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1.0  Summary

This research effort defined, developed, and implemented a test-bed for the automatic synthesis of

target recognition systems. The approach orchestrates a hybrid evolutionary learning process to

grow feature detectors, assemble sets of cooperative features, and construct an accurate classifica-

tion system. Key aspects of this approach include: (1) a multifaceted representation that defines a

rich space of potential recognition system designs, (2) a closed-loop learning system that synthe-

sizes recognition systems by integrating multiple evolutionary learning algorithms, (3) the use of

constructive synthesis to evolve complex processing networks from simple networks as needed,

and (4) a modular implementation that facilitates the use of alternative approaches for different

phases of the target recognition problem. This effort leverages significant research and develop-

ment expertise in the areas of pattern recognition, evolutionary computation, morphological anal-

ysis, program management, and software engineering for the design and implementation of

defense applications. The technology and methods produced as a result of this program promote

the rapid construction of recognition systems for Air Force applications; thereby reducing the

cost, manpower requirements, and time needed to deploy new systems. The operation of the test-

bed are validated using HRR, SAR, and E3D data sets.

2.0  Introduction

2.1  Background/Scope

A pattern recognition system (PRS) that solves a complex problem is an inherently com-

plex structure consisting of multiple, interacting components such as features, a feature set and a

classifier [15, 16]. In most applications, primitive features are given and the task of forming a rec-

ognition system reduces to assembling feature sets and a classifier. A more challenging problem

involves synthesizing primitive features and then assembling the final stages of the recognition

system. The difficulty in synthesizing complete recognition system is due in part to a trade-off

that exists between features and classifiers. Good features reduce the need for a complex classi-

fier, while a good classifier can compensate for marginal features. Researchers have developed
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expert systems and pure optimization techniques to semi-automate the design of PRSs.   Although

reducing the time needed to develop a recognition system, these techniques still require signifi-

cant time, cost, and human expertise to develop solutions for difficult ATR problems involving

SAR and HRR data.

2.1.1  Expert Systems

Expert systems have been developed to assist in the development of algorithms for signal

or image classification. Vogt developed the REM system that synthesizes size-limited image pro-

cessing programs to map input images to acceptable output images [64]. REM encoded rules to

exploit the algebraic properties of the available operators. However, REM's rule set was unable to

create programs consisting of more than two operators due to a lack of intermediate performance

measures to guide the assembly of operators. Researchers have developed expert systems that

generate larger programs by requiring an analyst to precisely specify the objective using natural

language [49], predicate logic [33], abstract programming language [37], or grammars [13].

Unfortunately, defining a specification is a very difficult task similar to traditional software devel-

opment.

The HELPR approach does not use a rule base for constructing recognition programs.

Instead, the technique uses evolutionary search techniques to assemble operators into a complex

system. Information theoretic performance measures guide the assembly process toward success-

ful configurations. By using generalized performance measures such as entropy, Fischer's dis-

criminant [20], confidence values, and orthogonality the HELPR can find high-quality solutions

that might otherwise be eliminated by human biases.

2.1.2  Pure Optimization

Optimization has been thoroughly studied for many decades and includes gradient-based

[10]; stochastic [1, 29, 50]; neural networks [3]; fuzzy sets [69]; and population-based techniques

[1, 29, 50]. Most pure optimization algorithms apply only to problems of identifying unknown

scalars or vectors of scalars, and are not directly applicable to the problem of constructing a com-

plex computational structure. In order to apply an optimization technique to the problem of

designing a recognition system, researchers must specify the overall structure of the system and
2



then apply the algorithm to identify parameter values that maximize criteria such as recognition

rates or efficiency. Creating a system using pure optimization has several deficiencies. First,

determining the general structure of the system requires significant human expertise. Second,

structures defined by humans are confined to a small subset of the entire search space and there-

fore may bias the search toward potentially sub-optimal solutions. Lastly, rapid development of

recognition algorithms is impractical due to slow turnaround time.

Researchers have applied pure optimization to the design of PRSs, where components,

structures, and/or functional forms are specified a priori. Neural networks are widely used to clas-

sify fixed-size feature sets. These technique start with a fixed topology and simple adjust synaptic

weights to optimize an objective function. Evolutionary techniques have been used to optimize

specific compounds of recognition systems including convolution kernels [34]; binary structuring

elements [27, 54, 55, 68]; grayscale structuring elements [68]; and feature sets [40, 52, 57]. 

2.1.3  Synthesis

Creating a complex computational structure such as a recognition system requires synthe-

sizing a structure to produce a desired response. Whereas pure optimization identifies parameters

that optimize the behavior of a pre-specified structure, synthesis techniques must create the opti-

mal configuration of operators, in addition to identifying the configuration's optimal parameter

values. Consider the issues associated with forming a canonical pattern recognition system com-

posed of a feature extraction module followed by a classification module. How many detectors

should be included in the detector set? What types of operations should be used in each feature

detector? What is the correct number of operations to include in each detector? Which operator

sequences form useful functions? These questions involve structure-function relationships that

can only be addressed by synthesizing each component of a recognition system. HELPR’s synthe-

sis process has the following properties:

1. The system's computational structure is initially unspecified.

2. The resulting system attains the appropriate level of complexity. Simple recognition 
tasks result in small systems; whereas, complex tasks will result in larger, more com-
plex solutions.

3. A computationally minimal set of features is formed.
3



4. The proper sequence of operators to include in each feature detector is automatically 
determined.

5. Operator sequences that perform generic functions are stored in a reusable form.

2.1.4  Synthesis Techniques

Synthesis techniques were first investigated during the mid 1960's when researchers used

evolutionary computation to generate finite state automata [22, 62]. More recently, specialized

architectures such as the Neocognitron [23] and Cascade Correlation (CC) [17] have been devel-

oped to overcome the limitations of fixed-architecture neural networks [3]. Although these net-

works grow in size, the network topology is still restricted.

Genetic Programming (GP) [36] represents an unknown computational structure as an

expression tree with each node representing an operator. The tree representation is extremely flex-

ible and therefore is not limited to configurations defined by experts. GP has successfully synthe-

sized structures for complex problems, but its direct application to the design of a recognition

system is limited for two reasons. First, GP is designed to synthesize one monolithic structure.

This makes it difficult to use this approach to synthesize a cooperative collection of distinct fea-

ture detectors. Second, GP does not directly identify useful building blocks or sequences of oper-

ators. Our approach uses a modified GP algorithm in concert with other evolutionary learning

algorithms to grow a multiplicity of feature detectors while explicitly measuring the usefulness of

building blocks. This accelerates the search process by eliminating the computational costs asso-

ciated with evaluating less useful structures.

A multi-faceted evolutionary system, E-MORPH [45, 46], has been used to generate pat-

tern recognition systems for classification tasks such as HRR [47]. E-MORPH uses GAs to opti-

mize feature sets; EP to synthesize structuring elements; and GP to optimize topology. The

approach generalizes and extends the techniques developed in the E-MORPH system.

2.1.5  Evolutionary Computation for PRS Synthesis

Algorithms from the field of evolutionary computation (EC) have been used in synthesis.

The field of EC consists of four main approaches: Genetic Algorithms (GA) [29], Evolutionary
4



Programming (EP) [21], Genetic Programming (GP) [36], and Evolutionary Strategies (ES) [50].

All four EC techniques share general characteristics:

1. Stochastic search technique

2. Population-based search technique

3. Exhibit good performance in high-dimensional multi-modal search spaces

The appropriateness of each of these paradigms depends on the intended application. For

example, the GA excels when the problem can be cast as the optimization of a fixed number of

scalars (i.e., pure optimization). Additionally, GAs require that the search space be represented

using a natural genetic encoding such as a bit string. GP is similar to the GA but represents the

solution space as arbitrarily sized trees and therefore is appropriate for tasks requiring the synthe-

sis of structures that can be represented as expression trees. EP, like GA, is appropriate for optimi-

zation tasks. In contrast to the GA, EP places no emphasis on the underlying genetic

representation, and therefore it is a good technique for optimizing real-values or when a natural

genetic encoding is unknown. ES distinguishes itself from other EC techniques in that the genetic

representation includes information for controlling the search technique itself. Thus, ES includes

meta information directly into the search space and reduces the number of system parameters

(e.g., mutation rate).

3.0  Methods, Assumptions, and Procedures

The process of pattern recognition is usually conducted in several distinct stages starting

with transformation of raw input data, identification and extraction of features, formation of fea-

tures sets, and classification. Each stage of this pipeline transforms and/or reduces the flow of

information to facilitate the actions performed in the subsequent stages. The initial transforma-

tions eliminate noise and reorganize the data flow to simplify the identification of features. The

process of feature identification and extraction produces a pool of measurements that ideally are

class invariant. Feature selection is the process of finding a small subset of features sufficient to

discriminate among different classes of data samples. Lastly, classification associates a user
5



defined label with the various combinations of feature-values. Overall, the process of forming a

recognition system consists of reducing high-dimensional input data to simple categorical values. 

Many researchers have attempted a "black box" approach to the problem of synthesizing

complex recognition systems. These techniques are strictly tied to terminal performance measures

of recognition accuracy, utilize a homogeneous representation of the underlying system, and are

unsuccessful as the complexity of the recognition task increases. In contrast, we view a pattern

recognition system as a series of modular components that are designed to perform distinct tasks.

Consequently the representation and approach used to synthesize each component is customized

to the modules' objectives, yet the flow of information between components is carefully orches-

trated to achieve the overall goal of producing an accurate recognition system.

HELPR addresses the problem of synthesizing and integrating the individual components

of a recognition system. Our approach uses a multifaceted representation to define a search space

consisting of layers of computational networks that are synthesized using a multiplicity of evolu-

tionary learning paradigms. An overview of the approach is shown in Figure 1. A recognition sys-

tem consists of four basic modules: transformation, feature identification and extraction, feature

selection, and classification. The identification and extraction module is further divided into a

primitive and complex feature extraction components. Transformations use a network of morpho-

logical operators, called a Morphonet, that is synthesized using a modified form of GP. The input

to this component is raw signals or images and the output is a collection of transformed data

flows. The first phase of feature extraction, labeled reduction, filters the transformed data to

extract statistical and geometric relationships among subsets of data flows. This process samples

or taps the various data flows to reduce the high-dimensional information to a scalar. The reduc-

tion operators are synthesized using a modified version of EP. In the second phase of feature

extraction, a collection of increasing complex, nonlinear features are formed using another GP

process. Feature selection is then accomplished using a GA. In the final stage, feature sets are

attached to neural network classifiers for evaluation. Within this framework, the many subsidiary

evolutionary processes work to assemble and optimize each type of component. The entire pro-

cess is driven by a top-level resource allocation and control strategy that uses information pertain-
6



ing to the user's desired classification and error information to drive the formation of improved

sub-components. 

3.1  Keys to Effective Use of Evolutionary Learning

Evolutionary learning techniques are stochastic processes. A collection of partial designs

defines a population of design alternatives. Each modification to an existing design represents

another alternative. Application of an evolutionary learning process simply produces generations

of alternative designs that are modifications, usually improved, of earlier forms. Designs are eval-

uated relative to prescribed goals and constraints and those not satisfying the design requirements

are eliminated. There are four basic issues that must be addressed to evolve and integrate the var-

ious components of a pattern recognition system. These issues include:

1. defining a representation for each component design

2. choosing search techniques to explore the alternatives defined by each representation

Morphonet Reduction Recognition System Synthesis

Transforms

Feature Identification and Extraction

Primitive Feature
Synthesis

Complex Feature
Synthesis

Feature
Selection Classification

Raw 
Data
Input

Class
Label

Genetic
Programming

Algorithm
Genetic

Algorithm
Genetic

Programming
Algorithm

Evolutionary
Programming

Algorithm

Neural
Network
Training

Resource Allocation and Control

Desired
Labels

Error
Information

Figure 1. Overview of the HELPR Approach to PRS Synthesis.
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3. constructing performance measures (goals and constraints) to guide the synthesis of 

individual components 

4. incorporating feedback and control mechanisms to orchestrate the search processes 

among the different components to produce a complete system

These items guide the following discussion of the design and implementation of individual com-

ponents that form the basis for the hybrid evolutionary learning system.

3.2  Morphonet

Morphological analysis is used to transform the raw input data into a form suitable for

primitive feature extraction. The representation is referred to as a Morphonet because the opera-

tions are based on the principles of mathematical morphology [30, 51]. Mathematical morphology

is a technique for probing the structure of signals or images using set theoretic operations. Each

morphological operation is a signal-to-signal or image-to-image transformation that applies a

probe-like pattern, called a structuring element, to an input data flow, to isolate or enhance charac-

teristics of the data. 

The task of formulating morphological expressions is difficult even for an experienced

morphological analyst, but if the correct algebraic form and structuring elements are brought

together it is possible to solve complex recognition tasks. Observe the effect of applying a hand-

crafted morphological expression to three signals shown in Figure 2. 

In this example, a small set of signals is processed using a single morphological transform

(BandClose Ball 3 5) which is equivalent to ( -  ( Close Ball5 ) ( Close Ball3 ) ). Each signal is

first closed with a ball of radius 5. A closing operation removes peaks with a base size smaller

than the radius of the ball. By taking the difference between two closing operations, only certain

size peaks are allowed to pass through. After applying the band operator, a trivial discriminant

function could easily separate the three signals. Handling more extensive variations or a larger

variety of signals requires a more elaborate morphological expression. Detailed examples of mor-
8



9

phological operations, structuring elements, and the process of generating expressions are

described in [70, 71]. 

Early work with morphological analysis demonstrated its value as the basic algebra for

defining expressions for pattern recognition [40, 41, 58, 59, 60]. In the MORPH [72] system we

used evolutionary computation to synthesize morphological target detectors for optical imagery.

This technique was expanded in E-MORPH [45, 46] to form parallel flows of morphological fea-

tures for multi-class pattern recognition. 

In [47] we demonstrated that GP is a viable approach to synthesizing morphological trans-

formations for pattern recognition. This system used the traditional GP representation of expres-

sion trees to form the morphological structures. There are two problems, however, associated with

using the standard GP tree representation. First, useful pieces of transformations (sub-expres-

sions) are duplicated throughout the population of recognition systems. Evaluating these superflu-

ous expressions is computationally expensive; limits the system's ability to explore new

structures; and fails to localize useful structures for reuse. Another limitation stems from GP's ten-

dency to grow structure from the top -- down. GP exchanges sub-expressions at random locations

in pairs of trees to form new expressions. Consequently, there is a bias toward exchanging the

most deeply nested functions in the expression. This type of search is ineffective when the low-

level functions tend to reorganize and reduce information flow as is typical in the initial stage of a

target recognition system. After an expression is evaluated and accepted into the system, random

changes in their support functions may be useful in arithmetic problems but tend to be disruptive

in image and signal processing applications.

Class A

Class B

Class C

Close Ball 5

-

Close Ball 3

Class A

Class B

Class C

Close Ball 5

-

Close Ball 3

Figure 2. Sample Morphological Operator.



The Morphonet structure is a directed acyclic graph composed of morphological process-

ing elements. The form of the Morphonet is shown in Figure 3. Input data flows through func-

tional nodes (numbered 1-19) to produce a collection of transformed outputs. Each connected set

of nodes defines an expression. For example, the expression terminating at node number 16 is

F16(F12(F5(Input)),F6(Input)). Notice the Morphonet representation maintains only one copy of

each sub-expression, eliminating the disadvantages of maintaining redundant structures.

Wavelets are an alternative technique for reorganizing the initial data flow. We have used

Gabor wavelets [26] to transform optical images in a multi-resolution stack of grayscale images

[43]. In [44] we developed a static network of morphological expressions to perform a similar

multi-resolution decomposition of the input. These techniques require the user to select the type

of wavelet or structuring elements, number of resolution levels to use in the decomposition and

the scale of the different resolution levels. Tuning these parameters is difficult and reduces the
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Figure 3. A Sample Morphonet.
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ability to fully automate the recognition process. The parallel flows of the Morphonet are capable

of defining a multi-resolution decomposition of the input. 

The synthesis of the Morphonet's topology is achieved using a variation of GP. The Mor-

phonet is a series of parallel data flows produced by applying complex morphological expressions

to the input data. The transformed output of selected expressions is used as input into next stage of

the recognition system. We refer to these flows as taps. The output of the remaining operations

feed higher level operators within the Morphonet. The morphological transforms and their associ-

ated taps define a population that competes for survival. 

To begin the evolutionary synthesis of a Morphonet, small random assemblages of mor-

phological operators are used to transform the input data. The output of each expression is evalu-

ated according to some intermediate performance measure to determine its fitness. The output of

the fittest expressions are tapped and presented to the next stage for primitive feature extraction.

An evolutionary cycle consists of reproduction with variation, evaluation, and selection. The pro-

cess of reproduction creates new morphological expressions by forming modified versions of an

existing expression or combining two or more pieces of existing expressions. Thus, past success-

ful expressions become parental units producing offspring that may incorporate some of the

parental structure as well as new operations. The entire search process works to synthesize the

Morphonet layer-by-layer. The types of variations are shown to the far right in Figure 3.

Each expression formed during reproduction is evaluated relative to a local performance

measure. One aspect of this evaluation is to prune nonviable offspring such as expressions pro-

ducing constant outputs for all inputs. Unlike the evaluation techniques typically used in optimi-

zation that are geared toward maximizing or minimizing the performance of a single monolithic

structure, the performance measure used to measure a Morphonet's fitness must optimize a popu-

lation of expressions, while also producing a diverse collection of outputs. Our experience indi-

cates that it is not possible to gauge the importance of an individual expression to the overall

system when it is first created, since an immature individual may potentially develop into an out-

standing performer despite its initially low performance. We have identified multiple criteria that

must be incorporated in a local performance measure for evaluating transforms. These criteria

include:
11



1. coverage of different regions of individual data items

2. consistency of the response within classes of data

3.  variation of the response to data from different classes

4. novelty of the response relative to response of other expressions

5. computational complexity of the expression

6. age of the expression in term of cycles of evolution

7. number of primitive features that use the transform’s output

Once the new expressions are evaluated, all expressions that do not feed a tap used by a primitive 

feature detector compete for survival. 

Our previous work indicates that synthesis processes work best when growing structures

from small-to-large. Consequently, the Morphonet is designed to evolve a population of trans-

forms composed of individuals with many different levels of structural complexity. Expressions

that appear early in the evolutionary process and survive tend to increase in complexity to

enhance their performance. A newly formed structure may be significantly less complex and pro-

duce a marginally lower performance. The standard type of selection process used in most evolu-

tionary algorithms would tend to underrate the importance of these simple, emerging structures.

We use of a multi-tiered tournament selection algorithm that defines complexity niches [68] to

overcome this problem. In a multi-tiered tournament, expressions are categorized and compete

only with individuals in the same category. This is analogous to the divisions that occur in sports

where high school, college, and professional teams do not interact directly, but successful individ-

uals in each level move on to compete at more advanced levels. This approach allows emerging

structures time to mature before they must compete with the full population.

In a multi-tiered tournament, individual transforms are ranked based on their performance

relative to the performance of other transforms in the same category. The size of the tournament

changes throughout the evolutionary process and is based on the average performance of the

transforms in a given category. In these local competitions, the chance of winning is proportional

to the ratio of the transform's performance to its competitor's performance. Limiting the tourna-
12



ments to a subset of the population reduces the possibility of premature convergence of the evolu-

tionary process. When the average performance of the population is poor, the number of

individuals in each tournament is small and a marginally better feature does not have the opportu-

nity to dominate the population. The pair-wise competition used in tournament selection tends to

maintain a diverse population by allowing marginal individuals additional time to mature. The

final selection for survival is based on a ranking of the number of conflicts won by each trans-

form. The transforms with the greatest number of victories in each category survive to the next

evolutionary cycle.

3.2.1  Synthesizing primitive features

The Morphonet's output is a collection of unregistered, high-dimensional data. To identify

and locate targets, primitive feature detectors must register the data flow, extract statistical and

geometric relationships, and ultimately produce a scalar value. 

We studied two procedures for synthesizing primitive features. The first approach is an

extension of the technique developed in E-MORPH, which synthesized an array of convolution

templates to register many disparate information flows in parallel. The second approach will

extended the techniques developed in MORPH to synthesize small networks of special composi-

tion operators that extract features from pairs of data flows. The later approach is more sensitive

to detailed information in the data flow and is as an alternative to a template based approach.

Our primary approach evolves a registered set of convolution kernels. We refer to these

special convolution kernels as caps. There is one cap for each tapped flow in the Morphonet. A

full set of caps defines a three-dimensional cap-stack that probes all of the Morphonet data flows

in parallel (see Figure 4). Each cap is composed of a collection of positive and negative Gaussian

shaped points that explore or tap both the geometrical structure and contrast variation of the indi-

vidual transformed data flow as well as relationships between different data flows. The convolu-

tion operator produces its strongest response when all of the positive and negative probe points

align with similar regions in the data flow. Consequently, the stack-cap produces a strong

response when the geometry embodied in the probe also exists in the transformed data flow. 
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A cap-stack is represented as a set of descriptors, where each descriptor specifies the loca-

tion (x,y,stack-position), variance (s), and sign of a Gaussian-shaped point. We used a modified

EP algorithm to vary the structure of the caps. This technique will evolve the caps by adjusting the

values and number of the descriptors. An outline of the algorithm is shown in Figure 5.

Morphonet
Taps...

Scalar outputs of the primitive features

Figure 4. Representation of primitive feature detectors.
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To summarize, a primitive feature (cap-stack) is used as a seed to define an extended pop-

ulation. The extended population is composed of mutated copies of the parental seed that repre-

sent slightly modified design alternatives. EP is used to search for an improved version of the

seed-feature. The extent of this search is restricted based on the performance of the evolving

stacks. After several evolutionary cycles are complete, if the performance of the best primitive

feature in the extended population exceeds the performance of the parental seed, it replaces the

parent. 

 For each primitive feature Fi (i = 1,2,3 … N) in the population 

 Begin

Clone Fi to produce an extended population Fij (j = 1, 2, 3, … M)

For desired number of evolutionary cycles

Begin

For each member of the extended population Fij (j=1,2,3,…M)

Begin

Generate a mutated copy Fij of Fij

Calculate the performance Pij of Fij

End

Apply tournament selection to rank the (M+M) values of Pij and Pij 

Select the top M ranked individuals to form the extended population

End

If the maximum Pij  > original feature’s (Fi) performance

then replace Fi with Fij

 End

Figure 5. Algorithm for Synthesizing Features
15



The types of variation applied to an individual cap are outlined in Figure 6. These genetic

operations adjust the position of the Gaussian points, add new points, and delete existing points.

As a rule, the stack is initialized with a limited number of probe points, but the probability of

addition is greater than the probability of deletion. This bias toward addition causes the stack to

become increasingly sensitive. An adaptive mechanism will be used to control the amount of

addition, deletion, and extent of variation of existing points. When the performance is low, the

potential for variation is high. As the performance reaches a maximum level, the variation

approaches zero, freezing the cap-stack's configuration. This adaptive mechanism is similar to the

"cooling" process used in simulated annealing [4] that allows the search to escape local optima

while driving the system toward an acceptable configuration. 

We investigated several intermediate performance measures to identify those that are most

effective for the task of evolving primitive feature detectors. There are a variety of measures to

consider including Fisher's Discriminant [15, 16, 20], conditional class entropy [9], or mutual

information [8]. These measures estimate a feature's ability to separate the data along class bound-

aries. The magnitude of these measures increases as the separation between the means of the

response for each class of target grows while the variance in the response within each class

shrinks. Feedback from later stages of the evolving recognition system can be used to guide the

formation of primitive features that produce specific responses. For example, error information

Vibration Addition

Deletion

Change in variance

Cap Mutated Cap

Figure 6. Technique Used to Evolve a Cap
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produced by the population of classifiers can be used to form target response vectors. The primi-

tive features can evolve to correlate to the desired response using performance measures such as

sum squared error, root mean squared error, and confusion error. 

3.2.2  Synthesizing Complete Pattern Recognition Systems

We defined a single hybrid evolutionary learning process to take the primitive features

defined by the outputs of stack-caps and synthesize the final pattern recognition systems. Our

approach combines GP, GAs, and neural networks to synthesize complex nonlinear features, con-

struct cooperative sets of features, and perform classification. This technique is an extension of

work described in [47].

The evolutionary process begins by forming a population of complete recognition systems

as shown in Figure 7. Each recognition system contains a small random set of primitive features

sampled from the set of stack-caps. A linear Perceptron [38] is trained to evaluate the accuracy of

Population of Recognition Systems

Detector Set 1 Detector Set N

PRS NPRS 1

Classifier 1 Classifier N

...

Label Label

Primitive Features

Morphonet

Signal or Image

Figure 7. Representation of a Population of Pattern Recognition Systems.
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each recognition system. A GP algorithm is used to extend the primitive features generated by the

cap-stack and a GA is used to mix detector sets. The actions of GP and GA are blended together

into one evolutionary process. The GA is responsible for recombining detector sets and compo-

nents of detector sets as shown in Figure 8.  Parental units are selected from the base population,

where the probability of selection is proportional to the recognition system's accuracy. Once a pair

of parents is selected, their detectors are exchanged using a uniform crossover [5, 28]. When an

exchange of detectors occurs, there is a small probability that the internal structure of the underly-

ing expressions are also recombined using GP. The expressions are represented as trees. The input

to these expressions is the output of selected cap-stacks. The GP algorithm exchanges sub-trees

between pairs of complex features as shown in Figure 9. In addition to exchanging information by

recombination, genetic operators exist for adding, deleting and replacing sub-trees (not shown).

Mixing the structure of expressions allow the search process to explore a wide variety of new

functions.

Pao [39] has shown that a linear classifier is sufficient to classify a data set if nonlinear

transforms of the input are provided to the classifier. Therefore, the output of nonlinear feature

detectors justifies use of simple a linear Perceptron classifier. We have previously considered the

use of K-nearest neighbor classifiers for this type of problem and found that they are also effective

and represent a viable alternative.

Parental Detector Set 1 Parental Detector Set 2

Offspring Detector Set 2Offspring Detector Set 1

Recombination

Figure 8. GA Process Used to Form Feature Sets
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3.2.3  Component Integration

One of the most difficult tasks associated with forming a recognition system from modular

components is orchestrating all of the learning processes to form an integrated system. Two

approaches to component integration will be evaluated.

First, we developed a pipeline process without direct feedback between the various evolv-

ing components. The information flows in only one direction from transforms toward the classifi-

ers. The advantage of this approach is the components are loosely coupled making it possible to

synthesize each component in series. The results of each stage of the processing can be buffered

and made available to the next stage at some future time. The strength of this technique is the

computational load can be readily distributed on a network of computers, virtually eliminating the

problem of resource allocation. This technique is viable only if the performance measures used to

generate the components are capable of predicting the specific needs of the next stage of process-

ing. For example, in [40, 52] a large population of feature detectors was generated off-line and an
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Parental Detector 1

Offspring Detector 2Offspring Detector 1

Parental Detector 2
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Figure 9. GP ProcessUsed to Form Complex Features.
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orthogonality measure applied to response vectors was used to form sets of feature detectors for

classification. The downside of this technique is formulating performance measures for compo-

nents located in the early stages of the pipeline that estimate contribution to terminal recognition

accuracy is difficult.

Second, we developed a tightly coupled system where each component produces output

for the next stage and sends requests or directives back to earlier stages. These directives are used

to synthesize components that produce specific types of output. The advantage of this approach is

terminal performance information such as classification accuracy indirectly guides every stage of

processing. For example, the learning algorithm that evolves classifiers could post a request of the

form: “generate a feature to separate class A from class B” or a more specific directive such as

“generate a feature that respond to samples 1, 2, 3 in class A and does not respond to samples 2, 5,

and 7 in class B”. In MORPH, we developed techniques for synthesizing image transforms that

used directives. A composite image was formed using the output of all transforms. Areas of low

activity in the composite image were used to define regions of interest, and emerging transforms

were evolved to focus on these areas. Similar techniques are incorporated into the system to guide

the various phases of evolution.

Computational resources must be carefully allocated among the various learning algo-

rithms to produce a balanced system. If too much effort is spent on any one algorithm, it may

reduce the performance of the overall system. In Tamburino et al. [53, 61] we studied issues

related to resource allocation applied to the problem of synthesizing recognition system compo-

nents. The results of this work suggests that system performance is improved with the use of

adaptive control mechanisms to partition the resource among the various algorithms. We devel-

oped a meta-level learning algorithm that monitors the performance of each component and the

overall system response. The top-level controller will allocate additional computational resources

to algorithms that are producing components that show no significant increase in performance,

and remove resources from algorithms that produce components that improve too rapidly relative

to other components. This will effectively address the complexity trade-off that occurs between

features and classifiers, producing a balanced system.
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3.2.4  System Validation

The system was applied to HRR, SAR and E3D data sets. Our research team worked

closely with Air Force personnel to identify appropriate test data to use in experiments so results

can be compared to the results obtained by other techniques.

3.3  Summary

The HELPR system uses multiple evolutionary algorithms for synthesizing pattern recog-

nition systems. A system level diagram of the information flow is shown in Figure 10. Images or

signals flow through a Morphonet consisting of an evolved collection of morphological expres-

sions that reorganize information to facilitate primitive feature extraction. Special 3-dimensional

cap-stacks are evolved to extract primitive features. A population of recognition systems is
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formed, where each recognition system is composed of a collection of complex features that are

extensions of the primitive features formed in the previous stage. A combined GA/GP process is

used to restructure complex features and form sets of features. Finally a linear classifier is used to

label the constructed feature vectors. The evolved systems will then be used to solve recognition

tasks such as HRR and SAR. 

We use an extremely expressive multifaceted representation that facilitates the five dis-

tinct adaptive learning processes discussed previously are summarized in Table 1.

These learning algorithms have been carefully selected based on the requirements of each task. 

GP is used to optimize the topology of the graphs representing computational sequences. EP and 

GAs are used when topology is not involved. 

Table 1: Learning Processes Used in HELPR.

Adaptive Learning 
Process

Primary 
Representation Primary Learning Algorithm Evaluation Criteria

Synthesis of 
Morphonet

Directed acyclic 
graph of 
morphological 
operators

Genetic Programming
• Delete
• Join
• Tap
• Recombine
• Extend
• Mutate

• Completeness of coverage
• Intra-class consistency
• Inter-class variation
• Novelty
• Computational requirements
• Age
• Quantity of taps supported

Selection and 
optimization of 
primitive 
features

Convolution
kernels

Evolutionary Programming
• Variance change
•  Delete
• Vibration

• Fischer's discriminant
• Entropy

 Synthesis of 
non-linear scalar 
transforms

Acyclic directed 
graph of arith-
metic operators

Genetic Programming
• Delete
• Join
• Tap
• Recombine
• Extend
• Mutate

• Fischer's discriminant
• Entropy

Selection of 
subsets of 
feature

Size-varying sets Genetic Algorithm
• Recombination
• Set growth
• Set reduction
• Mutation

• Orthogonality
• Computational requirements
• Resulting classification errors

Formation of 
classifiers

Perceptron Perceptron Training Algo-
rithm

• Classification errors
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4.0  Results and Discussion

4.1  HRR Application

The HELPR system was used to synthesize recognition systems for HRR radar signals.

XPatch was used to simulate six airborne targets across a pose window consisting of variations in

azimuth of -25° to 25°and depression angle of 0 to -21 degrees. The signals were input as histo-

grams consisting of 128 range bins. The HELPR architecture was setup to evolve morphological

features to extract structural properties from the signals, a second module selected subsets of

cooperative features, and the final module formed a neural network classifier. The results of these

experiments demonstrated that HELPR could form recognition systems that produced recognition

accuracies of 96% on independent test data using a limited number of features. The results were

compared to several other techniques (perceptrons, RBF networks) that could not match HELPR's

accuracy without many additional features.

To instantiate a specific version of HELPR, there are four basic issues that must be

addressed. These issues include:

1. defining a representation for each component of the design

2. choosing search techniques to explore the alternatives defined by the representation

3. constructing performance measures (goals and constraints) to guide the synthesis of 
individual components 

4. incorporating feedback and control mechanisms to orchestrate the search processes 
among the different components to produce a complete system

These items guide the following discussion of the design and implementation of individual com-

ponents that form the basis for HELPR for HRR target recognition. 

4.1.1  Representation

The representation of a HELPR generated recognition system is shown in Figure 11. Each

recognition system is composed of a feature extraction module and a classification module 15,

16]. The feature extraction module applies a set of feature detectors to an input signal to form a

feature vector. The set of feature detectors is viewed as a linear chromosome that defines the gen-

otype of an individual recognition system. The classifier module then assigns a target label to
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each feature vector. A feature detector is composed of two components: a transformation network

and a capping mechanism. 

4.1.1.1  Transformation Network

Data Flow
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Cap 1
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Figure 11. HELPR Representation used for HHR
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Each transformation network is composed of morphological, arithmetic, and conditional

operations that alter the input signal in an attempt to enhance the most-discriminating regions of

the input while suppressing noise. When a transformation network processes a digitized input sig-

nal composed of n elements, the output is an n-element response vector. The output of a transform

network is then capped to reduce the dimensionality of the signal. The key to evolving a robust

recognition system is to synthesize transform networks within the feature detectors that facilitate

the separation of targets into appropriate classes. 

Mathematical morphology is a technique for probing the structure of signals or images

using set theoretic operations [30, 51]. Each morphological operation is a signal-to-signal trans-

formation that applies a probe-like pattern, referred to commonly as a structuring element (SE), to

an input signal to produce an output signal. By selecting the correct algebraic form and structuring

elements, specific objects can be isolated or enhanced. An example of a transformation applied to

a few HRR signatures is shown in Figure 12. The expression, (Op (* (BaC I Bar2,4) (BaO (Cl I

Bar2) Ball3,5) < 10 ) Ball3), consists of four morphological operations and one arithmetic opera-

tion. The Figure 12 illustrates in a step-by-step fashion how a transform alters a set of signals to

separate one class of targets from two other classes. Two samples (rows) of signals from three dif-

ferent classes (columns) are shown next to each operation in the figure. 

Two basic types of morphological operations are used: openings and closings. A closing

operation fills in the gaps between peaks, where the size and shape of the SE defines which peaks

get merged. Opening removes small portions of the signal, where again the size and shape of the

SE dictate which characteristics of the signal get removed. A thorough discussion of the operation

can be found in [30, 51]. 

The other two operations shown in this example are band operations, which compute the

difference between two applications of an operation with the same structuring element at two dif-

ferent scales. This operation tends to isolate peaks or valleys in the signals having a size between

a particular range. Two examples are shown in the figure, a band closing with a bar at scales 2 and

4, and a band opening with a ball at scales 3 and 5. The remaining operation shown in the example

is an arithmetic transform. In this example, the product of two transformed signals is formed. One

signal is shifted relative to the other signal to allow the combination of information at two dis-
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tance positions in the transformed signals. While it was difficult to recognize the difference

between the classes of signals in figure 2 before the transformation, the result is a discriminant

that immediately separates one class from the other two.

Finding a transform and structuring element to separate two classes of signals is difficult,

but finding a series of transformations that separate several classes of similar input signals is a

demanding task even for an experienced morphological analyst. The need to explore and experi-

ment with different combinations of operations, structuring elements, and parameters makes the

task of synthesizing morphological expression well suited to evolutionary search. For this work,

the full set of operations used in the evolutionary process include: erosion, dilation, opening, clos-

ing, band erosion, band dilation, band opening, band closing, and complement. In addition, four

arithmetic operations were used: addition, subtraction, multiplication, and division. The structur-

ing elements include various scales of bars, balls, and cones. Further examples of morphological

Figure 12. Sample Morpholoical Transform
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operations, library structuring elements, and the process of generating expressions are described

in [70, 71].

The representation of the transform network supports both the definition of the form of an

algebraic expression and the specification of parameters to adapt a specific expression to the

nuances of a training data set. Thus, the task of evolving a transformation network can be viewed

as a pair of concurrent search processes. One search explores an infinite space of algebraic net-

works to find the general framework of an expression that performs a coarse-grained transforma-

tion of an input signal to an alternative form while the second search adapts the parameters of the

expression to fine tune the behavior of the transformation. 

4.1.1.2  Capping Mechanism

The purpose of a transform cap is to reduce the dimensionality of a structured dataflow to

a few scalar values. In the HRR application, the capping mechanism is composed of a single layer

of linear perceptron nodes (p1, p2, … pK), where k is the number of classes. The HRR signal is a

vector of scalars representing a set of range bins. The transform produces an output response vec-

tor. The input to each perceptron node is the response vector and the output is a scalar value. As

illustrated in Figure 11, each detector has one perceptron for each of the k user-defined classes.

The perceptron's weights are adjusted to use the transformed response vector to separate the train-

ing samples of one class of data from the remaining classes. Since transformations are relatively

simple, the individual perceptron nodes do not act as highly accurate discriminant functions.

Instead, the caps tend to split the output of transforms into subsets of related classes. The percep-

tron cap computes a weighted sum of outputs of a network of transforms. This allows the cap to

rescale specific regions of a transform's output to increase separation between data samples from

different classes. A bias term is introduced to allow the cap to shift the resultant value so that the

response for a selected class is positive and other classes are negative. Notice the perceptron cap

functions as a template or matched filter when applied to the transformed signal.

The use of a perceptron to cap a transform simplifies the evaluation of transforms because

the value of the weight can be computed using a pseudo matrix inversion that adjusts the weights

to minimize a least-square fit of the perceptron's output to training data, where the goal is to pro-

duce a value of +1 for a target class and -1 for all other classes. This simplification is only possi-
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ble when the size of a transform's output response is relatively small. An alternative form of

capping that evolves Gaussian kernels for extracting scalars from transform responses has also

been investigated [12, 60]. This form is more appropriate when the dataflow contains large signals

or two-dimensional images.

The sets of outputs from each detector are then passed to a second layer of perceptron

nodes that serve as a classifier system (shown as "Perceptron Classifier" in Figure 11). Again,

there is one perceptron node for each user-defined class. The ith node is trained to produce a +1

for a data sample drawn from the ith class and -1 for samples taken from all other classes. 

4.1.2  Evolutionary Search

HELPR uses three different evolutionary techniques to alter the structure of the detector

set contained in each recognition system. The parameters controlling specific properties of the

transforms within a detector set are varied using aspects of evolutionary programming (EP), the

structural form of the transformation is modified using genetic programming (GP), and the collec-

tion of detectors that form the basis of the feature extraction module are selected using a genetic

algorithm (GA). These techniques are combined to exploit the strengths of each paradigm.   

The overall flow of HELPR's evolutionary search process is shown in Figure 13. To begin,

the user sets the size of the population of recognition systems. The user also specifies a minimum

and maximum number of detectors to place into each recognition system to begin the evolution-

ary process. The transforms that define the initial detectors are generated at random. The user also

sets limits on the size of the initial transforms. The limits on the number of detectors, the number

of the transforms, and the number of operators in each transform is not critical because the evolu-

tionary process adjusts the number of detectors and tunes the complexity of the transformations.

After the transforms are created, caps are trained to separate the data into user-defined classes and

the resultant outputs are passed to the classifier that assigns a fitness value to each recognition

system based on its overall classification accuracy. Then the evolutionary learning cycle com-

posed of repeated applications of reproduction with variation, evaluation, and selection begins. 

The evolutionary process consists of the normal cycle of reproduction with variation, eval-

uation, and selection. The learning cycle continues for a fixed number of evolutionary cycles as
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specified by the user. The parental recognition systems are chosen for reproduction using a scaled

fitness proportional selection procedure [28, 29]. The selected parental units are then used to form

offspring recognition systems. Pairs of parental systems are selected repeatedly and used to pro-

duce a user-specified number of offspring. The offspring are evaluated to determine their fitness,

and then the parents and offspring compete for survival using a stochastic tournament selection

procedure [21]. The details of reproduction, evaluation, and selection are described below.

Reproduction consists of producing variations of the genetic structure of parental detector

sets. The heterogeneous representation of the genotype of a recognition system requires special
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types of genetic operators. One approach considered was to apply different types of variations in

phases. For example, complete detectors could be exchanged between parents in one phase, then

transformation could be recombined in a second phase, and the parameters of the transforms

could be mutated in the final phase. This approach imposes an artificial restriction on the way the

genetic structure evolves and induces artifacts in the evolutionary process that limit the search

process to a subset of the full range of genetic structures. The approach adopted in HELPR is to

blend the variations so that during reproduction the genetic structure of the offspring are formed

using different types of genetic variations. To control the amount of each type of variation, a prob-

ability distribution is introduced that assigns a probability to selecting each type of variation.

There is distribution that controls the probability of a mutation, recombination, or a chromosomal

aberration such as the addition or deletion of a gene (whole detector). When recombination is

selected it can lead to the exchange of two complete detectors or exchange of pieces of transform

networks. Each type of recombination has a specific probability that is control by a second user-

defined probability distribution. The third probability distribution controls the amount of different

types of mutation applied to individual detectors. These types of mutations include the addition/

deletion of nodes in the networks, variations to the parameters associated with network nodes,

joining networks under the control of a newly selected operator.

To begin the learning experiment, a population of pattern recognition systems is gener-

ated. Each system is initialized with a small set of randomly generated detectors consisting of a

transform containing a few operators and a perceptron cap. The accuracy of each detector is eval-

uated by training a single layer of perceptrons to classify the training data set.

The evolutionary cycle begins by sampling a PDF that defines the probability of each type

of variation. For these experiments, the probabilities were determined experimentally. The first

decision is to select the basic type of variation: mutation or recombination. If mutation is selected,

a single parental detector set is selected at random from the population. A copy of the parental

detector set is formed and a PDF is sampled to determine the type of mutation to apply. Mutations

consist of adding randomly generated detectors, deleting detectors, or varying the parameters and

structure of existing detectors. A probability distribution is sampled to select the type of mutation

to apply to each node in the network. The types of mutations include substitution of one operator

or structuring element with another or a small variation in the parameters associated with the
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operator. When parameters are mutated, an EP-like process is used to constrain the amount of

variation introduced to promote gradual change in the offspring. 

If the initial choice for the type of variation is recombination, two parental detector sets

are selected at random from the population. The detectors are then recombined using a uniform

crossover to form a pair of offspring detector sets as shown in Figure 14. This process is similar to

a standard GA operation except that entire detectors are exchanged. As detectors are selected for

placement in the offspring, they are subjected to a GP process that involves recombination of the

their transform networks. This involves pruning a randomly selected subtree from each pair of

corresponding transformations and grafting the subtrees back into the opposing transformation.

The probability of each type of recombination is determined using a user-defined PDF. 

After the offspring detector set is formed, a portion of the training data set is processed.

This produces a set of transformed signals. Perceptron caps are generated to reduce the trans-

formed signals to scalar outputs. One cap is trained for each class in the training data set. The goal

is to adjust the perceptron weights to output a +1 for data samples from the selected class and -1

for samples from the remaining classes. If the training set contains K classes, then K perceptrons

are trained for each transform. The outputs of these caps serve as the primitive features for the

evolving recognition system. The capping process is repeated for each transform in the offspring

resulting in the formation of a feature vector. The final step in forming a recognition system is to

train a second layer of perceptrons to classify each data sample. One perceptron is assigned to

each class in the training data. Each perceptron re-weights the feature vectors in an attempt to

maximize its output for its designated class. A second subset of training data is then classified and

the recognition accuracy is used to define the fitness of the newly formed offspring recognition

system. 

A population of size n is doubled during reproduction to size 2n and then reduced to n

individuals using stochastic tournament selection. The value of n in our experiments is usually

very small due to the high computational costs associated with evaluating complete pattern recog-

nition systems. The small population size, coupled with the use of a selection technique that picks

survivors from the combined set of parents and offspring led to the choice of a relatively small

reproduction factor of 2 (n -> 2n) to alleviate problems with premature convergence. In addition,
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the size of the tournament is scaled by the average fitness of the parental population. At the begin-

ning of the evolutionary process when fitness is low, the tournaments are restricted to a few indi-
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viduals, but as the average fitness increases the size of the tournament grows and the selective

pressure increases proportionately. After the survivors are selected, the evolutionary cycle begins

again. This process continues for a user-specified number of generations or until the population

converges to a set of individuals with perfect training accuracy.

4.1.3  Experimental Results

To demonstrate how HELPR generates pattern recognition systems, the results of a target

recognition task in HRR radar are presented. Specifically, the problem is to classify a set of air-

borne targets from their radar signatures. For this experiment, a database containing 6,426 sample

radar signatures of airborne targets was processed. Each radar signature is one view of a target at

a specific azimuth and elevation. The selected data set contains six targets at azimuths that range

from -25° to +25° and elevations that range from -20° to 0° in increments of 1°. Thus, there are

1,071 (51*21=1071) samples of each target in the data set. Sample signatures are displayed in

Figure 15. These signatures correspond to six different types of aircraft (columns) and they are

shown at pose angles that vary by 1° increments in azimuth (rows). Each signature consists of 128

range bins containing values in the interval [-128,+128]. The signals are shifted so that bin 63

contains the maximum value. Looking down the column of data it is easy to see there are charac-

teristic peaks and valleys in each target that persist through a few degrees of change in azimuth,

but then disappear rapidly. Also note the similarity in the signatures between targets, which makes

the classification task quite difficult. The value in each range bin is directly proportional to

amount of energy received in a small unique time window. Typically this energy is reflected from

surface elements within a limited range of distances from the radar receiver, however, this inter-

pretation is complicated by multibounces of the reflected radar energy. Thus, the time distribution

of the reflected energy is sensitive to small changes in the target's pose.

The signatures were divided into a training set containing 25% of the targets at randomly

selected pose angles (6 targets * 267 poses = 1,602 samples) and the 75% of the data was placed

in a test/validation set (6 targets * 804 poses = 4,824 samples). The training set is further divided

into primary and secondary training set each containing approximately half of the training poses.

The purpose of the primary training set is to train the perceptron classifier, while the secondary

training set is used to assess the classification accuracy of the evolved recognition systems. It is
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the accuracy on the secondary training set that serves as the fitness measure. Prior to evaluating

the test set, the two training sets are recombined and used to adjust the weights of the perceptron

caps and classifier. This allows the HELPR system to take full advantage of all of the training data

in formulating the final classification system.

The experiment consists of creating an initial population of ten recognition systems. Each

recognition system contains two detectors constructed with one to three randomly selected opera-

tors. The population was then allowed to evolve for 300 generations and summary statistics were

gathered every tenth cycle. This experiment was repeated ten times. For each replicate, the data

set was re-sampled to obtain a different 25% of the target poses for training. The recognition sys-

tem achieving the highest accuracy on the training data in the final evolutionary cycle was

selected as the final product of the HELPR system. 

T0 T1 T2 T3 T4 T5

Pose 1

Pose 2

Pose 3

Pose 4

Pose 5

Pose 6

Figure 15. Sample HRR Signatures
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The average accuracy of the ten best recognition systems on the combined training set

(full 25% of the training data) and test set is displayed in Figure 16 by generation. The typical

training score begins around 85% accuracy. This relatively favorable beginning is the result of the

perceptron classifier. When the raw signals were processed using just a network of perceptrons,

accuracies were typically around 85% on the training data (see Table 2 which is discussed later).

The shape of the learning curve suggests that bulk of the improvements occurred during the first

50 cycles. Most of this improvement can be attributed to an increase in the number of feature

detectors in the best recognition systems as shown in Figure 17. After 50 cycles, the number of

detectors leveled off at around 17, but performance continued to rise gradually for the remainder

of the experiment. This can be attributed to refinement of the structure of the individual features

that occurred later in the evolutionary process.

To determine whether the HELPR system was actually generating good recognition sys-

tems, a baseline performance was established using three techniques to classify the data. The sim-

plest technique tested was a classifier consisting of a single-layer network of linear perceptrons.

One perceptron was trained to discriminate each target class from the remaining classes. The sec-

ond technique involved the use of a nearest neighbor classifier. For this technique, each of the sig-
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natures in the training set was used to define a prototype or cluster center for the classifier. The

radius of attraction of each prototype was defined as the distance from the cluster center to a point

half way between the farthest target correctly classified before reaching the closest misclassified

target. Using this procedure, each prototype responds correctly to as many targets in the training

data set as possible without producing any errors. The third technique evaluated was a radial basis

network, which was constructed using a specific number of radial basis functions. Half of the

basis functions were constructed by selecting random signals from the training data to serve as

seeds for the cluster centers defining the positions of the basis functions. The remaining cluster

centers were selected throughout the search space determined by the range of data in the training

signatures. A Hardy multi-quadratic function was used to control the extent of the basis functions. 

The network of perceptrons used in the first baseline technique forms a linear classifier. If

the data are linearly separable, a single layer of perceptron will accurately classify the data. The

nearest-neighbor classifier used in the second baseline technique defines a nonlinear classifier

with the cluster centers serving as features. In the final baseline technique, the radial basis net-

work is also a nonlinear classifier, which is a cross between a nearest neighbor classifier and a sin-

gle layer network of perceptrons. The basis functions are essentially equivalent to the nearest
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neighbor classifiers' cluster centers with a Gaussian-like envelope surrounding the center that

defines a weight for the strength of attraction to each target. The outputs of the cluster centers are

aggregated using a single layer of perceptrons.

Each of the baseline techniques was applied to exactly the same data sets that were pro-

cessed using HEPLR. This produced ten scores for each technique. The summary statistics for the

baseline techniques and the HELPR generated recognition systems are shown in Figure 18 and

Table 2. The nearest-neighbor classifier achieved the best training accuracy. This is not surprising
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since every training sample was a prototype in a nearest-neighbor classifier. Ignoring this anom-

aly, all the techniques produced reasonable average training scores. The HELPR generated system

produces the highest average score of 97.2% accuracy. The accuracy on the independent test set is

more important. All the techniques show a drop off in performance between the training and test

sets but HELPR's recognition system achieves slightly better accuracy than any of the baseline

techniques. HELPR's nearest competitor is a radial basis network using 256 basis functions. The

difference in accuracy between the HELPR's recognition system and the radial basis network is

less than 0.5%, which is not statistically significant. What is significant is that the HELPR's rec-

ognition system uses 17 feature detectors on average while the radial basis network uses 256 fea-

tures (basis functions). Although the basis functions are simpler than the features generated by

HELPR, the basis functions must be stored while HELPR's features are computed on the fly.

Finding systems that use a small number of features to solve the problem is important from an

operational point of view. These experiments involve recognition of aircraft from a head-on pose

( 25 ). Assuming features are not reusable for different poses, a recognition system that accurately

classifies targets in a full 360 viewing volume would require an order of magnitude more features.

In addition, as the number of target classes increase or the dimensionality of the problem

increases (1D->2D->3D), it is very likely that still more features will be required to maintain high

Table 2: Summary Statistics

Training Set Test Set  

Technique Avg Std Min Max Avg Std Min Max 

 Nearest Neighbor 1.0000 0.0000 1.0000 1.0000 0.9389 0.0029 0.9366 0.9453 

 Perceptron 0.8629 0.0061 0.8496 0.8708 0.8118 0.0072 0.8010 0.8246 

 Radial Basis 32 0.8466 0.0184 0.8177 0.8727 0.8378 0.0071 0.8286 0.8487 

 Radial Basis 64 0.9092 0.0136 0.8814 0.9295 0.8945 0.0084 0.8835 0.9080 

 Radial Basis 128 0.9405 0.0077 0.9214 0.9488 0.9233 0.0059 0.9154 0.9316 

 Radial Basis 256 0.9604 0.0052 0.9538 0.9694 0.9419 0.0045 0.9335 0.9478 

 HELPR 0.9721 0.0122 0.9457 0.9825 0.9462 0.0124 0.9202 0.9608 
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recognition rates. Consequently, systems like HELPR that are capable of synthesizing accurate

recognition systems using a small set of carefully crafted features have an advantage over systems

that produce very large sets of simple features. 

The learning curve showing the accuracy of the best recognition system in the population

for one replicate of the experiment is shown in Figure 19. This run was allowed to continue to

evolve for an additional 200 learning cycles beyond the original 300 cycles used to generate the

results reported in Table 3. For every cycle, the accuracy of the recognition system with the high-

est score on training set 2 was recorded. A small jump in performance occurred around cycle #375

suggesting that HELPR had not converged to a final solution. If the runs were allowed to continue

beyond 300 cycles, additional gains in performance could have been achieved. At the end of 300

cycles, the HELPR recognition system declared a label for 4702 out of 4824 targets (declaration

rate of 97.47%) and classified 4603 targets correctly (raw accuracy of 95.42% with accuracy on

declared targets of 97.90%). After 200 additional cycles, this score changed to 4701 targets

declared with 4633 classified correctly producing a raw test accuracy of 96.04% and an accuracy

of 98.55% on declared targets.

Learning Curve For One Experiment
(Best Recognition System's Accuracy)

0.80

0.85

0.90

0.95

1.00

0 10 20 30 40 50

Generation (x10-1)

A
cc

ur
ac

y

Training Set 1
Training Set 2
Test Set

Figure 19. Learning Curves for One Replicate
39



Figure 19 also shows how the two-level training set was used to guide the evolutionary

learning process. Training set 1 was used to adjust the weights for the transform network caps

while training set 2 was used to score the evolving recognition systems. Notice the accuracy

achieved on training set 2 is a good predictor of a recognition system's performance on the inde-

pendent test set. This is not as obvious when the two training sets are combined (raw training

score) and used to adjust the transform caps prior to processing the validation set. The accuracy

on the combined training sets tends to overestimate test set performance by a few percent. In

Table 2, the combined training and test set scores are reported for the best recognition system and

compared to the performances achieved using the three baseline techniques. HELPR's recognition

system achieves the best raw test set accuracy (i.e., ratio of targets classified correctly to total tar-

gets) of 96.04% among all the techniques. It also yields 98.55% classification accuracy on

declared targets suggesting that the evolved recognition systems correctly labeled targets with a

high level of confidence, which is very important in military applications.

In most pattern recognition problems, it is difficult to determine the relationship among

the data samples within a given class. The HRR data set presents a somewhat unique opportunity

to relate recognition errors to user-defined labels. The grid in Figure 20 shows the section of the

Table 3: Accuracy of Best Solution

T ech n iq u e  R a w  
T ra in in g  
A ccu ra cy  

R a w  T est 
A ccu ra cy  

C o rre ct 
T est 

D ec la r ed  
T est 

C o rre ct 
O v er  

D ec la r ed  
H E L P R  0 .9 8 2 5  0 .9 6 0 4  4 6 3 3  4 7 0 1  0 .9 8 5 5  

N ea res t N e ig h b o r 1 .0 0 0 0  0 .9 3 6 6  4 5 3 0  4 7 2 3  0 .9 5 9 1  

P erc ep tro n  0 .8 6 0 0  0 .8 1 4 7  3 9 3 0  4 2 2 4  0 .9 3 0 3  

R a d ia l B a sis-3 2  0 .8 1 7 7  0 .8 2 8 6 6  3 9 9 7  4 2 9 4  0 .9 3 0 8  

R a d ia l B a sis-6 4  0 .8 8 1 4  0 .8 8 3 5  4 2 6 2  4 4 8 5  0 .9 5 0 2  

R a d ia l B a sis-1 2 8  0 .9 2 1 3  0 .9 2 2 5  4 4 5 0  4 5 9 1  0 .9 6 9 2  

R a d ia l B a sis-2 5 6  0 .9 5 4 4  0 .9 4 1 4  4 5 6 9  4 6 7 2  0 .9 7 7 9  
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view window that defines the distribution of target pose angles used in these experiments. The

azimuth range from -25 to +25 and elevations range from -20 to 0 producing 1071 poses. The

small squares represent the randomly selected poses used to define the training data. The large

squares mark poses where the evolve recognition system misclassified one of the six targets. A

large square surrounding a small square is a training error while a large open square represents

test set error. An X placed over a large square indicates two targets were misclassified at the

marked location and an asterisk indicates three errors. Note there is only one asterisk in this grid

at elevation -16 and azimuth of -10. To interpret these results, visualize staring head-on at the

nose of an aircraft. This corresponds to a pose angle of 0 azimuth and 0 elevation. As the azimuth

increases or deceases, more of the side of aircraft becomes visible to the radar sensor. As the ele-

Figure 20. Errors By Pose
41



vation changes, more of the surface of the wings becomes visible. There is a small pocket of

errors that occurs near 0 azimuth and 0 elevation because this pose provides limited information

to discriminate among certain aircraft. As the pose angle begins to increase or decrease the errors

diminish. As the posed angle becomes very large, the errors increase again. Also note that there is

symmetry to the distribution of errors with respect to poses at positive and negative azimuths,

which is expected given the bilateral symmetry typically seen in aircraft. 

In Figure 21, the distribution of errors is attributed to specific classes of targets. The

majority of errors occur in classes 1 and 3. In many instances, these two classes have very similar

signatures. Compare the signatures in the columns labeled T1 and T3 of Figure 15. The distribu-

tion and magnitude of peaks in signatures of targets 1 and 3 at specific pose angles tends to be

Figure 21. Errors By Pose and Target Class
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more similar than signatures in classes 0, 2, 4, and 5. This suggests that in future experiments an

approach to increase overall recognition accuracy will be to remove the signatures of non-inter-

fering classes from the training data, evolve features that separate the interfering classes and then

incorporate these features back into an evolutionary process that synthesizes feature sets for the

full data set.

The transforms that evolved during this specific run of the experiment are shown in figure

22. The complexity of the transforms is quite diverse. The simplest transform, T10, consists of an

identity operator that simply passes the raw signal through to the capping processes. This amounts

to incorporating a set of linear perceptron nodes into the solution. The baseline experiment dem-

onstrates that a single layer of perceptrons applied to the raw inputs produces 81.47% accuracy on

the test data. The remaining transforms work to further increase accuracy to the level of 96.04%

on the test set. The effect of the transforms on a few sample HRR signatures is shown in Figure

23. The columns corresponds to six targets at the same pose angle (elevation -3, azimuth -7). The

rows show the effect of applying the transforms given in Figure 22 to each target. The simplest

morphological transform is T3, which closes the signals with a ball-shaped structuring element of

size 2. This fills gaps between peaks that are smaller than the diameter of the ball. This is demon-

strated clearly in the plot of the class 4 (C4) signal for transform T3. The two highest peaks that

are close together are merged into one peak. At the same time, the three highest peaks in C1 that

are farther apart than the diameter of the ball remain relatively unchanged. Notice how each trans-

formation alters the input in some unique fashion. This amounts to restructuring the information

in the original signal so that the caps then readily locate regions of the signals that discriminate

among the targets.

Although the transforms shown in figure 22 appear to be very complex expressions, many

of the sequences incorporate common terms. For example, transforms T0, T4, T7, T11, T14, and

T17 all have the common term: Cl I Ball2. This term can be factored out, computed once, and

then used in all the expressions. There are also larger terms such as (BaD (BaC I Ball2,8) Ball6,8)

that appear in several terms ((T0, T11, and T15) that can be factored. In addition, there are redun-

dant terms such as (Close (Close X Ball6) Ball6) that can be reduced to (Close X Ball6). Although

these redundant terms can be removed during the evolutionary process, the performance of the

system is degraded if they are removed too early in the evolutionary process. Such redundant
43



T0: (Di (Cl (* (BaC I Ball0,4) (BaD (/ I (BaD (BaC I Ball2,8) Ball6,8) >15) Ball6,8) >15) Cone0.50) 
Cone2.00) 

T1: (BaC (Op (+ (Di I Cone2.00) (Er (BaD (BaD I Ball6,8) Ball6,8) Cone0.58) >50) Cone2.05) Ball0,4) 

T2: (Er (+ (BaD (BaD I Bar1.00,6) Ball6,8) (BaC I Cone1.01,5) <58) Cone0.58) 

T3: (Cl I Ball2) 

T4: (Er (+ I (Er (BaD (Cl (* (BaC I Ball0,4) (BaD (BaD (BaE I Cone2.00,7) Ball6,8) Ball6,8) >15) 
Cone0.50) Ball6,8) Cone0.58) >50) Cone1.00) 

T5: (BaC (Cl I Ball2) Ball0,4) 

T6: (Di (Cl (Er I Cone0.58) Cone0.52) Cone2.00) 

T7: (BaC (+ (+ (BaC I Ball0,4) (BaC I Ball0,4) >50) (BaC (Op (+ (Di I Cone2.00) (Er (+ (Di I Cone2.00) 
(Er (BaD (BaD I Ball6,8) Ball6,8) Cone0.58) >50) Cone0.58) >50) Cone2.05) Ball0,4) >22) Ball0,4) 

T8: (* I (BaD (BaC (+ (Di I Cone2.00) (Er (+ (BaC (BaD (BaD I Bar1.00,6) Ball6,8) Cone1.01,5) (BaD 
(BaC I Ball2,8) Ball6,8) >50) Cone0.58) >50) Ball2,8) Ball6,8) >15) 

T9: (* I (/ I (BaD I Ball7,8) >15) >31) 

T10: I 

T11: (Cl (+ (BaC I Ball0,4) (Er (BaD (+ (+ (/ I (BaD (BaC I Ball2,8) Ball6,8) >15) I >50) (Op (/ I (BaD (BaC 
(BaC I Cone1.01,5) Ball2,8) Ball6,8) >15) Cone1.05) >22) Cone1.06,8) Cone0.58) >50) Ball5) 

T12: (- (+ (BaC I Ball2,8) (Er I Cone0.58) >50) (BaD (BaC (Cl I Ball2) Ball0,4) Ball6,8) <17) 

T13: (BaE I Cone2.00,7) 

T14: (+ (Op (+ (BaC I Ball0,4) (BaD I Ball6,8) >50) Ball8) (Cl (BaC (Op (+ (Di I Cone2.00) (Er (BaD (BaD 
I Ball6,8) Ball6,8) Cone0.58) >50) Cone2.05) Ball0,4) Ball 7) >48) 

T15: (+ (/ I (BaD (BaC I Ball2,8) Ball6,8) >15) (Di (Di (Cl I Cone0.52) Ball0) Cone2.00) >50) 

T16: (Op (Di (- I (+ (BaC (BaC I Cone1.01,5) Ball0,4) (+ (BaC I Ball0,4) (BaD (BaC (Cl I Ball2) Ball0,1) 
Ball7,8) >50) >50) >9) Cone2.0 2) Bar1.00) 

T17: (Cl (Er (Di (Cl (BaD (- I (+ (BaC I Ball0,4) I >50) >9) Bar1.00,6) Cone0.52) Cone2.00) Ball1) 
Cone2.04) 

T18: (Cl (Di I Ball4) Cone0.52) 

Figure 22. Sample Evolved Transforms
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terms appear to provide a scratchpad for evolutionary experimentation in a fashion similar to

introns and exons in biota. When the evolutionary process terminates, common terms can be fac-

tored out easily and redundant terms removed to simplify the transforms and produce a more

computationally efficient recognition system.

Figure 22. Sample Transformed HRR Signals
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In figure 23, the final response of the perceptron classifier is shown. The left column of

plots illustrates the response of the resulting recognition system to the training signal and the right

column of plots represents the response to the test images. Notice the scales on the x-axis of the

two columns of plot are different. The rows correspond to the individual perceptron discriminant

Figure 23. Sample Response Vectors
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functions. Perceptron Pi is trained to produce a positive value for signals in class Ci and a nega-

tive response for signal from the remaining classes. A horizontal dotted line is included in each

plot to help the reader locate the zero value. The vertical dotted lines mark the separations

between classes. The responses demonstrate that the capped transformed signals produce rela-

tively consistent responses across the each class. There is clearly more variation in the responses

to the test signals, but overall the amount of variation between the training and test sets is consis-

tent. The interference between classes 1 and 3 is obvious. There are also unusual isolated

responses that tend to be off the scale of the plots. The spike among the test signals in class three

is an example of this behavior. This is not a failure in the morphological operation. Analysis of the

input signals revealed that there are few signals that appear to be highly distorted. This is due to a

glint effect that occurs when the radar aligns with some surface of the target and energy is

reflected back directly into the sensor. These signals have no discernible structure and appear to

be random noise.

4.1.4  Discussion of HRR Results

The HELPR system synthesizes pattern recognition systems using a minimum amount of

user interaction. The recognition systems that evolve use fewer features than systems formed

using conventional techniques, yet achieve comparable or superior recognition accuracy. In head-

to-head comparisons between HELPR-generated recognition systems, perceptron networks, near-

est-neighbor classifiers, and radial basis networks, HELPR's best recognition system had a higher

overall recognition rate in the majority of replicates of the experiments and consistently produced

better classification accuracy for declared targets. 

HELPR is designed to evolve complete recognition systems using raw data as opposed to

preprocessed sets of features. As a result, the system uses a multifaceted representation to evolve

several layers of structure to form a recognition system. The first layer transforms signals using a

combination of arithmetic and morphology operators to reorganize the dataflow to simplify the

extraction of discriminating features. The second phase then extracts numeric feature values. The

system must select both the number and type of features to pass to the final stage of the system for

classification. The final stage forms a single layer of linear discriminant functions to perform the

classification. 
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Although the evolved features are attached to linear discriminant functions for classifica-

tion, the features are not independent. One of the interesting aspects of the HELPR system is that

each feature can participate in the classification of several targets. This is an important issue when

the number of classes is large because the complexity of the system will not grow in direct pro-

portion to the number of target classes. For example, one feature may be sensitive to a specific air-

craft wing profile. If several aircraft share this type of wing, the feature can contribute to

separating targets with similar characteristics from those without the characteristic. Analysis of

the evolved features reveals that there are many shared sub-expressions within the terminal fea-

tures supporting the claim that cooperating features emerge through the evolutionary process. In

real applications, shared sub-expressions can be computed once and then used by all the features

detectors that incorporate those sub-expressions. This will increase the efficiency of the delivery

recognition systems.

HELPR begins with a few random generated transforms and features and continues to

elaborate on the existing features while adding additional features to improve classification accu-

racy. Although there are a few intermediate performance measures used to eliminate obvious non-

viable features, the overall process is driven by terminal recognition accuracy eliminating the

problems associated with using intermediate performances to develop solutions to complex non-

linear problems.

One of the unique aspects of the HELPR system is the use of morphological operators in

the first stage of the system. By simply changing the dimension of structuring elements morpho-

logical operators are capable of operating on 1-D signals, 2-D images, and 3-D solid models. In

general, morphological operators can be extended to operate on data in any dimension. Conse-

quently, the HELPR system scales readily to tasks in a variety of problem domains. Various

aspects of HELPR have been applied to problems involving 2-D data including optical character

recognition, industrial inspection, and medical image analysis.

The next stage in the development of the HELPR system will explore the use of alterna-

tive capping mechanisms to perform feature extraction. The capping used in this experiment is

based on a perceptron that weights every component of a transformed signal. This is only practi-

cal if the transformed signal is relatively small. Initial experiments using Gaussian probes to
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locate regions of interest in the transformed signal or image appear promising. We have also

developed a technique similar to the method described for extracting information from raw data

that can extract complex features from a large set of pre-existing features. Combining the mecha-

nisms described in this paper for synthesizing transform with a more general capping mechanism

and a top-level system for extracting complex features will form a useful approach for automated

design of the next generation of pattern recognition systems. 

4.2  MSTAR Application

The HELPR system was also used to synthesize recognition systems for SAR data taken

from the MSTAR data set. The representation used for HELPR was modified to handle images.

This required changes to the preprocessing module to allow the use of 2D morphology and

changes to the capping mechanism to reduce 2D responses to scalar values. In addition, a new

performance measure was introduced that proved valuable for both classifying targets and pre-

dicting their pose.

4.2.1  Representation

The representation of HELPR shown in Figure 11 was modified. First the preprocessing

module that used 1D morphology for HRR data was replaced with a module that used 2D mor-

phology. Second, the Perceptron caps were replaced by a mechanism that used 2-dimensional ker-

nels. Finally, the classifier was replaced with a KNN classifier. The HELPR principles are

maintained in this modified architecture. Each recognition system is composed of a feature

extraction module and a classification module. The feature extraction module applies a set of fea-

ture detectors to an input signal to form a feature vector. The set of feature detectors is viewed as

a linear chromosome that defines the genotype of an individual recognition system. The classifier

module then assigns a target label to each feature vector. A feature detector is composed of two

components: a transformation network and a capping mechanism. 

4.2.1.1  Transformation Network

As described in section 4.1.1, each transformation network is composed of morphological,

arithmetic, and conditional operations that alter the input image in an attempt to enhance the
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most-discriminating regions of the input while suppressing noise. When a transformation network

processes an m x n input image, the output is an m x n response image. The output of a transform

is capped to reduce the dimensionality of the input to a small set of scalar values. The key to

evolving a robust recognition system is to synthesize transform networks within the feature detec-

tors that facilitate the separation of targets into appropriate classes. 

The morphological operators described in section 4.1.1.1 are altered from 1D to 2D. This

results in the use of 2D structuring elements. This allows HELPR to explore greyscale SAR

images using the same form of processing networks that were used for the HRR signals.

For this work, the full set of operations used in the evolutionary process include: erosion,

dilation, opening, closing, band erosion, band dilation, band opening, band closing, and comple-

ment. In addition, four arithmetic operations were used: addition, subtraction, multiplication, and

division. The structuring elements include various scales of bars, balls, and cones in 2D. 

As in the HRR experiments, the representation of the transform network supports both the

definition of the form of an algebraic expression and the specification of parameters to adapt a

specific expression to the nuances of a training data set. Thus, the task of evolving a transforma-

tion network can be viewed as a pair of concurrent search processes. One search explores an infi-

nite space of algebraic networks to find the general framework of an expression that performs a

coarse-grained transformation of an input signal to an alternative form while the second search

adapts the parameters of the expression to fine tune the behavior of the transformation. 

4.2.1.2  Capping Mechanism

The purpose of a transform cap is to reduce the dimensionality of a structured dataflow to

a few scalar values. In the SAR application, a cap is composed of a rectangular area at a specific

position within the output of the transformed images. These area consists of a center location, a

width, a height, and an operation. The rectangular area is positioned in the transformed image

using the center location of the rectangle and the operation is applied to the pixel within the area

of the rectangle. Several types of operations are available including minimum, maximum, aver-

age, variance, and median. These operator are designed to summarize the pixel values within the
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rectangular area as a single scalar value. The sets of outputs from each detector are then used to

form a feature vector that is passed to a KNN classifier. 

4.2.2  Evolutionary Search

The same evolutionary search techniques described in section 4.1.2 are applied to the

modified HELPR architecture. The only significant differences are occur with respect to the evo-

lution of the reduction caps and the definition of the classifier. In this experiment, the caps are

kernels. Each kernel specifies how to combine the pixel values in a selected region of a trans-

formed image to form a scalar value. An evolutionary programming algorithm is used to mutate

the position, size and type of operator used to define each kernel.

A new approach for evolving KNN classifiers was developed as part of the HELPR

project that allows the evolve systems to cope with pose or ordered data. This approach attempts

to form clusters in feature space that support accurate recognition, but also automatically orders

the clusters in feature space based on cluster similarity. This allows the evolved recognition sys-

tems to maintain a level of robust performance under environmental variation as well as estimate

the pose of a target. 

In this new approach, the training images are processed using the set of transformations

and scalar features extracted from the regions of interest defined by the caps. These extracted val-

ues form a real-valued feature vector that describes each training sample. These feature vectors

are then used to parameterize a nearest neighbor classifier. Each training sample defines one pro-

totype in the classifier. A radius of attraction is defined for each prototype that limits the proto-

type’s range of influence. Since all the training samples are used as prototypes, each sample is

attracted by the prototype that was defined by the sample. This presents a problem since there is

no data left to evaluate the ability of the evolving pattern recognition system to generalize to new

data sets. To solve this problem, we developed a new performance measure that rates a recogni-

tion system not based on raw accuracy, but based on how many training samples are attracted by

neighboring prototypes. For example, assume the ith sample is used to define the ith prototype in

the classifier. If sample (i+1) is attracted to prototype i, then we give the prototype a score of 2. If

the (i-1) sample is also attracted to prototype i, we add 2 to the score of the prototype. If samples

(i-2) and (i+2) are also attracted to prototype i, we add one point for each of these samples. Thus,
51



a prototype can receive a score from 0 to 6 points. We then total the points for all samples and

divide by 6 times the number of samples; this produces a fitness score between 0 and 1. A score of

1 means that each prototype attracts the sample that was used to define it and the four samples that

are + or - 6° and 12° away from the prototype in pose space. This suggests that the prototypes and

their supporting features are generalizing well. This new performance measure allows us to use

the maximum amount of training data available to form the classification system and still be able

to measure the quality of the features.

4.2.3  MSTAR Experimental Results

4.2.3.1  Experiment 17-17-5

The HELPR system was used to synthesize a recognition system capable of multi-class

target classification. Experiments were conducted using the publicly available MSTAR data set.

In one series of experiments a recognition system was evolved using training samples spaced

approximately 5° apart drawn from set of targets at a 17° depression angle spanning a full 360°

pose space. The results of ten replicates of the recognition experiment are summarized in Figure

24. The typical probability of correct classification acheived by the evolve recognition systems is

above 96% with a declaration rate of 97%. The gentle slope of the fitness curve shown in Figure

25 suggests that the system is indeed evolving solutions by using building block discovered in

earlier generations. The trajectory of the test accuracy plot shown in Figure 26 closely follows the

fitness curve. This provides evidence that the fitness measure is a reasonable predictor of general-

ization. Figure 27, plots the complexity of the best evolved recognition systems. The individuals

in the initial population of recognition systems are constructed using 3 randomly generated trans-

forms and 5 randomly positioned cap points for each transform. As the population evolves, the

complexity of these recognition systems gradually climbs to an average of 11 transforms with a

total of 63 cap points. Notice the complexity is not a monotonic function. In some generations,

smaller solutions prove to be more effective. 

The trend of the average fitness of the population (Figure 28) is very similar to the behav-

ior of the best solution’ fitness (Figure 25). This suggests that the population is converging to a

stable solution. The population test accuracy is shown in Figure 29.   These results are consistent
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Best Recognition System Test Set Accuracy by Replicate
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Figure 24. Final Accuracy of the Best System By Replicate.
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Figure 25. Average of the Best Recognition Systems’ Fitness Score By Generation
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Best Recognition System Test Set Accuracy (10 replicates)
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Figure 26. Average of the Best Recognition Systems’ Test Accuracy By Generation.
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Figure 27. Average of the Best Recognition Systems’ Complexity By Cycle
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Population Average Fitness (10 replicates)
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Figure 28. Average Population Fitness Across Replicates By Cycle
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Figure 29. Population Average Test Accuracy Across Replicates By Cycle
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with the observation that a recognition system’s training fitness predicts its classification accuracy

on the independent test data. The average number of transforms are displayed in Figure 30.

The details of a single run are presented to help understand the behavior of the evolved

recognition systems. These results correspond to the solution referred to as replicate 4 in Figure

25. This recognition system achieves a raw test set recognition accuracy of 95.44%. It declares a

class label (PDC) for 98.13% of the targets and when it declares a class its probability of a correct

declaration (PCC) is 97.25%. The confusion matrix for this recognition system is shown in Table

4. Notice that there are only a few misclassification and they are distributed fairly evenly among

the 3 classes. The relationship between the errors and the pose of the target are detailed in Figure

Table 4: Confusion Matrix

BMP BTR T72 Other

BMP 148 3 3 7

BTR 2 158 0 1

T72 2 3 154 1
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Figure 30. Number of Transforms Across Replicates By Cycle
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31. Most of the errors occur when the pose of the targets are near 0°, 90°, 180°, or 270° degree.

Surprisingly the largest number of errors occur when the targets are viewed from the side. There

is no obvious explanation for this behavior. 

The details of the transformations and cap locations are shown in Figure 32. There are

nine transforms used in this solution and there are between 3 and 8 caps applied to each transform.

Most of the transforms are very compact consisting of only two morphological operators, but

there are a few bloated expressions which is typical when GP is used to generate solutions. The

output of 4 of the 9 transforms are shown in Figure 33. Each transform (T0, T1, T3, T8) is applied

BMP
BTR
T72

0°
30°

60°

90°

120°

150°
180°

210°

240°

270°

330°

300°

Figure 31. Errors in Replicate 4 By Pose Angle
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T0: ( * ( Er ( Op ( Er ( Op ( Op ( I ) sqr 3 ) sqr 4 ) eVert 0 ) eVert 0 ) rHorz 2 ) ( Bd ( I ) eHorz 1 eHorz 2 ) ) 
T1: ( Cl ( Bo ( I ) eVert 0 eVert 2 ) cross 1 ) 
T2: ( Er ( Be ( I ) eVert 0 eVert 1 ) disk 4 ) 
T3: ( Di ( Cl ( I ) eVert 1 ) eHorz 2 ) 
T4: ( Er ( Er ( Be ( Er ( Er ( Bo ( I ) sqr 2 sqr 4 ) cross 0 ) cross 2 ) sqr 1 sqr 2 ) disk 1 ) cross 2 ) 
T5: ( Op ( Bo ( Cl ( Bo ( I ) sqr 0 sqr 4 ) rHorz 0 ) disk 2 disk 3 ) disk 3 ) 
T6: ( Be ( Be ( Be ( Be ( Be ( I ) cross 1 cross 2 ) eVert 1 eVert 2 ) cross 1 cross 2 ) sqr 3 sqr 4 ) eVert 0 eVert 2 ) 
T7: ( Di ( Di ( Bo ( Bo ( Di ( Bo ( Bo ( Di ( Bo ( I ) rHorz 1 rHorz 2 ) disk 3 ) rVert 0 rVert 1 ) eVert 0 eVert 1 ) rHor

2 ) eHorz 1 eHorz 2 ) cross 1 cross 2 ) disk 1 ) eVert 2 ) 
T8: ( Bo ( I ) eHorz 0 eHorz 1 ) 

cap   0
              0 x=    45 y=    27 sz=    6 type=    0
              1 x=    19 y=    33 sz=    1 type=    0
              2 x=    17 y=    48 sz=    7 type=    0
              3 x=    25 y=    39 sz=    4 type=    0
              4 x=    20 y=    38 sz=    5 type=    0
              5 x=    42 y=    34 sz=    5 type=    0
              6 x=    35 y=    41 sz=    2 type=    0
cap   1
              0 x=    20 y=    46 sz=    5 type=    0
              1 x=    26 y=    33 sz=    6 type=    0
              2 x=    34 y=    34 sz=    4 type=    0
              3 x=    27 y=    46 sz=    1 type=    0
              4 x=    47 y=    42 sz=    1 type=    0
              5 x=    21 y=    46 sz=    3 type=    0
              6 x=    41 y=    29 sz=    3 type=    0
cap   2
              0 x=    39 y=    25 sz=    1 type=    0
              1 x=    38 y=    19 sz=    6 type=    0
              2 x=    19 y=    33 sz=    7 type=    0
              3 x=    30 y=    26 sz=    7 type=    0
              4 x=    31 y=    31 sz=    5 type=    0
              5 x=    43 y=    41 sz=    4 type=    0
cap   3
              0 x=    18 y=    45 sz=    3 type=    0
              1 x=    29 y=    16 sz=    4 type=    0
              2 x=    28 y=    24 sz=    4 type=    0
cap   4
              0 x=    22 y=    19 sz=    5 type=    0
              1 x=    20 y=    18 sz=    4 type=    0

cap   5
              0 x=    45 y=    20 sz=    2 type=    0
              1 x=    38 y=    18 sz=    4 type=    0
              2 x=    48 y=    41 sz=    2 type=    0
              3 x=    44 y=    23 sz=    7 type=    0
              4 x=    17 y=    38 sz=    1 type=    0
              5 x=    16 y=    41 sz=    3 type=    0
cap   6
              0 x=    33 y=    39 sz=    4 type=    0
              1 x=    28 y=    46 sz=    5 type=    0
              2 x=    27 y=    23 sz=    7 type=    0
              3 x=    34 y=    43 sz=    2 type=    0
              4 x=    18 y=    20 sz=    6 type=    0
              5 x=    23 y=    38 sz=    1 type=    0
              6 x=    24 y=    17 sz=    3 type=    0
cap   7
              0 x=    31 y=    48 sz=    7 type=    0
              1 x=    42 y=    34 sz=    3 type=    0
              2 x=    26 y=    43 sz=    4 type=    0
              3 x=    29 y=    31 sz=    1 type=    0
              4 x=    39 y=    40 sz=    5 type=    0
              5 x=    45 y=    16 sz=    3 type=    0
              6 x=    43 y=    17 sz=    1 type=    0
              7 x=    26 y=    32 sz=    3 type=    0
cap   8
              0 x=    29 y=    23 sz=    6 type=    0
              1 x=    24 y=    21 sz=    2 type=    0
              2 x=    31 y=    22 sz=    5 type=    0
              3 x=    17 y=    20 sz=    2 type=    0
              4 x=    39 y=    17 sz=    7 type=    0

Figure 32. Details of Transforms and Caps for Replicate 4.
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to the 3 targets (BMP, BTR,T72) and the effects are displayed by pose angle (rows). Clearly, the

different transforms produce different patterns when applied to the different classes of targets. In

Figure 34, the four caps are superimposed on the sample transforms. In some cases the caps over-

lap regions of high activity (bright areas) in the transformed images and in other cases they

aligned with areas containing low activity (dark areas). This allows the caps to detect patterns of

behavior. Also notice how caps can line up to detect extended area of activity. In some cases caps

even overlap which has the effect of giving more weight to certain regions in the transformed

images. The caps are pose sensitive so they can also be used to predict the pose angle of a target.

In Figure 35, the difference between the predicted and actual pose angle for each target is dis-

played. Remarkably the same features that accurately predict class labels predict pose within +/-

0°

45°

90°

135°

225°

180°

270°

315°

360°

T0 T1 T3 T8 T0 T1 T3 T8 T0 T1 T3 T8
BMP BTR T72

Figure 33. Output from 4 Sample Transforms
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Figure 34. Caps Superimposed on Sample Transforms
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2° degrees of accuracy. The worst errors tend to be +/- 180° where the front and the back of the

target are not distinguished properly.

4.2.3.2  Experiment 17-17-10 and 17-15-5

To test the robustness of the HELPR generated solutions, two additional types of experi-

ments were performed. In the first experiment described in the previous section training data was

taken for 3 targets at a depression angle of 17° for training, 17° for testing and the training sam-

ples were spaced approximately 5° apart. In the 17-17-10 experiment both training and test sam-

ples are taken from targets at a depression angle of 17°, but the training data is spaced every 10°.

In the 17-15-5 experiment training data is drawn from samples at a 17° depression angle while

test data is taken from a data set with a 15° depression angle. The training data are space approxi-

mately 5° apart. 

The accuracy of the 17-17-10 experiment is shown in Figure 36. Here we see a small deg-

radation in the performance of the evolve recognition systems. The test set accuracy drops from

approximately 96% to 90% accuracy when the spacing between training samples goes from 5° to

10°. The best recognition systems’ fitness is very similar to the results obtained in the previous

experiment, but the scores are slightly depressed (see Figure 37) compared to the result from the

17-17-10 experiment. The test accuracy of the best recognition system is also down (see Figure
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Figure 35. Predicted Pose Angle
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Best Recognition System Test Set Accuracy by Replicate
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Figure 36. 17-17-10 Best Recognition System Accuracy
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Figure 37. Average of the Best Recognition Systems’ Fitness Score By Generation
62



38). Figure 39 show a surprising result. The complexity of the evolved systems is lower when the

training data is spaced further apart. This may be a result of the reduced amount of information

available during training. Essentially, the system has less information so it cannot create a highly

customized system so it forms a less complex recognition system that in turn produces less accu-

rate classifications. 

The experiment evolves recognition systems using the training data taken from a data set

sampled at a 17° depression angle and tests the evolve recognition systems using data taken from

a set sampled at a 15° depression angle. These result are summarized in Figures 40, 41, 42 and 43.

The typical test set accuracy for the 17-15-5 experiment is approximately 92%. This is slightly

better than the 17-17-10 result. This is not surprising since the ability to interpolate behavior

between targets with a 5° spacing between training instances should be easier than interpolating

behavior between targets with a 10° spacing between training instances. In some sense the 17-15-

5 experiment is slightly harder than the 17-17-5 experiment because there would be some addi-

tional error in the measurement of the depression angle. The results suggest that the evolved rec-

ognition systems are fairly robust. They can interpolate in a 5° x 5° window of azimuth and
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Figure 38. Average of the Best Recognition Systems’ Test Accuracy By Generation
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Best Recognition System Complexity ( 10 Replicates )
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Figure 39. Average of the Best Recognition Systems’ Complexity By Cycle

Best Recognition System Test Set Accuracy

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Replicate

A
cc

ur
ac

y

Accuracy 0.9216 0.9046 0.9114 0.9012 0.9165 0.9216 0.9012 0.9131 0.9319 0.9199 0.9143
PDC 1.0000 0.9983 1.0000 1.0000 0.9966 0.9983 0.9966 0.9983 0.9983 1.0000 0.9986
PCC 0.9216 0.9061 0.9114 0.9012 0.9197 0.9232 0.9043 0.9147 0.9334 0.9199 0.9156

1 2 3 4 5 6 7 8 9 10 AVE

Figure 40. 17-15-5 Best Recognition System Accuracy
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Figure 41. Average of the Best Recognition Systems’ Fitness Score By Generation
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Figure 42. Average of the Best Recognition Systems’ Test Accuracy By Generation
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elevation with fairly good accuracy. Notice the 17-15-5 experiment shows an increase in the com-

plexity of the evolve recognition systems (see Figure 43). Again this is not surprising given that

the system has the information it needs to develop an accurate recognition system, but it must

solve a slightly harder problem.

4.2.4  Discussion of the SAR Results

The evolved recognition system achieved accuracies above 95% with high declaration

rate. Furthermore the results show that the solution often require less than 10 transformation and 5

caps per transform. This means the system evolves 72 prototypes containing less than 50 (10

transforms * 5 caps ) scalar measurements per target that accurately classify targets at a full range

of poses 0-360 degrees with a variation in elevations of +/- 2.5°. Additional results suggest that

the number of prototypes could be reduced significantly since the amount of variation in the target

is not uniform across the pose space. Although reducing the number of prototypes would also

reduce the accuracy of pose prediction. If classification accuracy is the primary concern, then a
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Figure 43. Average of the Best Recognition Systems’ Complexity By Cycle
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simpler classification system can be formed using sensitivity analysis to remove redundant proto-

types from the evolved target recognition system.

4.3  E3D Application

The HELPR system was also used to evolve pattern recognition systems for the E3D

Challenge data set. The challenge data set is provided in the form of point clouds. These point

clouds were voxelized to form volume images. The front end module of HELPR was again modi-

fied to perform 3D morphological processing and the neural network classifier system was

replaced with a KNN classifier. The tank training problem was used as an experimental testbed.

This problem requires discriminating among two groups composed of 10 different tanks and 26

confusers respectively. The system was trained using 6 tanks at one pose angle. The results dem-

onstrate that by varying the radius of attraction of the KNN classifier, recognition accuracies

approaching 90% can be achieve training the system using only a single pose.

Classification of 3D objects is becoming an increasingly important research area due to

cheap and innovative sensor technology. Shadows, noise, viewing direction, and distance from the

sensor all directly affect the quality and amount of surface information provided by the sensor.

The recognition approach described in this paper converts surface information, a set of (x,y,z)

points, into a discrete 3D binary image. This conversion step processes the surface points using a

fuzzy technique to mitigate the effects of noise and minor distortions. These images are then pro-

cessed by sequences of one or two randomly selected morphological operators. Each of the

sequences’ output is then fed into a simple transducer to obtain a set of scalar feature values. The

feature values are classified using a K nearest neighbor (KNN) classifier that is trained using a

sparse number of training samples. Experiments were conducted using the Air Force Research

Laboratory’s E3D data and experimental protocol. Experimental results for the tank classification

problem using 10 tanks and 26 confusers are presented. The results show the combination of mor-

phological processing and KNN classifier produced consistently good performance under varia-

tions in noise, viewing angle, or distance.
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4.3.1  E3D Overview

How one formulates a problem often influences the results obtained with a designed pat-

tern recognition system. Currently, the Air Force Research Laboratory (AFRL) HELPR (Hybrid

Evolutionary Learning for Pattern Recognition) research effort is using 2D mathematical mor-

phology and evolutionary computing to design pattern recognition systems. The E3D data distrib-

uted by AFRL [2] is a cloud of data points specified by a list of (x, y, z) coordinates. A transition

of the HELPR approach to the E3D data base initiated a decision to use a 3D voxel structure

which is a natural extension of a 2D image pixel array. Each voxel is a square unit of volume

specified by three indices. This paper describes an initial investigation into pattern recognition

and 3D mathematical morphology applied to a standard E3D data and problem set. Examples of

the cloud data are presented along with a discussion of how we transform the cloud data into a

voxel representation. Some information is lost with this quantization of real coordinates. A pro-

cess called fuzzy voxelization addresses this quantization effect. Also presented are preliminary

experimental results with mathematical morphology and the voxel representation. The results

demonstrate the potential of the voxelized representation for future 3D ATR research efforts.

4.3.1.1  Three dimensional Challenge data

LADAR sensors image their environment by emitting a laser beam that hits an object and

returns to the sensor. By measuring the beam’s time of flight, the object’s distance away from the

surface can be determined. By scanning repeatedly in small increments horizontally and verti-

cally, the entire object is sensed in small surface patches and an accurate representation of the sur-

face’s geometry can be obtained. This relatively new type of data offers the possibility of new

target recognition algorithms. Toward this goal, AFRL has established a “Challenge Problem”.

This problem is defined as a series of experiments on a database of 80 military vehicles. The data-

base of targets includes surface information of all vehicles under 5 different viewing angles

(viewing angle = 0°, ±15°, and ±30°; nominal elevation angle = 45°) and 3 different ranges

(100m, 500m, and 1000m). In total, there are 1200 (i.e., 80·5·3) data files. Software in the distri-

bution is provided to create noisy versions of the surfaces. The series of experiments defined in
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the Challenge problem are discussed in section 4.3.4. Figure 44 shows CAD models for 6 targets

and Figure 45 shows examples of point clouds (set of x-y-z coordinates) provided by the sensor.

The leftmost figure in Figure 45 shows the result when the sensor is oriented -30° from head-on

while the second image is generated when the sensor is +30° from head-on. Notice that the point

clouds have shadows created by the surfaces that obscure other parts of the target. For example,

the tank’s barrel causes a shadow that appears as the empty region located at the lower-front por-

tion of the tank. Also, by varying the sensor’s viewpoint, portions of the vehicle’s surface disap-

pear, while others portions become visible. For example, the JSU’s right wheel tracks are visible

at -30° but almost completely obscured at +30°. Even though a portion of the visible surface

remains constant from different vantage points, the differences are still significant and present a

difficult recognition problem. 

Figure 46 illustrates the effects of additive noise. The leftmost image shows a Hummer without

noise and the rightmost image shows the same vehicle with 72mm of noise, where the 72mm rep-

Figure 44. Vehicles from Challenge Data. 

The images are not shown to scale.

Figure 45. JSU 122 point clouds obtained from different viewpoints. 

The left and right figures show the noiseless surface points obtained when viewing the JSU 
122 from -30° and +30°, respectively.
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resents the standard deviation of a Gaussian distribution from which the noise is sampled. Each of

the original points is moved a random amount, forward or backward, along the sensor’s line of

sight. This randomness provides less precise images, as illustrated in the righthand part of Figure

46.

The third operating condition is distance of the sensor from the object. Increasing the sen-

sor’s distance yields fewer points on target, making the density of points inversely proportional to

the sensor’s distance from the vehicle. For example, one typical vehicle in the set imaged at

100m, 500m, and 1000m had 215000, 8000, and 2000 points on target, respectively. The point

density has implications on recognition algorithms as they should function properly with sparse or

dense data.

4.3.2  Morphological Processing

Mathematical morphology [14, 51] is a method of transforming an image according to it

geometric properties. The basic morphological transformations produce results that are based on

criteria that can be interpreted by humans such as shape, size, orientation, texture, etc. Mathemat-

ical morphology is versatile and has been applied to one-dimensional signals, grayscale images,

color images, and graphs. The morphological definitions for binary image are based on crisp

Figure 46. Hummer with and without noise. 

These point clouds show the hummer with 0mm and 72mm of noise, with the sensor ori-
ented at 0° and located 1000m from the vehicle.
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logic, where the most common operation, erosion, is essentially a perfect template match. Exten-

sions such as soft morphology [35] have been developed that are tolerant of noise and distortions

in the image. This section describes the crisp morphological operators that are relevant to this

work; readers who are interested in a more detailed treatment are referred to [51].

4.3.2.1  Voxelizing process

In order to utilize digital image processing techniques, it is convenient to place the set of

real-valued coordinates into a discrete three-dimensional binary grid. This conversion, referred to

as voxelization, is performed by superimposing a large uniform 3D grid over the spatially distrib-

uted points. If one or more points fall within a pixel, that pixel is set to true. One problem with

this process is its dependency on exactly where the grid is positioned. For example a cluster of

points may fall entirely within a single cell, or distributed into two or more cells if the grid is

shifted slightly. To lessen the effects of this anomaly, the voxelization process is made less strin-

gent by sub-dividing each pixel into a 3x3x3 region. Points that fall in one of the border sub-

regions are also credited with residing in one or more neighboring pixels. Figure 47 illustrates this

fuzzy voxelization process in two dimensions. For example, points that fall in the upper-left cor-

ner are considered to also reside in the three other neighboring pixels. The process illustrated in

Figure 49 is easily extended to three dimensions. In this work, the elements of the grid (i.e., the

pixels) represent a 0.4m x 0.4m x 0.4m region.

Figure 47. Voxelization process.
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4.3.2.2  Morphological operations

Erosion is the fundamental operation in mathematical morphology (MM). It is parameter-

ized by a special image called a structuring element (SE), which serves as a geometric probe. SEs

are typically based on standard geometric shapes (e.g., disks, rectangles, and lines in 2D morphol-

ogy). Erosion identifies the pixels in the image where the SE can be placed and still fit entirely

within the image’s “on” pixels. This process is essentially a template match. Eq. 1 defines erosion,

where Is is the image translated spatially by the vector s. Erosion generally shrinks the image and

completely removes particles that are smaller than the SE. Dilation (Eq. 2) is a closely related

operator that enlarges the image, effectively closing small gaps. Dilation can also be viewed as

eroding the background.

Opening and closing (Eqs. 3 and 4) are two composite operators based on erosion and dilation.

Opening is defined as erosion followed by dilation; whereas; closing is the reverse of this process.

Unlike erosion and dilation, which substantially change the size of the image, opening and closing

generally preserve the original image but remove particles (opening) or close up gaps (closing).

Erosion Eq. 4.3-1

Dilation Eq. 4.3-2

Opening Eq. 4.3-3

Closing Eq. 4.3-4

IΘS I s–
s S∈
∩=

I S⊕ Is
s S∈
∪=

I°S IΘS S⊕=

I°S I SΘS⊕=
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Each of the operators discussed above has an additional form called a band operator. A band oper-

ation is defined to be the difference between results produced by applying an operator using a SE

shape at two different scales (Eqs. 5 and 6). These equations use Sa,b to denote a particular SE

shape at sizes a and b (e.g., Cube1,3). The band operators are able to isolate surfaces of a particu-

lar range of sizes and can accentuate size differences.

A single morphological operator can remove irrelevant information and/or highlight salient fea-

tures. When applied with a properly selected SE, the operator can be used as feature extractors for

pattern recognition. Figure 48, for example, shows the result of opening a JSU (tank) and GMC

CCKW 353 (non tank) with a 3.6m x 0.4m SE parallel to the ground and oriented across the width

of the vehicles. This operation removes all surfaces except wide horizontal surfaces. Notice that

this operation retains much of the JSU, while removing most of the GMC CCKW 353. By sum-

ming the number of on pixels in each output image, a scalar feature can be obtained that may help

discriminate tanks from non-tanks. Features such as these, which emphasize inter-class differ-

ences, can be valuable to the classification process.

4.3.2.3  Morphological sequences

As discussed in the previous section, a single morphological operation can serve as a dis-

criminating feature. Our earlier work as shown that additional discriminating capability can be

obtained by allowing multiple operations to be applied sequentially and/or combined using set

operations [48, 60]. By allowing arbitrary combinations, the flexibility of the representation is

increased. The main problem, however, is identifying the useful sequences out of a very large

Band Opening Eq. 4.3-5

Band Closing Eq. 4.3-6

I°Sa b, I°Sa I°Sb–=

I Sa b,• I Sb• I Sa•–=
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number of possibilities. One research focus has been to learn collections of sequences that can be

used for pattern recognition. By representing these sequences as expression trees, genetic pro-

gramming [36] can be used to search for useful expressions. The work described here is the first

step in this direction. Its purpose is to establish whether morphological sequences are as effective

in 3D as observed in 1D and 2D recognition problems.

4.3.3  Classification System

The Challenge problem is a classification problem where the system trains on a set of tar-

gets and is expected to be able to identify other instances of targets. In the tank classification

problem, for example, training is done on several types of tanks and is then tested with: the origi-

nal tanks, unseen tanks, and unseen non-tanks (confusers). This type of training uses only targets

and sharply contrasts many forms of learning that train on both positive and negative instances.

The elements of training are:

Set of I training targets

Set of J morphological sequences

Figure 48. Morphological opening.

 The left and right images correspond to opening the JSU 122 and 
GMC CCKW 353 vehicles.

Ii 1 i I≤ ≤

Mj 1 j J≤ ≤
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Figure 49 illustrates the design of the pattern recognition system used for the E3D application. J

random morphological sequences process the input image to produce J transformed images. Each

image is fed into the Σ, which sums the number of on pixels in the transformed image. The set of

scalar values, the feature vector, is fed into a K nearest neighbor (KNN) classifier [16]. The KNN

has a set of stored prototypes obtained using the training data. The unknown feature vector is then

compared to the set of prototypes to find the closest one. If the closest one is closer than a speci-

fied maximum distance, it is declared a target; otherwise, a class is not declared.

The prototypes defined in the KNN classifier are directly obtained using the training data:

Ideal morphological sequences will transform target vehicles in a similar manner (e.g., leave a

large residual), while simultaneously processing non-target vehicles in a complementary manner

Figure 49. Pattern classification system.

pi pi 1, pi 2, … pi J,, , ,〈 〉 M1 Ii( )( ) M2 1( ) Ii( )( ) … MJ Ii( )( )∑, ,∑,∑〈 〉 1 i I≤ ≤( )= =
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(e.g., leave a small residual). By accentuating intra-class similarities and inter-class dissimilari-

ties, a relatively simple classifier can be used to determine if the vehicle is a target or not.

There are a number of ways to measure the distance between feature vectors. In this work,

the distance between a prototype and an unknown is defined as 1-cos(Θ) which is proportional to

the angle formed by the prototype and unknown feature vector. Of course, cos(Θ) can be com-

puted by taking the normalized dot product of the two vectors. Euclidean distance was also exam-

ined as a distance measure but was found to give inconsistent performance. Although the reason

for its poor performance has not been definitively determined, it is conjectured that the un-nor-

malized, widely varying, feature vectors allowed certain features to dominate the distance compu-

tation. The angle-based measure operates more gracefully with un-normalized vectors.

4.3.4  Experimental Results

4.3.4.1  Experimental protocol

The draft of Challenge problem [2] defines 4 main experiments – tank classification, vehi-

cles with missiles/rockets, vehicles with track drives, and vehicles without guns. For each prob-

lem, 45 sub-experiments are defined, where a typical experiment requires training on a set of

targets at viewing angle of 0°, 0mm of noise, and the target positioned 500m away from sensor.

Testing is then performed using targets and confusers under a different condition (e.g., ±15°,

48mm noise, and 1000m distance).

Table 5: Vehicles used for tank classification problem.

Tanks Confusers 
** Used for training Easy Moderate Difficult 
BT5** BRDM-1 BRDM-1 w/ Snapper BMP-1 FlackPanzer 

Gepard 
Challenger 1** BRDM-3 BTR-70 APC M110-A2 Jagdpanzer 
CV 35** Dump truck EMT M2A2 Bradley M109 A2 
JSU 122** Ford GPA Jeep SA9 Gaskin Scorpion 
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Table 5 lists the vehicles used in these experiments. Ten different types of tanks are listed,

with six being used for training. The confusers are listed under three subcategories, easy (18),

moderate (3), and difficult (5), which is AFRL’s subjective rating of how similar they are to the

tanks. Certain vehicles from the distribution disks were omitted from these experiments when it

was observed that they were not positioned in the scene as the vehicles listed in Table 5 were.

Some of these other vehicles were rotated on the ground by ±45° or ±90°. While these rotated ver-

sions could have been used as confusers in these experiments, they were omitted completely.

Other researchers using this data should also be aware that the point cloud for the EMT at the

100m and 0° pose is delivered in a byte order that is reversed relative to the other vehicles (e.g.,

big-endian/little-endian issues). We found only one example of this anomaly in the vehicles

shown in Table 5.

The experiments described in this paper use a subset of the 45 experiments defined in the

Challenge problem. In all experiments, the training data consisted of 6 training tanks at 500m,

0mm noise, and 0° viewing angle. Testing was then performed on all of the vehicles listed in Tab.

1, while varying one of the operating conditions. Table 6 shows the different conditions used for

testing and the corresponding Challenge experiment numbers. In total 8 unique experiments are

considered in this paper. It should be noted, however, many other experiments were conducted by

simultaneously varying noise, distance, and pose; the observations made were substantially

equivalent to those observed in the experiments presented here.

KV 1B BAZ67B GMC CCKW 353 Type 38 
KVII** M977 HEMTT M109 A6 Paladin 
Leclerc** Hummer JTTRAI 
Leopard 1 Leyland Magnum 
M4 A3 W Sherman Mercedes L3000 Army cargo truck 
Panzer III 

Table 5: Vehicles used for tank classification problem.
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This tank classification problem is non-trivial: 1) The amount of training data is very

small, consisting of 6 targets under a single condition (500m distance, 0mm noise, and 0° vantage

point), yet is asked to capture the general concept of tank. 2) There are significant intra-class dif-

ferences among tanks, as can be seen by the considerable structural differences of the three tanks

shown in Figure 3) Testing is performed using noise, distance changes, or viewpoint changes that

yield point clouds that significantly differ from the point clouds seen during training. 

The primary measurements used to evaluate a recognition system are target detection and

false alarm rate. Obviously, it is desirable to have high detection rates and low false alarm rates. It

is usually difficult to state a single pair of accuracies, however, since most systems have one or

more configurable parameters that increase/decrease the declaration rate. For example, the nearest

neighbor classifier used in these experiments has a maximum radius of attraction associated with

each prototype. If the distance of an unknown feature vector to the closest prototype exceeds this

radius, no class is declared. That is, the sample is not close enough to a prototype to be confi-

dently declared a target. Small maximum radii require an unknown to be very similar to one of the

prototypes. As the radii increase, the prototypes capture more and more of feature space.

Although a large radius will allow the declaration of more tanks, it is inevitable that some confus-

ers (i.e., non-tanks) will be called tanks. Thus, the radius can be modulated to aggressively declare

tanks, but with the risk of higher false alarm rates. Figure 50 illustrates the effects of varying the

maximum radius of attraction for a sample classification system. For this system using a maxi-

mum radius of 0, an unknown feature vector must be identical to one of the prototypes in order to

be declared a target. When testing conditions differ from training conditions, as was the case in

Table 6: Test Experiments

Noise Distance Pose Challenge Experiment 
Numbers 

0mm 500m 0°, ±15°, ±30° 2, 5, 8 
0mm 500m, 1000m 0° 2, 3 
0mm, 24mm, 48mm, 72mm 500m 0° 2, 11, 20, 29 
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this figure, a maximum radius of 0 will generally yield no declarations at all. As the maximum

radius increases, the number of declared tanks increases, as does the number of false alarms. By

adjusting the maximum radius, a range of behaviors can be produced. The rightmost plot in Fig-

ure 50 displays this information in plot called a receiver operator characteristic (ROC) curve. This

plot eliminates the KNN maximum radius from consideration and simply displays the tradeoffs

between the probabilities of detection and false alarm. This particular ROC curve shows that a

90% declaration rate can be obtained with a false alarm rate of about 20%. The ideal ROC would

be a step function showing 100% detection rate with 0% false alarms, although such curves are

difficult to attain in practice. 

4.3.4.2  Recognition results

The system defined in Figure 49 was populated with J=50 random morphological

sequences. Each sequence consists of 1 or 2 operators selected randomly from the set of opera-

tions including: opening, closing, band-opening, band-closing. Four types of SEs were used: a

cube and 3 bar shapes. One bar is parallel to x-axis, one is parallel to the y-axis and the third bar is

parallel to the z-axis. The sizes of the SEs ranged from 1.2m to 4.4m, in 0.8m increments. During
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the training phase, the sequences’ only screening criteria was that they had to produce some vari-

ation on the training targets. This simple test removed trivial sequences such as those that elimi-

nate all pixels from all images or fill the images up completely. Such sequences are useless and

therefore are prevented from entering the system. 

All training was performed on the six training targets at 0mm noise, 0° viewing angle, and

500m distance between sensor and vehicle. Thus, six prototypes were used in the KNN. As pre-

scribed in the Challenge problem, all tanks and confusers were then classified by the system at a

particular operating condition. By systematically altering one of the operating parameters it is

possible to analyze the effects that parameter has on the recognition system. For example, the

upper leftmost plot in Figure 51 shows the system’s ROC curves under different viewing angles. 

As expected, the plots show the ROC curve shifted down and to the right slightly with

changes to viewing angle, indicating decreasing performance. This is not surprising since even a

15° change in viewing angle significantly changes the point cloud. The upper rightmost plot in

Figure 51 shows four ROC curves illustrating the effects of noise. The four curves are generally

equivalent. This is expected, as even the largest amount of noise (0.072m) is much less than the

scale of the voxelization (0.4m). As a result, the initial fuzzy voxelization process effectively

eliminates the effects of noise at these levels. The bottom-most plot of Figure 51 shows that

effects of changing the sensor’s distance from the vehicle. Here too, the curves generally exhibit

equivalent behavior. The reason for this is two-fold. First, even at 1000m, the points are relatively

dense on the vehicle’s surface. Second, the voxelization process is relatively unaffected by

increasing/decreasing the density of points, as long as the resolution of points on target is finer

than 0.4m.

In general, the ROC curves indicate mathematical morphology is a promising way to pro-

cess the 3D data. With randomly generated sequences, and simple screening criteria, reasonable

ROC curves are produced. For example, an 80% declaration rate can be obtained with a 25% false

alarm rate. It is expected that considerable improvement can be made with more intelligent meth-
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ods for generating sequences and better techniques for locating cooperative subsets of sequences.

Although not shown, ROC curves were also generated for the specific subclasses of con-

fusers (i.e., easy, moderate, and difficult). Generally there was no observable difference between

the system’s performance on the different subclasses of confusers, suggesting the system’s con-

cept of similarity differs from human judgment.

4.3.5  Learning Experiment

For the learning experiment, results for a data set composed of 5 military targets are gener-

ated. In this experiment, 100 feature detectors (templates) are generated and applied to a training

Figure 51. Effects of varying operating conditions.
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set composed of 8 samples of each target (5 targets x 8 poses). The eight samples represent pose

variation in the range of 0º to 360º with increments of 45º. The test set is composed of the same

targets generated at poses in the range of 0º to 360º in increments of 15º (items duplicated

between the training and test set are removed from the test set). This provides 40 test samples of

each target or a total of 160 test samples. This is a fairly simple experiment that quickly yields

100% accuracy for the training set (40 out of 40 correct) and 99.4% accuracy on the test accuracy

(159 out of 160 correct). 

4.3.5.1  Morphological Feature Extraction 

The feature detector subsystem of HELPR involves three steps: feature extraction, feature

selection, and feature integration. For point cloud data, we are only using the first two steps. Mor-

phological features are extracted using hit-and-miss templates that are used to probe the voxel

surface representation of a point cloud. Templates are stochastically generated. Each template is

composed of a mixture of foreground points that are required to fit into voxels on the surface of

the object that while background points are required to fit into voxels in the image that are turned-

off. There is a strong bias toward the selection of foreground points so the focus is on finding pat-

terns that represent the surface of the object. Background points are useful for identifying areas

that must be open. For example, to recognize whether a dump truck is loaded or not requires a set

of features that are sensitive to the empty area in the back of the truck. Templates are generated

within a rectangular volume that encompasses approximately one-third of a typical target. This

forces features to be somewhat localized to a specific region of the target. As a result individual

features are less sensitive to occlusions and noise. There is some rational for allowing templates

of many different sizes including patterns that extend across the full length of the target. We have

used two approaches for generating templates. A filter approach and a wrapper approach. In the

filter approach, templates are synthesized and evaluated without examining their value relative to

other features. To filter templates, performance measures are defined that evaluate individual fea-

tures. We have developed several measures that determine the effect of a feature on the full set of

targets. These measures typically seek features that fit consistently into several classes of targets

while not fitting into samples of the remaining classes of targets. The problem is complicated
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because targets can rotate and a template may fit into several classes of targets under some range

of rotation and fit into other classes for a different range of rotations. With a wrapper approach,

templates are synthesized to complement existing sets of templates. Thus, a set of template is

gradually extended by searching for additional templates that respond to specific targets that are

not already handled by templates in the set. In this work, we have adopted the filter method since

it is faster to generate templates using filters, and it is a good match with our new feature selection

algorithm.

4.3.5.2  Feature Selection and Classification

We have developed a new evolutionary learning algorithm that performs feature selection

and classification. The morphological feature extraction process rapidly generates a large pool of

candidate features. The problem is to select a subset of these features capable of robust target clas-

sification. Since each feature represents the presence or absence of a specific pattern in the voxel-

ized targets the output of the feature is a simple binary value (0,1). A feature vector is simply a

binary vector indicating the presence of absence of a subset of measures in the pool. Our task is to

find a cooperative subset of features among the pool of available features. We use the genetic

algorithm to search the space of potential features to optimize the choice of features. For this

problem, we decide to use a nearest neighbor classifier (KNN with K=1) to assign a class label to

each data sample. KNN is one of the most commonly used classifier and often produces a near

optimal classification. There are two problems associated with the use of KNN classifiers. First, if

the features have different ranges of values, the features must be weighted otherwise features with

large values will overshadow features with small values. Since all of our features are binary, this

is not a problem we have to worry about. The other problem with KNN is the approach depends

on defining a set of prototypes feature vectors to represent each target class. Given a fixed set of

features, there are several techniques for identifying a good set of prototypes. Since our set varies

during the evolutionary search, we also use a genetic algorithm to search for a good set of proto-

types. The basic idea is to create a population composed of members that contain a bit vector that

selects a subset of features from the M available features and a second bit vector that selects a

subset of prototypes (selected from the training samples) to form a population of KNN classifier.
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The representation of each member of the population would appear as follows:

Pool of features: 1  2  3  4  5  6  7  8  9  10  11 12  … (M-2)   (M-1)   M
Chromosome 1:            1  1  0  0  0  1  1  0  0  0    0   1            0          0        1

Potential prototypes:   1  2  3  4  5  6  7  8  9  10  11 12  … (N-2)  (N-1) N
Chromosome 2:            0  1  1  0  1  0  0  1  0  0    1   1            1         0     0

In this example, the member of the population composed of chromosomes 1 and 2 selects

features 1, 2, 6, 7, 12, …, M and training samples 2, 3, 5, 8, 11, 12, … (N-2) to define the proto-

types for the KNN classifier. This KNN classifier can then be assembled and used to evaluate the

remaining training samples (samples not selected using chromosome 2). The accuracy on these

samples determines the fitness of the features and prototypes. Basic evolutionary processing

involving recombination and mutation is then used to mix member of the population to facilitate

the search for improved classification systems.

4.3.5.3  Experimental Results 

Notice how the genetic search alters the best classification system which begins using 50

features and 23 prototypes and slowly adjusts the classifier to use 20 features and 26 prototypes

(see Figures 52 and 53). This demonstrates how the system works to reduce complexity while

maintaining accuracy. The current learning procedure favors accuracy over the number of features

and prototype. This means the system maximizes accuracy and only uses the other measures for

comparing solutions with the same accuracy. We are currently working to adjust the fitness func-

tion used to drive the evolutionary process to balance the accuracy, number of features, and num-

ber of prototypes. Additional experiments show similar results for other combinations of targets

and larger data set.

4.3.6  Discussion of E3D Results

The approach described here indicates that mathematical morphology is a powerful

method for extracting features from 3D data. Using randomly generating morphological
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sequences, reasonable ROC curves were obtained. These curves showed relatively slow degrada-

tion under changes to viewing angle and indistinguishable differences under varying noise levels

and distance. We expect that these results would hold up under even more extreme noise and vari-

ation in distance between the target and sensor. 

Several immediate avenues to be explored include the relationship between system perfor-

mance, the scale used to voxelize the point cloud, and the length of the morphological sequences.

Increasing the resolution of voxelization (e.g., from 0.4m to 0.2m) would increase the detail of the

vehicles but would also make the system more sensitive to noise. Another negative aspect to

increasing resolution is that the number of pixels in the images increases dramatically. For exam-

ple, doubling the resolution will increase the size of the images by a factor of 8. Finding the

appropriate trade-offs will be important. Also, allowing sequences to have more than 2 operations

will increase the power and flexibility of the morphological processing; however, the number of

such sequences increases exponentially, making the search process very difficult.
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4.4  EOC Application

The final phase of this research explored the effects of extended operating conditions

(EOCs) on the performance of the HELPR architecture using images generated by Wright State

personnel. By definition, extended operating conditions represents all possible types of variations

to the physical structure and characteristics of a target, the myriad of environments where a target

can appear, and the distortion, errors and loss of information due to the behavior of the sensor sys-

tem. It is impossible to study the complete range of operating condition that can occur in an

uncontrolled environment. The HELPR architecture is capable of combining different types of

features (statistical, geometric, etc.) to form a recognition system so we chose to focus our atten-

tion on one type of feature -- color. Color is a very powerful feature that is becoming readily
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accessible via digital cameras and video. It can be used for rapid screening of objects without the

need to perform complex structural analysis of a large scene. It is a particularly a valuable aid for

work in security where the color of objects such as cars or a suspects clothing can facilitate track-

ing and identification. The problem with color as a feature is that color is effected by the source of

illumination and surface reflection. For example, consider the blue car shown in Figure 54. Here

we see the variation in the RGB components of color as a function of the time of day. As the sun
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Figure 54. Sample Color Variation By Time of the Day
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moves through the sky and clouds pass by, the intensity of the color varies. If two cars with simi-

lar colors appear, we will not be able to distinguish one car from the other based on color. 

There are two issues. The color of the source of the illumination can impact our perception

of color. For example a red light shining on a white car produces the same color as a white light

shining on a red car. In addition, reflection alters the perception of color. Again a white car parked

next to a blue car looks different than a white car parked next to another white car.

The color constancy problem involve removing the effects of illumination by finding a

color transformation that can be used to transform an image to a standard color reference. In

essence this allows us to create EOC sensitive feature that adapts its behavior based on the EOC.

To apply these feature, first measurements of the full scene are used to “parameterize” the recog-

nition features that are used in the pattern recognition system.

4.4.1  Parking Lot Color Constancy Problem

The main objective of this investigation is to use evolutionary search techniques to

exploit the neighborhood data to compensate for environmental variations that affect the use of

color in automatic target recognition.  We utilize a set of color images of cars in a parking lot

taken at different times that insure differences in the environmental conditions.  A number of tar-

get cars are tracked and sampled in multiple images. The pixel colors recorded by the digital cam-

era depend on the characteristics of the incident illumination and the surfaces reflecting the

incident light.  Perceptually, we have unknown mental means for compensating for variation in

illumination so object colors appear to be constant.  When using colors as features for target rec-

ognition, there is need to compensate for variations in color measurements.  Needed are computer

algorithms to transform color measurements into a standard reference frame.  Compensating for

these changes is called the color constancy problem in the literature.  Although a number of

approaches to the color constancy problem have been published, this endeavourer is still an active

research topic. See review articles in [6, 7]. 

To appreciate the inherent difficulties in using colors as features, consider a simple equa-
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tion that models the incident and reflected light signals:

Eq. 4.4-1

where 

- three color channel measurements,  c=(R,G,B).

- spectral power distribution of the illuminant, 

- spectral reflectance function of the surface,

- sensor sensitivity functions for three color channels 

Not shown are dependencies on geometric parameters and different reflectance processes.

Simplifying equation 1 still further, let  (delta functions) so that

Eq. 4.4-2

where Ec are the unknown scene illuminants and Sc the surface reflectance parameters.

In order to compare the camera signal with a color reference depending on the invariance of Sc, it

is necessary to account for the variations in Ec.  Obviously, the separation of Cc into two compo-

nents Ec and Sc is an ill defined problem.  For example, a red pixel measurement could result from

white illumination reflecting off a red surface or red illumination reflecting off a white surface.

The various approaches to and explanations for color constancy depend on using additional con-

straints and regularities between illuminants and surface characteristics.  In this paper, we investi-

gate methods for predicting unknown illuminants based on the distribution of color over the entire

scene.   

A simple adaptation model, which was proposed by Johannes von Kries in 1902 [65] to

explain biological adaptation, has been used for most color constancy algorithms.  This model,

which forms the basis of many current approaches, states that the adaptation of the visual system

to different illuminants is done by adjusting the gain coefficients associated with each of the color

channels.  It can be expressed in terms of a diagonal matrix that transforms the measurements

under one illumination into the values that would be measured in another reference illumination,   

)()( ccF λλδλ −=

ccc SEC ⋅=

))()()((],,[ λλλ cccc FSEfBGRC ⋅⋅==
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)(λcE
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Eq. 4.4-3

Utilizing (equation 2), we observe that the diagonal elements are derivable from the

illuminants Ec 

Eq. 4.4-4

In our investigation, we use a two dimensional chromaticity space to reduce the number of param-

eters and to gain invariance with respect to illumination intensity.  We use the following two defi-

nitions of chromaticity space:

Eq. 4.4-5a

Eq. 4.4-5b

where

Eq. 4.4-5c

The two chromaticities are related by the following transformations

Eq. 4.4-6a

Eq. 4.4-6b

Although both chromaticities are independent of the illumination intensity, the -chromaticity

also transforms according to a diagonal matrix 

Eq. 4.4-7
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where

Eq. 4.4-8

Eq. 4.4-9

Note that and that the diagonal matrix elements are independent of the surface reflec-

tance parameters Sc. 

An excellent review of algorithms for estimating the illumination chromaticities rg are

described by Barnard et al.  [6, 7].  Forsyth’s gamut-mapping method [18, 19] and Cardei et al.’s

neural net method [11, 24, 25] are two prominent approaches that utilize the distribution of scene

chromaticities. The distributions of chromaticities are derived by dividing the normalized chro-

maticities space (6.b) into a regular lattice of bins. A bin is set equal to one if at least one pixel

chromaticity falls within its boundary and zero otherwise. We will refer to this distribution as a

binary histogram. Figure 1.a shows a typical parking lot scene, 1.b the distribution of all pixel

chromaticities, and 1.c the corresponding binary histogram for a 50 x 50 lattice. The next section

discusses our use of different HELPR techniques for utilizing neural networks for predicting illu-

minant chromaticity from the distributions of image chromaticities.  

4.4.1.1  Estimating Illuminant Chromaticity For Training Images

In Cardei [11] the grey world algorithm provides a relatively good estimation of the illu-

minant for images with lots of colors.  These estimations are used in a novel training algorithm

called “neural network bootstrapping” because the neural network in turn demonstrates better per-

formance than the grey world algorithm used to train it. 
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Cardei used back-propagation to train a multilayer perceptron [11] with two hidden layers. 

The input to the network was effectively the binary histogram derived from all image chromatici-

ties as described above and the network output the two illuminant chromaticity parameters r and

g. The advantage of using a neural network is that there is no explicit assumption regarding scene

content. The advantage of using the binary histogram as input is invariance to scene geometry

such as surface sizes and orientations. The Von Kries color algorithm utilizes the output to com-

pute the components for the diagonal color correction matrix.

Output
(er, eg) 
Illuminant 

Training Values (er
d, eg

d) 

Binary 
Histogram  

Neural  
Network 
(back prop) 

Difference 
Is Error 
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Evolutionary 
Programming 
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Detectors 
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(Math Morphol.) 

Cardei Boxes Optional Boxes

Chromaticity  
Images  
Of  (r,  g) 

Grey World 
Estimates of 
Illuminants

Target Samples 

Figure 55. Predicting Illuminant Chromaticity.

This chart illustrates the HELPR extension of the neural network approach introduced 
by Cardei et el.  HELPR uses evolutionary programming to generate the training set 
instead of using the gray world algorithm. HELPR techniques are applicable to prepro-
cessing chromaticity images and synthesizing new feature vectors to replace the binary 
histograms as direct inputs to the neural network.
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In this paper, we explore the application of HELPR techniques to generate a training set to

enhance Cardei’s neural network approach for predicting image illuminants.  As illustrated in fig-

ure 55, we present new methods for generating estimates of the training illuminants and for gener-

ating feature vectors for inputs to the neural network instead of a vectorized binary histogram. 

 We explored an alternative to using the grey world algorithm for estimating illuminants

from the real images used in the experiment.  We also made Cardei’s simplifying

assumption that the illuminant chromaticity is constant for each parking lot image.  A number of

vehicle targets were manually identified and sampled across multiple images taken at different

times to insure different environmental conditions.  The two phase procedure was used consisting

of the sampling phase and an evolutionary search for the illuminant chromaticities for each sam-

pled image.   In each image, multiple RGB samples were taken on the roof and hoods of each tar-

get the image. Not all targets appeared in all images.  This data collection was used with an

evolutionary search to generate an optimal estimate of the image illuminants.  

An evolutionary programming algorithm (EPA) is utilized for the evolutionary search

[21].  An EPA utilizes a population of chromosomes which undergo mutations and selection over

many cycles.  The chromosomes are vectors of search parameters which are the illuminants

 for the sampled images.  The EPA is a relatively simple algorithm requiring an appro-

priate performance measure PM to guide the evolutionary search.  We present three different per-

formance measures called all-means, all-pairs, and relative means. Given the image illuminants

defined by a chromosome, a PM represents how effective the correction algorithm relates the

sample chromaticity in different images. 

The vehicle chromaticity samples in each image have a distribution about their centroid.

The color Von Kries correction algorithm can only distort these distributions when transforming

them to a different reference frame.  The ideal set of chromosomes is one that will transform all

vehicle centroids into a common reference frame so that they map into the same point.  Basically

this is the optimal solution that achieves the tightest cluster and provides the most effective cor-

 ( )gr ee
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,  

 ( )gr ee
~~

,  
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rection for a pattern recognition color feature.

One trivial solution achieves a very tight cluster by mapping all samples into the origin

which is avoided in our definitions by the use of chromaticity references to anchor the search pro-

cess. The three different PMs use different methods for commuting reference parameters and

defining average cluster sizes over all vehicles based on the Euclidian distances between samples

and the references.

One needs to take care in the use of normalized and un-normalized chromaticities.  The

general rule is that when using the Von Kries correction algorithm, one uses un-normalized chro-

maticities.  For the neural network I/O it is convenient to use normalized chromaticities with val-

ues between 0 and 1.  Equations 7a and 7b relate the two formats. 

In the following PM definitions, let the red and green target sample chromaticities be

denoted by (r(tjs), g(tjs)) where t , j, and s are indices for the target, image, and sth sample in the

jth image. In addition let sample clusters be specified by:

t = 1, 2, .., L,       L = number of targets,  

j = 1, 2,…, Mt,   Mt = number of images associated with target t,  

s = 1, 2,.., Ntj,    Ntj = cluster size for target t in jth image.

Let the illumination chromaticities for the jth images be denoted by (er
j, eg

j).  The set over all

images make up the EP chromosome.  The diagonal correction elements (tr, tg), which are defined

in terms of (er
i, eg

i), will be denoted by:

.

These elements are used to compare sample chromaticities between different images.  For exam-

ple, to transform the value of (r(tjs), g(tjs)) from image j into the image i we use

ji
e
etijK

e
etKij

j
g

i
g

ij
g

j
r

i
r

ij
r ≠=≡=≡ ,~,
94



the following notation:

.

4.4.1.2  All Means-PM Definition

The following notation is used to define residual errors for image-to-image transformations:

,

where we define a reference chromaticity (red) for target t in ith image by

(similar expression for green component)

Define the cluster error relative to  by :

Rewriting 

where           

,  ,    .

Also, ,  so the combined error which is the Euclidian residual

about the means is defined by 

,

.

The remaining PM definitions have residual error terms with similar formats using pre-computed
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ABC matrices which are functions of only the sampled target chromaticities.

Using the all cluster means as a reference, the ‘all means’ performance measure PM is the

average over all the cluster means defined by 

 ,   

where  .

4.4.1.3  All Pairs-PM Definition

For each target, the set of all pairs of measurements associated with a target are consid-

ered.  The set of image illuminations (er
j, eg

j) are used to transform one member of the pair into

the other member’s image in order to compute the pair’s residual error in the same image. The

notation for this definition begins with:

where .

We may rewrite 
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where           

.

Let

,

where 

.

4.4.1.4  Relative Means – PM Definition

The next definition is similar to the all pairs PM except that it uses only the target centroids to

represent all target samples.

,

where  .

4.4.1.5  Predicting Illuminant Chromaticity Using Neural Networks

After the optimal illuminants are found with the use of EP, they are used to train a multi-

layer perceptron to transform the binary histogram of the image illuminants into the image illumi-
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nants.  The bin size used to define the binary histogram was a major consideration in Cardei’s

thesis [11].  A high resolution histogram with many bins increases the computational load for

training the neural network, whereas too few bins introduce prediction errors.  The bin size was

determined by repeatedly training the neural network. The HELPR approach uses a high resolu-

tion binary histogram to synthesize a feature vector for input to the neural network instead of the

vectorized binary histogram.  Any holes resulting from using small bin sizes may be filled in with

a mathematical morphological operator called a ‘closing operator’. Thus, HELPR improves the

training algorithm by synthesizing a smaller customized feature vector using the highest resolu-

tion histogram.  This aspect of the investigation is characteristic of the use of HELPR in automat-

ically generating pattern recognition systems.

5.0  Summary and Discussion
The goal of the HELPR project was to create techniques and tools for evolving complete

pattern recognition systems. Although there are systems available for forming pattern recognition

system when you are given a set of working features, there are still very few systems available

that extract, synthesize and select features to form complete pattern recognition system. The

results from our experiments have demonstrated that the HELPR architecture is sufficiently flexi-

ble to adapt to different types of ATR related recognition problems. One of the criticisms of

“weak” machine learning techniques is that although they can solve a wide variety of problems,

they often produce results that are not quite as good as those produced by human experts. This old

way of thinking is slowly beginning to give way to a new approach called memetic algorithms

that combines machine learning systems with human expertise to create new tools that have the

advantage that they are applicable to a wide range of problem and can produce solutions as good

or better than human experts. We believe that the HELPR architecture could form the foundation

for a memetic system capable of solving ATR problems faster and more accurately than possible

using pure human expertise.
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