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Introduction:

Periodic mass screening of asymptomatic women is rapidly gaining approval and
acceptance, and the population segment recommended for screening is increasing due to
increasing compliance, longer life expectancy, and earlier recommended age for initial
examination [1-3]. The large variability in a number of important aspects related to
mammography, as practiced in the U.S., resulted in the enactment of the Mammography
Quality Standards Act, which mandates accreditation of each program (facility, technical,
and professional) [4,5]. Shortages of expert mammographers in many locations, combined
with the desire to make it convenient for the patient to undergo the procedure, suggest that
there may be a need for high-quality tele-mammography systems that enable a distributed
acquisition-centralized expert review type solution to the problem, particularly in
underserved areas [6, 7]. The relatively high recall rates (5-15%) of screened women to
supplement information that was not ascertained during the initial visit (e.g. magnification
views, ultrasound) also make it desirable to enable physician "monitoring" and
"management" of remote underserved locations so that some patient-management decisions
can be made while the patient remains in the clinic [8-11]. In addition, a technologist who
observes a possible abnormality during the performance of the study could benefit from the
ability to communicate her/his suspicion, and an expert mammographer could review the
specific case, together with the technologist's observation, resulting in an improved and
perhaps a more timely diagnosis. Current practices result in increased patient anxiety and
added practice complexity and cost. Even in practices in the urban setting, recommendations
for recall are not always followed by the woman and eliminating the need to return to the
clinic through implementation of this concept, in particular in remote locations, could
increase overall compliance. Early attempts to develop and implement a practical tele-
mammography solution to this problem failed due to several significant technical problems
associated with acquisition, transmission, management, and display of the images and other
related information [12-14]. Many of these technical issues have been resolved in recent
years, but some remain [14-18]. Although an adequate communication infrastructure for
high-quality tele-mammography is available within some urban regions, the fact remains that
where it may be needed most (i.e. remote, non-urban locations), enabling (two-way)
communication systems remain limited to lower level communication capabilities. Other
communication technologies, such as satellites, are being evaluated for this purpose, but it is
not likely that these will displace lower level communication technologies in many
underserved areas for quite some time [19-23]. Hence, the problem of cost effective, timely
remote patient monitoring and management in many underserved areas is not a simple one.

As a part of this project, we assembled and evaluated a unique tele-mammography
system that enables improved communication between remote sites where physicians are not
always available during the mammographic acquisition process and a central location where
experts can review the acquired images shortly after acquisition and assess whether or not
additional procedures (e.g., spot compression, magnification views, ultrasound) are needed.
The system was designed based on prior preliminary experience acquired in our group during
ten years of research in this general area [24, 25]. It includes the use of a common carrier for
communication (Plain Old Telephone System, POTS) and other "low level" communication
capabilities, wavelet-based image compression for data reduction, and the optional
incorporation into the transmitted information of other text information such as location of
suspected abnormality, and CAD results. The main goal was to assess in a step-by-step,
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clinically simulated approach whether the use of such a system could potentially reduce
recall rates in the remote sites. Other objectives regarding measurements of actual practice
parameters in a large academic based screening mammography practice were performed.
Last, ways to improve communication between the technologist at the remote site and a
radiologist at the central site, as well as creating an environment for "more active"
participation of the technologist in the diagnostic process, were also explored.

Body:

Since the initiation of the project on September 1, 2000, we have been executing step
by step the tasks listed in the Statement of Work, as originally submitted. As will be
explained in the body of this final report, our initial findings resulted in the addition of
several technical and observational tasks that were successfully performed in order to
maximize our ability to learn about the practical applications being investigated in this
project. As an example, during year four of the project, a significant new addition
(capability) was added to the system as a result of our previous observations from the
clinically simulated experiments. We incorporated the ability to submit (transmit from the
remote sites) both prior mammograms (when available) as an integral part of the examination
to be evaluated as well as an interactive overlay drawing of the examination with location(s)
marking of suspected abnormality(s) to be reviewed by a radiologist. This required a
substantial technical effort and ultimately resulted in a major software upgrade of the system.
Hence, substantial parts of the last clinically simulated experiment were performed during a
one year no-cost extension of the project.

Under Task 1, we performed the following:

All subtasks listed under this task were completed. We assembled and tested a multi-
site tele-mammography system that met (and in several respects exceeded) our originally
proposed specifications. The status of the tasks described under this category is as follows:

a) Select and Purchase Equipment: During year one of the project, we purchased
and tested a significant amount of equipment in support of the project that was
funded mainly from other sources. This includes, but is not limited to, computers,
laser printers and film digitizers. During the selection phase, we performed a
comprehensive side-by-side evaluation of the VIDAR and Lumisys film digitizers
to assess whether or not the CCD-based VIDAR digitizer could be used for this
purpose. Our assessment resulted in confirmation that the Lumisys film digitizer
was significantly more robust and that the signal-to-noise ratio at high frequencies
is significantly higher. In addition, the new digitizer raises the maximum optical
density to -3.8, which is a significant advantage over the older versions. As a
result, we purchased three additional digitizers for the performance of this project.
We also acquired (at no cost to the project) a Kodak 8600 model laser printer,
tested it, and developed an interface to control it remotely.

b) Convert Software to Windows Based: The general design of the tele-
mammography project was reconsidered, and software was written using the NT-operating
system to enable significantly more flexibility for the different applications that could be
implemented. This task was completed and after initial testing, refinements were performed.
All communication tasks have also been tested using the modified software.
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c) Develop Interface to FFDM Acquisition System: We designed and developed an
interface on the system to accept DICOM images that were acquired on FFDM systems. We
transferred FFDM images to the server and displayed these on the workstation at the central
site in addition to providing printing capability. All the functionality specifications were
tested, but our clinical practice postponed the transition to FFDM based screening (as we
reported in years 1-3 of the project) hence other than enabling the tele-mammography system
to accept FFDM based examinations (in a manner compatible with all other clinical
requirements), all of our clinically simulated studies throughout the project were film based.
Our own transition to a fully digital system is underway and will be completed by next
September (2006). However we are a large academic center and it is not clear at all that the
use of FFDM devices in remote "underserved" sites for screening purposes is likely to be
common or appropriate in the near future.

d) Develop a New User Interface for the Acquisition Sites: A remote site user
interface was completed and tested, both subjectively (by staff members and technologists)
and objectively (by sending over 100 cases through the system). After minor modifications
that were based on users' comments, our data entry and case-sending routines were finalized.

e) Complete Data Compression Software Module: A compression software scheme
compatible with JPEG 2000 was finalized and tested. The scheme allowed for a site-specific
selectable level of compression to be used. However after the initial testing was completed,
we fixed the compression levels for all sites (see below). In addition to the data compression
module, the approach we incorporated in the system includes a comprehensive tissue
segmentation routine followed by a wavelet transform and "dialable" data compression
module. This segmentation routine enables a very efficient data reduction by eliminating
non-tissue regions of the image without any loss of information.

f) Develop and Refine Measures of Image Fidelity that can be used to
Automatically Monitor and Adjust (if needed) Compression Levels on an Image-by-
Image Basis: Based on two independent tests (see evaluation section below), at two
compression levels, 50:1 and 75:1, we enabled a "dial-up" compression capability in the
system. However, we also found out that the physicians' high level of acceptance of either
compression level practically eliminated the need for this "selectable" option. Therefore, we
proceeded using the system with a fixed level of compression (75:1), at all sites.

g) Integrate all Software Modules: All software modules were successfully integrated.

h) Develop Display Protocols for the Workstation: User-friendly display protocols
were developed and tested extensively (see system evaluation section).

i) Assemble System: The system was assembled as proposed.

j) Test System in Laboratory: The system was tested extensively in the laboratory.

k) Trouble-Shoot. Refine, and Finalize System: Through refinements, we increased
the operational ease-of-use and reliability of the system and finalized the base configuration
for implementation and installation at remote sites.
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1) Prepare Clinical Sites for Implementation: All three remote sites were prepared for
system implementation as required.

Additional development efforts:
As our step-by-step clinically simulated experiments progressed, we kept adding
functionality to the system. These changes required modifications that enabled an integrated,
easy to use functionality and in year four of the project we decided to include prior images
(examinations) to the case folder. Ultimately, we enabled the following tools on the system:
1) text messaging (namely, two-way "chat" between the remote technologist and central
radiologists), 2) marking of suspicious locations (namely, the technologist marks suspicious
regions on an image overlay), 3) CAD results, 4) prior mammography reports, and 5) prior
images (when available). The reason for the additional tools was to provide the radiologist at
the central location with all possible tools to enable better assessment of the examinations
being sent for review (obviously, this is all done in addition to the actual mammographic
images in question). Hence the last task ("high volume clinically simulated demonstration
and evaluation") was performed with all tools available to the technologists (at the remote
sites) and the physicians (at the central site). A major upgrade was installed and tested for
this purpose in year four of the project.

Under Task 2, we performed the following:

a) All needed equipment was moved to the appropriate locations at the three remote
sites. At each location, the equipment (send station and digitizer) was located at an easily
accessible place. At the central site, we placed the "receive" workstation in a "screening"
reading room at a central location within our Breast Center. This required some construction
that was completed at no cost to the project.

b) The complete system was reassembled on location at all sites.

c) Technical and operational performance levels were retested on site.

d) Different evaluation protocols for initial system evaluations were developed and
implemented.

1) 100 cases were randomly selected at each site and transmitted to a central site
to assess ease-of-use, reliability, reproducibility, and cycle times. The results clearly
indicate that cases from all sites at 15, 20, and 90 miles away can be transmitted with
a full duty cycle time (from data entry at remote site to display) that easily meets our
proposed specifications. A four-image case can be completed in less than seven
minutes using 75:1 compression, which is less than half the time we originally
specified.

2) We performed a multi-reader subjective assessment of image quality, and all
participating radiologists rated the quality as acceptable or better for the task at hand.

3) We evaluated differences in image quality on film and soft display at zero

(no), 50:1, and 75:1 compression ratios and found that only under extreme
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magnification, the 75:1 level can be identified (recognized), but image quality is not
significantly degraded for all practical purposes.

4) The design considerations and initial testing were published in comprehensive
SPIE reports (see references 3 and 8 in the "Reportable Outcomes" section).

Under Task 3, we performed the following:

1) Retrospective observer performance studies:

A step by step assessment protocol was implemented in this project. Four independent
observer performance studies were performed as information provided to the reader at the
remote site was incrementally increased. In the first study, 306 examinations of all types
(without a rigorous selection process) were sent from all sites and were read at the central site
by 5 radiologists. The study included a large number of cases that were (and some that were
not) suspected by the technologists at the remote site as possibly needing additional
procedures. The results suggested see table 1 that a large number of additional procedures
would be performed in the remote site in order to reduce recall rates (by approximately a
ratio of 3:1 or 433 additional procedures would have been needed to reduce recalls by 151).

All readers combined (same cases)
clinical read

recall no recall total
study recall 151 433 584

no
read recall 59 887 946

total 210 1320 1530
overall

agreement 1038
prob-

observed = 0.678
prob-

expected = 0.586
Kappa = 0.224

As a result, we performed three additional observer performance studies while
gradually increasing the amount of information transmitted to the central site. In all three
studies cases were specifically selected by the technologists when they felt during the QA
review of the examinations in question that the women would likely be recalled by the
radiologist for additional procedures.

A synopsis of the three observer performance studies in this area follows: registered,
experienced mammography technologists from three remote imaging sites transmitted 245
screening mammography exams to a central site (radiologists), which they (the technologists)
believed needed additional procedures. Four data components are transmitted from the
remote site: (1) image data - current exam mammography films digitized at 50 gm pixel
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dimensions; (2) text and graphic communication between the technologist and the radiologist
via a "chat" box in which the technologist can describe and mark suspicious regions on
integrated generic images; (3) prior patient reports when available; and (4) computer-aided
detection (CAD) results. At the central site images are displayed on a workstation consisting
of three high-resolution, portrait monitors. The image data with the CAD results overlaid are
displayed on two monitors and the chat box and prior reports on the third monitor. Seven
radiologists reviewed and rated the exams on the tele-mammography workstation and
indicated: (1) if additional procedures were recommended, (2) when appropriate, which
breast was involved, and (3) when appropriate, the specific recommended procedures. The
performance of the radiologists on the workstation was compared with the actual clinical
interpretation of the same examinations. Study 1 had two interpretation modes: (1) images
only and (2) images and technologist's text message. Study 2 had two modes: (1) images
and technologist's text message and (2) images, text message, and prior report. Study 3 had
three modes: (1) images, technologist's text message, and prior report; (2) images, text
message, prior report, and technologist's graphic location marks; and (3) images, text
message, prior report, graphic marks (location), and CAD results. Amongst other analyses,
we computed the potential improvements in terms of projected reduction in recall rates at the
remote sites and associated "costs" in terms of "unnecessary" additional procedures.

Results: Technologists were able to identify suspicious examinations that may
require additional procedures, but their "recommended" examinations amounted to a
substantially larger number compared with that of a clinical interpretation by a radiologist.
The screening exams were successfully transmitted, processed, reviewed, and rated. The
percent of exams recalled for recommended additional procedures (termed "recall") during
the actual clinical interpretation for Studies 1 (n = 130), 2 (n = 99), and 3 (n = 115) were
39.2%, 38.4%, and 42.2%, respectively. Tele-mammography Study 1; modes 1 and 2 had
mean recall rates of 73.3% (+/- 17.9) and 82.5% (+/- 16.2), respectively, and mean
agreements of 51.7% (+/- 5.5) and 48.7% (+/- 6.3), respectively. Study 2; modes 1 and 2 had
mean recall rates of 79.6% (+/- 12.3) and 77.5% (+/- 13.8), respectively, and mean
agreements of 52.3% (+/- 6.7) and 52.8% (+/- 7.0), respectively. Study 3; modes 1, 2 and 3
had mean recall rates of 72.3% (+/- 9.3), 72.3% (+/- 9.3), and 72.7% (+/- 9.2), respectively,
and mean agreements of 57.4% (+/- 4.6), 57.1% (+/- 3.9), and 56.7% (±/- 3.9), respectively.
However, it should be remembered that without radiologists' reviews 100 percent of these
women were "recommended" for additional procedures by the technologists.

In these studies, we demonstrated that between 70 and 85 percent of recalls (as
ultimately were decided during the clinical interpretation) could have been avoided, albeit at
a high "cost" of performing additional procedures on these women. As we increased the
information provided to the radiologist from "text message" alone to text message, prior
reports and a location overlay to all of the above plus CAD results the number of
"unnecessary" procedures recommended by the radiologists reduced progressively from 1.45
(246/183) to 1.26 (171/136) to 1.07 (216/202) per "saved" recall. As can be seen in the last
task this number was further reduced to 0.94 (81/86) during the last experiment (see task #5
below).

2) Clinical assessment of performance levels:

a. There are several aspects of the task that are worth noting. First we were "breaking
ground" in several respects that include but are not limited to the involvement of
technologists in the decision-making process (namely, which cases to send over to the

9



central site and why), and possibly the increased "reliance" of the radiologists on the
technologists' judgments. Our subjective assessments of this issue clearly indicated
that both radiologists and technologists welcomed increased communication. We
often heard comments like "the technologists often identify abnormalities before we
do and sometimes see thing we do not". However, our practice is a very established
one and it is not clear that this "reliance" and "trust" would exist in other practices.

b. As a part of this investigation, we assessed our clinical performance levels in the
traditional practice (without tele-mammography). We analyzed data available in our
databases concerning patient distributions and process-related information. This
includes, but is not limited to, the recall rate by physician, site, type, and reason for
recall. Our recall rates and cancer detection rates were found to be very stable for the
group of radiologists as a whole and individual radiologists as well.

c. We also reviewed records concerning the cycle time from the initial examination to a
definitive diagnosis for cases that were not being recalled, as well as cases that were.
One of the more interesting (and relevant) findings in this regard was the long cycle
time including scheduling (average was > 20 days at the time) between the patient's
call for an appointment due to a recall and the actual date of examination. This
highlights the potential benefit of the use of tele-mammography to reduce recall rates
(hence cycle time), in particular in busy practices such as ours. This information,
which is now reviewed monthly, generated a significant effort in our system
(including, but not limited to, performing diagnostic sessions during the weekends)
and we have been able to make substantial improvements in this regard.

d. During the project period, we completed a large study to assess the effect of the
introduction of CAD into our clinical environment and the relationship between recall
rates and detection rates for our ten highest volume radiologists. One of the important
issues that was raised in our group was the correlation (if any) between the recall and
detection rates of radiologists. This is an important point since there is a significant
pressure on radiologists to reduce their individual recall rates to below ten percent.
While we recognize the tremendous value of reducing recall rates without a
substantial degradation in detection rates (sensitivity), the question arises as to
whether or not higher recall rates are also generally associated with higher detection
rates. These studies involved the reviews of over 115,000 records and resulted in
important observations that were published in JNCI and Cancer (see publications
list). We strongly believe that the use of CAD will ultimately be an integral part of
the diagnostic process and some of our continuing efforts to develop and improve
CAD schemes were supported (only to a very minimal level) by this project (see
publications list).

e. As indicated above, we were not able to assess practice parameters for screening
mammography using FFDM because in our system the system had been used largely
in diagnostic procedures (rather than screening).
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Under Task 4, we performed the following:

a. CAD Software Module:
A software module specifically designed for the tele-mammography system was designed
and written. This module is different than our CAD development efforts in that it is very
flexible and any new CAD development in our research projects can be easily incorporated
into the system.

b. CAD Incorporation:
During the third year of the project we completed the design, implementation and testing
of the modular software set of routines that enable the incorporation of CAD into the tele-
mammography system at the remote (sending) sites prior to compressing the images and
transmitting the results to the central site.

c. CAD Technical Performance Evaluation:
The system was tested technically using over 100 cases, and after de-bugging, we
incorporated the final module into the operations. In the last two years, all transmitted cases
were processed by the CAD scheme and could be displayed on the workstation with and
without the CAD results at the operator's discretion. The technical performance
specifications of the system were not violated due to the incorporation of CAD because the
program is faster than the digitization process and is done in parallel to all other tasks while
the case (examination) is being processed.

d. CAD Operational and Clinical Use:
The operational use of CAD results was tested using a retrospective clinical review and

found acceptable. The clinical aspects of this added feature were evaluated in an observer
performance study.

e. Performance Analyses:
The impact of the use of CAD on radiologists' ability to make better interpretations in regard
to the need for additional procedures in specific cases was assessed. The result of this effort
was a reduction by -18% (1.26/1.07) in the recommended procedures per "saved" recall as
describe under task 3. As a result of this study, all cases transmitted to the central site in task
#5 included the CAD results, as well (see below).

Under Task 5, Clinically simulated almost real time transmission and reporting:

Under this task we performed several pilot studies throughout the project in preparation
for a simulated clinical study that took place during the fifth year (no cost extension). As
indicated, the reason for the delay was the finding that remotely determined
recommendations for additional procedures would remain high unless we transmit the
prior examinations (when available) together with the current examination of interest.
Once the system upgrade was completed, the performance of an "almost real time - high
volume" demonstration of the transmission of suspected cases at the remote sites and a
clinically simulated response from the central site commenced. During a period of five
months when over 4,000 screening examinations were performed at the three remote
sites, we asked the technologists to identify and send all cases (with all available related
information) they believed would need to be recalled during their QA procedures as they
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perform the screening procedure. During four real time experiments and nine simulated
real time experiments, radiologists reviewed all the information sent from the remote
sites and responded to the site. The real time experiments required that cases were sent
simultaneously from all three sites and that during the simulated experiments cases were
sent as they became available at each site. Per our protocol, the recommendations of the
radiologists were not acted upon but were stored and compared with the actual clinical
recommendations for the same examination at the clinic. 353 cases were sent and
reviewed by radiologists in this experiment and the results are summarized below.

All
readers clinical read

recall no recall total
study recall 86 81 167

no
read recall 36 150 186

total 122 231 353
overall

agreement 236
prob-

observed = 0.6686
prob-

expected = 0.5083
Kappa = 0.3259

The details of this effort are being written for a publication at this time but the essence of the
results indicated that: 1) The provision of the prior examinations improved performance
significantly as compared with our previous studies. 2) At the cost of 81 additional
procedures while the women could remain in the remote clinic and assuming the clinical read
would ultimately result in the 36 recalls that were not recommended remotely, 86 out of the
122 actual recalls (70.5%) could have been avoided. This finding is important for remote
underserved locations and the decision of whether such a practice is acceptable will depend
largely on the nature of the practice at the remote site.

During the five observer performance studies alone, we performed a total of 5440 clinically
simulated interpretations on the tele-mammography workstation that were each compared
with the actual recommendations made during the clinical interpretations of the same
examination.

Key Research Accomplishments:

During the last five years, we have been progressing according to the original plan
and were able to address a large number of the technical, operational and practice related
issues associated with the design, implementation, and clinically simulated testing of the
multi-site tele-mammography system. The key accomplishments were:

12



"* We designed, developed, implemented, installed and tested a unique, multi-site tele-
mammography system that meets (and in many areas exceeds) the technical
specifications we originally anticipated (and proposed).

"* We successfully and reliably transmitted over 2,800 examinations from three remote
sites to the central site (with minimal down time and technical problems). This set
includes 2,432 examinations that were used in the different studies and the remainder
were examinations sent (sometimes multiple times) for system testing purposes and
deleted after completion of the test.

"* We planned and executed a step-by-step comprehensive, technical, and clinical
assessment protocol in a clinically simulated environment.

"* We have been able to coherently engage a large team of administrative, technical,
clinical (i.e., technologist), and physician personnel in a large and complicated
project.

"* We carried out comprehensive reviews of the practice parameters and performance
levels of our radiologists in terms of recall and cancer detection rates with and
without the use of CAD.

"* We continually upgraded the system as needed with a major software revision in
response to radiologists' preferences during the performance of the specific task the
tele-mammography system was designed for.

"* We successfully reviewed a large number of cases on the workstation and generated a
clinically simulated response to the remote sites.

"* We completed five observer performance studies to assess both possible utility of the
system as well as agreement levels between the technologists and radiologists on
suspicious cases.

"* We have been able to increase the communication level between technologists and
physicians in regard to decision-making processes, and we are engaged in discussions
concerning a more extensive use of technologists as physician extenders in several
areas.

"* We demonstrated that in principle one can perform effectively and efficiently remote
management tasks and achieve a significant reduction in actual recall rates, with a
relatively limited increase in the number of women who would receive additional
procedures during their initial screening visit. This concept can be implemented in a
manner that only minimally affects workflow in a busy clinical environment.

Reportable Outcomes:

1) Publications and Presentations

As we developed and tested the system, several reports were generated. Some are
directly related to the design implementation and testing of the system and others are related
to practice assessment tasks that were performed. The clinically simulated study which was
performed during the last year is being analyzed and we are in the process of writing a
comprehensive article on this topic. We anticipate submission of this article before the end of
the year (2005). Published reports acknowledging this award, to date, Include:
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2) Other reportable outcomes:

The effort supported by this project helped us generate preliminary data and perhaps
more important several concepts that were used in support of three grant applications
that are currently funded:

1. "Rule Based CAD of Digitized Mammograms", PI: David Gur, source:
NIH, grant # CA077850

2. "Interactive CAD for Mammography", PI: Bin Zheng, source: NIH, grant
# CA101733

3. "The Laboratory Effect in Breast Cancer Detection Studies", PI: David
Gur, source: NIH, grant # EB003503

Personnel receiving pay from this effort:
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David Gur, Sc.D., Joseph K. Leader, Ph.D., Glenn S. Maitz, M.S., Yuan-Hsiang
Chang, Ph.D., Howard E. Rockette, Ph.D., Jules Sumkin, D.O., Xiao Hui Wang,
Ph.D., Bin Zheng, Ph.D., John M. Drescher, B.S., Amy H. Klym, B.S., Jennifer S.
Stalder, B.S., Christopher Traylor

All Radiologists and Technologists participating in the observer performance studies
of this effort were not paid directly from the grant. Payments were made to the
Department of Radiology for the services rendered by the Radiologists and
Technologists.

Last, one of our investigators (Chang Y-H) in the first three years of the project has
returned to Taiwan where he is employed as a faculty in the department of Electrical
Engineering. Two other investigators (Drs. Joseph Leader and Xiao Hui Wang) were
promoted during the project duration to Research Assistant Professors of Radiology.

Conclusions:

A comprehensive multi-task, multi-discipline applied project that involved a large
team of investigators, physicians and staff was successfully executed and completed. We
undertook a large number of technical and application-based tasks associated with the design,
implementation, and clinically simulated evaluations of a multi-site tele-mammography
system. We modified the system as needed and exceeded several of the performance goals
we originally proposed. The concept of remote management of screening practices where a
physician is not present was tested using a comprehensive step-by-step evaluation and was
proven to be feasible which could result in improved communication between technologists
and physicians at the remote and central sites. Our main observation to date is that the
general concept is sound and the actual implementation resulted in an appreciation for the
importance of the "comfort level" of the team (physicians and technologists) in operating and
using such a system for the stated purpose. Most important perhaps is the demonstration that
in principle, using this (or a similar) approach, one could achieve a significant reduction in
actual recall rates for a second visit. At this time, it can only be done at some cost namely an
increase in the number of women who would receive additional procedures (e.g., views)
during their initial screening visit. Last, we have improved substantially our understanding of
several extremely important issues related to the general practice of screening mammography
(e.g. the relationship between recall rates and cancer detection rates), and the use of CAD in
particular. These may have far reaching implications on this field.

So What?

The issues associated with efficient and efficacious mammographic screening in
general and in remote underserved locations in particular are significant. The main goal of
this project was to evaluate how the use of an "almost real-time" tele-mammography system
(with or without the use of relevant information) may impact the diagnostic process in terms
of complete cycle time and patients' recall rate. Our success in this project has already
changed substantially our own thinking about practice issues in remote sites and we hope
others will follow. We demonstrated different ways to increase communication between
remote (and potentially underserved) sites and a central site. Our hope is that by using the
concepts we investigated, one may be able to provide better, more timely and cost-effective
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service at these sites and in the process, substantially reduce actual recall rates in remote
facilities where a physician is not present. Despite significant advances in our understanding
of the issues and alternatives surrounding "optimal" practices of screening mammography,
many of our current clinical practice guidelines are based on limited subjective assessments
and anecdotal experiences, and a significant fraction is related to operational matters in busy
urban environments that are staffed by experienced radiologists. The area of optimizing
remote, underserved practices has been studied only in a cursory manner. Our project is but
one attempt to improve our understanding of the technical, operational, and clinical issues
facing these facilities and implementing technology-based solutions that may help them
provide a better service to the populations they serve. Our own institution is basing our
transition strategy to a digital environment in screening mammography partially based on the
observations made during this project (albeit using a PACS enabled remote management
rather than tele-mammography) and we believe others should consider this or a similar
approach, as well.
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Diagnostic radiology, observer PURPOSE: To assess the performance of radiologists in the detection of masses and

performance microcalcification clusters on digitized mammograms by using different computer-

Published online before print assisted detection (CAD) cuing environments.
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Radiology 2001; 221:633-640 MATERIALS AND METHODS: Two hundred nine digitized mammograms depict-

Abbreviations: ing 57 verified masses and 38 microcalcification clusters in 85 positive and 35
A, = area under the receiver negative cases were interpreted independently by seven radiologists using five

operating characteristic curve display modes. Except for the first mode, for which no CAD results were provided,
CAD = computer-assisted detection suspicious regions identified with a CAD scheme were cued in all the other modes

by using a combination of two cuing sensitivities (90% and 50%) and two false-
From the Division of Imaging Research, positive rates (0.5 and 2.0 per image). A receiver operating characteristic study was

Department of Radiology (B.Z., D.G.),
the Departments of Radiology (C.A.B., performed by using soft-copy images.
M.A.G., C.M.H., L.A.H., T.S.C.) and Bio-
statistics (H.E.R.), University of Pittsburgh, RESULTS: CAD cuing at 90% sensitivity and a rate of 0.5 false-positive region per
300 Halket St, Suite 4200, Pittsburgh, PA image improved observer performance levels significantly (P < .01). As accuracy of
15213; and the Magee Womens Hospital, CAD cuing decreased so did observer performances (P < .01). Cuing specificity
University of Pittsburgh Medical Center
Health System, Pa (M.A.G., C.M.H., affected mass detection more significantly, while cuing sensitivity affected detection
L.A.H.). Received January 12, 2001; re- of microcalcification clusters more significantly (P < .01). Reduction of cuing sen-
vision requested March 5; revision re- sitivity and specificity significantly increased false-negative rates in noncued areas
ceived March 29; accepted May 1.
Supported in part by the U.S. Army (P < .05). Trends were consistent for all observers.
Medical Research Acquisition Activity
under contracts DAMD17-98-1-8018 CONCLUSION: CAD systems have the potential to significantly improve diagnostic
and DAMD17-00-1-0410 and by grant performance in mammography. However, poorly performing schemes could ad-
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stitute, National Institutes of Health. Ad- versely affect observer performance in both cued and noncued areas.
dress correspondence to B.Z. (e-mail:
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The content of the contained informa- Breast cancer is one of the leading causes of death in women over the age of 40 years (1,2).
tion does not necessarily reflect the posi- To reduce mortality and morbidity with early diagnosis and treatment, current guidelines
tion or the policy of the government, and recommend periodic mammography screening for women aged 40 and over (3). Due to
no official endorsement should be in-
ferred, the large number of mammographies performed and the low yield of abnormalities
- RSNA, 2001 detected in screening environments, detecting abnormalities (mainly masses and micro-
See also the editorial by D'Orsi (pp calcification clusters) from the background of a complex normal anatomy is a tedious,
585-586) in this issue. difficult, and time-consuming task for most radiologists (4,5).
Author contributions: Hence, there is a growing interest in the development of computer-assisted detection
Guarantors of integrity of entire study, (CAD) schemes for mammography. It is generally believed that such schemes could
B.Z., D.G.; study concepts and design,
B.Z., D.G.; literature research, B.Z.; exper- eventually provide radiologists with a valuable "second opinion" and help improve accu-
imental studies, LA.H., MA.G.; data ac- racy and efficiency of breast cancer detection at an early stage (6,7).
quisition, B.Z.; data analysis/interpreta- To assess the potential for improving diagnostic accuracy and efficiency in mammog-
tion, B.Z., D.G., H.E.R.; statistical analysis, raphy, several studies have been performed by using the CAD systems. These studies have
B.Z., H.E.R.; manuscript preparation,
M.A.G., LA.H.; manuscript definition of demonstrated that with the appropriate assistance of CAD systems, radiologists could
intellectual content, B.Z., D.G.; manu- either detect more subtle cancers in a screening environment (8,9) or increase the accuracy
script editing, T.S.C., M.A.G.; manuscript of distinguishing malignant lesions from those that are benign (10-12). While some
revision/review, C.M.H., C.A.B., D.G., authors (13-15) indicated that CAD did not substantially decrease the specificity levels of
B.Z., H.E.R.; manuscript final version ap-
proval, B.Z., D.G., H.E.R. the radiologists, others (6,17) indicated that current CAD systems could significantly

decrease diagnostic accuracy and efficiency of radiologists due to high false-positive

633



detection rates. As there is difficulty in large and diverse image database established ity (either a mass or a cluster) was de-
comparing the performance of different at Magee Womens Hospital, with institu- picted. Hence, the positive cases con-
CAD schemes developed at various insti- tional review board approval and exemp- sisted of 38 verified microcalcification
tutions (18), the results of these studies tion of patient consent. The original data- clusters and 57 verified masses. Biopsy
are not easily comparable, since different base contained mammograms that were results indicated that 27 of clusters and
CAD schemes, radiologists, and cases collected mainly from several thousand pa- 39 of masses were malignant, while the
were included. Authors of these studies tients undergoing routine mammographic remaining 11 clusters and 18 masses were
did not address in detail how CAD could screening at three medical centers (27). benign. Since we were interested in the
affect the diagnostic performance of the All positive masses were verified at bi- detection (not classification) of abnor-
observers or the level of CAD that may be opsy. All negative cases were rated by ra- malities, cases were selected on the basis
required to be widely acceptable as a diologists according to the level of con- of subtleness of the depicted abnormal-
helpful tool in the clinical environment. cern by using standard Breast Imaging ity, and no attempt was made to balance

Researchers have suggested that large- Reporting and Data System, or BI-RADS, the number of benign and malignant
scale experiments are needed to assess recommendations. The negative cases cases in the dataset. Although study find-
the effect of CAD (eg, the false-positive had been diagnosed during at least two ings suggested that to preserve subtle mi-
identifications) on the diagnostic accu- subsequent follow-up examinations. Al- crocalcifications, mammograms should
racy of radiologists (19). Some doubt re- though we routinely acquire four images be digitized with pixel sizes of 50 x 50
mains as to whether CAD systems might in a single examination (two views of jim or less (15,29), all microcalcification
increase the number of unnecessary fol- each breast), for some cases in our digi- clusters in this study were detectable
low-up examinations or biopsies and tized database, we have only two images with our CAD scheme. In addition, we
thereby offset the benefits from the po- of one breast due to a variety of clinical verified that all clusters were visible on
tential gains in sensitivity (20). reasons. By using an established digitiza- images that were digitized with 100 x

The effect of precuing images (high- tion protocol, all mammograms were dig- 100 pým pixel size.
lighting suspicious areas) has been of itized with a laser-film digitizer (Lumisys, In this study, radiologists were asked to
great interest in the field of perception Sunnyvale, Calif), with a pixel size of detect masses and microcalcification clus-
psychology in general (21,22) and of di- 100 X 100 ptm and 12-bit digital-value ters on digitized mammograms displayed
agnostic radiology in particular (23-25). resolution. The quality of the digitizer on a monitor. In most of the 120 cases (n =
Much of the work was associated with was monitored routinely to ensure that 89), two contralateral images (the same
attempts to improve tumor detection on in the optical density range of 0.2-3.2, view of left and right breasts) were dis-
x-ray images of the chest. In a series of digital values were linearly proportional played on the monitor side by side. For
carefully designed experiments, Krupin- to optical densities (28). some cases (n = 31), only a single image
ski et al (26) demonstrated that in a cued The selection of subtle or difficult cases was displayed. The latter group was se-
environment, performance of radiolo- included several steps. First, we selected a lected from the cases in our database for
gists in detecting true-positive lung nod- large set of positive cases (200 in this which we have only two views of one
ules that had not been cued was degraded experiment) for which the output scores breast. Hence, only one view was displayed
substantially. The shapes of abnormali- generated by the CAD scheme were low in this study, following our study protocol.
ties (ie, masses and microcalcification for the likelihood that the abnormality in Table 1 summarizes by type and verified
clusters) and the complexity of the back- question was present (27). Similarly, we finding the distribution of the abnormali-
ground tissue seen on mammograms are used a set of suspicious negative cases (80 ties depicted in the 120 cases. The observ-
somewhat different from those of lung in this experiment) for which CAD scores ers interpreted each case only on the basis
nodules and the surrounding back- were high for the likelihood that a mass of the images displayed on the monitor.
ground breast parenchyma. Therefore, it or a cluster of microcalcifications or both No images from previous examinations or
is not clear how CAD cuing may affect were present. Then, two experienced ob- other clinical information about the pa-
the performance of radiologists in main- servers pruned the data set by means of tients was made available during the inter-
mography. visual inspection on the same display as pretation.

The purpose of our study was to assess that used in the study with the "true di- Each radiologist interpreted the same
the performance of radiologists in the de- agnosis" to select the final 120 cases. The 120 cases five times by using five display
tection of masses and microcalcification total number of positive cases was se- modes. Suspicious regions, as identified
clusters on digitized mammograms in a lected to include a reasonable mix of be- with our CAD schemes, were cued on the
CAD environment after modulating cu- nign and malignant cases of single and images in all modes, with the exception
ing sensitivity levels and false-positive multiple abnormalities, with a minimum of the first mode, in which no CAD re-
rates, of 25 malignant cases of each of the ab- sults were provided to the radiologists.

normalities. Two true-positive cuing sensitivity levels
The resources that were required, in (90% and 50%) and two false-positive cu-

MATERIALS AND METHODS terms of radiologist effort (reading time), ing rates (0.5 or 2.0 per image) were used
were a factor in limiting the number of in these.four cuing modes (Table 2). Dur-

Seven board-certified radiologists (includ- cases to 120 and the reading modes to ing the cuing modes, when a new case
ing M.A.G., C.A.B., C.M.H., L.A.H., T.S.C.) five. In 85 cases, mammograms depicted was loaded into the display, radiologists
with a minimum of 3 years experience in either masses or clusters of microcalcifi- viewed the cued images first. Then they
the interpretation of mammograms partic- cations or both, and 35 cases were nega- could remove the prompts from the dis-
ipated in this observer performance study. tive for these abnormalities. In 10 of the play or add them back at their discretion.
None of the seven observers had partici- positive cases, both a mass and a micro- To generate the cues, CAD schemes de-
pated in the case selection process. All im- calcification cluster were depicted. In all veloped by our group (27) were applied
ages used in this study were selected from a other positive cases, only one abnormal- to these 209 images (or 120 cases). The
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from the list for display in modes 2 and 4,
TABLE 1 and 324 false-positive masses were se-
Number of Mammographic Cases in Different Categories lected for display in modes 3 and 5. Thus,

No. of No. of the false-positive cuing rates for mass
Micro- Masses only were 0.39 (82 in 209 mammograms)No. of calcification and

Masses Clusters Clusters No. of and 1.55 (324 in 209 mammograms) per
Negative Total image, respectively. In summary, modes

Cases M B M B M B Cases Cases 2 and 4 included 106 false-positive cues

Single-image 10 1 11 3 1 1 4 31 (or 0.5 per image), and modes 3 and 5
Two-image 20 16 7 7 8 0 31 89 included 419 false-positive cues (or two

Total 30 17 18 10 9 1 35 120 per image).
Each of the 20 reading sessions for in-

Note.--B = benign, M = malignant. dividual observers included 30 randomly

selected cases that used one reading
mode. To eliminate the potential for
learning effects, the order of display

TABLE 2 modes (or cuing rates) for each observer
CAD Cuing Conditions of the Five Display Modes was preselected by using a counterbal-

Reading Mode CAD Cuing Cuing Sensitivity Cuing False-Positive Rate anced approach. The 20 sessions were di-
vided into four blocks, with five sessions

1 No Not applicable Not applicable each. In each block, one observer read
2 Yes 0.9 0.5
3 Yes 0.9 2.0 five sessions with five different modes in
4 Yes 0.5 0.5 random. However, at each session num-
5 Yes 0.5 2.0 ber in the series (eg, session 6), at least

five observers read with different modes,
and no more than two readers read with
the same mode. For example, in the first

schemes use filtering, subtraction, and Each abnormality was assigned a number session for all the observers, observers
topographic region growth algorithms to (eg, 1-57 for masses or 1-38 for clusters), started reading with different modes. Be-
identify suspicious regions, including A computer program randomly selected cause there were seven observers and five
masses and microcalcification clusters the regions to be cued until the required display modes, observers 1-5 read with
(30,31). Then, by using nonlinear multi- number was reached for the sensitivity modes 1-5, respectively, while observer 6
layer multifeature analyses, two artificial level being evaluated. In display modes 2 read with mode 3 and observer 7 read
neural networks, which have been opti- and 3, with the cuing sensitivity set at with mode 2. Last, a study management
mized in our previous studies and re- 90%, 51 of 57 true masses and 34 of 38 program was used to randomly select the
ported before (32), were used to classify clusters were selected. In modes 4 and 5, cases and their sequential order in each
each region as positive or negative for the with the cuing sensitivity set at 50%, 29 session. The random "seed" used in the
presence of an abnormality in question, of 57 masses and 19 of 38 clusters were program was date dependent. Because
One network was designed to assess re- selected. Two false-positive cuing rates each observer had a different reading
gions suspicious for masses, and the (approximately 0.5 and 2.0 false-positive schedule, the cases selected in each ses-
other was for microcalcification clusters, regions per image) were used. Because the sion (eg, session 4) and their sequential
Before applying the artificial neural net- number of false-positive clusters identi- order for each observer were different. A
works, the schemes initially identified fled with the scheme was 95, all of these minimum time delay (10 days) between
133 suspicious regions for microcalcifica- regions were used in display modes 3 and the two consecutive readings of the same
tion clusters and 831 for masses. Of the 5, which provided a false-positive cuing case was implemented.
133 clusters, 38 represented true clusters rate of 0.45 (95 of 209 mammograms). In A standard landscape workstation (Sparc
and 95 were false identifications (or a rate modes 2 and 4, the total false-positive 20; Sun Microsystems, Mountain View,
of 0.45 [95 of 209 mammograms] false- desired cuing rate was 0.5 per image, Calif) was used to display the images. Im-
positive detections per image). Of the which was one-fourth of that in modes 3 ages were not preprocessed, but we did op-
831 mass regions, 57 were true-positive and 5. Hence, one-fourth of the available timize the contrast of each image by means
and 774 were false-positive (or 3.7 per false-positive clusters (24 of 95) were se- of window and level manipulation for op-
image, or 774 of 209 mammograms). The lected on the basis of artificial neural net- timal visual display. The image parameters
artificial neural networks were then ap- work-generated scores, with the 24 high- were then fixed. The observers could not
plied to classify all of these regions. Each est scoring regions being selected in manipulate the contrast and brightness
suspicious region received a likelihood descending order and resulting in a cuing settings during the readings. Initially, im-
score (from 0 to 1) for being positive. The rate of 0.11 (24 in 209 mammograms). ages were displayed on the screen as sub-
larger the score, the more likely the re- To reach the overall target of 0.5 and sampled (ie, at low spatial resolution) to fit
gion was to represent a true-positive re- 2.0 false-positive cuing rates per image the screen (with approximately 1,200 X
gion. (including both mass and microcalcifica- 850 pixels). With zoom and roam func-

Selection of true-positive and false-pos- tion cluster regions), 774 false-positive tions, the radiologists were able to view the
itive cues for each display mode was per- mass regions were also sorted on the basis images at full spatial resolution by clicking
formed separately. Two cuing sensitivi- of the artificial neural network-gener- the appropriate control button or scroll
ties (90% and 50%) were applied to ated scores. Then, 82 of the highest scor- bars. A "Display/Remove" button could be
masses and microcalcification clusters. ing false-positive regions were selected used to superimpose or delete the CAD
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cues on the images. Radiologists could
make diagnostic decisions while viewing 0.9

either subsampled or full-spatial-resolu-
tion images. 0.8

Observers were asked to perform and
score two separate tasks. First, they were 0.7
asked to identify (detect) suspicious areas
for the presence of an abnormality and 0..
then classify the suspected abnormality • 0.6
as benign or malignant. Once a radiolo- -"
gist pointed to and clicked the cursor on • 0.5 -
the center of a suspected abnormality, a w
scoring window appeared, followed by a 8 04
confidence-level sliding scale. The pro- o
gram automatically recorded all of the o
diagnostic information entered by the ra- C' 0.3
diologist, including the type of detected
abnormality (mass or microcalcification 0.2
cluster), location (the center of the de-
tected region), and two estimated likeli-
hood scores (from 0 to 1) for the detection 0.1
(presence or absence) and classification
(benign or malignant) of any identified re- 0
gion that was suspected of an abnormality. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
The likelihood scores were used to generate False-positives per image marked by the observers
the free-response receiver operating char- Figure 1. Free-response receiver operating characteristic curves for the average detection of
acteristic curves. mammographic abnormalities (including both masses and microcalcification clusters) by seven

The results of each observer, abnormal- participating radiologists using five display modes. 0 = mode 1, U = mode 2, A = mode 3, * =

ity, and display mode were qualitatively mode 4, and* = mode 5.
viewed, and free-response receiver oper-
ating characteristic curves were plotted
for individual readers and modes, as well
as for pooled confidence ratings for all the first time (regardless of mode) as one ences among modalities were statistically

readers since their general patterns were group and the second time as another significant (P < .01), with the perfor-

consistent. For testing the hypothesis of groups, and so on. Performance curves mance decreasing as the number of cued

equality of the free-response receiver op- were computed separately for these five regions increased. In the case of clusters
erating characteristic curves (or the de- mutually exclusive groups and were com- (Fig 3), observer performance was af-
tection sensitivities at the same false-pos- pared by using the analysis of variance fected to a greater extent by the cuing
itive rates) across four CAD cuing modes, test. sensitivity. The combination of case sub-
we compared sensitivities among the tlety and viewing of soft copies rendered
curves at 10 false-positive rates that were RESULTS the test of microcalcification cluster de-
uniformly distributed over the measured tection so difficult that only approxi-
range. Sensitivity levels across modalities Performance curves varied among ob- mately 60% were detected without cuing
were compared by using a repeated mea- servers, but the general pattern was con- or with cuing at low sensitivity (modes 4
sures logistic regression model, where the sistent. Figures 1-3 demonstrate curves of and 5). With the support of highly sensi-
binary outcome variable was replicated the average performance of the seven tive cues, the performance improved to a
over patients, and the independent vari- observers for the detection of either ab- detection rate of approximately 75% (P <
ables included reader and modality. Esti- normality, masses, or microcalcification .01).
mation was done by using a Generalized clusters, respectively. As can be noted Highly accurate cuing (ie, 90% sensi-
Estimating Equation approach (33). from the noncued results (mode 1), the tivity and 0.5 false-positive cue per im-

In addition, we analyzed the changes task in general was challenging because age) helped the observers to improve
in performance indices (ie, the number of of the display environment, the subtlety their performance, compared with the
missed true-positive regions in the cued of the abnormalities, or both. noncued environment (P < .01). As the
or noncued areas) for the two sensitivity Figure 1 demonstrates that both sensi- accuracy of the cuing decreased, so did
levels (50% and 90%) and the two false- tivity and specificity of the CAD results the performance of the typical observer.
positive cuing rates (0.5 and 2.0 per im- affected observer performance. The dif- This effect continued for either detection
age). The hypotheses of the equality of ferences among modes 2-5 were highly task, but the detection of microcalcifica-
the number of missed abnormalities were significant (P < .01). However, the results tion clusters was more significantly af-
also tested by using a repeated measures showed different patterns for the detec- fected by sensitivity of the cuing in our
logistic regression, with reader and mo- tion of masses compared with microcal- case. Most important, perhaps, our study
dality in the model. To examine poten- cifications. In the case of masses (Fig 2), results clearly indicate that poorly per-
tial biases for reading the same case five specificity of the CAD results (or cuing forming CAD (Fig 1) can result in signif-
times, the reading results were reordered false-positive rate) affected the observers icant degradation of observer perfor-
and analyzed for all cases that were read in a more significant manner. The differ- mance (P < .01).
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when the number of cues increased, but
0.9 the results were not significant (P > .05).

Table 4 summarizes the number of
0.8 - missed abnormalities in noncued areas

- -during CAD-cued observations. The table

0.7 data show that for the highly sensitive
cuing modes (eg, modes 2 and 3, where
only 10% of true-positive regions were

0.6" not cued), the majority of missed abnor-

malities (>94%) were also missed in

U 0.5 mode 1. As CAD cuing sensitivity was
E reduced to 50%, the average number of

C 04missed abnormalities in noncued areas
0.0.4 increased significantly (P < .05). More

important, approximately 30% of these
0.3 "regions were detected by the radiologists

o ,-in mode 1. The increase of the false-pos-
itive cuing rate from 0.5 to 2.0 per image
(mode 4 vs mode 5, respectively) in-
creased the number of missed abnormal-

0.1 -ities in noncued areas, from an average of
14.4 to 18.0, which was not significant

0 (P = .16) and most likely due to the small

0 0.1 0.2 0.3 0.4 0.5 0.6 sample size. In this case, the observers

False-positive masses per image marked by the observers also missed significantly more regions

Figure 2. Free-response receiver operating characteristic curves for the average mass detection that were detected in mode 1 (P = .03). In

by seven radiologists using five display modes. 0 = mode 1,E = mode 2, A = mode 3, * = mode general, the number of missed abnormal-

4, and * = mode 5. ities (false-negative rate) in the noncued
areas increases as the cuing sensitivity
decreases and the false-positive cuing
rate increases. As a result, mode 5 had the

0.8 highest miss rate in noncued areas.
S.... A- -. -A When we compared detection perfor-

0.7 Amances for benign and malignant abnor-
malities, the latter group was somewhat
better detected (probably due to differ-

0.6 A ' ences in subtleness), but the differences
between modes were similar to those of

the benign group.
0.5The pooled classification confidence

"ratings (malignant vs benign) provided
0.4 by the seven observers on all identified• 0.4

C- true-positive regions for each mode were
used to generate and compare the area

•0.3 under the receiver operating characteris-
tic curve (Ar) values for the different
modes (RocFrr; Metz CE, Herman BA,

0.2 Shen JH, University of Chicago, I1) (34).
A. values were estimated by using maxi-
mum likelihood estimation under the

0.1 binormal assumption. The A_ values for
the classification performance over all

0 .. readers were 0.70 ± 0.02, 0.69 ± 0.02,

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.69 t 0.02, 0.70 ± 0.02, and 0.68 ± 0.02

False-positive clusters per image marked by the observers for modes 1-5, respectively. Comparison

Figure 3. Free-response receiver operating characteristic curves for the average microcalcifica- of each pair of modes did not result in

tion cluster detection by seven radiologists using five display modes. 0 = mode 1, E = mode 2, any significant differences (P > .05).

A = mode 3, * = mode 4, and 4 = mode 5. Hence, once the abnormality was identi-
fied (detected), the ability of the observer
to distinguish between benign versus ma-
lignant abnormalities (classification) was

Table 3 demonstrates the number of cuing) but were missed in other (cued) not significantly affected (P > .05) by the
CAD-cued abnormalities that were iden- modes. Some increases in rejection rates cuing mode or lack thereof. Although
tified by each radiologist in mode 1 (non- of true-positive regions were observed there were differences in performance
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among the observers, we did not identify TABLE 3
any correlation of either the detection or Number of Missed Abnormalities Identified as Suspicious in Mode 1 (Noncued)
classification tasks with observer experi- but Missed in Other Modes Despite the Fact that the Abnormality in Question
ence, as measured by the number of years Was Cued
of interpreting mammograms or the av-
erage number of mammograms inter- Reader Mode 2 Mode 3 Mode 4 Mode 5
preted per year. The performance trends 1 5 5 3 3
we observed were consistent for all ob- 2 5 4 4 3
servers. 3 5 6 3 6

The minimum time delay between two 4 3 1 5 4
consecutive readings of the same case by 6 5 4 8 5
the same observer was set at 10 days, but 7 3 1 4 2
the actual time delay ranged from 12 to Average 3.9 4.3 4.6 4.9
154 days, with an average time delay of
48 days. When we examined the results
after reordering the cases by their order
of appearance (ie, first time, second time, TABLE 4
etc), regardless of the mode, no signifi- Number of Missed Abnormalities in Noncued Regions
cant (P > .8) difference between the Reader Mode 2 Mode 3 Mode 4 Mode 5
groups was identified (Fig 4). Similar per-
formance patterns were observed when 1 5(1) 5(1) 13(3) 14(5)included only one image 2 6(0) 8(0) 19(2) 21 (7)31 cases that 3 5(1) 5(0) 11(2) 15 (3)
were excluded from the analyses, and the 4 5 (0) 6 (0) 19 (3) 25 (5)
detection results were not significantly 5 6 (0) 4 (0) 10 (4) 13 (5)
altered in any comparison between those 6 7 (1) 7 (2) 14 (4) 20 (9)
for the whole group (120 cases) and the 7 6(0) 5(0) 15(3) 18(6)
subset of 89 cases containing two images Average 5.7 (0.4) 5.7 (0.4) 14.4 (3.0) 18.0 (5.7)
(P > .5). Note.-Data in parentheses are the number of missed regions that were detected in mode 1

(noncued).

DISCUSSION

This preliminary study has to be clearly 0.8
viewed as a study performed under labo-
ratory conditions. Before any generaliza-
tion of the results is contemplated, it has 0.7
to be considered that conditions in this
study were removed from the typical
clinical environment. However, the con- 0.6
sistency of the patterns observed for the
individual readers and the group as a .0.5
whole warrant further assessment of the
affect of CAD performance on the ob-
server. 0.4

Clearly, the expectation that observers
can readily and easily discard most false- .
positive cues regardless of their presenta- 0
tion or prevalence was not what we
found (14). Both true- and false-positive 0.2
cues affected the results. The effect was
also dependent on the type of abnormal-
ity and its subtleness (detection diffi- 0.1
culty). Despite significant reader, case,
and mode variability, the results we ob- 0i
tained were consistent and interpretable. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
As expected, at low specificity levels, all
CAD-cued modes aid in increasing sensi- False-positives per image marked by the observers
tivity of observers, as can be seen from Figure 4. Free-response receiver operating characteristic curves for the average detection of
the tendency to cross the noncuing per_ abnormalities by seven radiologists as a function of the order of appearance: 0 = first time, U =formance curve. This observation is con- second time, A = third time, * = fourth time, and fifth time, regardless of the reading mode.

sistent with some of the results previ-
ously reported by others, but it may not
be clinically relevant in situations in Our results suggest that the use of a carefully investigated and fully under-
which most abnormalities are not as dif- CAD-cued environment during the inter- stood before it is widely accepted in a
ficult to detect as those in this study. pretation of mammograms has to be routine clinical practice. In particular,
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one should consider the cuing perfor- view for each breast) and the fact that tern. High-performance cuing systems
mance level of the scheme itself and the different abnormalities were detected in can significantly improve observer per-
potential increase in missed abnormali- each mode, the classification perfor- formance. On the other hand, low-per-
ties in noncued regions, because the pos- mances of determining that an identified formance cuing systems can significantly
sible liability associated with false-nega- abnormality was either benign or malig- degrade observer performance. These
tive interpretations far exceeds that of nant were reasonable and consistent. It findings, together with the intermode
false-positive readings (26). was encouraging to learn that once de- consistency we observed, are important,

The general consistency of our results tected, the task of classifying the abnor- since there could be diagnostic implica-
is somewhat surprising in view of the fact mality as benign or malignant was not tions associated with the inappropriate
that cuing rates were maintained only for affected by the detection cuing perfor- use of or reliance on CAD results during
short durations (within a single session mance, which points to the fact that the interpretation. These issues have to
of 30 cases). Unlike the display environ- these are likely to be two distinct and be further investigated with larger data
ment, the CAD results in our study emu- largely independent tasks. Our CAD sets and a more closely simulated clinical
lated what can be expected by using cur- scheme was designed solely for detection environment.
rent levels of CAD performances, as well purposes. Other classification schemes (12)
as what one hopes to achieve by using have been shown to perform well, and, References
CAD in the future. The range of CAD when used during interpretation, signifi- 1. Mettlin C. Global breast cancer mortality
performances that were used for cuing at cantly improved tissue classification per- statistics. CA Cancer J Clin 1999; 49:135-
90% sensitivity at 0.5 false-positive iden- formance of the observers (10,11). 137.

2. Smith RA. Breast cancer screening among
tification per image to 50% sensitivity at The overall detection sensitivity of the women younger than age SO: a current
two false-positive identifications per im- radiologists was in general relatively low assessment of the issues. CA Cancer J Clin
age clearly makes this study interesting compared with that observed in the clin- 2000; 50:312-336.
in enabling an assessment of what could ical environment. This may be due to the 3. Feig SA, D'Orsi CJ, Hendrick RE. Ameri-

can College of Radiology guidelines forbe expected with improved CAD results. fact that most of the cases selected for breast cancer screening. AJR Am J Roent-
It is interesting to note that for all display this study were subtle, and reading was genol 1998; 171:29-33.
modes, the use of CAD cuing with either performed on soft copy by using a lim- 4. Bird RE, Wallace TW, Yankaskas BC. Anal-
high or low performance had a limited ited number of views without prior ex- ysis of cancers missed at screening main-

effect on observers when they operated at aminations being available for mography. Radiology 1992; 184:613-617.
compari- 5. Thurfjell EL, Lernevall KA, Taube AS. Ben-

a conservative level. Namely, they indi- son. We note a difference between this efit of independent double reading in a
cated only regions they were confident and other reported studies (14,15) where population-based mammography screen-
about, and, therefore, they had low false- observers could view both film hard-copy ing program. Radiology 1994; 191:241-
positive rates. This stemmed largely from images and low-spatial-resolution soft- 244.

6. Vyborny CJ, Giger ML. Computer vision
the fact that the CAD cuing depicted copy images with CAD-cued areas on the and artificial intelligence in mammogra-
mainly areas on the image that were truly screen. Not providing film hard-copy im- phy. AJR Am J Roentgenol 1994; 162:
appropriate (reasonable) as suspicious. As ages to the observers could have been a 699-708.
observers loosened their criteria (ie, indi- significant factor in lowering detection 7. Hoffman KR. In the next decade auto-mated computer analysis will be an ac-
cated a larger number of suspicious re- sensitivity in this study. This resulted in a cepted sole method to separate "normal"
gions), the CAD-cuing performance af- crossing of the performance curves for from "abnormal" radiological images.
fected observers in a more significant the detection of microcalcifications (Fig Med Phys 1999; 26:1-4.
manner. Namely, the use of a better per- 3), since the noncued mode exhibited a 8. Nishikawa RM, Giger ML, Schmidt RA,

Wolverton DE, Collins SA, Doi K. Comn-forming cuing scheme significantly im- "capping" effect (an imposed upper puter-aided diagnosis in screening main-
proved observer performance, while the limit) that was removed with the aid of mography: detection of missed cancers
use of poorly performing cuing schemes CAD cuing. This does not invalidate any (abstr). Radiology 1998; 209(P):353.
significantly degraded observer perfor- of the analyses or observations made in 9. Nawano S, Murakami K, Moriyama N, Ko-
mance. this study. Despite the generally low level batake H. Computer-aided diagnosis in

full digital mammography. Invest Radiol
Analysis of the data sets after the reor- of performance and the high prevalence 1999; 34:310-316.

der of cases by appearance indicates that of abnormalities in our data set, we be- 10. Jiang Y, Nishikawa RM, Schmidt RA, Metz
learning effects, if any, were not a signif- lieve that on a relative scale, the results CE, Giger ML, Doi K. Improving breast
icant factor in this study. Although all concerning the general trends we ob- cancer diagnosis with computer-aided di-

agnosis. Acad Radiol 1999; 6:22-33.
selected abnormalities in this study were served are valid. We emphasize that our 11. Chan HP, Sahiner B, Helvie MA, Petrick
detectable with CAD schemes and visible study design called for a change in mode N, Roubidoux MA, Wilson TE. Improve-
on displayed images, the relatively low (hence, abnormality rates) at each ses- ment of radiologists' characterization of
detection levels of the seven participat- sion. The effects we observed under these mammographic masses by using com-

puter-aided diagnosis: an ROC study. Ra-ing observers in the case of subtle clus- conditions are probably different and diology 1999; 212:817-827.
tered microcalcifications suggest that this likely minimized, as compared with those 12. Leichter I, Fields S, Nirel R, et al. Im-
task is likely to be a continuing challenge in a study design in which each mode is proved mammographic interpretation of
when soft copy is used for this purpose. read to its completion before any prevalent masses using computer-aided diagnosis.

Eur Radiol 2000; 10:377-383.We are not aware of any comprehensive changes (ie, change to a different mode). 13. Thurfjell E, Thurfjell MG, Egge E, Bjurs-
study in which this issue was assessed, In conclusion, our preliminary study tam N. Sensitivity and specificity of com-
and our results, albeit preliminary, sug- results indicate that in a laboratory envi- puter-assisted breast cancer detection in
gest that such a study should be per- ronment, observer performance in the mammography screening. Acta Radiol
formed. detection of subtle mammographic ab- 1998; 39:384-388.

14. Doi T, Hasegawa A, Hunt B, Marshall J,
Despite the limited information (no normalities is significantly affected by Rao F, Roehrig J. Clinical results with the

prior studies or reports and only a single the inherent performance of a cuing sys- R2 ImageCheck Mammographic CAD

Volume 221 . Number 3 Soft-Copy Mammographic Readings with Computer-assisted Detection • 639



system. In: Doi K, MacMahon H, Giger accepted sole method to separate "nor- sion: an assessment. Acad Radiol 2000;
ML, Hoffman KR, eds. Computer-aided mal" from "abnormal" radiological im- 7:595-602.
diagnosis. Amsterdam, the Netherlands: ages. Med Phys 1999; 26:3-4. 28. Zheng B, Chang YH, Gur D. On the re-
Elsevier Science, 1999; 201-207. 21. King M, Stanley GV, Burrows GD. Visual porting of mass contrast in CAD research.

15. Burhenne Q, Wood SA, D'Orsi CJ, et al. search in camouflage detection. Hum Med Phys 1996; 23:2007-2009.
Potential contribution of computer-aided Factors 1984; 26:223-234. 29. Chan HP, Niklason LT, Ikeda DM, Lam
detection to the sensitivity of screening 22. Krose BA, Julesz B. The control and speed KL. Digitization requirements in mam-
mammography. Radiology 2000; 215: of shifts of attention. Vision Res 1989; mography: effects on computer-aided de-554-562. 29:1607-1619. tection of microcalcifications. Med Phys

16. Sittek H, Perlet C, Heimberger R, Lins- 23. Parker TW, Kelsey CA, Moseley RD, Met- 1994; 21:1203-1211.
meier E, Kessler M, Reiser M. Computer- tler FA, Garcia JF, Briscoe DE. Directed 30. Zheng B, Chang YH, Staiger M, Good WF,
assisted analysis of mammograms in rou- versus free search for tumors in chest ra- Gur D. Computer-aided detection of clus-
tine clinical diagnosis. Radiologe 1998; diographs. Invest Radiol 1982; 17:152- tered microcalcifications in digitized mam-
38:848-852. [German] 155. mograms. Acad Radiol 1995; 2:655-662.

17. Funovics M, Schamp S, Lackner B, 24. Kundel HL, Nodine CF, Krupinski EA. 31. Zheng B, Chang YH, Gur D. Computer-
Wunderbaldinger P, Lechner G, Wolf G. Sea HL, nod ule visua EA. ized detection of masses in digitized
Computer-assisted diagnosis in main- Searching for lung nodules: visual dwell mammograms using single-image seg-
mography: the R2 ImageCheck System in indicates locations of false-positive and mentation and a multilayer topographic
detection of speculated lesions. Wien false-negative decisions. Invest Radiol feature analysis. Acad Radiol 1995;
Med Wochenschr 1998; 148:321-324. 1989; 24:472-478. 2:959-966.
[German] 25. Nodine CF, Kundel HL, Toto LC, Krupin- 32. Zheng B, Chang YH, Good WF, Gur D.

18. Nishikawa RM, Yarusso LM. Variations in ski EA. Recording and analyzing eye-po- Adequacy testing of training set sample
measured performance of CAD schemes sition data using a microcomputer work- sizes in the development of a computer-
due to database composition and scoring station. Behav Res Methods Instrum assisted diagnosis scheme. Acad Radiol
protocol. Proc SPIE Medical Imaging Comput 1992; 24:475-485. 1997; 4:497-502.
Conference 1998; 3338:840-844. 26. Krupinski EA, Nodine CF, Kundel HL. Per- 33. Liang KY, Zeger SL. Longitudinal data

19. Brake GM, Karssemeijer N, Hendriks JH. ceptual enhancement of tumor targets in analysis using generalized linear models.
Automated detection of breast carcino- chest x-ray images. Percept Psychophys Biometrika 1986; 73:13-22.
mas not detected in a screening program. 1993; 53:519-526. 34. Metz CE, Herman BA, Shen JH. Maximum
Radiology 1998; 207:465-471. 27. Zheng B, SumkinJH, Good WF, Maitz GS, likelihood estimation of receiver operating

20. Gray JE. Against the proposition, at Chang YH, Gur D. Applying computer- characteristic (ROC) curves from continu-
point/counterpoint of in the next decade assisted detection schemes to digitized ously-distributed data. Stat Med 1998; 17:
automated computer analysis will be an mammograms after JPEG data compres- 1033-1053.

"640 • Radiology • December 2001 Zheng et al



APPENDIX 2

Performance gain in computer-assisted detection schemes
by averaging scores generated from artificial neural networks
with adaptive filtering
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The authors investigated a new method to optimize artificial neural networks (ANNs) with adaptive
filtering used in computer-assisted detection schemes in digitized mammograms and to assess
performance changes when averaging classification scores from three sets of optimized schemes.
Two independent training and testing image databases involving 978 and 830 digitized mammo-
grams, respectively, were used in this study. In the training data set, initial filtering and subtraction
resulted in the identification of 592 mass regions and 3790 suspicious, but actually negative regions.
These regions (including both true-positive and negative regions) were segmented into three subsets
three times based on the calculation of the values of three features as segmentation indices. The
indices were "mass" size multiplied by their digital value contrast, conspicuity, and circularity.
Nine ANN-based classifiers were separately optimized using a genetic algorithm for each subset of
regions. Each region was assigned three classification scores after applying the three adaptive
ANNs. The performance gain of the CAD scheme after averaging the three scores for each suspi-
cious region was tested using an independent data set and a ROC methodology. The experimental
results showed that the areas under ROC curves (A.) for the testing database using three sets of
optimized ANNs individually were 0.84±_0.01, 0.83±0.01, and 0.84±0.01, respectively. The
between-index correlations of three A, values were 0.013, -0.007, and 0.086. Similar to averaging
diagnostic ratings from independent observers, by averaging three ANN-generated scores for each
testing region, the performance of the CAD scheme was significantly improved (p < 0.001) with A,
value of 0.95 ± 0.01. © 2001 American Association of Physicists in Medicine.
[DOI: 10.1118/1.1412240]

Key words: computer-assisted diagnosis, mammography, mass detection, artificial neural network,
genetic algorithm, adaptive filtering

I. INTRODUCTION transformation, 3 a set enumeration decision tree,21 a Baye-
sian belief network, 22 and a knowledge-based expert

A number of computer-assisted detection (CAD) schemes system.23 Other efforts concentrated on determining a small,
have been developed in recent years to detect masses and but optimal set of features that include morphological
microcalcification clusters depicted in digitized features,' 0 texture features,16 and derivative-based features. 4

mammograms.-1 0 Many researchers believe that eventually Because of the complexity and large variability of the
these CAD schemes will help radiologists to significantly abnormalities in question and the surrounding tissue struc-
improve their diagnostic accuracy and efficiency in diagnos- tures, it is quite difficult for a single universal scheme to
ing breast cancers at an earlier stage."-13 Others question accurately classify suspicious regions using a limited number
whether the high false-positive rates resulting from the CAD of correlated features. 24' 25 To address this problem, two ap-
schemes could generate a large number of unnecessary re- proaches have been investigated to date. The first one is to
calls or possibly biopsies, which might offset the possible segment the images or suspicious regions into different
gains in detection sensitivity.14"15 Because of this potential groups based on specific predetermined image characteristics
negative effect (i.e., high false-positive rate) on diagnostic (e.g., "image difficulty indices") and then optimize separate
performance, significant effort has been invested in an at- schemes with adaptive filtering for each group (class) of im-
tempt to improve CAD performance.16-1 9 In order to achieve ages. Previous studies using this approach suggested prom-
high detection sensitivity, CAD schemes typically identify a ising results for a rule-based CAD scheme 26 and for a
large number of suspicious, but actually negative regions at wavelet-transform based CAD scheme. 27 The second ap-
the initial detection stage. Hence, an important task in CAD proach that has been explored is to combine (or average) the
development is to improve accuracy of classifying a large detection results from different noncorrelated classifiers,
number of identified regions. Previous studies in this area such as the averaging of detection scores from a rule-based
focused mainly on searching for an effective classifier in- and ANN-based classifiers, 17 or those of an ANN and a set
cluding, but not limited to: a linear discriminant function, 5 an enumeration tree.2 1 Similar to improving diagnostic accuracy
improved artificial neural network (ANN),20 a wavelet by averaging ratings from replicated, but independent read-
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ings or from different readers, 28' 29 averaging CAD scores is applied to assign the region as a positive or negative one.
generated by different classifiers could also be an effective In brief, this scheme has three distinct stages for the identi-
approach to improve performance.' 7' 21  fication of masses. The first stage of dual kernel filtering,

In our previously reported studies,2 1' 26 image databases subtraction, and labeling resulted in the selection of a large
were somewhat limited and the computation of the indices number of suspicious regions (24 067 and 19 154 regions
by which images were segmented into groups was quite when applied to the two image databases, respectively, or
complicated. In the present study, we combine the two ap- approximately 24 regions per image). Based on local contrast
proaches. In addition, we use three image features that are measurements, the second stage used an adaptive region
well defined, easily computable, and widely used in CAD growth algorithm to define three topographic layers for each
schemes to segment the image ensemble into different suspicious region. For each growth layer, a set of simple
groups. This study focuses on detecting masses in digitized intralayer boundary conditions on region growth ratio and
mammograms. Since studies have shown that high- shape factor was applied to eliminate a large number of ini-
performing CAD cueing could significantly improve the per- tial suspicious regions. After the second stage, the number of
formance of radiologists in detecting subtle cancers 13' 30-32  suspicious regions (including both positive and negative re-
and our study suggested that once detected, the task of clas- gions) decreased to 4382 and 3623 (or approximately 4.4
sifying masses as benign or malignant was not affected by regions per image) in the training and testing databases. For
the CAD detection performance, we assume here that detec- each suspicious region, a set of image features was automati-
tion and classification are two distinct and largely indepen- cally computed by the scheme. Using these features, the third
dent tasks.32 A detailed description of the development phase stage of the CAD scheme used a three-layer feed-forward
of the scheme and the initial test using a large independent ANN to classify these regions as positive or negative for
data set are presented. mass. 24

The second stage of the scheme identified 592 and 358
II. MATERIALS AND METHODS suspicious regions that depicted verified masses in the train-

A. Image databases ing and testing databases, respectively. With the exception of
these regions that matched verified masses, all other regions

Two independent image databases were used in this study. that were identified as suspicious by the scheme at this stage
The first database (used as the training database) contains a were determined to be negative. A total of 3790 and 3265
total of 978 digitized mammograms. Of these, 545 images negative regions were identified as suspicious (or false-
were acquired on patients who underwent mammographic positive) in the training and testing databases, respectively.
examinations at the University of Pittsburgh Medical Center For each region, 36 image features inside the suspicious re-
(Pittsburgh, PA) and its affiliated hospitals and clinics prior gion (including its three topographic growth layers33 ) and its
to April 1997, and 433 images were provided to us by an surrounding background were automatically computed by
imaging research group at Washington University Medical the CAD scheme. These features include mainly geometri-
School (St. Louis, MO). A detailed description of this data- cally related features, such as region size, circularity, or nor-
base has been reported elsewhere. 22 The second image data- malized standard deviation of radial length and intensity-
base (used as the testing database) contains 830 images, of related features (or distribution of pixel values), such as
which 528 were provided to us by a research and develop- contrast, standard deviation, and skewness of pixel values'
ment team at the Eastman Kodak Company (Rochester, distribution and conspicuity. The definitions and the methods
NY) 10 and 302 images collected more recently (>10/98) on of computation for these features have been reported in sev-
patients undergoing mammography examinations at the Uni- eral previous studies. 22' 24 To reduce the potential redundancy
versity of Pittsburgh Medical Center. Although the mammo- and improve the robustness of the scheme, we used a genetic
grams originated in different medical facilitates, these were algorithm (GA) to select an optimal subset of input features
all digitized in our laboratory using a laser-film digitizer (Lu- to be used in the ANN.
misys, Sunnyvale, CA) with a pixel size of 100 jum
X 100 jim and 12 bit gray-level resolution. For mass detec-
tion, the images were then subsampled (pixel digital value
average) by a factor of 4 in both directions to generate im- The basic concept of adaptive filtering is to divide suspi-
ages of approximately 600X450 pixels. All true-positive cious regions (or images) into several groups based on a
masses depicted in these images were pathologically veri- computable index and then to optimize different ANNs for
fled, and the locations of the masses were marked on the the regions (or images) in each group. Although several com-
images by radiologists. plicated indices have been used for segmentation with some

Each image was processed by a multilayer topographic- success, 26'27 we searched here for new indices. The selection
based CAD scheme previously developed in our laboratory.33  criteria were: (1) the index was easily computable; (2) the
Each mammogramn was processed as follows: Using dual- index had been used as a feature in other CAD schemes; and
kernel filtering, subtraction, and simple thresholding meth- (3) the relationship between the index and the segmentation
ods, the scheme identifies a large number of suspicious mass results is "interpretable" and has been demonstrated in pre-
regions. A set of image features is then extracted from the vious studies. Three indices were selected empirically for
mammogram, and a classifier (i.e., artificial neural network) this study. The first is the size of the suspected region mul-
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TABLE I. The number of false-positive regions in the training data set seg- as a large ratio between the momentum and learning rate was
mented by each of the indices into the "easy," "moderately difficult," and adopted.24' 39 The number of training iterations of the ANN
"difficult" groups, respectively. was fixed at 1000, while the momentum and learning rate in

Segmentation index "Easy" "Moderately difficult" "Difficult" the ANN training were set up as 0.8 and 0.01, respectively.
ROC curves generated from the training samples (A, valuesSize~contrast 454 1002 2334 4

Conspicuity 227 741 2822 computed by the program ROCFIT)40 were used as a fitness
Circularity 366 849 2575 function (or criterion) in the GA optimization. The chromo-

somes that produced higher A, values had higher probabili-
ties of being selected in generating new chromosomes for the
next generation using the methods of crossover and muta-

tiplied by its digital value contrast. This index could be in-
tion. The GA was terminated when it converged to the high-

terpreted to represent the "volume" of a suspicious mass. tion.vale or rac termined nuer of ge -

Studies have indicated that suspicious mass regions with esAzvleoracdapeetmidnubrfgnr-Studes ave ndiate tha supicius assregins ith tions (i.e., 100). The resulting set of features was assumed to

large size and high contrast are easier to identify using CAD ti mal and wasiltin the waD schme.

schemes than small regions with lower contrast.2 5'34 The sec-

ond index is region conspicuity. This index has been exten-
sively investigated for the detection of lung nodules on chest D. Adaptive and nonadaptive optimization
images. 35 Radiologists typically achieved better diagnostic In this study we compared the performance changes of
performance in detecting lung nodules with higher conspicu- detection accuracy between the ANNs when optimized adap-
ity than those with lower conspicuity. 36 A similar relationship tively versus nonadaptively. In the adaptive optimization

between CAD performance and conspicuity of mass regions meto versu ainingdatase In t adapte inton

has also been demonstrated .37 The third index is the rein method, the training database was first segmented into three
circulas also an demportanstrated.urhe tin caind g isuregion subsets with a "similar" characteristic. ANNs with different
circularity, an important feature in classifying suspicious topologies and input features were then optimized separately
mass regions in a variety of CAD schemes.24'38 usnthGAmhofreahubt.TtaianNal

Using each of these indices, we divided suspicious re- using the GA method for each subset. To train an ANN, all
"easy," true-positive regions in the subset were used, and the samegions into three groups, which were defined as "sy" number of false-positive regions was also randomly selected

"moderately difficult," and "difficult" regions. In order to from the larger dataset of false-positive regions in that group.

have the same number of true-positive training samples in Using the GA method an ANN was optimized specifically for

each of the three groups, two segmentation thresholds were this subset. Since three segmentation indices (size fcontrast,

determined based on the distribution of the feature values for conspicuty and circr weren used intis a
conspicuity, and circularity) were used in this experiment, a

the true-positive regions. As a result, the "easy" group m- total of nine subsets, hence ANNs were established (three
cluded 198 true-positive regions, and the other two groups subsets for each segmentation index and three indices of seg-
had 197 true-positive regions. The number of false-positive metio.

regions that resulted from such segmentation is listed in mentation).
Table I. The same thresholds were applied later to the testing In the nonadaptive optimization, the cases were not seg-

mented into subsets. Because the number of training samples
database. could affect performance,24 we used the GA method to opti-

mize the ANN once with 198 randomly selected true-positive
C. GA optimization and 198 false-positive regions (ANN-i), then we repeated

In each group, a different classifier was used on the cases the procedure including all 592 true-positive regions in the
with similar characteristics. To search for an optimal set of training database and a randomly selected set of 592 false-
features to apply to each group, a genetic algorithm (GA) positive regions (ANN-2).
was used. The binary coding method was applied to create a After optimization, an independent database, which in-
chromosome used in the GA. Each extracted feature corre- eludes 358 masses and 3265 regions that had been identified
sponded to a gene. To decide the number of hidden neurons as suspicious, but were actually negative, was used to evalu-
in the second (hidden) layer of the ANN, we added four ate and compare the performance of the adaptive and non-
genes in the chromosome. The chromosome had a fixed adaptive ANNs. To test the adaptive scheme, the program
length of 40, where the first 36 genes represent extracted first segmented the database into subsets using the same in-
image features, and the last 4 genes indicate the number of dices developed for the training phase. The ANN results for
hidden neurons. The same GA software and initial setup pa- all regions in the testing database were used to compute the
rameters have been reported previously.22 In brief, the initial area under ROC curves (A, values) using the ROCFIT pro-
population size of chromosomes was set at 100. The cross- gram.
over rate, the mutation rate, and the generation gap were set
at 0.6, 0.001, and 1.0, respectively. E Performance gain by averaging scores

A training sample of equal number of true-positive and
false-positive regions was then used to train the weights con- Averaging ratings cases from different independent read-
necting the neurons in the ANN. To minimize the over-fitting ings could improve the diagnostic accuracy.41 Accuracy
and keep the robustness of ANN performance when applied gains are strongly dependent on the number of observations
to new cases, a limited number of training iterations as well (or schemes) and the correlation between observations. For
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TABLE 11. Correlation coefficients between cases assigned to different TABLE Ill. The number of true- and false-positive regions assigned to the
groups using the segmentation rules based on the three features (size different groups using the three segmentation indices when applied to the
Xcontrast, conspicuity, and circularity), testing database.

TP regions FP regions TP regions FP regions Group 1 Group 2 Group 3
Indices in training in training in testing in testing Segmentation true/false true/false true/false

compared database database database database index positives positives positives

ANN-1 to ANN-2 0.148 0.174 0.152 0.209 SizeXcontrast 120/514 123/893 115/1890
ANN-I to ANN-3 0.022 -0.069 0.008 -0.004 Conspicuity 113/182 116/612 129/2503
ANN-2 to ANN-3 0.219 0.018 0.298 0.005 Circularity 106/290 107/791 145/2216

example, by averaging the results from three observations, groups with the same number of cases are compared, the
accuracy gains could range from 0 and 73.2% when the cor- correlation coefficients range from 0.712 to 0.963. These re-
relations range from 1 to 0 .41 sults clearly demonstrate that additional information could be

Similar to the multireader problem, we segmented the obtained from the adaptive approach.
data set three times using each of the three segmentation Table III provides the distribution of regions segmented
features (sizeXcontrast, conspicuity, and circularity). Each into the different groups using the three segmentation indices
segmentation resulted in three subsets of cases. Note that a in the testing database. While the percentage of large
case segmented into group one ("easy") based on one fea- sizeXcontrast regions ("easy" regions) is somewhat higher
ture (e.g., circularity) may be classified into group three than that assigned to this group in the training database, the
("difficult") based on another feature (e.g., conspicuity). general distributions are quite similar. The optimization pro-
Each suspicious region was assigned to a specific category cess resulted in ANNs that included different input features
using each segmentation index, and the "optimal" ANN for and varying numbers of hidden neurons. The number of in-
that subset was applied by assigning a likelihood score. put features ranged from 9 to 15 and the number of hidden
Hence, each region was assigned three different scores re- neurons ranged from 3 to 7. Table IV provides the results
lated to its likelihood for depicting a true mass. These scores (A,) for the different schemes when applied to the testing
were averaged and a "combined" ROC curve was generated. database and a comparison (P values) to the nonadaptive
Results were compared to those obtained using individual scheme using 198 positive and 198 negative regions for
scores. In addition, we compared experimentally measured training (ANN-i). The approach in ANN-2 is similar to
and expected gains due to averaging based on measured cor- ANN-l, only 592 positive and 592 negative regions were
relations used for training purposes. Both ANN-I and ANN-2 are non-

COV(X, Y) adaptive schemes, and the significant improvement (P
Y - [ = 0.03) in ANN-2 is largely the result of more complete
P rxa /feature domain coverage. Adaptive schemes 1-3 are the re-

where COV(X, Y) is the covariance of two vectors X and Y, sults after optimization by segmentation based on individual
and o-x and o-y are the standard deviations of the vectors, indices. For example, scheme 1 was trained using the subsets
respectively.42 The theoretical expected gains were computed of size X contrast as a segmentation index. As can be seen, the
for the averaging of multiple observations.41 results are somewhat better (albeit, not significantly) than the

nonadaptive scheme using 198 positive and 198 negative re-
III. RESULTS gions (ANN-i), but these are not improved compared with

ANN-2. On the other hand, by averaging detection scores ofTable I summarizes the number of false-positive regions the different adaptive schemes (either two or all three), sig-

assigned to each group when different features were used for

segmentation in the training data set. Noted is the large num-
ber of regions assigned to the last "difficult" group. In gen- TABLE IV. Areas under ROC curves (A. values) for different schemes and

eral, this indicates that many of the false-positive regions their comparisons (two-tailed p values) with the nonadaptive scheme using

were not "easy" to rule out as a true mass. The correlation 198 positive and 198 negative regions (ANN-1).

coefficients between the classification assignment of regions Scheme Aza P

based on the segmentation performed using the three features
are summarized in Table II. The low correlations indicate Nonadaptive ANN-I 0.82

that a large number of regions in each database were seg- Nonadaptive ANN-2 0.85 0.03
Adaptive-i1 0.84 0.18

mented into different groups when different features were Adaptive-2 0.83 0.63

used for segmentation. Only 12.5% of the true-positive re- Adaptive-3 0.84 0.21
gions and 25.2% of the false-positive regions in the training Average (1 +2) 0.91 <0.01
database were consistently assigned to the same group (e.g., Average (1 + 3) 0.92 <0.01

easy). As a result, for the same training database, three sets Average (2 + 3) 0.91 <0.01

of adaptive ANNs were actually trained with different cases Average (1+2 + 3) 0.95 <0.01

for each group. When ANN scores from randomly selected 'Standard deviation for all A, values is 0.01.
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nificant gains in detection accuracy (p<0.0l) are achieved. IV. DISCUSSION
Averaging results from two or three adaptive schemes re-
sulted in a much larger performance gain (P<0.01) in the Averaging diagnostic ratings from different readers4' or

testing database as compared with ANN-2. Figures 1 and 2 scores from different machine learning classifiers17'2, 1 might

demonstrate the ROC curves for several different classifica- significantly improve detection accuracy, if the ratings or

tion schemes. scores from different observations have low correlations.

To verify the theoretical feasibility of obtaining the per- ANN is one of the most commonly used machine learning

formance gains observed in this study, we used the correla- classifiers in CAD developments, due to its ability to learn

tions for the test results from the different adaptive schemes complex patterns directly from training samples with mini-

(Table V) in the estimation method proposed by Swensson mal requirement on prior knowledge of the input features or
et al.4 1 to compute expected improvements by averaging internal system operation.43 In this study, we explored a
these schemes. Table VI summarizes the predicted Z values simple and novel method to segment and optimally train sets
and percentage gain in accuracy by averaging scores of two of adaptive ANNs. Since these produced extremely low cor-
or three adaptive schemes. Predicted A, values using a gen- related classification results using a large and independent
eral binormal model are also provided. These are consistent testing database, significant gains were realized by averaging
with the experimental results we computed directly using the scores from the different ANNs.
ROCFIT. Given the large number of independent variables that are
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FIG. 2. ROC curves of classification results from non-
0.5 adaptive schemes (ANN-I and ANN-2) as well as after
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TABLE V. Correlation coefficients between testing results using adaptive monly used features for segmentation purposes. Other fea-
ANN scores from different schemes tures, including those extracted locally (from a suspicious

Between adaptive region) and globally (from a full image), should be explored

schemes TP regions [p(a)] FP regions [p(n)] Between Az as well. However, based on the results of this preliminary

ANN-1 to ANN-2 0.018 -0.004 0.013 experiment, we believe that the approach taken may have

ANN-1 to ANN-3 -0.011 0.003 -0.007 significant advantages over a multifeature, single ANN ap-

ANN-2 to ANN-3 0.116 0.011 0.086 proach to the problem.
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ABSTRACT

As the number of mammographic examinations increases, it becomes clear that in many underserved locations, there is a
lack of expertise that is required for consistent, highly accurate, and timely diagnosis. Hence, mammograms are
frequently sent to other medical facilities, and a significant fraction of women (typically 3-10%) are recalled for
additional examinations. It is the purpose of this project to develop, test, and clinically evaluate a telemammography
system that will operate between several remote locations and a large breast cancer center. In this manuscript we
describe the design considerations, implementation, and initial testing that were undertaken, to date. The system
digitizes a mammogram at 50 gm pixel size, compresses the resulting image file (-75:1), and transmits it over a
telephone line to the central site where the data received are decompressed and displayed on a high-resolution
workstation in approximately 4 minutes per image. Initial testing of the system indicates that a relatively inexpensive
system for "almost real-time" telemammography can be employed in any geographic area that possesses standard
telephone lines, and this approach to enhance communication may make it possible to offer better mammographic
services at remote locations.

Key Words: Imaging, Teleradiology, Mammography, Data compression, Image display

1. INTRODUCTION

Periodic mass screening of asymptomatic women is rapidly gaining approval and acceptance, and the population
segment recommended for screening is increasing due to both longer life expectancy as well as earlier recommended age
for initial examination [1-3]. The large variability in a number of important aspects related to mammography, as
practiced in the U.S., resulted in the enactment of the Mammography Quality Standards Act, which mandates
accreditation of each program (facility, technical and professional) [4,5]. Shortages of expert mammographers in many
locations, combined with the desire to make it convenient for the patient to undergo the procedure, suggest that there
may be a need for high-quality telemammography systems that enable a distributed acquisition-centralized expert review
type solution to the problem [6,7]. The relatively high recall rates (5-15%) of screened women to supplement
information that was not ascertained during the initial visit (e.g. magnification views) also make it desirable to enable
physician "monitoring" and "management" of remote locations so that clinical and diagnostic decisions can be made
while the patient remains in the clinic [8-11]. Early attempts to develop and implement a practical telemammography
solution to this problem failed due to several significant technical problems associated with acquisition, transmission,
management, and display of the images [12-14]. Many of these technical issues have been resolved in recent years, but
some remain [14-18]. Although an adequate communication infrastructure for high-quality telemammography is
available within some urban regions, the fact remains that where it may be needed most (i.e. remote, non-urban
locations), enabling (two-way) communication systems are limited mainly to the Plain Old Telephone System (POTS).
Other communication technologies, such as satellites, are being evaluated for this purpose, but it is not likely that these
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will displace POTS in most underserved areas for quite some time [19-21]. Hence, the problem of cost effective, timely
remote patient monitoring and management in many underserved areas is not a simple one. Using a unique data-handling
scheme, we have been able to demonstrate that high-quality, multi-site telemammography systems can be developed
under these acquisition and communication constraints [22,23]. Using similar concepts, we have been developing a
multi-site system that enables "almost real-time communications" between the "spokes and the hub." Design
considerations as well as implementations and initial testing procedures are described in the manuscript.

2. METHOD

At the remote sites, we use a high resolution Lumiscan 85 film digitizer (Eastman Kodak, Rochester, NY) connected via
SCSI to a Windows NT 2000 PC (900 MHz Athlon 512 MB) running multi-threaded software. The digitizer is equipped
with a film feeder and is capable of digitizing up to six films in a batch at 50 ptm pixel size over optical densities ranging
from 0 to 4.0 OD. Four slots of the film feeder are labeled for specific mammographic views (i.e. LCC, RCC, RMLO
and LMLO) for ease of use during the digitization process. The user at the remote site (typically a technologist) selects
either an option to digitize a "standard" protocol for an image set or any of the six films he/she chooses to send, by
clicking on an appropriate icon.

The user enters patient information into a computer data entry form during the digitization. At this time he/she also
enters information for 'non-standard' cases by choosing from drop-down menus the anatomy and view for each of the
films being digitized. Meanwhile the software on the PC establishes a connection with the central hub if a connection
does not already exist. This is currently done via dial-up phone line or an Internet connection, but optionally ISDN or
DSL can be used as well. For the dial-up connection, internal 56K hardware modems (U.S. Robotics, Rolling Meadows,
IL) are used. The image data are processed in sections, segmented, and compressed using JPEG 2000 compatible
irreversible wavelet compression and transmitted in packets to the central site. Optionally, a report or patient history can
be transmitted along with the images by inserting them into an attached page scanner (OneTouch 8650, Visioneer, Inc.,
Fremont, CA).

The central site has a Windows 2000 Server workstation (Dual 1.2 GHz Athlon MP, 2 GB RAM) running specially
developed software. Data received from remote sites is reconstructed from the packets, decompressed, and stored on a
hard disk and/or in memory (if available). Several cases (depending on size) can be stored in memory for instant access.
Cases stored on disk take a few seconds to restore to memory. The display consists of a pair of high-resolution (2048 x
2560) 8-bit grayscale portrait monitors at a nominal setting of 80 ftL (DS5 lOOP, Clinton Electronics, Rockford, IL). The
bottom of the displays holds a bar of icons and arrows for selecting cases, images, and other tools. The user can select
from a patient list that displays the unreviewed cases on the top (similar to a "worklist"). When a case is selected, four
images appear in quadrants on the right monitor. The left monitor displays the currently selected image (the first image
by default) at half the available resolution. Although images are displayed at window and level settings determined by
the statistics of the signal from individual image data sets, the user may select the window and level tool and alter it in
real time using a mouse. A "magnify" tool is also available that magnifies any square region under the cursor in real-
time to full resolution as it is moved over the image. Among other tools on the tool bar are arrows that allow movement
to the next or preceding case.

We plan to add DICOM compatibility to the workstation at the central site. This will include the capability to send and
print selected images to a mammographic film printer (DryView 8610, Eastman Kodak, Rochester, NY). This will also
allow transferring workstation images to another DICOM device (workstation or storage) and also allow access to
images from other DICOM compatible devices, such as full field digital mammography acquisition systems [24,25].

We also plan to add computer-aided detection (CAD) software at the remote site. This would allow image analysis to be
performed on the original images during the time the compressed data sets are transmitted. The results can be sent
immediately after the image data transfer, simply as coordinate data. Suspicious areas for masses and microcalcifications
would then be marked on a removable overlay on the images at the hub. Figure 1 is a schematic diagram of the system as
it is currently configured and being evaluated.
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3. SOFTWARE DESIGN

Both the hub site and remote site computer programs are designed using multithreading to permit each task to be
completed in a timely manner; yet, allow the system to be responsive to user input. The main threads communicate with
one other by sending thread messages to other threads. Each main thread handles the messages that are applicable to it
and ignores any others. A main thread may spawn another thread to accomplish some subordinate task. These spawned
threads do not receive messages, but they do send messages.

The main threads for the hub site program are:
Archive Manager that handles saving and loading of images and cases and the deletion of uncompressed images when
free disk space becomes low.
The Case Manager handles the functions of creating images and cases, in addition to most of the database functions.
The Display Manager controls the display of images and forwards messages to the main application window.
The Distribution Manager handles the receipt and transmission of data and the processing (including decompression) of
the data.

The main threads for a remote site are:
Digitizer Manager that handles all the tasks related to the film digitization.
The Case Manager handles the functions of creating images and cases, in addition to most of the database functions.
The Display Manager controls the display of images and forwards messages to the main application window.
The Distribution Manager handles the transmission and receipt of data and the processing (including compression) of the
data.

The threads for the most part are synchronized using a Reader / Writer lock that is a combination of the built-in
Microsoft Windows synchronization primitives. This lock allows either any number of readers or just one writer to have
access to a shared object. This allows greater concurrency than that which could be achieved by using a Mutex, which
allows only a single thread to access an object at a time forcing all other threads to wait.

4. USER FUNCTIONALITY

At the remote sites all data entry functions utilize pull-down menus supported by the use of a keyboard. A "start"
command enables digitization of a case, and data entry can be performed within a predetermined time slot during the
digitization process. At the central site, a high-resolution workstation is operated solely using a mouse, and several
simple options are available by clicking on the appropriate button (e.g. flip, magnify, rotate, display on other monitor,
etc.). The cases in memory and those on disk are so indicated on patient lists, and automatic lookup tables (image-
statistic based) are used to display "reasonable" default settings.

5. RESULTS

The system has been designed, assembled and tested for technical reliability. Currently the three sites (See Figure 1) are
located anywhere from 15-90 miles away from our hub in Pittsburgh. The remote sites are all outpatient clinics, which
are staffed by a physician between one day a week to half a day every two weeks. Cases from multiple sites have been
transmitted simultaneously and received successfully at the hub. Average transmission times for a four-image case vary
significantly based on bandwidth availability and film size and currently ranges from 9 to 25 minutes. We are currently
evaluating different approaches to reduce the cycle time to below 15 minutes per case as an upper limit. To date we
have received over 200 cases from the remote sites, and we are analyzing user functionality at all locations.

Two mammographers performed an initial evaluation of a series of cases and the basic workstation's basic functionality.
The quality of the images received was subjectively judged to be acceptable or better. A series of retrospective analyses
on a large number of cases sent from all sites will follow.

Proc. SPIE Vol. 4685 419



6. DISCUSSION

Low cost telernammography is becoming feasible as communication technology and processing capabilities continue to
improve in terms of cost, availability, and reliability. The system we designed is capable of variable compression rates,
should it be desired, as well as the ability to print images at the receiving site. As important, the incorporation of a CAD
scheme into the protocol may aid in decision making at both the sending (remote) sites as well as the receiving site. It
should be noted that the system was not designed for electronic primary diagnosis, but rather to facilitate better
communication between remote (and perhaps underserved) sites and a central hub where expertise is more readily
available.

Our initial assessment indicates that technically our objectives can be met, and we hope that our planned clinical
evaluations will improve our understanding as to whether or not such systems can be used to enhance communication,
aid in timely decision making, help reduce recall rates, and ultimately enhance and improve the timeliness and quality of
the service we can provide in locations where expert mammographers are not physically present at the time of the
examination.
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O iPPENDIX 4

Computer-aided Detection in Mammography:
An Assessment of Performance on Current and Prior Images'

Bin Zheng, PhD, Ratan Shah, MD, Luisa Wallace, MD, Christiane Hakim, MD, Marie A. Ganott, MD, David Gur, ScD

Rationale and Objectives. The authors assessed and compared the performance of a computer-aided detection (CAD)
scheme for the detection of masses and microcalcification clusters on a set of images collected from two consecutive
("current" and "prior") mammographic examinations.

Materials and Methods. A previously developed CAD scheme was used to assess two consecutive screening mammo-
grams from 200 cases in which the current mammogram showed a mass or cluster of microcalcifications that resulted in
breast biopsy. The latest prior examinations had been initially interpreted as negative or definitely benign findings (Breast
Imaging Reporting and Data System rating, 1 or 2). The study involved images of 400 examinations acquired in 200 pa-
tients. Radiologists identified 172 masses and 128 clusters of microcalcifications on the current images. The performance
of the CAD scheme was analyzed and compared for the current and latest prior images.

Results. There were significant differences (P < .01) between current and prior images in many feature values. The per-
formance of the CAD scheme was significantly lower for prior than for current images (P < .01). At 0.5 and 0.2 false-
positive mass and cluster cues per image, the scheme detected 78 malignant masses (78%) and 63 malignant clusters
(80%) on current images. Only 42% of malignant cases were detected on prior images, including 40 masses (40%) and 36
microcalcification clusters (46%).

Conclusion. CAD schemes can detect a substantial fraction of masses and microcalcification clusters depicted on prior
images. To improve performance with prior images, the scheme may have to be adaptively reoptimized with increasingly
more subtle abnormalities.

Key Words. Breast, calcification; breast neoplasms, diagnosis; breast radiography; computers, diagnostic aid.
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Breast cancer is a common cancer in women over the age a well-established and accepted method for screening the

of 40 years (1). Early detection is believed to be impor- general population. Current guidelines in the United

tant for improved prognosis and therapy and for reducing States recommend periodic mammographic screening for

associated mortality and morbidity (2). Mammography is women aged 40 years or older (3). Because of the large

volumes, low expected detection rate of abnormalities in

Acad Radiol 2002; 9:1245-1250 screening examinations, and the complexity of tissue pat-
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systems have been accepted as clinical tools that provide at least one suspicious mass or microcalcification cluster
radiologists with a useful "second opinion." Three CAD was identified by the interpreting radiologist, resulting in
systems, ImageChecker (R2 Technology, Los Altos, breast biopsy. For the prior examinations, all images were
Calif), Second Look (CADx Medical Systems, Quebec, interpreted as "negative" or "benign finding."
Canada), and MammoReader (Intelligent Systems Soft-
ware, Clearwater, Fla) have been approved to date by the , AND MTO
U.S. Food and Drug Administration for this purpose.
Their performance has been evaluated (8-10). While in The mammographic cases used in this study were se-
general the systems have been shown to increase sensitiv- lected from biopsy records of two medical facilities in
ity, these results are not universal. One study reported Pittsburgh, Pa. In one facility we collected all available
that, with the help of a commercially available system, biopsy cases performed in 1997, and in another we ascer-
two radiologists detected 19.5% more cancers with only a tained a fraction of the biopsy cases performed in 2000.
slight increase (from 6.5% to 7.7%) in recall rate (11). First, we excluded cases for which all the original mam-
Another study reported that use of a comparable system mograms from the latest prior examination were not
did not affect the performance of three radiologists retro- available. Second, we excluded cases in which the recom-
spectively interpreting a set of mammograms depicting 59 mendations for biopsy had not been based on either the
breast cancers in 280 patients (no increase in sensitivity finding of mass or microcalcification cluster. Third, we
or decrease in specificity) (12). Our own preliminary selected only cases whose findings had been interpreted
study, in which seven radiologists interpreted 120 mam- as either negative or benign (Breast Imaging Reporting
mographic cases under five different CAD cueing condi- and Data System rating on the latest prior examination,
tions, suggested that highly performing CAD schemes can 1 or 2).
significantly improve the diagnostic performance of radi- From the remaining pool, 200 cases were selected se-
ologists, while poorly performing schemes can adversely quentially for the study. Each case included images ac-
affect performance (13). quired from two consecutive examinations. In this set of

One objective of using CAD is the potential to detect 200 cases, the interval between the current examination
breast cancers at an earlier stage. It is well known that a (when the patient was sent to biopsy) and the latest prior
large number of breast abnormalities (ie, masses and mi- examination varied from 10 to 22 months. Radiologists
crocalcification clusters) are visible in retrospect on prior identified 172 masses and 128 microcalcification clusters
mammograms but are not interpreted at the time as highly in this data set. Of the 172 identified masses, 164 were
suspicious. In one study, 427 breast cancer cases were visible (in retrospect) on both views (craniocaudal [CC]
reviewed, and the abnormality in question was visible on and mediolateral oblique [MLO]), and eight were visible
the latest prior mammograms in 286 (67%) (9). When only on one view. One hundred twenty of 128 microcalci-
115 of the "more obvious" cases (27% of the original 427 fication clusters were visible on two views, and eight on
cases) were processed by a CAD system, 89 cancers (or only one. Hence, there were a total of 336 mass regions
77%) were identified as suspicious on the prior mammo- and 248 cluster regions depicted on these mammograms.
grams, with an average of one false-positive cue per im- One hundred masses and 79 clusters were associated with
age (14). Commercial systems generally provide only a malignancies. Two masses and four clusters were visible
binary outcome for each suspicious region (cued or not on only one view. Therefore, 198 mass regions and 154
cued) based on a predetermined (and undisclosed) thresh- cluster regions depicted on the current images were asso-
old. Therefore, the difference in performance between ciated with malignancy. Table I summarizes the distribu-
different groups of images (in this case "current" and tions of abnormalities by type and abnormality in the
"prior") can be measured only at one operating point, database. A fraction of the masses and clusters were visi-
Hence, complete characterization (eg, a free-response re- ble on the prior images. Therefore, the corresponding lo-
ceiver operating characteristic [FROC]-type curve) of the cations of all mass and cluster regions on prior images
performance cannot be estimated (8,14). were determined visually during a side-by-side inspection

In the study reported here, we applied a CAD scheme and after differences in breast positioning and compres-
previously developed in our laboratory to a set of 200 sion were accounted for subjectively.
selected cases with mammograms from two consecutive All mammograms were digitized in our laboratory with
examinations. At the latest examination (current images), a laser film digitizer (Eastman Kodak, Rochester, NY)
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Table I

Distribution of Selected Masses and Microcalcification Clusters

All Cases Malignant Cases

Visible on Visible on Visible on Visible on
Type of Abnormality Total 2 Views 1 View Total 2 Views 1 View

Mass only 153 145 8 83 81 2

Cluster only 109 101 8 62 58 4
Mass and clusters combined 19 19 0 17 17 0

with a pixel size of 50 X 50 j/m and 12 bits of gray lev- scheme on both current and prior images but were ulti-

els. Each image was then subsampled by a factor of two mately cued only on current images, we analyzed changes
in both dimensions with a pixel averaging method to re- in the main features used in the ANN, to clarify why low

duce the spatial resolution to 100 X 100 tkm. Our previ- output scores were generated for these regions on prior

ously described CAD scheme (15) was applied to the im- images (or why these were ultimately discarded by the

ages to detect suspicious regions for microcalcification scheme).
clusters. Images were then subsampled again by a factor Both "case-based" and "region-based" sensitivities

of four in both dimensions to reduce the effective pixel were assessed in this study. Case-based sensitivity in-

size to 400 X 400 jm, and a "mass" detection scheme cludes correct cues of an abnormality (eg, a mass or clus-
(16) was applied, ter) on one or both views (CC, MLO, or both); a "case"

The CAD scheme developed in our laboratory (15-17) here means one abnormality and not necessarily one pa-

was applied without modifications ("as is") to all images tient. Region-based sensitivity includes correct cues of an
in the database. After image segmentation and topo- abnormality depicted independently on either view (CC or

graphic multilayer region growth (15,16), the scheme ex- MLO). The same abnormality depicted on both views

tracts a set of image features for each identified suspi- (CC and MLO) is considered two independent true-posi-

cious region and its surrounding tissue background. Two tive findings. Region-based sensitivity was computed ac-

artificial neural networks (ANNs), one for mass detection cording to the number of correctly detected regions,
and one for microcalcification cluster detection, were used rather than abnormalities.
to classify each suspicious region by assigning it a likeli-
hood score for the abnormality in question (for the likeli-
hood of being positive) (17). With these detection scores
used as the input values of an ROC curve-fitting routine Figures I and 2 demonstrate the case-based FROC
(18), performance curves were generated. After normal- curves for current and prior images for the detection of

ization for the maximum false-positive rates, the perfor- masses and microcalcification clusters, respectively. Fig-

mance results were transformed into FROC curves. FROC ures 3 and 4 demonstrate the region-based FROC curves
curves were compared for the corresponding current and for mass and cluster detection. Figures 5 and 6 demon-

prior image data sets. strate FROC curves of case-based detection sensitivity
False-positive cueing rates are extremely important in versus false-positive rate for malignant mass and cluster

the screening environment (12,13). Therefore, in our anal- detection, respectively, after the exclusion of biopsy-
ysis, we used as operating points false-positive rates of proven benign cases. The CAD scheme detected (though

0.5 per image for masses and 0.2 per image for microcal- at a high false-positive rate) 94% of masses (162 of 172)
cification clusters, similar to the reported performance and 95% of microcalcification clusters (122 of 128) in the

levels of commercially available CAD systems (10,11) current image database.
and our own experimental results (13). At these false- For the prior image database, the maximum detection

positive rates, we compared the detection sensitivities for sensitivities were 86% for masses (148 of 172) and 73%
masses and clusters between the current and prior images. for clusters (93 of 128), as shown in Figures 1 and 2.
For malignant mass and microcalcification cluster regions After benign abnormalities were excluded, similar maxi-

that were initially identified as suspicious by the CAD mum sensitivities were obtained for mass and cluster de-

1247



1 0.9

0,9 0.8

0." 0.7

-0A7 0.6

0.5

CC
A ... 0.

04 Detection on *currenr images 200.4 "c n'on t imag s • 04 ... •k" ........D...ect.ion.........................

0. /- Computed FROC cumw rcurent" images)
02 A - Computed FROC curve (current" Images)

A Detection on 'prior' Images

0a1 ...... ComTputed FROC curve (rptoce images) 0.1 A/ De... opteto Fon "prirt "p¢ Images )

0.2 0A4 0,6 0.8 1.2 1.4 16 1.8 2 2,2 24 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

False-positive mass regions per image False-positive mass regions per image

Figure 1. Comparison of case-based CAD performance for de- Figure 3. Comparison of region-based CAD performance for
tection of masses on 200 current and prior mammographic cases. detection of masses on current and prior images. The test set
The test set included 172 masses. included 336 mass regions.
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Figure 2. Comparison of case-based CAD performance for detec- Figure 4. Comparison of region-based CAD performance for
tion of microcalcification clusters on 200 current and prior mammo- detection of microcalcification clusters on current and prior in-
graphic cases. The test set included 128 true-positive clusters, ages. The test set included 248 cluster regions.

tections: 95% for both masses (95 of 100) and clusters clusters. At these threshold levels, our CAD scheme de-

(75 of 79) on the current images and 76% (76 of 100) tected 78% of malignant masses (78 cases or 109 regions)

and 59% (47 of 79) for masses and clusters, respectively, and 80% of malignant clusters (63 cases or 92 regions)
on prior images (Figs 5, 6). The scheme has comparable on the current images. Suspicious regions that were cued
performance levels for detecting malignant or benign in the corresponding areas of prior images were 53 "mass
findings on current images. Its sensitivity for malignant regions" (or 40 "masses") and 51 "cluster regions" (or 36

lesions, however, is significantly lower than that for be- "clusters"). The case-based sensitivities for prior images
nign lesions on prior images (P < .01). were 40% (40 of 100) for malignant masses and 46% (36

With specific thresholds set on the ANN-generated of 79) for malignant clusters.

scores (0.55 for mass detection and 0.5 for cluster detec- For mass detection, 24 malignant regions were cued on
tion), the false-positive rates in our database were 0.5 per the current images but not on the prior images. In six

image for masses and 0.2 per image for microcalcification features used in the ANN (17) for mass detection, the
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False-positive mass regions per image ages (9,14,21). In previous studies, CAD schemes were

Figure 5. Comparison of case-based CAD performance for ma- applied mainly to cases interpreted as recommended for
lignant mass detection. The test set included 100 malignant recall by a panel of radiologists during retrospective re-
masses.

views. In this study, we applied a CAD scheme to prior
examinations of cases that ultimately underwent biopsy

I because of findings during a subsequent examination. Our
0.9 experimental results showed that 76% of malignant

, ... masses and 59% of clusters associated with malignancies

07 were detected as suspicious with the CAD scheme (Figs

S...... . .................. 5, 6). By applying thresholds on the ANN scores to gen-
erate false-positive rates of 0.5 per image for mass re-
gions and 0.2 per image for cluster regions, the scheme

"0"4tecin o4 ultimately detected 42% of cancers depicted on prior im-
ages. This is in the range of the fraction of cases reported

____Comptted FROCeui, (CUn ) to be visible at prior examinations in other studies (9).
41 A Delecton on "pricelmages
, Ceted FOCgux o Images The detection of abnormalities was found to be more

,,&Computed FROC cI ("o" images) sensitive to changes in feature values on the prior images.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 For example, reducing the false-positive rate for mass
False-positive cluster regions per image detection from 1.0 to 0.5 per image decreased sensitivity

Figure 6. Comparison of case-based CAD performance for ma- by 14% (from 0.88 to 0.76) on the current images and
lignant microcalcification cluster detection. The test set included 31% (from 0.58 to 0.40) on the prior images (Fig 5). Our
79 malignant clusters. experiment also suggested that the set of features that

optimally represent malignant masses may be somewhat
average feature values changed significantly (P < .05) different on current and prior images (Table 2). This ob-
between current and prior images. Table 2 summarizes servation is in agreement with that in another study in
the changes in these features. The estimated "size" and which a stepwise linear discriminant analysis selected
"contrast" of the cued regions were significantly smaller different sets of optimal features to represent masses de-
(P < .05) on prior images. In general, because of these picted on current and prior images (22).
changes, the mass regions depicted on prior images are Unlike other studies using a commercial CAD product
more difficult to identify, not only for human observers (8,14), for which only one operating point (detection sen-
but also for the CAD schemes optimized on a different sitivity at a given false-positive rate) can be analyzed, this
set of cases (19,20). study generated complete FROC curves. Hence, one can

For microcalcification detection, 21 malignant cluster compare the performance difference at any operating
regions were cued on the current images but not on the point and investigate the effect of feature changes on per-
prior images due to lower ANN-generated scores. Of 13 formance. This approach may represent an important first
features used in the ANN for cluster detection (17), only step toward reoptimizing CAD schemes that improve the
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Table 2
Average Values of Six Features and Change in Values between Current and Prior Images for 24 Malignant Masses

Standard Pixel Ratio of
Region Size Contrast Deviation of Local Minimum Region

Value (mm2 ) (digital value) Circularity Radial Length Digital Value Conspicuity

Average for current images 133.1 ± 100.2 42.1 ± 10.7 0.83 ± 0.07 0.21 ± 0.07 0.13 ± 0.05 4.7 ± 1.5
Average for prior images 66.3 ± 41.4 33.9 ± 12.3 0.76 ± 0.09 0.29 ± 0.08 0.21 ± 0.07 3.7 ± 0.7

Change (%) -50.2 -19.5 -8.4 +38.1 +61.5 -21.3

Note.-These 24 masses were ultimately cued on the current images but not on the prior images (P < .05 for each of the six fea-
tures). Mean values are given ± standard deviations.

detection of breast cancers at an earlier stage. Such early 12. Moberg K, Bjurstam N, Wilczek B, Rostgard L, Egge E, Muren C.

detection will become increasingly important, because the Computed assisted detection of interval breast cancers. Eur J Radiol
2001; 39:104-110.

average stage at detection will gradually shift toward that 13. Zheng B, Ganott MA, Britton CA, et al. Soft-copy mammographic

seen on prior images as compliance improves and women reading with different computer-assisted detection cueing
environments: preliminary findings. Radiology 2001; 221:633-640.

undergo several periodic examinations. 14. Birdwell RL, Ikeda DM, O'Shaughnessy KF, Sickles EA. Mammo-
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include them in this study, we expect that the questions 15. Zheng B, Chang YH, Staiger M, Good WF, Gur D. Computer-aided

we considered are as relevant to full-field digital mammo- detection of clustered microcalcifications in digitized mammograms.
Acad Rediol 1995; 2:655-662.
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ABSTRACT

We evaluated a telemammography system for reviewing and rating screening mammography in a clinical setting. Three
remote sites transmitted 306 exams to a central site. Films were digitized at 50 micron pixel dimensions and
compressed at a 50:1 ratio. At the central site images were displayed on a workstation with two high-resolution
monitors. Five radiologists reviewed and rated the screens without the availability of prior images or additional
information indicating: 1) if additional procedures were needed, 2) which breast was involved, and 3) when appropriate,
the recommended additional procedures. During the actual clinical interpretation 13.7% (42 cases) of the patients were
recalled for additional procedures. During the retrospective review radiologists 1, 2, 3, 4, and 5 recommended
additional procedures for 26.1%, 29.1%, 36.3%, 45.1%, and 54.2% of the cases, respectively. The agreements between
the clinical interpretation and radiologists 1, 2, 3, 4, and 5 were 77.8%, 76.1%, 69.0%, 62.7%, and 53.6%, respectively.
The exceedingly high percentage of recommended additional procedures using the workstation was attributed to lack of
prior images or additional information, the knowledge that case management was not affected, and the observers'
expectation for an enriched case mix.

Keywords: Teleradiology, human performance, recall rate, breast cancer screening, mammography.

1. INTRODUCTION

Teleradiology can challenge typical radiology practices in areas ranging from personnel assignments to data
management. In remote or underserved clinics in may be necessary to evaluate personnel qualifications in regards to
deciding if teleradiology is appropriate and the necessary radiographic procedures.1 3 Many teleradiology systems4-9

employ image processing techniques to manage the digital image data in terms of data acquistion, transmission time
(e.g., compression, 12 cropping, 13 image selection 4 ), and image display. . .14,5 The effects of data
management techniques on diagnostic image quality are application specific. Comparisons between film-based and
digitized image-based (film digitization) diagnostic radiographic interpretation have produced mixed results. In some
laboratory studies the area under the receiver operating characteristic (ROC) curve, sensitivity, and accuracy have been
shown to be slightly greater for film-based interpretation, 4

,
7i,6i, 7 but the differences were generally not statistically

significant. Reported specificity has been relatively equivalent for the two interpretation methods.4 7i1i 7

The high-spatial resolution necessary to interpret mammographic images presents unique challenges when designing
and implementing a telemammography system. Improvements in image quality of x-ray film mammography have been
associated with improvements in breast cancer detection.8-23 Therefore, it is important that the image processing
techniques of a telemammography system do not degrade the diagnostic image quality of the digital (full-field digital
mammography (FFDM)) or digitized (film digitization) mammographic images.

* jklst3 @pitt.edu; phone (412) 641-2572; fax (412) 641-2582, University of Pittsburgh, Magee-Womens Hospital, 300

Halket Street., Suite 4200, Pittsburgh, PA 15213
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Mammography interpretation has been reported as relatively equivalent for film mammography and digitized
mammographic images. Fajardo et al. 24 (1990) found film mammography statistically superior for detecting skin and
nipple abnormalities compared to digitized mammography in an ROC study, but found the two methods equivalent for
detecting microcalcifications and masses. An ROC study performed by Nab et al.25 (1992) found that the diagnostic
performance of film and digitized mammography were comparable. Powell et al.26 (1999) reported that film
mammography was slightly superior to digitized mammography in several diagnostic measures (i.e., accuracy, false-
positive rates, and callback rates for mammograms with normal and malignant findings), but only the callback rates for
normal findings were statistically different. The callback rates for benign findings were slightly better for digitized
mammography. A follow-up study by Powell et al. 27 (2000) compared film mammography to wavelet-compressed
digitized mammographic images. The only statistically significant finding was that the false positive rate was lower for
compressed digitized images compared to film mammography. Compressed digitized images were also slightly better
(though not statistically) in terms of callback for mammograms with normal and benign findings. Film mammography
was slightly better (though not statistically) for callback rates for depicting malignant abnormalities.

This manuscript presents a •reliminary, retrospective clinical evaluation of an inexpensive, high-quality, multi-site
telemammography system 28' 2 for the review of screening mammography examinations. The study was designed to
assess the effectiveness of the system for the review of breast cancer screening mammography with the objective to
assess its possible use in determining the need for additional procedures (rather than primary diagnosis). The limited
retrospective review was conducted using only digitized mammographic images without the benefit of prior images or
any additional information. Five radiologists reviewed and rated screening exams using the telemammography system,

and their results were compared to the actual clinical interpretations of the same cases regarding the need for additional
procedures. It was anticipated that in this experimental protocol the number of cases recommended for additional
procedures would be greater during the limited telemammography review compared to the clinical interpretation.

2. METHODS

2.1 Case selection
The 306 cases retrospectively evaluated in this study originated from patients who underwent breast cancer screening
mammography at three worfian's imaging centers. The mammography technologists at these centers were instructed to
select an approximately equal number of cases they (the technologists) believed may and may not need additional
imaging procedures for complete evaluations. Cases were selected by the technologists in a prospective mode and they
did not know at the time of selection whether or not the patient would actually be recalled for additional procedures
during the clinical interpretation. The mean patient age was 53.8 years ranging from 35 to 88 years old. The actual,
subsequent clinical interpretation categorized each case using the Breast Imaging Reporting and Data System
(BIRADS) (Table 1). The four routine screening mammographic films of the left and right craniocaudal views (LCC &
RCC), and left and right mediolateral oblique views (LMLO & RMLO) were used to review and rate cases in this study.

Table 1
Distribution of BIRADS categories as a result of clinical
interpretation of the cases

BIRADS Category 0 1 2 total
Number of cases 42 206 58 306

2.2 Telemammography system
The cases for this study were transmitted from the three centers (remote sites) to Magee-Womens Hospital, Pittsburgh,
PA, USA (central site) using an inexpensive, high-quality, multi-site telemammography system. The operation of the
system including digitization the mammographic films, digital image processing, data transmission, and image display
were conducted under routine operating procedures and are described in detail by Drescher et al.29 (2003). A brief
description, as relevant to this study is provided below.

2.2.1 Central and remotes sites
The central site telemammography workstation is connected to two high-resolution (2048 x 2560) 8-bit grayscale
portrait monitors at a nominal setting of 80 ftL (DS5 1OOP, Clinton Electronics, Rockford, IL, USA). A dual 1.2 GHz
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multi-processor (Athlon MP, Advanced Micro Device, Sunnyvale CA, USA) with 2 GB of RAM powers the
workstation which operating under Microsoft Windows 2000 Server (Microsoft Corporation, Redmond, WA, USA).
The workstation is equipped with 56K hardware modems (U.S. Robotics, Rolling Meadows, IL, USA) and an ethernet
network cards (OfficeConnect 10/100 NIC, 3COM, Santa Clara, CA, USA) for communication with the remote sites.

The computers at the remote sites operate under Microsoft Windows 2000 Workstation powered by a 900MHz
processor (Athlon 900, Advanced Micro Device, Sunnyvale CA, USA) with 512 MB of RAM. The mammographic
films are digitized using a high-resolution, laser film digitizers (Lumiscan 85, Eastman Kodak, Rochester, NY, USA) at
50 micron pixel dimensions and 12-bit grayscale. Data communication from the remote site computers is conducted via
56K hardware modems and ethernet network cards (Integrated PRO/100 S Desktop Adapter, Intel Corporation, Santa
Clara, CA, USA). Sites 1 and 2 are 15 and 20 miles from the central site, respectively, and transmit data across Plain
Old Telephone System (POTS) lines. Site 3 is 90 miles from the central site and transmits data across a Local Area
Network (LAN).

2.2.2 Image processing
The first image processing step was to perform an automated cropping that removed the non-tissue area surrounding the
breast. Next, the image data were compressed using the irreversible (lossy), 9/7 transform, wavelet-based JPEG 2000
method at a 50:1 compression ratio. Prior to transmission from the remote sites, the data packets were encrypted using
strong 128 bit Microsoft Point-to-Point Encryption (MPPE) with Microsoft Challenge Handshake Authenticate Protocol
(CHAP) version 2.

Upon arrival to the central site the image data were decrypted and decompressed. The decompressed images data were
minimally unsharp masked to enhance display on the workstation monitors. The image data range was maximized for
display by re-scaling the image data from 0 to 4095. To facilitate image viewing default look-up table (LUT) values
were automatically calculated based on the typically bimodal pixel value distribution (histogram). The images were
restored to full height, but not the full width, by padding (filling) prior to image display.

I7f

Fig. 1. Telemammography workstation at the central site pictured in the default image
display format.
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2.2.3 Central site image display
There are several mouse-driven image display features on the central site workstation available to the user during case
review. Image display formats possible included: one image/monitor, two images/ monitor, or four images/monitor.
To duplicate our standard film presentation LCC and RCC are displayed on the left monitor, and LMLO and RMLO
on the right monitor as the default presentation (Fig. 1).

The typical display resolution was approximately 100 micron pixel dimensions for one image/monitor and 200 micron
pixel dimensions for two images/monitor. Images can be magnified by a free-moving magnification box or quadrant
panning. The magnification box size varied dependent on the image display format; for one image/monitor the box
was 511 x 566 pixels and for two images/monitor the box was 204 x 266 pixels. The LUT settings could be adjusted
by the user by moving the mouse horizontally or vertically. Selected LUT settings could be applied (at user's option)
to all images associated with the case and could be reset to the default (automated) values at any point.

2.3 Reviewing and rating cases
Five experienced radiologists (each reading over 2000 mammograms per year) reviewed and rated each case on the
telemammography workstation. Cases were randomly presented in each session. The rating form for each case was
presented on the workstation monitors and completed using the computer mouse (Fig. 2). The computerized scoring
form recorded: (1) if additional procedures were indicated, (2) use of prior images (disabled for this study), (3) which
breast was involved, and (4) when appropriate, the specific recommended procedure. The radiologists' reviews were
conducted based entirely on the four mammographic views (LCC, RCC, LMLO, & RMLO), without additional,
potentially relevant information (e.g., prior images, prior reports, patient history). The radiologists were informed of the
case origination, but not the case selection criteria. The written instructions to observers regarding case review were:

In this phase of testing our telemammography system, we would like you to review cases and take a few
seconds to quickly decide whether or not the case should be recalled for additional procedures. These
cases are routine screening mammograms. You will fill out a computer form to indicate if a case should
be recalled. If you choose to recall the case you must check off which additional procedures you would
recommend for each breast. A "done" button on the bottom of the form will bring up the next case. The
computer will automatically track the cases that you have completed and load your remaining cases; the
count will be in the bottom of the right screen.

PATIENT: MRN: EXAM DATE:

RADIOLOGIST SEND DATE:

RECALL THIS PATIENT FOR ADDITIONAL EVALUATION: YES r NO F-

WERE PRIOR IMAGES OR INFORMATION USED IN THE DECISION: YES r- NO F

RECOMMENDED ADDITIONAL IMAGE FOLLOW-UP ONWHICH BREAST: RIGHT r- LEFT F BOTH F

RECOMMENDED ADDITIONAL IMAGES [check all that apply):
RIGHT LEFT RIGHT LEFT

MAGNIFICATION WITHOUT COMPRESSION SPOT: F F TANGENTIAL FOR CALCIFIC.ATIONS: F F

COMPRESSION SPOT WITHOUT MAGNIFICATION: F F ROLLVIEWS FOR LOCALIZATION: F F

COMPRESSION SPOT WITH MAGNIFICATION: F F 90 DEGREE VIEWS: F- F

EXAGGERATED CRANIAL-CAUDAL VIEW: r F- ULTRASOUND: F F

- I Cancel

Fig. 2. Computer scoring form complete by the radiologists for each case.
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2.4 Data analysis
The radiologists' recommendations using the telemammography workstation were compared with the actual clinical
interpretation during the original clinical review. The comparisons were done using agreement/disagreement measures.
The disagreements when clinical interpretation indicated no-recall and telemammography interpretation indicated recall
were further evaluated based on the actual BIRADS ratings during the clinical interpretation.

3. RESULTS

Image quality, effects of the image processing, and features of the multi-site telemammography system were
subjectively reported as more than adequate for reviewing screening mammography examinations and generally were
well-received by the radiologists. The cropped images retained all breast tissue areas and were visibly appealing for
image review. The automated LUT settings were normally acceptable and were changed in approximately 10% of the
cases during review. Magnification allowed detailed review of the breast tissue patterns, particularly
microcalcifications. Although there were some detectable differences at extremely high magnifications between non-
compressed and compressed images at a 50:1 compression ratio, the images were subjectively judged to "not affect the
diagnostic quality."

The preliminary assessment of the limited case review (i.e., no prior images, prior reports, or patient history) of
screening exams using the multi-site telemammography system resulted in an exceedingly high recommended recall
rates and modest agreement between the actual clinical interpretation and the radiologists' recommendations using the
telemammography system. During the actual clinical interpretation 13.7% (42) of the cases were recalled (BIRADS =
0). Radiologists 1, 2, 3, 4, and 5 recall rates were 26.1% (80), 29.1% (89), 36.3% (111), 45.8% (138), and 54.2% (166),
respectively, when using the telemammography system to determine the need for additional procedures (Table 2). The
overall agreement between the clinical interpretation and the recommendations of radiologists 1, 2, 3, 4, and 5 were
77.8%, 76.1%, 69.0%, 62.7%, and 53.6%, respectively. Kappa for radiologists 1, 2, 3, 4, and 5 were 0.32, 0.32, 0.22,
0.20, and 0.13, respectively.

Table 2
Reviewing and rating screening mammography exams, telemammography workstation
recommendations versus clinical interpretation

Telemammography Clinical interpretation
recommendations recall (n = 42) no-recall (n = 264) Total

Radiologist 1
recall 8.8% (27) 17.3% (53) 26.1% (80)
no-recall 4.9% (15) 69.0% (211) 73.9% (226)

Radiologist 2
recall 9.5% (29) 19.6% (60) 29.1% (89)
no-recall 4.2% (13) 66.7% (204) 70.9% (217)

Radiologist 3
recall 9.5% (29) 26.8% (82) 36.3% (111)
no-recall 4.2% (13) 59.5% (182) 63.7% (195)

Radiologist 4
recall 10.8% (33) 34.3% (105) 45.1% (138)
no-recall 2.9% (9) 52.0% (159) 54.9% (168)

Radiologist 5
recall 10.8% (33) 43.5% (133) 54.2% (166)
no-recall 2.9% (9) 42.8% (131) 45.8% (140)

The cases when the recommendation using the telemammography system was "recall" and the clinical interpretation
indicated "no-recall" represented a large percentage of the disagreement, and nearly one half had some type of findings
reported during the clinical review. The disagreement when the clinical interpretation indicated "no-recall" and the
telemammography indicated "recall" accounted for 77.9%, 82.2%, 86.3%, 92.1%, and 93.7% of the total disagreement
for radiologists 1, 2, 3, 4, and 5, respectively (Table 2). Further evaluation of these disagreement cases revealed that
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cases with a BIRADS category of 2 during the clinical interpretation accounted for 49.1%, 53.3%, 51.2%, 34.3%, and
36.1% of the disagreement cases for radiologists 1, 2, 3, 4, and 5, respectively (Table 3).

Table 3
Disagreement cases when the clinical interpretation was no-recall and the
telemammography recommendation was recall for different BIRADS ratings
during the clinical interpretation

BIRADS category
Disagreement cases 1 (n = 206) 2 (n = 58)

Radiologist 1 (n = 53) 50.9% (27) 49.1% (26)
Radiologist 2 (n = 60) 46.7% (28) 53.3% (32)
Radiologist 3 (n = 82) 48.8% (40) 51.2% (42)
Radiologist 4 (n = 105) 65.7% (69) 34.3% (36)
Radiologist 5 (n = 133) 63.9% (85) 36.1% (48)

Average (n = 86.6) 55.2% (49.8) 44.8% (36.8)

4. DISCUSSION

The review of breast cancer screening mammography by five experienced radiologists using the telemammography
system demonstrated that the system was adequate for reviewing the mammographic image data. The limited,
retrospective review of screens using the telemammography system with only mammographic image data (i.e., no prior
images, prior reports, or patient history) produced modest agreement with the actual clinical interpretation. The
agreement between the limited telemammography review and clinical interpretation for five radiologists ranged from
53.6% to 77.8% and Kappa ranged from 0.13 to 0.32. On average the radiologists recommended additional procedures
using the limited telemammography system in 38.2% of cases which was exceedingly high compared with 13.7 % of
patients actually recalled in this group during the clinical interpretation.

The majority of the disagreement between the two review formats occurred when the telemammography review resulted
in a recommendation for additional procedures and the clinical interpretation did not, accounting for an average of
86.4% of the disagreement cases for the five radiologists. Of these disagreement cases (clinical no-recall and
telemammography recall), on average across the radiologists 44.8% of the patients had a clinical BIRADS category of
2. That is, when findings were detected using the telemammography system under restricted conditions, but the history
of the findings (i.e., new, increased, or unchanged) was unavailable, the radiologists tended to recommend additional
procedures. Another potential partial explanation for the high recall rate was the radiologists' expectation of an
"enriched" sample population because of their knowledge that this is a laboratory study. In addition, the mere fact that
patient recall does not affect clinical management tends to produce over reading.

High recall rates were similarly observed by Elmore et al. 30 (1994), where 11-65% of patients without cancer were
recommended for immediate workup. In the Elmore study, prior images were not available for any of the cases
reviewed and clinical history was not available for every case. They also attributed the high recall rates to the
radiologists' knowledge of an "enriched" sample population and study participation.

Although the limited, retrospective review using the telemammography system produced modest agreement with the
actual clinical interpretation, the feasibility of the system use for such a review was clearly demonstrated and well-
received by the radiologists. Current efforts have begun to add information such as text communication between the
technologist (remote site) and radiologist (central site) to the information transmitted with each case.
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ABSTRACT

We investigated a new approach to improve the performance of a computer-aided detection (CAD) scheme in
identifying masses depicted on images acquired earlier ("prior"). The scheme was trained using a dataset with simulated
mass features. From a database with images acquired during two consecutive examinations, 100 locations matched pairs
of malignant mass regions were selected in both the "current" and the most recent "prior" images. While reviewing the
current images, mass regions were identified and as a result biopsies were ultimately performed. Prior images were not
identified as suspicious by radiologists during the original interpretation. The same number of false-positive regions was
also selected in both current and prior images. The selected regions were then randomly divided into training and testing
datasets with 50 true-positive and 50 false-positive regions in each. For each selected region, five features; area, contrast,
circularity, normalized standard deviation of radial length, and conspicuity; were computed. The ratios of the average
difference of five feature values between current and prior mass regions in the training datasets were also computed.
Multiplying these ratios by the computed values in current mass regions, we generated a new dataset of simulated
features of "prior" mass regions. Three artificial neural networks (ANN) were trained. ANN-1 and ANN-2 were trained
using training datasets of current and prior regions, respectively. ANN-3 was trained using simulated "prior" dataset.
The performance of three ANNs was then evaluated using the testing dataset of prior images. Areas under ROC curves

(Az) were 0.613 ± 0.026 for ANN-i, 0.678 ± 0.029 for ANN-2, and 0.667 ± 0.029 for ANN-3, respectively. This
preliminary study demonstrated that one could estimate an average change of feature values over time and "adjust" CAD
performance for better detection of masses at an earlier stage.

Keywords: Computer-aided detection, Mammography, Mass detection, Artificial neural network

1. INTRODUCTION

Computer-Aided Detection (CAD) systems are currently used in a large number of medical institutions around the world
to assist radiologists in reading and interpreting mammograms in the screening environment [1-3]. A large number of
studies have been conducted to assess the possible impact of CAD systems on radiologists' performance. Although there
is no general agreement on whether and how CAD systems help radiologists improve their diagnostic accuracy [3-6],
several studies demonstrated that the performance of the CAD scheme itself might be an important factor to increase
radiologists' confidence to accept and act on the CAD cues and help to improve their diagnostic accuracy when using
such tools [6-8].

Current guidelines recommend periodic mammography screening for women over the age of 40 [9]. As compliance
increases in the general population, a large fraction of patients will have undergone series of consecutive mammographic
examinations. As a result, detected breast cancers will in time, "shift" on the average toward an earlier stage. In fact,
retrospective review have indicated that a large fraction of breast cancers that are identified by radiologists were also
visible in prior images [10]. It is expected that comparison with prior images could over time help radiologist detect
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more subtle cancers [11,12], hence, more subtle cancers will be considered "visible" or detectable on routine
mammograms. In such a changing environment, maintaining "optimal" performance of CAD schemes becomes a
challenge. Although CAD schemes can detect a large number of true-positive abnormalities (e.g., masses and
microcalcification clusters) depicted on prior images [7,12,13], current CAD schemes that had been optimized using a
large fraction of "easy" cancers are unlikely to achieve "optimal" performance in detecting "earlier" or more "subtle"
cancers. This is due to several factors: (1) performance of CAD schemes that use a feature-based machine-learning
classifier heavily depends on the characteristics of training database [14,15] and (2) a large number of image features
used to train CAD schemes varies differently for abnormalities as depicted on the current images as compared with prior
images [16]. Several studies have demonstrated that in order to achieve optimal performance in detecting suspicious
masses as depicted on prior images, a different set of image features should be selected for re-optimization of CAD
schemes [17,18].

In previous studies [17,18] optimal performance in detecting masses depicted on prior images was achieved by re-
training the scheme using a set of mass regions extracted from prior images. This requires a significant effort. Since
there is a training database available for each CAD scheme, this database could potentially be used to re-optimize the
scheme after a computational adjustment of some feature values. For this purpose, we investigated a new method to
generate a simulated training database and used it to re-optimize our CAD scheme. A detailed description of our
approach and preliminary experimental results follow.

2. MATERIALS AND METHODS

From an image database established in our laboratory, we selected 100 matched pairs of digitized mammograms from
two consecutive (the most recent or "current" and the latest previous or "prior") examinations. There is a verified mass
region depicted in each case. During the current examination, these 100 mass regions were identified by radiologists as
suspicious and as a result biopsies were ultimately performed. Although in a retrospective review and with the support of
available source documents, an experienced observer could identify some indication of the presence of a "mass" in the
corresponding locations on prior images, these regions had not been identified as suspicious by radiologists during the
original interpretation. All 100 mass regions selected for this study were associated with biopsy-proven malignancies.
The locations of all masses depicted on current images and the corresponding locations on prior images were visually
identified. The centers (x, y coordinate) of all verified mass regions were marked manually and saved in a reference (or
"truth") file.

All 200 images (100 from current and 100 from prior examination) were processed by a CAD scheme developed
previously in our laboratory [19]. To detect suspicious masses, each image is first subsampled (pixel-averaged) in both
dimensions to increase pixel size from original 50 jim x 50 4im (or in some cases 100 jim x 100 gim) to 400 gin x 400
[im. The CAD scheme then uses three stages to identify suspicious regions. In the first stage, the scheme uses image
subtraction and threshold results after processing by two Gaussian filters with a large difference in the kernel sizes (7
and 51 pixels) to search for the initial set of "suspicious" regions, which usually generates in the range of 10 to 30 initial
"suspicious" regions per image. In the second stage, based on local contrast measurement the scheme uses an adaptive
region growth algorithm to define three topographic layers. After simple intra-layer based threshold conditions on
growth ratio and shape factor, this stage typically eliminates approximately 85% of regions identified in stage one, while
maintaining a very high sensitivity. A set of features is computed for each detected region. During stage three the
detected regions are classified based on scores (likelihood of being true-positive) generated by a nonlinear multi-layer
feature-based classifier (e.g., an artificial neural network) [20]. To determine whether a detected region represents a true-
positive or false-positive mass region in this study, the following criterion was used. If the distance between the center of
gravity of a detected region and the center of the mass as recorded in the reference file was shorter than the radius of the
longest axis of the detected region, it was considered as a true-positive identification. Otherwise, the region was
considered a false-positive identification. In this experiment, all suspicious mass regions identified after the second stage
of the CAD scheme became candidates for the study (namely, the classification scores in the third stage were ignored).
One hundred true-positive mass regions from current images and 100 mass regions from prior images were selected. The
CAD scheme detected 187 and 202 false-positive mass regions in the current and prior images as well. From these, 200
false-positive regions were randomly selected (100 from current images and 100 from prior images). Hence, 400
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suspicious mass regions were selected for the study. The regions were then divided (block randomization) into training
and testing datasets for both current and prior images. Each dataset included 50 true-positive and 50 false-positive mass
regions.

For each region the following five features were computed:

1. Region area (F = 0.16 x NT): This feature is computed by counting the number of pixels in the growth

region (NT ) and then multiplying it by the size unit of each pixel (0.16 mm 2).

1 1 N
2. Average contrast (F 2  = Ii N j lIj ): This feature is computed by the average pixel value (I)

NT i=1 NB1 __

difference between the growth region and its surrounding background.

3. Circularity (F 3 = - ): To compute this feature, CAD scheme first computes the area of a growth region
NT

(NT ) and calculates an equivalent circle originating at the center of gravity of the region. For a circle with the

same size as the growth region, the number of pixels that are located inside the growth region contour and the
circle (Nc) is computed. Circularity is defined as the fraction of the growth region pixels covered by the

circle.

4. Normalized standard deviation of radial length (F 4  N - ( ) ): The radial length ri is defined

as the distance between the region center and a point (i) located on the perimeter of the region. mr is the mean

value of radial length over all points Nb in the region boundary. This feature indicates the changes in the shape

of region boundary.

F25. Conspicuity (F 5  - ): This feature is defined as "region contrast" (F 2 ) divided by "surrounding
CB

complexity" (C.); where CB = - 1 Max(I - IF) I and Max(Ii - •F) is the maximum pixel value
NB ixe

difference between background pixel (i) and its neighboring pixels (e.g., 24 pixels in a 5 x 5 square window).

Using these features, three artificial neural networks (ANN) were constructed to classify suspicious regions. The
topology of all ANNs was the same. It involved five input neurons (each represented by one feature), three hidden
neurons, and one output neuron. The ANN was trained using 500 iterations. The training momentum and learning rate
were 0.8 and 0.01, respectively.

ANN-i and ANN-2 were trained using training dataset of current and prior images, respectively. ANN-3 was
trained using a set of simulated "prior" mass regions. To generate a simulated dataset, we computed the ratio of the
average feature values for each of five features between 50 pairs of true-positive mass regions as extracted from current
and prior images. Ratios were computed as follows:

N1_ •=Fr, rior

N 1-d "

Dk - N= 1 k_ r I k = 1,2,3,4,5. and N = 50.

Nj=1
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Each feature of true-positive mass region in the current training dataset was then multiplied by the ratio, such as

kr X Dk. Hence, a set of new feature values was generated to represent each of 50 "simulated true-

positive mass regions." Using these data combined with feature values of 50 original false-positive regions extracted
from the current images, ANN-3 was trained. Although the 50 simulated mass regions (used in ANN-3) and 50 original
prior mass regions (used in ANN-2) have identical mean values for each of the five features, the feature values for a

specific region are different (i.e., F •j Fý,", k = 1,2,.... 5). In other word, the simulated set of "prior" features
does not simply duplicate the actual feature set in prior images.

The performances of three ANNs were evaluated separately using testing datasets of 50 current and 50 prior images.
For each test region, the ANN generates a classification score ranged from 0 to 1, where the larger the score, the higher
the computed likelihood of being a true-positive mass region. The classification scores generated for all test regions were
used as input data in the ROCFIT program that generates a receiver operating characteristic (ROC) curve and computes

the area under the ROC curve (AZ value) [21]. We compared performance levels when using the three ANNs to classify

an independent set of suspicious mass regions as depicted on prior images.

3. RESULTS

Table 1 shows the averages of the five feature values in the two training datasets extracted from the current and prior
images. Using paired chi-square test to examine the mean values of each of the five features between 50 pairs of training
mass regions, the significant difference ( p < 0.05 ) was found in the average value of each of the five features. Table 2

summarizes the areas under ROC curves (Az values) for all three ANNs during training and testing. Figure 1

demonstrates three ROC curves generated by applying three ANNs to the prior testing dataset. ANN-1 yields the best

performance in testing current dataset (AZ = 0.781 + 0.019) and the worst performance in prior testing dataset (AZ =

0.613 ± 0.026) as shown in table 2. Both ANN-2 and ANN-3 yield significantly better performance than ANN-1 in

classifying mass regions on prior testing dataset (p < 0.05). Az values were increased by 10.6% (from 0.613 to 0.678) in

ANN-2 and 8.8% in ANN-3 (from 0.613 to 0.667), respectively. The experimental results also demonstrated that there
was no significant performance difference between ANN-2 and ANN-3 in testing prior dataset (p = 0.15).

Table 1: Average feature values and their difference ratios between 50 pairs of mass regions depicted on current and
prior images.

Feature: F1 F 2  F3  F4  F5

Average value (prior images): 78.60 34.90 0.24 0.78 4.25
Average value (current images): 122.67 42.68 0.21 0.83 5.07
Ratio: 0.70 0.82 1.14 0.94 0.84

Table 2: Areas under ROC curves (A. values) of three ANNs during training and testing.

Network Training Testing current images Testing prior images

ANN-1 0.873 ± 0.016 0.781 ± 0.019 0.613 ± 0.026
ANN-2 0.761 ± 0.021 0.709 ± 0.026 0.678 ± 0.029
ANN-3 0.779 ± 0.019 0.736 ± 0.028 0.667 ± 0.029
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Figure 1: ROC curves of testing results when applying three ANNs to the test dataset of prior images.

4. DISCUSSION.

With improvements of diagnostic technologies and increase in screening compliance of the general population,
radiologists have to detect increasingly more subtle abnormalities as depicted on mammograms. As a result, CAD
systems that currently provide satisfactory cueing results could face deterioration in performance over time due to a
general shift in the subtleness of and stage at detection. Feature-based machine learning classifiers, such as ANNs, are

* widely used in final stage of the CAD schemes for identifying masses and microcalcification clusters. Since these
classifiers are trained to generate "global" functions that cover the entire instance space, CAD performances heavily
depend on the training databases [22]. This is true, in particular, in mammography where the size and diversity of
training datasets is generally limited [14,15]. A single CAD scheme that achieves high sensitivity on both "subtle" and
relatively "easy" masses at an acceptable false-positive rate can be developed, however, in reality, it is a very difficult
task because image features are substantially different for suspicious mass regions extracted from the current and prior
images [16,17]. In order to improve CAD performance in detecting subtle masses in an earlier stage, the schemes should
be trained (or optimized) using databases involving a large fraction of subtle mass regions (e.g., new cases that had been
rated originally as negative and later proven to be positive) [17,181.

However, it is a very difficult and time-consuming task to collect a large number of diverse subtle cases (e.g., the
false-negative cases). This study demonstrated an alternative approach to collectively simulate such cases. By
systematically adjusting the feature values extracted from current images, we generated a set of simulated "prior" mass
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regions. Our results demonstrated that (1) an ANN trained using simulated prior mass regions could achieve significantly
better performance in detecting the masses at an earlier stage than an ANN trained using current mass regions and (2)
there is no significant difference in the performance between the ANNs trained using either real or simulated prior mass
regions. As a result, by estimating the change over time of some important features, one can adjust CAD performance
for better detection of masses at an earlier stage. Since this is a very preliminary study involving a limited database and a
small set of features, the concept need to be further investigated. If this approach is validated with significantly larger
image databases and larger number of features, it may provide a simple and efficient method to periodically update (or
re-optimize) CAD schemes.
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ABSTRACT

Our goal was to develop an inexpensive, high-quality, multi-site telemammography system, implemented with low-
level data connections that provided a communication link for an "almost real-time" response from a radiologist (central
site) to remote "underserved" sites. The remote sites digitize mammographic films using high-resolution, laser
digitizers. Images are automatically cropped, compressed (wavelet-based), and encrypted prior to transmission. At the
central site images are decrypted, decompressed, unsharp masked, and displayed using automatically determined LUTs.
The sites communicate instantly via a "chat box." Remote sites 1, 2, and 3 are 15, 20, and 90 miles from the central
site, respectively, and connected by POTS (sites 1 and 2) and LAN (site 3). Only minimal noticeable difference at
compression levels of 50:1 and 75:1 could be identified unless magnified to extreme levels. Two experienced observers
rated the LUTs for 200 images as "acceptable" to "excellent." Average cycle times to digitize, transmit and receive
cases (four films each) at 75:1 compression were 5.97, 6.85, and 5.77 min/case from sites 1, 2, and 3, respectively.
Unique data-handling schemes significantly decrease the image file size and allow successful transmission in a reliable,
timely manner. Over 1000 cases have been transmitted to date. Messaging was found to be easy to use.

Keywords: Teleradiology, breast cancer screening, image decision making, mammography.

1. INTRODUCTION

The benefits of breast cancer screening mammography of asymptomatic women have been extensively studied and
reported in the recent literature. 1 6 Mammographic screening will continue to be widely used worldwide, despite
periodic reports of limited or no benefits from such practices.7 9 Management of mammographic screening in terms of
public perception and compliance,'0 ' 2 radiologist's practice and performance,1 "'" and personnel shortages .1 could be
improved in both rural and urban clinics. The use of teleradiology is one approach that could assist in this regard.

The high-spatial resolution required by mammography necessitates the use of commercial digitizers and high-resolution
monitors to sufficiently preserve image quality. 17 Transmission time of large amounts of mammographic image data
(35-55 MBytes per image) is frequently dependent on the communication link. Low-level data connections (i.e., Plain
Old Telephone System (POTS)) may require data processing to decrease the image file size to enable transmission of
large amounts of data in a timely manner.

This manuscript presents preliminary assessment of technical and operational issues regarding a multi-site
telemammography system using low-level data connections. This study is a continuation of an ongoing effort over the
past several years. 18'19 The system was designed on the concept of distributed acquisition/centralized review and to
facilitate communication between a radiologist at a central site and a technologist at a remote "underserved" site. For
the purpose of this project, "underserved" means a location where a physician is not physically present when the
screening examinations are conducted. The technical features described were designed and implemented using a low-
cost approach to transmit data across low-level data connections in a timely manner and maintain a high-level of image
quality. Issues evaluated included: look-up table settings (window and level), image cropping, image compression,

*drescherjm@msx.upmc.edu; phone (412) 641-2563; fax (412) 641-2582, University of Pittsburgh, Magee-Womens
Hospital, 300 Halket Street., Suite 4200, Pittsburgh, PA 15213

360 Medical Imaging 2003: PACS and Integrated Medical Information Systems: Design and Evaluation,
H. K. Huang, Osman M. Ratib, Editors, Proceedings of SPI E Vol. 5033 (2003)

© 2003 SPIE • 1605-7422/03/$15.00



transmission time, and workstation display features. We expect to demonstrate that the combination of efficient data
handling, intelligent image processing, and easy to use messaging can be implemented to produce an inexpensive, high
quality telemammography system capable of an "almost real-time" response from the central site radiologist to remote
site technologist.

2. METHODS

2.1 Central and remote sites
The central site is staffed by experienced radiologists and located at Magee-Womens Hospital, Pittsburgh, PA, USA.
The telemammography workstation at the central site is powered by a dual 1.2 GHz multi-processor (Athlon MP,
Advanced Micro Device, Sunnyvale CA, USA) with 2 GB of RAM operating under Microsoft Windows 2000 Server
(Microsoft Corporation, Redmond, WA, USA). The workstation display consists of three high-resolution (2048 x 2560)
8-bit grayscale portrait monitors at a nominal setting of 80 ftL (DS5 100P, Clinton Electronics, Rockford, IL, USA). For
data communication, the workstation uses 56K hardware modems (U.S. Robotics, Rolling Meadows, IL, USA) and
ethernet network cards (OfficeConnect 10/100 NIC, 3COM, Santa Clara, CA, USA). A Kodak Dryview film printer
(Eastman Kodak, Rochester, NY, USA) is connected to the workstation for film printing as necessary (Fig. 1).

Remo Central (Reading) site

[rinte

~~ [tlo PC,.

US Robotics

Luisys odak 610
j~im igifizer Driyjiew Film

Pgitrzer

[~~~~eReot SiGrtcaeeoitr

IFilm Dligitizer

Fig. 1. Multi-site telemammography system schematic diagram of the remote and central sites.
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The remote sites are staffed by mammography technologists. The computer hardware at the remote sites operates under
Microsoft Windows 2000 Workstation powered by a 900 MHz processor (Athlon 900, Advanced Micro Device,
Sunnyvale CA, USA) with 512 MB of RAM. High-resolution, laser film digitizers (Lumiscan 85, Eastman Kodak,
Rochester, NY, USA) are connected to the remote computers via SCSI interface and equipped with a film feeder
capable of holding six films as large as 10 x 12 inches. Mammographic films are digitized at 50 micron pixel
dimensions and 12-bit grayscale. The remote site computers also have 56K hardware modems and ethernet network
cards (Integrated PRO/100 S Desktop Adapter, Intel Corporation, Santa Clara, CA, USA) for data communication.
Prior patient reports or history are transmitted along with the images by inserting them into an attached page scanner (hp
scanjet 5490C, Hewlett-Packard, Palo Alto, CA, USA). Sites I and 2 transmit data across Plain Old Telephone System
(POTS) lines and are located 15 and 20 miles from the central site, respectively (Fig.1). Site 3 is 90 miles from the
central site and transmitted data across a Local Area Network (LAN).

2.2 Software Design
The software architecture at the central and remote sites is a multithreading design that allows independent task
assignment with simultaneous response to user input. A message dispatch mechanism synchronizes bi-directional
communication between all the main threads, except for the Time Manager (Fig. 2). The Time Manager periodically
dispatches elapsed time messages to the other main threads without receiving messages. Each main thread acts on only
messages associated with its function and may spawn subordinate (worker) threads that share data objects to accomplish
tasks. A Reader/Writer lock, derived from Microsoft Windows synchronization primitives, prevents corruption of the
shared data. The Reader/Writer lock permits access to the shared data to any number of readers simultaneously.

Central site main threads:
Time manager - periodically indicates elapsed time.
Archive manager - manages disk space by loading images, saving images, managing cases, and deleting
archived cases when disk space is limited.
Case manager - creates cases, assigns data, and performs database functions.
Display manager - displays images and forwards messages to the main application window.
Distribution manager - receives, transmits, and processes data.

Remote site main threads:
Digitization manager - manages film digitizing.
Case manager
Display manager
Distribution manager

CasManager Display Manager

Threlad Thread

DistribUtion Mana~ger Archive Mariager

Time Manager Digitization Manager IThread Thread
MMessage

Fig. 2. Main threads and intra-process communication. Time manager does
not receive messages.
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2.3 Image processing
The first step in the series of the image processing procedures is designed to automatically crop each image to decrease
the non-tissue area surrounding the breast (Fig. 3). The automated cropping algorithm begins by sub-sampling the
image at an 8:1 ratio. The standard deviation (STD) of a 7 x 7 pixel mask is calculated at each sub-sampled pixel (STD
of the sub-sampled image). Next, a threshold is applied to the STD image to separate tissue and non-tissue regions
where a high STD indicated tissue regions. A region growing algorithm based on 4-neighbor connectivity is used to
identify breast tissue as the largest region in the image. Finally, rudimentary logic is used to determine the cropping
parameters based on the orientation of the tissue regions which is applied to the original image.

Following image cropping, the image data are compressed using the irreversible (lossy), 9/7 transform, wavelet-based
JPEG 2000 method. Prior to transmission from the remote sites, the data packets are encrypted using strong 128 bit
Microsoft Point-to-Point Encryption (MPPE) with version 2 authenticate Microsoft Challenge Handshake Authenticate
Protocol (CHAP). The first steps at the central site are decryption and decompression of the image data.

Image display on the workstation monitors at the central site is enhanced by minimal unsharp masking of the
decompressed image data prior to display. To begin unsharp masking, the image data are first smoothed with a 2-D 129
mean kernel. The weighted (0.10) smoothed image is subtracted from the decompressed image. The resulting pixel
values of the image data are then re-scaled from 0 to 4095.

To minimize the need for manual adjustment during image viewing, default look-up table (LUT) values are
automatically calculated based on the pixel value distribution (histogram). The typical pixel value distribution is
bimodal. The window value (contrast) is set as the span of the two modes, and the level value (brightness) is set as the
center between the two modes. The final stage of the image processing prior to image display is to pad (fill) the images
to restore the full height of the image, but not the full width (Fig. 3).

REMOTE DIGITIZE ]PA NRP
SITE FILM DIGITIZED IMAGE IMAGE DATA

PROCESSING

SITE IMAGE WINDOW/LEVEL UNSHARP DECOMPRESS DECRYPT
PROCESSING I PADDING IMAGE MASK IMAGE IMAGE DATA

Fig. 3. Data flow of the telemammography system illustrating the order of the image processing tasks and where (remote or
central) the process is performed.

2.4 Workstation display functions and features
To allow user-specific preferences to be used during case review, display options on the workstation are flexible with
all features being mouse-driven. The default display is left and right craniocaudal views (LCC & RCC) on the left
monitor, and left and right mediolateral oblique views (LMLO & RMLO) on the center monitor to be similar to our
conventional clinical film presentation (Fig. 4). However, a large number of display options are available to users. If a
film is digitized in an incorrect orientation, the user has the ability to flip images (top to bottom or left to right) and
rotate images 180 degrees. Communication from the remote site is displayed on the right monitor (Fig. 4).

Two forms of image magnification are available on the workstation display. Typically, the normal display scale with a
single image per monitor is approximately 100 micron pixel dimensions and with two images per monitor it is
approximately 200 micron pixel dimensions. A scrollable image magnification box provides a true 1:1 presentation
(monitor pixel:digitized pixel) resulting in 50 micron pixel dimensions. The size of the box varies from 511 x 566
pixels for one image/monitor, and 408 x 566 pixels for two images/monitor, and 204 x 266 pixels for four
images/monitor. It is also possible to pan across the image quadrant-by-quadrant.
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Fig. 4. Telemammography workstation at the central site pictured in the default image display format.

The automated LUT values can be manually adjusted per observer's preference. The window and level values are
determined based on the mouse position (movement), and the image display is instantly updated as the mouse is
moved. Once the desired values are determined, these can be applied to the individual image or all images associated
with the case. The LUT values can be reset to the automated (default) values at anytime during viewing.

2.5 Inter-site communication
To facilitate effective communication between the technologists (remote site) and radiologists (central site), a "chat
box" type messaging function was implemented. The "chat message" can be sent with each case and it provides a real-
time, interactive communication tool between the sites. During the initial phase of evaluating the system,
communication is performed in one cycle. The technologist sends a chat message with each case, and the radiologist
responds directly to the message. The chat boxes on both sides contained four general areas: (1) patient demographics,
(2) message display area, (3) pull-down menus, and (4) free text area (Fig. 5). There are five pull-down menus on the
technologist chat box to focus communication on possible actionable items. These indicate: (1) breast: left or right; (2)
view: craniocaudal and/or mediolateral oblique; (3) finding: mass or calcifications; (4) comparison with prior exam:
baseline, new, or change in findings; and (5) possible additional procedure needed: additional views and/or ultrasound.
The radiologists can reply after reviewing each case. His/her response includes: (1) do recommended procedure as
suggested; (2) no additional procedures necessary; and (3) do not do the procedure recommended, but do X, Y, and Z.

2.6 Technical and operational evaluation
In the preliminary technical assessment phase, three processes of the telemammography system were evaluated. First to
assess the user's acceptance of the automated LUT values for image review without the need to adjust display
parameters, 50 cases (200 images) sent from all sites were subjectively rated by two experienced observers on a scale of
1 to 4. The experiment was designed to assess acceptability of default values for the purpose of reviewing each case
and determining the need (or not) for additional procedures. In all of our studies we evaluated the system under normal
operating conditions. As a result, intra- and inter-site measured variability reflect what could be expected in an "on-
line" clinical operation. Second, the implementation of high-level image compression in mammographic imaging was
evaluated during subjective Just Noticeable Difference (JND) studies. The studies compared images at no compression,
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50:1, and 75:1 compression levels. Third, the average cycle time from initiation of digitization to availability for
display at the central site was evaluated. This involved transmission of a series of four cases (back to back) each
consisting of four images per case (all images were 8 x 10 inches).

Name ID # Sot Eoa ate Exam Code lseSt alu OUread Message*

J~eJn j60_0005S Fl - r0-1/02 1FZ324-45 rN;w- 11-
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Fig. 5. "Chat box" for the remote site technologists.

3. RESULTS

The evaluation of the technical and operational processes was favorable in all areas. The automated LUT settings, the
image cropping, the high level of image compression, and the cycle time to transmit and receive cases were all
acceptable for implementation of the telemammography system for the designed purpose. The initial impressions of the
inter-site communication, "chat messaging," indicate that it can facilitate effective communication between the
technologist at remote sites and the radiologist at the central site. Although the technical issues with regard to scanning
and transmitting patient reports with each case have been resolved, the practice of has not been implemented to date.

The automatically calculated LUT settings were reported as "acceptable" to "excellent" by two experienced
mammography researchers. On a scale of 1 to 4 (1 = unusable, 2 = need minor adjustments, 3 = acceptable, and 4 =
excellent), the two observers had mean ratings for 200 automatically computed LUT settings of 2.64 (STD = 0.57) and
3.51 (STD = 0.53). After minor adjustments were made as the result of the above experiment, all observers including
clinicians using the workstation to test different aspects of the system accepted automatically set values in over 90% of
cases. Consequently, window and/or level manipulations are being performed in less than 10% of cases during
retrospective and simulated prospective case reviews.

For review of non-magnified or moderately magnified images, 50:1 and 75:1 data compression levels were comparable
and acceptable when evaluated on either laser-printed films or the telemammography workstation. Subjective JND
studies were conducted using laser-printed films as well as images displayed side-by-side on workstation monitors. The
studies indicated that at extreme magnifications, differences were detected, but did not necessarily result in degradation
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of perceived diagnostic quality. For example, the "visibility" and "clarity" of microcalcifications in the digital images
were judged as "almost equivalent" between the full-scale, non-compressed images and images compressed at a 75:1
ratio (Figs. 6 and 8). Comparable results were obtained with magnification (Figs. 7 and 9). The automated cropping
did not remove breast tissue in any of our cases to date, and it produces "aesthetically pleasing" images.

The time to transmit and receive four films (8 x 10 inches each) was reliably less than 7 minutes/case for each site using
75:1 data compression (Table 1). The combination of image cropping and 75:1 data compression ratio decreased image
file size to allow cycle times that were adequate for implementation of the telemammography concept and met our
planned technical specifications. Sites 1 and 2 were connected via 56K modems that dialed a four digit telephone
number (i.e., connected via an in-house telephone line) and a ten digit telephone number (i.e., connected via an outside
telephone line), respectively. Consistent bandwidths of sites 1 and 2 were approximately 33 Kbits/second and 21
Kbits/second, respectively. The digitization process (approximately 50 seconds/film) was the limiting factor at site 3
which was connected via LAN. Site 2 had communication problems (decreased bandwidth) during the first
measurement that have been largely resolved.

TABLE 1
Experimentally Measured Average Cycle Time for Digitizing, Transmitting and Receiving a Case with 4
Films (8 x 10 inches each)

Site 1 - POTS* Site 2 - POTS Site 3 - LAN
Image format (min/case) (min/case) (min/case)
50:1 compression, not cropped, and not encrypted 13.22 24.42 5.38
50:1 compression, cropped, and encrypted 6.47 13.13 5.65
75:1 compression, cropped, and encrypted 5.97 6.85 5.77

*in-house POTS

4. DISCUSSION

The "proof of concept" to design an inexpensive, high-quality, multi-site telemammography system implemented with
low-level data connections has been established to facilitate the concept of "almost real-time" distributed
acquisition/centralized review. The technical feasibility of the concept was demonstrated by: (1) the digitization of
films acquired during clinical breast cancer screening mammography; (2) the timely transmission of the digitized
images across low-level data connections (less than 7 minutes/case); and (3) the efficient archiving, retrieving, and
viewing of image data at the central site. The short cycle time of the system was realized because of the image file size
reduction due to automated image cropping and image data compression and the efficient multi-tasking software
approach based on a synchronized multi-threading design. Image processing methods were fundamental to the success
of the telemammography system. The automated cropping and compression produced images without a significant
degradation of the diagnostic image quality, which were well-received by the radiologists. Although the automated
window and level calculations were found to be acceptable, in approximately ten percent of cases, radiologists manually
employed window and level settings during an individual case review'. The high-resolution image display of the
telemammography workstation was rated acceptable for reviewing screening mammographic images for the purpose of
determining the need for additional procedures.

To date, over 1000 screening exams have been successfully transmitted using the telemammography system. The
preliminary results suggest that the telemammography system could accomplish the goals to increase effective
communication between remote "underserved" sites and the central location, and permit experienced radiologists to
remotely monitor and facilitate some decision making while the patient remains in the clinic. The addition of two key
components to the telemammography system should improve the system's capability and effective utilization. First,
scanned prior patient reports will be added to the information transmitted with each case. Second, Computer Aided
Detection (CAD) schemes will be incorporated into the system and the results will be displayed at the central site.
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00.119 PURPOSE: To examine the performance and reproducibility of a commercially
Computers, diagnostic aid, 00.119 available computer-aided detection (CAD) system with a set of mammograms

Published online before print obtained in 100 patients who had undergone biopsy after positive findings at
10.1148/radiol.2281020489 mammography.

Radiology 2003; 228:58-62 MATERIALS AND METHODS: One hundred positive mammographic examina-

Abbreviation: tions (four views each), depicting 96 masses and 50 microcalcification clusters, were
CAD = computer-aided detection scanned and analyzed three times by the CAD system. Reproducibility of detection

sensitivity and the individual CAD-generated cues in the three images were exam-

'From the Departments of Radiology, ined. Both abnormality- and region-based detection sensitivities were compared.
University of Pittsburgh and Magee-
Womens Hospital, Imaging Research, RESULTS: Forty-eight (96.0%) of 50 microcalcification clusters were marked on all
Suite 4200, 300 Halket St, Pittsburgh, three images in the abnormality-based analysis. Of the remaining two clusters, one
PA 15213. Received April 29, 2002; re- was marked in two images and one was marked in only one. The abnormality-based
vision requested June 21; final revision
received September 23; accepted Octo- sensitivity for mass detection ranged from 66.7% (64 of 96) to 70.8% (68 of 96).
ber 23. Supported in part by grants The system generated identical patterns (including images with and those without
CA77850, CA85241, and CA80836 cues) for all three images in 53.3% (21 3 of 400) of images. For true-positive cluster
from the National Cancer Institute of regions, 88.9% (80 of 90) were marked at the same location in all images. For
the National Institutes of Health and by
the U.S. Army Medical Research Acqui- true-positive mass regions, 69.5% (82 of 118) were marked at the same locations in
sition Center, Fort Detrick, Md, under all images. In false-positive detections, only 44.0% (81 of 184) of false-positive mass
contract DAMD1 7-00-1-0410. Address regions and 31.9% (38 of 119) of false-positive cluster regions were marked at the
correspondence to B.Z. (e-mail:
zhengb@m5x.upmc.edu). same locations on all three images.

The content of the contained informa- CONCLUSION: Reproducibility of marked regions generated by the CAD system is
tion does not necessarily reflect the
position or the policy of the govern- improved from that reported previously, largely as a result of the substantial reduc-
ment, and no official endorsement tion in the false-positive detection rates. Reproducibility of true-positive identifica-
should be inferred. tion of masses remains an important issue that may have methodologic and clinical

practice implications.

Mammography is a common and effective method with which to screen for early detec-
tion of breast cancer, to interpret mammograms, and particularly to identify subtle masses
and microcalcification clusters surrounded by complex breast tissue patterns, but it is a

Author contributions: difficult and time-consuming task. Findings in studies show that from 10% to 30% of

Guarantor of integrity of entire study, breast cancers that are visible on mammograms during retrospective readings are missed
B.Z.; study concepts, B.Z.; study de- during the original interpretations for various reasons (1-3). One well-documented
sign, B.Z., ).H.S.; literature research, method to reduce false-negative rates in mammography is the use of an independent
B.Z., S.G.; clinical and experimental double-reading approach (4,5). However, this approach is both inefficient and costly. As a
studies, B.Z., W.R.P.; data acquisition, result, after intensive research and substantial improvements in the past 2 decades,
B.Z., L.A.H., S.G.; data analysis/inter-
pretation, B.Z.; statistical analysis, computer-aided detection (CAD) systems have been developed to provide radiologists with
B.Z.; manuscript preparation, B.Z., a "second opinion" when they identify suspicious regions for masses or microcalcification
S.G., L.A.H.; manuscript definition of clusters. In the current study, we used one of three commercially available CAD systems
intellectual content, B.Z.; manuscript that have been approved by the U.S. Food and Drug Administration and are used for this
editing, B.Z., S.G., L.A.H.; manuscript
revision/review and final version ap- purpose.
proval, all authors. Because of the potential importance of CAD systems in the clinical environment, several

studies (6-10) have been conducted recently to evaluate the performance of CAD systems
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alone and their possible effect on diag- of mammograms acquired in 100 pa- the entire mass region or individual micro-
nostic performance of radiologists under tients who had undergone biopsy after calcifications in a cluster, only a small star
a variety of clinical conditions. In one positive findings at mammography. or a triangle is superimposed on the image
recent study involving 12,860 patients in to indicate the presence of a suspicious re-
a community breast center, use of CAD MATERIALS AND METHODS gion for a mass or a cluster, respectively.

Sresulted in a 19.5% increase in the num- The boundaries of masses and clusters were
ber of cancers detected without undue Cases identified visually on the images by a re-
effect on the recall rate (from 6.5% to During the past several years, a large da- searcher (B.Z.), who consulted with radiol-

S7.7%) (6). In another large retrospective tabase (>1,000 cases) of digitized images ogists in cases of ambiguity. If the star was
Sstudy, a false-negative rate of 21% was and associated diagnostic results has been located anywhere inside a true-positive

*P found when 14 radiologists interpreted established and managed in our laboratory mass region in the image, this mass was
mammograms, and the CAD system cor- under an approved institutional review considered to be identified correctly by the

Srectly marked 77% of these missed cases board protocol (informed consent was CAD system. Similarly, as long as a triangle
(7). Thus, researchers claim that CAD waived). For the purpose of third-party, we was overlapping any of the microcalcifica-
cueing could potentially reduce this asked a staff member not otherwise related tion areas, the mark was considered to rep-
false-negative rate by as much as 77% to this current investigation to randomly resent a true-positive detection. Otherwise,
without an increase in the recall rate (8). select 100 mammographic cases (four the cue was considered to identify a false-
On the other hand, findings in a different views each) from the biopsy records of our positive region. The processing of each case
study showed that despite high (and clin- institution during the years 1999-2001. resulted in three sets of output images.
ically viable) sensitivity, the CAD system We requested that 25 of the cases depict
had no effect on radiologist performance microcalcification clusters and 75 cases de- Data Analysis
(including sensitivity and specificity) (9). pict masses as a primary detection finding. The sensitivity, false-positive rate, and
These researchers suggested that perhaps At least two-thirds of the cases were to be reproducibility of the CAD system with
the many false-positive markings influ- selected from those proven to be malig- these 100 cases (or 400 images) were ana-
enced the radiologists not to have suffi- nant. With the exception of these condi- lyzed for abnormality- and region-based
clent confidence in the CAD results to tions, cases were selected solely by the staff values. In the abnormality-based analysis,
alter their original interpretations (9). Re- member from the biopsy records. The se- the sensitivity is assessed on the basis of
sults in another retrospective study dem- lection process did not involve a previous the correct marking of at least one true-
onstrated that the performance of a CAD review of any of the images. Therefore, positive region in either view (craniocau-
system could affect the performance of there was no preselection (and potentially dal, mediolateral oblique, or both), which
radiologists in the detection of masses biasing) process as related to the average included 96 masses (65 malignant) and 50
and microcalcification clusters. Highly tissue density or the subtlety of the abnor- calcifications (31 malignant) in the 100
performing CAD schemes with high sen- malities depicted in the images. cases. In cases with more than one abnor-
sitivity and a low false-positive rate could Each case could involve one or more ab- mality, each was considered to be indepen-
improve radiologists' performance signif- normalities (mass, microcalcification clus- dent of the others. In the region-based
icantly, while poorly performing CAD ter, or both). In these 100 cases, 51 de- analysis, the abnormality depicted in each
schemes could significantly (P < .01) de- picted only masses (43 depicted one mass view (either craniocaudal or mediolateral
crease readers' performance (10). and eight depicted two masses), 12 de- oblique) was considered an independent

An important issue related to the use of picted only microcalcification clusters (11 true-positive finding. Sensitivity was then
CAD is the reproducibility of results. In depicted one cluster and one depicted two computed on the basis of the number of
one study, an early version of Image- clusters), and 37 depicted both masses and correctly detected true-positive regions
Checker (R2 Technology, Los Altos, Calif) clusters (one mass and one cluster). There (rather than abnormalities). This approach
was evaluated, and the authors suggested were no cases with more than three abnor- included 292 positive findings-namely,
that its reproducibility may be insuffi- malities depicted. The data set involved 96 96 masses and 50 clusters, each visible on
cient for the routine clinical environ- verified masses and 50 verified microcalci- two views. To compare the differences inment (11). Recently, a new version of the fication clusters. Sixty-five of the 96 masses proportions of correctly detected abnor-
software was used, which improves the were malignant, and 31 were benign. Thirty- malities among replicated images, the pair-detection sensitivity and specificity (12). one of the 50 microcalcification clusters wise McNemar test was applied to the dataIn the version used in the current study were associated with malignancy, and 19 set.
(ImageChecker, version 2.0), the stated were benign. By examining all source
detection sensitivity for the cancer cases documents (including pathology re-
was increased from 83.7% to 90.4% (in- ports), the locations of all abnormalities RESULTS
cluding an increase in mass detection were specified by radiologists.
from 74.7% to 85.7% and an essentially Tables 1 and 2 summarize the performance
unchanged performance for microcalcifi- CAD Evaluation of the CAD system with respect to mass
cation detection of more than 98%). At and microcalcification cluster detection in
the same time, the false-positive rate was These 400 images were scanned through each of the three scans. Abnormality-based
reduced substantially from approximately the CAD system three times within a pe- sensitivity for mass detection ranged from
1.0 per image to 0.5 per image (or 4.1- riod of 3 weeks. After digitization and com- 66.7% (64 of 96) to 70.8% (68 of 96). Al-
2.06 false-positive cues per four views in putation, suspicious masses and microcal- though scan 2 yielded highest sensitivity
true-negative cases) (12). The purpose of cification clusters identified by the CAD for mass detection (68 of 96), scan 1 de-
our study was to examine the perfor- system were marked on the output paper picted the highest number of malignant
mance and reproducibility of a commer- images by using the standard identification masses (47 of 65). For microcalcification
cially available CAD system by using a set scheme. The CAD system does not outline cluster detection, 48 of 50 clusters were
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TABLE I For region-based sensitivity, mass de-

Mass Detection Performance of CAD System during Each Scan tection ranged from 51.0/ (98 of 192)
to 52.6% (101 of 192). The total num-

Sensitivity ber of masses detected ranged from 98
Sensitivity (all cases) (malignant cases only) to 101 in each of the three scans. How-

S Scan Abnormality Region Based Abnormality Region Based False-Positive Rate ever, the actual difference in the indi-
No. Based (%) (%) Based (%) (%) per Image vidual mass regions detected was larger.

1 69.8 52.1 72.3 54.6 0.33 For example, scan 1 depicted 100 re-
(67 of 96) (100 of 192) (47 of 65) (71 of 130) (130 of 400) gions and scan 2 depicted 101 regions.

2 70.8 52.6 70.8 52.3 0.33 However, only 88 of these regions were
(68 of 96) (101 of 192) (46 of 65) (68 of 130) (131 of 400)

3 66.7 51.0 69.2 51.5 0.31 detected in both images. For the detec-
(64 of 96) (98 of 192) (45 of 65) (67 of 130) (125 of 400) tion of microcalcification clusters, the

region-based sensitivity ranged from
85.0% (85 of 100) to 87.0% (87 of 100)
for individual cluster regions and from

TABLE 2 85.5% (53 of 62) to 87.1% (54 of 62) for
Microcalcification Cluster Detection Performance of CAD System malignant clusters.
during Each Scan Although Tables 1 and 2 show that the

Sensitivity total number of regions detected in this
Sensitivity (all cases) (malignant cases only) set of images is relatively constant with

Scan Abnormality Region Based Abnormality Region Based False-Positive Rate all three scans, the locations of the re-
No. Based (%) (%) Based (%) (%) per Image gions detected (in particular, false-posi-

1 96.0 85.0 93.5 85.5 0.17 tive regions) could differ from scan to
(48 of 50) (85 of 100) (29 of 31) (53 of 62) (69 of 400) scan. In 213 of 400 images, the output

2 98.0 87.0 96.8 87.1 0.19 results for all three scans were identical,
(49 of 50) (87 of 100) (30 of 31) (54 of 62) (77 of 400) which represents an overall reproducibil-

3 100 86.0 100 87.1 0.20 ity of 53.3%. Among these images, 37.6%
(50 of 50) (86 of 100) (31 of 31) (54 of 62) (79 of 400) (ty of 533% amo thes imag 37.6(80 of 213) had no cues (including nei-

ther true-positive nor false-positive cues)
in all three scans. For the remaining 320

TABLE 3 images, the CAD system marked 511 re-
Number of Times a Mass (or a Region) was Detected gions (1.6 cues per image) in three scans

(including true-positive cues). Of these
No. of True-Positive Malignant False-Positive 511 marked regions, 281 were identified
Times True-Positive Malignant Mass Mass Mass Total Marked

Detected Masses Masses Regions Regions Regions Mass Regions on all three scans (55% region-based re-

3 (%) 58 41 82 58 81 163 producibility).

(77.3) (78.8) (69.5) (71.6) (44.0) (54.0) Tables 3 and 4 summarize the num-
2 (%) 8 4 17 8 40 57 ber of true-positive and false-positive

(10.7) (7.7) (14.4) (9.9) (21.7) (18.9) masses and microcalcification clusters
1 (%) 9 7 19 14 63 82 (including both abnormalities and re-

(12.0) (13.5) (16.1) (17.3) (34.3) (27.1) gions) that were identified in all three
Total 75 52 118 81 184 302

scans, two scans, or only one scan. The
results show that the reproducibility for
the true-positive regions (those identi-

TABLE 4 fied in all three scans) is substantially
Number of Times a Microcalcification Cluster (or a Region) was Detected higher than that for the false-positive

regions. For the true-positive mass re-
No. of True-Positive Malignant False-Positive Total Marked gions, the CAD system generated 118
Times True-Positive Malignant Cluster Cluster Cluster Cluster

Detected Clusters Clusters Regions Regions Regions Regions cues in three scans, and 82 (69.5%) of
them were marked at the same loca-

3(%) 48 29 80 50 38 118
(96.0) (93.5) (88.9) (89.3) (31.9) (56.5) tions. For the true-positive cued cluster

2 (%) 1 1 8 5 30 38 regions, 88.9% (80 of 90) of cues were
(2.0) (3.2) (8.9) (8.9) (25.2) (18.2) in the same locations for all three scans.

1 (%) 1 1 2 1 51 53 On the other hand, the reproducibility
(2.0) (3.2) (2.2) (1.8) (42.9) (25.3)

Total 50 31 90 56 119 209 of the false-positive cues was much
lower, with a higher fraction of differ-
ent cues being generated in each scan.
Only 44.0% (81 of 184) of the false-

detected by the CAD system on all three scan 2. With the pairwise McNemar test, positive mass regions and 31.9% (38 of
images. Two malignant clusters were no significant (P > .3) differences were 119) of the false-positive microcalcifica-
missed in two of three scans (scans 1 and found in the detection results between any tion cluster regions were marked at the
2), and one of these clusters was missed in pair of the three scans. same locations in all three scans.
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DISCUSSION CAD systems, a binary threshold is typi- result, reproducibility is also high. These
cally used to generate detection marks. results are achieved at a low false-positive

In a previous study, 38.5% (77 of 200) of Each marked region has a computed detection rate; hence, it is a useful tool

images had CAD cues that were located score that is above a predetermined during the diagnostic process. Our results

congruently in all three scans (11). In the threshold; hence, lesions with computed raise the important question about the

current study, the CAD system generated scores that are near the threshold are vul- possible need to maintain records of CAD

identical results on 53.0% (213 of 400) of nerable to small changes and may be de- cues as available during the interpreta-

the images. The improvement in repro- tected in one image and missed in an- tion of the individual cases. This may

I' ducibility may be largely a result of the other. Findings in the present study show become an even more important issue as

substantial decrease in the false-positive that the reproducibility of false-positive cancer detection continues to progress
detection rate (from approximately 1.0 to cues was much lower than that of true- toward an earlier stage (hence, a more

0.5 per image) (12). When we exclude 80 positive cues (Tables 3 and 4), because subtle appearance) on the average. De-

Simages that had no CAD cues, the repro- the detection scores may be close to the tailed documentation of all available in-

ducibility in the remaining 320 images was threshold. We did not perform a com- formation at the time of diagnosis is not

reduced to 41.6% (133 of 320). However, plete long-term follow-up to confirm that always done, particularly since informa-
the reproducibility in detecting specific all false-positive cues actually repre- tion is often provided verbally. In the

true-positive masses and microcalcification sented negative regions. Should any case of screening mammographic inter-

clusters is perhaps more important than false-positive detection prove to be a true pretation, however, the presence of a ma-

the more general image-based reproduc- abnormality, the computed reproducibil- lignancy that was visible (in retrospect)

ibility. It is generally difficult to directly ity level would be lower than that re- on a previous mammogram and in which

compare the detection performance in ported herein, a follow-up scan of the original images in

two experiments, because different image Note that the databases used in this a CAD system may produce a true-posi-

databases were used and the results de- and a previous (11) study were small; tive identification, could present a medi-

pend heavily on the difficulty of the se- hence, the results may not represent the colegal problem. It will be difficult to ar-
lected cases (13). However, some compar- actual reproducibility of CAD systems in gue that the abnormality in question was

ative information can be ascertained. In a the screening environment. Despite this not identified as suspicious on the origi-

previous report, the CAD system per- limitation, findings in the two studies nal image. Findings in our preliminary

formed better for mass detection (86.9% highlight an important finding. Current study suggest that this may be the case in
abnormality-based beternormasi ) d tec n fr CAD schemes are sensitive to small vari- a noticeable fraction of mass cases (ap-
abnoality-baclusterdsensitivt)hn for.6) ations in the digital value matrices that proximately 20%, as shown in Table 3).
crocalcification cluster detection (76.6%) result from repeated scanning of the The current practice associated with
(11), while in the current study, sensitivity same images. This may have method- the use of CAD in the mammographic

clusters was higher than 96%, and the ologic and clinical practice implications environment is not clear on whether a
ustensitivy fras s hg ertecn 9 , ind the that need to be addressed. The fact that record of the CAD results used during the

sensitivity for mass detection was in the all abnormalities depicted in the present case interpretation should be retained.
range of 70%. These results may indicate study were visible on both views indi- Until mass detection is substantially im-
that the microcalcification clusters de- cates that the cases were not particularly proved, results in our study suggest that
picted in our data set were easier to de- subtle and that the findings we report such a practice should be considered. In-
tect, and masses depicted in our database herein, including possible implications, terestingly, although largely impractical,
were more subtle. The case selection pro- may be magnified in cases that are more our study findings clearly suggest that at
tocol we used should have reduced bi- difficult to identify visually or when the this level of performance, multiple re-
ases; however, the results presented abnormality is visible only on one view. peated scans of each case could be ac-
herein with a small database may not We suspect that this sensitivity to minor quired to improve the performance of
represent the actual performance of the changes in the matrices is not unique to CAD schemes.
system in a clinical setting. Findings in the CAD system evaluated in the current
the current study demonstrated clearly study. Full-field digital mammography References
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APPENDIX 9

Performance Change of Mammographic
CAD Schemes Optimized with Most-
Recent and Prior Image Databases'

Bin Zheng, PhD, Walter F. Good, PhD, Derek R. Armfield, MD, Cathy Cohen, MD
Todd Hertzberg, MD, Jules H. Sumkin, DO, David Gur, ScD

Rationale and Objectives. The authors evaluated performance changes in the detection of masses on "current" (latest)
and "prior" images by computer-aided diagnosis (CAD) schemes that had been optimized with databases of current and
prior mammograms.

Materials and Methods. The authors selected 260 pairs of matched consecutive mammograms. Each current image de-
picted one or two verified masses. All prior images had been interpreted originally as negative or probably benign. A
CAD scheme initially detected 261 mass regions and 465 false-positive regions on the current images, and 252 corre-
sponding mass regions (early signs) and 471 false-positive regions on prior images. These regions were divided into two
training and two testing databases. The current and prior training databases were used to optimize two CAD schemes with
a genetic algorithm. These schemes were evaluated with two independent testing databases.

Results. The scheme optimized with current images produced areas under the receiver operating characteristic curve of
0.89 ± 0.01 and 0.65 ± 0.02 when tested with current images and prior images, respectively. The scheme optimized with
prior images produced areas under the receiver operating characteristic curve of 0.81 ± 0.02 and 0.71 ± 0.02 when tested
with current images and prior images, respectively. Performance changes for both current and prior testing databases were
significant (P < .01) for the two schemes.

Conclusion. CAD schemes trained with current images do not perform optimally in detecting masses depicted on prior
images. To optimize CAD schemes for early detection, it may be important to include in the training database a large
fraction of prior images originally reported as negative and later proven to be positive.

Key Words. Breast neoplasms, diagnosis; breast radiography; computers, diagnostic aid.
© AUR, 2003

Mammography is considered the most reliable and cost- breast cancers, which could lead to early treatment and
effective screening method for the early detection of substantially reduce associated mortality and morbidity

(I,2). The large volume of mammograms obtained and

the low cancer detection rates in a mammographic screen-

Acad Radiol 2003; 10:283-288 ing environment could result in radiologists missing as
1 From the Department of Radiology, University of Pittsburgh and Magee- many as 10%-30% of cancers rated "visible" during ret-
Womens Hospital, 300 Halket St, Suite 4200, Pittsburgh, PA 15213-3180.
Received October 10, 2002; revision requested November 25; revision re- rospective reviews (3,4). To assist radiologists in detect-
ceived and accepted December 10. Supported in part by grants CA85241, ing more cancers at screening, computer-aided detection
CA77850, and CA80836 from the National Cancer Institute, National Insti-
tutes of Health, and also by the U.S. Army Medical Research Acquisition (CAD) systems are being used in many medical institu-
Center under contract DAMD17-00-1-0410. Address correspondence to tions around the world (5,6). A number of studies have
B.Z. been conducted to assess their possible effect on radiolo-
The content of this article does not necessarily reflect the position or the
policy of the government, and no official endorsement should be inferred. gists' performance. Although there is no general agree-
0 AUR, 2003 ment on whether and how CAD systems help radiologists
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improve their diagnostic accuracy (7,8), a number of stud- As a result, 134 cases were selected for this study. The

ies have demonstrated that the performance of the particu- mass was visible on both views (craniocaudal and medio-

lar CAD scheme (including sensitivity, false-positive rate, lateral oblique) in 126 cases and on only one view in

and reproducibility) could be important in this regard eight cases. Hence, 260 pairs of images, with each pair

(9-11). consisting of one current image and one prior image,

Current guidelines recommend periodic mammographic were included in the study. On these images 270 distinct

screening for women over age 40 years (12). As compli- mass regions were identified (10 images depicted two

ance increases in the general population, a large fraction mass regions), 220 of which were associated with biopsy-

of patients will have undergone a series of mammo- proved malignancy (50 were benign). The locations of all

graphic examinations. As more of the most easily de- masses depicted on current images and the corresponding

tected cancers are identified during the initial examination regions on prior images were visually identified as con-

with the incorporation of CAD into the diagnostic pro- firmed by the diagnostic reports and pathology results.

cess, detected breast cancers will be shifted, on average, The centerpoint (x,y coordinate) of each verified mass

toward an earlier stage. In other words, more subtle can- region was marked manually and saved in a reference (or

cers will be considered visible or detectable on routine "truth") file.

mammograms. This will occur also in part because of the All 520 images (260 current and 260 prior) were pro-

availability of previous images for comparison, which cessed by a CAD scheme developed previously in our

could help radiologists detect more subtle cancers (13,14). laboratory to identify and classify suspicious regions (15).

In this changing environment, it is not clear whether cur- The scheme includes three stages. First, it uses image

rent CAD schemes optimized with a large number of eas- subtraction and threshold results after processing by two

ily detected cancers are best suited for the detection of Gaussian filters with a large difference in kernel sizes (7

earlier or more subtle cancers. This may become an im- pixels and 51 pixels) to search for the initial set of suspi-

portant issue in developing and evaluating new CAD cious regions, a process that usually results in the identifi-

schemes. In our experiment, an artificial neural network cation of 10-30 suspicious regions per image. In the sec-

(ANN) previously used in our own CAD scheme for mass ond stage, on the basis of local contrast measurement, the

detection was reoptimized separately by means of mass scheme uses an adaptive region growth algorithm to de-

regions depicted on "current" images (from the most re- fine three topographic layers for each region. Through the

cent examination, at which the mass was actually re- imposition of threshold conditions of growth ratio and

ported, leading to biopsy) and those depicted on the cor- shape factor for each layer in the regions identified as

responding "prior" images (originally interpreted as nega- potential lesions, this stage eliminates approximately 85%

tive). Hence, two different schemes were used. The of identified regions from consideration, while maintain-

changes in their performance were then evaluated when ing high sensitivity. A set of features is computed for

they were applied to independent sets of cases with each detected region. During the third stage, the remain-

masses depicted on both current and prior images. ing regions are classified according to scores generated by
a nonlinear multilayer feature-based classifier, defining
the likelihood of there being true-positive findings in

MATEIL - MEH DS those regions (16).
In this experiment, all remaining regions identified as

We searched our database for verified cases in which suspicious mass regions after the second stage of the
both current and prior images had been collected and dig- CAD scheme were selected for further consideration (the

itized. Inclusion criteria required that at least one mass classification scores in the third stage were ignored). As a
had been identified by a radiologist on the current images result, 726 suspicious regions on the 260 current images

and that biopsy had been performed as a result. In addi- and 723 suspicious regions on the 260 prior images were
tion, during a retrospective review and with the support selected. If the location of a selected region matched that
of available source documents, an experienced observer of a verified mass, the region identification was consid-

(B.Z.) had to be able to identify a mass at the correspond- ered true-positive. Specifically, the distance between the
ing locations on the prior images. In each case, the most center of gravity of a region, as detected automatically by
recent prior image had been interpreted as negative or the CAD scheme, and the center of the mass, as recorded
"not highly suspicious." in the reference file, had to be shorter than the radius of
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Number of Suspicious Mass Regions in Each Data Set cate the binary-coded number of hidden neurons (eg,

Training Data Set Testing Data Set 0101 is the code for five hidden neurons) (20). To set up
initial parameters in the genetic algorithm software, we

True- False- True- False- included a population size of 100 and assigned the cross-
Images Positive Positive Positive Positive

over rate, the mutation rate, and the generation gap to 0.6,
Current 131 (103) 233 130 (108) 232 0.001, and 1.0, respectively. To minimize overfitting and
Prior 126 (100) 236 126 (104) 235 increase robustness of the ANN performance, we adopted

Note.-Numbers in parentheses indicate the regions associated a limited number of training iterations (1,000), as well as
with malignant masses. a large ratio between the momentum (0.8) and learning

rate (0.01) in the ANN. The output of the ROCFIT soft-

ware program (University of Chicago, Ill) (21) was inter-
the longest axis of the detected region. Otherwise, the faced with the fitness function of the genetic algorithm,
region was considered a false-positive identification. and A, values computed by the program were defined as

The locations of 261 of the 726 selected regions on fitness criteria in the genetic algorithm. The genetic algo-
current images matched those of verified masses, com- rithm was terminated when it either converged to the
pared with 252 of the 723 regions on the prior images. "highest" A, value (with no further improvement accom-
All true-positive and false-positive regions were then ran- plished in the new generation) or reached a predetermined
domly divided into four mutually exclusive data sets, two number of generations (eg, 100).
for current images and two for prior images. To minimize Using this approach, we generated two optimal ANNs,
potential bias, true-positive regions of the same mass (de- each using a different training data set. ANN-1 was
picted on craniocaudal and mediolateral oblique views) trained with the suspicious mass regions extracted solely
were assigned to the same data set (either training or test- from the current images, and ANN-2 was trained with
ing), and when a mass region was assigned to the training regions extracted solely from the prior images. Then we
(or testing) subset in current images, its corresponding applied each of the ANNs to the two mutually exclusive
regions as depicted on prior images were also assigned to testing data sets of regions extracted from both current
the training (or testing) subset. The Table summarizes the and prior images. The classification scores in each test
number and distribution of true-positive regions and false- were used to generate four receiver operating characteris-
positive regions in each of the four data sets. tic (ROC) curves. The four A, values were compared. We

Training data sets from the current and prior images defined the threshold as a false-positive detection rate
were used to optimize two feature-based ANNs indepen- similar to that of the leading commercial CAD products-
dently as substitutes for the third stage in our CAD approximately 0.4 false-positive mass regions per image

scheme (16). Previous studies have demonstrated that the (7). At this level, we found the corresponding detection
feature distributions were different for mass regions de- sensitivity levels and computed the expected number of
picted on current images and those depicted on prior im- detected true-positive regions (130 in the data set of cur-
ages and that different feature sets should be used for rent images, and 126 in that of prior images). Thus, we
optimal classification results (17,18). Therefore, we ap- compared the change in expected true-positive detection
plied a genetic algorithm to search separately for optimal levels with the use of ANN-1 and ANN-2 for current and
sets of features on current images and on prior images, prior images at an operating point currently accepted in
using the genetic algorithm software and optimization proto- clinical CAD.
col that had been used in our previous studies to optimize
both Bayesian belief networks (19) and ANNs (20).

In brief, a binary coding method is applied to create a
chromosome used in the genetic algorithm. Each ex- From the genetic algorithm and training data sets of
tracted feature corresponds to a gene (that is, either to 0 current images and of prior images, two optimal ANNs
or to 1). To determine the optimal number of neurons in were generated. ANN-1 included 13 features, and ANN-2
the second (hidden) layer of the ANN, we include four included 11 (Fig 1); four features were common to both.
additional genes in the chromosome. Hence, the chromo- Many of the features are not orthogonal, which is not
some has a fixed length of 40 genes, of which the first 36 unique to our scheme. The highest A2 values achieved for
represent extracted image features and the last four indi- the training data sets were 0.92 ± 0.01 for ANN-1 and
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Figure 1. Features selected by means of the
genetic algorithm for ANN-1 and ANN-2. ANN-1 ANN-2

Those in boldface are common to both ANNs. 1. Region size (1st layer) 1. Region size (1st layer)

2. Contrast (1st layer) 2. Minimum pixel value inside the region

3. Standard deviation of pixel values 3. Size growth ratio between 2nd and 3rd
(2nd layer) layers

4. Circularity (2nd layer) 4. Skewness of pixel values (3rd layer)

5. Region size (3rd layer) 5. Standard deviation of pixel values in
background

6. Contrast (3rd layer) 6. Region perimeter divided by size
(3rd layer)

7. Standard deviation of radial 7. Standard deviation of radial length
length (3rd layer) (3rd layer)

8. Circularity (3rd layer) 8. Circularity (3rd layer)

9. Ratio between the maximum and 9. Skewness of pixel values of
minimum radial lengths (3rd layer) background

10. Difference of minimum pixel 10. Average local pixel value fluctuation
values inside and outside of the (within a 5 x 5 frame) of the segmented
growth region (3rd layer) breast area

11. Region conspicuity (3rd layer) 11. Region conspicuity (3rd layer)

12. Standard deviation of pixel values
(3rd layer)

13. Standard deviation of pixel values
in the segmented breast area

0.76 - 0.02 for ANN-2. When ANN-1 was applied to the 1
testing data sets, the A, values were 0.89 ± 0.01 and 0.9
0.65 ± 0.02 for current and prior images, respectively.
Figure 2 shows three ROC curves for training and two 0.8

testing results. When ANN-2 was applied to the same : 0.7
data sets, the A, values were 0.81 ± 0.02 for current and

e0.60.71 ± 0.02 for prior images. Figure 3 shows the corre- o

sponding ROC curves for ANN-2. • 0.5
The test results differed significantly (P < .01) be--> 0.4

tween ANN-i and ANN-2 for both the current and prior
image testing data sets. As shown in Figure 4, A, values 1° 0.3

were reduced by 9.0% (from 0.89 with ANN-1 to 0.81

with ANN-2) for the current testing data set and increased

by 9.2% (from 0.65 to 0.71) for the prior testing data set. 0.1

In addition, at an operating point of 0.4 false-positive de- 0
tections per image, the sensitivity levels represented by 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

the two ROC curves in Figure 2 are 0.82 and 0.40. In False-Positive Rate (1 - Specificity)

Figure 3, the corresponding sensitivity levels are 0.68 and Figure 2. ROC curves showing the performance of ANN-1 during

0.52. If we convert these levels to an expected number of training with the current image data set (0) and during testing with
the current image data set (A) and the prior image data set (i).detected true-positive mass regions, ANN-i would detect

18 additional mass regions in the current testing data set,
while ANN-2 would detect 15 additional mass regions in yielded performance levels (A.) of 0.88 t 0.02 and
the prior testing data set. 0.63 ± 0.02 for current and prior images, respectively;

The results are not substantially different when be- the comparable values for ANN-2 were 0.81 ± 0.02

nign masses are excluded from the analysis. ANN-1 and 0.70 t 0.03.
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0.3
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0.5

0.1 ANN-i ANN-2

0 Figure 4. Differences in area under the ROC curve (As) for
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ANN-i and ANN-2 when tested with the current image data set

False-Positive Rate (1 - Specificity) (A) and the prior image data set (n).

Figure 3. ROC curves showing the performance of ANN-2 dur-
ing training with the prior image data set (0) and during testing
with the current image data set (A) and the prior image data portant for a CAD scheme to detect more subtle masses,
set (i). because most radiologists can identify the easily detected

ones. On the other hand, users may lose confidence in a

DISCUSSION scheme if it frequently misses masses that should be easy

to detect. Without such confidence, radiologists will most

Feature-based machine learning classifiers, such as likely be reluctant to accept CAD cuing on subtle masses

ANNs, are widely used in CAD schemes as a final stage or make any changes in their initial interpretation (8),
in identifying and classifying abnormalities. Since these preventing the full benefit of CAD schemes from being

classifiers are trained to generate a "global" function to realized in clinical environments. When ANN-2, which

cover the entire instance space (22), their performance had been trained with the prior image data set, was tested
depends heavily on the training databases. This is particu- with the current image data set, the testing results were

larly true in mammography, for which the size and diver- better (higher A.) than the training results, demonstrating
sity of training data sets are often limited (23,24). Opti- the general robustness of the scheme (Fig 3).
mal feature sets such as those selected by the genetic al- Like most commercially available CAD systems, our

gorithm could differ for different limited-size training CAD scheme was designed to detect, not classify, suspi-

databases. Hence, the features selected in this study for cious abnormalities. Therefore, we believe that the
the current images were very similar but not identical to scheme should be highly sensitive to all suspicious mass

those selected in our previous studies (16,18). A single regions considered "actionable" by radiologists (eg, rec-

CAD scheme that achieves high sensitivity for both subtle ommended for follow-up or biopsy), even if some regions
and relatively easy-to-detect masses at an acceptable later prove benign. One of our previous studies suggested

false-positive rate can be developed if a large and diverse that radiologists' performance in classifying abnormalities
image database is available. However, the creation of as benign or malignant was not affected by the perfor-

such a database is very difficult, because image features mance of CAD cuing for detection purposes (11). In any
(including texture- and morphology-based features) are event, the inclusion of the benign mass regions as true-
substantially different for suspicious mass regions ex- positive cases in this experiment did not affect our results

tracted from current and prior images, as previous studies and conclusions.
have demonstrated (17,18). With improvements in diagnostic technology and in-

The CAD scheme trained with the current image data creasing compliance with screening recommendations
set did not perform optimally when tested with the prior among women generally, radiologists have to detect in-

image data set, and vice versa. On the one hand, it is im- creasingly subtle abnormalities depicted on mammograms.
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As a result, the performance of a CAD system that ini- 10. Malich A, Azhari T, B~hm T, Fleck M, Kaiser WA. Reproducibility: an
important factor determining the quality of computer aided detection

tially provided satisfactory cuing results when optimized (CAD) systems. Eur J Radiol 2000; 36:170-174.

could deteriorate substantially over time. Therefore, it 11. Zheng B, Ganott MA, Britton CA, et al. Soft-copy mammographic

may be beneficial to update training data sets periodically reading with different computer-assisted detection cuing
environments: preliminary findings. Radiology 2001; 221:633-640.
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APPENDIX 10

Subjective assessment of high-level image compression of digitized
mammograms

J. Ken Leader*a, Jules H. Sumnkinab, Marie A. Ganottab, Christiane Hakimab, Lara Hardestyab, Ratan
Shahab, Luisa Wallaceab, Amy Klymna, John M. Dreschera, Glenn S. Maitza, David GuraaUniversity of Pittsburgh, Pittsburgh, PA USA 15213
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ABSTRACT

This study was designed to evaluate radiologists' ability to identify highly-compressed, digitized mammographic
images displayed on high-resolution, monitors. Mammography films were digitized at 50 micron pixel dimensions
using a high-resolution laser film digitizer. Image data were compressed using the irreversible (lossy), wavelet-based
JPEG 2000 method. Twenty images were randomly presented in pairs (one image per monitor) in three modes: mode 1,
non-compressed versus 50:1 compression; mode 2, non-compressed versus 75:1 compression; and mode 3, 50:1 versus
75:1 compression with 20 random pairs presented twice (80 pairs total). Six radiologists were forced to choose which
image had the lower level of data compression in a two-alternative forced choice paradigm. The average percent correct
across the six radiologists for modes 1, 2 and 3 were 52.5% (+/-11.3), 58.3% (+/-14.7), and 58.3% (+/-7.5),
respectively. Intra-reader agreement ranged from 10 to 50% and Kappa from -0.78 to -0.19. Kappa for inter-reader
agreement ranged from -0.47 to 0.37. The "monitor effect" (left/right) was of the same order of magnitude as the
radiologists' ability to identify the lower level of image compression. In this controlled evaluation, radiologists did not
accurately discriminate non-compressed and highly-compressed images. Therefore, 75:1 image compression should be
acceptable for review of digitized mammograms in a telemammography system.

Keywords: Image compression, data compression, JPEG 2000, telemammography

1. INTRODUCTION

Breast cancer screening mammography is widely practiced and increasingly challenging to manage in the clinical
environment, but there is potential for improvement. -7 Teleradiology is an approach that may provide more timely
patient management. Image compression,8-13 image cropping, 12"14 and image selection15 are commonly used in
teleradiology to facilitate the timely transmission of data. The high-spatial resolution required for mammography
complicates the design and implementation of a telemammography system. The large mammographic image file size
(33-55 MBytes per image) is one obstacle to timely transmission of data, especially across low-level data connections.
High-level image compression may assist in overcoming this obstacle and can only be realized with lossy image
compression techniques, which necessitates the loss of some image information and a degree of image degradation.

The use of high-level image compression in medical applications is frequently met with skepticism because of the
potential degradation of the depiction of objects under investigation. Human observer performance studies designed to
evaluate wavelet compression of medical images for clinical applications have reported acceptable compression levels
ranging from 8:1 to 100:1.6"26 Wavelet-based compression, the trend in medical image compression, is reported to be
superior to the original JPEG compression based on the direct cosine transform in terms of image quality at high-levels
of image compression.'

6" 7
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From our perspective the effect of image degradation from lossy compression of medical image interpretation remains
unresolved, particularly regarding mammography. Observer studies reported that 8:122 and 10:127 compression ratios
are acceptable for mammography applications using both wavelet and the original JPEG compression methods.
Visualization of calcifications depicted on digitized mammograms was subjectively rated as excellent for wavelet
compression ratios as high as 56:1.19 Uncompressed digitized mammographic images were rated to be comparable to
images compressed at 30:1 using wavelet compression.20 These studies are indeed promising, and high-levels of image
compression may be ultimately clinically acceptable in mammography.

Powell et al.22 (2000) conducted a clinical evaluation that compared film mammography to digitized images compressed
at 8:1 using wavelet based compression. The accuracy for detecting malignancy was not statistically different when
depicted on film or digitized images in a receiver operating characteristics (ROC) study. The false positive rate at a
fixed sensitivity of 0.90 was significantly lower (better) using digitized images as compared with film. Compressed
digitized images were also slightly better (though not statistically) than film in terms of recall rate for negative
mammograms and those depicting benign findings. The recall rate for mammograms depicting malignant abnormalities
was slightly better (though not statistically) when original films were used as compared with digitized images.

The objective of this study was to determine an acceptable level of image compression in a telemammography
application. The ability of radiologists to discriminate high-levels of image compression as applied to digitized
mammograms was evaluated. Image pairs of different compression levels were randomly presented and viewed side-
by-side on two high-resolution monitors. Six radiologists were forced to choose the lower level of image compression
and rate the relative utility of the images for use in a screening mammography environment.

2. METHODS

2.1 Case selection
This study used twenty breast cancer screening examinations randomly selected from a larger telemammography
project, which was designed to evaluate the ability telemammography to reduce the number of patients being recalled
for additional imaging procedures. One image view from each case (i.e., twenty images total) was selected to represent
each examination. The verified findings depicted in these examinations included masses and calcification clusters
(Table 1). The dataset for this retrospective study was assembled and analyzed under University of Pittsburgh
Institutional Review Board approved protocol, and the image data was anonymized.

Table 1
Image views and depicted abnormalities

Abnormality depicted on image
View Mass Calcifications Mass & calcifications No finding
MLO 3 2 2 3

CC 3 3 1 3
MLO - mediolateral oblique
CC - craniocaudal

2.2 Image processing
Mammographic films were digitized at 50 micron pixel dimensions and 12-bit grayscale using a high-resolution, laser
film digitizer (Lumiscan 85, Eastman Kodak, Rochester, NY, USA). Each digitized mammographic image was
automatically cropped to decrease the non-tissue area surrounding the breast. The cropped image data were compressed
using the irreversible (lossy), 9/7 transform, wavelet-based JPEG 2000 method at compression ratios of 50:1 and 75:1
and subsequently decompressed prior to display. A total of sixty images were generated for the study, the twenty
original digitized images plus two compressed images at 50:1 and 75:1 ratios for each of these (or a total of sixty
images).
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2.3 Image display
The images were displayed on two calibrated, high-resolution (2048 x 2560), 8-bit grayscale, portrait monitors at a
nominal setting of 80 ftL (DS5100P, Clinton Electronics, Rockford, IL, USA). Typically, when a single image
displayed on the monitor the display scale was approximately 100 micron per pixel. Minimal unsharp masking was
employed. In short, image data were first smoothed with a 2-D 129 mean kernel, and subsequently the weighted (0.10)
smoothed image was subtracted from the original image. Finally, the resulting pixel values were re-scaled from 0 to
4095. Image magnification and window/level adjustments were not permitted during the study.

Fixed look-up table (LUT) values are automatically calculated based on the pixel value distribution (histogram). In
short, the typical pixel value distribution of digitized mammographic images is bimodal. The center between the two
modes was set as the level value (brightness), and the span of the two modes was set as the window value (contrast).
Additionally, the cropped images were padded (filled) prior to display to restore the full height of the image.

2.4 Study protocol
Six experienced radiologists participated in the study. They were presented image pairs (one image per monitor) that
consisted of the same image at different levels of compression (Fig. 1). The images were paired in three modes: mode
1, non-compressed versus 50:1 compression; mode 2, non-compressed versus 75:1 compression; and mode 3, 50:1
versus 75:1 compression. The sixty image pairs were randomly presented with 20 randomly selected pairs presented a

second time to evaluate intra-observer variability (or a total of eighty pairs). Compression levels were also randomly
assigned between the two monitors for counterbalancing.

-. %,"

Fig. 1. Telemammography workstation used for the study.

In a 2-AFC paradigm the radiologists were forced to choose the image (i.e., right or left monitor) that had the lower
level of data compression. In addition, they compared and rated the clinical utility between the two images presented in
each pair. After image review, two questions were presented on a computer scoring form and answered using the
computer mouse (Fig. 2). The radiologists were given written instructions regarding the protocol:
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You will be presented with 80 pairs of images, one image on each monitor. The window and
level values for the monitor display will be fixed. Magnification features will not be available
during this study. One image will contain less information than the other as a result of data
compression. The monitor that displays the less compressed image will be randomly selected.
The same image pairs will appear multiple times throughout the study. After you have
reviewed the images, the "eval case" button on the bottom task bar will bring up two questions
to be answered.

Which monitor contains the image with more information?

"F Left
"F Right

If these images were part of a screening mammogram exam, for the purpose of

determining the need for additional procedures:

F The left image is superior to the right image.

F The left image is equivalent to the right image.

F The left image is inferior to the right image.

I Done

Fig. 2 Computerized scoring form completed for each image pair.

2.5 Data analysis
The average percent correct decisions across the six readers for discriminating the lower level of image compression
was compared with a random (chance) selection using a one-sample T-test for each mode and each monitor. Friedman
Two-Way Analysis of Variances by Ranks was used to test if there was a difference between modes. Kappa was used
to evaluate intra-reader agreement for the twenty repeated pairs of images and inter-reader agreement for each mode.
To determine if a learning effect was present the percent correct decision for the first, second, and third presentations of
pairs of images was tested for trend using the Page Test for Ordered Alternatives. All images were presented a
minimum of three times with the twenty repeated pairs randomly selected. The percent of image pairs rated as
clinically equivalent for both the correct or incorrect decisions for identifying the lower level of image compression
were compared to random (chance) selection using a one-sample T-test for each mode and each monitor.

3. RESULTS

The subjective appearance of the compressed images was extremely similar to the original uncompressed image. The
task of discriminating the more compressed image in each pair was reported to be difficult by all readers. The
smoothing effect of wavelet compression did not produce distinguishable image features such as blocking artifacts
characteristic of high-level original JPEG compression.

Readers' ability to correctly discriminate the lower level of image compression was only slightly better than chance and
was of the same order of magnitude as the "monitor effect" (Table 2). Readers' performance levels were not
significantly different across the three presentation modes (p > 0.05). However, the readers correctly identified images
compressed at 50:1 ratio as lower than 75:1 image compression at a rate significantly greater than chance (p < 0.05).
On average the readers performed better when the lower level of compression was presented on the left monitor for all
three modes, but the "monitor effect" (left versus right) was not significant.
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Table 2
Average percent correct for discriminating the lower compression level for all image
pairs when the correct image was on the right monitor and the left monitor

mode 1' mode 2 b mode 3'
All images 52.5 (11.3) 58.3 (14.7) 58.3 (7.5)e
Images on right monitor 45.7 (25.3) 43.2 (25.8) 47.8 (26.5)
Images on left monitor 62.5 (14.1) 73.2 (25.3) 69.0 (23.1)
a mode 1 - non-compressed & 50:1 compression
b mode 2 - non-compressed & 75:1 compression
C mode 3 - 50:1 & 75:1 compression
d group mean and standard deviation in ()
Sp < 0.05 one sample T-test

Intra- and inter-reader agreements for discriminating the lower level of data compression were poor for the individual as
well as between readers (Tables 3 and 4). Kappa for intra-reader agreement for readers 1, 2, 3, 4, 5, and 6 were -0.25,
-0.39, -0.30, -0.19, -0.78, and -0.30, respectively. No two readers consistently agreed across the three presentation
modes. Inter-reader Kappa for discriminating the lower level of image compression for the six readers ranged from
-0.47 to 0.26, -0.36 to 0.37, and -0.30 to 0.30 for modes 1, 2, and 3, respectively (Table 4).

Table 3 Table 4
Comparison between the first and second Kappa for inter-reader agreement for the six readers and the
reads of the twenty repeated image pairs three presentation modes

second read reader
reader first read correct incorrect mode reader 2 3 4 5 6

1 correct 10 (2) 30 (6) 1a 1 -0.471 -0.042 0.043 -0.200 -0.038
incorrect 30(6) 30(6) 2 0.118 0.223 -0.100 -0.237

3 0.255 -0.200 0.151
2 ncorrect 15 (3) 30 (6) 4 -0.100 -0.101
incorrect 40 (8) 15 (3)5 -0.300

3 correct 20 (4) 30 (6) 2b 1 0.175 -0.359 -0.354 -0.300 0.368
incorrect 35 (7) 15 (3) 2 -0.284 -0.023 0.100 -0.177

4 correct 5 (1) 25 (5) 3 0.018 0.100 -0.217
incorrect 25 (5) 45 (9) 4 -0.200 0.125

5 -0.300
4 correct 5 (1) 40 (8)

incorrect 50 (10) 5 (1) 3c 1 -0.099 -0.300 0.121 0.100 -0.237
2 -0.100 -0.099 0.100 0.175

5 correct 10 (2) 50 (10) 3 0.100 -0.200 0.100
incorrect 20 (4) 20 (4) 4 0.300 -0.031

Spercentage and number in () 5 -0.100

a mode 1 - non-compressed & 50:1 compression
b mode 2 - non-compressed & 75:1 compression
C mode 3 - 50:1 & 75:1 compression

A slight learning effect was observed in the average reader's ability to select the lower level of image compression
during the first three presentations (Table 5). The mean percent for correctly discriminating the lower level of image
compression showed an increasing trend across the three presentations that was not significant (p > 0.05). Reader 6 was
an outlier, and, although the trend was not significant, excluding this reader from the analysis removed the increasing
trend across the three presentations.
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Table 5
Percent correct for selecting the less compressed image during the first,
second, and third presentations

reader first (n= 20) second (n = 20) third (n = 20)

1 65.0 50,0 60.0
2 55.0 55.0 60.0
3 50.0 50.0 55.0
4 60.0 65.0 70.0
5 50.0 50.0 50.0
6 35.0 80,0 65.0

mean 52.5 58.3 60.0a
std 10.4 12.1 7.1

"p > 0.05

Images correctly identified as less compressed by the readers were rated as "clinically equivalent" at relatively the same
rate as images incorrectly identified (Table 6). However, on the left monitor the readers rated correctly selected images
as "clinically equivalent" more often than random selection (p < 0.05). The average number of image pairs rated as
clinically equivalent by the six radiologist were 14.2 (± 4.8), 14.2 (± 4.1), and 13.3 (± 5.5) out of the twenty possible
pairs for modes 1, 2, and 3, respectively.

Table 6
Percent of image pairs rated "clinically equivalent" for correct and incorrect selection of lower compression
level for either monitor, the right monitor, and the left monitor

correct choice of lower compression level incorrect choice of lower compression level

mode either monitord right monitor left monitor either monitor right monitor left monitor
1 a 48.3 (20.1) 24.0 (13.6) 24.3 (15.2) 51.7 (20.1) 34.2 (24.9) 17.5 (10.5)
2b 62.3 (19.2) 18.9 (15.6) 43.4 (17.8)' 37.7 (19.2) 26.3 (15.9) 11.4 (12.9)e
3c 53.1 (18.6) 19.2 (15.4) 33.9 (17.0) 46.9 (18.6) 27.1 (20.7) 19.8 (14.7)

a mode 1 - non-compressed & 50:1 compression
b mode 2 - non-compressed & 75:1 compression
C mode 3 - 50:1 & 75:1 compression
d group mean and standard deviation in ()

p < 0.05 one sample T-test

4. DISCUSSION

In this controlled evaluation, image compression achieved with wavelet-based JPEG 2000 was not reliably
discriminated and rated by radiologists and, therefore, could be considered applicable for telemammography
applications. Radiologists did not accurately or reliably select the lower level of image compression between image
pairs when presented side-by-side with non-compressed images and those compressed at 50:1 and 75:1 compression
levels. Interestingly, the "monitor effect" (left versus right) was of the same order of magnitude as the radiologists'
ability to discriminate the lower level of image compression. As a group the readers' ability to identify the lower level
of data compression slightly improved across the readings, but not significantly. The majority of image pairs, which
were compressed at different ratios, were rated as "clinically equivalent" for use in a screening environment
independent of whether the readers selected correctly or incorrectly the less compressed image.

The images in our study were presented on separate, side-by-side monitors with magnification, pan zoom, and
window/level features disabled, Permitting magnification and window/level may (or may not) have improved
discrimination. A similar 2-AFC study by Slone et al.17 (2000) evaluated wavelet and original JPEG compression of
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posteroanterior chest digital radiographs and reported that image degradation was detected at compression levels greater
than 11:1 for both compression methods. At a compression level of 75:1 the lower compressed image was correctly
identified approximately 95 % of the time for both the wavelet and the JPEG compression methods. The images were
presented on a single monitor, and the readers were permitted to magnify and toggle between images, which they
acknowledged was conservative and tested the reader's temporal sensitivity.

Since radiologists could not accurately or reliably discriminate non-compressed and highly-compressed mammographic
images, their interpretation using either non-compressed or highly-compressed images is not likely to differ
substantially. We also note that diligent monitor calibration may be critical to image fidelity.
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APPENDIX 11

Computer-Aided Detection
Schemes: The Effect of Limiting the
Number of Cued Regions in Each Case

Bin Zheng1  OBJECTIVE. We assessed performance changes of a mammographic computer-aided

Joseph K. Leader detection scheme when we restricted the maximum number of regions that could be identified
Gordon Abrams (cued) as showing positive findings in each case.

Betty Shindel MATERIALS AND METHODS. A computer-aided detection scheme was applied to

Victor Catullo 500 cases (or 2,000 images), including 300 cases in which mammograms showed verified
Walter F. Good malignant masses. We evaluated the overall case-based performance of the scheme using a
David Gur free-response receiver operating characteristic approach, and we measured detection sensitiv-

ity at a fixed false-positive detection rate of 0.4 per image after gradually reducing the maxi-

mum number of cued regions allowed for each case from seven to one.
RESULTS. The original computer-aided detection scheme achieved a maximum case-based

sensitivity of 97% at 3.3 false-positive detected regions per image. For a detection decision score
set at 0.565, the scheme had a 79% (237/300) case-based sensitivity, with 0.4 false-positive de-
tected regions per image. After limiting the number of maximum allowed cued regions per case,
the false-positive rates decreased faster than the true-positive rates. At a maximum of two cued re-
gions per case, the false-positive rate decreased from 0.4 to 0.21 per image, whereas detection
sensitivity decreased from 237 to 220 masses. To maintain sensitivity at 79%, we reduced the
detection decision score to as low as 0.36, which resulted in a reduction of false-positive de-
tected regions from 0.4 to 0.3 per image and a reduction in region-based sensitivity from
66.1% to 61.4%.

CONCLUSION. Limiting the maximum number of cued regions per case can improve
the overall case-based performance of computer-aided detection schemes in mammography.

C omputer-aided detection systems formance levels of such systems have been

are routinely used in a number of compared [9, 10]. All commercial computer-
medical institutions around the aided detection systems use specific threshold

world to assist radiologists in the detection of values to determine whether an identified suspi-
abnormalities depicted on mammograms. The cious region is ultimately cued as a positive
number of mammograms scanned through finding, and the performance of these systems

September 11, 2003. commercial computer-detection systems has is frequently evaluated on the basis of the

been rapidly increasing. Although no general case-based sensitivity achieved at a given false-[he information contained in this article does niot necessarily
reflect the position or the policy of the United States agreement has been reached on how computer- positive detection rate. In a case-based (or a
government and no official endorsement should be inferred, aided detection affects radiologists' perfor- breast-based) analysis, sensitivity is based on the
Supported in part by grants CA85241, CA77850, and mance in terms of sensitivity and specificity correct detection of at least one true-positive re-
CA80836 from the National Cancer Institute of the National [ 1-4], there are indications that the performance gion on either the craniocaudal or mediolateral
Institutes of Health, and by contract DAMD17-00-1-0410
from the United States Army Medical Research of the computer-aided detection scheme itself oblique mammographic view or on both [1].
Acquisition Center at Fort Detrick, MD. has an impact on radiologists' performance in Evaluation of computer-aided detection per-
1All authors: Department of Radiology, Imaging Research, detecting abnormalities [5, 6], and observer formance is not a simple matter. Previous studies
Magee-Women's Hospital, University of Pittsburgh, 300 confidence levels in accepting the cues gener- have shown that performance can vary widely
Halket St., Ste. 4200, Pittsburgh, PA 15213-3180. Address ated by these systems increases with higher per- depending on which scoring method is used, andcorrespondence to B. Zheng (zhengb@mss.upmc.edu). attminraewihhgepe- dedngowicsoigmtodsueadformance levels of the scheme [7, 8]. Several there is no general agreement on which scoring
AJR2004;182:579-583 commercial computer-aided detection systems method should be used for this purpose [11, 12].
0361-803X/04/1823-579 have been approved by the United States Food One study showed that at approximately the
) American Roentgen Ray Society and Drug Administration, and the relative per- same false-positive rate (e.g., 1.5 per image), the
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measured sensitivity for the detection of micro- were visually identified, marked, and saved in a a multilayer regional growth algorithm [16] was ap-
calcification clusters ranged between 45% and "truth file:' In this data set, mass regions were visi- plied to define the contours of the region as depicted in
85% depending on which of three different as- ble on both the craniocaudal and mediolateral ob- the image. If the region met simple growth criteria, a

sessment methods were used [ 11]. lique mammographic views in 270 cases and were set of features from the interior and surrounding back-

detection per- only visible on one of the two views in 30 cases. ground of the region was computed by the scheme.
formane aditpon s compteaed cThus, 570 mass regions were identified on the im- Otherwise, the region was considered to have negative

ages in this study. Figure 1 shows the size distribu- findings and was deleted. Finally, a feature-based arti-image database used [13]. In general, com- tion of the 300 masses in the data set. ficial neural network classified each suspicious region

puter-aided detection schemes may identify a A computer program determined the size of each as showing positive or negative findings by assigning a
large number of suspicious regions on some mass region by counting the total number of pixels in- detection (or probability) score. In a manner similar to
images (e.g., images depicting dense tissue side the identified boundary contour of the region the commercial computer-aided detection products,
patterns), but only a few suspicious regions on (multiplied by 0.0016 cm2 per pixel). The size of a our detection scheme identified a region as having a
other images (e.g., images dominated by fatty mass was represented by a large computed area on ei- positive finding if the detection score exceeded a pre-
tissue) [14]. Therefore, limiting the maximum ther the craniocaudal or mediolateral oblique mram- determined threshold. If the detection score did not ex-

number of suspicious regions allowed to be mogram. For each identified mass region, the panel of ceed the threshold, the region was not cued and was

cued for one case could potentially reduce the radiologists assigned a subjective rating of subtlety considered to be a negative finding.
using a 5-point rating scale that ranged from I (very After processing all images, we compared the re-false-positive rate with a relatively small de- easily visible) to 5 (very subtly visible). Figure 2 gions with detected positive findings with the results

crease in sensitivity. This approach is used in shows the distribution of assigned subtlety ratings in saved in the truth file. To determine whether a de-
commercially available systems, but to the best this data set. Subtlety of a mass was represented by tected region was considered a true-positive finding,
of our knowledge, the effect of implementing the lower rating assigned to either the craniocaudal or we applied the following criterion: If the distance
the approach on image- and case-based sensi- mediolateral oblique mammographic view. We verified between the computed center of a detected region
tivity and false-positive detection rates has not all cases with negative (or benign) findings by review- and the visually marked coordinate on a mammo-
been described in detail. This study was per- ing the available diagnostic information and the data gram was shorter than the effective radius (the aver-
formed to assess this issue. from a follow-up examination with negative results, age radial length computed by the computer-aided

confirming a minimum of one disease-free year. detection scheme), the region was considered to be a
A computer-aided detection scheme developed pre- match to a true-positive mass. Otherwise, the region

Materials and Methods viously in our laboratory [15] was applied to the 2,000 was considered a false-positive case.
We selected 500 cases (or 2,000 digitized main- images in the data set. Because we only examined To show the original performance of the com-

mograms) from a large image database available in computer-aided detection performance for mass detec- puter-aided detection scheme when applied to this
our laboratory. Among these cases, verified malig- tion in this study, each image was first reduced by data set, we plotted free-response receiver operating
nant masses were depicted in 300 cases, and the re- pixel averaging (a factor of 8 in both x and y direc- characteristic curves for both case-based and region-
maining 200 were negative findings. In all cases tions), increasing the effective pixel size from 50 x 50 based scores. In the ease-based performance curve,
with positive findings, a panel of radiologists identi- pin in the original digitized image to 400 x 400 Ian. sensitivity was assessed on the basis of the correct
fled the locations of the mass regions on the images The mass detection scheme then identified between 10 marking of at least one true-positive region in either
using the original diagnostic and biopsy reports. The and 30 suspicious regions in each image depending on (or both) of the two mammographic views, and if
central coordinates (x and y) of each mass region the regional tissue patterns. For each identified region, two regions were detected, the higher score was se-
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Fig. 1.-Bar graph shows size distribution of 300 masses depicted in data set. Mass size Fig. 2.-Bar graph shows distribution of subjectively rated subtlety of 300 masses de-
is represented by larger depicted area on either craniocaudal or mediolateral oblique picted in data set Subtlety of each identified mass was rated on 5-point scale, ranging
mammographic view. from 1 (very easily visible) to 5 (very subtly visible). Mass subtlety is represented by lower-

rated depiction on either craniocaudal or mediolateral oblique mammographic view.
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lected to represent the mass. In the region-based per-
formance curve, if the same mass was depicted on 1.0-
both craniocaudal and mediolateral oblique views, -•
we considered these two images to represent two in-
dependent regions. 0.8-

We applied a threshold score to the artificial neu-
ral network results to evaluate the sensitivity of the -

scheme at different false-positive rates. We also ad- U 0.6-
justed the threshold value to produce a false-positive tn 0.5-
rate comparable to that of the leading commercial .
computer-aided detection systems (e.g., a false-posi- 0 0.4-
five rate of 0.4 regions per image [2]). By changing o.a
the total number of cued regions permitted in each
case to anywhere from seven to one, we compared 0.2-
the change in performance levels (including both
sensitivity and false-positive rate). The scores gener-
ated by the artificial neural networks for all detected 0

regions were sorted by value from the highest to the 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

lowest, and the regions with higher scores were se- False-Positive Regions per Image
lected sequentially until the predetermined limit of
cued regions per case was reached. In addition, we
kept the case-based sensitivity constant by reducing Fig. 3.-Graph illustrates overall performance of computer-aided detection scheme when applied to database

of 2,000 mammograms (500 cases) with no limitation on number of cued regions. Detection decision thresholdthe detection threshold and assessed the changes in line is represented by dotted line. * = case-based free-response receiver operating characteristic curve, 0 =
false-positive rates and image-based sensitivity as image-based free-response receiver operating characteristic curve.
the total number of allowed cues per case was re-
duced from seven to two.

the maximum allowed number of cues per For example, by limiting the maximum al-
Results case was limited to between seven and two. As lowed number of cues to two per case and ad-

Figure 3 shows two computed free-response the maximum number of allowed cues was re- justing the artificial neural network threshold
receiver operating characteristic curves after duced, the free-response receiver operating to 0.36, we reduced the false-positive rate from
the application of our computer-aided detec- characteristic curves tended to become steeper. 0.4 to 0.3 regions per image.
tion scheme to this data set. One is a case- Table 2 summarizes the results after limiting One interesting finding was that the 17 (of
based free-response receiver operating charac- the maximum number of cued regions and the 237) masses detected using these two scor-
teristic performance curve; the other is a re- changing the threshold value of the artificial ing methods were not identical. When the
gion-based curve. Setting the threshold value neural network detection scores to maintain a maximum number of cued regions was limited
of the artificial neural network detection scores 79% case-based sensitivity. The table shows to two per case, 17 masses with artificial neu-
at 0.565 generated a decision threshold line, as that we were able to reduce the false-positive ral network scores higher than 0.565 (range,
shown in Figure 3. At this level, the computer- rates while maintaining a constant sensitivity. 0.57-0.77) were eliminated. Reducing the
aided detection scheme identified 79% of the
malignant masses with 0.4 false-positive re-
gions per image being cued. At this threshold, Performance Levels of Computer-Aided Detection as a Function of the
the scheme did not detect any false-positive re- Maximum Number of Cued Regions Allowed per Case
gions in 33.2% (166/500) of the cases.

Table 1 provides the performance levels of Maximu No. of False-Positive Regionsb
the computer-aided detection scheme when we Cued Regions Case-Based Region-Based
limited the maximum number of cued regions Allowed per Case No.c % No.d % No. Per-Image
allowed in one case at this threshold level Rate
(0.565). The false-positive detection rate de- No limit 237 79.0 377 66.1 803 0.40
creased substantially faster than the case-based 237 79.0 376 66.0 795 0.40
sensitivity. For example, when we limited the 5 236 78.7 370 64.9 753 0.38
maximum number of cued regions to two per
case, the detection sensitivity decreased by 4 233 77.7 364 63.9 695 0.35

7.2% (from 237/300 to 220/300 cases), whereas 3 227 75.7 351 61.6 588 0.29

the false-positive detection rate decreased by 2 220 73.3 316 55.4 423 0.21
47.3% (from 0.40 to 0.21 per image). In 65% of 1 195 65.0 195 34.2 224 0.11
the true-positive cases, the region with the high- Note.-Artificial neural network threshold vaue was set at 0.565.

est artificial neural network score was the ma- aDetected true-positive cases.
lignant mass region (Table 1). bDetected false-positive regions.

Figure 4 shows five free-response receiver Ccases.
operating characteristic curves generated when dRegions.
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Fig. 4.-Graph shows five plots depicting free-re-
1.0 sponse receiver operating characteristic curves

generated by different maximum numbers of cued
regions allowed per case. Maximum number of

0.9- cued regions indicated by*= no limit, =: _7, X=55,
A=3, O=<5Z

0.8"

0.7-

= 0.6-
U) 0.5-

0
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0.1-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False-Positive Regions per Image

threshold score to 0.36 resulted in the identifi- enough to assess the difference (if any) in computer-aided detection products. However,
cation of 17 different masses with artificial clinical impact of the two approaches. the actual scores for each region are not avail-
neural network scores in the range between able to users. Therefore, several related is-
0.36 and 0.51. Figure 5 shows the distribution sues-such as the effect of this approach on
of mass sizes and subtlety ratings of the 34 Discussion overall performance and on the detection (or
masses missed by both scoring methods. The Case distributions and rating methods the missed detection) of specific masses-
results suggest that the 17 masses that were could have a significant effect on the evalua- have not, to our knowledge, been described in
detected only when the number of allowed tion of computer-aided detection perfor- the past.
cues was limited to two per case and the mance levels [11-13]. In this study, we tested Our study showed that by limiting the maxi-
threshold was lowered tended to be some- a simple scoring method that alters measured mum number of allowed regions to be cued in
what small. All 34 masses were actually posi- performance. The method of limiting the each case, a substantial fraction of false-positive
tive findings. At this time, the follow-up maximum number of cued regions allowed regions can be eliminated with only a small de-
period on these patients has not been long per case is commonly used in commercial crease in sensitivity. If one wishes to maintain

sensitivity, threshold values can be appropri-
ately adjusted for this purpose. Because most
masses were visible on both the craniocaudal

Performance Levels of Computer-Aided Detection with Constant and mediolateral oblique mammograms and be-
Sensitivity of 79% as a Function of the Maximum Number of Cued Regions cause the detection performance of computer-
Allowed per Case _aided detection systems is commonly evaluated

Maximum No. of Region-Based Sensitivitya False-Positive Rateb Detection Decision Value using case-based sensitivity, our results are quite
Cued Regions Per-Image of Artificial Neural encouraging. It appears that this approach could

Allowed per Case N°'c % No. Rate Network Scores reduce the false-positive detection rate of the

No limit 377 66.1 803 0.40 0.565 scheme and possibly eliminate some true-posi-
tive region-based detections while retaining the

4 371 65.3 773 0.39 0.500 initial (unrestricted number of cues) case-based
4 378 66.3 902 0.45 0.500 sensitivity. Although the sensitivity can be
3 375 65.8 781 0.39 0.470 maintained using this approach (changing the
2 350 61.4 604 0.30 0.360 threshold levels for detection), one does not de-

8Detected true-positive cases. tect exactly the same true-positive masses. We
bDetected false-positive regions. found that limiting the maximum number of
cRegions. cues allowed per case and adjusting the thresh-
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APPENDIX 12

ARTICLES
Changes in Breast Cancer Detection and Mammography
Recall Rates After the Introduction of a Computer-
Aided Detection System

David Gur, Jules H. Sumkin, Howard E. Rockette, Marie Ganott, Christiane
Hakim, Lara Hardesty, William R. Poller, Ratan Shah, Luisa Wallace

The performance levels among radiologists who read and
Background: Computer-aided mammography is rapidly interpret mammograms vary widely. Several factors may ac-
gaining clinical acceptance, but few data demonstrate its count for this variability. These include, but are not limited to,
actual benefit in the clinical environment. We assessed the low incidence of breast cancer, the difficulty in identifying
changes in mammography recall and cancer detection rates suspicious (i.e., potentially malignant) regions in the surround-
after the introduction of a computer-aided detection system ing breast tissue, and the tedious and somewhat repetitious
into a clinical radiology practice in an academic setting. nature of the task of reading mammograms (5-7).
Methods: We used verified practice- and outcome-related In recent years, a major effort has been expended to develop
databases to compute recall rates and cancer detection rates computer-aided detection systems to assist radiologists with the
for 24 Mammography Quality Standards Act-certified aca- diagnostic process. The hope is that these computer-aided de-
demic radiologists in our practice who interpreted 115 571 tection systems will improve the sensitivity of mammography
screening mammograms with (n = 59 139) or without (n = without substantially increasing mammography recall rates, in
56 432) the use of a computer-aided detection system. All addition to possibly decreasing inter-reader variability. These
statistical tests were two-sided. Results: For the entire group systems are intended for the early detection of breast cancer and,
of 24 radiologists, recall rates were similar for mammograms accordingly, are designed to assist the radiologist in the identi-
interpreted without and with computer-aided detection fication (i.e., detection) of suspicious regions (i.e., findings),
(11.39% versus 11.40%; percent difference = 0.09, 95% such as clustered microcalcifications and masses (8-10).
confidence interval [CI] = -11 to 11; P = .96) as were the Computer-aided diagnosis (discrimination) systems are cur-
breast cancer detection rates for mammograms interpreted rently being developed to help radiologists determine whether an
without and with computer-aided detection (3.49% versus identified suspicious region is likely to represent a benign or a
3.55% per 1000 screening examinations; percent difference malignant finding (11-13).
= 1.7, 95% CI = -11 to 19; P = .68). For the seven The U.S. Food and Drug Administration (FDA) has approved
high-volume radiologists (i.e., those who interpreted more several computer-aided detection systems for clinical use, and
than 8000 screening mammograms each over a 3-year pe- Medicare and many insurance companies have approved reim-riod), the recall rates were similar for mammograms inter- Meiaendmyisunecopishveprvdri-
preed, wtho recandrates weithr computemogr-aided d c io n t- (bursement for the use of these systems in clinical practice. Thepreted w ithout and w ith com puter-aided detection (11.62% i ii l F A a p o a r c s o h s y t m nl d d rt o
versus 11.05%; percent difference = -4.9, 95% CI = -21 to initial FDA approval process for these systems included retro-
4; P = .16), as were the breast cancer detection rates for spective interpretations of select groups of cases in a laboratory
mammograms interpreted without and with computer-aided environment (9,14,15). Results of these studies (9,15) suggest
detection (3.61% versus 3.49% per 1000 screening examina- that the use of computer-aided detection systems can potentially
tions; percent difference = -3.2, 95% CI = -15 to 9; P = .54). increase cancer detection rates by approximately 20% without
Conclusion: The introduction of computer-aided detection substantially increasing recall rates. However, there are only
into this practice was not associated with statistically signif- limited data on the impact of such systems when used prospec-
icant changes in recall and breast cancer detection rates, tively in a clinical environment (16-19). We used large, pro-
both for the entire group of radiologists and for the subset of spectively ascertained databases to evaluate the recall and cancer
radiologists who interpreted high volumes of mammograms, detection rates in our clinical breast imaging practice in an
[J Natl Cancer Inst 2004;96:185-90]
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academic setting for a 3-year period during which a computer- gists, who were with our institution throughout the study period,
aided diagnosis system was introduced. performed the most readings, both with and without computer-

aided detection assistance.

METHODS For the purpose of computing recall rates, mammograms
were considered to be positive if recall for additional imaging

Subjects and General Procedures evaluation was recommended (i.e., mammograms classified as
Breast Imaging Reporting and Data System [BI-RADS] cate-

All screening mammography examinations performed in our gory 0) and negative if a 1-year follow-up was recommended
facilities at Magee-Womens Hospital of the University of Pitts- (i.e., mammograms classified as either BI-RADS category 1 or
burgh Medical Center (Pittsburgh, PA) and its five satellite 2) (21). Radiologists at these facilities did not use BI-RADS
breast imaging clinics during 2000, 2001, and 2002 were in- assessment categories 3, 4, or 5 for screening examinations.
cluded in this study. Our study was carried out under an insti- Positive outcome was defined as breast cancer detected as a
tutional review board-approved protocol. result of the diagnostic work-up initiated by a positive screening

The data sources for our analysis were databases that con- mammogram.
tained information on procedure scheduling, procedure comple-
tion, radiology reporting, and procedure-related outcomes as Computation of Mammography Recall Rates

determined from relevant pathology reports. These databases Recall rates for each radiologist and for the group of 24
were assembled from the original reports for quality assurance radiologists were computed directly from mammographic inter-
purposes, as required by the Mammography Quality Standards radiol reco mp u r analy we excl inter-Act MQS) (0), mon oter easos. he ame ompterzed pretation records. in all of our analyses, we excluded recoin-
Act (MQSA) (20), among other reasons. The same computerized mendations for recall that were due to technical reasons, such as
reporting system was in use throughout the study periodm image artifacts (<1%). Recalls due to palpable findings identi-In the second quarter of 2001, we introduced a computer- fied during clinical breast examinations performed on all women
aided detection system (R2 Technologies, Los Altos, CA) into fle duringi st examinatin or on all woe
our clinical practice at the main facility, where most of the by oh technologist were included in our analyses because the
screening mammograms in our practice were read in batch majority of these findings were also marked on the mammo-mode. By the third quarter of 2001, more than 70% of the grams. Such recalls amounted to approximately 1% of the
screening mammograms were interpreted with use of the screening examinations; hence, the underlying rates attributable

to mammography interpretations alone are approximately 1%computer-aided detection system. By the fourth quarter of 2001, lower than those reported here. The women in this group of
more than 80% of the screening mammograms were interpreted recalls are not the same as the group of women with palpable
with the assistance of the computer-aided detection system. The findings discovered by the woman herself or by a physician
radiologists in our practice could not select which mammograms during a breast physical examination. Women in the latter group
would be interpreted with or without the computer-aided detec- were scheduled for diagnostic examinations and were not in-tion system. After training on the computer-aided detection cluded in our study. In our practice, palpable findings that are
system was completed (June 2001), all screening mammograms discovered by the technologists are noted during the physical
interpreted in our main facility were processed by and inter- examination and the procedure continues as a screening exam-
preted with the assistance of the computer-aided detection sys- ination (including the use of computer-aided detection). The
tem. Radiologists at the five satellite clinics sometimes reviewed interpreting radiologists are aware of the technologists' findings
screening mammograms if time allowed, but the number of these and recall the women for additional procedures as needed. We
cases was small, and there was no selection process that could recognize that this practice may not be a common one. We
bias the analyses performed in this study. Knowing the schedule assumed that the effects of recalling this group of women due to
for radiologists' presence at the remote sites, we assembled a
batch of serially acquired mammograms for them to read in the palpable findings, if any, on the recall rates of individual
same way they would be read at the central facility, and those radiologists would be proportional to the overall volume of
mammograms were interpreted and reported in the same manner mammograms read by each radiologist; hence, it should not

(with the exception of the use of computer-aided detection). This substantially affect the results.

set of mammograms was not specifically selected because of tA small percentage (<4%) of the examinations in our prac-

suspicious findings by the technologists. To reduce possible ice classifiedt s BI-RADS category 0 were scheduled for an

biases, an individual'not involved in this investigation was asked interpretation at a later date because the needed comparison

to examine summaries of time-dependent recall rates for all films were missing during the originally scheduled interpreta-
radiologists in our practice for the study period. A different teamdistributed proportionally to the volume
radioedallot incersdetectdthroug our practice for the studren ult t of mammograms read by each radiologist and were included in
examined all cancers detected throughout our practice as a result the recall rates because it was not clear how many of them would

of screening mammography during the same period. he been recalle anyway.

During the study period, our practice performed a total of have been recalled anyway.

115 571 screening examinations that were interpreted by 24 Each mammography examination was identified in our data-

radiologists, 18 of whom interpreted more than 1000 mammo- base as to whether computer-aided detection was used during the
gramseach.Allradiologists, 18wofwhominterepe than B t Imamo- interpretation. We therefore analyzed the data according tograms each. All radiologists were members of the Breast Imag-whtecaswreiepeedihco ue-iedeeton

ing Section of the Department of Radiology and would be whether cases were interpreted with computer-aided detection.

considered breast imaging specialists in an academic practice. Computation of Breast Cancer Detection Rates
We also repeated our analysis by using only data for the seven
highest volume radiologists, all of whom read more than 8000 Breast cancer detection rates were computed as follows: For
mammograms each over a 3-year period. These seven radiolo- every breast cancer detected, we found the most recent screening
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mammogram that identified a finding that led to a diagnostic 4) other findings. Because the performance levels of computer-
follow-up and ultimately resulted in a biopsy that was positive aided detection systems are generally outstanding for detecting
for cancer. Only the interpreter of the original screening mam- microcalcifications (16), we used the GEE model to analyze our
mogram that led to the detection of breast cancer was credited findings with respect to possible changes in the percentage of
with the finding (i.e., invasive and ductal carcinoma in situ). cancer detections attributable to microcalcification clusters as-
Findings of lobular carcinoma in situ were not attributed to the sociated with the use of computer-aided detection. In addition,
interpreting radiologist as a cancer detected in the analyses. If a all analyses were repeated using a mixed-effect logistic regres-

woman was recommended for a biopsy directly as a result of sion model in which readers were considered a random effect,
the screening examination, the interpreter was credited with and modality (i.e., with or without computer-aided detection)

the finding as well. Cases were excluded from the analysis if was considered a fixed effect (23). We also examined data from

the most recent screening mammogram prior to biopsy had the seven high-volume radiologists (i.e., those who interpreted

been performed more than 180 days before the biopsy or if more than 8000 mammograms each during the study period).

the original interpreter had not recommended a recall (i.e., Because of the serial nature of the analysis (namely, this was not

false-negative cases). We chose a cutoff of 180 days because a randomized study), we repeated the analyses with respect to
we have found that, in the vast majority of cases, women are the timing of the major use of computer-aided detection in our
lost to follow-up or ignore the recall recommendation alto- practice by comparing the results for all cases interpreted with-
gether if the recommended follow-up diagnostic procedure is out computer-aided detection from January 1, 2000, through
not scheduled within 90 days or performed within 180 days of June 30, 2001, when computer-aided diagnosis was used in only
the original mammogram. We attributed any subsequent find- a small percentage of cases (<0.2%) at our facilities, with results
ings associated with recalls for diagnostic work-ups that did for all cases interpreted with computer-aided detection from
not take place within 180 days of the original mammogram to October 1, 2001, through December 31, 2002, when most
the subsequent examination. We included all examinations (>93%) of the cases at our facilities were interpreted with
that that had been originally scheduled as screening proce- computer-aided detection. All statistical tests were two-sided.
dures but were diagnosed during the same visit and during
which a diagnosis was made that resulted in a positive out-
come (i.e., converted into a diagnostic procedure that led to a
finding of cancer). However, these cancer cases (n = 30) were The mean age of the screened population (n = 115571)
excluded from the computed breast cancer detection rates in during the study period was 50.05 years (standard deviation =

our analysis (both nominator and denominator) because they 11 uring the study period1 the percentageard womn7were all diagnosed by a radiologist without the use of ll1years). During the study period, the percentage of women
who were screened for the first time gradually decreased from

computer-aided detection, and we therefore could not deter- approximately 40% in 2000 to 30% in the last quarter of 2002,

mine whether these cases would have been detected had they whereas the percentage of women who had repeated screenings
undergone routine interpretation (with or without computer- gradually increased.
aided detection) as a routine screening procedure. In addition, Table 1 summarizes our data for the 24 radiologists who
all breast cancer patients who were referred to us from other interpreted screening mammograms at our facility with and
facilities and for whom the diagnosis did not originate from a without the use of a computer-aided detection system. Among
screening examination done at one of our facilities were the 115 571 examinations in our database, 56 432 (48.8%) were
excluded from the analysis. interpreted without the use of the computer-aided detection

Statistical Methods system and 59 139 (51.2%) were interpreted with the use of the
computer-aided detection system. Recall rates for the entire

Recall and detection rates with and without computer-aided group of 24 radiologists were 11.39% for mammograms inter-
detection were compared by using a generalized estimating preted without computer-aided detection and 11.40% for mam-
equations (GEE) logistic regression model that accounts for mograms interpreted with it (percent difference = 0.09, 95%
clustering of findings within each reader (22). In addition, we confidence interval [CI] = - 11 to 11; P = .96). Recall rates for
asked an independent team of investigators to evaluate the the 18 radiologists who interpreted more than 1000 mammo-
numbers of cancer cases that were detected with and without grams each during the study period ranged from 7.7% to 17.2%
computer-aided detection by the type of abnormality(s) noted in (data not shown). Recall rates for the seven high-volume radi-
the original report. Those findings were assigned to one of the ologists who interpreted more than 8000 mammograms each
following categories: 1) mass(es) only; 2) clustered microcalci- during the study period ranged from 7.7% to 14.9% (data not
fications only; 3) mass(es) and clustered microcalcifications; and shown). Among this latter group of radiologists, there was no

Table 1. Mammography recall rates and breast cancer detection rates for 24 radiologists performing screening mammograms without and with
computer-aided detection*

No. of No. of No. of breast Recall Breast cancer detection rate
Type of interpretation mammograms read recalls cancers detected rate, % per 1000 mammograms read

Without computer-aided detection 56432 6430 197 11.39 3.49
With computer-aided detection 59 139 6741 210 11.40 3.55
Total 115 571 13 171 407 11.40 3.52

*The analysis excluded 30 conversion (screening to diagnostic) cancer cases, all of which were interpreted without computer-aided detection.
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statistically significant correlation (rho = -0.21, P = .64) interpreted high volumes of mammograms. The magnitudes of
between recall rate and the total number of screening mammo- the improvements we observed were substantially less than
grams interpreted by individual radiologists. In our practice, those reported in the literature as the range of possible improve-
approximately 3.0% of the cases recommended for recall are ments based on retrospective analyses and limited prospective
typically lost to follow-up because the woman either undergoes data (9,17,18). The improvements we observed may be attrib-
re-screening at another institution or ignores our recommenda- utable to the better detection of clustered microcalcifications
tions. This group remained relatively constant as a percentage of associated with malignancy. Our findings are consistent with the
recalled women over the period in question. range of improvement in detection rates estimated and reported

Table 2 summarizes our data for the seven high-volume by others (9,16-18). However, our large confidence intervals
radiologists who interpreted more than 8000 screening main- reflect the relatively low number of breast cancers detected with
mograms each with and without the use of a computer-aided and without computer-aided detection and the large inter-reader
detection system. During the study period, these radiologists variability among the radiologists in our practice. Because there
interpreted a total of 82 129 screening mammograms and were no repeat measures in this database-that is, each of the
were credited with the detection of 292 breast cancers as a examinations was interpreted only once by one radiologist-we
result of these screening procedures. In this group, the recall could not assess intra-reader variability.
rates decreased from 11.62% for mammograms interpreted It should be noted that we could not provide detailed infor-
without computer-aided detection to 11.05% for mammo- mation for individual radiologists without providing individually
grams interpreted with computer-aided detection (percent dif- traceable data because each staff radiologist knows his or her
ference = -4.9, 95% CI = -21 to 4; P = .16). reading volume and approximate recall rate. Our data are not

Breast cancer detection rates for the entire group of 24 adjusted for any learning effect: namely, the majority of inter-
radiologists were 3.49 per 1000 screening examinations for pretations made without computer-aided detection occurred
mammograms interpreted without computer-aided detection and chronologically prior to those made with compu tetion o c-

3.55 per 1000 screening examinations for mammograms inter- tion. We also did not account for any effect that may have
preted with it (percent difference = 1.7, 95% CI = - 11 to 19; resulted from a continuous effort to improve performance (in
P = .68) (Table 1). Breast cancer detection rates for the seven particular, sensitivity) by group reviews of all false-negative
high-volume radiologists were 3.61 per 1000 screening exami- cases or from the steps undertaken to reduce recall rates through
nations for mammograms interpreted without computer-aided various actions, such as monthly performance reviews and direct
detection and 3.49 per 1000 screening examinations for main- consultation with interpreters who had higher-than-average re-
mograms interpreted with computer-aided detection (percent call rates.
difference = -3.2, 95% CI = - 15 to 9; P = .54) (Table 2). Although one could argue that some or all of the reduction in

The cancer detection rates associated with recalls due to the recall rates we observed for the high-volume radiologists may be
detection of clustered microcalcifications alone were 1.35 per attributable to the use of computer-aided detection, the corre-1000 mammograms interpreted without computer-aided detec-atrbaleothusofcmtr-iddtcinheor-
tionand1.44r1000 mammograms interpreted withot computer-c- sponding decrease in cancer detection rates we observed among
tion and 1.44 per 1000 mammograms interpreted with computer- the radiologists in this group is not easily explained by expectedaided detection (P =.66) (data not shown). We observed notrdendinbreatca detection rP=.66)(dats novr t. Wen wberve- n practice variations. An assessment of whether the small im-viewed average detection rates for all 24 radiologists by calendar provement we observed in cancer detection is due to learningquarter (data not shown). We repeated our analyses using a effects-namely, that our radiologists had substantially morequarer dat no shon).We epetedour nalsesusig a overall experience interpreting mammograms without computer-
random-effects logistic regression model and found that there over e te rti ng m mga wihu computer-
were no statistically significant changes in recall rates or detec- aided detection than with computer-aided detection-is beyond
tion rates for all measurements presented above. Our results the scope of this investigation.
were not substantially affected when we compared only main- This investigation covered a period during which conven-
mograms interpreted without computer-aided detection prior to tional film mammography was performed in all of our screening

July 1, 2001, with only those interpreted with computer-aided procedures. Hence, we cannot comment on the possible effect of

detection after October 1, 2001. computer-aided detection in a digital mammography environ-
ment. In our study, we did not account for women who had

DISCUSSION decided to follow up on our recommendations elsewhere. How-
ever, because compliance in patient follow-up was relatively

The introduction of computer-aided detection into our prac- constant during the study period, any bias in the results due to
tice was not associated with statistically significant changes in changes in patient loss to follow-up is likely to be small.
recall and breast cancer detection rates for the entire group of There are limited reported data concerning the actual effect of
radiologists as well as for the subset of seven radiologists who computer-aided detection on breast cancer detection and main-

Table 2. Mammography recall rates and breast cancer detection rates for the seven high-volume radiologists performing screening mammograms without and
with computer-aided detection

No. of No. of No. of breast Recall Breast cancer detection rate
Type of interpretation mammograms read recalls cancers detected rate, % per 1000 mammograms read

Without computer-aided detection 44629 5188 161 11.62 3.61
With computer-aided detection 37 500 4145 131 11.05 3.49
Total 82 129 9333 292 11.36 3.56
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mography recall rates. The prospective data reported by Freer way to account for it in an analysis such as the one we per-
and Ulissey (16), which suggested a substantial improvement formed. When we included the 30 examinations that had been
(19.5%) in breast cancer detection rates associated with the use originally scheduled as screening procedures but were diagnosed
of computer-aided detection systems, may have been affected by during the same visit and resulted in a positive outcome in the
the fact that the results of mammographic interpretations without estimation, our actual cancer detection rate attributable to
and with computer-aided detection were reported on the same screening was 3.8 per 1000 examinations, which is reasonable
cases (i.e., mammograms were read in one sitting, first without for a population in which the majority of women had undergone
computer-aided detection then immediately afterward with the several screening procedures prior to the study period (19).
use of a computer-aided detection system). Another prospective On the basis of published performance levels of other
study performed in a similar manner reported a 12% improve- computer-aided detection systems (25), we believe that our
ment in detection rates associated with the use of a computer- results are not unique to the specific computer-aided detection
aided detection system (18). This type of protocol, namely system that is used at our institution. It is possible, however, that
reading mammograms without computer-aided detection fol- in clinical practices with substantially lower recall rates than
lowed immediately by readings of the same mammograms with ours, computer-aided detection would have larger effects on
the use of a computer-aided detection system and a reassessment mammography recall rates and detection rates than what we
of the original finding without computer-aided detection, may observed. Such an improvement in detection rates would be
have introduced a lower level of vigilance among radiologists consistent with results of a study (17) that reported lower recall
during the initial interpretation without computer-aided detec- rates without computer-aided detection (8.02%) than with
tion, because they knew that computer-aided detection would be computer-aided detection (8.43%).
available to them for the final recommendation and that the The financial implications of our findings are beyond the
initial interpretation did not constitute a formal clinical scope of this work. However, a simple assessment of the
recommendation. additional estimated cost of using computer-aided detection

Results of the only study similar to ours, albeit on a substan- per additional cancer detected in our practice (approximately
tially smaller group of patients and under a different set of $150 000 per additional detected cancer, assuming a reim-
circumstances, suggested that computer-aided detection was as- bursement rate of $10 per case for professional and technical
sociated with a 13% improvement in breast cancer detection components combined) clearly indicates that more rigorous
rates (17). One of the advantages of the approach taken in our evaluations of the cost effectiveness of this practice are needed.
investigation is that the radiologists' interpretations were per- Our observations with respect to recall and detection rates
formed and recorded prospectively in a clinical setting and data may be exceptions (stemming from large inter-practice varia-
were collected primarily for quality-assurance purposes (24). tions) that highlight the need for additional recall and detection

Our results for the interpretations made with computer-aided rate data from multiple clinical practices and different reading
detection may be marginally biased because the outcomes of as environments. However, until such data clearly demonstrate that
many as nine recommendations for recalls and three recommen- our experience is indeed an exception, these results represent an
dations for biopsies during the last quarter of 2002 are not yet important first step.
available. Although some of these follow-up procedures or bi- This analysis of our practice was designed to assess the
opsies may ultimately be performed at our institution, we as- changes, if any, that occurred in recall and breast cancer detec-
sume that the women who underwent the original mammograms tion rates with the introduction of computer-aided detection. Our
have been lost to follow-up. However, on the basis of our typical results suggest that, in our practice, neither recall rates nor breast
recall-to-cancer-detection ratios (approximately 1 of 32 cases) cancer detection rates changed with the introduction of this
and biopsy-to-confirmed cancer ratios (approximately 1 of 5 technology at its current level of performance, particularly as
cases), we suspect that this bias would not substantially affect related to the detection of abnormalities other than clustered
our findings or conclusions. It is possible that the gradually microcalcifications. Due to large confidence intervals, our re-
increasing fraction of women who had prior screening exami- sults are statistically consistent with the possibility of large
nations created a bias in our results. Repeat screening examina- improvements in cancer detection rates with computer-aided
tions have a slightly lower number of cancers present as more detection. Yet, actually observed changes in our practice were
are detected during the first screen, and on average, cancers substantially lower than expected. This is not to say that the use
detected on repeat mammograms may be more "difficult" to of computer-aided detection would not be beneficial or cost-
detect because more of the "easier" (e.g., larger) cancers are effective in other practices. Rather, we suggest that, at its current
detected during the initial screen. Repeat mammograms have a level of performance, computer-aided detection may not im-
lower recall rate, as the radiologists have prior films for com- prove mammography recall or breast cancer detection rates
parison, to help inform their decision. The availability of prior (especially as related to the detection of masses) in academic
examinations for comparison (in the repeat examinations) practices similar to ours that employ specialists for interpreting
should have aided in the interpretation of these mammograms screening mammograms.
and offset the possible effect (if any) on the interpretations due
to an increase in the "average case difficulty." The fact that our REFERENCES
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APPENDIX 13

Recall and Detection Rates in Screening
Mammography
A Review of Clinical Experience-Implications for Practice Guidelines

David Gur, Sc.D.1  BACKGROUND. The authors investigated the correlation between recall and detec-

Jules H. Sumkin, DO.1  tion rates in a group of 10 radiologists who had read a high volume of screening

Lara A. Hardesty, M.D. 1  mammograms in an academic institution.

Ronald J. Clearfield, M.D.1  METHODS. Practice-related and outcome-related databases of verified cases were

Cathy S. Cohen, M.D.1  used to compute recall rates and tumor detection rates for a group of 10 Mam-

Marie A. Ganott, M.D.1  mography Quality Standard Act (MQSA)-certified radiologists who interpreted a

Christiane M. Hakim, M.D.1  total of 98,668 screening mammograms during the years 2000, 2001, and 2002. The

Kathleen M. Harris, M.D.1  relation between recall and detection rates for these individuals was investigated

William R. Poller, M.D.1  using parametric Pearson (r) and nonparametric Spearman (rho) correlation co-

Ratan Shah, M.D.1  efficients. The effect of the volume of mammograms interpreted by individual

Luisa P. Wallace, M.D. 1  radiologists was assessed using partial correlations controlling for total reading

Howard E. Rockette, Ph.D1 '2  volumes.
RESULTS. A wide variability of recall rates (range, 7.7-17.2%) and detection rates

1Department of Radiology, University of Pittsburgh (range, 2.6-5.4 per 1000 mammograms) was observed in the current study. A
and Magee-Womens Hospital, Pittsburgh, Pennsyl- statistically significant correlation (P < 0.05) between recall and detection rates
vania. was observed in this group of 10 experienced radiologists. The results remained

2 Department of Biostatistics, University of Pitts- significant (P < 0.05) after accounting for the volume of mammograms interpreted

burgh, Pittsburgh, Pennsylvania. by each radiologist.

CONCLUSIONS. Optimal performance in screening mammography should be eval-
uated quantitatively. The general pressure to reduce recall rates through "practice

See related editorial on pages 1549-52, this is- guidelines" to below a fixed level for all radiologists should be assessed carefully.
sue.

Cancer 2004;100:1590-4. © 2004 American Cancer Society.
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Contract DAMD17-00-1-0410. A s periodic mammographic screening is rapidly gaining accep-

h tance, our understanding of many strategic, operational, and fi-
The authors thank Jennifer Herrmann, Jill King, nancial issues related to this practice is improving as well. Several
gent and tireless work on this projecth performance indices have been used to define "optimal" practice

parameters in screening mammography. These include, but are not
Address for reprints: David Gur, Sc.D., Imaging limited to, sensitivity, specificity, positive predictive value (PPV), and
Research, Suite 4200, Department of Radiology, cost per detected tumor.,"' Clearly, the focus of screening for early
University of Pittsburgh, 300 Halket Street, Pitts- detection should primarily be on improved sensitivity. At the same
burgh, PA 15213-3180; Fax: (412) 641-2582; time, the large number of patients being recalled for additional pro-
E-mail: gurd@msx.upmc.edu cedures as a result of an initial review is a recognized problem for the

The content of the Information contained herein very same reasons (operational and financial), with the added con-
does not necessarily reflect the position or the cern of the well documented increase of anxiety levels in women who
policy of the U.S. government, and no official are recalled."' 4 Therefore, there is a belief that through a variety of
endorsement should be inferred. actions including but not limited to specific and targeted training, one
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regulated, there is a publicly stated goal to reduce Assisted Detection (CAD) system were pooled for the
recall levels to < 10%.s'7 The question of what effect, if purpose of this analysis. Our clinical practice for
any, does a forced reduction in recall rates have on screening mammography during this period was film
detection rates remains somewhat controversial, based, and most screening mammograms were read at
Some studies suggest that recall and detection rates the main facility in a batch mode. We included in the
are not highly correlated (particularly at high recall current analysis the results from the interpretations of
rates); hence, a reduction in the former does not nec- the 10 highest volume radiologists in our practice,
essarily affect the latter.6 8 Other researchers believe most of whom were with the study institution

that, after appropriate training, highly experienced ra- throughout much of the period in question. Each has
diologists individually operate largely along a single performed > 3500 interpretations of screening mam-
receiver operating characteristic curve; hence, pres- mography examinations.
suring them to reduce their recall rate may result in a Recall rates for each radiologist were computed
corresponding reduction in the detection rates as directly from mammography interpretation records
well.2'9 Because of the well documented variability (Breast Imaging Reporting and Data System Atlas [BI-
among radiologists, the latter effect and its possible RADS® Atlas; American College of Radiology, Reston,
magnitude have to our knowledge been investigated VA] rating of 0). We excluded recommendations for
only recently.10-13 This type of an investigation is not recall due to technical reasons ("technical recalls").
easy to perform, because the expected yield (detection These account for approximately 1% of cases. How-
of actually positive cases that result from the screen- ever, recalls resulting from palpable findings during
ing) has been reported to be quite low in a population clinical breast examinations were included because
of women who already have been screened in the the majority of these findings also were depicted in the
past."4"5 Therefore, one generally needs to evaluate mammograms. These findings amount to < 1% of
detection rates from the data of large groups of indi- examinations; therefore, the underlying rates attribut-
vidual radiologists pooled together or have access to able to mammography interpretations alone are ac-
sufficient data from radiologists who each have inter- cordingly somewhat lower than those reported in the
preted a large number of mammograms. In this arti- current study. The effect of "palpable" findings on
cle, we present an analysis of the latter type of inves- individual radiologists is expected to be distributed
tigation. proportionally to their overall volume.

In our practice, the interpretation of some exam-
MATERIALS AND METHODS inations (< 4%) is delayed because of missing com-
Screening mammography examinations performed in parison films during the initial interpretation. These
the study facilities at Magee-Womens Hospital (of the generally are distributed proportionally to the volume
University of Pittsburgh Medical Center) and its five read by each radiologist and are included in the recall
satellite breast imaging clinics during the years 2000, rates because it is not clear how many of these cases
2001, and 2002 were reviewed under an Institutional would have been actually recalled in any case.
Review Board-approved protocol. Mammograms that Tumor detection rates were computed as follows.
had been interpreted by the 10 highest volume mam- We identified the latest screening examination for
mographers at the study institution during this period each detected tumor that resulted in a diagnostic fol-
were included in the current study. low-up (recall) and ultimately resulted in pathologi-

The data sources used in the current analysis were cally verified carcinoma. The radiologist who inter-
databases of procedure scheduling, procedure com- preted the screening mammogram that led to the
pletion, radiology reporting, and procedure-related detection of breast carcinoma was credited with the
outcomes as determined from pathology reports. finding for the purposes of the current analysis. Cases
These databases have been assembled from original were excluded from the analysis if the latest screening
reports for several reasons, including quality assur- mammogram prior to biopsy had been performed
ance purposes that are required by the Mammography > 180 days earlier. In our experience, these women
Quality Standard Act (MQSA).16

,1
7 The computerized generally are "lost" to follow-up at other institutions

reporting system and data entry protocols used in our or ignore the recommendations for a diagnostic
practice remained the same throughout the study pe- workup (recall) altogether. Cancer patients who were
riod. Because the number of positive findings leading referred to us from other facilities and for whom the
to the detection of tumors by each individual were diagnosis did not originate from a screening examina-
low, the records of all mammograms read by each of tion in one of our facilities were excluded. Women
the participating radiologists "with" and "without" the who originally were presented as screening proce-
availability of results from a commercial Computer- dures but were diagnosed using additional radio-
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graphic procedures or other modalities (e.g., ultra- 6.0 -.

sound) during the same visit ("conversion" cases from
screening to diagnostic) were accounted for and were
included in the current analysis. However, because a 5.0

substantial number of these may originally have been o
identified as "potentially abnormal" by a technologist . 4.0

(who personally shows the case to a radiologist) dur- 2

ing a quality assurance review of the images, we re-
peated the analysis after excluding this group of cases. C, 3.0

For the purpose of these analyses, we assume that any I
effect due to the performance level of the radiologists 2.0 -

who were performing and interpreting the diagnostic 5 to 1... . ...... .. 2

procedures during the follow-up visit are distributed Recall rate (percent)

in a manner that does not affect the study conclu- FIGURE 1. A linear fit of detection rates as a function of recall rates for the
sions. The radiologists could not select the examina- 10 radiologists in the current study.
tions they interpreted in our practice.

The correlation between recall and detection rates
was evaluated using both the parametric Pearson (r) group in which each radiologist represents a single
and the nonparametric Spearman (rho) correlation "operating point" is presented in Figure 1. Despite
coefficients. We also examined the results after partial significant interreader variability, the slope indi-
correction for the total volume of mammograms in- cates an average of 0.22 additional detections per
terpreted by each radiologist during the period in 1% increase in recall rates (95% confidence interval
question, on the slope is +0.068 to +0.378). The correlation

between recall and detection rates remained signif-
RESULTS icant (P < 0.05) after accounting for the total vol-
Recall and detection rates for the 10 radiologists ume read by each radiologist using partial correla-
whose data were analyzed in the current study were tions. Repeated analyses after the exclusion of the
computed. Each performed > 3500 interpretations 26 "conversion" cases indicated no substantial dif-
(range, 3605-16,128 interpretations) during the pe- ference in the correlations reported herein. The cor-
riod in question. We were unable to publish detailed relations remained significant when the analysis
information for individual radiologists without pro- was repeated for the 7 (P = 0.05), 8 (P < 0.05), and
viding individually traceable data because each staff 9 (P < 0.05) highest volume radiologists. These re-
radiologist is aware of the approximate volume of suits demonstrate that, in general, in our practice,
screening examinations they interpreted and their the higher the recall rates, the higher the detection
approximate recall rate. These 10 radiologists inter- rates. This increase in detection rate was found to
preted a total of 98,668 cases during this time and persist over the range of observed recall rates and
detected 368 cases of carcinoma. Twenty-six "con- extended beyond the currently recommended prac-
version" cases were included in the analysis. These tice guideline of 10%.
cases originally were presented as a screening pro-
cedure but the patients underwent "follow-up" pro- DISCUSSION
cedures (e.g., ultrasound) during the same visit (be- There is little doubt that continuing education and
cause of a physician being present on site at the training are important factors in the ability of radi-
time of the visit). A wide range of recall rates (range, ologists to be consistent in interpreting mammo-
7.7-17.2%) and detection rates (range,2.6-5.4 per grams and to improve their overall performance.
1000 mammograms) was observed. Despite the low However, to our knowledge, there are no conclusive
number of radiologists (10), when recall and detec- data published to date regarding to what extent
tion rates were compared using the parametric improvement continues beyond a certain level of
Pearson (r) correlation coefficient, the correlation training or experience.12 Although there are ques-
between the recall and detection rates was signifi- tions with regard to whether volume and experience
cant (r = 0.76; P = 0.01). Similarly, a significant affect performance,' 2 the general belief has been
correlation was observed in the group of radiologists that one can reduce recall rates relatively easily
using the nonparametric Spearman correlation co- without a significant impact on detection rates. As a
efficient (rho = 0.72; P = 0.02). A linear least square result, there is an ongoing significant effort to do so,
fit between the recall and detection rates for the particularly in practices similar to ours with recall
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rates that are in the higher range (- 10%). PPV as a others.15 '20 '2 ' We have no simple explanation for this
result of screening has been of great interest as one observation. The results of the current study are in
of the indicators of the performance level of radiol- agreement with the findings of Beam et al.12 and oth-
ogists in this area.' However, if sensitivity is affected ers in that there is a large variability in the perfor-
by recall rates, particularly in a group of well mance of the radiologists in this area. We did not
trained, high-volume radiologists whose recall rates detect a significant correlation between the volume
are relatively high, the fundamental question of read by the individual radiologists during the period in
whether to continually pressure them to reduce question and their performance level, although the
their recall rates following currently accepted prac- radiologists in the current study all can be considered
tice guidelines remains. This stems from the fact high volume, "well trained" readers with significant
that the detection of "earlier tumors" with higher experience. There are several arguments one can raise
recall rates may be as or perhaps more important with regard to why the estimated recall and detection
than actually reducing the recall rates or improving rates in the current study may not be precise in terms
the PPV somewhat. It is interesting to note that an of absolute values. These include but are not limited
important review of several related issues suggested to the inclusion of palpable cases and incomplete
observations that were similar to those of the cur- follow-up of cancer patients who may be lost to other
rent study."0 Unfortunately, to our knowledge the institutions. The fact that our primary area of interest
radiology community has not objectively addressed is the relative performance levels of the radiologists
this potentially important matter to date. (rather than absolute) makes the results valid despite

Similar to the findings reported by Yankaskas et these limitations, as long as one does not bias the
al.', the results of the current study suggest that de- interpretation process by selectively assigning a spe-
tection rates generally are affected by recall rates in cific subset to be interpreted by one radiologist or
the lower range. However, unlike the observations of another (e.g., all "high risk" women or all examina-
Yankaskas et al.,' the effect in our group of 10 highly tions of women with dense breasts are assigned to
trained radiologists, who individually read a reason- "conservative" or "high-volume" radiologists). This
ably high volume of mammograms, persisted over the was clearly not the case in our practice. Therefore, one
entire range of observed recall rates (as high as 17%). would expect that any related corrections as a result of
In the higher range of recall rates (Ž 7%), Yankaskas et these limitations would be largely proportional to the
al.' showed no correlation between the recall and volume of cases interpreted by each radiologist in the
detection rates. Therefore, their results could suggest course of their routine clinical practice. The correla-
that, in this critical range, a reduction in recall rates tion between detection rates and outcome or even
should not affect the detection rates. It is possible that "average stage of disease " at the time of detection is
this difference arises from the fact that the current beyond the scope of this project because the number
study took place in a "reasonably stable" screening of tumors detected by an individual radiologist was
population in whom the majority of "prevalence (or too small and the follow-up time after detection too
"baseline") carcinomas" had been detected already. short to meaningfully assess differences, if any, in
Another possible explanation may be the number of outcome.
mammograms interpreted by individual radiologists The results of the current study suggest that be-
in the two studies. Clearly, more data are needed in fore we unilaterally pressure radiologists to reduce
this regard. their recall rates because of a notion that this will

The total number of mammography screening in- improve our practices (and reduce overall manage-
terpretations by the radiologist with the lowest screen- ment costs), we need to carefully evaluate the impact
ing volume reported herein over a 3-year period was such an effort may have on early (and perhaps even
relatively low. However, our regionwide referral base "earlier") detection. If we believe that screening
was found to result in a large number of other diag- should focus primarily on maximizing early detection,
nostic and interventional breast-imaging procedures and the earlier the better, one has to consider whether
that typically amount to approximately 50% of the there may be an individualized optimal operating level
screening examinations. Hence, our radiologists that should be considered, rather than a "globally"
should be considered as "specialists" in breast imag- recommended practice guideline of a maximum "ac-
ing. ceptable" recall rate that applies to all screening mam-

It should be noted that in our practice the average mographers. This view may be supported by women
recall rates ( 11 percent) are generally relatively high who appear to strongly prefer a small increase in de-
compared with some reports,,'8 " and they are in bet- tection rates, even at the expense of higher recall rates
ter agreement with, and in some cases lower than, and the associated impact in terms of cost and added
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PURPOSE: To compare performance of two computer-aided detection (CAD)
Index terms: systems and an in-house scheme applied to five groups of sequentially acquired
Breast neoplasms, diagnosis, 00.32 screening mammograms.
Cancer screening
Computers, diagnostic aid MATERIALS AND METHODS: Two hundred nineteen film-based mammographic

Published online before print examinations, classified into five groups, were included in this study. Group 1

10.1148/radiol.2332040277 included 58 examinations in which verified malignant masses were detected during
Radiology 2004; 233:418-423 screening; group 2, 39 in which all available latest examinations were performed

Abbreviation: prior to diagnosis of these malignant masses (subset of 39 women from group 1);

CAD = computer-aided detection group 3, 22 in which findings were interpreted as negative but were verified as
cancer within 1 year from the negative interpretation (missed cancers); group 4, 50
in which findings were negative and patients were not recalled for additional

(GFrom the Departments of Radiology procedures; and group 5, 50 in which patients were recalled for additional proce-
(D.G., J.S.S., L.A.H., B.Z, J.H.S., D.M.C.,

B.E.S) and Biostatistics (H.E.R.) and Ma- dures and findings were negative for cancer. In all examinations, images were
gee-Womens Hospital (D.G., L.A.H., processed with two Food and Drug Administration-approved commercially avail-
J.H.S., D.M.C., B.E.S.), University of able CAD systems and an in-house scheme. Performance levels in terms of true-
Pittsburgh, 300 Halket St, Suite 4200,
Pittsburgh, PA 15213-3180. Received positive detection rates and number of false-positive identifications per image and
February 16, 2004; revision requested per examination were compared.
April 20; revision received May 5; ac-
cepted May 24. Supported in part by RESULTS: Mass detection rates in positive examinations (group 1) were 67%-72%.
grants CA77850 and CA84241 from the Detection rates among three systems were not significantly different (P > .05). In 50
National Cancer Institute, National Insti- negative screening examinations (group 4), false-positive rates ranged from 1.08 to
tutes of Health, and also by the U.S.
Army Medical Research Acquisition 1.68 per four-view examination. Performance level differences among systems were
Center under contract DAMD1 7-00-1 - significant for false-positive rates (P = .008). Performance of all systems was at levels
0410. Address correspondence to lower than publicly suggested in some retrospective studies. False-positive CAD
D.G. (e-mail: gurd@upmc.edu). cueing rates were significantly higher for negative examinations in which patients
Authors stated no financial relation-
ship to disclose, were recalled (group 5) than they were for those in which patients were not recalled

The content of the information con- (group 4) (P - .002).
tained herein does not necessarily re- CONCLUSION: Performance of CAD systems for mass detection at mammography
flect the position or the policy of the
government, and no official endorse- varies significantly, depending on examination and system used. Actual perfor-
ment should be inferred. mance of all systems in clinical environment can be improved.
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J.S.S., H.E.R.; experimental studies, An increasing body of evidence suggests that early detection of breast cancer through
J.S.S., D.G.; data acquisition, J.S.S.; periodic screening is beneficial (1,2). Mammographic screening is rapidly gaining accep-
data analysis/interpretation, H.E.R.,
B.Z., D.G.; statistical analysis, H.E.R.; tance worldwide, and the number of procedures performed continues to increase (3,4). The
manuscript preparation, D.G., L.A.H., difficulty in identification of some subtle suspicious regions depicted on mammograms,
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inition of intellectual content, D.C., times tedious nature of the task, and the shortage of experienced radiologists who spe-
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manuscript editing, revision/review, cialize in breast imaging and who routinely read high volumes of images in examinations
and final version approval, all authors have resulted in a wide variability in observer performance levels, as well as in relatively
- RSNA, 2004 high recall rates for additional procedures (5-7). The effectiveness of mammographic

screening programs depends on many factors. These factors include, but are not limited to,
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the expertise and judgmental ability of MATERIALS AND METHODS depicted on subsequent mammograms
the radiologist who reads the mammo- Screening Examination Groups obtained within 1 year of the negative

gram. Variability among radiologists can examination. These examinations consti-

actually be useful insofar as studies show Screening mammographic examina- tute a different set of cases and are not a

that double reading, namely, having two tions performed at Magee-Womens Hos- subset of the 39 prior examinations de-

Sradiologists read the same mammogram pital, University of Pittsburgh Medical scribed previously as group 2.

independently, could increase detection Center, and at its five satellite breast-im- Group 4 included 50 verified negative

by as much as 15% (8). Even if there were aging clinics during 2002 were included examinations (Breast Imaging Reporting

no shortage of experienced radiologists, in this study. These examinations were and Data System category 1 or 2) that

however, the cost of true double reading classified into five groups. This study was were selected randomly by the same staff

as a standard practice is prohibitive for conducted with an institutional review member who selected those in group 1

most facilities, board-approved protocol. Informed con- from the examinations performed during

In recent years, major efforts have been sent was waived. Images in all examina- two preselected dates in 2002 (March 1

S expended to develop computer-aided de- tions included in this study were ac- and 2, 2002). Findings in all of these ex-

tection (CAD) systems that will help ra- quired with film (MIN-R-2000; Eastman aminations were verified with findings at

diologists with breast cancer detection. Kodak, Rochester, NY) and were clini- a 1-year follow-up screening examina-

The hope is that these systems will serve cally interpreted with CAD (Image- tion that were interpreted as negative. A

as a second reader and will help improve Checker; R2 Technologies, Sunnyvale, 1-year follow-up examination was the

sensitivity without a substantial increase Calif) as a part of our routine practice. latest available examination in these

in recall rates and at the same time pos- The data sources for the selection of women.

sibly decrease reader variability, as well. examinations were databases of proce- Group 5 included 50 consecutive ex-

These systems are currently aimed at dure scheduling, procedure completion, aminations in which patients had been

the early detection of cancer and are radiology reporting, and procedure-re- recalled during April 2002 (Breast Imag-

accordingly designed to assist the radi- lated outcomes as determined from rele- ing Reporting and Data System category
ologist in detection of suspicious re- vant pathology reports. 0). Results of the diagnostic work-up that
gions depicted as clustered microcalci- Group 1 included 58 examinations followed were negative or benign (Breast
fications and masses (9-11). Computer- performed in women with biopsy-proved Imaging Reporting and Data System cat-

aided dagnosisasystems ar9 -11).som teig cancer that initially had been identified egory 1 or 2), and results of the work-up

aided diagnosis systems are also being as a msbyaradiologist in our group negative, asna xmnto n20 well.
developed to assist radiologists in the as masscradin g ist in 2002. negative, as well.
classification task, namely, the determi- during a screening examination in 2002. As a result, a total of 219 examinations
nation of whether or not an identified Images were selected sequentially from in 180 women were included in theour procedure-related outcome database suy h einaeo h oe
finding is likely to represent a malig- by a staff member (J.S.S.) who did not w The median age of the women
nancy (11-13). The Food and Drug Ad- have any prior knowledge of the specific whose examinations were used in this

ministration has approved several detec- details about the patient or of the visual study was 54.5 years, with a range of

tion systems for routine clinical use, and characteristics of the depicted mass.

Medicare and other insurance companies In addition, there was an interest in

have approved reimbursement for their the performance of CAD systems applied Evaluation of Masses
use in clinical practice, to examinations performed 1 year prior All examinations were reviewed by sev-

Results of studies (14,15)suggest that to observation of a positive finding. eral investigators (D.G., J.H.S., L.A.H.,
the use of CAD systems could potentially Group 2 hence included 39 available lat- J.S.S.) together with source documents to
increase cancer detection rates by as est negative prior examinations (subset generate a truth file that included de-
much as 20% without a significant in- of 39 women from group 1 who under- picted findings for the examinations in
crease in recall rates. To date, there are went a different examination formed question. The boundaries of the masses

limited data on the actual effect of the group 2) performed during or prior to were drawn subjectively and conserva-
prospective use of such systems in the 2001 that had been performed before the tively (approximately 5 mm larger than
clinical environment (16,17). There is screening examination that led to a find- the depicted masses in all directions) on
some evidence that the performance of ing positive for cancer. the image obtained at the examination
radiologists, at least in the laboratory set- Group 3 included 22 consecutive false- performed in 2002 that resulted in the

ting, is affected by the performance of negative examinations in which images finding and on the corresponding areas
the CAD scheme itself (18). Hence, a high depicted masses in retrospect. In 21 ex- on the images obtained at the prior ex-
level of performance is an important fac- aminations, one mass in each was de- aminations, when applicable. If masses

tor in the ultimate clinical success of picted on images, and in one examina- were depicted with spiculations, these
CAD. tion two masses were depicted, which were included in the mass region. Hence,

Data for comparison of the perfor- produced a total of 23 masses. Findings the allowed target was larger in all direc-
mance of CAD systems applied to the in these examinations were defined in tions than was the depicted mass. This
same set of cases are limited (19-22). The our practice as false-negative interpreta- selection for the increased size of the tar-
purpose of our study, therefore, was to tions. Findings in these examinations get was arbitrary and increased the
compare the performance of two FDA- had been interpreted as negative or be- marked regions, in some cases substan-
approved commercially available CAD nign (Breast Imaging Reporting and Data tially, because mass contours with the
systems and an in-house-developed System category 1 or 2) during the expectation that any identification (de-
scheme in five groups of sequentially ac- screening examination and were biopsy tection) by the CAD system close to the
quired screening mammograms. proved as positive for cancer, with a mass actual mass would not be disregarded by
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TABLE 1

Fraction of Detected Masses according to Breast and Image for Biopsy-proved Cancers

Detection Fraction according to Breast Detection Fraction according to Image

No. of
Breasts with In-house No. of Visible Second In-house

Group and Malignant Second ImageChecker Scheme Malignant Look ImageChecker Scheme
Examination Type Masses Look (%) (%) (%) Masses (%) (%) (%)

S1, True-positive 58 72(42) 71 (41) 67(39) 114" 56(64) 55(63) 51 (58)
2, Prior to true-positive 39 23(9) 26(10) 15(6) 78t 14(11) 14(11) 9(7)

* ~ 3, False-negative 23 35(8) 39(9) 30(7) 451 27(12) 27(12) 18(8)
Note.-Only the breast in which cancer was found was included in the calculations. Numbers in parentheses were used to calculate the percentages.

* One patient had two malignant masses in the same breast. In four examinations, the malignant mass was visible on only one mammographic view.
t One patient had two malignant masses in the same breast. In two examinations, the malignant mass was visible on only one mammographic view

during the later examination.
SOne patient had one malignant mass in both breasts. In one examination, the malignant mass was visible on only one mammographic view during

the later examination.

the interpreting radiologists. It also al- exactly the same manner. A true-positive test. All analyses were performed with
lowed position changes at the prior ex- finding detected by the CAD system was software (SAS, version 8.2; SAS Institute,
amination to be more conservatively ac- attributed to each mark (cued region) Cary, NC). For each modality, the differ-
counted for because of the larger allowed noted by the CAD system if the center of ence in false-positive rates between neg-
target for detection, the marked region was overlapping in ative screening examinations and those

For each examination, processing was any way (within the boundary of the in which patients were recalled was com-
performed with three CAD systems. One conservatively drawn contour) with the pared, assuming independent Poisson
system (ImageChecker M1000, version recorded mass area in the manually distributions. All statistical tests were two
3.1; R2 Technologies) was used routinely drawn truth file. Otherwise, the CAD sys- sided, and a difference with P < .05 was
in our clinical practice and was the sys- tem markings were considered false-pos- considered significant.
tem with which processing had been per- itive findings. This task was performed by
formed in all of the examinations during one staff person (the same experienced
the original clinical interpretation. An- staff person mentioned previously) to RESULTS
other system (Second Look, version 6.0 avoid interoperator biases. Biases, if any,
Beta; CADx Systems, Beavercreek, Ohio) were assumed to be consistent for all Table 1 summarizes the findings in
was used to process all images as well. A three systems, and this assumption en- groups 1-3 according to breast and im-
third system was an in-house-developed abled a relative comparison among them, age. Table 1 also demonstrates that the
scheme, and its use has been reported in even if there were some biases in absolute detection rates of the three systems in
the past (23-25). terms. detection of true-positive masses in

To ensure that there was no bias in the group 1 (58 breasts with malignant
results, with the exception of the fact Statistical Analysis masses) were 72% (42), 71% (41), and
that the initial selection may have been 67% (39) for Second Look, Image-
affected somewhat by the use of the sys- True and false findings were tabulated Checker, and the in-house scheme, re-
tem that we used during the initial clin- for all examinations. Both breast-based spectively. Table 1 further demonstrates
ical interpretation, we fixed the detection (on either of the mammographic views) the results of processing the latest prior
threshold for determination of suspi- and image-based (each image considered examinations with positive findings
cious regions on the in-house system. as an independent examination) detec- (group 2). These were acquired between 1
This was done to provide a binary output tions were recorded, and detection rates year and 2 years 4 months prior to the
in our own scheme (identified regions per breast and per image, as well as false- subsequent positive examinations, with
were either marked or not marked), positive rates per examination (all four an average time difference of 1 year 4
which was similar to that of the commer- mammographic views), were computed. months. As expected, detection rates
cial system, rather than a continuous The three systems were compared for de- were substantially lower in the same pa-
output (0-1). Hence, we provided an au- tection levels (sensitivity) by using a re- tients when images obtained in the latest
tomated operation (no operator deci- peated-measures binary-response model prior examinations were processed. Al-
sions or options) to an experienced staff in which there were three replicates, one though in 39 breasts with malignant
member (J.S.S.) who had processed im- for each patient according to each of the masses, 23% (nine), 26% (10), and 15%
ages in several thousands of examina- three modalities. The average of false- (six) of masses were detected retrospec-
tions with both commercial systems dur- positive cues provided among the three tively on images obtained at prior exam-
ing the past 3 years and who processed all systems was compared by using Fried- inations with CAD, the images in the ex-
the images used in this study with all man two-way analysis of variance. The aminations were read as not suspicious
three systems. number of false-positive findings that enough to result in a recall of the patient

The digitized images (model 861; How- were detected in negative screening ex- during the original clinical interpreta-
tek, Hudson, NH) obtained with the Sec- aminations and those in examinations tions. CAD detection rates in the false-
ond Look system were then transferred to for which patients were recalled were negative group (group 3) with 23 breasts
the in-house scheme and processed in compared by using the Mann-Whitney U with malignant masses were 35% (eight),
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TABLE 2
False-Positive Cueing Rate per Patient, per Region, and per Image for All Examinations

False-Positive Rate False-Positive Rate False-Positive Rate
according to Patient according to Region* according to Image

Group and Total No. Second Image- In-house Second Image- In-house Total No. Second Image- In-house
Examination Type of Examinations Look Checker Scheme Look Checker Scheme of Images Look Checker Scheme

1, True-positive 58 1.53 (89) 1.05 (61) 1.05 (61) 1.28 (74) 0.88 (51) 0.98 (57) 228 0.39 (89) 0.27 (61) 0.27 (61)
"OV 2, Prior to true-
Spositive 39 1.64 (64) 1.13 (44) 1.33 (52) 1.41 (55) 1.00 (39) 1.10 (43) 156 0.41 (64) 0.28 (44) 0.33 (52)

e* 3, False-negative 22 1.18 (26) 1.00(22) 1.50(33) 0.86 (19) 0.82 (18) 1.36 (30) 84 0.31 (26) 0.26 (22) 0.39 (33)
4, Screening
5,mammography 50 1.68 (84) 1.08 (54) 1.20 (60) 1.40 (70) 0.96 (48) 1.06 (53) 200 0.42 (84) 0.27 (54) 0.30 (60)S5, Mammography

with recalled
patients 50 2.70(135) 2.16(108) 2.86(143) 2.28(114) 1.82(91) 2.68(134) 200 0.68(135) 0.54(108) 0.72(143)

Note.-AII positive and negative images obtained in each patient were used to calculate the false-positive rate. Numbers in parentheses were used to
calculate the false-positive rates. False-positive rates according to patient and region were based on total number of examinations.

* If a region was cued on two mammographic views, it was counted as one marked false-positive region.

39% (nine), and 30% (seven) for the propriately when the systems are tested quently substantial) in the performance
three systems, respectively, on the same set of examinations with a levels of different CAD systems. If such

Table 2 shows that the false-positive sample that is large enough and, prefera- differences affect radiologists during clin-
rates in negative examinations (group 4) bly, contains as representative a sample ical interpretations of findings of screen-
were 1.68, 1.08, and 1.20 per examina- as possible (eg, sequentially ascertained ing mammographic examinations, one
tion (four images) for the same three sys- examinations) so that results can be gen- should be aware of them (18,31).
tems, respectively. For the examinations eralized to the screening population of Lechner et al (19) compared two Food
in which patients were recalled but find- women. and Drug Administration-approved CAD
ings were later verified as negative (group It is not reasonable to expect, espe- devices, ImageChecker M1000 (R2 Tech-
5), the false-positive rates were 2.70, 2.16, cially on a worldwide level, that film im- nologies) and Second Look. They found
and 2.86, respectively (Table 2). In Table ages will quickly be totally replaced by that 90% and 89% of abnormalities asso-
2, we also provide the number of cued digital images. For that reason, most CAD ciated with cancers in 120 examinations
but negative regions, which is less than systems currently in use must provide a were detected by the ImageChecker and
the total number of false-positive cues, method to digitize images, and this pro- Second Look systems, respectively. While
after adjustment for regions that were cess in combination with differences in 100% and 90% of the ten examinations
cued on both mammographic views and CAD algorithms may lead to problems in with both masses and microcalcification
after counting of these matched cues as regard to standardization and reproduc- clusters were detected with the two sys-
one false-positive region. When we com- ibility of results even when applied to a terns, respectively, only 84% and 82% of
pared the performance of the three sys- single system (28-30). There is little the 67 masses without clusters were iden-
tems, the differences were not significant doubt that differences in performance tified with the two systems. Similar per-
(P = .63) for detection in actually positive among CAD systems will remain. If we formance levels were reported in other
examinations that led to the detection of want to collect data that allow radiolo- studies (26), albeit no comparisons with
cancer, and the differences in false-posi- gists to improve the practice of screening other systems were made. A review of the
tive rates were significant (P = .008) for mammography, it is important that we findings from these studies, as well as of
the number of false-positive identifica- understand the possible effects that may the Food and Drug Administration ap-
tions in the negative screening examina- result from using different CAD systems. proval process, suggests the following:
tions. The differences in average false- There are few data about a comparison of The performance of the two commercial
positive rates between negative screening performance of different CAD systems systems is reasonably comparable for all
examinations and examinations in when applied to the same sets of exami- practical purposes. If differences exist,
which patients had been recalled were nations. As systems continue to evolve they are small and would require large
significant (P = .002, P < .001, P < .001 and improve, the results of such compar- sample sizes to quantify them (32).
for the three systems). isons are valid only for the experimental Our study is somewhat different in the

conditions being implemented with the examination selection process. We at-
DISCUSSION specific systems (eg, digitizer and soft- tempted to select a sequentially acquired,

ware versions) that were studied. For that and potentially representative, sample of

Several studies about the performance reason, the results of such studies, while each type of examination to allow gener-
levels of each of the systems in question interesting and possibly suggestive of the alizability, at least to our own screening
have been published (14,16,26,27), but effects of system differences at a given population. Recently, investigators in a
the differences in patient selection and time and for a specific distribution of ex- study (20) reported that the patient-
study design make any direct comparison aminations, may be obsolete within a based sensitivity for detection of "action-
difficult. The comparison of basic perfor- short period. It is important, however, to able architectural distortion" with these
mance levels can only be performed ap- recognize that there are differences (fre- two systems when applied to 45 exami-
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nations (in 43 patients) was less than in earlier detection of masses with the use stantially affect similar comparisons at
50% for either system. In another study of current CAD systems is perhaps some- other institutions.
of retrospectively reviewed prior exami- what limited. Although seemingly unim- Fourth, our conservative approach to
nations with findings that suggested "ev- portant as long as detection rates are generation of the targets (ie, drawing the
idence of cancer on prior mammo- comparable, the false-positive rates may mass regions) may have affected the re-

Sgrams," approximately 50% sensitivity affect general radiologists' reliance on sults. However, we verified that this effect
for mass detection (eight of 19 with Sec- the CAD results. High false-positive rates was not substantial (<5% in this set of
ond Look and 12 of 19 with Image- may result in low reader confidence in cases) and did not affect the comparison

Po Checker) on prior images was indicated the CAD marking, since many cues have of relative performance levels of the three
Q (22). to be reviewed and discarded as negative CAD systems.
* Although our study is similar to that of findings (18). Fifth, it could be argued that one of the

Shile and Guingrich (22) in that we at- In addition, there are some indications limitations of the study was that we
tempted to select a representative popu- that performance in the noncued areas tested complete systems and not the soft-
lation of examinations, it differs in sev- may be affected by the false-positive rate, ware scheme alone. Hence, the compari-
eral respects. First, we included a series of as well (18). Because of the substantial son could have been affected by the digi-
all available sequentially acquired sets of difference in medicolegal liability be- tizers in the two commercial systems we
examinations. tween false-negative and false-positive used. The fact is that a commercial CAD

Second, our false-positive rate was interpretations, the effect of the CAD- system is integrated, and these systems
computed from a set of negative exami- generated false-positive cueing rate on were tested largely as they would be used
nations rather than from the same exam- noncued cancers may be an important in a clinical environment. In this study,
inations in which a mass was found, issue to consider. we cannot comment on a comparison

Third, our assessment of CAD perfor- As to the lower performance of our that would be based on testing of the
mance in the five sets of examinations own in-house scheme for CAD, we note software alone..
allows one to have a better perspective of that the scheme was originally designed Last, our study focused on the detec-
the possible effect of CAD on clinical and optimized for images digitized with a tion of masses. The significantly higher
practices with each type of mammogram. different digitizer (18,25), which has sub- performance of CAD systems in the de-
In our study, performance of all systems stantially different signal and noise char- tection of microcalcifications may be suf-
was at somewhat lower levels than ex- acteristics. Also, our current scheme does ficient to warrant the routine use of these
pected. This could be the result of several not limit the total number of regions systems alone. Other nondetection is-
factors. These factors included, but were . sues, such as the assessment of possible
not limited to, the difficulty of detection identified as suspicious per examination, efficiency improvements in the reading
of the "average" cancer with our screen- as do other systems (33). Despite these of mammograms because of the high per-
ing program. The conservatively defined initations, it performed reasonably well formance in the detection of microcalci-
mass regions (targets) reduced the possi- ia direm s. fications, were clearly beyond the scopebility of biases that would result from cial systems. fctos eecerybyn h cp
bility oarking.Theuses tht would rest e - Our study had several limitations, of this study.
exact marking. The use of only one expe- Firt as previo In summary, we observed somewhat
rienced person, who was not involved in tirson previously indicated, our selec- lower than expected case-based and im-
our CAD development team, to rate the tion protocol may have been somewhat age-based detection rates with CAD for
correct markings ensured consistency in biased in favor of the ImageChecker sys- all three systems. This is not to indicate
the scoring. This should have decreased, tem in that the images obtained in these that CAD cannot help the radiologist,
if not completely eliminated, any biases examinations (with the exception of even at these levels of performance, in
in the relative comparison among the group 2) had been processed with this different clinical environments, particu-
systems. At this level of performance, we system during the initial clinical inter- larly radiologists with less experience in
showed that experienced radiologists do pretation, and this bias possibly influ- the interpretation of screening mammo-
not substantially improve their mass de- enced the results of these examinations, grams. However, the level of improve-
tection performance levels in the labora- However, our experience to date indi- ment is not likely to be what had been
tory (18), and we suspect that this might cates that in our practice the changes estimated from retrospective studies in a
be the case in the clinical environment, were minor at best, particularly with re- laboratory environment. Results of this
as well (17). Interestingly, the false-posi- spect to the detection of masses (17). study clearly indicate that marked im-
tive rates for examinations in which pa- Second, the verification of negative ex- provements in CAD performance levels
tients were recalled but that later proved aminations was based on findings at the for mass detection are both desired and
to be negative examinations (group 5) subsequent screening examination. Al- possible, and continuing efforts should
were higher than were the rates for neg- though not optimal, this was the most be expanded in this area.
ative screening examinations. This find- recent available examination at the time,
ing suggests that these mammograms are and we assumed that errors in this regard, Acknowledgments: The authors thank Jill
more difficult for the CAD, as well as for if any, were not likely to affect the rela- King, MS, Glenn Maitz, MS, John Drescher, BS,
the human observer, to analyze correctly. tive performance comparisons we de- and Christopher Traylor for their support in
The performance of all three CAD sys- scribed. this project and CADx Systems for providing
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APPENDIX 15

The Effect of Routine Use of a Computer-Aided
Detection System on the Practice

of Breast Imagers:
A Subjective Assessment'

Amy H. Klym, BS, Jill L. King, MS, Lara Hardesty, MD

The optimal use of any technological tool, such as com- Current mammography CAD schemes provide false-
puter-aided detection (CAD), requires the user to both positive cues in the majority of cases, and therefore a
understand the strengths and limitations of the technology primary concern expressed about the widespread incorpo-
and feel at ease in adapting it into his or her practice. ration of CAD into screening mammography practices is
Much previous and ongoing effort has been directed to the potential for "over-reading," namely, recalling too
the study of the impact of CAD systems, in terms of de- many women for additional breast imaging procedures
vice performance (eg, digitizer, detection algorithms) and (6,7). If breast imagers themselves believe that they are
clinical impact (eg, detection of cancers, recall rates) after recalling too many women or taking too much time to
implementation (1-5). However, to date, there is no pub- interpret examinations to rule out the false-positive cues,
lished information about the perception of breast imagers they may ignore the CAD results altogether. To evaluate

with substantial experience in using mammography CAD the breast imager's perceptions of differences in their

with regard to what impact it had on their own practice. practice with respect to recall rate, or the time required to

This is an important issue because breast imagers could interpret a mammogram when CAD is used, we surveyed

ignore the CAD results altogether if they felt uncomfort- 12 highly experienced breast imagers who had at least 2

able with the cueing results. Reimbursement for CAD years of practice at Magee Womens Hospital of the Uni-

would then in effect become an unnecessary expense. In versity of Pittsburgh Medical Center (Pittsburgh, PA).

addition, there may be an increase in liability for breast In June of 2001, our facility began using a commer-

imagers in cases where CAD cues are actually correct but cially available CAD system (Image Checker; R2 Tech-

cancers were missed by the radiologist, nology, Sunnyvale, CA) for most screening and diagnos-
tic mammograms acquired in our facilities. The screen
films are digitized and analyzed by the CAD system and
examinations are interpreted using an alternator that dis-

Acad Radiol 2004; 11:711-713 plays the CAD cues on a monitor placed below the dis-
S From the Department of Radiology, University of Pittsburgh, Pittsburgh, played films. A large fraction of our diagnostic examina-
PA (A.H.K., J.L.K., L.H.); and Magee Womens Hospital, University of Pitts-
burgh Medical Center, Pittsburgh, PA(L.H.). Received February 3, 2004; ac- tions performed at the hospital breast center are per-
cepted February 3, 2004. Supported in part by Public Health Service grant formed using a Full Field Digital Mammography System
nos. CA67947 and CA77850 to the University of Pittsburgh from the Na-
tional Cancer Institute, National Institutes of Health, Department of Health (Senographe 2000; GE Medical Systems, Waukesha, WI).
and Human Services, and by the US Army Medical Research Acquisition This system uses an algorithm provided by R2, and CAD
Center (Fort Detrick, MD) under contract DAMD17-00-1-0410 to the Univer- cues are displayed on the system's dedicated workstation.
sity of Pittsburgh. The content of the information contained herein does not
necessarily reflect the position or the policy of the government, and no offi- To assess how breast imagers subjectively perceived
cial endorsement should be inferred. Address correspondence to A.H.K. the effect of CAD on their own practice, if any at all, we
e-mail: klymah@msx.upmc.edu

© AUR, 2004 administered a voluntary short survey. This survey was
dol:10.1016/j.acra.2004.02.007 performed approximately 1 year after the introduction of
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Table I
Distribution of Answers to Each of the Survey Questions

Did not Direction of Change

Questions of how Practice has Changed in the last 3 Years Change Changed Increased Decreased

1. My general practice: 6 6
2. My recall rates during interpretations of screening

mammograms 7 5 4 1
3. My recommendations for biopsy as a fraction of

diagnostic interpretation 12 0 0 0
4. My recommendations for the use of US as a fraction of

the total number of diagnostic procedures 11 1 1 0
5. The time spent reading each screening examination has 3 9 4 5
6. The time spent reading each diagnostic examination has 8 4 3 1
7. The use of CAD affected the way I practice 3 9

CAD into our screening practice. The survey questions Five respondents perceived that their screening recall
asked the breast imagers about any perceived changes in rate had changed (four thought that it had increased, one
his or her practice in the last 3 years. It must be noted indicated that it had decreased), and one reader perceived
that this survey was administered before any of the partic- his/her rate of recommending breast ultrasound had in-
ipants became aware of the results we obtained assessing creased. None of the 12 readers perceived any change in
the actual impact of CAD on recall and detection rates in their rate of recommending biopsy as a result of using
our practice, which showed only minimal changes in re- CAD during the interpretation of diagnostic procedures.
call rates (3). We wish to emphasize that participants Unsolicited comments from four readers suggested
were told the survey was being conducted primarily to changes were considered to be temporary, a "learning
assess their subjective feelings about changes in their effect." There was one unsolicited comment written ques-
practice as a result of the use of CAD. tioning the overall usefulness of CAD in a diagnostic set-

The distribution of the answers to each question in our ting.
survey is shown in the Table. Although only six of the This survey was not intended as a proof of actual
respondents (50%) indicated that their practice had changes in the practice of breast imagers, if any, as a re-
changed in the last 3 years (question 1), nine of 12 an- sult of incorporation of CAD into the diagnostic process.
swered positively to the question whether or not CAD Rather it was designed to assess their perceptions in this
had changed the way they practiced (question 7). These regard. The fact that all but one reader recorded some
nine radiologists perceived a number of CAD-related kind of practice change suggests that the CAD results are
changes. Five perceived a change in reading time; one in not simply being ignored. The wide distribution of the
reading time and recall rate; one in recall rate only; one answers, indicating fairly equally perceived increases and
in reading time, recall rate, and rate of recommendation decreases in interpretation times and recall rates, suggests
for breast ultrasound; and one did not mark any specific that they adopted the practice without any significant dif-
changes listed in the survey (questions 2-6). Of the three ficulties. Interestingly, their assessment of the impact on
radiologists who perceived that there was no change in recall rates generally agrees with actual observation we
their practice because of CAD, two indicated general made during a review of over 100,000 examinations when
changes in their practice. One indicated a decrease in re- interpreted with and without the use of CAD result. In
call rate and an increase in screening reading time, the summary, as a group, the breast imagers practicing in our
other indicated an increase in recall rate and a decrease in facility have incorporated the use of CAD with little con-
interpretation time. Therefore, only one respondent indi- cern that their practice has been substantially altered with
cated no specific change in response to all questions in regard to recall rates or time required for the interpreta-
the survey. tion of mammograms.
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APPENDIX 16

Teleradiology and screening mammography: a telemammography
system evaluation and comparison to clinical results

J. Ken Leader*a, Denise Choughab, Ronald J. Clearfieldab, Marie A. Ganottab, Christiane Hakimab,
Lara Hardestyab, Betty Shindelab, Jules H. Sumkinab, John M. Dreschera, Glenn S. Maitza, David

Gura
aUniversity of Pittsburgh, Pittsburgh, PA USA 15213
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ABSTRACT

Radiologists' performance reviewing and rating breast cancer screening mammography exams using a
telemammography system was evaluated and compared with the actual clinical interpretations of the same
interpretations. Mammography technologists from three remote imaging sites transmitted 245 exams to a central site
(radiologists), which they (the technologists) believed needed additional procedures (termed "recall"). Current exam
image data and non-image data (i.e., technologist's text message, technologist's graphic marks, patient's prior report,
and Computer Aided Detection (CAD) results) were transmitted to the central site and displayed on three high-
resolution, portrait monitors. Seven radiologists interpreted ("recall" or "no recall") the exams using the
telemammography workstation in three separate multi-mode studies. The mean telemammography recall rates ranged
from 72.3% to 82.5% while the actual clinical recall rates ranged from 38.4% to 42.3% across the three studies. Mean
Kappa of agreement ranged from 0.102 to 0.213 and mean percent agreement ranged from 48.7% to 57.4% across the
three studies. Eighty-seven percent of the disagreement interpretations occurred when the telemammography
interpretation resulted in a recommendation to recall and the clinical interpretation resulted in a recommendation not
to recall. The poor agreement between the telemammography and clinical interpretations may indicate a critical
dependence on images from prior screening exams rather than any text based information. The technologists were
sensitive, if not specific, to the mammography features and changes that may lead to recall. Using the
telemammography system the radiologists were able to reduce the recommended recalls by the technologist by
approximately 25 percent.

Keywords: Teleradiology, human performance, recall rate, breast cancer screening, mammography

1. INTRODUCTION

Screening for breast cancer using mammography is and will continue to be practiced worldwide with extensive
research supporting the benefits of screening,"6 despite sporadic studies reporting limited or no benefit from screening
mammography. 7"9 The ubiquitous practice and growing population of candidates for screening mammography present
many challenges to the practitioners creating possible opportunity to improve screening mammography. Some
elements of screening mammography that have the potential to be improved include radiologist's practice and
performance, personnel shortages, and public perception and compliance.1'0 16

The practice of teleradiology may potentially improve the management of screening mammography in particular in
remote or underserved locations where physicians are not physically present, but the high-spatial demands of
mammography present challenges to effective implementation of telemammography based practices. There are
several image processing techniques commonly used in teleradiology to facilitate handling large amounts of data,
which include image compression, image cropping, image selection, and display format.17 24 In addition, the
qualifications of personnel necessary for the successful implementation may need to be evaluated.25 27 We have
design and tested a telemammography system capable of handling the large data requirements of mammography that
is operated by mammography technologists at the remote sites and experienced radiologists who review transmitted
examinations at the central site.28-30
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In this study, we evaluated radiologists' performance during off-line reviewing and rating screening mammography
exams using the telemammography system and compared their performance to the clinical interpretations of the same
examinations. The incremental addition of information was analyzed in three separate multi-mode studies to
determine the independent effect of each type of information. The motivation was to determine what information is
necessary and sufficient in a telemammography system implemented to reduce the number of patients recalled for
additional procedures as part of the screening exam. The long-term objective is to decrease the number of patients
recalled by remote management, particularly in underserved areas.

2. METHODS

2.1 Telemammography system
Cases used in this retrospective study were accrued using a high-quality, multi-site telemammography system that
consists of one central site (Magee-Womens Hospital, Pittsburgh, PA, USA) and three remote sites (satellite woman's
imaging centers of Magee-Womens Hospital). Cases for this study were acquired under normal operating procedures.
The specific technical information such as software design, image processing, workstation features, and inter-site
communication are described in detail by Drescher et al.3° (2003). The system is described briefly as necessary
below.

In short, a technologist at a remote site digitizes mammographic films, composes a message (text and graphic) to
describe and locate their impression, and scans the patient's prior report (when available). This information and the
results of Computer Aided Detection (CAD) scheme to detected suspicious regions are transmitted to the central site.
At the central site, a radiologist reviews the mammographic image data, technologists message (text and graphic), and
patient reports using a three monitor custom workstation.

2.1.1 Mammographic image digitization and processing
The first step in the image acquisition pipeline at the remote sites is to digitize the mammographic films using a high-
resolution, laser film digitizers (Lumiscan 85, Eastman Kodak, Rochester, NY, USA) at 50 micron pixel dimensions
and 12-bit grayscale. Next, the digital images are automatically cropped to reduce the non-tissue areas surrounding
the breast, which significantly reduces the image size. A CAD scheme is then executed on the cropped images. Next,
the images are compressed at a ratio of 75:1 using the irreversible (lossy), 9/7 transform, wavelet-based JPEG 2000
method. Finally, the image data are parsed into data packets and encrypted using strong 128 bit Microsoft Point-to-
Point Encryption (MPPE) with Microsoft Challenge Handshake Authenticate Protocol (CHAP) version 2. The data
packets and CAD results are transmitted to the central site.

At the central site, the mammographic image data are decrypted and decompressed. Image display on the workstation
is enhanced through minimal unsharp masking. Look-up table (LUT) values are automatically calculated to aid image
viewing. To reduce the visual effects of cropping images are restored to full height, but not to full width, by padding
(filling) prior to image display. The CAD results are presented as an overlay on the images with regions suspicious
for masses outlined and regions suspicious for microcalcification circled.

2.1.2 Remote Site
The computer hardware at the three remote sites is an Athlon 900 machine with a 900 mHz processor and 512 MB of
RAM (Advanced Micro Device, Sunnyvale CA, USA) operating under Microsoft Windows 2000 Workstation
(Microsoft Corporation, Redmond, WA, USA). They are equipped with both 56K hardware modems and ethernet
network cards (Integrated PRO/100 S Desktop Adapter, Intel Corporation, Santa Clara, CA, USA). Sites 1, 2 and 3
are 15, 20, and 15 miles from the central site, respectively. However, we successfully tested the system in the past at a
site located 90 miles from the central site. Sites 1 and 2 transmit data across Plain Old Telephone System (POTS)
lines. Site 3 transmits data across the Local Area Network (LAN).

The technologists scan the patient's prior report or history using hp Scanjet 5470c scanners (Hewlett-Packard
Company, Palo Alto, CA, USA) that are equipped with automatic document feeders. Prior to transmission to the
central site the reports are converted to one bit per pixel portable network graphic (PNG) images.
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2.1.3 Central Site
The central site telemammography workstation is powered by an Athlon MP dual 1.2 GHz multi-processor with 2 GB
of RAM (Advanced Micro Device, Sunnyvale CA, USA), which operates under Microsoft Windows 2000 Server
(Fig. 1). The workstation display consist of three high-resolution (2048 x 2560), 8-bit grayscale, portrait monitors at a
nominal setting of 80 ftL; two Dome C5i flat-panel monitors (Planar Systems, Beaverton, OR, USA) for image
display and one Clinton DS5100P cathode ray tube monitor (Clinton Electronics, Rockford, IL, USA) for text. The
workstation communicates with the remote sites via 56K hardware modems (U.S. Robotics, Rolling Meadows, IL,
USA) and ethernet network cards (OfficeConnect 10/100 NIC, 3COM, Santa Clara, CA, USA).

Fig 1. Telemammography workstation at the central site in the default viewing format.

The key display features available on the workstation include manual LUT adjustments, magnification, quadrant
viewing (images viewed one quadrant at a time), and multiple display formats, which are all mouse-driven. Possible
image display formats include: one image/monitor, two images/monitor, or four images/monitor. The typical display
resolution was approximately 100 micron pixel dimensions for one image/monitor and 200 micron pixel dimensions
for two images/monitor. Images can be magnified by a free-moving magnification box or quadrant panning. The
magnification box size varies depending on the image display format; for one image/monitor the box is 511 x 566
pixels and for two images/monitor the box is 204 x 266 pixels. The left and center monitors display the image data
with the CAD results overlaid, and the right monitor displays the message windows, prior reports, case lists, etc.

2.1.4 Inter-site communication

The technologists (remote site) and radiologists (central site) communicate effectively using a message window that
features free text and interactive graphic windows and operates in almost real-time (Fig. 2). Typically a message
window is sent with each case with communication performed in one cycle. The technologist sends a message with
each case, and the radiologist responds directly to the message. The message window at the remote and central sites
both contains five areas: (1) patient demographics, (2) message display area, (3) pull-down menus, (4) interactive
generic image of breast, and (5) free text area. There are five pull-down menus on the technologist message window
to focus communication on possible actionable items that indicate: (1) breast: left or right; (2) view: craniocaudal
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and/or mediolateral oblique; (3) finding: mass, calcifications, tissue asymmetry, palpable lump, or nodule; (4)
comparison with prior exam: baseline exam, new finding, slight change, moderate change, or remarkable change; (5)
other findings stable, and (6) possible additional procedure needed: additional views and/or ultrasound. The
interactive generic image of the breast allows the technologists to place an "X" mark precisely on the region of
suspicion. The radiologists can reply after reviewing each case. His/her response includes: (1) do recommended
procedure as suggested; (2) no additional procedures necessary; and (3) do not do the procedure recommended, but do
X, Y, and Z. If the radiologists recommends additional procedures, the interactive generic image of the breast allows
the radiologist to place a "square" mark precisely on the region that requires the additional work-up.

Name ID # Site Exam Date Exam Code Message Status Unread Messages

Technologlst@Site9i Wednesday, January 05, 2005 17:16:18

Right Breast; MLO - Upper-Anterior; CC - Medial;
Current Findings - Calcifications.
Moderate Change compared to prior exam;
All Other Findings Stable.
Should I do a Magnification?

Radiologist@SiteO Wednesday, January 05, 2005 17:20:30

Ok, do the recommended procedure,

Breast Image and Quadrant of Interest

[NoneJ [None
Current Exam Findings
INone

Comparison with Prior Image -REQUIRED

Other Findings

FNone
Possible Additional Evaluation R
None

•: Insert

New Mesmael Msg~ai Current Case ilino

Fig 2. Remote site message window used by the technologists to communicate with the central site (radiologists).

2.1.5 Telemammography system operation
The system has been operational for greater than two years and to date over 2000 cases have been transmitted. The
image quality, image display, effects of the image processing, and telemammography system features are generally
well-received and considered more than adequate for reviewing screening mammography examinations by
participating radiologists. The magnification features provide a detailed review of the breast tissue patterns,
particularly microcalcifications. The automated LUT settings were acceptable in nearly 90% of the cases during
review. The breast tissue was completely retained following the automated cropping producing images that were
visibly appealing for review. There may be some detectable differences at extremely high magnifications between
non-compressed digitized mammographic images and images compressed at a 75:1 ratio, but based on several
assessments these differences should not affect the diagnostic image quality. In a two-alternative forced choice
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discrimination experiment radiologists could not accurately or reliably discriminate between non-compressed images
and those compressed at 50:1 and 75:1 compression levels when displayed side-by-side. 4

2.2 Case selection
Two hundred and forty-five breast cancer screening mammography exams were retrospectively evaluated during this
study that were acquired using the telemammography system from three remote woman's imaging centers. Registered
mammography technologists from the remote imaging centers transmitted screening exams to the central site
(radiologists) that they (the technologists) believed needed additional imaging procedures. The technologists selected
the exams prospectively and were unaware at the time of selection whether or not the patient would ultimately
undergo additional procedures during the actual clinical interpretation. One hundred and thirty cases were used in
Study 1. Study 2 consisted of 99 cases that were a subset of the cases used in Study 1. One hundred and fifteen
different cases were used in Study 3. The actual, subsequent clinical interpretation categorized each case using the
Breast Imaging Reporting and Data System (BIRADS) (Table 1). The four routine mammographic films acquired at
our centers during a breast cancer screening exam include the left and right craniocaudal views (LCC & RCC), and
left and right mediolateral oblique views (LMLO & RMLO).

Table 1
Distribution of BIRADS categories as a result of clinical interpretation
BIRADS Category 0 1 2 total

Study 1 51 34 45 130
Study 2 38 25 36 99
Study 3 47 41 27 115

2.3 Study design and data analysis
This study was composed of three separate multi-mode studies in which information was incrementally presented
progressively during each of the individual modes (Table 2). All modes were completed during a single reading. Five
components of information were presented during the three studies: (1) four mammographic images; (2)
technologist's text message detailing the region of suspicions in terms of type of finding (e.g., mass,
microcalcifications), location, comparison to prior exams (when available), and their (the technologists) recommended
additional procedures; (3) patient's report from the prior mammography exam (when available); (4) technologist's
graphic marks on a generic breast image to highlight the region of suspicion; and (5) CAD results.

Table 2
Information presented for case interpretation during each mode of the three studies
Study Mode 1 Mode 2 Mode 3
1 mammographic images only mammographic images & n/a

technologist's message
2 mammographic images & mammographic mages, message, n/a

technologist's message & prior report

3 mammographic images, mammographic images, mammographic images,
technologist's message, & message, prior report, & message, prior report, graphic
prior report technologist's graphic marks marks, & CAD

Seven board certified radiologists specializing in mammography participated as readers in this study who were
informed of the exam origination and case selection criteria, but not the mix of "recall" and "no-recall" cases. They
reviewed and rated the screening mammography exams on the telemammography workstation and indicated: (1) if
additional procedures were recommended, (2) when appropriate, which breast was involved, and (3) when
appropriate, the specific recommended procedures. During the telemammography interpretation the ratings were
recorded via a computerized scoring form displayed on the workstation monitor using the computer mouse (Fig. 3).
The full functionality of the workstation (e.g., window and level, magnification, quadrant viewing) was available
during case review. The experience of the radiologists ranged from 6 to 33 years with each performing or reading
over 2000 breast imaging procedures per year. Two radiologists participated in all three studies. Two radiologists
participated in Studies 1 and 2. Three radiologists participated only in Study 3. (Reader order was scrambled).
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The perfonnance of the radiologists when using the telemammography system was compared with the actual clinical
interpretation of the same screening mammography examinations. Performance was evaluated in terms of the percent
of exams recommended recalled for additional procedures (termed "recall"), the percent agreement, and the Kappa of
agreement during both types of interpretations (i.e., telemammography and clinical).

Fig 3. Sconng form used by the radiologists as it would appear dunng mode 3 of Study 3.

3. RESULTS

Technologists were able to identif�' suspicious examinations that may require additional procedures, but their
''recommended'' examinations amounted to a substantially larger number compared with that of the actual clinical
interpretation by a radiologist. The percent of exams recommended for recalled for additional procedures (termed
"recall") during the actual clinical interpretation for Studies 1, 2 (a subset of Study 1), and 3 were 39.2% (5 1/130),
38.4% (38/99), and 40.9% (47/115), respectively. The screening exams sent by the technologists were those cases
that they (the technologists) believed need additional imaging procedures to complete the exam. The 245 exams were
successfully transmitted, processed, reviewed, and rated.

The recall rates for all radiologists during the telemammography interpretations all three multi-mode studies were
significantly higher than the actual clinical interpretations (Tables 3 - 9). As a result, there was poor agreement
between the two interpretations types (telemammography and clinical) for all studies. The majority of disagreement
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interpretations resulted when the telemammography interpretation resulted in a recommendation to recall and the
actual clinical interpretation resulted in a recommendation not to recall. There were a total of 1635 disagreement
interpretations across all three multi-mode studies between the telemammography and actual clinical interpretation
and of these disagreements 86.7% (1418/1635) occurred when the telemammography interpretation resulted in recall
and the clinical interpretation resulted in a recommendation not to recall.

In Study 1, the recall rates of all the radiologists during the telemammography interpretations significantly increased
from mode 1 (images only) to mode 2 (images and technologist's text message) while the agreement between the
telemammography and actual clinical interpretations decreased from mode 1 to mode 2 for three out of four
radiologists (Tables 3 and 4). Modes 1 and 2 of Study 1 had mean Kappa of 0.125 (+/- 0.041) and 0.102 (+/-0.059),
respectively, mean agreements of 51.7% (+/- 5.5) and 48.7% (+/- 6.3), respectively, and mean recall rates of 73.3%
(+/- 17.9) and 82.5% (+/- 16.2), respectively. The mean number of disagreement interpretations between the
telemammography and actual clinical interpretations were 62.8 and 66.8 for modes 1 and 2, respectively. The mean
percentage of these disagreements occurring when the telemammography interpretation resulted in a recommendation
to recall and the clinical interpretations resulted in a recommendation not to recall were 83.9% (53.5/62.8) and 91.2%
(61.5/66.8) for modes 1 and 2, respectively.

Table 3
Study 1, mode 1 (images only): telemammography workstation interpretations compared to clinical
interpretations

Telemammography Clinical interpretation
recommendations recall (n = 51) no-recall (n = 79) Total (n=130) Kappa

Radiologist 1 0.097
recall 38.5% (50) 52.3% (68) 90.8% (118)
no-recall 0.8%(1) 8.5%(11) 9.2%(12)

Radiologist 2 0.127
recall 31.5% (41) 40.0% (52) 71.5% (93)
no-recall 7.7% (10) 20.8% (27) 28.5% (37)

Radiologist 3 0.182
recall 23.8% (31) 25.4% (33) 49.2% (64)
no-recall 15.4% (20) 35.4% (46) 50.8% (66)

Radiologist 4 0.093
recall 34.6% (45) 46.9% (61) 81.5% (106)
no-recall 4.6% (6) 13.8% (18) 18.5% (24)

Table 4
Study 1, mode 2 (images and technologist's text message): telemammography workstation interpretations
compared to clinical interpretations

Telemammography Clinical interpretation
recommendations recall (n = 51) no-recall (n = 79) Total (n=130) Kappa

Radiologist 1 0.020
recall 39.2% (51) 59.2% (77) 98.5% (128)
no-recall 0.0% (0) 1.5% (2) 1.5% (2)

Radiologist 2 0.103
recall 36.2% (47) 48.5% (63) 84.6% (110)
no-recall 3.1%(4) 12.3%(16) 15.4%(20)

Radiologist 3 0.159
recall 27.7% (36) 32.3% (42) 60.0% (78)
no-recall 11.5% (15) 28.5% (37) 40.0% (52)

Radiologist 4 0.124
recall 37.7% (49) 49.2% (64) 86.9% (113)
no-recall 1.5%(2) 11.5%(15) 13.1%(17)
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The differences between modes 1 (images and technologist's text message) and 2 (images, technologist's text
message, and prior report) of Study 2 were a slight decrease in the recommended recall rates for three of the four
radiologists from mode 1 to mode 2 as well as small changes in agreement across the radiologists between the two
modes (Tables 5 and 6). Modes 1 and 2 of Study 2 had mean Kappa of 0.163 (+/- 0.077) and 0.165 (+/- 0.081),
respectively, mean agreements of 52.3% (+/- 6.7) and 52.8% (+/- 7.0), respectively, and mean recall rates of 79.6%
(+/- 12.3) and 77.5% (+/- 13.8), respectively. The mean number of disagreement interpretations between the
telemammography and actual clinical interpretations were 47.3 and 46.8 for modes 1 and 2, respectively. The mean
percentage of these disagreements occurring when the telemammography interpretation resulted in a recommendation
to recall and the clinical interpretation resulted in a recommendation not to recall were 92.5% (44.0/47.3) and 90.8%
(42.8/46.8) for modes 1 and 2, respectively.

Table 5
Study 2, mode 1 (images and technologist's text message): telemammography workstation interpretations
compared to clinical interpretations

Telemammography Clinical interpretation
recommendations recall (n = 38) no-recall (n = 61) Total (n=99) Kappa

Radiologist 1 0.219
recall 32.3% (32) 36.4% (36) 68.7% (68)
no-recall 6.1% (6) 25.3% (25) 31.3% (31)

Radiologist 2 0.208
recall 37.4% (37) 44.4% (44) 81.8% (81)
no-recall 1.0%(1) 17.2% (17) 18.2% (18)

Radiologist 3 0.174
recall 32.3% (32) 39.4% (39) 71.7% (71)
no-recall 6.1% (6) 22.2% (22) 28.3% (28)

Radiologist 4 0.051
recall 38.4% (38) 57.6% (57) 96.0% (95)
no-recall 0.0% (0) 4.0% (4) 4.0% (4)

Table 6
Study 2, mode 2 (images, technologist's text message, and prior report): telemammography workstation
interpretations compared to clinical interpretations

Telemammography Clinical interpretation
recommendations recall (n = 38) no-recall (n = 61) Total (n=99) Kappa

Radiologist 1 0.206
recall 30.3% (30) 34.3% (34) 64.6% (64)
no-recall 8.1% (8) 27.3% (27) 35.4% (35)

Radiologist 2 0.237
recall 37.4% (37) 42.4% (42) 79.8% (79)
no-recall 1.0%(1) 19.2%(19) 20.2%(20)

Radiologist 3 0.167
recall 31.3% (31) 38.4% (38) 69.7% (69)
no-recall 7.1% (7) 23.2% (23) 30.3% (30)

Radiologist 4 0.051
recall 38.4% (38) 57.6% (57) 96.0% (95)
no-recall 0.0%(0) 4.0%(4) 4.0%(4)

The difference between modes 1 (images and technologist's text message), 2 (images, technologist's text message,
and prior report), and 3 (images, technologist's text message, prior report, and CAD) in Study 3 were relatively small
with a slight decreased in Kappa between the three modes (Tables 7, 8 and 9). Modes 1, 2 and 3 of Study 3 had mean
Kappa of 0.213 (+/- 0.072), 0.206 (+/- 0.060), and 0.201 (+/- 0.061), respectively, mean agreements of 57.4% (+/-
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4.6), 57.1% (+/- 3.9), and 56.7% (+/- 3.9), respectively, and mean recall rates of 72.3% (+/- 9.3), 72.3% (+/- 9.3), and
72.7% (+/- 9.2), respectively. The mean number of disagreement interpretations between the telemammography and
actual clinical interpretations were 49.0, 49.4, and 49.8 for modes 1, 2 and 3, respectively. The mean percentage of
these disagreements occurring when the telemammography interpretation resulted in a recommendation to recall and
the clinical interpretation resulted in a recommendation not to recall was 82.7% (40.6/49.0), 82.4% (40.8/49.4) and
81.9% (40.8/49.8) for modes 1, 2, and 3, respectively.

Table 7
Study 3, mode 1 (images, technologist's text message, and prior report): telemammography workstation
interpretations compared to clinical interpretations

Telemammography Clinical interpretation
recommendations recall (n = 47) no-recall (n = 68) Total (n= 115) Kappa

Radiologist 1 0.255
recall 38.3% (44) 38.3% (44) 76.5% (88)
no-recall 2.6% (3) 20.9% (24) 23.5% (27)

Radiologist 2 0.152
recall 39.1% (45) 46.1% (53) 85.2% (98)
no-recall 1.7%(2) 13.0% (15) 14.8% (17)

Radiologist 3 0.318
recall 33.9% (39) 28.7% (33) 62.6% (72)
no-recall 7.0% (8) 30.4% (35) 37.4% (43)

Radiologist 4 0.157
recall 30.4% (35) 33.9% (39) 64.3% (74)
no-recall 10.4% (12) 25.2% (29) 35.7% (41)

Radiologist 5 0.182
recall 34.8% (40) 38.3% (44) 73.0% (84)
no-recall 6.1% (7) 20.9% (24) 27.0% (31)

Table 8
Study 3, mode 2 (images, technologist's text message, prior report, and technologist's graphic marks):
telemammography workstation interpretations compared to clinical interpretations

Telemammography Clinical interpretation
recommendations recall (n = 47) no-recall (n = 68) Total (n= 115) Kappa

Radiologist 1 0.255
recall 38.3% (44) 38.3% (44) 76.5% (88)
no-recall 2.6% (3) 20.9% (24) 23.5% (27)

Radiologist 2 0.152
recall 39.1% (45) 46.1% (53) 85.2% (98)
no-recall 1.7% (2) 13.0% (15) 14.8% (17)

Radiologist 3 0.285
recall 33.0% (38) 29.6% (34) 62.6% (72)
no-recall 7.8% (9) 29.6% (34) 37.4% (43)

Radiologist 4 0.157
recall 30.4% (35) 33.9% (39) 64.3% (74)
no-recall 10.4% (12) 25.2% (29) 35.7% (41)

Radiologist 5 0.182
recall 34.8% (40) 38.3% (44) 73.0% (84)
no-recall 6.1% (7) 20.9% (24) 27.0% (31)
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Table 9
Study 3, mode 3 (images, technologist's text message, prior report, technologist's graphic marks, and
CAD): telemammography workstation interpretations compared to clinical interpretations

Telemammography Clinical interpretation
recommendations recall (n = 47) no-recall (n = 68) Total (n=-115) Kappa

Radiologist 1 0.241
recall 38.3% (44) 39.1% (45) 77.4% (89)
no-recall 2.6% (3) 20.0% (23) 22.6% (26)

Radiologist 2 0.152
recall 39.1% (45) 46.1% (53) 85.2% (98)
no-recall 1.7%(2) 13.0% (15) 14.8%(17)

Radiologist 3 0.285
recall 33.0% (38) 29.6% (34) 62.6% (72)
no-recall 7.8% (9) 29.6% (34) 37.4% (43)

Radiologist 4 0.143
recall 30.4% (35) 34.8% (40) 65.2% (75)
no-recall 10.4% (12) 24.3% (28) 34.8% (40)

Radiologist 5 0.182
recall 34.8% (40) 38.3% (44) 73.0% (84)
no-recall 6.1%(7) 20.9% (24) 27.0% (31)

4. DISCUSSION

In this controlled study, the percentage of breast cancer screening mammography exams recommended for additional
procedures ("recall") by the radiologists when interpreting exams suspected by technologists to require additional
procedures using the telemammography system was significantly higher than the actual clinical interpretations of the
same exams. Adding non-mammographic image information (i.e., technologist's text message to describe suspicious
regions, prior patient reports or history, technologist's graphic marks to highlight suspicious regions, and CAD) to the
telemammography system did not significantly change the radiologists' interpretations compared with mammographic
image only interpretations. The majority of disagreement occurred when the telemammography interpretation
recommended recall and clinical interpretations recommended no-recall.

The significantly high recall rates (nearly double) interpreting screening mammography exams using the
telemammography system as compared to the actual clinical interpretation is in agreement with our previous study 29

and similar to Elmore et al.13 (1994). The mean telemammography recall rates ranged from 72.3% to 82.5% while the
actual clinical recall rates ranged from 38.4% to 42.3% across the three separate multi-mode studies.

This study indicates that technologists are sensitive, if not specific, to the mammography features and changes that
may lead to a recall. There were 245 unique screening mammography exams used in this study and 60.0% (147/245)
were not recommended for recall for additional procedures during the actual clinical interpretation. Of these 147
exams not recalled 49.0% (72/147) had a clinical BIRADS category of 2. Therefore, the technologists were able to
detect abnormal findings during the mammography exam, but were not skilled at differentiating whether the findings
may represent potential disease.

The radiologists' high recall rates for additional procedures using the telemammography system suggests a critical
dependence on prior images when making management decisions albeit other factors may have had some effect.
Therefore, our telemammography system was recently modified to incorporate images from the patient's prior
screening exam (when available). The modified telemammography system to include prior image data was tested
operationally and a clinically simulated study to evaluate the impact of this final modification on recommended recall
rates is underway.

There are several limitations to the current study that may have caused the high recall rate during the
telemammography interpretation. First, the telemammography interpretation in this study constituted a limited review
due to the lack of images from the prior screening mammography exam for comparison. Second, the lack of prior
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images combined with the technologists skill at detecting abnormalities in the mammography exams and their (the
technologist) description of the abnormality (e.g., new finding, moderate change in finding) may have influenced the
radiologists to recommend additional procedures to further evaluate the "abnormal" findings suggested by the
technologist. Third, the participating radiologists may have expected an "enriched" sample population because they
knew that this was a laboratory study. A similar explanation for high recall rates was reported in Elmore et al.13

(1994). Finally, this retrospective study did not affect clinical management of the patient, so this knowledge may
prompted the observed over-reading.

The seven experienced radiologists who participated in this study confirmed the feasibility of our telemammography
system to provide remote patient "management" when a physician is not present in the clinic. Particularly, our effort
to reduce the number of patients recommended for recalled for additional procedures as part of breast cancer screening
mammography through the identification of these patients while they remain at the remote clinic, hence reducing
patient anxiety associated with recall. The limited information provided to the radiologists (i.e., no images from the
prior exam) enabled a moderate reduction in the number of recommended recalls by the technologists by
approximately 25 percent. Inclusion of the final pertinent information component, mammographic images from the
prior exam, is expected to further reduce the number of recommended procedures and significantly improve the
agreement between the telemammography and actual clinical interpretations.
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