in that while FTF is designed to construct the 

structure of large TRNs, it cannot yield information about the physical chemistry of the network 

(i.e. rate and binding constants of genomic processes); conversely KAGAN is more 

computationally intensive so that its practical use is for determining the physical chemistry for a 

network of mostly known structure.  This suggests that the TRN constructed via the multiple 

method/FTF workflow of the previous section can serve as input for KAGAN wherein this TRN 

will be refined and quantified.  

Given a partial transcriptional regulatory network (TRN) and time series cDNA microarray 

data, a probability density is constructed that is a functional of the time course of TF 

thermodynamic activities at the site of gene control, and is a function of mRNA degradation and 

transcription rate coefficients, and equilibrium constants for TF/gene binding. A kinetic (and not 

a steady-state) formulation facilitates the analysis of phenomena with a strongly dynamical 

character (e.g. the cell cycle, metabolic oscillations, viral infection or response to changes in the 

extra-cellular medium). Our KAGAN approach yields more physical-chemical information that 

compliments the results of network structure delineation methods, and thereby can serve as an 

element of a more comprehensive TRN discovery/quantification workflow. The most probable 

TF time courses and values of the aforementioned parameters are obtained by maximizing the 

probability. As the time course of the activity of a TF is computed by probability functional 

maximization, and is not assumed to be proportional to expression level of the mRNA type that 

encodes the TF, observed time delays between mRNA expression and TF activity are accounted 

for. This allows one to investigate post-translational and TF activation mechanisms of gene 

regulation. Accuracy and robustness of the method are evaluated. A physically-motivated 

regularization of the TF time course is found to overcome difficulties due to omnipresent noise 

and data sparsity that plague any methods of microarray data analysis. 
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cDNA microarray (Schena et al. 1995; DeRisi et al. 1997; Sauter et al. 2003) and other 

multiplex data (e.g. NMR and proteomics) contain a wealth of information, and thereby hold 

promise for addressing the challenge of cellular complexity and deriving advances in medical 

sciences that could follow from it (Brown and Botstein 1999; Debouck and Goodfellow 1999; 

Gerhold et al. 1999; Chitler 2004). Considering the volume of the data and the complexity of the 

phenomena to be understood, it is evident that methods for the interpretation of such multiplex 

data must be facilitated by automation. Recently we proposed an approach to the analysis of 

multiplex bioanalytical data based on its integration with cell modeling through information 

theory (Sayyed-Ahmad et al. 2003). Here we show how this approach can be extended to the 

analysis of microarray time series data.  

 The objective of KAGAN is to predict TF time courses and obtain estimates of biochemical 

rate and binding constants for transcription and RNA degradation. KAGAN accomplishes this 

despite omnipresent noise in microarray data and the lack of a complete knowledge of the 

detailed biochemistry of TF formation/degradation/activation processes. Using time series RNA 

expression data, this module yields a large volume of information on the genome that can be 

used to discriminate cell lines, i.e. even for those with the same TRN but with differences in the 

kinetic parameters due to small gene sequence variations could have dramatic consequences for 

cell behavior (e.g. the onset and progression of cancer or the resistance of a macrophage to 

infection of a B. anthracis spore.   

Transcription Kinetics 

In our kinetic methodology, it is assumed that gene i ( ), , gi 1 2 N= L  has ( )iN  TF binding sites 

labeled ( ), , ij 1 2 N= L . There are NTF  TFs labeled , , TFn 1 2 N= L . It is assumed that a unique 

TF (denoted i jn ) will have appreciable affinity for site j on gene i  (i.e. competitive binding is 

ignored). Assuming the binding at any site is independent of others, the rate coefficient ki  for 

RNA polymerase (RP) complexing with gene i is taken to be  
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where ijb 1= ±  for up/down regulation and Qij  is the binding constant for site j on gene i. 

Assuming that RNA polymerase binding on the gene is rate limiting for transcription, and 

adopting first order degradation for RNA, we write 

 
dRi

dt
= ki[RP]− λiRi , (7) 

 [RP] being the activity of free RNA polymerase (assumed constant and is thus subsumed in 

ki
max  henceforth); iR  is the number of RNA molecules per cell transcribed from gene i, and iλ  

includes a dependence on RNA length (Beelman and Parker 1995).  

 The assumptions noted above were made in order to create a robust Bio-SPICE module. As 

these assumptions are relaxed new phenomenological parameters must be introduced, putting 

more demands on the sparse, noisy microarray data analysis. However, we are continuing to 

develop KAGAN so that in ongoing research we are testing versions with competitive binding 

and other of the aforementioned ignored effects.     

 If the initial RNA level )0(Ri  is used as the control data in a time series experiment, one 

obtains 

 
dmi

syn

dt
=

ki

Ri (0)
− λimi

syn  (8) 

where mi
syn (t) = Ri (t) / Ri (0)  is the model-predicted time-dependent microarray response. This 

implies that in addition to the TF activity time courses, ki
max / Ri (0)  and iλ  appear as independent 

parameters that can be determined for each gene.  

The power of our information theory approach is that, despite the incompleteness of the 

model, we can correct and augment the TRN, and extract the set of parameters and TF time 

courses Tn t( )  from microarray time series data (Tuncay and Ortoleva 2002; Tandon et al. 2003; 

and Sayyed-Ahmad et al. 2003, in related problems). Novel features of this approach are 

• the independent computation of the max, ,Q k λ and ,b  yielding much more information 

about TF populations and TF/gene interactions than other approaches; 

• the  use of a physically-motivated regularization technique that filters short timescale 

noise from microarray data; 
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• the intra-nuclear TF activities for a eukaryotic cell over time T t( ) and independent 

monitoring of their level in the cytoplasm yields constraints on other TF process timescales 

(e.g. permeation of the nuclear membrane, protein complexing in the cytoplasm) and 

similarly for bacteria; and 

• the ability to assess the uncertainty in all predictions. 

In our information theory approach, we construct probability ρ  for the , ,Q kλ ∞ and 

b (collectively denoted Λ ) and the time-dependence of TF activities (collectively denoted 

T ) using the maximum entropy principle (Shannon and Weaver 1949; Jaynes 1957). We 

introduce a measure of the error in the predicted versus observed microarray response. Let 

iM l  be the microarray expression level for the i-th of Ng  genes in thel -th of NcDNA  

experiments (i.e. time slice or extra-cellular condition). The microarray error cDNAE  is 

defined via  

 ( ), ,
gcDNA NN

cDNA syn
i i

1 i 1
E h m m

= =

= ∑ ∑ l l

l

, (9) 

where   mi
l = Mi

l Mi
A  with  l = A  being the initial time or standard condition; ( ),h x y  for any x,y 

provides an error metric (e.g. ( ) ( ), 2h x y x y= − ).  

 Constructing entropy with the ρ -weighted average of EcDNA  and information on the time 

scale on which ( )T t  can evolve (our regularization condition), we obtain ρ  and then maximize it 

with respect to Λ  and ( )T t  to determine the most probable Λ  values and T  timecourses. 

Application to E. coli 

E.coli microarray data obtained for the transition from glucose to acetate media (Kao et al. 2004) 

was used to demonstrate this approach. The data included expression levels (relative to the initial 

state) of 100 genes at 300, 900, 1800, 3600, 7200, 10800, 14400, 18000 and 21600 seconds. The 

preliminary TRN used was based on RegulonDB (Salgado et al. 2001) as modified by Kao et al. 

(2004). Fig. 8 shows the time courses of 16 TFs (out of 38). Kao et al. (2004) applied their NCA 

code (Liao et al. 2003) to the same problem; however, the TRN used (that consists of 100 genes 

and 38 TFs) does not satisfy the NCA column rank requirement. Furthermore, the transcription 
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kinetics in our approach differs from that of NCA. Despite these differences, it is surprising that 

15 out of 16 TF activity time courses (Kao et al. 2004 only presented 16) are in qualitative 

agreement with our results. 

 

 

 

 

Figure 8:  Predicted TF activity time courses for 16 of 38 TFs constructed using our module of C3 and a 
preliminary TRN (from www.ecocyc.com and gene expression data).  

Results are in qualitative agreement with those obtained by Kao et al. (2004) except for PhoB. pstC and ptS are 
upregulated by PhoB and their level of expression increases in time, therefore one would expect the activity of PhoB 
to increase as well.   
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6.0  GeneDat: Human and Bacterial Transcriptional Regulatory Database 
 

GeneDat is a database of TRN information created to be a part of an automated TRN discovery 

system that includes FTF and KAGAN (sysbio.indiana.edu). Users can enter their cDNA 

microarray data, obtain an associated training set from GeneDat, and construct a TRN consistent 

with the microarray data.  

A preliminary TRN is used in our approach to start the FTF, KAGAN, and bioinformatics 

modules. For a list of genes in a subnetwork (e.g. as identified using microarray data) regulatory 

TFs and a list of the genes that encode them (or components thereof) are extracted from a 

database. Existing databases do not provide all up/down regulatory interactions explicitly (i.e. 

the user is often referred to the citations) and entries for specific pathways of interest are often 

missing. We have established a database of mammalian (mostly human) TF/gene regulatory 

up/down interactions. This GeneDat database has over 13,000 TF/gene experimentally-verified 

regulatory relationships. The TFs in the database are the single or multi-component active forms 

(as far as is known or given in the references). GeneDat also records the genes which are 

translated into the TF component proteins. GeneDat is annotated with gene and TF organisms, 

cell lines and literature citations. Extensive alias tables for genes and TFs remove redundancy. 

Data has been gathered and curated from a variety of databases and the literature. The former 

include TRANSFAC (www.gene-regulation.com), National Center for Biotechnology 

Information (www.ncbi.nlm.nih.gov), Protein Lounge (www.proteinlounge.com), and 

Transcriptional Regulatory Regions Database (www.mgs.bionet.nsc.ru/mgs/gnw/trrd). This data 

is curated and reformatted in order to allow GeneDat to be efficiently folded into an automated 

TRN discovery system. TRN results for E.coli and B Cell, based on the GeneDat preliminary 

TRN, were obtained using the TRN discovery methodology discussed earlier.  

We have also gathered data on several bacteria to serve as a training set, and facilitate the 

construction of TRN. TRNs for B. subtilis (by DBTBS, http://dbtbs.hgc.jp) and for E. coli 

(www.ecocyc.org) with augmentation using information from Regulon DB 

(http://www.cifn.unam.mx/Computational_Genomics/regulondb/). 
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7.0  CellX: Multi-Dimensional Cell Model 
Overview 

The CellX cell simulator accounts for reaction and transport processes and the attendant 

intracellular gradients of composition. CellX is multi-dimensional − i.e. reaction-transport 

equations are solved on membranes (2-D) and within bulk media (3-D), all simultaneously and 

with full coupling that accounts for molecular exchange between these domains. Equations are 

solved on finite element grids to yield the timecourse of cell state. 

In the implementation provided to Bio-SPICE we include reactions and transport on the inner 

surface of the outer membrane of a bacterium; in particular the model accounts for surface 

processes associated with the dynamics of Min proteins and their transport within, and exchange 

with, the cell’s interior continuum. 

Multi-Dimensional Model Formulation 

The objective of the modeling underlying CellX as described below is to address the hierarchical 

complexity of intra-cellular structure and dynamics. Intra-cellular structural detail accounted for 

simultaneously is the bulk medium (3-D) and the 2-D levels (e.g. along membrane surfaces or 

interiors). Thus we term our approach multi-dimensional. Through this approach, we simulate 

directed transport, well-localized functions and other key phenomena. As for other complex 

systems, the art of cell modeling is in the choice of the level of the description.  

In the most general formulation, a CellX model is divided into compartments labeled 

α = 1, 2, ⋅⋅ ⋅Nc  separated by membranes. For Bio-SPICE we implemented a single compartment 

version.  

 The reaction-transport differential equations on which the Bio-SPICE version of CellX is 

based are, schematically, 

  
23D

3D 3D 3D 3D
C D C R

t
∂

= ∇ +
∂    (10) 
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where 
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2DR , 3DR = net reaction rates for surface and bulk reactions 

2 / 3D DR = net rate of molecular exchange between the interior bulk and the membrane surface 

2DD , 3DD = diffusion coefficient for the surface and bulk 

2DC = concentration at the membrane surface (molecules/area)  

3DC = concentration in the cell interior bulk (molecules/volume). 

The net rates are related through general stoichiometric matrices to mass action rate laws for 

each fundamental process. Finally, nv  is the unit normal to the membrane pointing into the cell 

interior. 

Application to E. coli Division 

 CellX was used to simulate the self-organized location of the division plane in E. coli. This 

plane is believed to form where the time-averaged surface-adsorbed concentration of MinD 

protein is a minimum. Fig. 9 shows an example wherein multiple division planes are predicted 

for abnormally long cells, as observed. CellX was also applied to spherical E. coli cells and 

bursting patterns of Min protein localization were predicted.   
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Figure 9a:  Surface pole-to-pole MinD concentration profile for a normal length, rod shaped E.coli cell,  
suggesting one division plane at the middle. 

Figure 9a: Surface pole-to-pole 
MinD concentration profile for 
a normal length, rod shaped E.coli 
cell, suggesting one division plane at 
the middle. This time-average profile 
was obtained by sampling all nodes 
within a ring of 0.1µm width over the 
long axis. 
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Figure 9b Same as (a) except for a 1.5 x normal length cell 

(i.e. 3.0 µm in length and 0.5 µm in diameter) indicating two division planes. The sampling interval was 0.1 µm. 
 

MinD Conc Profile (double length)
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Figure 9c Same as (a) except for a 2 x normal length cell 

(i.e. 4.0 µm in length and 0.5 µm in diameter) suggesting 3 division planes. The sampling interval was 0.2 µm. 
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8.0  Conclusions 
 
A number of systems biology modules were created for Bio-SPICE. These include two cell 

modeling systems (Karyote and CellX) and two data/model integrators (FTF and KAGAN). In 

support of these modules we created a website (sysbio.indiana.edu) that provides model building 

resources. 

 Comparison of results from our Karyote and CellX results with observation shows that they 

are viable instruments for predicting cell behavior. Similar comments hold for the ability of FTF 

and KAGAN to reliably construct and refine transcriptional regulatory networks. 

 The Bio-SPICE project was very successful in demonstrating the feasibility of creating a 

platform to use interoperable systems biology modules in an automated workflow. However, in 

developing and installing these modules we concluded that the Dashboard and other Bio-SPICE 

infrastructure were somewhat difficult to use although the overall concept holds great promise. 

 Cell modeling and computational biology in general are still at an early stage of 

development. Thus a larger investment in developing the physico-chemical models, as opposed 

to general structural concerns, might have led to greater progress. We concluded that the 

requirements of the science should guide the infrastructure effort more directly.  

 We conclude that a follow-on project should be focused on the development of the more 

detailed physico-chemically based cell models.  
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9.0 Recommendations 
 
To realize the full potential of Bio-SPICE it is necessary to find a follow-on project that is led by 

researchers developing the next generation of systems biology modules. The team should also 

include experimentalists, mathematicians, computational and physical scientists. 

 Important issues are 

• multi-scale modeling 

• extremely large numbers of variables 

• calibration of complex models 

• mechanics of cell shape and locomotion 

• multiplex data/model integration 

• model builder modules for 3-D and chemically complex models 

• methods to examine complex model output 

• integration software for models and treatment discovery 

These issues could constitute a new DoD initiative as most other programs tend to assume the 

models can be developed elsewhere.   

 Viral threats were not addressed in Bio-SPICE. We suggest that a new initiative be launched 

that is on the scale of Bio-SPICE. The objective is to implement a workflow that takes a viral 

gene sequence and yields drug targets, vaccines, and side effect-free treatment strategies. The 

types of modules developed should allow for a spectrum of topics that include 

• protein-protein interaction 

• all-atom whole virus prediction 

• viral/host cell membrane interactions 

• viral/host transcriptional regulatory network interactions 

• mutation dynamics 

• viral life cycle 

• virus-like nanoparticles for drug delivery 

• drug target discovery and vaccine design 

It is suggested that this initiative be planned by a panel of virologists, clinicians, modelers, and 

bioinformaticists.   
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