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ABSTRACT
The ability to quickly and accurately measure how vari-
ous design decisions affect human workload is an impor-
tant need in human-robot interaction (HRI) and other
HMI domains. Although various techniques allow work-
load to be estimated, it is important to develop meth-
ods for obtaining workload estimates objectively and in
real-time without interfering with the normal operation
of human. In this paper, we develop behavioral entropy
as a technique for estimating human workload in HRI
domains. We develop relevant theory and present case
studies that help validate the power of behavioral en-
tropy.

1 Introduction

In a recent article on useful metrics in human-robot in-
teraction (HRI), Fong et al. identified the need to find
“nonintrusive measures of workload that can character-
ize operator stress in real-time” [3]. The importance of
having a real-time estimate requires an objective (rather
than subjective) measure of workload that is reliable and
applicable to many interfaces. The purpose of this pa-
per is to present a technique, called behavioral entropy [6]
that measures human workload in HRI domains. This
metric efficiently utilizes operator activity to estimate
human workload.

A real-time measure of workload in HRI has several
possible applications.
• Design of adjustable autonomy systems. In-

telligent interfaces could be used to identify high
workload situations, and the resulting information
could be used to adjust robot autonomy or alert
other humans to support the operator. This facil-
itates design of more efficient mixed-initiative sys-
tems [1] that follow principles of situation-adaptive
autonomy [4].

• Comparison of interfaces and autonomy
modes. Various HRI systems, including various in-
terfaces and robot autonomy modes, could be com-
pared over time. This ability to compare designs

over time allows not only comparison of average
workload, but also comparisons of peak workload,
minimum workload, and workload patterns.

• Diagnosis of causes of high workload. External
events that trigger high workload could be identified
and diagnosed. By associating a real-time estimate
of workload with external events, those events that
cause workload spikes could be identified. These
events might include environmental contingencies,
robot failures, interface issues, and so on.

• Design of Adaptive Systems. Interfaces or
robots that learn to support human activity could
be improved. Most HRI learning systems either
learn by direct teaching or learn by observing a hu-
man teleoperating a robot. These systems could
be augmented to include implicit human cues, such
as identifying robot behaviors that cause workload
spikes, and thereby improve interaction efficiency
through interface adaption.

The idea of behavioral entropy was developed in for
use in estimating driver workload in an automobile driv-
ing context. This first application restricted attention
to human activity as recorded in the steering wheel of a
vehicle and was called “steering entropy.” Subsequently,
Boer generalized this concept to general human activity,
and denoted the concept as behavioral entropy [6].

Behavioral entropy differs in a number of ways from
the three other primary methods for evaluating work-
load: physiological measurements, secondary task stud-
ies, and post hoc workload measurements (such as
NASATLX). Physiological measurements exploit the
strong correlation between human effort and the body’s
physical response. Such measures are objective and near
to real-time, but much work needs to be done to under-
stand the precise nature of the correlation between effort
and response; this work includes developing signal pro-
cessing techniques that rapidly and correctly separate
signal from noise. Secondary task studies allow diagno-
sis of human workload by measuring how performance
declines as other work is added. However, such mea-
sures are invasive and change the way the primary task
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is performed. Post hoc measurements exploit a human’s
ability to express their perceived workload after the fact.
Such measures are important because they allow a hu-
man to be able to state how they perceived their experi-
ences, but they are subject to many psychological biases,
such as recency effects. Moreover, they are not real-time.

Behavioral entropy exploits patterns observed in hu-
man activity within an HRI context. Generally speak-
ing, when intelligent operators perform a practiced skill
under conditions of good information, they use an an-
ticipatory control strategy. This means that they are
able to predict the consequences of their actions or in-
actions, and select efficient behaviors that alter these
consequences. When human operators are under condi-
tions of high workload or other form of degraded per-
formance, they anticipate less and react more and, as a
result, their action selection tends to be more exagger-
ated. Anticipatory behaviors tend to be more smooth
with less dramatic magnitudes and less frequent changes
than reactive behaviors. Behavioral entropy is sensitive
to this difference between reactive and anticipatory be-
haviors.

This paper is organized as follows. We first review
and develop the key concepts associated with behavioral
entropy. We then present three case studies that utilize
behavioral entropy in HRI-related domains. The first
two case studies help establish the hypothesis that aver-
age behavioral entropy is a useful and objective metric
for comparing design decisions. The third case study
helps illustrate that behavioral entropy can be used in
real-time. We conclude by presenting future work with
an emphasis on work needed to allow behavioral entropy
to be used in broad-reaching HRI studies.

2 Behavioral Entropy

Behavioral entropy estimates workload by first observ-
ing patterns of human activity under normal conditions,
and then noting deviations from these patterns. Con-
sider, for example, how a human might teleoperate a
robot via a joystick under laboratory conditions (good
communications, alert operator, etc.). Under these ideal
conditions, joystick activity follows observable patterns.

Such patterns of activity can be captured in a model of
activity. A well-known phenomena associated with mod-
elling is that simple models often explain most activity,
but extending these models to explain all activity often
makes the models grow exponentially in their complex-
ity. This is true in human-robot interaction domains as
well. For example, much of what is done with the joy-
stick under teleoperation can be described with simple
ARMA models [5], but modelling all joystick activity
requires very sophisticated models.

Norbert Wiener once said, “It is my thesis that the
physical functioning of the living individual and the op-
eration of some of the newer communication machines
are precisely parallel in their analogous attempts to con-
trol entropy through feedback” [8]. Through repeated in-
teractions with robot or interface systems, humans build
an understanding of various effects and relationships.
Perhaps most importantly, they build an understand-
ing of (a) the effect of their actions on the systems and
(b) the dynamics of the environment.

Such an understanding translates into an efficient in-
teraction. To paraphrase Wiener, people work to re-
duce entropy so skilled behavior minimizes entropy. This
manifests itself in human behavior that is anticipatory,
of the lowest possible bandwidth, and of the lowest pos-
sible magnitude. Such behavior lends itself to modelling
and prediction.

2.1 Modelling

Suppose that we identify a simple model that describes
how the operator uses the input device to a human-robot
interface. (Such input devices can include a joystick,
mouse, stylus, etc.) Formally, let xt denote the state of
the world at time t and let at denote operator activity
at time t. A model M , denoted by,

M : Xt×Xt−1× . . .×X0×At×At−1× . . .×A0 → At+1

can be used to predict operator activity at time t + 1,

ât+1 = M(xt, xt−1, . . . , x0; at, at−1, . . . , a0),

where the â indicates a prediction. Given this model we
can generate a prediction of what we think the operator
will do next.

If we adopt Wiener’s hypothesis that people work to
control entropy, then we can believe the hypothesis that
people’s behavior patterns have lower magnitude, have
lower bandwidth, and are anticipatory when good infor-
mation is present and the task is well practiced. If so,
then low frequency components of their observed activi-
ties represent the anticipatory aspects of their behavior.
Consequently, we should be able to identify a model of
this behavior.

Their are several possible choices for these models. We
could use general linear models, such as ARMA or state-
space models, but in the interest of simplicity we re-
strict attention to only one type of model in this paper1:
a Taylor series expansion. The Taylor series expansion
supposes that behavior is a smooth function of past ac-
tivities, and then uses the first derivatives to model the
key elements of this function.

1Note that it might sometimes be better to use a sample and
hold model to predict joystick movement because joystick opera-
tion, under some conditions, tends to be “bang-bang.” This is left
as an area for future work.



2.2 Model Errors

Clearly, a model will not correctly predict all operator
activity. Let et = ât− at denote the error in this predic-
tion. The statistical properties of this error are useful in
estimating operator workload. To illustrate this, suppose
that the prediction error sequence, et, has been observed
for 0 ≤ t ≤ N . Given this sequence, {e0, e1, . . . , eN}, we
can create a histogram of prediction errors. By normaliz-
ing this histogram, we create a probability mass function
that is a non-parametric estimate of the prediction error
density function. Let pE(e; t) denote this estimate of the
prediction error density function.

The key idea behind using behavioral entropy is to
look at the type of information that exists in the pre-
diction error density function. More precisely, we will
look at the information present in the prediction error
density functions under two conditions. If one condition
is produced under circumstances that allow better antic-
ipatory control than the second condition, then operator
activity under the first condition should be more pre-
dictable. In other words, there will be less information
in the prediction error density function. Since good in-
terfaces and autonomy modes support operators in their
desire to minimize entropy, good designs should have
more predictable behaviors. To better understand how
to describe the information available in the prediction er-
ror density function, it is useful to review the relationship
between creating a model and the notion of information.

2.3 Models and Information

One way to interpret a model of a phenomena is as a
mechanism that gives you information about the phe-
nomena. In this sense, we use the term “information”
in the information theoretic sense as the number of bits
required to describe the phenomena. If the model is
very good, then deviations from the model predictions
likely arise from randomness; if the model is poor, then
deviations from the model predictions likely arise from
structured aspects of the phenomena that are not cap-
tured in the model. For example, consider a phenomena
where two variables are related to each other by a cosine
function. If we create a linear model for this sinusoidal
relationship, then deviations from the model predictions
arise from the fact that the underlying phenomena is a
sinusoid and not a line. If, by contrast, we create a si-
nusoid model for this relationship, then deviations from
model predictions arise from random perturbations in
the relationship.

We can use this relationship between model predic-
tions and information to create a mechanism that identi-
fies when activity is no longer ascribed to the phenomena
encoded in the model. In other words, we can use the
prediction error density function to detect when things

are different from what we predict and therefore detect
when the phenomena is behaving oddly. Since predic-
tions are subject to random error, we are actually go-
ing to use the prediction error density function to de-
tect when things are different enough to conclude that
the observed phenomena is not consistent with what was
predicted.

Consider the amount of information available in the
prediction error density. Under ideal conditions (e.g.,
laboratory setting, alert human, no interruptions) the
prediction error density, pE(e; t), has a certain amount
of information in it. This information is attributable to
random noise and to small unmodelled aspects of the
pattern of human activity. If conditions of high work-
load occur, then the pattern of human activity changes
and so does the resulting prediction error density. By
comparing the amount of information present in the pre-
diction error density function under ideal conditions to
the information present under loaded conditions, we can
detect when these loaded conditions have occurred.

For example, consider the problem of teleoperating a
robot via a joystick. We can create a simple model for
how the joystick moves under ideal conditions and mea-
sure the information in the corresponding prediction er-
ror density. When the task suddenly becomes more diffi-
cult, operator activity tends to become more erratic and
more pronounced. Instead of seeing small changes in the
joystick position made relatively infrequently, large and
rapid changes in joystick position are more frequently
observed. If we were to compare the prediction error
density under ideal conditions with the density under
the loaded conditions, we would see that the density un-
der loaded conditions is much more spread out; this is
illustrated in Figure 1. This increased density spread in-
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Figure 1: Prediction error histograms under two work-
load conditions: nominal and loaded.

dicates that there is information in the system not cap-
tured by the model; it indicates that the operator is do-
ing more than we predicted. Such things can occur, for
example, when an operator overcompensates after hav-



ing attention diverted or when an operator is confused
because information is presented poorly.

2.4 Model Information and Prediction
Error Entropy

To create a metric that represents this change in predic-
tion error density, we return to the information theoretic
interpretation of the model. We use entropy, H(E; t),
defined as H(E; t) = −

∑
e∈E pE(e; t) log pE(e; t), as the

measure of information available in the prediction error
density. If we identify baseline entropy using ideal con-
ditions then we can detect periods of high workload by
comparing H(E; t) against the baseline entropy. Simi-
larly, if we can identify entropy under one HRI system
design, then we can compare this entropy with another
design to help determine which design better supports
the human.

We refer to H(E; t) as behavioral entropy, indicating
that it is the amount of information present in a human’s
behavior that was not captured by a model. Experiments
in automobile driving indicate that this objective mea-
sure of entropy correlates well with subjective measures
of workload [6].

2.5 Segue

In the remainder of this paper, we present three case
studies that use behavioral entropy to perform vari-
ous HRI-related tasks.In the case studies, we will first
present the goal of the experiment, describe what the
operator was asked to do, discuss characteristics of the
environment and the interface, present the model used
to predict operator activity, and present what we use as
a baseline. The first two studies use average behavioral
entropy and lend support to the thesis that behavioral
entropy discriminates between good and bad operating
conditions. The third case study uses a real-time ver-
sion of behavioral entropy to learn proper force feedback;
this case study uses a reinforcement learning technique
to show that real-time estimates of behavioral entropy
are informative.

3 Case Study 1: Comparing Us-
ability of Two Teleoperation
Schemes

In the first case study, behavioral entropy was used to
compare two different robot autonomy modes to deter-
mine which autonomy mode was easier for humans to
use. The hypothesis is that differences in behavioral en-
tropy correlate well with other measures of performance

and are therefore useful in comparing different robot au-
tonomy modes. We compute the prediction error den-
sity function using a prediction error sequence from the
entire experiment, and compare the entropy of this den-
sity function with other performance measures under two
robot autonomy modes.

Subjects were asked to drive a robot around the
top floor of the Computer Science Department at
Brigham Young University using two different auton-
omy modes: manual teleoperation and shared-control
teleoperation [2]. In addition to driving the robot with
their right hand (with a joystick), the users were asked
to answer multiple choice (two-digit) addition and sub-
traction problems with their left hand. This experiment
setup is illustrated in Figure 2. Subjects were told to
guide the robot through the hallways as quickly as possi-
ble while answering as many math questions as possible.
The video feed from the robot’s onboard camera was dis-
played on the same screen as the math problems. In this
case study, entropy calculations were taken of joystick
movements. Only the angle (not the magnitude) from
the joystick input was used to calculate entropy.

98
+33
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B) 123
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Figure 2: Interface used to compare the two autonomy
modes.

3.1 Methods

A second-order Taylor series model of operator behavior
was used. This means that the operator activity at time
t, at, was determined using observations of activity at
times t − 3 through t − 1 (i.e., using at−1, at−2, and
at−3). In this experiment, only joystick angle was used,
and it is a reasonable assumption that if the operator is
using angle a at times t− 3 through t− 1 then they will
likely use this same angle at time t.

An important aspect computing entropy is selecting
how to reliably create a discretized probability mass
function from histogram data. In this experiment, a sin-
gle operator guided the robot through the maze using
the shared control autonomy mode without performing
the secondary task. The history of joystick angles was



recorded, and the prediction error histogram was cre-
ated. This histogram was discretized into 9 unequally
spaced bins.

The bins were created using the following procedure.
Using the resulting baseline prediction error density, we
identify the parameter, α, which encapsulates 90% of
the data, Pr(−α <= error <= α) = 0.90. This value
of α is used to classify each angle, or the error from the
predicted angle, into nine bins,

{(−∞,−5α), [−5α,−2.5α), [−2.5α,−α), . . .
[−α,−0.5α), [−0.5α, 0.5α], (5α,∞)}.

Since the bins were created from a single operator,
this implementation of behavioral entropy is not sensi-
tive enough to allow comparisons between individuals.
Simply put, these values will be slightly different for
each individual under ideal circumstances so the entropy
computed from these values will differ under loaded con-
ditions. As a result, entropy calculations should not be
used to compare two individuals. However, since the
same model and binning scheme were used under the
two experimental conditions (with shared control and
with direct control), it is possible to compare entropy
for a given individual on the two different tasks.

3.2 Results

This experiment was performed in the real world and in
a simulated world. Various results are shown for these
case studies. Table 1 and 2 show the results from exper-
iments in real and simulated worlds, respectively. In the
tables, high values are good and low values are bad, with
the exception of the entropy measurement which is re-
versed. In the tables, Neglect indicates the percentage of
time that the operator spent doing arithmetic problems,
Performance indicates how efficiently the primary task
was completed as a percentage of the maximum possible
performance, # per min indicate the number of arith-
metic problems that were attempted per minute, and
% Correct indicates what percentage of the attempted
arithmetic problems were answered correctly by the sub-
ject.

For all measurements in both tables, subjects tended
to do better using shared control than using direct con-
trol. Behavioral entropy is consistent with these other
measurements since the highest entropy measure for
shared control is lower than the lowest entropy measure
for manual control. Also, entropy is highly correlated
with performance (lower entropy corresponds to higher
performance) and the amount of time the human “ne-
glected” (i.e., did math problems) the robot (lower en-
tropy means, generally, more neglect). There also ap-
pears to be correlation between secondary task profi-
ciency and entropy.

Shared-Control Results
Participant A B C D Ave.
% Neglect 51% 67% 46% 63% 57%

% Performance 77% 96% 81% 86% 85%
# per min. 9.5 18.9 8.9 10.6 12.0
% Correct 74% 98% 94% 66% 83%
Entropy 0.56 0.42 0.51 0.35 0.46

Direct-Control Results
Participant A B C D Ave.
% Neglect 36% 31% 22% 62% 38%

% Performance 57% 76% 58% 60% 63%
# per min. 6.4 9.1 3.9 9.8 7.3
% Correct 72% 85% 79% 61% 74%
Entropy 0.72 0.79 0.67 0.63 0.70

Table 1: Results from the experiment in the real world.

The key to understanding how this data supports the
use of entropy as a measure of workload lies in the dual
task nature of the experiment. Adopting a limited re-
source model for cognitive information processing [7], we
can assume that motivated subjects spend most of their
cognitive effort either guiding the robot or solving math
problems. This assumption is supported by the observa-
tion that the shared control autonomy mode was easier
to use and freed subjects to spend more time solving
math problems.

In the absence of a secondary task, it is reasonable
to assume that performances using the two autonomy
modes would have been closer. The presence of the sec-
ondary task provided stronger evidence that the shared
control autonomy mode was easier to use, but this sec-
ondary task also changed the nature of the task that the
operator was asked to perform.

Behavioral entropy data was consistent with the con-
clusion that direct control required more work. Since
behavioral entropy only required observations of opera-
tor activity (and did not require an intrusive secondary
task), we could have used behavioral entropy without
the secondary task to conclude that the shared control
autonomy mode was easier to use than the direct control
autonomy mode.

In summary, since higher entropy values occurred un-
der direct control, the evidence supports the hypothesis
that entropy allows us to identify which autonomy mode
imposes higher human workload.

4 Case Study 2: Comparing the
Usability of Two Interfaces

In the previous case study, we used behavioral entropy to
measure the differences between two autonomy modes.
In this case study, we determine whether entropy is a
reliable method for determining which of two interfaces
provides better support for robot teleoperation.



Shared-Control Results
Participant A B C D E F G Ave.
% Neglect 74% 72% 77% 61% 73% 72% 74% 72%

% Performance 97% 88% 94% 98% 85% 92% 97% 93%
# per min. 12.0 12.4 10.3 12.1 13.8 16.3 15.8 13.2
% Correct 71% 63% 39% 94% 85% 88% 78% 74%
Entropy 0.37 0.49 0.45 0.32 0.39 0.55 0.29 0.41

Direct-Control Results
Participant A B C D E F G Ave.
% Neglect 65% 70% 70% 34% 70% 68% 73% 64%

% Performance 83% 74% 96% 96% 88% 75% 81% 84%
# per min. 10.2 12.5 9.8 6.4 11.5 12.7 13.4 10.9
% Correct 57% 63% 38% 79% 71% 88% 77% 67%
Entropy 0.68 0.77 0.69 0.57 0.66 0.72 0.67 0.68

Table 2: Results from the simulated world.

Figure 3: Interface that displays sensor readings side by
side.

Figure 4: Interface that integrates sensor readings into
perspective view.

The two interfaces are shown in Figures 3-4. The first
interface displays, from left to right, laser range finger
readings, video, and sonar in a side by side format. The
second interface integrates these three sensor readings in
a pseudo-perspective view, with a representation of the
robot displayed in this view.

We conducted a series of experiments to compare the
two interfaces. In a balanced experiment design with a
randomized schedule, subjects teleoperate a simulated
robot through three mazes while performing a memory
task where they must remember five images. After com-
pleting the maze, subjects complete a memory test by se-

lecting the images they saw before from a list and putting
the images in order.

4.1 Methods

As in the previous case study, the model of joystick an-
gles was based on a Taylor series. Given studies on hu-
man control characteristics, we used a sample interval of
150ms and averaged all joystick angles within a 150ms
window as our sample. Given the series of joystick an-
gles, we created the prediction error density using the
difference between the predicted value and the observed
value. From the set of prediction error densities (one for
each maze and for each interface), it is necessary to iden-
tify a baseline density from which bins are created. We
did this by having each subject guide the robot through
one maze without performing the memory task using
the side by side interface. Prediction errors from this
entire data set were then used to create the bins used to
determine entropy using the technique described in the
previous case study.

4.2 Results

The following data were collected for 32 subjects: time
to guide a robot through a maze, behavioral entropy, av-
erage velocity, number of collisions, and performance on
a memory task. (Most likely, the memory tasks were not
hard enough because about 70% of the test subjects aced
the memory task.) With the exception of the memory
task, for which we did not get any meaningful data, all
of these measures demonstrate that the new interface is
effective for helping people control a robot.

Figure 5 summarizes the data, and shows that the side
by side interface is inferior to the perspective interface
for each measurement. These findings support the con-
clusion that behavioral entropy is a useful measure for
determining when one interface is more difficult to use
than another. Moreover, the data is strongly supported



Figure 5: A comparison of the performance metrics av-
eraged over all subjects and all test worlds.

by the number of collisions experienced; the number of
collisions using the side by side display were more than
doubled the number of collisions using the perspective
display.

The perspective interface tends to be easier to use be-
cause it helps people predict where the robot will be
heading and updates this information frequently. The
side by side interface requires people to do their own
prediction and only updates sensor values when new in-
formation is received. Using the side by side interface
caused people to change their control input when new in-
formation was received from the robot. This causes the
position of the joystick to be somewhat erratic and jump
from position to position. People driving the perspective
interface often make more frequent but less dramatic cor-
rections. This can be attributed to lower workloads or
finer control.

5 Case Study 3: Using Behav-
ioral Entropy to Build an In-
terface

In this section, we present a case study that uses a real-
time estimate of behavioral entropy as a major factor in
constructing an estimate of driver workload. This work-
load estimate is then used to learn haptic control policies
for an accelerator pedal that increase the safety of the
driver without significantly increasing workload. We use
the ability of reinforcement learning to detect patterns in
stochastic reinforcers to support the conclusion that the
real-time estimate of behavioral entropy contains useful
information about when people have workload spikes.

5.1 Methods

In the experiment, subjects followed an erratic lead vehi-
cle with and without the learned force profile. During the
experiment, subjects solved two-digit arithmetic prob-
lems that appeared on the simulator by pushing buttons
on the steering wheel.

We trained an artificial agent using satisficing Q-
learning, a dual attribute version of the standard Q-
learning algorithm, to minimize workload while preserv-
ing safety. This was done by creating the following di-
chotomous goals: Goal #1: Don’t allow the vehicle to
experience a crash or a near-crash. Goal #2: Reduce
driver workload as much as possible. Clearly, these two
goals are in conflict with each other whenever the vehi-
cle is in a non-trivial situation. Goal #1 was realized by
penalizing policies that lead to a collision or near colli-
sion. Goal #2 was realized by only rewarding actions
that induced a low user workload. Both behavioral en-
tropy and impedance (i.e. the extent to which interface
actions directly opposed driver actions) were used to es-
timate driver workload and determine whether actions
produced a workload low enough to be rewarded.

5.2 Results

A control policy for a force-feedback gas pedal was
learned using the methodology described above. En-
tropy of the accelerator pedal position was calculated in
real-time and combined with instantaneous impedance
to form an estimate of driver workload. This estimate of
driver workload was compared against baseline driving
and empirically chosen thresholds to determine whether
an action induced too much workload to be rewarded.
The learning algorithm was trained during ten minutes
of exploratory driving by a single operator who allowed
several rear-end collisions to occur in order to propa-
gate penalty data throughout the state space. The agent
learned to balance driver workload with expected risk,
applying forces to the pedal only in states where experi-
ence demonstrated it to be useful.

Test subjects responded enthusiastically to this hap-
tic support. Pedal entropy remained similar to drivers
that were in unassisted trials, but the overall safety (as
measured by time spent with time to contact less than
0.7 seconds) was reduced by 45%. Using high entropy to
prevent rewarding an action during the training period
was very helpful in this context, as the agent learned a
control policy that informed the user of danger without
significantly increasing overall entropy. This evidence
supports the conclusion that the online estimate of be-
havioral entropy contained useful information about the
workload experienced by a distracted driver with and
without force feedback support. This evidence is bol-
stered by plotting the prediction error density functions



and noting that the density corresponding to no forces
is shorter and fatter than the other; these densities were
shown in Figure 1.

6 Discussion and Future Work

In this paper, we presented three case studies that
demonstrated how behavioral entropy can be used in
HRI studies. These case studies showed that behavioral
entropy reliably predicted workload and correlated well
with other measures of human performance. The third
case study also demonstrated how a real-time estimate of
behavioral entropy provided useful information to a ma-
chine learning algorithm; this algorithm decreased the
number of near collisions in a driving simulator without
increasing subjective workload.

Two areas of future work need to be explored before
entropy can be used widely. First, a guide for selecting
parameters in the entropy computation algorithm need
to be identified. These parameters include what mod-
els should be chosen, how model parameters should be
chosen, how binning should be performed, and how a
window size for real-time entropy estimates should be
selected.

Second, the relationship between entropy and other
human factors measures should be better established.
This includes researching how average entropy or its vari-
ations (e.g., peak entropy, minimum entropy) correlate
with, for example, trust, neglect tolerance, interface ef-
ficiency, and so on.
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