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Improving Background Multiv-ariate Normality and
Target Detection Performance Using Spatial and

Spectral Segmentation
(Invited Paper)

David W. Messinger
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-Rochester, NY 14623
Email: messinger@cis.rit.edu

Abstract—Target deteetion in reflective hyperspectral imagery

" generally invalves the application of a spectral matched filter
on a per-pixel basis to creatc an image of the target likelihood
of occupying each pixel. Stochastic (or unstructured) target
detection tcchniques require the vser to define an estimate of the
background mean and covariance from which to separate out the
desired targets in the image, Typically, scene-wide statistics are
used, although it is simple to show that this methodology does not
produce sufficiently multivariate rormal backgrounds, nor does
it necessarily represent the best suppression of likely false alarms.
This technigue can be improved on by segmentation methods that
selectively choose which pixels best represent the background for

a particular test pixel amd / or target spectrum, Here, several

spatial and spectral segmentation techniques are presented and
improved target detection performance over scene-wide statistics
is shown for a common target in two data sets with different
seene content, Results are presented in the form of Average
False Alarm Rates and a Chi-squared goodness of fit measure
of the background multivariate normality. Improvements are
possible using segmentation methods over global estimation of
background mean and covariance. However, the best method of
background characterization depends strongly on the spatial and
spectral characteristics of the target of interest and scene content,

I. INTRODUCTION

Target detection in hyperspectral imagery covering the re-
flective portion of the electromagnetic spectrum has long been
a topic of interest [1]-{3]. Much work hes been done inves-
tigating various fypes of detectors with the goal of optimum
separation between the background and target spaces. This has
produced two general families of detectors. Structured detec-
tors characterize the background using a geometrical model
(end-members -or basis vectors) while unstructured detectors
characterize the background using first and second order
statistics [3]. Unstructured detectors are generally variations
on .the Matched Filter formalism that inherently makes three
assumptions about the application of first and second order
statistics to the target detection problem. First, the background
i$ consideted homogeneous and exhibits multivariate Gaussian
behavior. Second, the covarianee of the background spectrum
providing the interference with the target signature is identical
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- to the covariance of the background training pixels. Third, the .

target and background spectra must corgbine in an additive
fashion [3]. These assumptions are not necessarily well met
for globally computed means and covariances in hyperspectral
magery.

This work seeks to improve methods for background char-
acterization by implementing various segmentation techniques
[4] to better adhere to the assumptions deseribed above. Spatial
and spectral segmentation -methods have been applied to
various particular problems {1}, [5}-[7]. Here, existing meth-
ods are implemented along with new methods, all of which
are compared against a common target in two hyperspectral
images of varying scene content.

This paper is organized in the following way. Section II
presents the spatial and spectral segmentation methods for
background characterization developed here. Section III de-
scribes the experiment conducted, including data wsed and
metrics applied. Section IV presents the results of the exper-
iment and Section V presents a summary of the conclusions
drawn from this work.

II. BACKGROUND ESTIMATION METHODS

The unstructured detector used in this work is the General-
ized Likelihood Ratio Test (GLRT) as derived by Kelly (1989).
The GLRT requires estimates of the background mean spec-
trum and covariance matrix to suppress the background and
highlight pixels containing targets. The GLRT as implemented
here is given as

(dT E“iw)
dq‘z_ld) (1 + :L‘TE"la:)

where Tgrrr represents the returned test statistic for a
particular pixel, d is the desired target spectral vector, ¢ is
the test pixel specteal vector, both of which have been de-
meaned with g, the estimate of the background mean, and
is the estimate of the background covariance. Superscript T
represents the vector transpose, -

Torar = ( 1

20060505146




SAFK 1407606 10:44AM

Of primary intercst in this work is the estimation of x and
. Global estimation of these quantities uses all pixels in
the image, and can be shown to violate the assumptions of
the matched filter described above. Also, assuming the target
lies within the scene, global estimation includes the target
spectoum into the characterization of the background degrading
algorithm performance.

A. Spatial Segmentation

Spatial segmentation seeks to improve the background esti-
mate by selection of a region that is either spatially proximal
to the pixel under test, or selection of a large uniform area
in the image that is believed to be target-free improving
the assumptions of multivariate normality. The first spatial
scgmentation method was implemented as a sliding window
similar to the original implementation of the RX algorithm [1],
but using the GLRT detector above (eqn. 1). The algorithm was
designed specifically to increase the multivariate normality of
the background while also suppressing false alarms due to
local backgrounds. As implemented here, four windows are
identified for the spatial segmentation: a detection window, an
exclusion window, a mean window, and a covariance window,
The detection window is chosen as a single pixel giving
each pixcl under test had & mique background estimate. The
exclusion window is a region around the test pixel(s) that
is excluded to emsure that no target pixels are included in

_the estimation of the background statistics. The mean and
covariance windows are as their names imply, windows over
which the first and second order statistics are computed, Here
the size of the covariance window is varied.

A second sparial segmentation scheme used a “target ap-
proach” method, Large, contiguous, single-class regions were
pre-selected that were known to be target-free and were used
to estimate the background mean and covariance. This method
could be applied in the event that data were acquired “on
approach” to the target region over an area similar in spectral
class makeup. Specific target approach regions used here are
described in Section HI-A.

B. Spectral Segmentation

Spectral segmentation uses the spectral characteristics of the
image pixels to cluster them into distinct classes. Backgronnd
estimation can then be performed based on these spectral
classes as opposed to the spatial regions as above. This method
should be particularly effective for fully-resolved targets with
“impersonator” (or spectrally similar) false alarms. Here the
image was classified using the Stochastic Expectation Maxi-

toization algorithm with the Gaussian Maximum Likelihood as -
a discrimination function [9]. To investigate the effectiveness

of background estimation with different segmentation methods
independently from their ability to exclude target species,
targets were perfectly excluded (using a target mack) from
the classifications when estimating ¢lass covariances, Several
methods for choosing the appropriate class for background
-mean and covariance cstimation are possible and those de-
veloped here are described below and presented in Table I

TABLE!
NAMING CONVENTION FOR THE SPECTRAL SUBSETTING METHODS.

Covanance Estimation Method
Target | Pixel Neighbor Nesghbor
Guided | Guided | Guided Mode) | Guided ;M.ixcd) i
Local Mean | IMIG | LMPG LMNG-M . {
Class Mean | CMIG | CMPG CMNG-M CMNG-X

Two methods for estimation of the background mcan are
considered. The Local Mean method is identical to the above-
mentioned spatial sliding window method. The Class Mean
method estimates the background mean as the spectral mean
of the pixels in the class to which the test pixel was assigned.
There are several ways to choose a training set to estimate
the background covariance. Target Guided estimation uses the
pixels in the class that is spectrally closest (in a Mahalanobis
distance sense) to the target pixel. This assumes that the
pixels spectrally most like the target are the most likely
false alarms in the image and should be suppressed, Pixel
Guided covariance estimation is similar, but the pixels in
the class to which the test pixel is assigned are used in the
caleulation. Neighbor Guided (Mods) uses the pixels in a tofus,
approximately twice the size of the target, around the test
pixel. The classes to which the pixels in this torus have been
assigned are polled, and the covariance of the class that is most
common is used. Neighbor Guided (Mixed) uses all the pixels
in the torus, but computes a covarance based on a mixtote
of the class covariances (weighted by the class representation
in the neighborhood) represented in the torus. The Neighbor
Guided methods substitate the well-formed statistics from
pre-clustering with the more varizble statisties of a sliding
covariance window. This may negatively impact detection
performance, though, especially along transition windows.

III. EXPERIMENT DESCRIPTION
A. Data

Test data used here were collected with the HYDICE air-
botne hyperspectra) sensor [10] and is part of 4 collected set of
data, including ground truth measurements and target masks,
known as the “Canonic Data Set”. Two scenes were used, @
“Forest™ scene and a “Desert™ scene. Images of each are shown
in Figure 1. The image containg 210 spectral bands, After

“removal of spectral channels in strong atmospheric absorption-

features and those containing strong semsor artifacts, 145
spectral channels were left for processing. The radiometrically
calibrated cubes were converted to surface reflectatice using
the large calibration panels in the image as reference targets
for the Empirical Line Method. Several man-made targets were
placed in each scene during the respective collections. Here,
one vehicle target was used as the target of interest to compare
how the different backgrounds in the two scenes affected the
ability to detect the target wsing the methods described above.
Target masks accompanying the data set were used to identify
fully resolved target pikels and sub-pixel targets.
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Fig. 1.

B. Performance Metrics

Two metrics were used to characterize the background
characterizetion methods described above. A measurement of
the Multivariate Normality (MVN) of the background was
coraputed to assess the normality achieved in the background
segmentation method. Also, algorithm detection performance
was measured with an Average False Alarm Rate (AFAR).
The AFAR calculstion used the target mask to identify fully
resolved and sub-pixel tarpet pixels. All AFAR czlculations

_ are op a per-pixel basis, as opposed to & per-targe! basis.

To compute the AFAR for cach background characterization
method, Recsiver Operation Characteristic (ROC) curves were
made for the target and each method based on the target
pixel mask. The AFAR was calculated as an estimpation of
the ar¢a sbove the ROC curve. For this work, a full AFAR
was computed. '

The moultivariate normality (MVN) of the background used
was estimated through use of a chi-squared test {11] to test
cach band of the image separately. In the chi-squared test,

a plot is constucted comparing the familiar Mahalanobis

distatce of the deviation from the mean with the appropriate
chi-squared distribution. For multivariate normal data, the two
metrics will be related by a slope of unity with zero bias,
The Mahzlanobis distances are ordered smallest to largest
and plotted against the upper percentiles of the chi-squared
distribution. The the goodness of fit” {GoF) of the data to
the nommal distribution is determined through a correlation
coefficient test, reducing the curve to a single metrie, where a
lower value represents greater MVN [4].

IV. RESULTS

‘Results are shown in Figure 2 demonstrating the Multivari-
ate Normality characteristics for each background chosen in
‘¢ach scene. Here, lower values represent a “more normal”
background. MVN Goodnes of Fit values for the three worst
cases are beyond the scale of the figure, and these methods
¢learly do not adhere to the assumption of a multivariate nor-
mal backgronnd. For both cases, the scene-wide background

- is far from multivariate normal and some of the spectrally-
identified classes stray from normality ag well. These classes

- are generally the “bright” classes (sand classes in the Desert
scene and light ground and grass in the Forest scene). How-
ever, all other methods of segmenting the background produce

(b) Degert Scene

Data used in the experiment with Target Approach regions hightighted.

classes of approximately equal MVN (as measured by the
metric employed here). In the Neighbor Guided spectral pre-
clustering techniques, though, if the neighborhood of the test
pixel comtains several pixels in the classes exhibiting poor
MVN, this will impact the results for that pixel.

Figure 3 shows the Average False Alarm Rate (AFAR) re-
sults for the various methods used to segment the background.
Several conclusions can be drawn from these results demon-
strating how techniques used to detect the same target in two
different scenes can have dramatically different results. First,
the full pixel targets in the Forest scene were obviously of
relatively high contrast against the background as all methods
detected the full pixel targets almost perfectly. This is not the
case for the Desert scene where, while the performance against
the full pixel targets is generally good, several techniques have
difficulty detecting the target. Conversely, the sub-pixel targets
were generally detected with Jower AFAR in the Desert scene
than in the Forest scene. Here, false alarms are expected to be
due to local speetral mixture of the signal. These segmentation
methods applied here were better able to suppress the local
mixture FAs in the Desert scene than in the Forest scene. The
Cluster Mean, Neighbor Guided - Mixed method performed
particularly poorly for the Desert scene - dramatically worse
than any other method, and significantly worse than as applied
to the Forest scene. Clearly, in the Desert scene the target was
located in a npeighborthood where a mixture of covariances
impacted the target detection. This is. contrasted with the
Cluster Mean, Neighbor Guided - Mode method which was
one of the best performers for this target in both scenes.

V. SUMMARY AND CONCLUSIONS

Several methods for spatial and spectral segmentation of
byperspectral data were presented with the aim of better
understanding how to best estimate the background statistics
to' optimize target detection perforrpance. A common target
was used in two scenies of different spatial and spettral clutter
complexity. It is shown that improvements in the Multivariate
Normality of the scene-wide background using either spatial or
spectral segmentation is possible, although in these ¢ases this
is ot the limiting factor affecting performance. For the same
target identical detection methods show different performance
across the two seents. Based on this (and results from a larger
test set) it is currently unclear how to predict e priori what is
the best method for background characterization. 1t is likely
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Fig. 2. Multvariate Nomslity Test Results; TA - target approach régions; $W - sliding window sizes; SPC - spectral pre-clustering methods.
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Fxg. 3. Target Detection Performance: TA - target approach scgions; SW - sliding window sizes; SPC - spectral pre<chustering methods. Note that the y axis

is 1-AFAR so valucs close 1 onc represent good performance,

that this is both target and scenc'dependent, and more work
needs to bc done to identify the target and scene characteristics
that determine the optimal method.
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