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ABSTRACT

The aim of this investigation is to construct an adaptive observer for a class
of multivariable delay systems having a known exogenous input and a struc-
tured perturbation with an unknown constant parameter, such as the case of
static output feedback with an unknown gain. The adaptive observer uses the
nominal dynamics of the unperturbed plant and an adaptation law based on
the Lyapunov redesign method. We obtain conditions on the system to ensure
uniform boundedness of the estimator dynamics and the parameter estimates,
and convergence of the estimator error. We illustrate our approach with a
multivariable delay example for which we obtain convincing numerical results.

1 Introduction

In Curtain, Demetriou and Ito [2] we constructed adaptive observers for the following class
of infinite-dimensional systems on a given Hilbert space X with inner product and norm
(,-) and | - |x, respectively:

%x(t) — Aye(t)+ But) + f(t);  2(0) = z0 € X (1.1)

y(t) = Cx(t), (1.2)

where

A, = Ay + BT'C (1.3)

and A is a generator of an exponentially stable Cy-semigroup T'(t), i.e. there exists
constants M, u > 0 such that
|7 @) < MeH. (14)

The signals u(t) and y(t) are the vector-valued inputs and outputs, respectively. f(¢) is
an X-valued known exogenous input and B € L(C™, X), C € L(X,TC ™). Consequently,
Ap generates a strongly continuous Cp-semigroup for any I' and the system is well-posed.
A key assumption is that the original system (A, B, C) satisfy a positive-real condition,
where by positive-real we mean the following.

Definition 1.1 Suppose that G(-) : € — L(C ™) where €'§ = {s: Res > 0}. If

(i)  G(s) = G(s) (1.5)
(i) G(s) is holomorphic on € g
(i15) G(s)+G(s)* >0 forall s =jw, w€R, (1.7)

then G is positive-real.
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In fact, we require that G(s—pu) = C ((s — p)I — Ag) ™ B be positive-real for some p > 0.
The motivation is that the perturbation BT'C' arises as the unknown constant gain in
the feedback law u = I'y. Thus, the actual formulation is

z(t) = Aoz (t) + BTy(t) + Bu(t) + f(t); z(0) = zo. (1.8)
The proposed state estimator (observer) is
Z(t) = AoZ(t) + Bu(t) + BL@®)y(t) + f(t),  #(0) = %o, (1.9)

where Z(¢) is the state estimate at time ¢ and T'(¢) is the adaptive estimate of the unknown

gain. The adaptation rule for I'(¢) was based on the Lyapunov redesign method [5, 6] that
has proved successful for finite-dimensional systems and it depends on the existence of
a solution to a certain constrained Lyapunov equation. The following is the main result
from Curtain, Demetriou and Ito [2].

Theorem 1.2 Consider the structurally perturbed system (1.1)-(1.3), where Aq is the
generator of an exponentially stable semigroup on X, B € L(C™,X), C € L(X,C™), f(t)
is a known exogenous signal with values in X, and I' is an unknown matriz feedback gain.
If there exist Q € L(X) and L € L(D(A),X) or L(D(A), €™) satisfying the constrained
Lyapunov equation for x € D(A)

(Ao +p)*Qr+Q (Ao + pl)z =—L* Lz (1.10)
B*Qx = Cuz, (1.11)

then the state estimator defined by (1.9) and the adaptation rule with adaptation matriz
gain G = GT > 0 given by .

T(t) = GCe(t)y" (t

() = GOe(t)" 1) )

r'0) =Ty
have the following properties.

(i) If u,y € Loo(0,00; € ™), then T'(t), Z(t) and the estimation error e(t) = z(t) — Z(t)
are bounded in norm for t > 0 and ||e%tQ% (z(t) —Z(t)) ||x = 0 as t = 0.

(ii) If y € Loo(0,00; € ™) N Ly(0,00; € ™) then |2t (&(t) — z(t)) ||x — 0 as t — oo

(#ii) If the conditions in (i1) hold and, in addition, the plant is persistently exciting, i.e.
there exists Ty, 0y and ey such that for each sufficiently large t > 0 there exists

t € [t,t + To] such that
E—HSQ
[ yT (1)w dr
i

for every unit vector w € R™, then we can achieve parameter convergence, i.e.

> €

I'(t) > T, as t — 00.

The crucial assumption, that the constrained Lyapunov equation (1.10)- (1.11) has a
solution, is a difficult problem for infinite-dimensional systems and only partial results are
available. In Curtain, Demetriou and Ito [2], we designed adaptive observers for scalar
systems of parabolic and delay type by exploiting recent results on constrained Lyapunov
equations in Curtain [1]. While the theory also applied to multivariable systems, the
conditions prove to be difficult to verify in the examples. It is the aim of this paper
to apply the theory to design an adaptive observer for a class of multivariable retarded
systems. We demonstrate the power of the results by numerical simulations.



2 A class of positive-real retarded systems

We consider the following class of retarded systems

(t) = Aoz (t) + az(t — h) + Bou(t); (2.1)
z(0) =r, z(0) = f(0), —h <O <0; (2.2)
y(t) = Coz(t), (2.3)

where h > 0 represents the point delay, z(t) € C", Ay € L(C"),By € L(C™,C™),Cy €
LC™,C™),r e C", and f € La(—h,0;C™). The delay system (2.1)- (2.3) can be for-
mulated on the state space X = €™ @ La(—h,0; C ") with generating operators defined

by
Bou r
Bu:( 8 ) C’( 0) ) = Cyr, (2.4)

( f?) ) € X| f is absolutely continuous,

D A = ’
. ﬁ() € Lo(—h,0;C ™) and f(0) =r
d9 Y
Al ) )= Aor +daf(_h) 2.5
<f0>_ g ) (2

A generates a Cy semigroup T'(+) on X and B, C are bounded operators (see Curtain and
Zwart [3], chapter 2.4 and Theorems 4.2.6, 4.2.10). The spectrum of A,o(A) consists of
eigenvalues which are the solutions of det (A(A)) = 0, where for A € €

AN = M — Ay — ae™h, (2.6)
T(-) is exponentially stable if
o(A) C {s|Re s < —u} for some p > 0. (2.7)
The transfer function G of the system is given by
G(s) = CoA(s) ' By. (2.8)

We also need to consider a more general type of observation operator

%<fm>=0w+@ﬂ4m 2.9)

where C; € L(C",C9),j = 1,2. The transfer function Z of the system defined by (2.1),
(2.2) and the observation
y(t) = C1z(t) + Cox(t — h) (2.10)
is given by
E(s) = (C1 + Cae ™)A(s) ' By. (2.11)
We now give conditions under which the system (2.1)—(2.3) will be positive-real.

Lemma 2.1 Suppose that (Ag, By) is controllable, Ay+ ||l is a stable semisimple matriz
and Go(s) = Co(sI — Ag)~1By is positive-real. Then there exist matrices Lo, and P =
P* > 0 such that

AiP+ PAy = —LiLg (2.12)
BiP = C, (2.13)

Moreover, G(s) given by (2.8) is positive-real.



Proof. (2.12), (2.13) follow from the finite-dimensional positive-real results. We rewrite
(2.12) as follows

(Ao + |a|I)* P + P(Ag + |a|I) = —LgLg + 2|a| P. (2.14)
Denoting K = L{Lo — 2|a|P and A; = Ay + |a|I, we deduce the following from (2.14)

d
a(eAlth, e Pr) = —(KeM'Pr, e Pr)

and since A; is a stable matrix
o0
(Px,z) = / (KeMt Py eMPy) dt.
0

Now A; is semisimple and so

n

ety = Z Mz, ei)e,
i=1

where ();, ;) are the eigenvalue-eigenvector pairs of A;. Thus

o0
(Pei ei) = / RN Kej, e;) dt
0

1
_ Ke:. e;
2Re)\,-< cir€i)

and Re \; < 0 since A; is stable, and hence
K = L;Lo — 2|a|P > 0.

An easy calculation gives

G(
= B}(—iw — Ay — ae™™) Y (Li Lo — 2aP coswh) (iw — Ay — ae~“h)~1 B,
B} (—iw — AY — ae™M) Y (LE Lo — 2|a|P)(iw — Ag — ae” ™M) 71 B,

0

where we have used (2.12)—(2.14). Finally, A is stable if Ag + |«|I is. O
Next we obtain a spectral factorization for II of the form

M(iw) = E(iw)*E(iw). (2.15)

Lemma 2.2 There ezist square matrices C1,Co € L(C'™) such that (2.15) holds with the
spectral factor 2 given by (2.11). The matrices are any solutions of

Cik01 + 0502 = CSCO; CikCQ = C;Cl = —2aP. (2.16)

Proof. 1If there exist Cy,Cy satisfying (2.16) it is straightforward to verify that =
satisfies (2.15). So it remains to show the existence of Cj,Cs. Without loss of generality
we can take C1, sy to be symmetric and « to be positive. We choose a square matrix F
such that

(C1+Cy)*(CL 4+ Cs) = CSC() —2aP = F*F.

Then, substituting Cy, = F' — (' we obtain the Riccati equation for Ci:

ClF + F*Cl — 20101 + 4aP = 0.



This has a solution which we take to be C; and Co = F — C;. O

While in finite dimensions the existence of a spectral factor and controllability is suf-
ficient to ensure the existence of a solution to the constrained Lyapunov equation, the
infinite-dimensional case is more subtle. We refer to Curtain [1], section 7, for the rest
of the proof of the existence to a solution to (2.12), (2.13). Essentially, it amounts to
showing that the observation (2.9) is well-posed and this is known to be the case. So we
may conclude that Theorem 1.2 holds under the assumptions

e (Ap, By) is controllable
e Ay + |a| is a stable matrix

e Go(s) = Co(sI — Ag) 1By is positive-real.

3 Examples and Numerical Results

We used the following matrices in (2.1), (2.3) to simulate the proposed adaptive scheme

-1.0 04 1.00 0.01 2.01 1.04
Ao = [ 0.2 —2.0 ] Bo = lom 1.00 ] Co = [ 1.02 4.01 ]

The pair (Ag, By) is indeed controllable and the solution to the constrained Lyapunov
equation is

1 4

121 . «7 | 36 14
P—[ ‘| w1thL0L0—lL4 15'2‘|.

One can easily check that B§P = C and thus Cy(sI — Ag) !B is positive real. The scalar
« is chosen as « = 0.01 with a delay h = 1. In this case we have that eig(Ay + |a|I) =
(—0.8255,—1.9745) which gives a stable Ay + |a|] matrix. Therefore all the conditions
required for Theorem 1.2 to hold are satisfied.

The unknown parameter in the perturbation term is taken to be

po | T T | _ [ 40x107 1.0x 1074
T | P9y Tae | | 20x107% 2.0x 1071 |-

The initial conditions for the state z, its estimate Z and the parameter f‘(t) are given by

in(46 — 1) + sin(1) ~ 0.6 (sin(40 — 1) + sin(1))
o(0) = [ i cos(46 — 1S) ] , 2(0) = [ i.4(cos(49 - 1S)) ] ’

where 0 € [—1,0] and
| 20x107! 0.5%x1074

ro) = l 1.5x10°* 3.0x10°! ] '
The plant input for this set of simulations was taken to be

u(t) = cos(5.0mt) + sin(7.07t) + sin(24.27t)
| sin(5.07t) + sin(8.0mt) + cos(29.27t) |-

The adaptive laws for the entries of the gain matrix become

Tia(t) = =5 x 10 261 (B (1), Tha(t) = =3 x 10751 (£)ys (1),
Tor(t) = =5 x 10 %5 () y1(¢),  Tan(t) = —5 x 10~ 2e9(t)ya(t),

where £;(t) = y;(t) — 5i(t), i = 1,2.
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Figure 1: Evolution of (a) z; (dashed) and Z; (solid), (b) zo (dashed) and Z5 (solid).

The above system was simulated using the approximation scheme developed in [4] with
N = 12 splines to discretize the interval [—1, 0], thus resulting in 26 equations for the state,
26 for its estimate and 4 for the parameter matrix I', totaling 56 equations. Due to the
infinite dimensionality of the delay system, the discretization index N = 12 was chosen as
the smallest possible one that would provide a numerically reliable approximation to the
above system. The resulting evolution system was integrated using the Fehlberg fourth-
fifth Runge-Kutta method based routine rkf45.f over the time interval [0,30] sec. It
should be noted that different combinations of the input signal u(¢) and initial conditions
for the observer state were also tested which resulted in different convergence properties
of the state and parameter errors. We present only the results with the above choice
since they provided the required level of persistence of excitation needed for parameter
convergence.

The evolution of the state components z1(t) and z2(¢) is depicted in Figure 1 along
with their estimates over the interval [—1, 10] seconds. Convergence of the observer state
to the plant state can easily be concluded. The evolution of the parameter estimates along
with their actual values are depicted in Figure 2. Parameter convergence is also achieved
as is evident from the figure.
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