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DOD Prostate Cancer Research Program Principal Investigator: Lei Xinq, Ph.D.

I. INRTODCUCTION

This Idea Award (PC040282, entitled "Prostate Dose Escalation by Innovative Inverse Planning-

Driven IMRT") was awarded to the principal investigator (PI) for the period of Nov 1, 2004-Oct. 31,

2007. This is the annual report for the first funding period (Nov. 1, 2004 - Oct. 31, 2005). The goal of this

project is to improve current prostate IMRT by establishing a novel inverse planning framework with non-

uniform intra-structural penalty distribution. The specific aims of this project are (1) To establish an

effective inverse planning algorithm with spatially non-uniform importance factors for prostate IMRT; and

(2) To demonstrate the impact of the novel inverse planning formalism for prostate irradiation by using 15

previously treated prostate cases. Under the generous support from the U.S. Army Medical Research and

Materiel Command (AMRMC), the PI has assembled a rigorous research team and setup a necessary

infrastructure needed for the proposed research. We have contributed significantly to prostate cancer

research by applying physics and engineering knowledge to prostate cancer research. A number of

significant conference abstracts and refereed papers have been resulted from the support. The preliminary

data obtained under the support of the grant has also enabled the PI to start new research initiatives and

significantly advanced the prostate radiation therapy. In this report, the past year's research activities of the

PI are highlighted.

II.RESEARCH AND ACCOMPLISHMENTS

The success of prostate Intensity modulated radiation therapy (IMRT) depends critically on the

performance of inverse planning system. As it is practiced now, however, the capacity of IMRT is greatly

underutilized because of the inferior performance of the inverse planning algorithms. While many techniques

exist for inverse planning and, in all cases, optimizations are claimed to be successful, the plans computed by

these so-called optimization systems are often out of the expectation of the physicians and multiple trial-and-

errors are required. On a more fundamental level, we recently found that the existing inverse planning suffers

seriously from the tacit ignorance of intra-structural tradeoff. As a result of this deficiency, the IMRT plans

generated by these systems for prostate treatment are, at best, sub-optimal and our endeavor of providing the

best possible patient care is compromised. We are systematically investigating the role of this unexplored

issue in inverse planning and develop innovative techniques to incorporate the intra-structural tradeoff into

prostate IMRT inverse planning. By adequately modeling the effect, it is anticipated that the dose to the

prostate tumor volume can be escalated by more than 10% while maintaining the radiation toxicity at the

current level of IMRT prostate treatment (conversely, the dose to the rectum and/or bladder can be reduced

greatly if the target dose is kept at the present level). If successful, the conformality of IMRT prostate
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treatment will no longer be set by the non-optimal performance of the dose optimization algorithms, but by

the physical limit of IMRT. Toward the general goal of improving IMRT inverse planning and treatment of

prostate cancer, we have done substantial work in the past year. The research is sorted into four categories

and summarized below.

Using a priori clinical outcome data to improve inverse planning. IMRT plan ranking is, to a certain

degree, subjective and the solution depends strongly the selection of models for inverse planning. Voxels

within a target or a sensitive structure volume are generally not equivalent in achieving their dosimetric

goals in IMRT planning. Inverse planning objective function should not only balance the competing

objectives of different structures but also that of the individual voxels in various structures. While it is

permissible for each voxel to have its own importance value, a challenging problem is how to obtain a

sensible set of importance factors with a manageable amount of computing. One of the most effective ways

to accomplish a spatially non-uniform penalty scheme is to incorporate existing clinical knowledge into

inverse planning process. We have developed a formalism to integrate clinical endpoint data to better guide

the inverse planning optimization process. In this work, we have developed a new formalism that is

biologically more sensible yet clinically practical for IMRT inverse planning. In this formalism the dose-

volume status of a structure is characterized by using the concept of effective volume in the voxel domain

and an objective function with incorporation of the volumetric information is then constructed. The new

planning tool was applied to study a hypothetical phantom case and a prostate case. Compared with the

conventional inverse planning technique, we found that, for the same target dose coverage, the critical

structure sparing was substantially improved for all testing prostate cases. This work was reported as an

oral presentation in 2005 Annual Meeting of American Association of Physicists in Medicine (AAPM) at

Seattle, WA, and a manuscript reporting the details of the work is in progress.

Evaluation of prostate IMRT dose delivery using Kilovolt (kV) onboard cone beam computed

tomography (CBCT): kV CBCT based on flat-panel technology integrated with linear accelerator has

recently become available from linac vendors for therapy guidance. Currently, the system is primarily

utilized to guide the patient alignment. As an advanced tool of obtaining a patient's 3D representation,

CBCT also affords an effective means for us to examine the actual dose distribution to be delivered or

already delivered to the patient on a daily basis. We have recently evaluated the accuracy of kV CBCT-

based dose calculation and addressed some logistic issues related to the application for prostate IMRT. In

reality, image quality of current CBCT is not as good as conventional diagnostic CT due to the scatter and
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reconstruction artifacts, which may lead to significant dosimetric inaccuracy. We investigated the

feasibility and accuracy of CBCT-based dose calculation and to proposed a deformable electron density

mapping (DEDM) method that is potentially useful to facilitate CBCT-based dose calculation. In the

proposed DEDM technique, the CBCT and planning CT are first registered by using a deformable image

registration model. The electron density distribution is then mapped from the planning CT to the CBCT.

For prostate IMRT, our results agree with the planned dose distributions to within 3%. The use of DEDM

reduces the dosimetric inconsistency between the CBCT-based and CT-based dose calculation down to less

than 1% in both phantom and patient studies. Our technique provides an effective way to ensure that the

planned IMRT dose distribution can be realized in a clinical setting and should have significant impact on

clinical prostate IMRT. It also lay the foundation for future adaptive radiation therapy. This work has been

submitted to Medical Physics for publication (preprint is attached).

Equivalent-uniform dose (EUD)-based IMRT Beam Placement: Beam orientation optimization in

IMRT is computationally intensive and various single beam ranking techniques have been proposed to

reduce the search space. Up to this point, none of the existing ranking techniques considers the clinically

important dose-volume effects of the involved structures, which may lead to clinically irrelevant angular

ranking. We have developed a clinically sensible angular ranking model with incorporation of dose-

volume effects and to show its utility for IMRT beam placement. The general consideration in

constructing an angular ranking function is that a beamlet/beam is more preferable if it can deliver a

higher dose to the target without exceeding the tolerance of the sensitive structures located on the path of

the beamlet/beam. In the previously proposed dose-based approach, the beamlets are treated

independently and, to compute the maximally deliverable dose to the target volume, the intensity of each

beamlet is pushed to its maximum intensity without considering the values of other beamlets. When

volumetric structures are involved (such as the rectum in prostate radiotherapy), the complication arises

from the fact that there are numerous dose distributions corresponding to the same dose-volume tolerance.

In this situation, the beamlets are no longer independent and an optimization algorithm is required to find

the intensity profile that delivers the maximum target dose while satisfying the volumetric constraint(s). In

our study, the behavior of a volumetric organ was modeled by using the EUD. A constrained sequential

quadratic programming algorithm (CFSQP) was used to find the beam profile that delivers the maximum

dose to the target volume without violating the EUD constraint(s). It is shown that the previously reported

dose-based angular ranking represents a special case of the general formalism proposed here. We also

showed that the proposed technique is capable of producing clinically sensible angular ranking for a
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variety of prostate cases. The IMRT plans obtained under the guidance of EUD-based angular ranking

were improved in comparison with that obtained using the conventional uniformly spaced beams. The

EUD-based function is a general approach for angular ranking and allows us to identify the potentially

good and bad angles for clinically complicated cases. The ranking can be used either as a guidance to

facilitate the manual beam placement or as prior information to speed up the computer search for the

optimal beam configuration. Given its simplicity and robustness, the proposed technique should have

positive clinical impact in facilitating the IMRT planning process. This work was reported as an oral

presentation in 2005 Annual Meeting of American Association of Physicists in Medicine (AAPM) at

Seattle, WA. We are currently refinining the technique and applying it to generate class-solution for

IMRT prostate treatment planning.

In addition to the above three projects, we are extending the inverse planning infrastructure for

biologically conformal IMRT. Currently, an inverse planning system that allows us to utilize the spatial

biology distribution does not exist. A theoretical framework to quantitatively incorporate the spatial

biology data into IMRT inverse planning 5 has been established. Biologically conformal radiation therapy

(BCRT) incorporating patient specific biological information provides an outstanding opportunity for us

to truly individualize radiation treatment. The techniques developed in this proposal will find natural

application in the next generation BCRT treatment. Finally, the Idea Award for Prostate Cancer Research

from US Amy Medical Research and Materiel Command also provides a unique educational opportunity

for training junior researcher through the participation of research activities.

III. KEY RESEARCH ACCOMPLISHMENTS

"* Established a theoretical infrastructure for using spatially non-uniform penalty scheme to improve

current IMRT inverse planning.

"* Developed method for incorporating existing clinical knowledge into inverse planning system.

"* Proposed an electron density mapping technique based on deformable image registration to improve

the quality of cone-beam CT images.

Established a robust technique for using onboard cone-beam CT for on-treatment dose validation for

prostate IMRT.

Improved prostate IMRT beam orientation selection procedure by integrating organ specific EUD

data.
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Implemented a biological model-based BCRT inverse planning algorithm that lays the technical

foundation for next generation BCRT treatment.

IV. REPORTABLE OUTCOMES
The following is a list of publications resulted from the grant support in the last funding period.

Refereed publications:
I. Yang Y, Schreibmann E., Li T., King C., and Xing L: "Dosimetric Evaluation of kV Cone-Beam CT-

based Dose Calculation". Medical Physics, submitted, 2005.
2. Xing, L, Thorndyke B, Schreibmann E, Li T, Yang Y, Kim G., Luxton G, Koong, A, Overview of

image guided radiation therapy (IGRT), Medical Dosimetry (invited review), to appear in March,
2006.

3. Xia P, Yu N, Xing L, Syn X, Verhey, L: "Investigation o a new objective function for inverse
planning optimization". Medical Physics 32, 920-927, 2005.

4. Schreibmann E and Xing L: "Image registration with auto-mapped control volumes". Medical Physics.
Submitted.

5. Xing L, Levy, D. and Yang Y., Incorporating clinical outcome data into inverse treatment planning,
Medical Physics, manuscript in preparation.

6. Levy D, Paquin D., Schreibmann E., Xing L, Multiscale registration of medical imaging, IEEE
Transactions on Medical Imaging, to be submitted.

Book Chapter:
I. Xing L., Yang Y., Spielman D., Molecular/Functional Image-Guided Radiation Therapy, T. Bortfetld,

R. Schmidt-Ullrich, W. de Neve (editors), Spinger-Verlag Heidelberg, Berlin.
2. Xing L, Wu Q, Yong Y and Boyer AL: Physics of IMRT and Inverse Treatment Planning, in Intensity

Modulated Radiation Therapy: A Clinical Perspective, Mundt AF and Roeske JC. (editors), page 20-
51, BC Decker Inc. Publisher, Hamilton, Canada, 2005.

3. Wu QW, Xing L, Ezzel G and Mohan R, Inverse Treatment Planning." In Modern Technology of
Radiation Oncology:II. Van Dyk J (editor), Medical Physics Publishing, Madison, WI, 2005.

4. Song Y, Boyer A, Ma C, Jiang S., Xing L, Modulated Electron Beam Therapy, in Intensity Modulated
Radiation Therapy: A Clinical Perspective, Mundt AF and Roeske JC. (editors), page 327-336, BC
Decker Inc. Publisher, Hamilton, Canada, 2005.

5. Li J and Xing L, Radiation Dose Planning, Computer-Aided, in Encyclopedia of Medical Devices and
Instrumentation, John G. Webster (editor), John Wiley & Sons, in press.

Conference abstract:
1. Xing, L. and Spielman D, MRI/MRSI and Radiation Therapy Treatment Planning, 2005 AAPM

Annual Meeting, Seattle, WA (invited talk).
2. Schreibmann E. and Xing L., EUD-based beam orientation optimization, oral presentation in 2005

AAPM Annual Meeting, Seattle, WA.
3. Xing L, Levy, D. and Yang Y., Incorporating clinical outcome data into inverse treatment planning,

oral presentation in 2005 AAPM Annual Meeting, Seattle, WA.
4. Yang Y, Schreibmann E., Li T., King C., and Xing L: "Dosimetric Evaluation of kV Cone-Beam CT-

based Dose Calculation". oral presentation in 2005 AAPM Annual Meeting, Seattle, WA.
5. Yang Y. and Xing L, Prescription for biologically conformal radiation therapy, poster presentation in

2005 AAPM Annual Meeting, Seattle, WA.
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6. Schreibmann E, and Xing L: "Image registration with auto-mapped control volumes". Poster
presentation in 2005ASTRO annual meeting, Denver.

7. Yang Y and Xing L: "Optimization of radiation dose-time-fractionation scheme with consideration of
tumor specific biology", poster presentation in 2005ASTRO annual meeting, Denver, CO.

V. CONCLUSIONS

An infrastructure has been established to execute the proposed research. Novel IMRT inverse

planning and validation techniques are being developed for the treatment of prostate cancer. A few

important milestones have been achieved toward the general goal of the project. These include (i)

established a theoretical infrastructure of spatially non-uniform penalty scheme for inverse planning; (ii)

developed method for incorporating existing clinical knowledge into inverse planning; (iii) proposed an

electron density mapping technique to improve the quality of cone-beam CT (CBCT) images; (iv)

established a robust technique for using onboard CBCT for on-treatment IMRT dose validation; (v)

improved prostate IMRT beam orientation selection by integrating organ specific EUD. We have also

implemented a biological model-based BCRT inverse planning algorithm that lays the technical foundation

for next generation BCRT treatment. Integration and further refinement of the above tools are underway. It

is expected these tools will substantially improve the current prostate IMRT treatment.
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Abstract

Kilovolt (kV) CBCT based on flat-panel technology integrated with linear accelerator has

recently become available from linac vendors for therapy guidance. Currently, the system

is primarily utilized to guide the patient alignment. As an advanced tool of obtaining a

patient's 3D representation, CBCT also affords an effective means for us to examine the

actual dose distribution to be delivered or already delivered to the patient on a daily basis.

Before this can be implemented clinically, the accuracy of kV CBCT-based dose

calculation must be evaluated and some logistic issues related to the application need to

be addressed. Indeed, image quality of current CBCT is not as good as conventional

diagnostic due to the scatter and organ motion artifacts, which lead to significant

dosimetric inaccuracy. This work is aimed to investigate the feasibility and accuracy of

CBCT-based dose calculation and to propose a deformable electron density mapping

(DEDM) method that is potentially useful to facilitate CBCT-based dose calculation. In

the proposed DEDM technique, the CBCT and planning CT are first registered by using a

deformable image registration model. The electron density distribution is then mapped

from the planning CT to the CBCT. The CBCT with •the mapped electron density

information serves as the backbone for more accurate CBCT-based dose calculation. For

disease sites where intra-fractional organ motion is not an issue, this study indicates that

CBCT can be employed directly for dose calculation without relying on the DEDM and

the results agree with the planned dose distributions to within 3%. On the other hand, in

the presence of motion artifacts, the Hounsfield number distribution can altered

substantially and, as a result, it is found that the dosimetric inaccuracy can be more than

5% when the bare CBCT is used. The use of DEDM reduces the dosimetric inconsistency

between the CBCT-based and CT-based dose calculation down to less than 1% in both

phantom and patient studies. While the true solution to the hurdle lies in the effective

removal of motion artifacts in CBCT, the DEDM approach seems to afford a useful

interim technique for improved CBCT-based dose calculation.

Key word: CBCT, IGRT, Dose verification, Deformable registration
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I. Introduction

Modern radiation therapy techniques, such as 3D conformal radiotherapy (3DCRT) and

intensity-modulated radiation therapy (IMRT), provide unprecedented means for

producing exquisitely shaped radiation doses that closely conform to the tumor

dimensions while sparing sensitive structures. As a result of greatly enhanced dose

conformality, more accurate beam targeting becomes an urgent issue in radiation therapy.

In current practice, large uncertainties exist in tumor target localization due to intra- and

inter-organ motions during the course of radiation treatment. As thus, large safety

margins around the tumor targets and sensitive structures are introduced to cope with the

otherwise insoluble patient localization problem. The use of non-optimal margins

compromises the patient care and adversely affects the treatment outcome1 -6. The need

to improve targeting in high precision radiation therapy has recently spurred a flood of

research activities in image-guided radiation therapy (IGRT)7- 1 1.

CBCT based upon flat-panel technology integrated with a medical linear

accelerator has recently become available from Linac vendors for therapy guidance. The

volumetric images may be used to verify and correct the planning patient setup in the

linac coordinates by comparing with the patient position defined in treatment plan. Both

kV and MV beams12 , 13 have been utilized for this application. The former typically

consists of a kV-source and flat-panel combination mounted on the drum of a medical

accelerator 7-11, with the kV imaging axis orthogonal to that of MV therapy beam. In

addition to guide the patient setup process, CBCT data acquired prior to the treatment

can, in principle, be used to recalculate or verify the treatment plan for the patient

anatomy of the treatment day. The recalculation starts with the intended fluence maps

from the patient's treatment plan, whereas the verification is done by using the fluence

maps measured at the exiting sides of the incident beams. If CBCT-based dose

calculation is accurate enough (say, with an accuracy within 3%), this will provide a

valuable option for us to predict/assess the patient dose on a daily basis. In reality,

because of the presence of organ movement/deformation, it is conceivable that the dose

distributions delivered to the patient are usually different from fraction to fraction. It is

paramount to be able to monitor the actual patient dose for each fraction as well as the

accumulated doses to the target and sensitive structures while the fractional treatment
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proceeding. This will not only give physician more confidence about the treatment but

may, in future, afford us an effective means to adaptively modify the patient's treatment

plan during the course of a radiation therapy based on the dose that has already been

delivered.

The accuracy of MV fan-beam and cone-beam CT has recently been assessed by

Langen et a114 and Poulliot et al 13. The potential of its counterpart, the kV CBCT, for

dosimetric calculation has, on the other hand, not been examined systematically. The

purpose of this work is two-fold: to evaluate the dosimetric accuracy of kV CBCT-based

dose calculation and to explore a deformable electron density mapping strategy for

improving the performance of the calculation. For disease sites where intra-fractional

organ motion is not an issue, the general reference drawn from this study is that it is

adequate to directly use current CBCT for dose calculation because the dosimetric

inaccuracy is generally less than 3% as compared with that based upon the conventional

CT. On the other hand, when dealing with regions in the thorax or upper abdomen, the

motion artifacts in CBCT are found quite severe and significant dosimetric errors (-5%)

are observed. In this situation, the deformable electron density mapping method seems to

be valuable for more accurate CBCT-based dose recalculation.

II. Method and Materials

A. Data acquisition

The on-board imager (OBI) integrated in a TrilogyTM medical linear accelerator (Varian

Medical Systems, Palo Alto, CA) is used in this work to acquire CBCT images. The kV

OBI system is capable of obtaining low-dose, high-resolution radiography, fluoroscopy

and CBCT. The system is mounted on the treatment machine via robotically controlled

arms, which operate along three axes of motion. It can be automatically positioned using

the robotic technology and control software, making OBI clinically very practical. A 150

kV X-ray tube with maximum 32 ms pulse length for continuous irradiation and

maximum 320 ms pulse length for single pulse is designed for generating high-resolution

images from a moving gantry. The spot of the tube is located at 90' to the MV source and
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100cm from the radiation axis of the accelerator. A 39.7cm X 29.8 cm amorphous silicon

flat-panel X-ray image detector (Varian PortalVisionTM aS1000) mounted opposite the

kV tube is used to acquire digital images with a pixel matrix of 2048 X 1536. Using the

OBI system, the CBCT data can be acquired in two modes: full fan mode and half fan

mode. In the full fan mode, 675 projections are taken during the whole 3640 gantry

rotation with a field of view (FOV) about 26.6 cm in diameter and 17cm in length. The

data acquisition time is about 45 second and the reconstruction time for 340 slices of

512X512 CBCT images with a voxel size of 0.5mm 3 is also about 1 minute on a PC. The

half fan mode is designed to obtain larger FOV. In this mode, about 965 projections are

taken during the 364' gantry rotation and a FOV of 45 cm diameter X 15cm can be

achieved. The data acquisition and reconstruction time for 512X512 CBCT images with a

voxel size of 0.95mm3 using this mode is about double compared with the full fan mode.

B. Calibration of relative electron density

To use CT or CBCT for radiation dose calculation, it is required to relate the Hounsfield

Unit (HU) of the scanner with the actual electron density. A CT-phantom, Catphan-600

module CTP404 (Phantom Laboratory, NY), was used for the calibration of planning CT

(GE Discovery-ST PET/CT scanner, Milwaukee, WI) and CBCT. The CTP404 has a

diameter of 150 mm and contains 17 different sizes of inserts with seven different tissue

substitute materials, air, PMP, LDPE, Polystryrene, Acrylic, Delrin and Teflon,

respectively. Their relative electron densities ranged from 0 to 1.866. A cross section of

the phantom is shown in figure 2. The calibration of a CT scanner involves acquiring CT

images, obtaining average HUs for each inserting materials, and plot the HU as a function

of the relative electron density. For CBCT, it is necessary to calibrate separately for full

and half fan modes because the beam geometry and characteristics of the two types of

scanning modes are different. More details on the calibration procedure can be found in

the manual of Trilogy.

In order to test the stability of the CBCT calibration curve with time, the phantom

was repeatedly scanned every week for two months. The obtained HU vs relative electron

density curves were compared to assess the HU fluctuations with time.
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C. Phantom study

CT and CBCT images of the Catphan-600 phantom were acquired using the procedure

outlined in Sec. II.A. The phantom was placed on a platform that can be set to one-

dimensional cyclic motion with a number of speeds. The axis of the cylindrically shaped

phantom, along which the phantom moves cyclically, was angled from the central axis of

the couch plane by about 15' in order for the on-board imager to "see" or "realize" the

motion when the cylindrical phantom moves. The movement of the phantom produces

motion artifacts in the images and allows us to evaluate the performance of CBCT-based

dose calculation in the presence of organ motion. The full fan mode was used to scan the

phantom. CT and CBCT images of the phantom were acquired with and without motion.

In the former case, the peak-to-peak amplitude of the motion was 0.5 cm and the period

was 4s, which mimics the situation of a patient's breathing motion.

To quantify the difference in the image quality of the CT and CBCT images, we

first analyzed the HU distribution for the four sets of CT images, corresponding to

planning CT and CBCT with and without motion. The influence of phantom motion on

the HU distribution was investigated. The CT and CBCT images were imported to a

Varian Eclipse treatment planning system for dosimetric comparison study. For planning

and evaluation purpose, a hypothetical spherical target with a diameter of 5cm was

created at the center of the phantom and a single 5 X 5cm 2 6MV photon beam was used

to irradiate the target. A simple beam configuration was used here because, in this way,

the results are more intuitively interpretable. Four plans, corresponding to the four

different sets of CT images, were generated using the same target and beam

configuration. The pencil beam convolution dose calculation algorithm implemented in

Varian Eclipse treatment planning system was adopted for dose calculation. The resultant

isodose curves, dose profiles and DVHs were compared.

D. Patient study

A prostate cancer patient and a lung cancer patient were selected for the evaluation study

of CBCT-based dose calculation and to demonstrate the feasibility of the proposed

deformable electron density mapping (DEDM) technique (see next sub-section) for

improved dose calculation accuracy. For the prostate case, the targets included the PTV,
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consisting of the prostate gland with a margin of 6mm and the seminal vesicles. The

critical structures were rectum, bladder and femoral heads. An IMRT plan using five

15MV photon beams with gantry angles of 350, 1100, 1800, 2500, and 3250 (in IEC

convention) was adopted for the prostate case. The plan was normalized to deliver a

prescription dose of 78Gy to 99% the prostate PTV and no less than 50Gy to the 98% of

seminal vesicles in 39 fractions. For the lung cancer case, the PTV consisted of the CTV

with a margin of 10mm. The critical structures involved were the right lung and the

spinal cord. A conventional 3D conformal plan with three 15MV photon beams (45',

1800 and 288' in IEC convention) was generated for this case. In this plan, the field shape

of each beam was determined by conforming the PTV projection in the corresponding

beam direction. The plan was normalized to deliver a prescription dose of 70Gy to 100%

of the target volume in 35 fractions. The CBCT images of the patients were obtained

using the half fan mode. The CT and CBCT images were registered using a rigid image

registration package provided in the Eclipse treatment planning system. For each case,

the IMRT or 3D CRT planning parameters, which include beam configuration, MU

settings, and MLC files, used for treatment were employed to recalculate the dose based

on the CBCT data. The CT and CBCT-based treatment plans were then compared.

E. Deformable electron density mapping

The dosimetric inaccuracy of CBCT-based dose calculation in thorax and abdomen arises

from the inability of the CBCT technique to provide accurate HU or relative electron

density distribution, primarily due to organ motion induced artifacts. The genuine

solution to the problem lies in the improvement of the CBCT acquisition technology so

that artifact-free images can be acquired. While this endeavor is still on-going, here we

propose an interim solution for dealing with the problem. Under the assumptions that the

HU or relative electron density distribution is known from planning CT and an acceptable

geometric registration between CT and CBCT is achievable by a deformable registration,

we propose to map the electron density in the planning CT onto the daily setup CBCT

and then carry out the dose calculation. The CBCT with mapped electron density,

referred to as modified CBCT, possesses the anatomical information of CBCT and yet the

electron density information of the planning CT. Dose calculation based on the modified

7
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CBCT allows us to compute more accurately the delivered dose with the patient in his/her

setup position. The mapping process is described as follows.

A free form spline (BSpline) deformable model 15, 16 was employed to register

the planning CT and CBCT and map the deformed electron density from planning CT to

CBCT. The method was used for several IGRT related projects in our group and others

and its simplicity and accuracy have been demonstrated 17, 18. Briefly, in the BSpline

model, a lattice of user-defined nodes is overlaid on the image. Each node contains a

deformation vector, whose components are to be determined by optimizing a metric

function that characterizes the goodness of the registration. The variables of the metric

function consisted of the coordinates of the BSpline nodes. In this work, a voxel-based

normal cross correlation (NCC) metric was used. A suitable set of node deformations was

determined using the gradient-based algorithm L-BFGS 16, 19, which is known for its

superior performance in large-scale optimization problems. The optimizer iteratively

varies the nodal displacements to optimize the metric. The deformation at any point of

the image is calculated by spline interpolation of closest nodes values. Unlike other spline

models, the BSplines are locally controlled, such that the displacement of an interpolation

point is influenced only by the closest grid points and changing a lattice node only affects

the transformation regionally, making it efficient in describing local deformations. After

the deformable registration, the HU in each voxel in planning CT was mapped to the

corresponding point in the reference CBCT to produce the modified CBCT images.

The feasibility of DEDM technique was evaluated by using the two patients

mentioned above. For this purpose, the CT and CBCT images were registered using the

BSpline model. The targets and sensitive structures contoured on the planning CT were

copied to the CBCT using the defortnable model. For each patient, the treatment plan

parameters were employed to recompute the dose distribution based on the patient's

modified CBCT. The resultant isodose curves and DVHs were evaluated and the level of

improvement in dosimetry due to the use of DEDM was assessed.

III. Results
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A. Calibration of CT and CBCT

The relation between kV HU distribution of CBCT and relative electron dosimetry was

established by using a Catphan-600 CT phantom following the procedure described in

Sec. II.B. The calibration curves for planning CT, half fan and full fan CBCT modes are

shown in figure la. Figure lb compares the calibration curves obtained with an interval

of 1 week during continuous two months for full fan CBCT. No significant fluctuations

were found in the calibration data, which is similar to what have been observed for

MV 14 . The stability of the kV CBCT and electron density calibration is good indicator of

the HU number integrity and the overall performance of the CBCT system.

B. Phantom study

Figures 2a to 2d show the same transverse slices of the CT and CBCT images of the

Catphan-600 phantom with and without motion. The first two panels are the CT and

CBCT images of the phantom in the absence of motion, and the second two show the

same with the phantom motion "switched on". It is seen that the quality of CBCT images

is worse than that of the conventional planning CT, especially in the presence of motion.

The HU profiles of the four images along the two orthogonal lines (lines A-A and B-B as

marked in figure 2) are plotted in figure 3. It is found that the HU profiles of the planning

CT and CBCT normally agree to within 10% in the static situation. On the other hand,

when the motion is "switched on", CBCT shows a much greater level of artifacts (figure

2d) and the HU difference between the conventional CT and CBCT is aggravated, with

the maximum difference reaching several hundred HUs.

Figures 4, 5 and 6 present the dosimetric results calculated using a single 6 MV 5

X 5cm2 photon beam. Figures 4a to 4d depict the dose distributions in a transverse slice

calculated based on the four sets of images given in figure 2. Figures 5a and 5b compare

the dose profiles along the two orthogonal lines (lines A-A and B-B in figure 2), and

figure 6 compares the DVHs of the target for the four different situations. From these

results we find that the dose calculated using planning CT agrees with that of CBCT-

based calculation to within 1.0%, indicating that it is acceptable to use kV CBCT for dose

calculation if no organ motion presents. However, when phantom motion is involved, the

motion induced artifacts significantly influence the HU distribution and thus the accuracy
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of CBCT-based dose calculation. For this simple phantom case, we find that the

discrepancy between the planning CT- and CBCT-based calculations is about 3%, which

is clinically significant. The motion artifacts existing in current CBCT limit the direct use

of CBCT for dose calculation when intra-fractional organ motion is not negligible.

C. Patient study

Figures 7a to 7c show the same transverse slices of the planning CT, CBCT, and

checkerboard image resulting from the deformable registration of the two sets of images

for the prostate case. The modified CBCT obtained by mapping the HUs from the

planning CT to CBCT is shown in figure 7d. Our previous studies have indicated that a

registration accuracy better than 2mm is achievable by using the BSpline deformable

registration technique 16 described in the last section. As can be seen from the

checkerboard overlay, a good registration between CT and CBCT is obtained. Figure 8

shows the isodose distributions for the three types of calculations based on planning CT,

CBCT, and modified CBCT. A comparison of DVHs of PTV, prostate, seminal vesicles,

bladder and rectum is presented in figure 9. The results demonstrate that, while there is

significant dosimetric discrepancy between the results obtained based on the planning CT

and modified CBCT, the results obtained using the CBCT and modified CBCT is similar,

except for the seminal vesicles, in which the DVH difference is somewhat large due to its

relatively small volume and more deformation. Similar phenomenon was also observed

by the MD Anderson group using their daily CT on-rail 9 , 20. In general, the difference

between the planned dose distribution and that computed based on CBCT arises from two

factors: (i) patient positioning error and organ deformation/displacement; and (ii) relative

electron density difference between the two sets of CT images. The small discrepancy

between the doses computed using CBCT and modified CBCT suggests that, in the

prostate case, the second factor is small and it is acceptable to directly use CBCT for dose

calculation. The dosimetry is predominantly determined by the accuracy of patient setup

and the level of interfractional deformation /displacement of the prostate, rectum and

bladder.

Figure 10a to 10d show the same transverse slice from the planning CT, CBCT,

checkerboard overlay of the planning CT and the modified CBCT for the lung cancer
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case. Figures 11 and 12 compare the isodose distributions and the DVHs of the target and

sensitive structures calculated based on the three sets of images for the three-beam 3D

conformal treatment plan. In this case, the dosimetric discrepancy between the CBCT-

and modified CBCT-based calculations is much larger than that in the prostate case,

especially for the right lung and PTV. The maximum dose difference is about 5%.

However, the discrepancy between the results obtained using planning CT and modified

CBCT becomes much less. This study exemplifies that, unlike the prostate case, the

dosimetric inaccuracy arising from the inferior image quality of CBCT in the dose

verification calculation. The motion artifacts not only make it difficult to see the extent of

the tumor, but also limit the direct use of CBCT for dose calculation.

IV. Discussion

The feasibility and accuracy of using kV CBCT to calculate dose have been investigated

with a phantom and two clinical cases. In the absence of motion artifacts, it seems to be

acceptable to directly use CBCT for dose verification calculation. Otherwise, extra

caution is required to avoid significant dosimetric inaccuracy. To cope with the problem

of deteriorated imaging quality of CBCT in the presence of organ motion, a DEDM

method has been proposed to map the electron density information from the patient's

planning CT to the setup CBCT with a deformable image registration. In IGRT, since the

registration has to be done for the purpose of patient setup, the computational overhead of

introducing DEDM is minimal. Before an effective CBCT motion artifacts removal

technique is in place, DEDM provides a useful interim solution to the problem.

Dose distributions computed based on CBCT and modified CBCT represent the

dose to be delivered to the patient because the CBCT was acquired prior to the patients'

treatments after the patients were repositioned/shifted using the patient setup procedure in

current practice. In the prostate IMRT plan, the inherent dosimetric error resulted from

the use of CBCT images is small. However, the dosimetric error caused by the inter-

fractional organ motion/deformation is not insignificant, as revealed by using dose re-

calculation results given in the last section. A few groups are working on deformable

model based segmentation and patient setup procedures 16 , 9, 21, 22. When deformable
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registration is used, there are a few options to achieve the registration depending on

whether the primary aim is to match soft-tissue, or to align 3D bony structures. The

multiple choices resulting from the fact that the dimensionality of the patient data is much

greater than that in the patient setup procedure and suggest that deformable registration is

not the ultimate solution to volumetric image-guided radiation therapy. The technique

improves the current body-structure-based patient alignment method since it partially

takes into account organ deformation by achieving the closest overlay match possible

between the planning and CBCT data sets according to our clinical objective, and provide

an improved potion positioning technique. We should emphasize that, even when 3D

volumetric based deformable registration is available in the future, the problem of patient

positioning will not disappear as relative organ deformations/displacements may well

persist. A possible solution to accommodate various factors mentioned above is for us to

re-optimize or tweak the IMRT plan based on the patient's setup CBCT. Indeed, in order

to fully utilize the CBCT volumetric data, a new paradigm with seamlessly integrated

simulation, planning, verification, and delivery procedure is urgently needed. Until this is

realized clinically, the volumetric imaging is nothing but an expensive extension of the

existing planar verification approach.

For the lung 3D conformal plan, we found that the dosimetric error for the target

from the organ interfractional motion/deformation and intrafractional motion is small.

The main reasons are that the organ interfractional motion/deformation is not as

significant as that in the prostate case and enough margins are given in the 3D conformal

plan. Furthermore, the dose distribution in the target is more uniform in this case.

However, the dosimetric error from the lower quality of the CBCT images becomes

larger since the influence of the intrafractional motion on the CBCT image quality. In this

situation, it is suggested that, in order to accurately evaluate the delivered dose

distributions, the deformed CT images generated using the proposed deformable electron

density mapping technique are required to replace the original CBCT images for the task

of dose verification calculation.

V. Conclusion
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On-board CBCT provides useful volumetric anatomy information for patient positioning

verification. When used for dose verification calculation, it is required to have a reliable

HU to electron density curve. Our phantom and patient study have indicated that, in the

absence of motion artifacts, the dosimetric inaccuracy is generally less than 1% as

compared with the calculation of the treatment planning system. The dosimetric errors

are much more pronounced when intra-fractional organ motion is present. In this

situation, a direct use of CBCT for dose calculation is not recommended. The use of a

deformable registration permits us to incorporate the electron density distribution from

the planning CT and to calculate the dose more accurately. The proposed DEDM

approach affords a practical solution to estimate the dose to be delivered or already

delivered to the patient based on the setup CBCT.
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Figure Captions

Fig. 1. (a)The calibration curves (Hounsfield number vs relative electron density) for

planning CT, half fan and full fan mode CBCT; (b) the variation of calibration curves

with time for the full fan CBCT.

Fig. 2. The CT and CBCT images with and without motion for the Catphan-600: (a)

planning CT in the absence of phantom motion; (b) CBCT in the absence of phantom

motion; (c) planning CT with moving phantom; and (d) CBCT with moving phantom.

Fig. 3. HU profiles of planning CT and CBCT images (see figure 2) along the A-A line

(panel a) and B-B line (panel b).

Fig. 4. Dose distributions in a transverse slice calculated based on the four sets of CT data

shown in figure 2: (a) planning CT; (b) CBCT; (c) planning CT with a motion; and (d)

CBCT with a motion. In all four situations, a 5 X 5cm2 single field plan was used to

irradiate a spherical hypothetical target with a diameter of 5cm located at the phantom

center.

Fig. 5. Comparison of the dose profiles along the two orthogonal lines shown in figure 2

for the Catphan-600 phantom: (a) profile along the A-A line; (a) profile along the B-B

line.

Fig. 6. Comparison of the target DVHs calculated based on the four sets of CT data

shown in figure 2 for the phantom case.

Fig. 7. CT, CBCT and modified CBCT images for the prostate case: (a) planning CT; (b)

daily CBCT; (c) checkerboard overlay of CT and CBCT after the deformation

registration; and (d) modified CT.
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Fig. 8. Dose distributions in a transverse slice calculated based on the: (a) planning CT;

(b) CBCT; and (c) modified CB CT for the prostate case.

Fig. 9. DVHs of the prostate, PTV, rectum and bladder obtained based on the planning

CT, CBCT and modified CBCT images for the prostate case.

Fig. 10. CT, CBCT and modified CT images for the lung case: (a) planning CT; (b)

CBCT; (c) checkerboard image after the deformation registration; and (d) modified

CBCT.

Fig. 11. Dose distribution in a transverse slice calculated based on: (a) planning CT; (b)

CBCT; and (c) modified CBCT for the lung case.

Fig. 12. Comparison of the DVHs of GTV, PTV, right lung and spinal cord obtained

based on planning CT, CBCT and the modified CBCT images.
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Abstract

A multiscale image registration technique is presented for the registration of medical images that
contain significant levels of noise. Registration is achieved by obtaining a hierarchical multiscale
decomposition of the noisy images and registering the resulting components. This approach enables
successful registration of images that contain noise levels well beyond the amount at which ordi-
nary registration fails. Experiments are presented that use mean squares, normalized correlation,
and mutual information to demonstrate the accuracy and efficiency of the multiscale registration
technique.

1 Introduction

Often in image processing, images must be spatially aligned in order to perform quantitative analyses of
the images. The process of aligning images taken, for example, at different times, from different imaging
devices, or from different perspectives, is called image registration. More precisely, image registration is
the process of determining the optimal spatial transform that maps one image to another. Typically, two
images are taken as input, and the registration process is then the optimization problem which determines
the geometric mapping that brings one image into spatial alignment with the other image. In practice, the
particular type of transformation as well as the notion of optimal will depend on the specific application.

Examples of applications in which image registration is particularly important include astro- and geo-
physics, computer vision, remote sensing, and medicine. In this paper, we will focus on medical image
registration. Image registration plays an important role in the analysis of medical images. For example,
images taken from different sensors often contain complementary information. By bringing the two
images into alignment so that anatomical features of one modality can be detected in the other modality,
the information from the different modalities can be combined. In neurosurgery, for example, tumors are
typically identified and diagnosed using magnetic resonance images (MRI), but stereotaxy technology (the
use of surgical instruments to reach specified points) generally uses computed tomography (CT) images.
Registration of these modalities allows the transfer of coordinates of tumors from the MRI images to
the CT images. See [131 for a discussion of the applications of multi-modality imaging to problems in
neurosurgery. As another example, medical image data acquired prior to diagnosis can be compared with
data acquired during or after treatment to determine the effectiveness of the treatment. To compare
images taken at different times, however, the images must first be brought into spatial alignment with
one another so that actual differences in the data can be distinguished from differences that result from
the image acquisition process.

In the context of medical imaging, the goal of the registration process is to remove artificial differences
in the images introduced by patient movement, differences in imaging devices, etc., but at the same
time, to retain real differences due to actual variations of the objects. Medical images, however, often
contain significant levels of noise due to instrumentation imperfections, data acquisition techniques, image
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reconstruction methods, transmission and/or compression errors, and other factors. Although numerous
successful image registration techniques have been published, we will see that ordinary image registration
algorithms can fail to produce meaningful results when one or both of the images to be registered contains
significant levels of noise.

Since noise is generally present in digital images, image denoising is a fundamental problem in image
processing. Indeed, numerous approaches to image denoising have been presented. Thus a simple solution
to the problem of image registration in the presence of noise would be to first apply a denoising algorithm
to the noisy image(s), and then use existing image registration techniques to register the denoised images.
However, common denoising algorithms, most notably spatial filtering algorithms, have the disadvantage
that while they are successful in removing noise, they often remove edges as well. Additionally, most
denoising procedures require a priori knowledge of the noise level, variance, and/or model, while this
information is typically not known in practice. For these and other reasons, we will demonstrate that
ordinary image registration of noisy images fails to produce acceptable results even when classical denois-
ing algorithms are applied to the noisy images prior to registration (for significantly high levels of noise).
Thus we seek a technique that enables successful image registration when one or both of the images to

be registered contains noise.

In practice, we can consider an image f of consisting of coarse and fine scales. The general shape and
main features of an image are considered the coarse scales, and details and textures, such as noise, are the
fine scales of the image. Separating the coarse and fine scales of an image, therefore, is an effective tool
in denoising. Indeed, several denoising algorithms have been proposed using separation of the coarse and
fine scales of an image, most notably [18], [17], [10], and [19]. The method presented in [19] presents a
multiscale technique in which an image f is decomposed in a hierarchical expansion f - Ejuj, where the
uj's (called the components of f relative to the decomposition) resolve edges of f with increasing scales.
More precisely, for small k, the sum Ejuj is a coarse representation of the image f, and as k increases,
the sum captures more and more detail (and hence, noise) of the image.

In this paper, we present a multiscale image registration technique based on the multiscale decom-
position of [19] that is particularly effective when one or both of the images to be registered contains
significant levels of noise. Since the hierarchical expansion f - Ejuj decomposes the image f into com-
ponents which contain increasingly fine scales, we expect a component-wise registration algorithm to
produce accurate results for noisy images. That is, given a noisy image f, for small values of k, the com-
ponent E-nuj retains the general shape of the image f while removing the details and noise of the image.
Thus if we wish to register the image f with another image, say g we expect that registration of the
components EZuj with g will provide an accurate estimation of the actual transformation that brings the
two images into spatial alignment with one another, for sufficiently small values of k. Similarly, if both f
and g are noisy, we expect decomposing both images and performing component-wise registrations should
accurately estimate the optimal transformation. We will demonstrate that multiscale image registration
enables successful image registration for images that contain levels of noise significantly higher than the
levels at which ordinary registration fails.

This paper is organized in the following way. In Section 3, we discuss the image registration problem
and review standard image registration techniques. In Section 4, we present the problem of image
registration in the presence of noise, and illustrate the failure of current techniques when one or both of the
images to be registered contains high levels of noise. We also briefly discuss classical denoising techniques,
and illustrate the failure of ordinary image registration of noisy images even when the images are denoised
prior to registration. In Section 6, we review the multiscale image decomposition of [19], and illustrate
the results of the hierarchical multiscale decomposition obtained upon applying the algorithm to noisy
images. In Section 7, we present image registration techniques based upon the multiscale decomposition
described in Section 6, and in Section 8, we present our registration results. Finally, in Section 9, we
discuss computational aspects of our registration algorithm.
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3 The registration problem

Given a fixed and moving image, the registration problem is the process of finding an optimal transfor-
mation that brings the moving image into spatial alignment with the fixed image. While this problem is
easy to state, it is difficult to solve. The main source of difficulty is that the problem is ill-posed, which
means, for example, that the problem may not have a unique solution. Additionally, the notion of opti-
mality may vary for each application: for example, some applications may require consideration only of
rigid transformations, while other applications require non-rigid transformations. Finally, computation
time and data storage constraints place limitations on the complexity of models that can be used for
describing the problem.

3.1 The mathematical setting

A two-dimensional gray-scale image f is a mapping which assigns to every point x E fQ C R 2 a gray
value f(x) (called the intensity value of the image at the point x). We will consider images as elements
of the space L2 (R2). Color images can be defined, for example, in terms of vector-valued functions
f = (f1 , f2, f3) representing the RGB-color scales. For the medical imaging applications that we are
interested in, images are in fact given in terms of discrete data, and the function f must be obtained via
interpolation. We will not discuss this construction here, but assume that an interpolation method has
been chosen and fixed.

Image registration is typically necessary when two images are essentially of the same object, but the
images are not spatially aligned. This occurs, for example, when the images are taken at different times,
from different perspectives, or from different imaging devices. The basic input data to the registration
process are two images: one i's defined as the fixed image f(x) and the other as the moving image m(x).
The goal is then to find a transformation ¢ such that the fixed image f(x) and the deformed moving
image me(x) := m(4(x)) are similar. To solve this problem in a mathematical way, the term similar
needs to be defined in an appropriate fashion. For example, if the images to be registered are taken
from different devices, there may not be a correspondence between the intensities f(x) and me(x) for
an optimal ¢. Additionally, we may consider measures of similarity between the images which are not
related to the intensities. Thus the registration problem necessarily involves a discussion of the distance
measures, or metrics, used to compare images. The general problem can then be stated as follows:

Given a distance measure D : (L2 (R2)) 2 -* R and two images f(x), m(x) E L2 ( 2), the solution ¢ of the
registration problem is given by the following minimization problem:

0 = argmin D(f, mi) (3.1)
Vu15

2-*R
2

In many applications, the set of allowable transformations to be considered in the minimization
problem (3.1) is restricted to a strict subset of the set of all maps Q : R2 . For example, we may
require the transformation ¢ to be smooth, or we may impose specific parametric requirements, such as
requiring the transformation to be rigid, affine, polynomial, or spline.

3.2 Landmark-based registration

Landmark-based registration is an image registration technique which is based on a finite set of image
features. The problem is then to determine the transformation such that for a finite set of features, any
feature of the moving image is mapped onto the corresponding features of the fixed image. More precisely,
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let F(f,j) and F(m,j), j = 1,..., m be given features of the fixed and moving images, respectively. The
solution 0 of the registration problem is then a map : JR2 -4 R2 such that

F(f,j) = 0(F(m,j)), j = 1,... m. (3.2)

For a more general notion of landmark-based registration, we define the following distance measure:

D ( := IF(f,j) - ¢(F(mj)Iý , (3.3)
j=1

where I I denotes a norm on the landmark, or feature, space. For example, if the features are locations
of points, then II - 111 = II • I a2. We can then restate (3.2) as the minimization problem in which the
solution ¢ : R 2 -+ JR2 of the registration problem is given by:

0 = argmin DLM(,b). (3-4)

To solve this minimization problem, the transformation is chosen to either be an element of an n-
dimensional space spanned, for example, by polynomials, splines, or wavelets, or it is required to be
smooth in some sense. In the first case, the features to be mapped are the locations of a number of
user-supplied landmarks. Let Xk, k 1,.. n be the basis functions of the space. Then the minimization
of

DLM(ql) I= 3IIF(f,i) - 0(17(m, j) 12 DLM(0) I=~ IF(f,j) - (mj12
j=1 j=1

can be obtained upon expanding q = (1,4 2) in terms of the basis functions and solving the resulting
least squares problems.

In the case in which we require the transformation 0 to be smooth, we introduce a functional which
imposes smoothness restrictions on the transformation. That is, we look for a transformation 0 which
interpolates the features F(f, j) and F(m,j), and which is smooth in some sense. Such a transformation
is called a minimal norm solution, and it turns out (see [81) that the solution can be expressed in terms
of radial basis functions.

Landmark-based registration is simple to implement and the numerical solution requires only the
solution of a linear system of equations. However, the main drawback of the landmark-based approach
is that the registration process depends on the location of the landmarks. As the detection and math-
ematical characterization of landmarks (for example, anatomical landmarks in medical images) is not
fully automated, the landmarks must be user-supplied, and this can be a time-consuming and difficult
process, even for a medical expert; see, for example, [16]. Additionally, landmark-based registration does
not always results in a physically meaningful registration. See [11], pp. 44, for a simple example of a
situation in which landmark-based registration fails to produce meaningful results.

3.3 Principal axes-based registration

Principal-axes image registration is based on the idea of landmark-based registration, but it uses features
that can be automatically detected. These features are constructed as follows. For an image f : R'2 -4 R,
and a function g : R'2 -- R, we define the expectation value of g with respect to f by

ElgW := fR2 g(x)f(x) dx

fR2 g(x) dx

If u : R2 -* R' In, we set Ef(u) := (Ef[uj,k] - R" •n.
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The center of an image f is defined by

Cf := Ej[a] e 2 (3.6)

and the covariance by

Covj : Ej[(x - C)(x - Cjj)T] 2,2 (3.7)

Given fixed and moving images fJ(x) and rn(x), the centers c1 and c, and eigendecompositions of
the covariance matrices Covf and Covm are used as the features Fi, and the registration problem is to
compute 0: R2  P R2 such that Fj(m(o)) = Fi(f) for the features Fi.

This method is described in detail in [1]. The prinicipal-axes method of image registration has the
advantages that it is computationally fast and simple and requires few registration parameters, but has
the disadvantages that it is not suitable for images of multiple modalities and that the solutions may be
ambiguous. In particular, the prinicipal-axes based method cannot distinguish between images with the
same center and covariance, even though images with very different structure and orientation may have
the same center and/or covariance.

3.4 Optimal parametric registration

In this section, we present methods of registration which are based on the minimization (or maximization)
of some distance measure, or metric, D. The transformation 0 is restricted to some parameterized space,
and the registration can be ovtained by minimizing (or maximizing) the distance D over the space. In
particular, we will discuss metrics based on intensity, correlation, and mutual information. Given a metric
D, a fixed image f, and a moving image m, optimal parametric registration is the problem of finding
a transformation ¢ in some pre-specified parameterizable space such that D(f, rn(o)) is minimized (or
maximized in certain cases). Examples of commonly used parameterizable spaces in image registration are
polynomial and spline spaces. We will primarily be interested in rigid and affine linear transformations.
An affine linear map is a map of the form O(x) = Ax + b, A E R,2 x2 det A > 0, b G R2 . Such a map allows
rotations, translations, scales, and shears of the coordinates. A translation (or rigid) transformation is a
special case of an afflne transformation which allows only rotations and translations of the coordinates,
and in this case, the matrix A is required to be orthogonal with determinant 1. Optimal parametric
registration is probably the most commonly used image registration technique.

3.4.1 Choosing an optimizer

To minimize D(f, m(¢)), we must choose an optimization technique. That is, an optimal parametric
registration technique is described by a metric to be minimized (or maximized) and an optimizer which
controls the minimization (or maximization). The implementation of the registration algorithm works
in the following way. At each iteration, the distance D between the two images is computed. An affine
transformation is then applied to the moving image, and the distance between the images is recomputed.
This process continues until the distance is minimized (or maximized).

The optimizer controls this algorithm. At each stage, the optimizer determines the parameters of
the transformation that will be applied to the moving image. Examples of commonly used optimizers
include gradient descent and regular step gradient descent. Gradient descent optimization advances the
parameters of the transformation in the direction of the gradient, where the step size is governed by a
user-specified learning rate. Regular step gradient descent optimization advances the parameters of the
transformation in the direction of the gradient where a bipartition scheme is used to compute the step
size.



3 THE REGISTRATION PROBLEM 6

3.4.2 Mean squares metric

The mean squares metric computes the mean-squared pixel-wise difference in intensity between two
images f and ?r:

N 

2MS(f, ):=1N A Z - (3.8)
i=1

where N is the total number of pixels considered, fi is the ith pixel of image f, and mi is the ith

pixel of image m. Note that the optimum value of the mean squares metric is 0, and poor matches
between the images f and m results in large values of MS(f, m). This metric has the advantage that it
is computationally simple, but it is based on the assumption that pixels in one image should have the
same intensity as (spatially) corresponding pixels in the second image. Thus, the mean squares metric is
restricted to images of the same modality.

3.4.3 Normalized correlation metric

The normalized correlation metric computes pixel-wise cross-correlation and normalizes it by the square
root of the autocorrelation function:

N

NC(j,'rri.) := -1 x i=1, (3.9)

Zf2 Zm?
i=1 i=1

where N, fi, and mi are as defined for the mean squares metric. The -1 factor in (3.9) causes the optimum
value of the metric to occur when the minimum is reached. Thus the optimal value of the normalized
correlation metric is -1. As with the mean squares metric, the normalized correlation metric is restricted
to images of the same modality.

3.4.4 Viola-Wells mutual information metric

Mutual information is an information-theoretic approach to image registration that was proposed inde-
pendently by Viola and Wells [21] and Collignon et al [4] in 1995. The idea is that mutual information
computes the amount of information that one random variable (here, image intensity) gives about another
random variable (here, intensity values of another image). More precisely, given a fixed image f (x) and a
moving image m(x), we wish to compute the transformation 0 which maximizes the mutual information

5 = arg max I(f(x), m(O(x))). (3.10)

The maximization of mutual information criterion assumes that the statistical dependence between cor-
responding image intensity values is maximized when the images are geometrically aligned.

The mutual information J(f(x), m(O(x)) is defined in terms of entropy, where we consider x as a
random variable over coordinate locations in the coordinate system of the fixed image. Let h(.) denote
the entropy of a random variable: h(x) := - fp(x) lnp(x) dx, where p(x) is the probability density
function of the random variable x. Note that it is not clear how to construct p(x); we will discuss
methods for estimating the probability densities. The joint entropy of two random variables x and y is
given by h(x, y) = - fp(x, y) lnp(x, y) dx dx, where p(x, y) is the joint probability density function of the
random variables x and y. Entropy can be considered as a measure of the uncertainty or complexity of
a random variable.
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If x and y are independent, then p(x, y) = p(x)p(y), so h(x, y) = h(x) + h(y). However, if there is
any dependency (as would be the case if x and y are intensity values of images of the same object), then
h(x, y) < h(x) + h(y). The difference is defined to be mutual information:

I(f(x), m(O(x))) = h(f(x)) + h(m(O(x)) - h(f(x), m(o(x))). (3.11)

The terms in (3.11) can be interpreted in the following way. The first term h(f(x)) is the entropy of
the fixed image and is independent of the transformation 0. The second term h(m(¢(x))) is the entropy
of rn(o(x)), so maximization of mutual information encourages transformations 0 for which m(O(x) has a
high level of complexity or uncertainty. The third term -h(f(x), m(0(x))) is the negative joint entropy of
f (x) and m(o(x)), so maximization of mutual information is related to minimization of the .joint entropy
of f(x) and m(O(x)). Taken together, the second and third terms identify transformations 0 that find
complexity in the images and explain it well. In [15], the authors present a detailed overview of mutual
information based registration.

Mutual information has the following properties. Let u(x) and v(x) denote two images.

1. I(u(x), v(x)) = I(v(x), u(x)) Mutual informations is symmetric. Although this is true theoretically,
in practice, it is not always the case that we obtain the same transformation upon registering u(x)
with v(x) and v(x) with u(x). This is a consequence of numerical implementation methods.

2. I(u(x), u(x)) = h(u(x)). The information an image contains about itself is equal to the entropy of
the image.

3. I(u(x), v(x)) < h(u(x)) I(u(x), v(x)) < h(v(x)) The information that the images contain about each
other can not be greater than the information contained in the individual images.

4. I(u(x), v(x)) > 0

5. I(u(r), v(x)) = 0 if and only if u(x) and v(x) are independent. That is, if the images u(x) and v(x)
are independent, no information about one image is gained when the other image is known.

The entropies in Equation (3.11) are defined in terms of integrals over the probability densities as-
sociated with the images f(x) and m(x). However, in a typical medical image registration problem, the
probability densities are not directly accessible, and thus must be estimated from the image data. Parzen
windowing, described in [5], is a commonly used technique for estimating the densities, and it is the
one used by Viola and Wells in [21]. In this method, continuous density functions are constructed by a
super-position of kernel functions K(.) centered the elements of a sample of intensities taken from the
image. That is, the estimation of the probability density p(z) is given by:

p(x) - P*(z) = 1 E K(z - zj), (3.12)
z3 ES

where Ns is the number of spatial samples in S and K is an appropriately chosen kernel function. The
kernel function K must be smooth, symmetric, have zero mean, and integrate to 1. Examples of suitable
candidates for K include the Gaussian density and the Cauchy density. In [21], Viola and Wells use a
Gaussian density function with standard deviation a to estimate the probability density functions. The
optimal value of a depends on the particular images to be registered.

Upon estimating the probability densities using the Parzen windowing technique, the entropy integral
h(z) = - fp(z) ln(p(z)) dz must be evaluated. This integral is difficult, or impossible, to evaluate
analytically, so it must be approximated as a sample mean:
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S(z) ln(P*(zj)), (3.13)
z jER

where R is a second sample of intensities taken from the image. That is, two separate intensity samples
S and R are taken from the image. The first is used to estimate the probability density, and the second
is used to approximate the entropy.

The main advantage of the mutual information measure is that it is generally applicable for multi-
modality registration, whereas intensity-based measures are typically not applicable for multi-modality
registration. Mutual information registration has been used successfully for a number of difficult applica-
tions. Most notable, mutual information has been shown to be highly accurate for MmR-CT registration.
See, for example, [9], [14], and [20], for a discussion of these applications.

3.5 Non-parametric image registration

All of the image registration techniques that we have discussed so far have been based on certain parame-
ters. For example, either the transformation 0 can be expanded in terms of basis functions that span a
specified finite-dimensional space, or the registration is controlled by a specified set of external features.
Non-parametric techniques do not restrict the transformation to a parameterizable set. Given two images,
a fixed image f(x) and a moving image m(x), we seek a transformation 0 such that m(O(x)) is similar to
f(x) in a certain sense. Upon defining a suitable distance measure D, the registration problem is then to
minimize the distance between m(o(x)) and f(x). However, a direct minimization is often not possible
in the non-parametric case. For example, the problem is ill-posed: small changes in the input data may
lead to large changes in the output. Additionally, the solution is not unique. Given these constraints, a
stable numerical implementation is often not possible. To circumvent these problems, a regularizing, or
smoothing, term S is introduced, and the registration problem becomes the minimization of the distance
between m(r(x)) and f (x) plus a smoothing term S(O). That is, the registration is based on a regularized
minimization of the distance between the images.

In the discussion of non-parametric image registration, the transformation ¢ : 1 2 --* 1 2 is split into
the trivial identity part and the deformation or displacement part u, i.e.

O(x) = x - u(x). (3.14)

Upon decomposing ¢ in this way, we have m(0(x)) = m(x - u(x)) := m,(x). Given a distance D and
a smoother S, the elastic registration problem is then the minimization of D(f(x), mu (x)) + aS(u), where
a E R is a positive regularizing parameter.

The choice of smoother S typically depends on the particular application. Examples of non-parametric
image registration techniques include elastic registration [31, fluid registration [2], and diffusion registra-
tion [7]. Elastic registration uses linear elasticity theory to model the deformation of an elastic body.
In this case, the regularizing term S(u) is the linearized elastic potential of the displacement u. In fluid
registration, the regularization is based on the linearized elastic potential of the time derivative of u.
Finally, diffusion registration uses regularization based on spatial derivatives of the displacement.

3.6 Remarks

In this section, we presented a brief overview of the major image registration techniques currently used
in medical image registration. In practice, the best registration method for a given set of images will
depend on the particular features of the images themselves. However, numerous comparison studies which
compare the accuracy and performance of different image registration techniques for various applications
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have been presented. The most extensive of these is [221, which originally consisted of a comparison of
16 different methods, but has since been substantially expanded.

4 Registration in the presence of noise

In this section, we study the effect of noise on image registration, and we determine the approximate
noise level at which registration fails. Consider the brain proton density slice images shown in the figure
below. The image on the right is the result of translating the image on the left by 13 mm in X and 17
mm in Y. Let I denote the original image, and let T denote the translated image.

Image I
Brain Proton Density Slice Translated Image T

KJ

Figure 1: Original image I and translated image T

Initially, we will consider the registration problem in which one of the images (here, the fixed image)
is noisy. We will add increasing levels of noise to the image I and register the the non-noisy translated
image T with the noisy images. Our goal is to determine the approximate noise levels at which various
image registration techniques fail, and to develop an algorithm that will enable registration beyond these
levels. Eventually, we will also apply our techniques to the case in which both the fixed and moving
images contain significant levels of noise. Before we present these results, we discuss the notion of noise
in more mathematical detail.

4.1 Noise

Digital images are often degraded by random noise. In imaging, the term noise refers to random fluc-
tuations in intensity values that occur during image capture, transmission, or processing, and that may
distort the information given by the image. Image noise is not part of the ideal signal and may be
caused by a wide range of sources, such as detector sensitivity, environmental radiation, transmission
errors, discretization effects, etc. Noise is generally classified as either independent noise, or noise which
is dependent on the image data.
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Independent noise can often be described by an additive noise model, in which the observed image f
is the sum of the true image s and the noise n:

f(x) = s(x) + n(x). (4.1)

Within this framework of additive noise, the noise n(x) is commonly modeled by Gaussian noise of mean
m and variance v.

A multiplicative noise model describes noise that is dependent on the image data. This is often
referred to as speckle noise.

f(x) = s(x) + s(x)n(x) = s(x)(1 + n(x)) (4.2)

In this case, n(x) is uniformly distributed random noise with mean m and variance v.
Impulse noise, or salt and pepper noise, is noise that resembles salt and pepper granules randomly

distributed over the image. Impulse noise is typically defined by the following model. Again we let s(x)
denote the actual image, and f(x) denote the observed image.

f x s(x) with probability 1 - 6 (43)

f) = (x) with probability 6,

where q(x) is an identically distributed, independent random process. With this model, an arbitrary
pixel x C Q c RI2 is affected by noise with probability J, and not affected with probability 1 - 6. We
will refer to 6 as the impulse noise density, as adding impulse noise of density 6 to an image f(x) affects
approximately 6 -size(f) pixels. The random process 77(x) is typically such that the corrupted pixels are
either set to the maximum value, have single bits flipped over, or are set alternatively to zero or to the
maximum value. This last case results in a "'salt and pepper"' appearance. Note that unaffected pixels
always remain unchanged.

In Figure 2, we add additive Gaussian noise of mean 0 and variance 0.2, multiplicative speckle noise
of mean 0 and variance 0.2, and impulse noise of density 0.2 to the brain proton density slice image I.

In this paper, we will study the problem of image registration in the presence of high levels of impulse
noise, although we believe that our solution is applicable to registration in the presence of other forms
of noise, as well. We add impulse noise of increasing densities 6 to the brain proton density slice image
I, and register the (non-noisy) translated image T with the noisy images. Let I denote the image I with
added impulse noise of density 6. In 3, we illustrate the noisy images for increasing values of 6.

4.2 Registration results

For each 6 in 3, we register T with 16 using various registration methods. Recall that the image T is
the result of translating the original image 1 13 units in X and 17 units in Y, and that 16 is the result
of adding uniform impulse noise of density 6 to the image I. Since T is a rigid transformation of I,
we will restrict the registration process to linear transformations, i.e. we will consider optimal linear
registrations. The optimal transformation 0 produced by the optimal linear registration process will
consist of two parameters, namely X- and Y-translation values. We will let Ox and Oy denote the X-
and Y-translation parameters, respectively, of the optimal transformation ¢. For comparison purposes,
we will perform the optimal linear registration using the mean squares metric, normalized correlation
metric, and mutual information metric.

We use the following parameters for the registration algorithms. For the mean squares and normalized
correlation registration algorithms, we use the regular step gradient descent optimizer. Due to the
stochastic nature of the metric computation in the mutual information algorithm, the regular step gradient
descent optimizer does not work well in the case of mutual information. Instead, we use the gradient
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Additive Gaussian Multiplicative speckle
noise of mean 0 noise of mean 0 Impulse noise of
and variance 0.2 and variance 0.2 density 0.2

Figure 2: In this figure, we illustrate the addition of various types of noise to the image I.

Original Image 5=0.10 5=0.20 5=0.30

5=0.40 5=0.50 5=0.60 8=0.70

Figure 3: In this figure, we illustrate the addition of impulse noise of increasing densities 6
to the image I.
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Mean squares Normalized correlation Mutual information
Oqx Oy n Ox [y n Ox J¥ y [n

0 12.99 17.00 18 13.01 17.00 18 12.75 17.03 200

0.10 12.99 17.01 28 12.99 17.01 20 12.83 16.88 200

0.20 13.03 16.98 17 13.04 16.98 19 12.98 16.64 200

0.30 12.97 17.03 28 13.02 17.02 11 13.02 17.02 200

0.40 18.89 7.16 15 8.05 1.30 13 11.08 9.72 200
0.50 2.16 7.06 19 9.09 2.18 8 9.72 7.12 200

0.60 29.81 3.19 40 4.08 0.24 7 4.57 5.17 200

0.70 2.08 1.14 13 3.11 2.13 12 3.08 2.86 200

Table 1: In this table, we present the results obtained upon registering the translated image T with the
noisy image 16, where 6 is the impulse noise density. We let Ox and Oy denote the X- and Y-translation
values of the optimal transformation ¢ produced by the registration algorithm, and we denote by n the
number of iterations until convergence. Recall that the actual translation values are 13 units in X and
17 units in Y.

descent optimizer with a user-specified learning rate of 20.0. Finally, we set the maximum number of
iterations for each algorithm to 200. As we will see, mean squares and normalized correlation registrations
typically converge very quickly to the optimum value. Mutual information, on the other hand, often does
not ever actually reach the true optimal solution, but instead oscillates within one or two pixels of the
optimal solution (generally after 100-150 iterations). By reducing the learning rate, we can increase the
likelihood of convergence, but this increases the computation time significantly without improving the
accuracy of the solution.

For each of these three registration algorithms, and for each 6 we record the X- and Y-translation
parameters, denoted Ox and Oy, respectively, of the optimal transformation ¢ produced by the registration
process. We also record the number of iterations n until convergence. The results are illustrated in Table
1. Recall that the actual translation values are 13 units in X and 17 units in Y. We also record the
number of iterations until convergence, which we denote by n.

The results presented in Table 1 indicate that optimal linear registration in the presence of impulse
noise fails when the impulse noise density in the fixed image reaches approximately 0.40.

5 Denoising

5.1 Denoising techniques

In this section, we discuss various denoising techniques. Image denoising is a fundamental problem
in image processing, and there has been much research and progress on the subject. As our primary
interest in this paper is the problem of image registration of noisy images, and not denoising, we do not
focus on the general problem of image denoising, but instead present a few of the most common and
computationally simple denoising techniques. We will then apply these techniques to one of our noisy
images, and study the effect of denoising on the image registration techniques. In particular, in Section
4, we saw that ordinary optimal linear registration of noisy images failed when the impulse noise density
was greater than 0.40. In this section, we determine whether or not denoising prior to registration enables
successful registration of noisy images for which registration failed previously.

Spatial filtering is the traditional approach to removing noise from images. Spatial filters use the
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assumption that noise occupies the higher regions of the frequency spectrum, and thus attenuate high
spatial frequencies. Filtering is a neighborhood process, in which the value of a given pixel in the
filtered image is computed by applying some algorithm to the pixel values in a neighborhood of the given
pixel. Typical implementations of spatial filters include mean filtering, median filtering, and Gaussian
smoothing. Mean filtering computes the value of each output pixel by computing the statistical mean of
the neighborhood of the corresponding input pixel. Thus, applying a mean filter to a noisy image reduces
the amount of variation in gray-level intensity between pixels. Although this filter is computationally
easy to implement, it is sensitive to the presence of outliers. Median filtering, which computes the value
of each output pixel by computing the statistical median of the neighborhood of the corresponding input
pixel, is more robust to the presence of outliers, and is thus commonly used for removing impulse noise
from images. Convolution with a Gaussian kernel is another commonly used spatial filtering technique.

In Figure 4, we illustrate the effect of applying a mean, median, and Gaussian convolution filter to
the noisy image 10.70, the brain proton density slice image with impulse noise of density 0.70.

Noisy image Mean filter Median filter Gaussian convolution

Figure 4: In this figure, we illustrate the results of applying three different denoising filters to the brain
proton density slice image with impulse noise of density 0.70.
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Mean squares Normalized correlation Mutual information

Denoising Technique Ox Oy n Ox oy n Ox oy In
Mean filtering 31.83 1.15 46 16.88 1.11 29 5.39 5.30 200
Median filtering 18.87 1.26 31 2.38 6.90 34 4.39 4.06 200
Gaussian convolution 18.86 -0.76 31 2.19 0.25 11 7.38 7.37 200

Table 2: In this table, we present the results obtained upon registering the translated image T with the
denoised images obtained upon applying median, mean, and Gaussian convolution filters to the noisy
image 10.70. We let Ox and Oy denote the X- and Y-translation values of the optimal transformation 0
produced by the registration algorithm, and we denote by n the number of iterations until convergence.
Recall that the actual translation values are 13 units in X and 17 units in Y.

5.2 Registration results after denoising

In this section, we register the translated image T with the denoised images illustrated in Figure 4. As
in Section 4, we use mean squares, normalized correlation, and mutual information optimal linear reg-
istration. For each registration method, we let 0 denote the optimal transformation produced by the
registration algorithm, and we let Ox and qy the X- and Y-translation parameters of the optimal trans-
formation 0. We denote by n the number of iterations of each registration algorithm until convergence.
We record the results in Table 2. The moving image in each case is the translated image T; recall that
the actual translation values are 13 in X and 17 in Y.

The results presented in Table 2 indicate that the application of common denoising techniques prior
to registration does not enable successful registration of the noisy image 10.70 with the translated image
T. While the denoising algorithms presented here are reasonably successful in removing noise, they
also remove a significant amount of detail from the images and blur edges. Since denoising prior to
registration fails to give successful results, we present an image registration technique based on a multiscale
decomposition of the image(s) to be registered.

6 Multiscale decomposition

6.1 The hierarchical decomposition

In this section, we present the multiscale image representation using hierarchical (BV, L2 ) decompositions
of [191. Consider an image f E L2 (Q). Define the J-functional J(f, A) as follows:

J(f,A): u+v=f{IA]vjL2 + IiU]nBV},

where A > 0 is a scaling parameter that separates the L2 and BV terms. This functional J(f, A) was
introduced in the context of image processing by Rudin, Osher, and Fatemi [18]. They suggest the
following. Let [u\, vA] denote the minimizer of J(f, A). The BV component, uA captures the coarse
features of the image f, while the L2 component, vA captures the finer features of f such as noise. This
model is effective in denoising images while preserving edges, though it requires prior knowledge on the
noise scaling A.
Tadmor, Nezzar, and Vese propose an alternative point of view in which the minimization of J(f, A) is
interpreted as a decomposition f = u\ + v,, where u\ extracts the edges of f and v\ extracts the textures
of f. This interpretation depends on the scale A, since "'texture"' at scale A consists of edges when viewed
under a refined scale (2 ', for example). Then we decompose v\ as follows:

VA = U2A + V2A, where [u2A, V2X] = arginf J(',V, 2A).
U+V=VA
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Thus we obtain a two-scale representation of f given by f - uA + u2x. Continuing this process, we obtain
a hierarchical multiscale decomposition of f, as follows. Starting with an initial scale A Ao, we obtain
an initial decomposition of the image f:

f = uo + vo, [uo, vo] = arginf J(f, Ao).
u+v=f

We then refine this decomposition to obtain

vj = Uj+l + vj+l, [uj+', vj+] = arginf J(vj,A o2J+l), j = 017....
u+v=vj

After k steps of this process, we have the following hierarchical decomposition of f:
f = u0 + v0

= Uo + u1 + V1
= u 0 +u 1 +u 2 +v 2

- U0+U1+...Uk+Vk

Thus we obtain a multiscale image decomposition f - uO + u1 + ... + uk, with a residual vk. As k
increases, the Uk components resolve edges with increasing scales Ak = A02k.

6.2 Implementation

6.2.1 Initialization

As described in H, the initial scale A0 should capture the smallest oscillatory scale in f, given by

1 - If I/W-lo < 0
However, in practice, we may not be able to determine the size of Ilf jw-i,,, so we determine the initial
choice of A0 experimentally. For the applications presented in this paper, we will use A0 = 0.01 and
Aj = Ao2J.

6.2.2 Numerical discretization

We follow the numerical algorithm of Tadmor, Nezzar, and Vese for the construction of our hierarchical
decomposition. In each step, we use finite-difference discretization of the Euler-Lagrange equations as-
sociated with the J(vj, Aj+I) to obtain the next term, Uj+l, in the decomposition of the image f. The
Euler-Lagrange equation associated with the minimization of J(f, A) is

u) - -div( Vu) f,

with Neumann boundary conditions.
k

We thus obtain an expansion f E- • uj, where the uj are constructed as approximate solutions of the
j=0

recursive relation given by the following elliptic PDE:
1 div( vuj+' -= 1-dv • wUj+l - 2,jl • +1 Iw + Aj -•dvIvK;jI)

Note that J(f, A) contains a singularity when IVu\l = 0. To remove this singularity, we replace J(f, A)
by the regularized functional

J(f, A) := inf {AlIv11 2. + E 2 + IVu2 dx dy},u+v=f L

and at each step, we find the minimizer u,\ of J3. The Euler-Lagrange equation for the regularized Y
functional is
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'\ - Ldiv( V" =f in Q,

2 2+I VU, 7

with Neumann boundary conditions.

To numerically implement the method, we cover the domain Q with a grid (xi := ih, yj := jh), and
discretize the elliptic PDE given above using the forward, backward, and centered divided differences.
Let D+, D-, and Do denote the forward, backward, and centered divided differences, respectively. The
discretized PDE is as follows:

Ui~j = fi, j -+DA x [ -V/( 2I +uij)2+(Dvij)2 D+Ui,j]+1 D_y[
Y 2 + (Dox i.j) 2_+_(D+ ui,j)2 D+yuti'j]

+ Ui+l,_ -- U_,j __i,j -- Ui-__l_
_fiJ 2h "-f_[/2+(D+_u_)2+(Dou_)2 VC2+(D_.ui,j)2+(Doyui_-,j)2]

2h2 f,/2+(Doýu,,j)2 +(D+Iu,.j)2 V/ý2+(Do ui,,;-_)2+(D-,ui,i )2

To solve the discrete regularized Euler-Lagrange equations, we use the Gauss-Siedel iterative method to
obtain:

'j + I [ Q±i l )
2

±(Doi, )i,- -ui-,j
u+ -2h2 [V/e2+(D+u,)2( u

0/i _Un+ln1

+- 1 i,j+l ~ i _ ý,3-ui -
2h ' V 7/ • + (D o • ;b' )2 + ( O+ , ' , ) V / •2 +_(D 0 •u , j _ ) + D - , ]

To satisfy the Neumann boundary conditions, we first reflect f outside Q by adding grid lines on all
sides of Q2. As the initial condition, we set u.= f We iterate this numerical scheme for n

until IJun_ - un-lI1 is less than some preassigned value so that 47 is an accurate approximation of
the fixed point steady solution ux.

Finally, we denote the final solution uX := {U, }jj. To obtain the hierarchical multiscale decompo-
sition, we reiterate this process, each time updating f and A in the following way:

fnew fecurrent - uA,
Anew 2

Acurrent.

That is, at each step, we apply the J(f-urrent - u\, 2A) minimization to the residual feurrent - Ulambda

of the previous step. Taking Aj = A02j, we obtain after k steps a hierarchical multiscale decomposition
f - U.o + Ulambda1 + -... -+ Uk + VAk, where we write u\ = uj. We call the uj, j = 1,2,.. .,k the
components of f and the vk the residuals.

6.3 Decomposition of a noisy image

Consider the image 10.70 shown below. This is the brain proton density slice image I with impulse noise
of density 0.70.

We apply the hierarchical multiscale decomposition to this noisy image, using the following parame-
ters:

"* k = 12 hierarchical steps

"* Ao = 0.01
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Figure 5: Noisy Image 10.70

SAj = Ao0 2j

* 6 = 0.001

* n=10

•h=1

The figures below illustrate the components u¾j and the residuals v\j for this decomposition. Note that
in each hierarchical step, an additional amount of texture is seen in the components. Further, the noise
is not seen in the first few components, while most of the texture is kept, and the noise only reappears
as the refined scales reach the same scales as the noise itself. Eventually, we will use this multiscale
decomposition to register the noisy image 10.70 with the translated image T.

7 Multiscale Registration

Consider the brain proton density slice I with added impulse noise of density 6. Recall that registration of
the the translated image T with the noisy image failed when 6 > 0.40 using the mean squares, normalized
correlation, and mutual information registration methods. Moreover, registration using these classical
methods failed even after denoising the noisy image using various standard denoising techniques. In
this section, we present new methods for image registration that enable successful registration of the
translated image T with the noisy images 16 for values of the noise density 6 significantly greater than the
levels at which classical registration and registration after denoising fails. These registration techniques
will be based on the hierarchical multiscale decomposition described in Section 6.

Consider two images A and B, and suppose that we want to register image B with image A. Suppose
that one or both of the images contains a significant amount of noise. If only one of the images is noisy,
call the noisy image A. We propose the following multiscale registration method. First, we apply the
multiscale hierarchical decomposition to both images. Let m, denote the number of hierarchical steps

k
used for the multiscale decompositions. For ease of notation, given an image f, we let Ck(f) := Z' u)k

i=0
denote the kth component of the image f, k = 0, 1.... m - 1 obtained as in Section 6. Thus Ck(A) will
denote the kth component of the image A, and Ck(B) will denote the kth component of image B.

We will present two separate algorithms; in the first, we consider registration of image B with compo-
nents of image A, and in the second, we consider registration of components of image B with components
of image A.
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u 1 U2 0Ux3
X = X ==O x

y4 U5 0Ux6 0Ux7
O= X -0 j= -0 X

Ou•.x ioUxi x'o 7-2oUk

Figure 6: Multiscale decomposition of the noisy image 10.70
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Figure 7: Residuals
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7.1

In our first multiscale registration algorithm, we register image B with the kth component of A, for
k = 0, 1....m - 1. This is illustrated by the following schematic:

Let Ok denote the optimal transformation produced by the registration algorithm upon registering B
with Ck (A), k = 0, 1,.., m-1 . Recall that Co (A) contains only the coarsest scales of the image A, and as
k increases, Ck(A) contains increasing levels of detail (and hence, noise) of the image A. Thus we expect
that registration of image B with Ck (A) should give an improvement compared to ordinary registration
for the first few values of k. As k increases, however, we expect that eventually the component Ck(A)
will become too noisy to give successful registration.

Upon determining the transformations Ok via a suitable registration algorithm, we have several options
for defining the optimal transformation D that should bring the image B into spatial alignment with the
image A. The first option would be to define D as an ordinary average of the Ok:

I rn-i

K :- T )7ý k. (7.1)
k=0

However, as we mentioned above, we do not expect the transformation Ok to be an accurate estimation
of the actual optimal transformation 4) for large values of k. Thus, a second option would be to define 4
as a weighted average of the Ok.

: akck, (7.2)
k=0

where the weights ak are appropriately chosen non-negative real numbers. We will consider these defini-
tions in more detail when we present our results in Section 8.

7.2

In our second multiscale registration algorithm, we register the kth component of image B with the kth
component of image A, for k = 0, 1, 2,... m - 1, as illustrated in the following schematic:

Let "ik denote the optimal transformation produced by the registration algorithm upon registering
Ck (B) with Ck(A), k = 0, 1 .... , rn- 1. As before, we expect that registration of Ck (B) with Ck(A) should
give an improvement compared to ordinary registration for the first few values of k. As k increases,
however, we expect that eventually the components Ck(A) and Ck(B) will become too noisy to give
successful registration. Since this algorithm considers components of both images, we expect that it will
be particularly successful in the case in which both images are noisy.

Finally, we define the optimal transformation T that should bring image B into spatial alignment
with image A using either an ordinary average:

1m-1
- (7.3)

k=O

or a weighted average:

I m-11P := E bkV~k, (7.4)

k=O

where the weights bk are appropriately chosen non-negative real numbers.
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Mutual information Mean squares Normalized correlation

Fixed Image Ox 0Y n Ox oy n Ox oy n

Noisy image 10.70 4.57 5.17 200 2.08 1.14 7 4.08 0.24 7

Co(Io.7o) 12.65 16.36 200 3.08 1.11 12 3.11 0.17 9

C 1 (Io.7o) 12.69 16.78 200 2.08 3.08 14 2.13 2.12 12

C 2 (Io.7o) 12.56 16.79 200 2.11 3.08 14 2.14 3.11 15

C 3 (Io.7o) 12.53 16.76 200 3.08 2.11 14 3.11 2.14 7

C 4 (Io.7o) 12.48 16.76 200 24.88 1.16 36 18.86 1.18 30

C 5 (Io. 70 ) 12.46 16.78 200 40.80 1.07 52 0.21 1.18 11

C6 (Io. o) 12.43 16.80 200 28.86 0.15 46 27.84 2.19 42

C7(I0.7o) 12.43 16.79 200 -2.87 4.11 15 0.18 3.14 12

C0(0o.7o) 12.43 16.74 200 25.89 3.12 40 -1.84 4.12 14

C9(Io.70) 9.33 9.41 200 6.05 4.12 12 7.99 2.08 16

CIo(Io.7o) 8.44 8.32 200 -3.92 8.12 21 4.09 3.15 16

C1 1(10.70 ) 6.96 6.46 200 8.97 6.13 13 3.65 1.17 27

Table 3: This table illustrates the registration results upon registering the translated image T with the
kth component Ck(I0.70) of the noisy image 10.70 obtained via the multiscale decomposition discussed
in Section 6. Here, we use m = 12 hierarchical steps to decompose the noisy image, so we perform
m = 12 registration simulations. The transformation parameters Ox and Oy are the X- and Y-translation
parameters of the optimal transformation 0 produced by the registration algorithm. Recall that the actual
translation values are 13 in X and 17 in Y. The moving image in all simulations is the translated image
T. The moving image in each case is the translated image T.

8 Multiscale registration results

8.1 Noisy fixed image

In this section, we use the multiscale registration technique described in Section 7 to register the translated
(non-noisy) image T with the noisy image Io0.70 Recall that 10.70 is the image obtained upon adding
impulse noise of density 0.70 to the brain proton density slice image I. As before, let Ck(Io.7o) denote the
kth component in the multiscale decomposition of 10.70, for k ý 0, 1, . .m, obtained as in Section 7. We
perform the multiscale decomposition using m = 12 hierarchical steps, Ao = 0.01, and Aj = Ao2j. In the
table below, we present the results of m = 12 registration simulations, obtained upon registering T with
Ck(I0.70), k = 0,1,..., 11. For each registration, we let 0 denote the optimal transformation produced
by the registration algorithm, and we let Ox and Oy the X- and Y-translation parameters of the optimal
transformation 0. The moving image in each registration is the translated image T. For reference, we
also include in the first line of Table 3 the parameters obtained using ordinary registration.

To provide an estimation of the optimal transformation b that should bring the translated image T
into alignment with the noisy image 10.70, we first compute an ordinary average as described in Equation
(7.1). Letting 4bx and Dy denote the corresponding X- and Y-translation parameters of the average 4,
we obtain:

It is clear from the results presented in Table 3, however, that a weighted average as constructed
in Equation 7.2 is more appropriate. In particular, we see that the parameters produced by mutual
information registration are clustered around 12.5 units in X and 16.8 units in Y for k = 0, 1,... 8, but
then are significantly different for the remaining values of k. We expected that the multiscale registration
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Mutual information Mean squares Normalized correlation
4x 11.45 11.6 6.29
4y 14.02 3.11 2.05

Table 4: This table gives the translation parameters (x and 1y obtained by computing the ordinary
average of the multiscale registration transformations Ok for k = 0, 1,... 11, as described in Equation
(7.1). Recall that the actual translation values are 13 in X and 13 in Y.

Mutual information
(Dx 12.52
Dy 16.73

Table 5: In this table, we compute the weighted average of the multiscale registration transformations

Ok for k = 0, 1,... 11 for mutual information registration. We thus obtain the corresponding X- and
Y-translation parameters of the transformation D defined as in Equation (7.1). Recall that the actual
translation values are 13 in X and 17 in Y.

results would be an accurate approximation of the actual transformation 4 for small values of k, but
then would deviate as k became sufficiently large, because as k becomes large, increasing scales of detail
(and hence, noise) appear in the component Ck. Thus, even without knowing the actual values of the X-
and Y-translations, it makes sense to consider in the weighted average for mutual information only the
parameters corresponding to the first 9 registrations (k = 0, 1, . .. 8). We define the weights ak = 1 for
k = 0, 1,... 8 and ak = 0 for k > 9. In Table 5, we give the resulting X- and Y-translation parameters.
Since the actual values are 13 in X and 17 in Y, we see that multiscale mutual information registration
produced very accurate results in this case, and indeed is a significant improvement compared to ordinary
registration as well as to classical denoising followed by registration.

Note that we could use more sophisticated techniques for determining the weights ak. For example,
we could perform a statistical analysis on the parameters given by the Ok, and compute the weights ak
according to the mean and standard deviation. Finally, we see that the parameters produced by the
mean squares and normalized correlation registrations, however, do not cluster around a single value. In
these cases, the registration algorithm did not produce a meaningful result.

Next, we provide the results obtained upon registering the multiscale components of the translated
image T with the multiscale components of the noisy image 10.70. Let Ck(T) and Ck(I0.70) denote the
multiscale components of T and 10.70, respectively, obtained via the multiscale decomposition presented
in Section 6. As before, we use m = 12 hierarchical steps, A0 = 0.01, and Aj = A0 2j to perform the
decomposition. In Table 6, we present the results of m = 12 registration simulations, obtained upon
registering Ck(T) with CG(J0.70), k = 0, 1,..., 11. For each registration, we let 7b denote the optimal
transformation produced by the registration algorithm, and we let Obx and Oby denote the X- and Y-
translation parameters of the optimal transformation b. For reference, we also include in the first line of
Table 6 the parameters obtained using ordinary registration.

The results in Table 6 indicate that a weighted average as constructed in Equation (7.4) is the most

appropriate method for estimating the optimal transform parameters Tx and Ty. Recall that we expect
the multiscale registration algorithm to work well for the first few values of k, and then to eventually
become less accurate as increasing levels of detail and noise appear in the kth component Ck. Indeed,
for mutual information registration, we see that the parameters Ox and by are clustered together for
k = 0, 1,... 8, and then deviate for k > 9, so we set the weights ak = 1 for k = 0, 1,... 8 and ak = 0 for
k > 9. For both mean squares and normalized correlation, we set the weights bk = 1 for k = 0, 1 and
bk = 0 for k > 1. In Table 7, we present the X- and Y-translation values corresponding to the weighted
average T.
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Mutual information Mean squares Normalized correlation
Fixed Moving
Image Image

10.70 T 4.57 5.18 200 2.08 1.14 13 4.08 0.24 7
Co(o-7 0 ) Co(T) 12.69 16.66 200 12.29 17.72 21 12.96 17.08 17

C 1 (10.70) C 1 (T) 12.67 16.87 200 13.70 17.75 38 12.99 17.67 16

C 2 (Io. 70 ) C 2(T) 12.59 16.86 200 20.77 5.20 38 16.84 4.31 17

C3 (10 .70 ) C3 (T) 12.55 16.82 200 3.19 0.31 12 4.20 4.23 11

C4 (10 .70 ) C4 (T) 12.52 16.83 200 2.20 2.24 12 26.74 5.18 36

C 5(Io. 70 ) C5 (T) 12.51 16.84 200 31.65 2.23 42 14.90 6.27 58

C6(Io. 70 ) C 6 (T) 12.49 16.87 200 30.69 6.16 50 19.87 4.29 28

C7(10 .70 ) C 7 (T) 12.48 16.85 200 33.64 3.16 46 29.64 3.32 37

C8(Io. 70 ) C8(T) 12.53 16.71 200 28.81 3.22 45 1.26 1.29 11

C 9 (1o. 70 ) C9(T) 9.26 9.36 200 2.13 3.13 11 17.93 3.21 71

C 10 (10 .7 0 ) Clo(T) 8.80 8.61 200 2.12 3.12 11 32.63 3.14 39

C 1 1 (Io. 70 ) C11 (T) 6.95 6.34 200 34.74 2.10 42 4.13 5.08 17

Table 6: This table illustrates the registration results upon registering the kth multiscale component
Ck(T) of the translated image T with the kth multiscale component Ck(Io.7o) of the noisy image Io.7o
obtained via the multiscale decomposition discussed in Section 6. Here, we use m = 12 hierarchical
steps to decompose the noisy image, so we perform m = 12 registration simulations. The transformation
parameters Ox and ¢y are the X- and Y-translation parameters of the optimal transformation 0 produced
by the registration algorithm. Recall that the actual translation values are 13 in X and 17 in Y.

Mutual information Mean squares Normalized correlation
Px 12.56 12.99 12.98
Ty 16.82 17.74 17.37

Table 7: This table gives the translation parameters Tx and Ty obtained by computing the weighted
average of the multiscale registration transformations Ok for k = 0, 1,... 11, as described in Equation
(7.4). Recall that the actual translation values are 13 in X and 17 in Y.
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Since the actual translation values are 13 in X and 17 in Y, we see that the component-wise multiscale
registration of the translated image T with the noisy image 10.70 produces very accurate results for each
of the three methods presented here (mean squares, normalized correlation, and mutual information).

8.2 Noisy fixed and moving images

In this section, we consider the registration problem in which both the fixed and moving images are noisy.
Consider the noisy images 10.40 and To.40 , where T, as before, is the result of translating I 13 units in X
and 17 units in Y, and A6 denotes the image obtained by adding impulse noise of density S to the image
A.

140 T40

Figure 8: Original image I and translated image T with impulse noise of density 6 0.40

Before applying our multiscale registration algorithm, we attempt to register the noisy translated
image T 0 .40 with the noisy image 10.40 using the three registration methods mean squares, normalized
correlation, and mutual information. For each registration method, we denote by ¢ the optimal transfor-
mation produced by the registration, and we denote by Ox and Oy the X- and Y-translation parameters
of the optimal transformation 0. As is seen in the table below, registration of the noisy images fails.

Since ordinary registration of the noisy images fails, we register the images using our multiscale
registration technique. First, we perform the multiscale decomposition discussed in Section 6 to both of
the noisy images, again using k = 12 hierarchical steps, initial scale Ao = 0.01, and Aj = 2. -A0 . Let
Ck(I0.40) and Ck(T 0 40 ) denote the kth component in the multiscale decomposition of 10.40 and To,40 ,
respectively. Since both of the images are noisy, we register the kth component Ck(To. 4o) with the
kth component Ck(I0.4o). For each registration simulation, we denote by Q) the optimal transformation
produced by the registration algorithm, and we denote by V'x and 4Oy the corresponding X- and Y-
translation parameters of the optimal transformation %.

The multiscale registration results in Table 9 indicate that a weighted average as constructed in
Equation (7.2) is the most appropriate method for estimating the optimal transform parameters Tx and
Ty. For mutual information, we set the weights bk = 1 for k = 0, 1,... 6 and bk = 0 for k > 7. For mean
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Registration Method Ox OY

Mean Squares 11.02 7.04
Normalized Correlation 3.05 0.99
Mutual Information 5.03 2.54

Table 8: This table illustrates the results upon registering the noisy translated image To.40 with the noisy
image 10.40 using ordinary mean squares, normalized correlation, and mutual information registration
techniques. For each registration, we let 0 denote the optimal transformation produced by the registration
algorithm, and we let Ox and Oy denote the corresponding X- and Y-translation parameters of the optimal
transformation 0. Recall that the actual translation values are 13 in X and 17 in Y.

Mutual information Mean squares Normalized correlation
Fixed Moving ,OX

Image Image

10.40 To.40  5.03 2.54 11.02 7.04 3.05 0.99

Co(Io. 40 ) Co(To.40 ) 13.06 16.92 13.05 16.92 13.05 16.92

C 1 (10.40) C 1 (To.40 ) 13.05 16.93 13.02 16.22 13.06 16.92

C2 (Io. 40 ) C 2 (To.40 ) 13.03 16.93 8.11 5.29 13.02 16.27

C3 (10 .40 ) C 3 (To.40 ) 13.02 16.94 5.40 12.19 13.02 16.25

C4 (Io. 40 ) C4 (To.40 ) 13.02 16.94 2.20 8.00 2.23 5.09

C 5(Io. 40 ) C5 (To.40 ) 13.01 16.93 26.76 1.21 1.17 7.00

C 6(Io. 40 ) C6 (To.40 ) 12.99 16.81 23.83 4.11 1.22 2.17

C 7 (Io.40 ) C 7 (To.40 ) 7.05 6.08 0.20 3.15 0.20 4.15

Cs(Io. 40 ) C8 (To. 40 ) 6.78 5.05 6.04 2.09 6.04 6.05

C 9 (Io.40 ) C9 (To. 40 ) 3.05 1.02 9.98 1.10 5.06 10.01

C 10 (Io.40 ) Clo(To. 40) 12.20 14.01 -1.97 0.99 -3.93 3.04
C 1 1 (Io.40 ) Cl1 (To.40 ) 4.80 3.19 1.01 5.98 3.91 0.72

Table 9: This table illustrates the registration results upon registering the kth multiscale component
Ck(To.4o) of the noisy translated image T with the kth multiscale component Ck(Io.4o) of the noisy image
10.40 obtained via the multiscale decomposition discussed in Section 6. Here, we use m = 12 hierarchical
steps to decompose the noisy image, so we perform m = 12 registration simulations. The transformation
parameters Ox and Vby are the X- and Y-translation parameters of the optimal transformation 0 produced
by the component-wise multiscale registration algorithm. Recall that the actual translation values are 13
in X and 17 in Y.
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Mutual information Mean squares Normalized correlation
Tx 13.03 13.03 13.04
TI'y 16.92 16.57 16.59

Table 10: This table gives the translation parameters %'x and Ty obtained by computing the weighted
average of the multiscale registration transformations Qk for k = 0, 1,.... 11, as described in Equation
(7.4). Recall that the actual translation values are 13 in X and 17 in Y.

squares, we set the weights bk = 1 for k = 0, 1 and bk = 0 for k > 2. Finally, for normalized correlation,
we set the weights bk = 1 for k = 0,1,2,3 and bk = 0 for k > 4. In Table 10, we present the X- and
Y-translation values corresponding to the weighted average T.

Note that since the actual translation values are 13 in X and 17 in Y, our multiscale registration
techniques provides accurate results in the case in which both the fixed and moving images contain
significant levels of noise. Since both ordinary registration methods as well as denoising techniques failed
to produce acceptable registration results, the success of our multiscale technique is an indication of its
general applicability and accuracy, particularly for cases in which other methods fail due to the presence
of noise.

9 Computation Time

10 Summary
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1. Introduction
Radiotherapy is an image-guided intervention and imaging is involved in every key step of the
process, ranging from patient staging, simulation, treatment planning, and radiation delivery to
patient follow up (see figure 1). The evolution of radiation therapy has been strongly correlated with
the development of imaging techniques. During the early days when Roentgen first discovered x-rays,
two-dimensional (2D) transmission images of the human body provided unprecedented imagery of
bony landmarks which allowed radiologists to deduce the location of internal organs. Using planar
radiographs, radiologists planned cancer treatments by collimating rectangular fields that
circumscribed the presumed tumor location. Additional blocks placed daily to match marks on the
patient's skin, and later using low-temperature melting dense alloys. The emergence of computed
tomography (CT) in the 1970s revolutionized radiation therapy and allowed us to use image data to
build a 3D patient model and design 3D conformal radiation treatment. In general, 3D conformal
radiation therapy (3D CRT) is a method of irradiating a tumor target volume defined in a 3D
anatomical image of the patient with a set of x-ray beams individually shaped to conform to the 2D
beam's eye view (BEV) projection of the target. The reduction in normal tissue irradiation when
moving from 2D to 3D should theoretically improve the therapeutic ratio and allow the tumor target
volume to be treated to a higher dose, thereby improving the probability of tumor control. Recent
technical advances in planning and delivering intensity modulated radiation therapy (IMRT) provide
an unprecedented means for producing exquisitely shaped radiation doses that closely conform to the
tumor dimensions while sparing sensitive structures 1-3. The development of 3D CRT and IMRT
places more stringent requirements on the accuracy of beam targeting. In practice, large uncertainties
exist in tumor volume delineation and in target localization due to intra- and inter-organ motions. The
utility of modem radiation technologies, such as 3D CRT and IMRT, cannot be fully exploited
without eliminating or significantly reducing these uncertainties. The need to improve targeting in
radiation treatment has recently spurred a flood of research activities in image-guided radiation
therapy (IGRT).

While all radiation therapy procedures are image guided per se, traditionally, imaging
technology has primarily been used in producing 3D scans of the patient's anatomy to identify the
location of the tumor prior to treatment. The verification of a treatment plan is typically done at the
level of beam portals relative to the patient's bony anatomy before patient treatment. In current
literature, the term of IGRT or IG-IMRT is employed loosely to refer to newly emerging radiation
planning, patient setup and delivery procedures that integrate cutting-edge image-based tumor
definition methods, patient positioning devices and/or radiation delivery guiding tools. These
techniques combine new imaging tools, which interface with the radiation delivery system through
hardware or software, and state-of-the-art 3D CRT or IMRT, and allow physicians to optimize the
accuracy and precision of the radiotherapy by adjusting the radiation beam based on the true position
of the target tumor and critical organs. With IGRT, it is also possible to take tumor motion into
account during radiation therapy planning and treatment. Because IGRT improves precision, it raises
the possibility of shortening the duration of radiation therapy by reducing the number of treatment
sessions for some forms of cancer.

The purpose of this article is to highlight the recent developments of various available
imaging techniques and present an overview of IGRT. Stanford experience on various aspects of
clinical IGRT will also be presented. After reading this article, it is hoped that the readers will have
an overall picture of IGRT and find it easier to navigate themselves through the subsequent articles in
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this issue, which focus on providing technical details and/or specific clinical applications of the
available IGRT tools.

2. Issues in IGRT
In current 3D CRT or IMRT, uncertainties exist in many circumstances, such as tumor target
definition, patient immobilization and patient breathing motion, which make it difficult to administer
a high radiation dose to the planned location. The exact locations of the boundaries of the tumor
target and the adjacent sensitive structures are often not known precisely, and a population- and
disease site-based safety margin is used routinely to cope with a problem that is otherwise insoluble.
An important task of IGRT is to eliminate or significantly reduce the margins involved in defining the
clinical and planning target volume (CTV and PTV, respectively).

Many IGRT solutions have been proposed to attack various aspects of the problem. Briefly,
IGRT developments are focused in four major areas: (1) biological imaging tools for better definition
of tumor volume; (2) time-resolved (4D) imaging techniques for modeling the intra-fraction organ
motion; (3) on-board imaging system or imaging devices registered to the treatment machines for
inter-fraction patient localization; and (4) new radiation treatment planning and delivery schemes
incorporating the information derived from the new imaging techniques. These are discussed in more
detail in the following.

3. Tumor target volume definition
3.1 CT, MRI, and ultrasound (US) imaging techniques
To be able to 'see',the extent of disease more clearly and define the tumor target volume relative to
the patient's anatomy have been among the most important issues in radiation oncology. CT has
played a pivotal role in the process. Many radiation oncology departments have acquired dedicated
CT scanners. A typical patient's 3D CT data set has more than 100 axial slices, each of which
contains 512 x 512 pixels. With 16 bits per pixel, a CT data set can easily run over 50 megabytes. CT
has many advantages, including high spatial integrity, high spatial resolution, excellent bony structure
depiction, and the ability to provide relative electron density information used for radiation dose
calculation. The recent development of ultra-fast multi-slice CT has opened a new dimension to CT
technology and allows time-resolved (4D) CT imaging of patient's cardiac and breathing cycles.
Using array detectors, multisection CT scanners can acquire multiple slices or sections
simultaneously and thereby greatly increase the speed of CT image acquisition. Currently, all
manufactures are moving toward 8-, 16- and even 32-slice CT technology. Radiation oncology
application of 4D CT will be discussed in Sec. 4.1.

MRI provides superior soft tissue discrimination, especially for CNS structures and within the
abdomen and pelvis, and has been widely used in the diagnosis and tumor delineation. MRI is also
utilized for virtual simulation of radiation treatment for some specific disease sites. Physically, MRI
involves the determination of the bulk magnetization of nuclei within a given voxel through use of
radio-frequency (RF) radiation and magnetic fields. In a clinical setting, MRI is typically employed
together with CT images with the help of image fusion software to delineate the extent of the
malignancy. As with other imaging techniques, MR technology has gone through a series of
revolutions in the past three decades. MRI technology is moving toward higher field strengths to
further improve the quality of MR images, as evidenced by the installations of 3T scanners in many
institutions (9.4 T MRI scanners has been installed in a few institutions). Fast cine MRI is also
becoming increasingly available and may offer physicians an alternative for imaging the temporal
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process of patient breathing or even heart beating. Figure 2 shows an example of MRI images
acquired at two different phases for a liver cancer patient. In addition, the development of some
specialized MRI scans has also attracted much attention. These include diffusion and perfusion MRI,
dynamic contrast MR], MR angiography, MR spectroscopic imaging (MRSI) and functional MRI
(fMRI). The recent development of diffusion tensor imaging (DTI), for instance, enables diffusion to
be measured in multiple directions and the fractional anisotropy in each direction to be calculated for
each voxel. fMRI measures signal changes in the brain that are due to changing neural activity. These
techniques enable researchers to make axonal and functional maps to examine the structural
connectivity of different regions in the brain and may allow better definition of brain tumors and
better sparing of sensitive regions4.

Ultrasound (US) is another useful imaging modality for radiation therapy. US utilizes high
frequency (1-10 MHz) sound waves to generate anatomical images which have high spatial
resolution and tissue characterization discrimination power through image texture analysis. In
radiation therapy, it has been particularly useful in prostate imaging. Transrectal US permits an
examination/localization of the prostate gland 5-8 and is the imaging modality of choice in guiding the
prostate seed implant procedure.

3.2 Biological imaging
Regardless of the course of therapy, current standard imaging modalities such as CT and MRI do not
always provide an accurate picture of the tumor extent, especially in the zone of infiltration that may
be the limiting factor in an attempt of a radical treatment approach. This has been shown to be the
case for gliomas before surgical intervention 9' 10. It is also true when attempting to determine the
volume of residual tumor for additional therapy owing to problems in differentiating post-therapy
changes from residual tumor. Indeed, the above-mentioned imaging modalities are anatomic in
nature, i.e., they provide snapshot of a patient's anatomy without biological information of various
organs or structures. Biological imaging, defined as the in vivo characterization and measurement of
biological processes at the cellular and molecular level, is an emerging multidisciplinary field resulting
from the developments of molecular biology and diagnostic imaging and shows significant promise to
revolutionize cancer detection, staging/re-staging, treatment decision-making, and assessment of
therapeutic response. MRSI and positron emission tomography (PET) are two valuable modalities for
radiation therapy planning. 1H MRSI combines the advantages of obtaining biochemical data by
water-suppressed H MR spectroscopy with the spatial localization of that data. MR spectroscopy is
useful in characterization of brain and prostate tumors. In the brain, for example, malignant tumors
have an increased rate of membrane turnover (increased level of choline) and a decreased
concentration of neurons. Furthermore, spectroscopy allows for the non-invasive monitoring of the
response of residual tumor to therapy and for differentiating tumor recurrence from tissue necrosis.
Recently, Pirzkall et al 11, 12 have applied multi-voxel MRSI to assess the impact of MRSI on the
target volumes used for radiation therapy treatment planning for high-grade gliomas. It was found
that, although T2-weighted MRI estimated the region at risk of microscopic disease as being as much
as 50% greater than by MRSI, metabolically active tumor tissue still extended outside the T 2 region in
88% of patients by as much as 28mm. In addition, Ti-weighted MRI suggested a lesser volume and
different location of active disease compared to MRSI. The discordance of high grade glioma target
volumes resulting from MRI was also observed in other functional imaging modalities such as PET
and SPECT.

While there is a growing body of evidence now indicating that in vivo MRSI provides unique
information on metabolism that will ultimately affect clinical diagnosis, choice and monitoring of
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therapies, and treatment planning, in reality, MRSI has been mainly remained a research tool
confined to a small number of academic institutions 3-18. PET, on the other hand, is more widely used
and has been harnessed into the planning process in many clinics. In general, PET has lower image
resolutions than CT images and, with commonly used FDG tracer, contains no anatomic information
about normal structures. Information derived from PET needs to be fused with the corresponding CT
images for treatment planning. The fusion of PET and CT images are simplified with the use of the
hybrid PET/CT scanner19 20. Figure 3 shows the data flow of a typical PET/CT scanner. Hybrid

PET/CT systems have several positive features that are absent in stand-alone PET and CT units.
PET/CT is a hardware-based image-fusion technology that virtually eliminates the uncertainty and
inconvenience of currently available software fusion of separate PET and CT images, which are often
acquired with patients in different positions. It should be emphasized that the PET/CT unit is not
simply a PET and CT combination: Not from the perspective of system design, nor the practical
utility. Other than the fact that one does not have to go through the cumbersome and time consuming
software fusion process, it has the advantages of simultaneous availability of the fused images,
convenience to the patient and the physician, increased physician confidence in interpreting the image
findings, and -30% of reduction in PET scanning time due to the use of CT data for PET attenuation
correction.

3.3 Integration of biological imaging techniques and multimodality image fusion
FDG-PET provides a means to study metabolic activity of tumors in vivo. Initial studies incorporating
FDG-PET into treatment planning have been reported 21-24. Bradley et al 23, 24 have carried out a
prospective study to determine the impact of functional imaging with FDG-PET on target volumes
among non-small cell lung cancer (NSCLC) patients being considered for definitive radiation
therapy. They found that radiation targeting with fused FDG-PET and CT images resulted in
alterations in radiation therapy planning in over 50% of patients by comparison with CT targeting.
The changes included the alterations in the AJCC TNM stage (31% of the patients studied) and
modification of target volume (58% of the patients studied). In a separate study, MacManus et al. 22

reported that 30% of patients with locally advanced NSCLC became ineligible for curative
radiotherapy because of detection of either distant metastatic disease or intrathoracic disease too
extensive for radical radiation. Recently, Howard et al 25 have studied the value of FDG-PET/CT for
esophagus cancer and similar findings were reported.

3.4 Emerging PET tracers for oncologic imaging
While FDG-PET has been shown to be effective for a number of malignancies, imaging of many
other neoplasms, such as breast cancer and prostate cancer, with FDG has shown less success. 26-29

Many pitfalls have previously been described with FDG-PET imaging. The FDG tracer can be non-
specifically taken up by several benign conditions such as inflammatory disease, pneumonia, brown
fat, muscle, bowel uptake, and granulomatous disease. Also, slow growing indolent tumors may
exhibit only a mild increase in glucose metabolism and therefore be missed by FDG-PET 3o-34. Thus
FDG-PET is only minimally useful for the evaluation of indolent tumors such as organ-confined
prostate cancer. The recent development of [18F]fluorothymidine (FLT) 35, 36 provided a new
opportunity to improve the sensitivity and specificity of PET imaging of cancer. Because there is
upregulation of thymidine transport into malignant cells due to accelerated deoxyribonucleic acid
synthesis, either IC or 18F-labeled thymidine radiotracers can be used to determine cellular
proliferation. Several studies have shown that the accumulation of FLT correlates better with
proliferation in comparison with the commonly used FDG tracer 11, 36 37. Recently, Smyczek-Gargya
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et al. 38 have reported FLT-PET imaging experiments involving 12 patients with 14 primary breast
cancer lesions (T2-T4). Thirteen of the 14 primary tumors demonstrated focally increased FLT
uptake. The study showed that FLT-PET is suitable for the diagnosis of primary breast cancer and
locoregional metastases and the high image contrast of the technique may facilitate the detection of
small foci.

Agents, such as antisense molecules, aptamers, antibodies, and antibody fragments, can be
aimed at molecular targets for biological imaging. Tumor receptors and certain cellular physiologic
activities, including metabolism, hypoxia, proliferation, apoptosis, angiogenesis, and infection,
provide such targets. In addition to FLT, there are several other new nuclide imaging tracers under

30 39-46 11 47-50 18clinical or laboratory investigations , which include, to name a few, C-Acetate , F-515 153-55 64 56 18 57 59 18 60 64

choline 51 ,, "C-choline .. , Cu-DOTA-[Lys3]Bombesin , 8F-FMISO - ,F-FAZA , Cu-
ATSM61 . For example, carcinogenesis is often characterized by enhanced cell proliferation and
transformation and elevated levels of choline and choline kinase activity in certain neoplasmic
dieases have motivated the development of positron-labeled choline analogs for noninvasive

53, 62detection of cancer using PET . Choline acts as a precursor for the biosynthesis of phospholipids,
e.g. phosphoatidylcholine, the major components of cell membrane 63. Several preliminary studies
have demonstrated the potential of the new tracer for prostate cancer and many other cancers49, 53, 55,

62, 64, 65

3.5 Biologically conformal radiation therapy (BCRT)
The current 3D CRT or IMRT inverse planning is typically aimed at producing a homogeneous target
dose under the assumption of uniform biology within the target volume. In reality, it is well known
that the spatial biology distribution (e.g., clonogen density, radiosensitivity, tumor proliferation rate,
functional importance) in most tumors and sensitive structures is heterogeneous. Recent progress in
biological imaging is making the mapping of this distribution increasingly possible. This new
development opens a new avenue of research, coined BCRT 66-70. The goal of BCRT is to take the
inhomogeneous biological information derived from biological imaging into account and to produce
customized nonuniform dose distributions on a patient specific basis. The simultaneous integrated
boost (SIB) to elective volumes recently appearing in the literature represents a simple example of
BCRT.

To establish BCRT, three major aspects must be addressed: (i) Determination of the
distribution of biological properties of the tumor and critical structures; (ii) Prescription of the desired
dose distribution for inverse planning; and (iii) Inverse planning to generate most faithfully the
prescribed nonuniform dose distribution. While the development of molecular imaging techniques is
critically important in mapping out biology distributions, the successful integration of this
information into IMRT planning through steps (ii) and (iii) is also indispensable to fully exploit the
obtained biology information to improve patient care. With the optimistic assumption that spatial
biology distributions within a patient can be reliably determined using biological imaging in the
future, Yang and Xing 70 have established a theoretical framework to quantitatively incorporate the
spatial biology data into IMRT inverse planning. In order to implement this method, they first derived
a general formula for determining the desired dose to each tumor voxel for a known biology
distribution of the tumor based on a linear-quadratic (LQ) model. By maximizing the TCP under the
constraint of constant integral target dose, they obtained

Dref 1~Ye 1 fATl 'rrf ]e

DoT (i) = D (y,, -y,)AT- 1' In a1re I P1
Ia , ., fl , ' (1)p,
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where Do (i) is the desirable prescription dose at the voxel i with the tumor cell density,

radiosensitivity and proliferation rate given by (p,, a,, y2,), and Dref is the reference dose for the

voxel with reference radiobiological parameters (Prf, ar4 , Yr1,). For a given disease site, the

radiation dose used in current clinical practice with "intent to cure" can be used as a good starting
point in selecting the value of Dref. The relation is quite general and can be used as prescription dose to
guide an arbitrary inverse planning objective function aimed at producing a customized dose distribution
in accordance with the spatial biology information.

4 Intra-fraction organ motion: managing the respiratory motion
Components affecting the reproducibility of target position during and between subsequent fractions
of radiation therapy include the displacement of internal organs between fractions and internal organ
motion within a fraction. Depending on the disease site, these components contribute differently to
the margins that are to be added around the CTV to ensure adequate coverage. In the thorax and
abdomen, intra-fraction internal anatomy motion due to respiration is a principal cause for large
safety margins. Motion can distort target volumes and result in positioning errors as different parts of
the tumor move in and out of the image window with the patient's breathing cycle. Several studies,
conducted to examine the extent of diaphragm excursion due to normal respiration, reported the
range of motion from -0.5 to 4.0 cm in the superioinferior direction. As a consequence of a
significant margin added around the CTV, a large amount of normal tissue surrounding the CTV is
irradiated. Accounting for such motion during treatment has the potential to reduce margins, leading
to reduced radiation toxicity and risk of treatment-induced complications, and yielding room for dose
escalation.

A complete solution compensating for respiratory motion should ideally start at the simulation
stage. There have been several studies to characterize the amplitude, phase and periodicity of organ
motion 71-75 using fluoroscopic x-rays, ultrasound 76, 77, and magnetic or RF markers 78, 79. The
development and deployment of spiral and multi-detector CT scanners have made practical the
acquisition of time-resolved or 4D CT images. The reconstructed images acquired with patients in
treatment positions provide 4D models upon which geometric as well as dosimetric computations can
be performed. 4D PET is also becoming clinically available 80-82. Treatment-wise, respiratory gating
technology and tumor tracking techniques to synchronize delivery of radiation with the patient's own
respiratory cycle are under intensive investigations.

4.1 4D CT Imaging
A 4D CT can be either prospective or retrospective. In the former case, the scanner collects images at
only one of the breathing phases of the patient instead of scanning continuously. The retrospective 4D
CT scan results in multiple image sets, corresponding to different breathing phases of the patient, and
consists of three relatively orthogonal processes 8 3 -87 : Recording of respiratory signal(s), acquisition
of time-dependent CT projection data, and construction of a 4D image from these data. The first
objective can be achieved by tracking a surrogate of respiration-related organ and tumor motion, such85, 88
as tidal volume measured with a spirometer 85, chest expansion monitored by a pneumatic bellows
89 83, or a reflecting external marker placed on the abdomen and tracked with a camera . Time-
dependent CT data can be acquired by oversampling in either helical or cine mode, and constructing
several CT slices over the full respiratory cycle at each axial location 86, ". Finally, the respiratory
signal and CT data must be combined into a 4D series, providing a CT volume at several points
throughout the respiratory cycle. In this section, we will focus primarily on the implementation of
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4D CT provided by the Varian Real-time Position Management (RPM) camera/software and the GE
Discovery ST multislice PET/CT scanner.

4D CT patient setup proceeds along the same lines as a standard 3D CT exam. The patient is
immobilized on the scanner bed, and aligned using room and scanner lasers. Sagittal and coronal
scout images are used to verify patient positioning, and the setup is adjusted as necessary. At this
stage of the setup, the 4D procedure begins to diverge from the 3D exam.

The RPM system consists of an infrared source, CCD camera, and a reflecting block. The block
is attached to the patient's abdomen, typically just inferior to the xiphoid process, and the
anterioposterior motion of the block is captured by the camera. This motion is analyzed in real-time
by Varian software on a computer connected to the RPM camera. The breathing pattern is recorded
for the duration of the scan, and is referred to as the "respiratory trace." Once the scan has finished,
the software retrospectively computes the phase at each point of the respiratory trace by determining
the location of the peaks at end-inspiration, and assigning percentages to interpeak points based on a
linear interpolation of the peak-to-peak distance. For example, under this scheme, end-inspiration
occurs at 0%, while end-expiration typically appears near 50 - 60%. The peak-to-peak distance can
vary between respiratory cycles, as can the position of end-expiration with respect to end-inspiration.

Irregularities in a patient's respiratory pattern can often be reduced by encouraging the patient
to breathe calmly and consistently, and then relying on the patient's compliance during the scan. If
this free-breathing approach is insufficient, the RPM software can provide audio coaching in the form
of a "breathe in, breathe out" recording, which is manually or automatically timed to the patient's
natural rhythm. Some groups have used video feedback either alone or concurrently with audio
instructions 9i. While audio and video coaching can help by stabilizing the respiratory period,
amplitude and baseline, they can complicate matters for patients with compromised respiratory
function, who find it difficult or impossible to maintain a regular rhythm. Another solution is active
breath control (ABC) 92-94, which uses modified ventilator equipment to control the airflow, albeit at
the (possibly significant) expense of patient comfort.

Once a sufficiently regular breathing pattern has been established, the CT data is acquired in
"cine" mode. This is a step-and-shoot technique, whereby the gantry rotates several times at each bed
position in order to acquire data over the full respiratory cycle. The raw data is partitioned into bins
corresponding to a user-selected time interval (typically less than 1/ 10 th the average cycle), and CT
slices are automatically reconstructed from these bins. Because several respiratory points are
sampled at each bed position, a 4D CT scan can take several times as long as a corresponding 3D CT,
resulting in typically 1500 - 3000 CT slices for a 20 - 40 cm axial FOV.

The respiratory and scan data are combined at a separate computer, the Advantage Workstation
(AW) (GE Medical Systems), which uses the respiratory trace to sort the oversampled CT slices
according to their phase. The AW does perform the phase calculations, but rather relies on the phase
stamp computed by the RPM during the creation of the respiratory trace file. Missing phases for any
couch position are replaced with their nearest neighbor, providing a sorted image without any phase
gaps. The user can navigate through the data in each axial direction, similar to standard viewing
software, but can also scroll through the respiratory phases from end-inspiration to end-expiration.
Individual phases can be subsequently extracted, or combined into averaged or minimum/maximum
intensity projections, and exported to planning software in the form of standard DICOM series.
These exported image series form the basis of 4D treatment planning.

4.2 Unresolved issues in 4D CT
The AW sorts the data by phase rather than amplitude. If the breathing were perfectly regular from
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cycle to cycle, then phase- and amplitude-based sorting would give very similar results. The
problem arises when there is variation in amplitude, period, or baseline, or when the onset of end-
expiration does not occur at the same point each cycle. When these inconsistencies arise, the sorted
CT images may contain mismatch artifacts at the interface between bed positions (see Fig. 4). Recent
studies have investigated amplitude-based binning as an alternative to the phase-based approach, and
it appears that amplitude sorting can improve image quality in many cases 9 Other researchers
have matched adjacent CT slices without using a respiratory trace, by maximizing the continuity of
CT units integrated over regions of interest 90. Yet another promising approach involves interpolating

98the CT data continuously between end-cycle peaks using deformable models
A second issue arises in the correlation between external fiducial movement and tumor/organ

motion. Amplitude ratios between fiducial and tumor displacement may vary from cycle to cycle,
and thoracic and abdominal points may involve relative phase shifts 71, 99. These shifts may be
especially crucial for tumors near the lung, where hysteresis is prevalent. Finally, larger organs such
as the liver can experience substantial deformation during inspiration and expiration, which may not

100be adequately captured by rigid-body interpolation between points in the respiratory cycle
Finally, even if the 4D CT images have been acquired without problem, there remains the issue

of reproducibility at treatment 101. If treatment planning and delivery are based on 4D CT, there is an
implicit assumption that anatomic motion during treatment will match the tumor and organ motion
observed during setup. This assumption can be checked to some degree through frequent gated or

102breath-hold portal imaging . On the other hand, it is reasonable to assume the patient will relax
over time, so that their breathing becomes shallower or changes tempo. Indeed, studies have
demonstrated that some patients exhibit systematic respiratory changes over a several-week course of103
radiation therapy, even with visual and audio coaching . These issues strike at the heart of IGRT,
and provide a fertile ground for research.

4D CT usually delivers more radiation dose than the standard 3D CT, since multiple scans at
each couch position are required in order to provide the temporal information. We have developed a
method to perform 4D CT scans at relatively low current, hence reducing the radiation exposure of
patients 87. To deal with the increased statistical noise caused by the low current, we proposed a novel
4D penalized weighted least square (4D-PWLS) smoothing method, which can incorporate both
spatial and phase information. The 4D images at different phases are registered to the same phase via
a deformable model, whereby a regularization term combining temporal and spatial neighbors is
designed. The proposed method was tested with phantom experiment (see figure 5 for an example)
and patient study, and superior noise suppression and resolution preservation were observed.

4.3 4D PET and related issues
4D PET poses a problem distinct from 4D CT, in that signal is inherently limited by the tolerable
patient dose. The result is that any PET scan requires a significant amount of time per bed position
(usually a few minutes) in order to acquire sufficient data to produce a good image. This limitation
makes it difficult to partition PET data with the same time resolution possible in 4D CT, but
nonetheless acquisition methods are clinically available to obtain PET images at end-inspiration or
end-expiration. The most common solution is to gate the PET scan at the desired respiratory end-
point, and reconstruct a single bin of gated data 104-106

Patient setup proceeds in the same manner as an ungated PET scan, and a CT image is acquired
for attenuation correction just prior to the PET. At this point, the RPM system monitors patient
breathing by tracking the reflecting block, and the acquisition trigger is set by the user to occur at
some given point (say, end-inspiration) in the cycle. Each time the RPM camera determines that the
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reflecting block (and, by extension, the patient's respiration) reaches this point in the respiratory
cycle, a trigger is sent to the scanner, and data accumulation is initiated. Gated PET differs
fundamentally from the 4D CT protocol, by elevating the RPM system to this active role in data
acquisition.

In gated mode, the user is able to select both the width of the acquisition window and the
number of sequential bins to record each respiratory cycle. The bin width directly affects image
quality, since the signal-to-noise ratio within an image asymptotically approaches the square root of
the signal level 107. Multiple bin acquisition allows the capture of the full respiratory cycle in several
bins, offering the possibility of retrospectively sorting into two or more respiratory phases. Each time
the RPM trigger is received, data is directed to the initial bin, and then to the remaining bins
sequentially until the next trigger. This process continues for the duration of the scan. Ideally the
scan duration would be chosen such that the first bin (the respiratory point of most interest) would
accumulate as many data points as a comparable ungated scan (i.e., divide the bin width by the duty
cycle). In reality, since this would lengthen the typical PET scan by a factor of 4 or 5, practical
clinical considerations may require the gated scan to be shortened, with corresponding image
degredation.

Once the scan has finished, it is possible to associate each bin (beyond the first bin) with a
corresponding point in the respiratory cycle. Since the respiratory trace is recorded by the RPM, it is
a relatively simple matter to analyze the respiratory motion offline and make this correspondence. It
is also possible to retrospectively combine multiple bins into a single bin, merging all the data to
create an effectively ungated scan. However, these methods are not yet available from the vendor as
a clinical tool, and must be performed by the user in the context of research efforts. Once the desired
bin has been selected, its data can be reconstructed using the vendor-supplied filtered backprojection
or OS-EM algorithms. The image results can subsequently be exported to treatment planning systems
for review, similar to ungated PET series.

A salient point in the PET reconstruction process is the specification of the attenuation
correction map. The current clinical design uses the CT scan acquired just prior to the PET
specifically for this purpose. This attenuation correction CT can be an acquired during either free
breathing or breath-hold. Some research has indicated that PET reconstructions can be quite sensitive
to distortions in the attenuation correction map 108-110, and investigations are ongoing into the use of
4D CT or other models to accurately account for attenuation 80, 111. On the Varian/GE system, this
requires selecting the appropriate images from the 4D CT on the AW, sending these series back to the
scanner, generating the attenuation correction maps for each 4D PET bin, and then reconstructing
each bin separately. Once again, this is a research solution, and not yet available from the vendor for
clinical use.

4.4 Combining 4D PET with 4D CT and enhancement of the performance of 4D PET with post-
acquisition data processing
Once the 4D PET has been acquired (either a single phase, or perhaps several), it is possible to create
a 4D PET/CT 80. This involves manually selecting the PET and CT images with corresponding
respiratory phases (or amplitudes), and fusing them on viewing/planning software. We have recently
developed a 4D-4D image registration algorithm, which allows us to automate the process. If the CT
and PET scans are acquired with the same patient position on the same exam, then the process is a
particularly simple hardware-based registration. On the Eclipse treatment planning system, for
example, two images (not just PET/CT, but other modalities as well) can be automatically fused if
they share the same DICOM coordinates. If the DICOM coordinates are not identical, the registration
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is more difficult, requiring manual or automated shifts and rotations to match anatomical landmarks
or fiducials. Fusion may be additionally complicated by organ deformation '... ... (see Sec. 6). At
the present time, PET/CT hardware fusion for ungated scans is well established and readily available
within the clinical setting", ". 4D PET/CT registration, however, remains primarily within the
research domain.

The major issue in 4D PET is the lack of statistics. Since the collected photons are divided
into several frames, the quality of each reconstructed frame is decreased with increasing number of
frames. The increased noise in each frame heavily degrades the quantitative accuracy of the PET
imaging. We have recently developed two corrective methods to enhance the performance of 4D
PET. The first method, coined "retrospective" stacking (RS) 81, 82, 114 combines retrospective
amplitude-based binning of data acquired in small time intervals, with rigid or deformable image
registration methods. Unlike gating techniques, RS uses data along the entire respiratory cycle,
thereby minimizing the need for lengthened scans while providing a four-dimensional view of the
region of interest81' 82. In the second approach' 14 , we reconstruct each frame with all acquired 4D data
by incorporating an organ motion model derived from 4D-CT images by modifying the well-known
maximum-likelihood expectation-maximization (ML-EM) algorithm. During the processes of
forward- and backward-projection in the ML-EM iterations, all projection data acquired at different
phases are combined together to update the emission map with the aid of the deformable model, the
statistics are therefore greatly improved. Both phantom and patient studies have indicated promising
potential of the two methods.

4.5 Radiation treatment planning based on 4D information
How to maximally utilize the time-resolved image information derived from 4D CT or PET/CT
represents one of the challenges in IGRT. In reality, the information can be integrated into radiation
treatment planning and delivery at different levels. At the lowest level, the 4D images can be
employed to determine the extent of tumor movement on a patient specific basis and the information
can then used to design the CTV margin and the radiation portals to accommodate the motion. Figure
6 shows an example of lung patient, in which tumor boundaries at three distinct respiratory phases are
plotted. We have referred to this type of treatment as "3.5-dimensional" radiation therapy. The 4D
information can also be used for guiding breath-hold or gated radiation therapy. There is also strong
interest in using the 4D data to establish a 4D patient model and then to carry out a 4D radiation
therapy plan. These are the subjects of the following two sub-sections.

4.6 Breath-hold and respiratory gating
Various methods have been worked out to counteract respiratory motion artifacts in radiotherapy
imaging. Among them are breath-hold, respiration gating, and 4D or tumor-tracking techniques 7 3' '7

92,94, 115 *Breath-hold techniques either actively or passively suspend the patient's respiration and treat
the patient during this interval. Deep inspiration breath-hold, active breathing control (ABC) (which
forces shallow breathing and thereby 'freezes' the tumor motion for a small part of the treatment time
92), and self-held breath-hold are suitable for different types of therapy targeting different cancers.
Different types of equipment, such as stereotactic frames, fiducial tracking systems, timers,
respirometer, RPM, or interlocks, may be needed depending on the method of breath-hold.

Respiration-gating methods involve tracking the patient's natural breathing cycle and
periodically turning the beam on when the patient's respiration signal is in a certain phase of the
breathing cycle (generally end-inhale or end-exhale). The patient's respiration is continuously
monitored and the beam switches off as the tumor moves out of the target range. Gated radiation
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therapy can offset some of the motion but requires specific patient participation and active
compliance. In gated treatment it is required that the CT images used for treatment planning faithfully
represent the actual treatment situation. While gated CT acquisition at the treatment respiratory phase
is possible, our gating protocol proceeds by picking up the CT data at an appropriate phase from the
patient's 4D CT acquired using the method described above. The gating interval is typically centered
at end-expiration because of the increased reproducibility at this point, and spans 20-30% of the
breathing period in order to provide a reasonable duty cycle. Treatment plans are optimized for this
phase range by planning on an averaged composite of the scans within the interval, and using
maximum- and minimum-intensity pixel views to incorporate intra-gate margins. The averaged,
maximum-intensity and minimum-intensity composites for a lung patient are displayed in Figure 7.

4.7 Tumor tracking
Similar to the establishment of a 3D geometric modeling based on traditional CT data, the availability
of 4D imaging information makes it possible to build a patient specific 4D model. Figure 8 shows the
4D models for three different patients 98. In obtaining the models, a BSpline deformable registration
technique (see Sec. 6) was used to register different phases of the 4D CT. Ideally, organ motion
represented by the 4D model can be incorporated into the radiation treatment plan optimization to
overcome the adverse effect of respiratory motion on IMRT delivery116. A few groups 115-120 have
explored the feasibility of MLC-based tumor tracking. However, the interplay between different
phases has been ignored during the plan optimization in most of these studies. Webb has presented a
technique to model the dosimetric effect of elastic tissue movement when modulated beams are
delivered 121 In general, the quadratic inverse planning objective function becomes

S= Y -, (2)

where d, is prescribed dose for kth structure, Wk is the importance factor and da(Ft) is the calculated
dose in voxel i at time t, and the summation over t represents the integral dose to ith voxel. For 4D
planning it is necessary to know the path of each material coordinate during the treatment, which
involves registering the voxels in different respiratory phases. This can be achieved by using a
deformable registration algorithm. The optimization of the above objective function or alike 115, 122-

126 can proceed in a similar fashion as conventional 3D inverse planning to derive the optimal
trajectories of the movements of the MLC leaves. An aperture-based optimization 127-129 seems to be
more adequate for dealing with the organ motion116.

4D methods propose to track the tumor with the radiation beam as the tumor moves during the
respiration cycle. These techniques require acquisition of some form of respiration signal (infrared
reflective markers, spirometry, strain gauges, video tracking of chest outlines and fluoroscopic
tracking of implanted markers are some of the techniques employed to date), which is assumed to be
correlated with internal anatomy motion. Fluoroscopy and the cine model electronic-portal-imaging
device (EPID) have been proposed as a means for real-time guidance13 °'35 . While tumor tracking
seems to be the ultimate goal of 4D radiation therapy, the real challenge is clarifying whether the 4D
model is repeatable at the time of fractionated treatments, and determining how to correctly
synchronize the MLC movements with the patient breathing. Real-time imaging and/or adaptive
approaches will likely play a role in this aspect and the issue will surely need more research for many
years to come.
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5 Inter-fraction organ movement
5.1 Current techniques in dealing with inter-fraction organ movement
Uncertainty in patient setup has long been known as a limiting factor to conformal radiation therapy.
Currently, the accuracy of patient setup is verified by megavoltage (MV) radiograph acquired with
either radiographic film or EPID 136-138. The patient's bony landmarks are used to guide patient
alignment. Poor soft tissue contrast and often unclear projection of the bony anatomy are major
problems of the approach. To improve the situation, planar kV x-ray imaging has been implemented130-113
in a variety forms -1 . While these systems show significantly increased contrast for bony structure
differentiation, observing soft-tissue detail remains problematic and correction of daily organ motion
is still challenging. Attempts have been made to use CT imaging to facilitate the patient setup
process. Along this line, the offline adaptive-radiation-therapy (ART) strategy 139, 140 and in-room CT
approach 141 have been studied. The former method aims to partially compensate for organ motion by
carrying out multiple CT scans in consecutive days in the first week of treatment. The image data are
then employed to construct a patient specific PTV model from the composite of the CTVs with
inclusion of statistical variations of the observed motions. While beneficial, the approach is hardly an
ideal solution for dealing with the inter-fraction organ motion. It relies on establishing a statistical
ensemble of all possible setup scenarios under a strong assumption that a limited number of off-line
CT scans can adequately describe the inherently complex, often unpredictable inter-fraction organ
motion. Even when it is achievable, the ART margin is not optimized on a daily basis and there is
still room for further improvement. An integrated CT/LINAC combination, in which the CT scanner
is located inside the radiation therapy treatment room and the same patient couch is used for CT
scanning and treatment (after a 180-degree couch rotation), should allow more accurate correction of
interfractional setup errors. Some major radiotherapy vendors provide options to install a CT scanner
in the treatment room. The overall precision of EXaCT TargetingTM from Varian has been evaluated
by Court et al 141. However, the approach assumes a fixed relationship between the LINAC isocenter
and the CT images and relies heavily on the mechanical integrity of the two otherwise independent
systems. Increased capital cost and prolonged imaging and treatment are other concerns.

Other patient localization techniques available include ultrasound-based methods, video-based
surface tracking, on-board cone-beam CT or kV x-ray imaging, CyberKnife and Tomotherapy, etc.
For prostate radiation therapy, on-line ultrasound imaging has gained substantial interest 142-144 but in
practice has been found susceptible to subtle sources of error and inter-user variability. On-board
CBCT holds promise to become a robust integrated on-line imaging technology that can yield
unambiguous soft-tissue detail at the time of treatment. Furthermore, CT numbers correlate directly
with electron density, thereby providing the potential for reconstruction of the actual dose delivered
on a daily basis, in addition to simple anatomic structure alignment. The details of emerging CBCT
will be presented in the next section. The robotic CyberKnifeT from Accuray Inc. represents another
promising technology. The system has a feedback mechanism in which motion of the CTV,
determined through the Accutrak infrared-x-ray-correlated imaging system, can be fed back to the
robot to track the CTV 145. However, while this improves the duty cycle, there is a finite time between
measuring tumor position and arranging the compensation for motion. Helical tomotherapy is an
alternative means of delivering IMRT using a device that combines features of a linear accelerator
and a helical CT scanner1 46. The commercial version, the HI-ART IITM, can generate CT images using
the same MV radiation beam that is used for treatment. Since the unit uses the actual treatment beam
as the x-ray source for image acquisition, no surrogate telemetry systems are required to register
image space to treatment space. Objective measures of noise, uniformity, contrast, linearity, and
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spatial resolution, and comparison with that of a commonly utilized CT simulator have recently
performed by Meeks et al 147

5.2 CBCTfor patient localization
CBCT based upon flat-panel technology integrated with a medical linear accelerator has recently
become available from linac vendors for therapy guidance. The volumetric images may be used to
verify and correct the planning patient setup in the linac coordinates by comparing with the patient
position defined in treatment plan. Both kV and MV beams have been utilized for the application.
The former typically consists of a kV-source and flat-panel combination mounted on the drum of a
medical accelerator 8, with the kV imaging axis orthogonal to that of MV therapy beam. The fan-
beam and cone-beam MV CT in clinical applications have been reported by Meeks et al 147 and
Poulliot et al 149, respectively. It appears that the MV images contain sufficient resolution of bone
and air cavities to register them to structures in the planning CT with millimeter precision 148 149

Currently, CBCT is primarily used for guiding the patient setup150' 151. The procedure is not
much different from the current patient treatment, other than the fact that the AP/LAT portal images
are replaced by volumetric data. In figure 9 we show 3D CBCT images of a prostate case in one of
the fractional treatments along with the patient's planning CT image. It is seen that soft-tissue
structures and boundaries are visible to varying degrees in the CBCT images. The patient has
implanted fiducials, which show up on both CBCT and planning CT. Our experience indicates that
the cone beam data can clearly reveal setup error, as well as the anatomical deformations and other
physiological changes. During the patient setup process, the 3D CBCT images are registered with the
planning CT data through the use of either manual or automated 3D image registration software that
calculates shifts in x-, y- and z-directions (depending on the manufacturer, rotations can also be
included). The movements determined during the registration represent the required setup corrections
that should be applied to the patient. Both phantom and patient studies from our group have shown
that the volumetric imaging is superior to the conventional MV or kV AP/LAT patient setup
procedure. We note that, if only translational shifts are permissible, the level of improvement is
generally within 2mm as compared with kV AP/LAT setup procedure (2D/2D match). However,
CBCT can readily detect rotational errors which otherwise be missed by the 2D/2D match. In figure
10 we show the localization image for a head phantom with kV/kV 2D/2D match and 3D/3D match
(CBCT/planning CT). The latter approach was found to be sensitive enough to identify a rotational
error as small as 20.

In practice, much effort is needed to improve the robustness and efficiency of the volumetric
image registration process. Furthermore, in order to fully utilize the volumetric data, a new paradigm
with seamlessly integrated simulation, planning, verification, and delivery procedure is urgently
needed. Until this is realized clinically, the volumetric imaging is nothing but an expensive extension
of the already functional planar verification approach. The capital cost and other related overheads do
not seem to justify the marginal benefit if the volumetric data is simply used for determining the
patient shift in the space. However, one should not underestimate the potential of the volumetric
imaging for the future of radiation therapy, as it opens a new avenue (perhaps the only avenue), for us
to realize the planned dose distribution with high confidence in clinical settings.

A few groups are working on deformable model based segmentation and patient setup113, 15-0-152
procedures113' . When deformable registration is used, there are a few options to achieve the
registration depending on whether the primary aim is to match soft-tissue, or to align 3D bony
structures. In figure 11 we show a patient's CBCT and planning CT registration results using
different registration schemes. The multiple choices result from the fact that the dimensionality of the
patient data is much greater than that in the patient setup procedure and suggest that deformable
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registration is not the ultimate solution to volumetric image-guided radiation therapy. Nonetheless,
the technique improves the current method 151 since it partially takes into account organ deformation
by achieving the closest overlay match possible between the planning and CBCT data sets according
to our clinical objective, and serves as a useful interim solution before a better integrated approach
becomes available.

5.3 CBCT-based dose verification
Another important application of on-board volumetric imaging is verification of dose delivery. We
have recently evaluated the accuracy of CBCT-based dose calculation and examined if current CBCT
is suitable for the daily dose verification of patient treatment 153' 154. A CT-calibration phantom was
first used to calibrate both conventional CT and CBCT. CT and CBCT images of the calibration
phantom, an anthropomorphic phantom and two patients (a lung and a prostate case) were then
acquired for this study. Our results indicated that the imperfect quality of CBCT images has minimal
impact (<3%) on the dosimetric accuracy when the intra-fractional organ motion is small. When
intra-fractional organ motion is large and motion artifacts is severe (e.g., in the case of lung cancer),
the dosimetric discrepancy due to the poor image quality of current CBCT was found to be clinically
significant. Furthermore, in the latter case, we found that it is possible to use a deformable
registration algorithm to map the corresponding electron density information from planning CT to
CBCT and then to proceed with conventional dose calculation.

5.4 Respiratory motion artifacts in CBCT
Superior to the common approaches based on two orthogonal images, CBCT can provide high-
resolution 3D information of the patient in the treatment position, and thus has great potential for
improved target localization and irradiation dose verification. In reality, however, scatter and organ
motion are two major factors limiting the quality of current CBCT. When CBCT is used in imaging
thorax or upper abdomen of a patient, respiration induced artifacts such as blurring, doubling,
streaking, and distortion are observed, which heavily degrade the image quality, and affect the target
localization ability, as well as the accuracy of dose verification. These artifacts are much more severe
than those found in conventional CT exams, in which each rotation of the scan can be completed
within a second. On the contrary, in CBCT scan, the gantry rotation speed is much slower, typically
40 seconds to 1 minute for a full 360-degree scan in acquiring the projection data, which is more than
10 breathing cycles for most patients. In figure 12 we show the influence of the same motion on a
regular "fast" CT scanner and CBCT for a motion phantom, where it is clearly seen that the motion
artifacts are much greater than that in a fast scanner.

In the last decade considerable effort has been devoted to finding solutions to remove motion
artifacts and to obtain time-resolved medical images. Wang and Vannier15 5 presented a patient-
motion estimation and compensation technique for helical CT systems. Willis and Bresler 156 cast the
motion artifact problem as a time-varying tomography problem and required special-purpose
hardware to optimally sample the spatially and temporally band-limited CT signal space. A
parametric model for the respiratory motion was used in MRM, and the motion artifacts were
successfully reduced by modifying the reconstruction algorithm "57. Crawford et al 158 brought the
concept into CT imaging, and derived an exact reconstruction formula for motion compensation for
CT scans. Generally, motion correction algorithms that assume a motion model work well when the
motion conforms to the model, but have limited success when it does not. As described in Sec. 4.1,
4D CT has been developed in radiation oncology application in order to explicitly account for the
respiratory motion. The 4D CT can be used to derive a patient-specific deformation field and then
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incorporated into the CBCT filtered-backprojection (FBP) image reconstruction process 1". The
algorithm was tested with simulations at different settings corresponding to conventional CT and
CBCT scan protocols, with translational motion and more complex motion, and with and without
Gaussian noise. In figure 13 we show the result for the motion phantom depicted in figure 12. 159

Since the motion model is directly derived from the patient images, it should be more accurate than
other artificial modeling, and therefore more efficient motion correction is expected. In addition to
this approach, Sonke et al 160 developed a CBCT procedure consisting of retrospective sorting in
projection space, similar to that used in 4D CT (Sec. 4.1). The subsets of projection data are then
reconstructed into 4D CBCT dataset. To achieve a sufficient temporal resolution, however, this will
require slowing down the gantry rotation. The assumption of periodicity of the respiratory motion is
also necessary. Zeng et al 161 proposed a method to estimate the parameters of a non-rigid, free-
breathing motion model from a set of projections of thorax that are acquired using a slow rotating
CBCT scanner.

6. Rigid and deformable image registration
Development of an effective image registration technique has been one of the most important
research areas. Depending on the mathematical nature of the transformation, image registration is
divided into rigid and deformable registrations. In rigid transformations, it is assumed that the
geometry of the object is identical in the two input images and no distortion occurs in the image
acquisition process. A rigid transformation consists of six degrees of freedom: three displacement
parameters and three rotational parameters. Deformable registration, on the other hand, is more
complicated and entails the modeling of voxel dependent distortion. Clinically, the need for a robust
image registration algorithm to compare/fuse images representing the same structures imaged under
different conditions or on different modalities is ever increasing because of the extensive use of
multi-modality imaging and the emergence of new imaging techniques and methods.

Computer-based rigid image registration has gained widespread popularity in the last decade and
is used in routine clinical practice. In this approach, the matching of the two input images is
formulated into an optimization problem and the best registration of the two images is obtained by
iteratively comparing various possible matches until no better registration can be found. The search
for the optimal match of the two input images is usually gauged by a ranking function constructed
based on some physical considerations. Depending on the nature of the input images, the formulation
of the problem can be highly complicated. Court and Dong 162 used a rigid transformation for the
correction of tissue displacement. A deformable procedure based on the finite element model (FEM),
in which images are described as blocks of elastic materials on which forces apply, was proposed by
Bharath et al 163 and Brock et al. 164 In this approach, the parameters that control the behavior of the
elastic material and are responsible for the conversion of forces into local deformations of the elastic
material are Young's elastic modulus and Poisson's ratio. Although powerful, the model has the
drawback that values of the elasticity and density constant for various tissues are not readily available
and have to be found by a trial and error procedure. The method also relies on using complicated
software to generate a FEM mesh and masks of the involved structures. Schreibmann and Xing have
proposed a general narrow-band approach for deformable registration 113. Depending on the problem,made 1 elh r98
modeling of individual voxel movement can also be made using either B-splines , thinplate splines165, 66 67168

, optical flow algorithms 16, or fluid flow algorithms . Spline interpolation is a relatively
simple approach and our experience with the algorithm suggested that the free-form registration is
stable and accurate for dealing with IGRT image registration problems 169. An improvement to this
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method can be achieved by using a spline model with the smoothness of the deformation field
assured by the interpolation between a grid of fixed control points. A simple method along this line is
to deduce the spline coefficients from a set of user-defined control points, as was done by Fei et al.
170 and Lian et al 166 in warping and registration of MR volumes. Coselmon et al 171used a similar
technique to study the accuracy of mutual-information-based CT registration of the lung at exhale
and inhale respiratory states.

To facilitate the computer decision-making process, image pre-processing or user interaction
may be required, especially when dealing with a deformable image registration. The use of
homologous anatomic landmark pairs on the two input images or the control points is an example of
this. In reality, the user must have a detailed understanding of the patient anatomy and the
characteristics of the two modalities in order to accurately identify the control points on both images.
The point pairs are usually obtained interactively with the user repetitively exploring the input image
sets and each time trying to locate a point in both of them. Due to the 3D nature, the process is rather
tedious and difficult to perform. Schreibmann and Xing 172 have developed a general method to
facilitate the selection of control points for both rigid and deformable image registrations. Instead of
relying on the interactive selection of homologous control point pairs on both model and reference
images, in the proposed approach the user needs only to identify some small control volumes on the
model image in a somewhat arbitrary fashion. This new way of image registration eliminates the need
for the manual placement of the homologous control points and allows us to register the two images
accurately and efficiently. The method was applied to both rigid and non-rigid image registration
problems and our results indicated that the registration is reliable and provides a valuable tool for
intra- or inter-modality image registration. In figure 14 we show the registration result of a rectal
cancer patient who has undergone both CT and FLT-PET scans. The increased robustness and
confidence in the registration and the increased speed of calculation, especially in the case of the
deformable registration, are important features of the new technique. Compared to the manual rigid
registration, this method eliminates the nuisance of the control point pair selection and removes a
potential source of error in registration. Compared to the automated method, the technique is more
intuitive and robust, especially in the presence of image artifacts.

7. Clinical experience with IGRT
Clinically implemented IGRT techniques at Stanford include 4D CT, 4D PET, Varian OBI (both
planar and CBCT), gating, and Accuray CyberKnife. Several image-guided clinical protocols are
under investigation. 4D CT/PET information are used in about 40% of the thorax and upper abdomen
cases for patient specific tumor margin definition in 3.5D radiation therapy or for treatment planning
of gated radiation therapy. CBCT is mainly applied for patient setup in the treatment of head and
neck, prostate and other pelvic diseases. For these sites, the CBCT image quality is reasonable to
visualize soft tissues, but the quality is generally notably inferior to that of the state-of-the-art multi-
slice fan beam CT scanner. Scan truncation artifacts because the patient shadow does not fit on the
detector and/or organ motion often cause Hounsfield unit calibration problems. While this does not
seem to influence the image registration, the use of CBCT for dose calculation should proceed with
caution. Our initial experience indicates that, when compared with traditional CT-based calculation,
the dosimetric error is typically less than 3% for prostate or head and neck cases but could be
significantly greater in the thoracic region. Comparison between cone beam data and portal image
derived setup errors show only slight differences (<2 mm). However, we should note that the
differences are derived purely based on the use of manufacturer-provided image-fusion software,
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which often emphasizes the high intensity voxels in bony structures. The next step is to implement
soft-tissue based setup corrections clinically. In reality, volumetric data contain much more
information compared to planar images, and CBCT promises to be more useful in the future when it
is better integrated with treatment planning and delivery systems. An ideal integration would be to use
volumetric image-derived information to "tweak" or re-optimize the treatment plan. This work is still in
progress at Stanford.

As another example of IGRT treatment, we describe our phase I and II pancreatic tumor dose
escalation protocol. The aim is to use CyberKnife to target pancreatic tumors more precisely and to
limit the toxicities associated with treatment. In a phase I study, we treated patients with a single
fraction of 15, 20, and 25 Gy to unresectable pancreatic tumors using the Cyberknife stereotactic
radiosurgery (SRS) system (Accuray Inc, Sunnyvale, CA) 173. To track tumor movement, we implant
fiducial seeds percutaneously into the pancreatic tumor. Using the Accuray Synchrony platform, a
model in which the position of the internal fiducials is correlated with the patient's respiratory motion
is developed. The Cyberknife is able to make real time corrections to compensate for tumor
movement during respiration. Prior to treatment, patients underwent 4D planning CT scans. Using
this dataset, we are able to visualize how the pancreatic tumor moves/deforms through respiration and
compensate for these dynamic changes 174 Minimal acute gastrointestinal toxicity was observed
even at the highest dose. All patients who received 25 Gy had no further local progression of their
tumor until death. In a follow up phase II study, a cohort of 19 patients were treated with 45 Gy
conventionally fractionated radiation therapy using IMRT to the pancreas and regional lymph nodes
followed by a 25 Gy Cyberknife stereotactic radiosurgery boost to the primary tumor 175. An
excellent rate of local control with this therapy was confirmed. Because of the rapid progression of
systemic disease, we did not observe a significant improvement in overall survival as compared to
historic controls. However, most patients had a clinical benefit (decreased pain, increased activity)
and decreased serum tumor marker for pancreatic cancer (CA-19-9) following therapy. To document
that SRS truly resulted in an anti-tumor effect, we routinely obtain FDG-PET/CT scans before and
after treatment. Figure 15 is an example of one such study. There was intense metabolic activity of
the pancreatic tumor prior to therapy with a near complete resolution of FDG uptake in this patient 4
weeks following therapy. The technological challenge for IGRT to minimize toxicity in this clinical
scenario is the precision delivery of high dose radiotherapy. This cannot be accomplished without
taking into account the respiratory associated motion of pancreatic tumors. This movement takes
place in multiple planes and can result in tumor displacement of up to 1-2 cm. Furthermore, tumor
and organ deformation during respiration must also be compensated for during therapy.

8. Summary
With the development of IMRT during the 1990s, radiation therapy entered a new era. This new
process of treatment planning and delivery shows significant potential for improving the therapeutic
ratio and offers a valuable tool for dose escalation and/or radiation toxicity reduction. The improved
dose conformity and steep dose gradients necessitate enhanced precision and accuracy in patient
localization and spawn the development of IGRT, in which various metabolic and anatomical imaging
techniques are integrated into the radiation therapy process. The overall goal of IGRT is to target
tumors more accurately while better sparing the normal tissues. Much recent effort is focused on
removing the uncertainty in the definition of the target volume and in the determination of the
position of mobile and often deformable organs. Biological imaging described in this article will
allow us not only to delineate the boundary of the tumor volume based on the tumors' biological
characteristics but also to map out the biology distribution of the cancer cells, affording a significant
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opportunity for BCRT treatment in the future. Developments of effective 4D CT/PET techniques will
provide effective means for us to understand the temporal dependence of the involved structures and
design the best possible strategy for targeting the moving tumor. Integration of various imaging tools
for off-line and on-line application is also of paramount importance, enabling us to ensure the
planned dose distributions can be realized in the clinical setting. With the newly available IGRT
tools, physicians will be able to optimize radiotherapy accuracy and precision by adjusting the
radiation beam based on the actual positions of the target tumor and critical organs during radiation
therapy planning and treatment. We should mentioned that IGRT is still in its infancy and many
technical issues remain to be resolved, such as the establishment of a robust deformable registration
method, auto-mapping of the contours outlined on the planning CT to CBCT or to different phases of
4D CT, and management of the sheer volume of acquired image sets (both 4D CT/PET and CBCT).
However, it is believed that much of these technical hurdles will be resolved with time, and that
IGRT will become the standard of practice in the future through the effort of researchers around the
world.
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Figure 2 Cine MR images at two different phases for a liver cancer patient.
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Figure 3 A schematic drawing of the data flow in a hybrid PET/CT.
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Figure 4: Example of 4D CT where respiratory cycle irregularities have produced significant interbed
mismatches near the base of the lung.
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Figure 5. Motion phantom study for the 4D-PWLS method with the thorax phantom. The left and
middle columns are the original phases obtained from the GE Advantage Workstation, for 100 mA
and 10 mA, respectively; the right column shows the 10 mA phases after 4D-PWLS processing. From
top to bottom are phase 0%, 20%, 40%, 60%, 80%, respectively. The red rectangles represent the
selected ROI for calculation of SNRs, each of which contains 5x5x5 voxels. PWLS Smoothed
10-mA scan resulted more than two-fold increase in the SNR for every phase of the periodically

moving phantom. Similar results were obtained in a patient 4D CT study.
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Figure 6 Tumor contours for three breathing phases. The contours labeled as CT20 and CT 40 were
produced by applying the deformation field on the tumor contours delineated in CTO.
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(c)

Figure 7. Composite scans of a 4D CT lung patient. (a) Average pixel; (b) Maximum-intensity
pixel; (c) Minimum-intensity pixel. The maximum-intensity pixel composite reveals the motion
extent of hyperdense tissue (e.g., lung tumor), while the minimum-intensity pixel view provides the
motion range of hypodense regions (e.g., lung air volume).
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Figure 8. (a): The BSpline grid superimposed on lung contours (b): On each node, deformation is
represented by arrows, where arrow length is proportional to the deformation. (c) and (d): Same
analysis for two additional patients.
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Figure 9 CBCT (top) and planning CT (middle) for a prostate case. The fusion of the two types of

CT images is shown in the bottom panel.

30



31



Figure 10. Setup localization image for head phantom with kV/kV 2D/2D match (top) and 3D/3D CBCT
match (middle). The image shown in the bottom panel illustrate that the CBCT is a sensitive technique
capable of picking up a 2' rotational miss-match between the planning CT and CBCT.
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Figure 11 Image registration of CBCT and planning CT based on bony structure matching, soft tissue
matching and deformable registration.
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Figure 12 (a) Motion phantom for CT and CBCT simulation study. The left circle moves
diagonally with an amplitude of 1.5 cm and a period of 3.52 sec. (b) Simulated sinograms and
their corresponding reconstructed images with standard FBP algorithm when the circles are
stationary. (c) and (d) show the sinograms and their corresponding reconstructed images for
I sec/rotation acquisition (conventional CT scan speed) and 40sec/rotation acquisition (on-board
CBCT scan speed), respectively.
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Figure 13 (a) Phantom and images reconstructed with motion correction for CT and CBCT settings. The three
images represent the reconstructed image of stationary phantom (left), the conventional "fast" CT (middle), and
the CBCT (right). (b) and (c) Horizontal profiles through the moving circle for the images sown in the middle and
right panels (blue curves). For comparison, the profiles for the stationary phantom (left panel) and images
reconstructed without motion artifacts removal mechanism are also plotted (black and red curves, respectively).
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Figure 14 Sagittal, coronal and axial views of the FLT-
PET (1st row) and CT images (2nd row). The

b) e z d) 25 checkerboard of the CT and FLT-PET images after
, 20 registration using our new method is shown in the 3rd

4 • .row. A 3D view of the registration is also presented,3L
ý 2. . • . .0 where an excellent coincidence is observed between the

I S bony structures revealed in CT (white) and PET images
ep o(orange). The right two panels of the 4-th row show the

, ... . convergence behaviors of our method and the
1. 20 I 3 40 50 conventional method. Our method leads to reproducible

0 10 20 30 40 so Registration Event shifts in x-, y-, and z-directions, and the conventional
Registration Event approach leads to large variations in the shifts.
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Figure 15 FDG-Pet images of a pancreatic patient before and after radiation therapy.
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