A Hierarchical Internet Object Cache

Anawat Chankhunthod
Peter B. Danzig
Chuck Neerdaels
Michael F. Schwartz
Kurt J. Worrell

CU-CS-766-95

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
MAR 1995 2. REPORT TYPE 00-00-1995 to 00-00-1995
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Hierarchical Internet Object Cache £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Department of Computer Science,University of REPORT NUMBER
Colorado,Boulder,C0,80309

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 16
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE

ACKNOWLEDGMENTS SECTION.

A Hierarchical Internet Object Cache

Anawat Chankhunthod Michael F. Schwartz

Peter B. Danzig - Kurt J. Worrell
Chuck Neerdaels Computer Science Department
Computer Science Department University of Colorado - Boulder
University of Southern California Boulder, Colorado 80309-0430
Los Angeles, California 90089-0781 +1 303 492 3902
+1 213 740 4780 {schwartz,kworrell }@cs.colorado.edu

{chankhun,chuckn,danzig }@usc.edu
March 1995

Technical Report 95-611
Department of Computer Science
University of Southern California

and
Technical Report CU-CS-766-95
Department of Computer Science
University of Colorado - Boulder

Abstract

This paper discusses the design and performance of a proxy-cache designed to make Internet infor-
mation systems scale better. A hierarchical arrangement of caches mirroring the topology of a wide-area
internetwork can help distribute load away from server hot spots raised by globally popular information
objects, reduce access latency, and protect the network from erroneous clients. We present performance
figures indicating that the cache significantly outperforms other popular Internet cache implementations
at highly concurrent load and that indicate the effect of hierarchy on cache access latency. We also
summarize the results of experiments comparing TTL-based consistency with an approach that fans
out invalidations through the cache hierarchy. Finally, we present experiences derived from fitting the
cache into the increasingly complex and operational world of Internet information systems, including
issues related to security, transparency to cache-unaware clients, and the role of file systems in support
of ubiquitous wide-area information systems.

1 Introduction

Perhaps because software developers perceive net-
work bandwidth and connectivity as free commodi-
ties, Internet information services like FTP, Go-
pher, and WWW were designed without caching
support in their core protocols. The consequence
of this misperception now haunts popular WWW
and FTP servers. For example, NCSA, the home of
Mosaic, moved to a multi-node cluster of servers to
meet demand. NASA’s Jet Propulsion Laboratory
wide-area network links were saturated by the de-
mand for Shoemaker-Levy 9 comet images in July
1994, and Starwave corporation runs a five-node
SPARC-center 1000 just to keep up with demand
for college basketball scores. Beyond distributing
load away from server “hot spots”, caching can
also save bandwidth, reduce latency, and protect
the network from clients that erroneously loop and
generate repeated requests [8].

This paper describes the design and perfor-
mance of the Harvest [5] cache, which we designed
to make Internet information services scale. Har-
vest caches can be deployed hierarchically for scal-
ability’s sake, and can service a highly concurrent
stream of requests. The Harvest cache has been in
use for one year by a growing collection of users
across the Internet. It can also be paired with ex-
isting CERN and NCSA HTTP servers (httpd) to
permit a site’s HT'TP server to scale to two orders
of magnitude higher request rates.

Internet object caching differs from traditional
applications of caches (such as hardware and file
system caches) in several respects. First, Inter-
net information systems exhibit much more locality
than Muntz and Honeyman reported for file sys-
tems [17]. File systems typically exhibit little shar-
ing, because users mostly work in their own private
part of the name space and only occasionally refer-
ence shared directories. Much file system sharing
is eliminated by replicating read-only executables
and libraries on individual workstations for perfor-
mance reasons. In contrast to distributed file sys-
tems, FTP, Gopher, and WWW were designed to
facilitate read-only sharing of autonomously owned
and managed objects. Hence, in contrast to file
sharing studies, in 1992 over half of NSFNET FTP
traffic was due to read-only sharing of objects [9].
Similar statistics have been recorded for WWW
traffic [7].

Second, the cost of a cache miss is much lower
for Internet information systems than it is for tra-
ditional caching applications. Since a page fault
can take 10 times longer to service than hitting
RAM, the RAM hit rate must be 99.99% to keep

the average access speed at twice the cost of a RAM
hit. In contrast, the typical miss-to-hit cost ratio
for Internet information systems is 10:1, and hence
a 50% hit ratio will suffice to keep average costs at
twice the hit cost.

Finally, Internet object caching serves more
than latency reduction. As noted above, a per-
haps more important motivation is distributing
load away from server hot spots.

Several issues arise when building an Internet
object cache. First, cache policy choices are made
more difficult because of the prevalence of informa-
tion systems that provide neither a standard means
of setting object Time-To-Live (TTL) values, nor a
standard for specifying objects as non-cacheable. !
Second, because it is used in a wide-area network
environment (in which link capacity and conges-
tion vary greatly), cache topology is important.
Third, because the cache is used in an administra-
tively decentralized environment, security and pri-
vacy are important. Fourth, the widespread use of
location-dependent names (in the form of Uniform
Resource Locators, or URLs) makes it difficult to
distinguish duplicated or aliased objects. Finally,
the large number of implementations of both clients
and servers leads to errors that worsen cache behav-
ior.

2 Design

This section describes our design to make the Har-
vest cache fast, efficient, portable, and transparent.

2.1 Cache Hierarchy

To reduce wide-area network bandwidth demand
and to reduce the load on HTTP servers around the
Web, caches resolve misses through other caches
higher in a cache hierarchy, as illustrated in Fig-
ure 1. For example, several of the authors are run-
ning caches on their home workstations, configured
as children of caches running in laboratories at their
universities. Each cache in the hierarchy indepen-
dently decides whether to fetch the reference from
the object’s home site or from the cache or caches
above it in the hierarchy. The cache resolution algo-
rithm also distinguishes parent from sibling caches.
A parent cache is a cache higher up the hierarchy; a

!For example, it is popular to create WWW pages that
modify their content each time they are retrieved, by re-

turning the date or access count. Such objects should not
be cached.

@ File Cache

Regional Network

Regional Network Regional Network

Figure 1: Hierarchical Cache Arrangement.

sibling cache is one at the same level in the hierar-
chy, provided to distribute cache server load. When
a cache receives a request for a URL that misses, it
performs a remote procedure call to all of its sib-
lings and parents, looking to see if the URL hits
any sibling or parent. It also tricks the referenced
URL’s home site into implementing the resolution
protocol by sending a UDP “Hit” packet to the
UDP echo port of the object’s home machine.

A cache resolves a reference through the first
sibling, parent, or home site to return a UDP “Hit”
packet or through the first parent to return a UDP
“Miss” message if all caches miss and the home’s
UDP “Hit” packet fails to arrive within two sec-
onds. However, the cache will not wait for a home
machine to time out; it will begin transmitting as
soon as all of the parent and sibling caches have
responded. The resolution protocol’s goal is for a
cache to resolve an object through the source (cache
or home) that can provide it most efficiently.

Hierarchies as deep as three caches add little
noticeable access latency, even when the object’s
home site fails to run a UDP echo server (e.g.,
machines behind firewalls frequently disable UDP
echo). The only case where the cache adds notice-
able latency is when one its parents has failed and
the object’s home is not running a UDP echo server.
In this cases, references to this object are delayed
by two seconds, the parent-to-child cache timeout
2. Also, as the hierarchy deepens, the root caches
become responsible for more and more clients. For
this reason, we recommend that the hierarchy ter-

*Reaping dead parents has not yet been implemented.

minate at the first place in the regional or backbone
network where bandwidth is plentiful.

2.2 Cache Access Protocols

The cache supports three access protocols: en-
capsulating, connectionless, and prozy-http. The
encapsulating protocol encapsulates cache-to-cache
data exchanges to permit end-to-end error detec-
tion via checksums and, eventually, digital signa-
tures. This protocol exchanges an object’s remain-
ing TTL. The cache uses the UDP-based connec-
tionless protocol to implement the parent-child res-
olution protocol. This protocol also permits caches
to exchange small objects without establishing a
TCP connection, for efficiency. While the encap-
sulating and connectionless protocols both support
end-to-end reliability, the prozy-http protocol is the
protocol supported by most Web browsers. In that
arrangement, clients request objects via one of the
standard information access protocols (FTP, Go-
pher, or HTTP) from a cache process. The term
“proxy” arose because the mechanism was primar-
ily designed to allow clients to interact with the
WWW from behind a firewall gateway.

2.3 Cacheable Objects

The wide variety of Internet information systems
leads to a number of cases where objects should not
be cached. In the absence of a standard for specify-
ing TTLs in objects themselves, the Harvest cache
chooses not to cache a number of types of objects.
For example, objects that are password protected
are not cached. Rather, the cache acts as an ap-
plication gateway and discards the retrieved object
as soon as it has been delivered. The cache treats
other URLs similarly, if the URL implies that the
object is not cacheable. See the Harvest User’s
Manual [12] for details about cacheable objects.
Large objects comprise one class of non-cacheable
objects. It is possible to limit the size of the largest
cacheable object, so that a few large FTP objects
do not purge ten thousand smaller objects from the
cache.

2.4 Unique Object Naming

A URL does not name an object uniquely; the URL
plus the MIME 2 header issued with the request

SMIME stands for “Multipurpose Internet Mail Exten-
sions”. It was originally developed for multimedia mail sys-

uniquely identify an object. For example, a WWW
server may return a text version of a postscript
object if the client’s browser is not able to view
postscript. We believe that this capability is not
used widely, and currently the cache does not in-
sist that the request MIME headers match when
- a request hits the cache. However, the cache does
record the MIME header used to fetch each object.

2.5 Negative Caching

To reduce the costs of repeated failures (e.g., from
erroneously looping clients), we implemented two
forms of negative caching. First, when a DNS
lookup failure occurs, we cache the negative result
for five minutes. Second, when an object retrieval
failure occurs, we cache the negative result for a
parameterized period of time.

2.6 Cache-Awareness

When we started writing the cache, we anticipated
cache-aware clients that would decide between re-
solving an object indirectly through a parent cache
or directly from the object’s home. Towards this
end, we created a version of Mosaic that could re-
solve objects through multiple caches, as illustrated
in Figure 2. Within a few months, we reconsid-
ered and dropped this idea as the number of new
Web clients blossomed (cello, lynx, netscape, tk-
www, etc.)

[Cache} Cache Cache}

Figure 2: Cache-aware client

While no Web client is completely cache-aware,
most support access through IP firewalls, as illus-
trated in Figure 3. Clients send all their requests
to their prozy-server, and the proxy-server decides
how best to resolve it.

There are advantages and disadvantages of
each approach to cache-awareness. Cache-unaware
clients have the clear advantage that there is no

tems [4], but was later adopted by HT'TP for passing typing
and other meta data between clients and servers.

2.7 Security,

Cache}—{ Cachc]—-(Cache

Figure 3: Proxy-caching client

need to modify clients, they work using the proxy
mechanism that users already understand, and
they are needed by sites that wish to allow access
to outside Web services from behind a firewall gate-
way. On the other hand, cache-aware clients make
it possible to balance load closer to the client, avoid
the single point of failure caused by proxy caching,
and (as noted in Section 2.2) allow for a more effi-
cient and capable protocol.

Privacy, and
Proxy-Caching

What is the effect of proxy-caching on Web secu-
rity and privacy? WWW browsers support various
authorization mechanisms, all encoded in MIME
headers exchanged between browser and server.
The basic authorization mechanism involves clear-
text exchange of passwords. For protection from
eavesdropping, the Public Key authorization mech-
anism is available. Here, the server announces its
own public key in clear-text, but the rest of the ex-
change is encrypted for privacy. This mechanism is
vulnerable to IP-spoofing, where a phony server can
masquerade as the desired server, but the mech-
anism is otherwise invulnerable to eavesdroppers.
Finally, for those who want both privacy and au-
thentication, a PGP based mechanism is available,
where public key exchange is done externally.

For example, a basic authentication exchange
follows the following dialog;:

Client: GET <URL>

Server: HTTP:1.0 401 Unauthorized --
authentication failed

Client: GET <URL> Authorization:
<7-bit-encoded name:password>

Server: One of:

Reply (authorized and authenticated)
Unauthorized 401 (not authorized)
Forbidden 403 (not authenticated)
Not Found 404

Note that the basic and public key schemes of-
fer roughly the same degree of security as Internet
rlogin. Their authentication relies on client IP ad-
dresses, which can be spoofed, and they assume
that intruders do not masquerade as real servers.
Their authorization relies on user names and pass-
words, which can be snooped.

When a server passes a 401 Unauthorized
message to a cache, the cache forwards it back to
the client and purges the URL from the cache. The
client browser, using the desired security model,
prompts for a username and password, and reis-
sues the GET URL with the authentication and au-
thorization encoded in the request MIME header.
The cache detects the authorization-related MIME
header, treats it as any other kind of non-cacheable
object, returns the retrieved document to the
client, but otherwise purges all records of the ob-
ject. Note that under the clear-text basic autho-
rization model, anyone, including the cache, could
snoop the authorization data. Hence, the cache
does not weaken this already weak model. Under
the Public Key or PGP based models, neither the
cache nor other eavesdroppers can interpret the au-
thentication data.

Proxy-caching defeats IP address-based authen-
tication, since the requests appear to come from the
cache’s TP address, rather than the client’s. How-
ever, since IP addresses can be spoofed, we con-
sider this liability an asset of sorts. Proxy-caching
does not prevent servers from encrypting or apply-
ing digital signature to their documents, although
encryption disables caching.

As a final issue, unless Web objects are digi-
tally signed, an unscrupulous system administrator
could insert invalid data into his proxy-cache. You
have to trust the people who run your caches, just
as you must trust the people who run your DNS
servers, packet switches, and route servers.

2.8 Threading

For efficiency and portability across UNIX-like
platforms, the cache implements its own non-
blocking disk and network I/ O abstractions directly
atop a BSD select loop. The cache avoids forking
except for misses to FTP URLs. * It implements
its own Domain Naming System (DNS) cache and,
when the DNS cache misses, performs non-blocking
DNS lookups. As referenced bytes pour into the

*We retrieve FTP URLs via an external process because
the complexity of the protocol makes it difficult to fit into
our select loop state machine.

cache, these bytes are simultaneously forwarded to
all sites that referenced the same object and are
written to disk, using non-blocking I/0. The only
way the cache will stall is if it takes a virtual mem-
ory page fault—and the cache avoids page faults by
managing the size of its VM image. The cache em-
ploys non-preemptive, run-to-completion schedul-
ing internally, so it has no need for file or data
structure locking. However, to its clients, it ap-
pears multi-threaded.

2.9 Memory Management

The cache keeps all meta-data ° about cached ob-
jects in virtual memory and it also tries to keep
exceptionally hot objects loaded in virtual mem-
ory. However, when the quantity of VM dedicated
to hot object storage exceeds a parameterized high
water mark, the cache discards hot objects by LRU
until VM usage hits the low water mark. Note that
these objects still reside on disk; just their VM im-
age is reclaimed. The hot-object VM cache is par-
ticularly useful when the cache is deployed as an
httpd-accelerator (discussed in Section 3.1).

The cache is write-through rather than write-
back. Even objects in the hot-object VM cache
appear on disk. We considered memory-mapping
the files that represent objects, but could not apply
this technique because it would lead to page-faults.
Instead, objects are brought into cache via non-
blocking I/0, despite the extra copies.

Objects in the cache are referenced via a hash
table keyed on URL. Cacheable objects remain
cached until their cache-assigned TTL expires, they
are evicted by the cache replacement policy, or the
user manually evicts them by clicking the browser’s
“reload” button.

The cache keeps the URL and per-object data
structures in virtual memory but stores the ob-
ject itself on disk. We made this decision on the
grounds that memory should buy performance in
a server-bottlenecked system: the meta-data for
50,000 objects will consume 10MB of real memory.
If a site cannot afford the memory, then it should
use a cache optimized for disk space rather than
performance.

®*The meta-data consist of the URL, TTL, MIME header,
file name where the object is stored on the local disk, and a
number of other pieces of state information needed to man-
age the cache.

3 Performance

We now compare the performance of the Har-
vest cache against the popular CERN proxy-http
cache [15], report the performance gain of deploy-
ing the Harvest cache as an httpd-accelerator, break
down the savings as per the design decisions laid
out in Section 2, and evaluate the latency degrada-
tions of using hierarchical caching.

In addition to its popularity, the CERN cache
is a good candidate for performance comparisons
because it is implemented as efficiently as any of
the other Internet object caches, using standard
UNIX programming techniques.

3.1 Harvest vs. CERN Cache

To make our evaluation less dependent of a partic-
ular hit rate, we evaluate cache performance sepa-
rately on hits and on misses for a given list of URLs.
Sites that know their hit rate can use these mea-
surements to evaluate the gain themselves. Figures
4 and 5 show the cumulative distributions of re-
sponse times for hits and misses respectively. We
computed the cumulative response time of refer-

ences to cache hits by faulting 2,000 objects of var-

ious sizes and types into the cache. Then, with
ten client programs concurrently referencing these
same objects in random order, we measured the re-
sponse time for each reference. These figures show
that the Harvest cache is an order of magnitude
faster than the CERN cache on hits and on aver-
age about twice as fast on misses. These measure-
ments were taken on a SPARC 20/61 with 128MB
of memory. The reasons for the CERN cache over-
head will be discussed in Section 3.2.

For misses there is less difference between the
Harvest and CERN caches because response time
is dominated by remote retrieval costs. However,
note the bump at the upper right corner of Fig-
ure 5. This bump comes about because approxi-
mately 3% of the objects we attempted to retrieve
timed out (causing a response time of 75 seconds)—
either due to unreachable remote DNS servers or
unreachable remote object servers. While both the
Harvest and the CERN caches will experience this
long timeout the first time an object retrieval is re-
quested, the Harvest cache’s negative DNS and ob-
ject caching mechanisms will avoid repeated time-
outs issued within 5 minutes of the failed request.
This can be important for caches high up in a hier-
archy because long timeouts will tie up file descrip-
tors and other limited system resources needed to
serve the many concurrent clients.

09t /
08 |
0.7 |i
0.6

0.5 |

CDF

0.4 H v

03 |
!

02

0.1%{'

0 g "’ il L 1

T T T
Harvest Cache e
CERN Cache ---- +

o 100 200 300

400 500 600 700 800

900 1000

Time [msec]
Measure | Harvest | CERN
Median 20 ms 280 ms
Average 27 ms 840 ms

Figure 4: Cumulative distribution of cache re-
sponse times for hits, ten concurrent clients.

L P J

0.9 . v / Y

0.8 F / J

Vi
07 F 7 4
06 i 4
rd ,’

™ 77
Q 05 /) Harvest Cashe
© // CERN Cache -—

0.4 I 4

’/ ’
0.3 [/
' /7
/o /
02k i 4
i
01k A]
0 ”_”‘,.w-"«m e) .
1 10 00 10000 100000

00 10
Time [msec]

Figure 5: Cumulative distribution of cache re-

sponse times for misses, ten concurrent clients,
2,000 URLs.

The order of magnitude performance improve-
ment on hits suggests the idea of using the Har-
vest cache as an httpd accelerator. In this con-
figuration, the cache fields all requests to an httpd
server, forwarding the requests that miss to the real
httpd. If a good fraction of the references are to
cacheable objects, an order of magnitude perfor-
mance improvement can be realized.

Figure 6 demonstrates the performance of a
Harvest cache configured as an httpd-accelerator.
In this experiment, we faulted several thousand ob-
jects into a Harvest cache and then measured the
response time of the Harvest cache versus the na-
tive NCSA httpd.

1 T - T T
i H
09 | / §
08 | ; i
/ i
07 | / | N
!{ I
06 | / Fitiont Acos HIT -
w / { Hitpd Accel MISS e g
L sl / I NCSAHTTRD ---f-
o /
l‘)
0.4 |-] J E
03 / 3 .
02 i } i
i
01 b 7 { J
4
0 2 i 535 i
1 10 100 1000 10000 100000

Time [msec]

Figure 6: Response time of an httpd-accelerator
versus a native httpd for a workload of all hits.

3.2 Decomposing Cache Performance

We now decompose how the Harvest cache’s vari-
ous design elements contribute to its ability, under
concurrent access, to serve 200 small-objects per
second in contrast to CERN’s 3 small-objects per
second. Our goal is to explain the roughly 260 ms
difference in median and roughly 800 ms difference
in average response time for the “all hits” experi-
ment summarized by Figure 4.

The factor of three difference between CERN’s
median and average response time, apparent in
CERN’s long response time tail, occurs because un-
der concurrent access, the CERN cache is operating
right at the knee of its performance curve. Much
of the response time above the median value cor-
responds to queueing delay for OS resources (e.g.,
CPU). Hence, below, we explain the 260 ms differ-
ence CERN’s and Harvest s median response times
(see Table 1).

Establishing and later tearing down the TCP
connection between client and cache contributes a
large part of the Harvest cache response time. Re-
call that TCP’s three-way handshakes add 1 or 2
round trip transmission times to the beginning of
a connection and add 1 or 2 round trip times to
the end. Since the Harvest cache can serve 200
small-objects per second (5 ms per object) but the
median response time as measured by cache clients
is 20 ms, this means that 15 ms of the round-trip
time is attributable to TCP connection manage-
ment. This 15 ms is shared by both CERN and the
Harvest cache.

We measured the savings of implementing our
own threading by measuring the cost to fork() a
UNIX process that opens a single file (/bin/1ls

). We measured the savings from caching DNS
lookups as the time to perform gethostbyname()
DNS lookups of names pre-faulted into a DNS
server on the local network. We computed the sav-
ings of keeping object meta-data in VM by counting
the file system accesses of the CERN cache for re-
trieving meta-data from the UNIX file system. We
computed the savings from caching hot objects in
VM by measuring the file system accesses of the
CERN cache to retrieve hot objects, excluding hits
from the OS buffer pool.

We first measured the number of file-system
operations by driving cold-caches with a workload
of 2,000 different objects. We then measured the
number of file-system operations needed to retrieve
these same 2,000 objects from the warm-caches.
The first, all-miss, workload measures the costs of
writing objects through to disk; the all-hit work-
load measures the costs of accessing meta-data and
objects. Because SunOS instruments NFS bet-
ter than it instruments directly-connected file sys-
tems, we ran this experiment on an NFS-mounted
file systems. We found that the CERN cache av-
erages 15 more file system operations per object
for meta-data manipulations and 15 more file sys-
tem operations per object for reading object data.
Of course, we cannot convert operation counts to
elapsed times because they depend on the size,
state and write-back policy of the OS buffer pool
and in-core inode table. As a simple approxima-

- tion, Table 1 assumes that disk operations average

15 ms and that half of the file system operations
result in disk operations or 7.5 ms average cost per
file system operation.

3.3 Cache Hierarchy vs. Latency

Hierarchy’s benefits, reduced network bandwidth
consumption, reduced access latency, and improved

Factor Savings [msec.]
RAM Meta Data 112
Hot Object RAM Cache 112
Threading : 36
DNS Lookup Cache 3
Total 264
Table 1: Breakdown of Performance Improve-
ments

resiliency, come at a price. Caches higher in the hi-
erarchy must field the misses of their descendents
below them. If the equilibrium hit rate of a leaf
cache is 50%, this means that half of all leaf ref-
erences get resolved through a second level cache
rather than directly from the object’s source. If
the reference hits the higher level cache, so much
the better, as long as the second and third level
caches do not become a performance bottleneck.
If the higher level caches become overloaded, then
they could actually increase access latency, rather
than reduce it.

On our Sparc 20s, the Harvest cache can re-
spond to over 250 pings/second, deliver 200 small
objects/second, and deliver 4 Mbits/second to
clients. At today’s regional network speeds of
1Mbit/second, it is clear that Harvest caches, in
any configuration, are not a performance bottle-
neck.

Figure 7 shows the response time distribution
of faulting an object through zero, one and two lev-
els of hierarchical caching. This figure is computed
with ten concurrent clients, each referencing differ-
ent objects against cold caches.

Cached Flat, 2 levels and 3 levels
1 T T T

09 .
08 - I 1
07 B
06 - / .
[’ /'l
8 05 |- / Fligh e 4
© [/ 2 Levels —-
0.4 | 4 3tLevels - i
0.3 | j
02 J
o1 4
[
0 i ' s
1 10 100 1000 10000
Time [msec]

Figure 7: Effect of cache hierarchy on cache re-
sponse time.

Recall that the Harvest cache keeps its meta-
data in memory, not on disk, and reserves a frac-
tion of virtual memory to cache hot, small objects.
Figure 8 shows the size of the cache server as a func-
tion of the number of cached objects, with the hot
object cache size set to 20 MB. We see that the VM
image quickly grows to the VM limit, 20MB, and
then grows linearly at 750 bytes per object: 125
bytes of meta data and 500 bytes of stored MIME
header. Discarding the MIME header is possible,
if memory is tight, at some loss of transparency.

40000 T T T T : — T T
35000 - b

30000 + U E

VM [kb]

20000 f‘z" B
15000
10000 + ({ -

5000 -/ 4

ok I 1 I 1 L 1 ' 1 L

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Number of Objects

Figure 8: Size of meta-data plus hot objects as
function of number of cached objects.

4 Cache Consistency

The Harvest cache, patterned after the Inter-
net’s Domain Naming System, employs TTL-based
cache consistency. However, just like the Do-
main Naming system, the Harvest cache can re-
turn stale data. Unfortunately, HI'TP, Gopher,
and FTP provide neither a means for owners to
specify TTLs, nor a protocol to pass TTLs from
servers to caches and clients ®. Hence, when the
Harvest cache fetches an object from the object’s
home, it is forced to assign a default TTL. When
the TTL expires, the cache discards the object.
When a cache fetches an object from a parent or
neighbor, it inherits the parent’s remaining TTL.

Here we present measurements of WWW ob-
ject lifetimes that indicate that no default TTL is
short enough to avoid frequent access to stale data.
Hence, we believe that a standard must emerge that
lets object owners encode object TTLs in the ob-
ject’s MIME header. The standard might let the
HTTP server assign a TTL as a function of the

8Netscape Communications Corp. is promoting active
documents, which is the needed standard.

Lifetime Varishility (Days)

B e s i e s - P h

modification time, should the owner neglect to as-
sign one.

Other consistency models are possible, such as a
hybrid between a hierarchical variant of AFS’s call-
back invalidation-based [13] scheme and a TTL-
based mechanism. We discuss hierarchical invali-
dation below 7.

Object Lifetimes

Internet object lifetimes vary widely. To illus-
trate this, we periodically sampled the modification
times of 4,600 HTTP objects distributed across
2,000 Internet sites during a three month period.
We found that the mean lifetime of all objects was
44 days, HTML text objects and images were 75
and 107 days respectively, and objects of unknown
types averaged 27 days. Over 28% of the objects
were updated at least every 10 days, and 1% of the
objects were dynamically updated. While WWW
objects may become less volatile over time, the life-
time variance suggests that a single T'TL applied to
all objects will not be optimal. Figure 9 plots the
average lifetime and range in lifetime, sorted by in-
creasing average lifetime. Note that even within
individual objects the lifetime of the revisions for
a particular object are often variable. This means
that not only will it work poorly to use a single
TTL for a particular class of objects, but that even
TTLs specified by object owners may be wrong.

488 976 1464 1952 2928 3416 3904 4392 4

Figure 9: Average lifetime and range for a set of
WWW objects.

In the absence of provider sites specifying TTLs
for their objects, our observations lead us to suggest

"Reference [20] discusses hierarchal invalidation in detail.

that caches could manage object TTLs via binary
exponential backoff. When an object TTL expires,
the object need not be flushed from the cache. In-
stead, the cache could refetch the object, compare
it to the cached version, and then double the pre-
vious TTL if the object had not changed. ® This
does not help eliminate stale objects (and in some
cases can lead to long lapses of inconsistent data,
when an object is suddenly updated after its TTL
has gotten large), but does provide dynamic TTLs
without support from the object servers.

Hierarchical Invalidation

In large distributed environments such as the Inter-
net, systems designers have typically been willing
to trade some degree of cache consistency to achieve
the important benefits of reduced server hot spots,
network traffic, and retrieval latency. Here we in-
vestigate the possibility of achieving better consis-
tency through invalidation, using the cache hierar-
chy to fan out invalidation messages. In particu-
lar, we determine the point where the bandwidth
consumed by extra data transfers (for the TTL
scheme) is the same as the bandwidth consumed
by the extra invalidation messages and data trans-
fers (for the invalidation scheme). At this point it
can be determined what percentage of the TTL-
scheme references are stale. When Internet users
can no longer stand for that percentage of stale
data references then it makes sense (bandwidth-
and staleness-wise) to consider switching to an in-
validation scheme.

To perform this analysis, we constructed a sim-
ulation and loaded it with a network topology in-
tended to model a hierarchy of caches that might
eventually exist in the Internet. We placed a top-
level cache at each U.S. regional network and at
each country outside the United States. We then
placed lower-level caches according to the host
count in each domain: domains with more than 200
hosts were given an internal caching hierarchy, do-
mains with 50-199 hosts were given a single cache,
and domains with fewer than 50 hosts directly ref-
erenced their parent’s domain’s caches. We then
placed the caches into a hierarchy using a subset
of Internet routes (collected using traceroute), so
that domains were connected to top-level caches in
proportion to the number of routes that actually
connect each regional network.

®In the case of HTTP the fetch can be avoided by using
the “if-modified-since” feature. Also, the last-modified time
could be retrieved using the HTTP “HEAD” command.

We found that TTL-based consistency saved
network bandwidth over hierarchical invalidation

for TTLs in excess of five days, but that at this-

TTL, twenty percent of references are stale.

Note that achieving a well-working hierarchi-
cal invalidation scheme will not be easy. First,
hierarchical invalidation requires support from all
data providers and caches. Second, invalidation of
widely shared objects will cause bursts of synchro-
nization traffic. Finally, hierarchical invalidation
cannot prevent stale references, and would require
considerable complexity to deal with machine fail-
ures.

At present we do not believe hierarchical in-
validation can practically replace TTL based con-
sistency in a wide-area distributed environment.
However, part of our reluctance to recommend hier-
archical invalidation stems from the current infor-
mal nature of Internet information. While most the
data available on the Internet today cause no prob-
lems even if stale copies are retrieved, as the Inter-
net evolves to support more mission critical needs,
it may make sense to try to overcome the hurdles
of implementing a hybrid hierarchical invalidation
mechanism for the applications that demand data
coherence.

5 Experience

5.1 Transparency

Of our goals for speed, efficiency, portability and
transparency, true transparency was the most dif-
ficult to achieve. Web clients expect caches and
firewall gateways to translate FTP and gopher doc-
uments into HTML and transfer them to the cache
via HTTP, rather than simply forwarding refer-
enced objects. This causes several problems. First,
in HTTP transfers, a MIME header specifying an
object’s size should appear before the object. How-
ever, most FTP and gopher servers cannot tell an
object’s size without actually transferring the ob-

ject. This raises the following problem: should the -

cache read the entire object before it begins for-
warding data so that it can get the MIME header
right, or should it start forwarding data as soon
as possible, possibly dropping the size-specifying
MIME header? If the cache reads the entire object
before forwarding it, then the cache may inject la-
tency in the retrieval or, worse yet, the client may
time out, terminate the transfer and lead the user
to believe that the URL is unavailable. We de-

cided not to support the size specification to avoid
the timeout problem.

A related problem arises when an object ex-
ceeds the configured maximum cacheable object
size. As implemented, our cache currently trun-
cates and appends an error message to it. While
this is an implementation rather than design limi-
tation,.it can arise on occasion.

Web clients, when requesting a URL, transmit
a MIME header that details the viewer’s capabil-
ities. These MIME headers differ between Mosaic
and Netscape as well as from user to user. Vari-
able MIME headers impact performance and trans-
parency. As it happens, the Mosaic MIME headers
average about a kilobyte and are frequently frag-
mented into two or more IP packets. Netscape
MIME headers are much shorter and often fit in
a single IP packet. These seemingly inconsequen-
tial details have major impact that force us to trade
transparency for performance.

First, if a user references an object first with
Netscape and then re-references it with Mosaic, the
MIME headers differ and officially, the cache should
treat these as separate objects. Likewise, it is likely
that two Mosaic users will, when naming the same
URL, generate different MIME headers. This also
means that even if the URL is a hit in a parent
or sibling cache, correctness dictates that the re-
quested MIME headers be compared. Essentially,
correctness dictates that the cache hit rate be zero
because any difference in any optional field of the
MIME header (such as the user-agent) means that
the cached objects are different because a URL does
not name an object; rather, a URL plus its MIME
header does. Hence, for correctness, the cache must
save the URL, the object, and the MIME header.
Testing complete MIME headers makes the parent-
sibling UDP ping protocol expensive and almost
wasteful. For these reasons, at present we do not
compare MIME headers.

Second, some HTTP servers (possibly hand-
crafted servers implementing only a portion of the
HTTP protocol) close their connection to the client
before reading the client’s entire MIME header.
Their underlying operating system evokes a TCP-
Reset control message that leads the cache to be-
lieve that the request failed. The longer the client’s
MIME header, the higher the probability that this
occurs. This means that Mosiac MIME headers

- cause this problem more frequently than Netscape

MIME headers. Perhaps for this reason, when it re-
ceives a TCP-Reset, Mosaic transparently re-issues
the request with a short, Netscape-length MIME
header. This leaves us with an unmaskable trans-
parency failure since the cache cannot propagate

TCP-Resets to its clients. Instead, the cache re-
turns a warning message that the requested ob-

ject may be truncated, due to a “non-conforming”
HTTP server.

Third, current HTTP servers do not mark ob-
jects with a TTL, which would assist cache con-
sistency. With absence of help from the HTTP
servers, the cache applies a set of rules to deter-
mine if the requested URL is likely a dynamically
evaluated (and hence uncacheable) object. Some
news services replace their objects many times in
a single day, but their object’s URLs do not im-
ply that the object is not cacheable. When the
user hits the client’s “reload” button on Mosaic
and Netscape, the client issues a request for the
URL and adds a “don’t-return-from-cache” MIME
header that forces the cache to (hierarchically) fault
in a fresh copy of an item. The use of the “reload”
button is the most intrusive aspect of the cache to
users.

Fourth, both Mosaic and Netscape contain a
small mistake in their proxy-gopher implementa-
tions. For several months, we periodically re-
reported the bug to Netscape Communications
Corp., NCSA, and Spyglass, Inc., but none of these
organizations chose to fix the bug. Eventually we
modified the cache to avoid the client’s bugs, forc-
ing the cache to translate the gopher and FTP pro-
tocols into properly formatted HTML.

Note that the Harvest cache’s encapsulating
protocol (see Section 2.2) supports some of the
features that the proxy-http protocol sacrifices in
the name of transparency. In the future, we may
change cache-to-cache exchanges to use the encap-
sulating protocol.

5.2 Open Systems vs. File Systems

The problems we faced in implementing the Har-
vest object cache were solved a decade ago in the
operating systems community, in the realm of dis-
tributed file systems. So the question naturally
arises, “Why not just use a file system and dump
all of this Web silliness?” For example, Transarc
proposes AFS as a replacement for HTTP [19].

AFS clearly provides better caching, replica-
tion, management, and security properties than the

current Web does. Yet, it never reached the point.

of exponential growth that characterizes blossom-
ing parts of the Internet infrastructure, as has been
the case with TCP/IP, DNS, FTP, Gopher, WWW,
and many other protocols and services. Why would
the Internet community prefer to rediscover and

10

reimplement all of the technologies that the oper-
ating systems community long ago solved?

Part of the answer is certainly that engineers
like to reinvent the wheel, and that they are nat-
urally lazy and build the simplest possible system
to satisfy their immediate goals. But deeper than
that, we believe the answer is that the Internet pro-
tocols and services that become widespread have
two characterizing qualities: simplicity of installa-
tion/use, and openness. As a complex, proprietary
piece of software, AFS fails both tests.

But we see a more basic, structural issue: We
believe that file systems are the wrong abstraction
for ubiquitous information systems. They bun-
dle together a collection of features (consistency,
caching, etc.) in a way that is overkill for some ap-
plications, and the only way to modify the feature
set is either to change the code in the operating sys-
tem, or to provide mechanisms that allow applica-
tions selective control over the features that are of-
fered (e.g., using ioctls and kernel build-time op-
tions). The Internet community has chosen a more
loosely coupled way to select features: a la carte
construction from component technologies. Rather
than using AFS for the global information ser-
vice, Internet users chose from a wealth of session
protocols (Gopher, HT'TP, etc.), presentation-layer
services (Kerberos, PGP, Lempel-Ziv compression,
etc.), and separate cache and replication services.
At present this has lead to some poor choices (e.g.,
running the Web without caching support), but
economics will push the Internet into a better tech-
nical configuration in the not-too-distant future.
Moreover, in a rapidly changing, competitive multi-
vendor environment it is more realistic to combine
features from component technologies than to wrap
a “complete” set in an operating system.

6 Related Efforts

There has been a great deal of research into
caching. We restrict our discussion here to wide
area network caching efforts.

One of the earliest efforts to support caching in
a wide area network environment was the Domain
Naming System [16]. While not a general file or
object cache, the DNS supports caching of name
lookup results from server to server and also from
client to server °, using timeouts for cache consis-
tency. The hierarchical caching structure of the

®The most common resolver client library implementation
(BIND) does not provide client caching.

DNS was the basis for part of the design of the
Harvest cache.

Sheltzer et al. investigated the use of name
caching to reduce delays for remote operations [18].
The Harvest cache also caches name lookups.

AFS provides a wide-area file system environ-
ment, supporting whole file caching [13]. Unlike
the Harvest cache, AFS handles cache consistency
using a server callback scheme that exhibits scal-
ing problems in an environment where objects can
be globally popular. The Harvest cache implemen-
tation we currently make available uses timeouts
for cache consistency, but we also experimented
with a hierarchical invalidation scheme (see Sec-
tion 4). Also, Harvest implements a more general
caching interface, allowing objects to be cached us-
ing a variety of access protocols (FTP, Gopher, and
HTTP), while AFS only caches using the single
AF'S access protocol.

Gwertzman and Seltzer investigated a mecha-
nism called geographical push caching [11], in which
the server choses to replicate documents as a func-
tion of observed traffic patterns. That approach
has the advantage that the choice of what to cache
and where to place copies can be made using the
server’s global knowledge of reference behavior. In
contrast, Bestavros et al. [10] explored the idea
of letting clients make the choice about what to
cache, based on application-level knowledge such
as user profiles and locally configured descriptions
of organizational boundaries. Their choice was mo-
tivated by their finding that cache performance
could be improved by biasing the cache replace-
ment policy in favor of more heavily shared local
documents. Bestavros also explored a mechanism
for distributing popular documents based on server
knowledge [3].

There have also been a number of simulation
studies of caching in large environments. Using
trace-driven simulations Alonso and Blaze showed
that server load could be reduced by 60-90% |1,
2]. Muntz and Honeyman showed that a caching
hierarchy does not help for typical UNIX work-
loads [17]. A few years ago, we demonstrated
that F'TP access patterns exhibit significant shar-
ing and calculated that as early as 1992, 30-50% of
NSFNET traffic was caused by repeated access to
read-only F'TP objects [9].

Finally, there have been several network ob-
ject cache implementations, including the CERN
cache [15], Lagoon [6], and the Netscape client
cache. Netscape uses a 5 MB cache at each client,
which can improve client performance, but a single
user might not have a high enough hit rate to af-

11

fect network traffic substantially. Both the CERN
cache and Lagoon effort improve client performance
by allowing alternate access points for heavily pop-
ular objects. Compared to a client cache, this has
the additional benefit of distributing traffic, but
the approach (forking server) lacks required scal-
ability. Harvest is unique among these systems in
its support for a caching hierarchy, and in its high
performance implementation. Its hierarchical ap-
proach distributes and reduces traffic, and the non-
blocking /non-forking architecture provides greater
scalability. It can be used to increase server perfor-
mance, client performance, or both.

7 Summary

Internet information systems have evolved so
rapidly that they postponed performance and scal-
ability for the sake of functionality and easy de-
ployment. However, they cannot continue to meet
exponentially growing demand without new infras-
tructure. Towards this end, we designed the Har-
vest hierarchical object cache.

This paper presents measurements that show
that the Harvest cache achieves better than an or-
der of magnitude performance improvement over
other proxy caches. It also demonstrates that
HTTP is not an inherently slow protocol, but
rather that many popular implementations have ig-
nored the sage advice to make the common case
fast [14].

Hierarchical caching distributes load away from
server hot spots raised by globally popular informa-
tion objects, reduces access latency, and protects
the network from erroneous clients. High perfor-
mance is particularly important for higher levels in
the cache hierarchy, which may experience heavy
service request rates.

The Internet’s autonomy and scale present dif-
ficult challenges to the way we design and build
system software. Once software is released, both
its merits and its bugs are with us forever. For
this reason, the real-world complexities of the In-
ternet make one face difficult design decisions. The
maze of protocols, independent software implemen-
tations, and well-known bugs that comprise the
Internet’s upper layers, frequently force tradeoffs
between design cleanliness and operational trans-
parency. This paper discusses many of the tradeoffs
forced upon us.

Software and Measurement Data

The Harvest cache runs under several operating
systems, including SunQOS, Solaris, DEC OSF-1,
HP/UX, SGI, Linux, IBM AIX, and Apple AUX.
Binary and source distributions of the cache are
available from http://excalibur.usc.edu. The test
code and the list of URLs employed in the perfor-
mance evaluation presented here are available from
http://excalibur.usc.edu/experiments. The reader
can get information about the overall Harvest sys-
tem from http://harvest.cs.colorado.edu/.

Acknowledgements

This work was supported in part by the Advanced
Research Projects Agency under contract number
DABT®63-93-C-0052. Danzig was also supported
in part by the Air Force Office of Scientific Re-
search under Award Number F49620-93-1-0082,

and by a grant from Hughes Aircraft Company

under NASA EOSDIS project subcontract number
ECS-00009, and by National Science Foundation
Institutional Infrastructure Grant Number CDA-
921632. Schwartz was also supported in part by
the National Science Foundation under grant num-
bers NCR-9105372 and NCR-9204853, an equip-
ment grant from Sun Microsystems’ Collaborative
Research Program, and from the University of Col-
orado’s Office of the Vice Chancellor for Academic
Affairs.

The information contained in this paper does
not necessarily reflect the position or the policy of
the U.S. Government or other sponsors of this re-
search. No official endorsement should be inferred.

We thank John Noll for writin the initial cache
prototype. We thank Darren Hardy and Duane
Wessels for all of the work they have done on inte-
grating the cache into the overall Harvest system.

References

[1] Rafael Alonso and Matthew Blaze. Long-term
caching strategies for very large distributed file
systems. Proceedings of the USENIX Summer
Conference, pages 3-16, June 1991.

Rafael Alonso and Matthew Blaze. Dynamic
hierarchical caching for large-scale distributed
file systems. Proceedings of the Twelvth Inter-
national Conference on Distributed Computing
Systems, June 1992,

12

[3]

[7]

[11]

Azer Bestavros. Demand-Based Document
Dissemination for the World-Wide Web. Com-
puter Science Department, Boston University,
February 1995. Avail-
able from ftp://cs-ftp.bu.edu/techreports/95-
003-web-server-dissemination.ps.Z.

Nathaniel Borenstein and Ned Freed. RF
1521: MIME (Multipurpose Internet Mail Ex-
tensions) part one: Mechanisms for specifying
and describing the format of Internet message
bodies, September 1993.

C. Mic Bowman, Peter B. Danzig, Darren R.
Hardy, Udi Manber, and Michael F. Schwartz.
The Harvest information discovery and ac-
cess system. Proceedings of the Second Inter-
national World Wide Web Conference, pages
763-771, October 1994.

Paul M. E. De Bra and Reiner D. J. Post. In-
formation Retrieval in the World-Wide Web:
Making client-based searching feasible. Avail-
able from http://www.win.tue.nl/win/cs/is-
/reinpost/www94 /www94.html.

Hans-Werner Braun and Kimberly Claffy.
Web traffic characterization: an assessment of
the impact of caching documents from NCSA’s
web server. In Second International World
Wide Web Conference, October 1994.

Peter B. Danzig, Katia Obraczka, and Anant
Kumar. An analysis of wide-area name server
traffic: A study of the Domain Name System.
ACM SIGCOMM 92 Conference, pages 281—
292, August 1992.

Peter B. Danzig, Michael F. Schwartz, and
Richard S. Hall. A case for caching file ob-
jects in internetworks. ACM SIGCOMM 93
Conference, pages 239-248, September 1993.

Bestavros et al. Application-level document
caching in the Internet. To appear, Work-
shop on Services in Distributed and Net-
worked Environments, Summer 1995. Avail-
able from ftp://cs-ftp.bu.edu/techreports/95-
002-web-client-caching.ps.Z, January 1995.

James Gwertzman and Margo Seltzer. The
case for geographical push-caching. To
appear, HotOS Conference, 1994. Avail-

able as ftp://das-ftp.harvard.edu/techreports-
/tr-34-94.ps.gz.

Darren R. Hardy and Michael F. Schwartz.
Harvest wuser’s manual. Technical re-
port, Department of Computer Science, Uni-
versity of Colorado, Boulder, Colorado,

[14]

[15]

[16]

[17]

[18]

February 1995. Version 1.1. Available
from http://harvest.cs.colorado.edu/harvest-
/doc.html.

John Howard, Michael Kazar, Sherri Menees,
David Nichols, M. Satyanarayanan, Robert
Sidebotham, and Michael West. Scale and per-
formaiice in a distributed file system. ACM
Transactions on Computer Systems, 6(1):51-
81, February 1988.

Bulter Lampson. Hints for computer system
design. Operating Systems Review, 17(5):33-
48, Oct 10-13, 1983.

Ari Luo-
tonen, Henrik Frystyk, and Tim Berners-Lee.
CERN HTTPD public domain full-featured
hypertext/proxy server with caching, 1994.
Available from http://info.cern.ch/hypertext-
/WWW /Daemon/Status.html.

Paul Mockapetris. RFC 1035: Domain names
- implementation and specification. Technical
report, University of Southern California In-
formation Sciences Institute, November 1987.

D. Muntz and P. Honeyman. Multi-level
caching in distributed file systems - or - your
cache ain’t nuthin’ but trash. Proceedings of
the USENIX Winter Conference, pages 305—
313, January 1992.

A. B. Sheltzer, R. Lindell, and Gerald J.
Popek. Name service locality and cache design
in a distributed operating system. Proceedings
of the Sizth International Conference on Dis-
tributed Computing Systems, pages 515-522,
May 1986.

Mirjana Spasojevic, Mic Bowman, and Alfred
Spector. Information Sharing Over a Wide-
Area File System. Transarc Corporation, July
1994. Available from ftp://grand.central.org-
/darpa/arpa2/papers/usenix95.ps.

Kurt Jeffery Worrell. Invalidation in Large
Scale

Network Object Caches. Department of Com-
puter Science, University of Colorado, Boul-
der, Colorado, December 1994. M.S. Thesis,
available from ftp://ftp.cs.colorado.edu/pub-
/cs/techreports/schwartz/Worrell Thesis.ps.Z.

13

