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Modeling of Technical Spray Flames

Detailed Chemistry
Gas Phase

Droplet Vaporization

Separated Flow

Drop Trajectories



Why Detailed Chemistry?

Detailed Chemical Reaction Mechanisms are Available for a Considerate 
Number of Relevant Combustion Systems (Alcanes, Alcohols, Hydrogen/Air, 
Hydrogen/Oxygen, …)

• Combustion of liquid fuel sprays in air (e.g. internal engine combustion, 
industrial furnaces, gas turbine combustors)

• Liquid oxygen in (gaseous) hydrogen (liquid rocket propulsion)

• Liquid oxygen in gaseous hydrocarbons or alcohols (green propellants)



Advantages of Using Detailed Chemistry:

Mechanism is independent of the experimental configuration, 
it depends only on pressure (not for hydrogen/air or hydrogen/oxygen)

Mechanism is the base for development of reduced mechanisms 
(both manually or automatically developed systems)

Prediction of pollutants and precursors of soot formation

Disadvantages of Using Detailed Chemistry:

Stiffness of the conservation equations
Consume a considerable amount of computer time

Applications:

Laminar Flames:   Detailed mechanisms can be implemented directly for 
hydrogen and small hydrocarbons and alcohols

Turbulent Flames: Detailed chemistry may be implemented through use
of the flamelet model



Modeling of Laminar Spray Flames 
in the Counterflow Configuration

Motivation:

Investigation of laminar spray flame 
structures using detailed models for instance 
for chemical reactions

Flamelet modeling of turbulent spray 
diffusion flames

Properties:
- Planar or axisymmetric

- Two-dimensional

- Strained
Liquid Fuel Spray/

Air

Air



Detailed Versus One-Step Chemistry
n-Heptane/Air Spray Flame at Atmospheric Pressure

a = 500/s

Detailed Chemistry:

Solid Lines, Square 

One-Step Chemistry:

Dashed Lines, Triangles

⇒ One-Step Chemistry is not Suitable to Correctly Predict Even the Outer Flame Structure

Gutheil, E., Sirignano, W. A.: Counterflow Spray Combustion Modeling Including Detailed Transport and Detailed 
Chemistry, Combustion and Flame: 113(2), 92-105 (1998).



Mathematical Model

Gas-phase with dilute spray

Boundary layer approximation, low Mach number

Dimensionless, steady equations

Similarity transformation ⇒ 2D → 1D equations  

Ideal gas law

Detailed chemical reaction mechanisms. 

H2/O2 (8 species and 38 elementary reactions)

methanol/air (23 species and 170 elementary reactions) 

Detailed transport: molecular diffusion and thermo diffusion

Gas-phase properties between 300 and 5000 K from NASA polynomials

Physical properties of H2 and O2 in the range of 80 to 300 K and 1 to 200 bar

from JSME tables



Mathematical Model

Liquid phase

Mono-, bi- and polydisperse sprays,  single-component sprays

Discrete droplet model

Spherically symmetric droplets  

Convective  droplet model for heating and vaporization (Abramzon-Sirignano model)

Pressure and temperature dependent heat of vaporization

Assumption of thermodynamic equilibrium:

- Ambrose’s equation for the evaluation of the vapor pressure for methanol/air

- Calculation of binary H2/O2 mixtures to obtain the gas mixture composition    

at the interface (replacement of Raoult’s law)

Droplet motion (drag) 



Physical Properties of Oxygen (Cryogenic, High Pressure)

Yang, V., Lin, N.N. , Shuen, J.S. , Combust. Sci. and Tech., 97: pp. 247-270, 1994
JSME Data Book, Thermophysical Properties of Fluids, 1983.
Prausnitz, J.M., Lichtenthaler, R.N., de Avezedo, E.G. , Molecular Thermo-dynamics of Fluid-Phase Equilibria, Prentice-Hall, New Jersey, 1986.
Litchford, R.R., Jeng, S.M., AIAA Paper 90-2191, 1990.



H2/Air Spray Flame at Atmospheric Pressure

p = 1 bar, T+ = Τ− = 300 Κ, a = 100/s

Symbols: Experiment: T. M. Brown et. al., 
Combust. Sci. and Tech., Vol. 129, pp. 71-88, 
1997.

• Experiment: Sohn, C. H., Chung, S. H., Lee, S. R., Kim, J. S., 
Combustion and Flame, 115 (3): 299-312, 1998.



LOX/H2 Spray Flame

bidisperse monodisperse

p = 30 bar, Φ  = 6, a = 3,000/s (spray side), RΑ,0 = 10 µm, RΒ,0 = 25 µm, SΜR0 = 14.3 µm

Schlotz, D., Gutheil, E.: Modeling of Laminar Mono- and Bidisperse Liquid Oxygen/Hydrogen Spray Flames in the 
Counterflow Configuration, Combustion Science and Technology, 158, 195-210 (2000).
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LOX/H2 Spray Flame
Chemical Reaction Rate and Vaporization Rate

p = 30 bar, Φ  = 6, a = 3,000/s (spray side), RΑ,0 = 10 µm, RΒ,0 = 25 µm, SΜR0 = 14.3 µm

Schlotz, D., Gutheil, E.: Modeling of Laminar Mono- and Bidisperse Liquid Oxygen/Hydrogen Spray Flames in the 
Counterflow Configuration, Combustion Science and Technology, 158, 195-210 (2000).



Multiple Structures of Spray Flames
Methanol/Air Spray Flame at Atmospheric Pressure

a = 100/s

Gutheil, E.: Multiple Solutions for Structures of Laminar Counterflow Spray Flames, Progress in Computational 
Fluid Dynamics, 2004, to appear.



Multiple Structures of Spray Flames
Methanol/Air Spray Flame at Atmospheric Pressure

a = 300/s

Gutheil, E.: Multiple Solutions for Structures of Laminar Counterflow Spray Flames, Progress in Computational 
Fluid Dynamics, 2004, to appear.



Methanol/Air Spray Flame at Atmospheric Pressure

a= 500/s

Gutheil, E.: Multiple Solutions for Structures of Laminar Counterflow Spray Flames, Progress in Computational 
Fluid Dynamics, 2004, to appear.



Multiple Structures of Spray Flames
Methanol/Air Spray Flame at Atmospheric Pressure

a = 300/s

Gutheil, E.: Multiple Solutions for Structures of Laminar Counterflow Spray Flames, Progress in Computational 
Fluid Dynamics, 2004, to appear.



Comparison: Gas-Sided Flame and Pure Gas Flames
Methanol/Air Spray Flame at Atmospheric Pressure

a = 300/s

Gas Side (Spray Flame) Gas Flame

Gutheil, E.: Multiple Solutions for Structures of Laminar Counterflow Spray Flames, Progress in Computational 
Fluid Dynamics, 2004, to appear.



Methanol/Air Spray Flame at Atmospheric Pressure

Comparison of Spray and Gas Flame

Gutheil, E.: Multiple Solutions for Structures of Laminar Counterflow Spray Flames, Progress in Computational 
Fluid Dynamics, 2004, to appear.



Structures of Laminar Spray Flames in the 
Counterflow Configuration

• The LOX/H2 Spray Flames are very stable and persist to strain rates of 25,000/s.
The non-monotonicity of the gaseous oxygen profile on the spray side stems from    
the competition of vaporization and combustion.

• Multiple structures of methanol/air spray flames have been found for strain rates    
up to 400/s. The inner structure of the gas-sided flame is the same as a pure gas
flamelet with appropriate initial conditions.

• At high strain, the gas-sided flame is extinguished and the spray-sided flame moves 
towards the gas-side of the counterflow configuration.

Question: How does the finding affect models such as the flamelet model 

for turbulent spray diffusion flames?



Library of laminar flame structures 
in the counterflow configuration

Turbulent Flame

Flamelet-Model for Turbulent Diffusion Flames
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Laminar Spray Flame Structures for Use in Flamelet Models for 

Turbulent Spray Diffusion Flames (Methanol/Air)

LHS: Gas Flamelets

RHS: Spray Flamelets

Experiment: McDonell V.G., Samuelsen, G.S., UCI-Laboratory Report UCI-ARTR-90-17A-C (1990)

Simulation: Hollmann, C., Gutheil. E., Combust. Sci. and Tech. 135 1-6, 175 (1998).



Modeling of Turbulent Spray Flames

Replace by Pure 
Gas Flamelet

Leads to Simplification 
of Implementing 
Laminar Spray Flamelets



Modeling of Turbulent LOX/H2 Spray Flames
Micro Combustion Chamber M3 (DLR Lampoldshausen)

OH-Emission, p = 5 bar, T0 = 100 K

140 mm

Sender, J., et al., Proceedings of the 13th Annual Conference on Liquid Atomization on Spray Systems, Florence, Italy, 
145-154 (1997).



Modeling of Turbulent Spray Flames

Experiment: Sender, J., et al., Proceedings of the 13th Annual Conference on Liquid Atomization on Spray Systems, 
Florence, Italy, 145-154 (1997).
Simulation: Schlotz, D., Brunner, M., Gutheil, E.: Modeling of Turbulent LOX/H2 Combustion under Cryogenic and
Elevated Pressure Conditions, ILASS Europe Conference, Zürich, September 2-6 (2001).



Modeling of Turbulent Spray Flames

Experiment: Sender, J., et al., Proceedings of the 13th Annual Conference on Liquid Atomization on Spray Systems, 
Florence, Italy, 145-154 (1997).
Simulation: Schlotz, D., Brunner, M., Gutheil, E.: Modeling of Turbulent LOX/H2 Combustion under Cryogenic and
Elevated Pressure Conditions, ILASS Europe Conference, Zürich, September 2-6 (2001).



Mixing in Turbulent Sprays
• The β-function that is typically used to describe the mixing in turbulent diffusion 

flames does not perform well in regions where vaporization is present1.

• Here: Modification of the description of the β-function through use of a transport 
equation for the probability density function of the mixture fraction,   , in turbulent 
sprays2:
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1Miller R.S. Bellan, J. On the Validity of the Assumed Probability Density Function Method for Modeling Binary Mixing/ 
Reaction of Evaporated Vapor in Gas/Liquid-Droplet Turbulent Shear Flow, Proc. Combust. Inst. 27: 1065-1072, 1998.
2Ge, H.-W., Gutheil, E.: PDF Simulation of Turbulent Spray Flows, Atomiz. Sprays, 2004, submitted.
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Mixing in Turbulent Methanol/Air Sprays
Methanol Vapor Fraction and PDF of the Mixture Fraction

Ge, H.-W., Gutheil, E.: PDF Simulation of Turbulent Spray Flows, Atomiz. Sprays, 2004, submitted.



Probability Density Functions at Various Positions

Ge, H.-W., Gutheil, E.: PDF Simulation of Turbulent Spray Flows, Atomiz. Sprays, 2004, submitted.

P(ξc ) =
Γ(α + β)
Γ(α)Γ(β)
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Comparison of Results with Presumed and 
Monte-Carlo PDF, and with Experiment

x = 25 mm x = 50 mm

Experiment: McDonell, V. G. and Samuelsen, G.S., An Experimental Data Base for Computational Fluid Dynamics 
of Reacting and Nonreacting Methanol Sprays, J. Fluids Engin. 117: 145-153, 1995.

Simulation: Ge, H.-W., Gutheil, E.: PDF Simulation of Turbulent Spray Flows, Atomiz. Sprays, 2004, submitted.



• LOX/H2 spray flames in the counter-flow configuration have been studied, and the 
gaseous oxygen profile shows a non-monotonic behavior because of the high reactivity 
of the system. The flames persist to strain rates up to 25,000/s, and extinction has not 
yet been found.

• Multiple structures of laminar methanol/air counter-flowing spray flames have been 
identified at low strain rates up to 400/s on the spray side of the configuration for the 
present conditions. The gas-sided spray flame shows the same inner structure as a pure 
gas flamelet with appropriate boundary conditions, and this simplifies the 
implementation of the flamelet model for turbulent spray diffusion flames.

• The assumed β-function for the turbulent mixing in spray flames is poor in regions 
where vaporization exists, and it has been replaced by a PDF transport equation for the 
mixture fraction. A modified β-function is suitable to predict the shape of the PDF of 
the mixture fraction.

Summary and Conclusions



• Extension of the model to unsteady flamelets

• Application of the PDF method to turbulent spray flame simulations

• Extension to other liquids

Future Research




