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On-Line Adaptive Estimation and Trajectory Reshaping  

Ajay Verma* 
Knowledge Based Systems, Inc. 

Michael W. Oppenheimer† and David B. Doman‡ 
U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base 

An Adaptive Trajectory Reshaping and Control (ATRC) system is envisioned for 
RLVs to avoid catastrophic failure when subjected to performance restricting 
damages and failures. The ATRC is a response system that continuously reshapes 
and optimizes the reference RLV trajectory, such that, if physically possible, the 
feasibility constraints are satisfied. The focus of this paper is on two important 
features of the ATRC system that allow (a) estimation of a parameter functional 
over the RLV flight envelope to determine feasibility constraints, and (b) real time 
reshaping of the RLV trajectory for feasibility and optimization of end goals. The 
knowledge of the effects of a failure at future flight condition is required to design 
and reshape feasible trajectories. Our approach uses regularization of the ill-posed 
learning problem by using fusion of existing knowledge and geometric structure in 
the functional to reduce the uncertainties of future flight conditions. The paper also 
addresses the difficult problem of real time on-line trajectory generation based on an 
inverse dynamics principle. An acceptable trajectory is a solution of a two-point 
boundary value problem for a non-flat (under-actuated) non-linear differential 
equation of motion. The inverse dynamics approach solves a set of algebraic 
equations, which strictly satisfies the non-linear differential equations of a non-flat 
system. 

I. Introduction 
The large potential for space utilization is not being exploited as it is currently inhibited by the huge 

cost of launching operations. The benefit of advanced space utilization can be greatly increased by making 
space utilization more affordable The Reusable Launch Vehicle (RLV) programs are targeted towards 
affordable space utilization. However, to maintain the economical viability of RLVs, it is important to 
enhance operations safety and reliability by providing the RLV the capability to respond to various 
uncertainties and emerging emergency situations. Responding to an uncertain environment after a 
damage/failure presents many tough technical problems for this class of vehicle. These problems manifest 
in the following challenges that must be overcome: First, to adequately determine and model the dynamic 
characteristics of the vehicle in the altered state after a damage/failure; second, to estimate the new 
constraints and limitation(s) of the vehicle; third, to adopt and reconfigure the command, control and 
guidance of the vehicle to the modified system dynamics; and fourth, to design and plan a new feasible path 
with respect to the end goal maximization. A high percentage of such damage/failure cases leave the 
vehicle in an uncontrolled and uncertain environment with a highly likely probability of ultimately entering 
a state for catastrophic failure. The high cost of loss resulting from catastrophic failures has prompted 
researchers in the direction of developing technologies to assist in minimizing such failures.  
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Damage to a vehicle or a sub-system failure affect the system characteristics. For example, a failure in 
control effectors may reduce the control power and hence, shrink the usable flight envelope where the 
vehicle can be trimmed. The AFRL study1 examines the effect of control failure on trajectory retargeting. 
Although a control surface failure does affect the constraint boundaries, it does not bring the vehicle in the 
realm of uncertainty on the condition that the control surface failure is identified. However, the case is quite 
different when damage results in some change of the surface geometry and hence, unknown alteration of 
aerodynamic coefficients throughout the flight envelope. Observe that a RLV passes through a large range 
of flight conditions in Mach number and altitude. For trajectory retargeting and trajectory feasibility 
determination, it is necessary to re-estimate the aerodynamic coefficients for the entire flight envelope 
through which the remaining reference trajectory is expected to pass. This requirement is difficult because 
the available measurements correspond only to the current flight condition and it is not adequate for 
estimations in downstream flight conditions. 

Figure 1 broadly summarizes the fundamental approach to address the problem of responding to 
undesirable events such as system/sub-system damage or failure resulting in uncertainty in the system 
model and environment. The approach consists of reducing the uncertainty through estimation of the 
system model and active constraints, defining and planning optimal and feasible operations based on the 
latest estimates, and ensuring the execution of the planned operations. The first step is to observe the 
system, and learn and estimate its characteristics. This step normally reduces the uncertainty, however its 
elimination altogether may not be guaranteed. Based on the best available current estimations, the second 
step consists of re-planning or re-targeting the reference flight path. The final step is to execute the new 
plan by tracking the reference flight path as closely as possible. The three steps must be repeated during the 
entirety of the mission to continuously reduce the uncertainty and adapt the flight plans for a realistic and 
feasible objective accordingly.  

Observe, Estimate 
& Predict System

Observe, Estimate 
& Predict System

Re-Assess Goals &
Update Plan of Action
Re-Assess Goals &

Update Plan of Action

Execute PlanExecute Plan

Iterate
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Figure 1. Response in Uncertainty 

In this paper, we first introduce the architecture of an Adaptive Trajectory Reshaping and Control 
(ATRC) system for a general class of RLV systems, which is based on the principles as described in Figure 
1. Next we focus on two specific features of ATRC related to adaptive functional learning and feasible 
reference trajectory reshaping. 

II. Adaptive Trajectory Reshaping and Control (ATRC) System 
The ATRC system enhances RLV capability to avoid catastrophic failure when subjected to 

performance restricting damages and failures. The overall goal of ATRC translates into specific 
requirements for design and development of functionalities related to adaptable and reconfigurable 
command, control, and guidance systems for the RLVs.  

Figure 2 shows the general architecture of the envisioned ATRC system for RLVs. Note that the above 
structure is specific to longitudinal motion of the vehicle; however, it can be easily extended to include 
lateral motion as well. The main components of the envisioned ATRC system requires: 

1. On-line system identification that includes parameter estimation and parameter projection for 
constraint boundary determination.  The constraint boundaries influence the trajectory reshaping of the 
vehicle. 

2. Real time trajectory determination for reshaping the reference trajectory under feasibility constraints.  

3. Adaptive, closed loop control and guidance system for reference trajectory tracking2,3,4,5. 
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Figure 2.  Architecture of ATRC 

III. Aerodynamic Coefficient Function Estimation 
An important goal of the ATRC system is the adaptive reshaping of the RLV trajectory in the presence 

of altered dynamic characteristics of the vehicle when unexpected damage occurs in the various operating 
scenarios. Any damage to a vehicle that has an impact on the external shape of the vehicle, or that creates 
an impediment in normal functioning of the control surfaces, results in alteration of the vehicle’s 
aerodynamic characteristics. Figure 3 and Figure 4 show a few examples of the pitching moment 
coefficient variation in the presence of various damage scenarios. Since the aerodynamic behavior of the 
vehicle is captured in aerodynamic coefficients that are used for the design of vehicle control and trajectory 
planning, it becomes mission critical to adapt the reference trajectory for the altered vehicle dynamics. In 
this section, we first present the functional representation scheme and then concentrate on the estimation of 
the altered aerodynamic coefficients using Tikhonov regularization. 
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Figure 3. Moment Coefficient with AOA for 

Nominal and Various Failure Cases 
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Figure 4. Moment Coefficient with Mach for 

Nominal and Various Failure Cases 

A. Finite Element Function Approximation 
We first formulate the aerodynamic coefficient function with a set of parameters that will be estimated 

on-line. We used a finite element modeling approach so that the approximation function would capture 
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local variations in an efficient manner. Jancaitis, et. al.6 and Junkins7 demonstrate the use of a finite 
element piecewise approximation for mapping geopotential. Verma8 applied the technique to aerodynamic 
coefficients representation. First, the argument space of the function is divided to form a grid with one 
control point at every grid point. At each control point we use a local polynomial function that is 
determined using a weighted, least square method from a given set of nominal data. The scope of each local 
polynomial centered at the control point lies in between the two adjacent grid points (see Figure 5). Notice 
the overlapping of local polynomials, which helps in obtaining a smooth function over the entire range. 
Once local approximations are determined, a smooth global approximation is obtained as a weighted 
combination of the local approximations. The smoothness of the approximation function implies that the 
function, as well as its first derivative, is continuous. Notice that grids are not restricted to be equidistant. 
To capture nonlinearities effectively, more control points should be placed near highly nonlinear regions. 
Figure 5 uses a second order polynomial function for local approximations.  

Figure 6 shows the final approximated function that is composed of the weighted combinations of the 
local function approximations. A highlight of this finite element approximation is that it preserves the local 
function value and its first derivative at its control point. This is achieved by a smooth weighting function 
that smoothly goes from unity to zero, from one control point to another, without contributing to a first 
derivative at both control points. 

B. Learning Process 
A function is a mapping from the independent domain corresponding to an input vector, to a dependent 

range of the observable outputs. For example the mapping ),( αMCC mm =  is a map ℜ→ℜ2 , where 

Mach M  and angle of attack α form the input vector and mC  is the observable output. The goal of 
learning is to discover the mapping between the input domain and its range from a given set of pairs of 
inputs and output measurements. Hence, the learning of the relationship from the given example relations is 
an inverse problem that must be solved. For example, consider the least square method for learning a 
functional relationship f expanded on a finite set of basis functions φ  as 

 ∑
=

=
p

i
ii xcxf

1

)()( φ  (1) 

Let the data set consisting of pairs be given as 
Niyx ii ,1),,( =    

where ix  is the input vector and iy  is the measurement of the observable output. If e is the error vector 
between measurement and estimation, then we define the cost function to be minimized as 
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The coefficients, c, of the functions using the least squares method are found as  

 
( )[ ] 1×

+

×= NNpi
T x eφc

, (4) 
where ( )[ ]+i

T xφ  is the pseudo inverse.  
For any process that requires inversion, we must ensure that the problem is well-posed. A well-posed 

problem satisfies the conditions of existence, uniqueness and continuity. For an ill-posed problem, there is 
always a difficulty of singularity during inversion. Basically, an ill-posed problem is created when the 
given data sets may contain a small or insufficient amount of information about the desired solution. As 
stated by Lanczos9 that “lack of information cannot be remedied by any mathematical trickery.” 

C. Tikhonov Regularization 
For a RLV, the coefficient function learning is a difficult and ill-posed problem because of insufficient 

observable data for the domain of interest. Figure 7 illustrates an example showing the difficulty of an ill-
posed problem. When there are insufficient data points that cover the problem domain for which functional 
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learning is required, it is very difficult to find a stable solution in an iterative scheme. The instability is the 
result of inherent extrapolation in the method. The learning takes place by minimizing the error between the 
function and the given data points. However, as there are no data points in a large range of the domain, 
there is great uncertainty in the functional for that range. The large uncertainty results in higher sensitivity 
and the instability in the iterative learning process. To illustrate the sensitivity and the instability of the 
process typical to an RLV problem, consider two sets of data at two time steps, where the second set 
includes the first set and additional data.  Figure 7 shows the two cases; first, an approximate solution was 
found for a small set of data points using the least squares method. Next, the data set was augmented by 
additional data, and the solution was updated. Notice the variation between two approximations. For a 
RLV, this type of variation is totally unacceptable. When more data was added to span the whole range of 
interest, we achieved a more accurate solution as shown in Figure 8. Notice the difference between the true 
solution and the approximate solution for the ill-posed condition. This highlights the severity or the 
difficulty of the problem being attempted. For an acceptable solution there is a need to introduce 
“regularization” in the learning process.  
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Figure 5:  Local Approximations Centered at 

Control Points 
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Figure 6:  Smooth Functional Approximation 

using Weighted Local Approximations 

Regularization is a method of imposing additional conditions for solving inverse problems with 
optimization methods. When model parameters are not fully constrained by the problem (the inverse 
problem is mathematically ill-posed), regularization limits the variability of the model and guides the 
iterative optimization to the desired solution by adding assumptions about the model power, smoothness, 
predictability, etc. In other words, it constrains the model null space to an a priori chosen pattern. 
Tikhonov10 introduced his regularization technique in 1963 for the stability of the solution of ill-
conditioned differential equations. Similar problems are encountered in the functional learning and hence 
Tikhonov regularization can easily be adopted in this case. We refer to a thorough mathematical theory of 
regularization in works of Tikhonov's school10, 11. 

Introducing regularization in inverse problems allows us to fuse a priori knowledge about the 
coefficient and the current information being received from the sensors and parameter ID for a given flight 
condition. In the standard learning process, Tikhonov regularization is introduced by adding another term 
in the cost function as 

 ( ) ( ) ( )fff cs EEE λ+=  (5) 
where λ  is a regularization parameter, ( )fsE  is a standard error term and ( )fcE  is a Tikhonov 
regularization term given as  

 
2

2
1 Dffc =)(E . (6) 

Here D  is a differential operator acting on the function f. The optimal solution for this problem satisfies 
the optimality condition given as  

 ( ) ( ) ( ) 0=+= hfdhfdhfd cs ,E,E,E λ , (7) 
where  

 
( ) ( )

0=
⎥
⎦

⎤
⎢
⎣

⎡
+=

β

β
β

hf
d
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is defined as a Frechet differential of a function. In essence, the Tikhonov term introduces geometric 
properties in the learning process. In other words, as mentioned earlier, we introduce or fuse prior 
knowledge of the solution in the learning process. This is very reasonable for the problem that we address 
in this paper, as the nature of aerodynamic coefficient functions is generally known. For example, see the 
pitching moment coefficient functional in Figure 3 and Figure 4 that show a similar trend except for one 
severe damage condition. This geometric a priori information about the pitching moment functional can be 
introduced through a Tikhonov term in the learning process facilitating regularization of the problem. Note 
that without regularization, the in-flight coefficient learning for a RLV is an ill-posed problem that suffers 
from near singularity due to insufficiency of data, as there is no way to generate on-line knowledge from 
measurements for the far away flight conditions.  
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Figure 7: Ill-Posed Problem. Instability in 
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Figure 8: Well-Posed Problem. Stable Function 

Approximation 

Observe that the regularization term is added just like constraint terms are added in a general 
optimization problem. When constraint terms are added, λ  is a Lagrange multiplier, which is not known a 
priori, and it is determined as a part of the solution. But in this case, λ  is a regularization parameter, 
whose value is a priori assigned. If λ  is large, then more importance is given to the prior knowledge about 
the functional and less importance is given to the information obtained from the data set. Similarly, if λ  is 
small, then the prior knowledge is weighted less in relation to the data set. Hence, a regularization 
parameter is a balancing term between the information data and a priori knowledge about the functional. 

To demonstrate the concept of functional learning, we simulated the adaptive learning process. In the 
adaptive learning process, the existing estimate of the functional is continuously refined. The 
approximation functional is updated as new information or data points are made available. In the 
simulation, we used a representative RLV model. We considered the case of the bodyflap missing but did 
not assume any prior information about the damage. We only assumed the knowledge of the nominal 
pitching moment coefficient. Here it must be stated that any advance knowledge of the failure will further 
help to improve the accuracy of the learning of approximation solution.   

Figure 9 shows the various stages of learning for the pitch moment coefficient for the RLV. In the 
figure we have a base line curve, which is the nominal pitching moment coefficient for the RLV. We also 
plotted the actual curve after the failure corresponding to the missing bodyflap. The in-flight data that 
becomes available for the coefficient learning is plotted with a ‘+’ sign. Finally, we have the curve for the 
current approximation. Figure 9 shows the progression of the available approximation of the pitch 
coefficient. In the beginning, the approximation is close to the nominal curve. As more data points become 
available, the approximation curve closely matches the failure case near the flight conditions. Additionally, 
we also observed the effect of Tikhonov regularization at far away flight conditions. And, as more data 
points become available, the coefficient curve matches the actual case corresponding to the missing 
bodyflap. 
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Figure 9. Functional Learning at Various Stages 

IV. Reference Trajectory Design Using Inverse Dynamics 
To determine a trajectory for a non-linear dynamic system, a solution must be found that satisfies the 

set of differential equations governing the dynamics of the system.  Further, the trajectory solution should 
not violate some non-linear constraints, which limits the operational capability of the system.  For an 
aircraft, the constraints arise due to the “angle of attack,” “load factor,” maximum “sideslip angle,” and 
actuator saturation limitations.   

There are two primary approaches for trajectory generation and these have been classified in the 
literature as the “integral approach” and the “differential approach12.” In any approach, where generation of 
a trajectory involves the integration of the equations of motion13, this approach is classified as the “integral 
approach.” In a differential approach, an assumed functional form for the trajectory is differentiated to 
obtain algebraic functions for the higher derivatives, which are required to impose constraints on the 
control inputs for the “inverse dynamics” solution. There are various applications where inverse dynamics 
have been used, such as spacecraft trajectories and path planning in robotics14 and overhead cranes15. In the 
inverse dynamics approach, the algebraic equations are solved instead of integrating ODEs. Historically, 
the inverse dynamics approach has been used for “differentially flat” systems. A system is “differentially 
flat”16,17 if there exists a set of outputs, known as “flat outputs,” such that there is a one-to-one 
correspondence between the trajectories of flat outputs and the full state and control inputs of the system. 
Verma, et. al.18,19 and Verma8 first presented an approach that uses inverse dynamics for a non-flat system 
with the help of pseudo forces. With the inverse dynamics approach for aircraft trajectories, a problem 
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arises due to inherent under-actuation in most of the aircrafts. For a six-degree of freedom aircraft, there are 
normally four controls: thrust, elevator, aileron, and rudder. We implemented a novel trajectory generation 
scheme8, which uses pseudo forces for inverse dynamic computation.  In this work we use another 
innovative approach where trajectory computation consists of a two-step process that helps in a faster 
convergence of the solution. The first step is a fast process that solves a simpler, point mass trajectory 
problem for path planning, ensuring that most of the acceleration constraints are satisfied.  In the second 
step, a rotational degree of freedom is also included to compute the full trajectory and corresponding 
reference controls. 

A. RLV Trajectory Reshaping 
Observe that the dynamic inversion requires as many independent control parameters as the degrees of 

freedom. For longitudinal motion, there are three degrees of freedom that require three independent 
trajectory profiles to be prescribed. Here we present the ways to divide the trajectory-reshaping problem 
into two sub problems so as to simplify the complexity and obtain a faster solution. 

For longitudinal motion of a RLV, our goal is to determine a gliding trajectory that does not use any 
thrust. In the new approach we solve this problem in two steps. In the first step, we only solve the 2-DOF 
trajectory, leaving out the pitch rotation motion. The momentum level governing equations of motion for 2-
DOF are given as 
 

 
),.cos(),,(
)sin(),,(

γδαγ
γδα

mgTLmV
mgTDVm

e

e

−=
−−=  (9)  

and the kinematics are defined as  

 
).sin(

)cos(

γ

γ

VH

VX

=

=  (10) 

Here m is the mass, g is the acceleration due to gravity, eδ  is the control surface deflection, V is the vehicle 
velocity, γ  is the flight path angle, H is altitude and X is the forward axis. The force terms like drag D and 
lift L are functions of angle of attack α .  Note that kinematic relations are always exact while the 
momentum level equations have force terms, D and L that are normally approximated and have some 
uncertainties. For the simplified 2-DOF problem we ignore elevon contribution and use angle of attack as a 
real control variable and positive thrust as the pseudo control force. Note that for an RLV, negative thrust is 
available through speed brakes. For feasibility, the trajectory is perturbed until the thrust required is 
negligible. In the second step, the solution for angle of attack is assumed to be an angle of attack trajectory. 
The pitch trajectory is obtained from angle of attack and flight path angle using the relation 
 γαθ += . (11) 
The rotational pitch dynamics and the kinamatics are governed by the equations  
 ),( eMqI δα= ,   θ=q , (12) 
where I is the moment of inertia and q is the pitch rate.  At this stage we have two alternatives: i) For a 
rigorous solution, the 3-DOF trajectory should be solved simultaneously with two pseudo forces and one 
real control given by elevons; ii) An approximate solution can be solved by only solving the rotational 
degree of freedom for the given 1-D angle of attack trajectory. The second alternative is very fast due to 
reduced complexity. However, note that the elevon control parameter solution obtained by considering only 
rotational dynamics also has an effect on the translational motion dynamics, more prominently about the 
heave in ‘Lift’ axis. Since the contribution of elevons, eδ , in the 2-DOF translational motion was not 
considered, the original 2-DOF trajectory solution is no longer rigorous. In the first approach, as we 
consider all 3-DOF dynamics together, the solution is rigorous, however, for all practical purposes the 
second approach provides a feasible solution.  

B. Trajectory Reshaping Example 
Figure 10 presents the two-degree of freedom trajectory solution for two nautical miles of forward 

motion of a RLV. The starting point for all these trajectories is 15,000 ft. The goal was to determine a 
feasible solution. In an iterative approach, various end flight conditions ranging from final altitude of 
7,000ft to 12,000ft were considered to determine the feasible path. The feasibility is determined by 
observing the requirement of Pseudo Thrust. From the figure, we observe that for final altitudes greater 
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than 10,000 ft. at two nautical miles, the pseudo control is not negligible and hence the trajectory is not 
feasible. To achieve a feasible solution, the altitude must be lower than 10,000 ft. 
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Figure 10. Inverse Solution for 2-DOF Trajectory 

Figure 11 demonstrates an example for a 3-DOF trajectory determination using an inverse dynamic 
computation. In this example, a thousand feet of forward motion was considered. The starting point for the 
vehicle is 15,000ft. Three cases of altitude drop of 300ft, 400ft and 600ft were considered. The goal was to 
determine a feasible inverse dynamic solution for a gliding trajectory that uses only one real control given 
by elevons. To solve the 3-DOF inverse problem, two pseudo forces consisting of Pseudo thrust and Δ 
AOA were considered. It can be observed from Figure 11, that pseudo Δ AOA is always negligible. This is 
because Δ AOA is absorbed in the actual AOA trajectory variable during successive iterations. From Figure 
11, we also observe that for the case where the altitude drop is 400ft, pseudo thrust is negligible and hence 
the gliding trajectory is feasible. For a 600ft drop in altitude, pseudo thrust is negative. If we assume the 
usual case of the availability of air brakes in the RLV, a negative thrust is achievable. In that case all 
trajectories requiring negative thrust are considered feasible. However, the figure shows that a 300ft drop in 
the given X-range is not a feasible solution. 

V. Conclusion 
We presented a framework for an Adaptive Trajectory Reshaping and Control (ATRC) System for 

RLVs that respond to performance restricting damages and failures to the vehicle by reshaping the 
vehicle’s trajectory to accommodate new constraint boundaries. The challenge arises in learning constraints 
when available data is limited. We addressed the problem using Tikhonov regularization that allows fusion 
of a priori knowledge in the learning process. Next, we presented an innovative approach for online 
trajectory reshaping using an inverse dynamics method that uses pseudo forces to facilitate dynamic 
inversion of an under-actuated system.  The method was demonstrated with a longitudinal trajectory 
reshaping example. 
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Figure 11. Inverse Solution for 3-DOF Trajectory 
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