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Abstract 
 
 

 Optical techniques for measuring the temperature in three-dimensional supersonic 

reactive flows have typically depended on lineshape measurements using single-beam 

laser absorption spectroscopy. However, absorption over extended path lengths in flows 

with symmetric, turbulent eddies can lead to systematically high extracted temperatures 

due to Doppler shifts resulting from flow along the absorption path. To eliminate these 

problems and provide full three-dimensional spatial resolution, two variants of laser 

saturation spectroscopy have been developed and demonstrated, for the first time, which 

utilize two crossed and nearly copropogating laser beams. Individual rotational lines in 

the visible I2 ( )+Σ gX 0 1 → ( )+Π uB 0 3  transition were used to develop the two diagnostics 

to support research on the Chemical Oxygen-Iodine Laser (COIL), the weapon aboard the 

USAF Airborne Laser. Cross-Beam Saturation Absorption Spectroscopy (CBSAS) and 

Cross-Beam Inter-Modulated Fluorescence (CBIMF) were demonstrated as viable 

methods for recording the spectral signal of an I2 ro-vibrational line in a small three-

dimensional volume using a tunable CW dye laser. Temperature is extracted by fitting the 

recorded signal with a theoretical signal constructed from the Doppler-broadened 

hyperfine components of the ro-vibrational line. 

 The CBIMF technique proved successful for extracting the temperature of an I2-

seeded, Ar gas flow within a small, Mach 2, Laval nozzle where the overlap volume of 

the two 1 mm diameter laser beams was 2.4 mm3. At a test point downstream of the 

nozzle throat, the average temperature of 146 K ± 1.5 K extracted from measurements of 



 v

the I2 P(46) 17-1 spectral line compared favorably with the 138 K temperature calculated 

from isentropic, one-dimensional flow theory. CBIMF provides sufficient accuracy for 

characterizing the temperature of the gas flow in a COIL device, and could be applied to 

other areas of flow-field characterization and nozzle design. In contrast, the CBSAS 

signal was not sufficiently strong for reliable temperature extraction from the 2.4 mm3 

overlap volume required in the nozzle experiments. Otherwise, the CBSAS technique 

could have greater success for application in flow field test environments that allow the 

use of a larger overlap-volume. 

 CBIMF and CBSAS measurements were also made in a static cell at 293 K. At 50 

mTorr of I2, the standard error in temperature from CBIMF measurements of the I2 P(46) 

17-1 line was approximately 0.5 K. For CBSAS, the standard error in temperature was 

approximately 3 K at 50 mTorr of I2. Accuracy improved with increasing I2 pressure. In 

addition, the spatial-resolution capability of CBIMF and CBSAS was demonstrated in a 

static cell with an applied temperature gradient ranging from 300 to 365 K. Extracted 

temperatures were compared to thermocouple measurements at multiple positions in the 

gradient. Agreement between extracted temperatures and thermocouple measurements 

was better at the lower temperatures. 

Doppler-free measurements of several I2 hyperfine spectra were also performed to 

support development of the theoretical model. Saturation Absorption Spectroscopy was 

used to obtain Ar pressure broadening rates of 8.29 ±  0.30 MHz/Torr for the I2 P(70) 17-

1 hyperfine spectrum, and 10.70 ±  0.41 MHz/Torr for the I2 P(10) 17-1 hyperfine 

spectrum. 
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Q electric quadrupole moment 

iQ  partition function 
R internuclear separation distance 
R  R-centroid 
σ  wavenumber 

oσ  vibrational band origin 

Pσ  P-branch term value for ro-vibrational line 
Rσ  R-branch term value for ro-vibrational line 

v vibrational energy-level quantum number 
JJS ′′′,  Hönl-London factor 

Te energy difference between upper- and lower-level electronic state potential 
 minima 

( )+Σ gX 0 1  ground electronic state of I2 with a bound potential 

X~  eigenvector matrices from calculations of ( )+Σ gX 0 1  state energy levels 
Zij  electronic transition moment matrix elements dependent on MF 
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Laser Spectroscopy and Lineshape Theory 
 
A  amplitude parameter for Doppler-broadened theoretical profile of an I2 ro-
 vibrational line 

rad
iA  radiative transition probability per unit time for energy level iE  

α  absorption coefficient (in general) 
oα  unsaturated absorption coefficient 

sα  saturated absorption coefficient due to single monochromatic light beam 

iC  rate for the repopulation of level i from other levels 
iD  diffusion rate of i-level molecules into the excitation volume dV  

dV  excitation volume element 
NΔ  saturated population difference 

oNΔ  unsaturated population difference 
( )z

o vNΔ  unsaturated population difference with a Maxwellian velocity distribution 
νΔ  relative frequency; minimumνν −  or oνν −  according to graphical scale 

collνΔ  collision-induced linewidth (FWHM) due to elastic and inelastic collisions 

eνΔ  elastic collision-induced linewidth (FWHM) 

DνΔ  spectral linewidth due to Doppler-broadening (FWHM) 

inνΔ  inelastic collision-induced linewidth (FWHM) 

hνΔ  homogeneous linewidth (FWHM) 

LνΔ  Lorentzian linewidth (FWHM) 

nνΔ  natural linewidth (FWHM) 

sνΔ  saturation-broadened linewidth (FWHM) 

zvΔ  z-component-velocity interval 
( )Dνδ Δ  standard error in Doppler-broadened linewidth (FWHM) 
Tδ  standard error in temperature 

E
r  electric field vector 
f  linear frequency of an optical chopper 

hyp
if  relative intensity of the ith I2 hyperfine spectral line 
( )νg  spectral profile (in general) 
( )νg  lineshape normalized to unity at line center, i.e ( ) 1=og ν  

( )νDg  Doppler-broadened theoretical profile of an I2 ro-vibrational line 
( )νhg  homogeneous lineshape 
( )νng  natural lineshape 

( )νG  Gaussian lineshape as a function of linear frequency 
h Planck’s constant 
I intensity 
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oI  incident intensity 

IMFI  intensity due to Inter-Modulated Fluorescence 

νI  intensity of incident radiation at frequency ν  

pumpI  intensity of a “pump” laser beam 

probeI  intensity of a “probe” laser beam 

sI  saturation intensity 

tI  transmitted intensity 
trans
probeI  transmitted intensity of a “probe” laser beam 

kB Boltzmann’s constant 
k  absorption parameter 
k
r

 propagation vector 

zk  propagation vector component in z-direction 
K pressure broadening coefficient 
Kbuffer pressure broadening coefficient of I2 due to a buffer gas 

( )νL  Lorentzian lineshape, area normalized to 1 
L length 
m mass of a chemical species in kg 

2Im  mass of I2 molecule in kg 

2IM  molecular mass of I2 molecule in amu 

pm  mass of proton in kg 
μ  reduced mass 
N  number of molecules per unit volume; number density 

BN  number density of collision partner B 
ν  linear frequency 

oν  resonant frequency 
Ω  angular frequency of an optical chopper 

( )νlaserP  output power of a laser as a function of frequency 

νρ  energy density at frequency ν  (units of J/m3) 
( )νρ  spectral energy density (units of J s/m3) 
 Ri  total relaxation probability per unit time for energy level iE  

∗R  relaxation probability per unit time due to upper- and lower-level total 
 relaxation probabilities 

( )νCBS  signal for a cross-beam (CBIMF or CBSAS) experiment 

CBIMFS  signal for Cross-Beam Inter-Modulated Fluorescence experiment 

CBSASS  signal for Cross-Beam Saturation Absorption Spectroscopy experiment 

IMFS  signal for an Inter-Modulated Fluorescence experiment 

MPSFS  signal for Modulated Pump Side-Fluorescence experiment 
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SASS  signal for a Saturation Absorption Spectroscopy experiment 
( )νS  frequency-dependent saturation parameter 
( )oS ν  saturation parameter at line-center 

oS  ( )oS ν  

eσ  elastic collision cross-section 

inσ  inelastic collision cross-section 

12σ  absorption cross-section between energy-levels 1 and 2 
( )νσ12  frequency-dependent absorption cross-section 

( )oνσ  absorption cross-section at line-center 

oσ  ( )oνσ  

sσ  cross-section for line-shift 
s shift in line center 
T temperature, absolute 
Tcoll mean time between molecular collisions 

oτ  zero-pressure lifetime 

nrτ  non-radiative lifetime due to spontaneous predissociation 

radτ  radiative lifetime 
vr  velocity vector 

pv  most probable velocity for a Maxwellian velocity distribution 

zv  velocity component in z-direction 
v  mean relative velocity 

( )νV  Voigt lineshape as function of linear frequency 
dtdW /12  rate at which the energy per unit volume is absorbed on the transition from 

 energy level 1 to energy level 2 
 
Flow dynamics 
A cross-sectional area of the nozzle at a measurement-point downstream 
 from the throat 

∗A  cross-sectional area of the nozzle throat 
Cp specific heat at constant pressure 
Cv specific heat at constant volume 
γ  specific heat ratio, Cp/Cv 

M Mach number 
M atomic mass in amu 
P pressure 

oP  stagnation pressure 
Ro universal gas constant 
R gas constant with mass dependence 
ρ  mass density 
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S speed of vacuum pump 
maxS  maximum speed of a vacuum pump 

T temperature, absolute 
oT  stagnation temperature 

VR volume rate 
VRmax maximum volume rate 

maxw  maximum mass flow rate at throat 
 
Units 
amu atomic mass units 
cm-1 wavenumber 
cfm cubic feet per minute (fluid flow rate) 
GHz GigaHertz (frequency) 
K Kelvin (temperature) 
m meters 
MHz MegaHertz (frequency) 
ns nanosecond 
Pa Pascal (pressure) 
Torr (pressure) 
W Watts (power) 
 
Notation in experimental results 
Atest cross-sectional area of nozzle at point where the cross-beam laser 
 measurements were made 

νΔ  relative frequency; minimumνν −  or oνν −  according to graphical scale 
high

olTΔ  the difference between cT  at the center-point of the beam overlap volume 

 and the temperature at 0.25” towards the hot end of the static cell 
low

olTΔ  the difference between cT , at the center-point of the beam overlap volume 

 and the temperature at 0.25” towards the cold end of the static cell 
exTδ  standard error in extracted temperature 

ε  small correction term 
k absorption parameter 
M* Mach number at nozzle throat 
Mtest calculated Mach number at point where the cross-beam laser 
 measurements were made in nozzle 
Mexit calculated Mach number at the exit plane of the nozzle 
PAr Argon pressure 
Pexit calculated pressure at nozzle exit plane 

2IP  I2 pressure 
Pinlet pressure of gas measured at entrance to the six-way cross chamber 
Pnozzle pressure of gas measured at point where the cross-beam laser 
 measurements  were made in nozzle 
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standardP  standard pressure (760 Torr) 

throatP  calculated pressure of gas at nozzle throat 

throatρ  calculated density of gas at nozzle throat 

θ  crossing angle of laser beams 

cT  temperature measured by thermocouple 

exT  temperature extracted from Doppler linewidth of the measured signal 

standardT  standard temperature, 273.15 K 

testT  calculated temperature at point where the cross-beam laser measurements 
 were made in nozzle 

throatT  calculated temperature at nozzle throat 
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SPATIALLY-RESOLVED TEMPERATURE DIAGNOSTIC FOR SUPERSONIC 

FLOW USING CROSS-BEAM DOPPLER-LIMITED LASER SATURATION 

SPECTROSCOPY 

 
 
 
 

I. Introduction 
 
 
A. Airborne Laser Program 

 
 

 The Air Force began development of the Airborne Laser (ABL) in 1996 as part of 

a Department of Defense strategy to defend American armed forces from the growing 

threat of Theater Ballistic Missiles (TBMs) such as the Scuds used by Iraq in Desert 

Storm.1 The Airborne Laser (ABL), the world’s first laser-armed combat aircraft, is a 

modified Boeing 747-400F freighter equipped with a megawatt-class chemical laser.2 At 

distances in excess of several hundred kilometers, the ABL will be used to attack Theater 

Ballistic Missiles during their boost phase and destroy them before their warheads 

separate from the boost vehicle. In this scenario, warheads and destroyed missile 

components fall on enemy territory, rendering the aggressor vulnerable to the effects of 

the warheads. 

 In May of 2002, a turret was installed in the aircraft’s nose and modifications 

were made to incorporate the laser, optics and computer hardware. After a series of flight 

tests in July 2002, the aircraft received airworthiness certification. Following installation 
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of the beam control/fire control system, the aircraft was tested again in December 2004 

for airworthiness and passed certification. In November 2004, all six modules of the laser 

weapon were fired for the first time.3 Installation of the laser weapon is expected in late 

2005. The first ABL prototype is scheduled for delivery in 2006. 

 
 
B. Chemical Oxygen Iodine Laser 
 
 
 The ABL laser weapon is the Chemical Oxygen Iodine Laser (COIL): a megawatt 

class laser that emits light with a wavelength of 1.315 μm. It was invented in 1977 by 

scientists at the Air Force Research Laboratory at Kirtland Air Force Base.4 To generate 

the laser light, a liquid reservoir of Basic Hydrogen Peroxide (BHP) is combined with 

chlorine gas to produce oxygen in the O2(a1 Δ ) excited state. The gaseous mixture is then 

injected with molecular iodine as it passes through a set of nozzles to reach supersonic 

speeds. As the gases exit the nozzles, the energy in the excited oxygen separates the 

iodine molecule and produces atomic iodine in an excited state. The 1.315 μm light is 

extracted from the atomic iodine with a laser cavity positioned transverse to the gas 

flow.5 The expended gases are scrubbed to remove residual chlorine and iodine and then 

exhausted from the system. Several excellent reviews of laser hardware, chemistry, laser 

physics, and fluid dynamics of these devices are available.6-8 

Since the COIL requires the consumption of chemicals to operate, these 

substances must be carried onboard the ABL aircraft. There is a weight limit on the 

amount of chemical laser “fuel” that can be carried onboard the aircraft as determined by 

ABL’s maximum allowable payload. As a result, there is a practical requirement for the 
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COIL laser to operate as efficiently as possible for a given chemical payload. The 

efficiency of the laser is strongly dependent on the gas temperature in the laser gain 

region. The amount of O2(a1 Δ ) necessary to achieve lasing on the atomic iodine 

transition decreases with a decrease in the temperature of the mixed gases in the gain 

region. In addition, a measured temperature that is higher than expected could indicate 

the presence of waste heat release due to undesired chemical reactions. An accurate 

measure of the gas temperature in the laser gain region is an essential diagnostic in 

assessing COIL performance. 

 
 
C. Previous Work 
 
 
 Two-dimensional spatial distributions of the small signal gain and the gas 

temperature in the gain region of a supersonic COIL device have been measured 

previously by diode laser spectroscopy on the 5p5 2P1/2 (F’=3) → 2P3/2 (F=4) transition of 

atomic iodine.9 The resulting experimental gas temperatures were between 220 K and 

240 K. The computational model predicted a gas temperature of 180 K, disagreeing with 

the experimental results. The technique is limited to measuring an average temperature 

along the path length in which the diode laser interacts with the medium and may be 

biased due to directed flow resulting from symmetrical turbulent vortices, as illustrated in 

Figure 1. 
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Figure 1. COIL supersonic mixing nozzle. The line-integrated temperature 
measurement obtained with single-beam laser absorption may be biased due to 
possible symmetric turbulent vortices present at the nozzle exit plane.10 

 
 
 

D. Research Objective 
 
 
An optical technique for measuring the three-dimensional temperature of the flow 

field at the exit plane of the COIL supersonic nozzle system is required to fully assess 

nozzle efficiency and chemical heat release during I2 dissociation. The purpose of this 

work is to develop and demonstrate a laser saturation spectroscopy technique capable of a 

spatial resolution of 10 mm3 or less for use as a temperature diagnostic in supersonic 

reactive flows. 

 In the proposed technique, the output of a continuous-wave laser is split into two 

beams which are crossed at a small angle so that they are not strictly co-propagating. The 

small volume defined by the intersection of the two beams is positioned at a region of 

interest within a vessel (of comparatively larger volume) containing a gaseous chemical 

Y 

Z

Laser 
Beam 
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species. The laser is frequency-tuned across a spectral line of the gas. Through the use of 

modulation techniques, a detector records the signal due only to interaction of the laser 

radiation with the collection of gas molecules that are present in the volume defined by 

the intersection of the two laser beams. Since the two beams propagate in the same 

direction, they always interact with the same molecular velocity group. Simultaneously 

tuning the two laser beams across a spectral line produces a signal with a Doppler-limited 

profile. The temperature of the absorbing molecules within the beam-overlap volume can 

then be determined from the Doppler linewidth of the spectral signal. 

 In this work, the non-intrusive, optical temperature diagnostics of Cross-Beam 

Saturation Absorption Spectroscopy (CBSAS) and Cross-Beam Inter-Modulated 

Fluorescence (CBIMF) will be developed and demonstrated in a static environment and 

in a small supersonic nozzle. The techniques will be applied to individual rotational lines 

in the visible I2 ( )+Σ gX 0 1  → ( )+Π uB 0 3  transition. Experiments performed in a static cell 

containing I2 vapor will include varying modulation frequency and varying I2 pressure to 

assess the effects on the accuracy of the temperature extracted from a spectral signal in 

addition to performing measurements at different locations within a temperature gradient 

to demonstrate the spatial resolution of the techniques. A comparison of extracted 

temperatures will be made to thermocouple measurements. In the nozzle experiments, 

CBSAS and CBIMF measurements will be performed in a supersonic I2-seeded Ar gas 

flow. The extracted temperatures will be compared to temperature calculations from 

isentropic, one-dimensional flow theory. 

 The extraction of a temperature from the spectral signal recorded with CBSAS or 

CBIMF will be accomplished by fitting the data with a theoretical signal based on the 
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hyperfine structure of an I2 ro-vibrational spectral line. Using well-known Doppler-free 

laser spectroscopy techniques, experimental investigations of the I2 hyperfine structure 

will be undertaken to assess phenomena that influence the I2 hyperfine structure and 

must, consequently, be accounted for in the theoretical model. In particular, Saturation 

Absorption Spectroscopy will be used to determine Ar-pressure broadening rates of I2 

hyperfine components. 
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II. Background 

 
 
 The temperature of a molecular gas (or vapor) can be extracted from spectral data 

recorded in a laser spectroscopy experiment. This is accomplished by fitting a theoretical 

signal, consisting of a small set of parameters, to the experimental intensity vs. frequency 

data of a Doppler-broadened spectral line. The molecular structure of the chemical 

species partly determines the shape of the profile. In this work, molecular iodine was 

selected for use in the diagnostic. Diatomic molecular spectroscopy and lineshape theory 

are presented in this chapter to the extent that the subjects are needed for construction of 

the theoretical profiles. 

 In addition, some of the well-known laser saturation spectroscopy methods are 

reviewed for the techniques that were utilized during the course of this work. The review 

also provides a framework for presenting the simple theory for the spatially-resolved, 

Doppler-limited, cross-beam techniques discussed in the next chapter. 

 Finally, the theory of one-dimensional flow is discussed as it pertains to the 

supersonic expansion of a gas through a nozzle. Temperatures calculated from the flow 

theory are compared to the temperatures extracted from spectral measurements performed 

in a small supersonic nozzle. 

 
 
A. Molecular Iodine 

 
 
Molecule iodine, I2, was selected for the temperature diagnostic because it is 

present in the COIL gain region where a spatially-resolved Doppler-limited technique is 
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intended for application. I2 is also a suitable candidate for exploitation due to its low 

saturation intensity and the abundance of spectral lines at visible wavelengths. 

Several aspects of the I2 diatomic molecular spectroscopy are discussed in regards 

to utilization for the temperature diagnostic. Knowledge of the I2 electronic and ro-

vibrational structure is necessary to identify and select suitable spectral lines for the 

temperature diagnostic. The transition intensity and the population distribution of ro-

vibrational lines are discussed since a temperature can be obtained from this information 

in addition to the method of extracting temperature from the profile linewidth. The 

hyperfine intensities and resonant frequencies of a specific I2 ro-vibrational line are 

discussed since these quantities are essential for constructing the theoretical profile for a 

ro-vibrational line. 

     I2 Electronic Transitions. 
 
           Energy Levels. 

 Absorption of radiation at visible wavelengths induces transitions between the 

( )+Σ gX 0 1  and ( )+Π uB 0 3  electronic states of I2 where X is the ground electronic state and 

B is the second excited electronic state.11 The first few potential energy curves for I2 

electronic states are shown in Figure 2. Each electronic energy level is composed of 

several vibrational energies. Each of these vibrational levels consists of several rotational 

energy levels. With narrow-band laser radiation, it is possible to excite molecules from a 

specific rotational-vibrational level in the ( )+Σ gX 0 1  state to a specific rotational-

vibrational level in the ( )+Π uB 0 3  state. Using various techniques, researchers have 

produced spectral atlases for several wavelength bands in molecular iodine.12-15 
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Figure 2. Potential energy curves for I2.16 

 
 
 
 The bound ( )+Π uB 0 3  potential curve overlaps the unbound ( )u11Π  potential 

curve. It is possible for a molecule in the excited, bound ( )+Π uB 0 3  state to cross over to 

the overlapping, unbound ( )u11Π  state and dissociate into two iodine atoms. This natural 

predissociation has been observed experimentally through measurement of fluorescence-

decay lifetimes. Results show the predissociation rate depends on the excited-state 

vibrational-level quantum number, v′ .17 It is also proportional to ( )1J J +′′ , where J ′  is 

the excited-state rotational-level quantum number.18 

 To predict the allowed ro-vibrational energies of an electronic transition, the 

diatomic molecule can be modeled as a vibrating rotor.19 The rotational term values are 

given by 
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 ( ) ( ) ( )[ ] ( )[ ] K++++−+= 32 111 J J HJ J DJ J BJF vvvv  (1) 

where J is the rotational quantum number. The rotational constants: vB , vD , vH , each 

have a vibrational dependence, and are represented by the following polynomial 

expansions:20 
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where v  is the vibrational energy quantum number and the pqY  are the Dunham 

expansion parameters which can be related to the familiar spectral constants21 (Be, De, 

etc.) for small values of the ratio of Be to eω , the first-order vibrational molecular 

constant - an acceptable assumption for I2. The vibrational term values are given by21 

 ( ) K+⎟
⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞

⎜
⎝
⎛ +≅⎟

⎠
⎞

⎜
⎝
⎛ += ∑

=

32

1
0 2

1
2
1

2
1

2
1max

v y v  v v YvG eeeee

pp

p
p ωχωω  (5) 

where the first expression represents energy levels due to a harmonic oscillator potential 

and the others expressions account for the anharmonicity of the real diatomic potential. 

The visible absorption lines in I2 occur for transitions from an ( )+Σ gX 0 1 -state 

rotational-vibrational level, ( )J,v ′′′′ , to a ( )+Π uB 0 3 -state rotational-vibrational level, 

( )J,v ′′ . Within a given vv ′′−′  vibrational band, the allowable rotational transitions are 
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divided into two branches according to the selection rule: 1±=′′−′=Δ JJJ .21 The P 

branch consists of all 1−=ΔJ  rotational transitions, and the R branch consists of all 

1+=ΔJ  rotational transitions. For a specific vibrational band, the term values, in 

wavenumbers, for the R and P branches are given by21 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )3322 212121 ++′+++′−++′+= ′′′ J J HJ J DJ J BJ vvvRσ   

 ( ) ( ) ( )vv J J DJ J B ovv ′′′++++− ′′′′ ,11 22"" σ  (6) 
 
 ( ) ( ) ( ) ( ) ( )1111 3322 +′′−−′+−′−−′+= ′′′′′ J J BJ J HJ J DJ J BJ vvvvPσ   

 ( ) ( )vvJ J D ov ′′′++′′+ ′′ ,1 22 σ  (7) 

where J is the lower-level rotational quantum number, and vH ′′′′  is assumed negligible and 

set equal to zero. The expression 

 ( ) ( ) ( )vGvGTTvv eeo ′′−′+′′−′=′′′,σ  (8) 

is the band origin in which eT  is the term value corresponding to the minimum electronic 

energy of a given stable electronic state. eT  is related to 00Y . For the ( )+Σ gX 0 1  state, 

0=′′eT . 

 The expansion parameters in Equations (2-4) for the rotational constants and the 

expansion parameters for the vibrational term values in Equation (5) have been 

previously determined for I2.22 The values for the expansion parameters are listed in 

Table 1 for the ( )+Σ gX 0 1  state and in Table 2 for the ( )+Π uB 0 3  state. Line positions for 

the set of I2 ( ) ( )++ Σ↔Π gu XB 0 0  13  ro-vibrational lines used in this work were 

calculated using molecular constants from Reference (22). These ro-vibrational line 

positions are listed in Table 3 along with the corresponding spectroscopic assignments in 
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which the notation indicates the branch (P or R), J ′′  in parentheses, and the vibrational 

band, vv ′′−′ . 

 

Table 1. Expansion parameters for the ( )+Σ g
1 0 X  state of I2. Valid for v ′′ =0-9. 

 

pqY  ( ) vG ′′ ( )1-cm  
0=q  

vB ′′ ( )1-cm  
1=q  

 vD ′′ ( )1-cm  
2=q  

1=p  2.145186E+02 3.736870E-02 4.568123E-09 
2=p  -6.072284E-01 -1.139897E-04 2.120439E-11 
3=p  -1.38611E-03 -2.720291E-07 6.737406E-13 
4=p   -5.447708E-09  

 
 
 

Table 2. Expansion parameters for the ( )+Π u
3 0 B  state of I2. Valid for v′ =1-62. 

 

pqY  ( ) vG ′ ( )1-cm  
0=q  

vB ′ ( )1-cm  
1=q  

vD ′ ( )1-cm  
2=q  

vH ′ ( )1-cm  
3=q  

0=p  15769.0485  
( ) Te′  

2.8993694599E-02 6.125767E-09 -2.15004734E-15 

1=p  125.6724 -1.406799398E-04 1.418420E-10 7.915679522E-15 
2=p  -7.526770E-01 -5.088972976E-06 -2.825041E-12 -1.02396618E-14 
3=p  -3.246282E-03 8.7511454030E-07 5.544495E-13 4.852619270E-15 
4=p  1.875736E-05 -1.171736403E-07 -2.644252E-14 -1.19975156E-15 
5=p  -3.414124E-06 9.7025967839E-09 9.539521E-16 1.792143124E-16 
6=p  2.004998E-07 -5.304859892E-10 -1.864100E-17 -1.75575349E-17 
7=p  -6.950414E-09 1.9571123281E-11 1.813907E-19 1.185081818E-18 
8=p  1.517899E-10 -4.894864050E-13 -6.053203E-22 -5.67595443E-20 
9=p  -1.899790E-12 8.1736417235E-15  1.958960707E-21 
10=p  1.226941E-14 -8.715621632E-17  -4.88849274E-23 
11=p  -3.137312E-17 5.3609973831E-19  8.739722535E-25 
12=p   -1.445945450E-21  -1.09126306E-26 
13=p     9.034911061E-29 
14=p     -4.45560254E-31 
15=p     9.904029815E-34 
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Table 3. Line positions for select I2 ( ) ( )++ Σ↔Π gu
3  X  B 00 1  ro-vibrational spectral 

lines. 

Spectral 
Assignment

σ  
(cm-1) 

P(130) 17-1 17199.7205
P(51) 18-2 17249.9632
P(66) 16-1 17249.9632
P(114) 18-1 17337.7606
P(70) 17-1 17339.8188
P(53) 19-2 17340.2200
P(46) 17-1 17372.7581
P(10) 19-2 17374.2727

R(104) 18-1 17374.3107
P(31) 17-1 17386.7211
P(12) 17-1 17397.1205
R(37) 15-0 17403.2498
R(127) 19-1 17403.2772
R(30) 15-0 17408.1066

 
 
 
          Transition Intensity. 

 The fluorescence intensity of a spectral line in emission due to an electronic 

transition in a diatomic molecule follows the expression 

 ( ) ( )JvJvA
λ

chNJvJvI Jvem ′′′′′′=′′′′′′ ′′        ,1,  (9) 

where J vN ′′  is the Jv ′′ -level population, h is Planck’s constant, c is the speed of light, 

λ is the wavelength of the emission, and ( )J vJ vA ′′′′′′ ,  is the Einstein coefficient for 

spontaneous emission given by21 
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3
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where J,J S ′′′  is the Hönl-London rotational line strength. For a given J ′ , the J,J S ′′′  

values for the allowed transitions sum to ( )1J +′2 .21 Thus, the expression in parentheses 

on the right hand side of Equation (10) is the relative rotational line strength. In I2 

XB ↔  transitions, the relative rotational line strength is approximately ½ for large J ′  

in the P or R branch.23 The last expression on the right hand side of Equation (10), the 

transition moment, is the absolute square of the integral of the product of the upper- and 

lower-level vibrational wavefunctions, and the electronic transition moment: 

 ( ) eelee  M R Ψ ′′Ψ′=μ  (11) 

where eΨ  is the electronic wavefunction, elM  is the portion of the dipole moment 

operator dependent on electronic coordinates only, and R is the internuclear separation 

distance. A typical approach for describing the transition moment in Equation (10) is to 

use the R-centroid approximation in which 

 ( ) ( ) 222     R   R   vvevev ′′′′′′ ΨΨ=ΨΨ μμ  (12) 

where R  is the R-centroid: 

 
vv

vv   R  
R

′′′

′′′

ΨΨ

ΨΨ
= , (13) 

and 

 2  q vvvv ′′′′′′ ΨΨ=  (14) 

is the Franck-Condon Factor (FCF) which determines the vibrational dependence of 

intensities in molecular electronic transitions.23 Some calculated FCFs for select I2 

( ) ( )++ Σ↔Π gu XB 0 0  13  vibrational bands are shown in Table 4. 
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 Assuming equilibrium conditions, the population of molecules in a specific 

rotational state belonging to a particular vibrational state of a given electronic state has 

the form of a Boltzmann distribution so that 

  

( )

( )

( )

r

B
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n
v

B

e
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elec

elec
JveevJ Q

T k
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E

 g NN N NN
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⎛
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⎟⎟
⎠

⎞
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⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

==
exp

12
expexp

 (15) 

where N is the total number of molecules, elecg  is the electronic state degeneracy, ( )vG  

is given by Equation (5), ( )12 +J accounts for the rotational state degeneracies, and 

( )JFv  is given by Equation (1). The nuclear spin degeneracy is given by gn. iQ is the 

partition function for the particular type of transition where 

 ∑
∞

=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

0
exp

i B

elec
ielec

ie T k
E

gQ  (16) 

is the electronic partition function where elec
ig  is the degeneracy of the ith electronic 

energy state, 

 ( )∑
∞

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

1
exp

v B
vv T k

G gQ υ  (17) 

is the vibrational partition function where vg  is the degeneracy of the ith vibrational 

energy state, and 

 ( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+= ∑

∞

= T k
JF

 JgQ
B

v

J
nr exp12

0
 (18) 

is the rotational partition function which is dependent on v , the vibrational quantum 

number. The electronic-state population is not explicitly included in Equation (9). For 

this work, temperatures in the range of 140-400 K were encountered in experiment. The 
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fraction of molecules in an excited electronic state in this temperature range is negligibly 

small; for the I2 B state, ( )( ) 1//exp ≈− eB
elec
B QTkE  . 

 For comparison to emI , the intensity of an absorption line, for thin absorbing 

layers, follows the expression 

 ( ) ( ) vve
JJJvo

abs qR
J

SxNI
h

cI ′′′
′′′′′′′

+′
Δ

=
2,

3

123
8   

 
  

 
  μ

λ
π  (19) 

where Io is the incident intensity of the radiation, and JvN ′′′′  is the Jv ′′′′ -level population 

density, xΔ  is the thickness of the absorbing layer, and λ  is in cm. The Franck-Condon 

factor and the lower vibrational-level population vN ′′  can be used as discriminators when 

selecting an absorption line for the temperature diagnostic where the most intense lines 

are preferred in order to achieve a satisfactory signal-to-noise ratio. Both the FCFs23 and 

relative v ′′ -level population values are listed in Table 4 for the I2 XB ↔ transitions 

presented in Table 3. 
 
 
 
Table 4. Franck-Condon Factors23 and relative v ′′ -level populations for select I2 

( ) ( )++ Σ↔Π gu
3  X  B 00 1  vibrational bands at T=300 K. 

 
 
vv ′′−′  

 
vvq ′′′⋅100  

( )
( )KTN

KTN

v

v
300

300

0 =
=

=′′

′′
vvq ′′′⋅100

( )
( )KTN

KTN

v

v
300

300

0 =
=

⋅
=′′

′′  

15-0 0.5321 1.00 0.532 
16-1 2.960 0.360 1.064 
17-1 3.318 “ 1.193 
18-1 3.582 “ 1.288 
19-1 3.730 “ 1.341 
18-2 2.838 0.130 0.369 
19-2 2.165 “ 0.282 
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     I2 Hyperfine Transitions. 

It has been shown, for a given I2 ( ) ( )++ Σ↔Π gu XB 0 0  13  vibrational band, that 

the spectral linewidth is greater for odd "J than for even "J ro-vibrational lines.24 The 

source of the non-Doppler contribution to the linewidth is the hyperfine structure of the 

transition, which is observable with high resolution Doppler-free laser techniques.25 

The hyperfine structure is a manifestation of interactions between the nuclei of the 

molecule and the magnetic and electric fields generated by the molecule’s electrons. The 

energy levels due to these interactions can be predicted from the following Hamiltonian 

 SRNEQhfs HHH +=  (20) 

which is composed of a Nuclear Electric Quadrupole (NEQ) term and a magnetic Spin-

Rotation (SR) term.26 Higher-order terms can be included in hfsH  to improve the 

accuracy of the predicted hyperfine energy levels.27 

For large rotational quantum number values, 20≥J , NEQH  for a homonuclear 

diatomic molecule can be approximated as the sum of two single-nucleus NEQ energies 

so that 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−−

−⋅+⋅
+

−−

−⋅+⋅
=

12122
2
33

12122
2
33

22

22
2

2
2

2
2

11

2
1

2
1

2
1

J  J I  I 

J IJI JI 

J  J I  I 

J IJI JI 
q Q eH

2

JNEQ

rrrrrrrrrrrr

  

  (21) 

where e  is the electron charge, and the constant Q  is the electric quadrupole moment, 

2521 /II ==  is the nuclear spin angular momentum for the iodine atom, and J
r

 is the 
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molecule’s rotational angular momentum vector.24, 26 The average electric-field gradient 

along the J
r

direction is given by 

 
32322

2

2

2

+
−=

+∂

∂
−=

∂

∂
=

J 
J q

J 
J 

z
V

z
Vq

MJ
J  (22) 

where the relationship to the average electric-field gradient along the molecule’s 

symmetry axis (indicated by the subscript M) is shown in the second expression.20 

 The NEQ energy levels are derived by diagonalizing the NEQ energy matrix 

using the FM F J I I I 21  representation where the total nuclear spin vector is given by 

 21 III
rrr

+= , (23) 

the total angular momentum vector is given by 

 IJF
rrr

+= , (24) 

and FM  is the component of F
r

 along a fixed space-axis. The resulting eigenvalues are 

labeled with the following quantum numbers: J for the rotational angular momentum, 

F for the total angular momentum, and ε  for the pseudo-spin angular momentum which 

represents the value of the molecule’s total nuclear spin 21 III
rrr

+=  that makes the 

largest contribution to the eigenstate.28 

 In the assumption of large J , where 1IJ >> , the rotational angular momentum 

vector is almost parallel to F
r

, and may be treated as having a fixed direction in space. 

The nuclear angular momenta may then be independently quantized along this direction. 

Defining quantum numbers 1M , and 2M  where 212121 ,,, IMI ≤≤−  so that 11 MJF += , 
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with 11 IJF
rrr

+= , and 22 MJF += , with 22 IJF
rrr

+= , the coupling terms in Equation 

(21) can be written approximately as 

 ( ) ( )( ) ( )11
2
1

111111 +−++=⋅ I IM M J MJI
rr

 (25) 

 ( ) ( ) ( )[ ] ( )4
111111

22
1

2
1 11 IOI IM M J MJ MJI ++−++=⋅
rr

 (26) 

 ( ) ( ) ( )[ ]11
2
1

112222 +−++=⋅ I IM M J MJI
rr

 (27) 

 ( ) ( ) ( )[ ] ( )4
211222

22
2

2
2 11 IOI IM M J MJ MJI ++−++=⋅

rr
 (28) 

where the ( )4
iIO  indicate higher-order terms. Substituting Equations (25) through (28) 

into Equation (21) gives the approximate NEQ energy levels: 

 ( ) ( )( ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ ++−+++

−
≈

2
11133

128 11111
2
2

2
1

11
I IM M M 

J
MM 

I  I 
q Q eENEQ   

 ( ) ( ) ( )⎟⎟
⎠

⎞
+−⎥⎦

⎤
⎢⎣
⎡ ++−++ 12

2
1113

1111222 I I I IM M M 
J

. (29) 

 Equation (29) predicts 36 possible NEQ energy levels. However, only a subset of 

the 36 levels is allowable for a given quantum state. The iodine isotope, 127I2, is a 

homonuclear diatomic molecule in which each nucleus has a nuclear spin of 2/5 . The 

total wavefunction representing the molecule must change sign when the nuclei are 

interchanged by a permutation operation acting on the total wavefunction.21 This 

symmetrization requirement limits the possible combinations of I and J; and, therefore, 

the values of F that are associated with J. For the I2 ( )+
gΣX 01  state, the I values of 5, 3, 

and 1 can only combine with odd J ′′  values, and the I values of 4, 2, and 0 can only 

combine with even J ′′  values. For the I2 ( )+Π uB 0 3  state, the I and J combinations are 
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reversed due to the ungerade symmetry of the electronic wave function so that I values of 

5, 3, and 1 can only combine with even J ′  values, and the I values of 4, 2, and 0 can only 

combine with odd J ′  values.24 The number of hyperfine energy levels for a particular I is 

12 +I . For odd J ′′ , the total number of hyperfine states is 21. For an even J ′′ , the total 

number of hyperfine states is 15. In contrast, the total number of hyperfine states is 15 for 

odd J ′ , and 21 for even J ′ . Therefore, the NEQ energy levels predicted by Equation 

(29) consist of either a set 15 or 21 hyperfine energy splittings as determined by J . The 

hyperfine energy levels from Equation (29) for odd 20≥′′J  are shown in Figure 3, and 

for even 20≥′′J  in Figure 4. The frequency spacing between adjacent levels in a 

multiplet decreases with increasing J ′′ . 

In early saturation absorption experiments, it was found that the high-J NEQ 

energy approximation alone was not sufficient to accurately describe experimental 

hyperfine splittings.29 It was necessary to include an additional term describing the 

interaction between the nuclear magnetic moment and the molecular magnetic field. The 

Hamiltonian for the magnetic Spin-Rotation (SR) energy is given by 

 ( ) JIICH SRSR
rrr

⋅+= 21 , (30) 

where SRC  is the Spin-Rotation coupling constant. Inserting the coupling terms from 

Equations (25) and (27) into Equation (30) yields 

 ( ) J MM CE SRSR 21 +≈  (31) 
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Figure 3. The I2 NEQ hyperfine energy levels for large odd J ′′ . The coupling 
constant is 2453−=′′qeQ . The small number labeling each level is the F-J value. 
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Figure 4. The I2 NEQ hyperfine energy levels for large even J ′′ . The coupling 
constant is 2453−=′′qeQ . The small number labeling each level is the F-J value. 
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for the approximate magnetic Spin-Rotation energy levels.26 The approximate energy for 

a hyperfine state is sum of Equation (29) and Equation (31): 

 SRNEQhfs EEE +≈ . (32) 

 The hyperfine structures of single I2 ( ) ( )++ Σ↔Π gu XB 0 0  13  ro-vibrational 

transitions closely approximate the NEQ energy-level structures in Figure 3 and Figure 4. 

For high J , the strongest hyperfine transitions in I2 ( ) ( )++ Σ↔Π gu XB 0 0  13  follow the 

selection rule: 1±=Δ=Δ JF .20, 24 The J ′′ -level will have the same number of hyperfine 

states as the J ′ -level so a single ro-vibrational transition will consist of either 15 or 21 

hyperfine transitions. At high J, the relative intensities of these hyperfine lines are 

proportional to 12 +F , the degeneracy of the total quantum number; and, thus, are very 

nearly the same in magnitude.20 

While the high-J approximation theory is useful for understanding the structure of 

the hyperfine levels and the variation in energy-level splittings with J, a more accurate 

method of predicting hyperfine energy levels was pursued for use in this temperature 

diagnostic by solving the hyperfine Hamiltonian through a matrix approach. Using a 

Visual FORTRAN computer program30, the hyperfine energy levels were calculated 

using the two-term Hamiltonian: 

 SRNEQhfs HHH += . (33) 

The matrix elements were defined by a case (b)βJ coupling scheme in which the nuclear 

spins are coupled to give the resultant spin, I
r

, which is then coupled to the rotational 

angular momentum, J
r

, to give the total angular momentum: IJF
rrr

+= .31 From the 
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coupling scheme, a set of basis functions: FM,F,J,I  were defined so that SRH  would 

contribute only diagonal matrix elements of the form 

 ( ) ( ) ( )( )111
2

,,,,,, +−+−+= J JI IF F 
C

MFJI H MFJI SR
FSRF  (34) 

where SRC  is the spin-rotation coupling constant.32 The matrix elements for NEQH  are 

given by 
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J q Q eM,F,J,I H M,F,J,I JF
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 (35) 

in which non-vanishing matrix elements occur for 20 ±=Δ  ,I , and 20 ±=Δ  ,J . The 

matrix is diagonal in F and FM . For highly accurate calculations with given values of F 

and FM , the matrix for hfsH  of the I2 X electronic state has an order of 63 X 63 for odd 

J, and an order of 45 X 45 for even J.32 The order is reversed for the I2 B electronic state. 

It is found that omitting the 2=ΔJ  terms produces only small errors in the results.32. 

This approximation was used for the computer calculations to reduce the order of the 

I2(X) matrix down to 21 X 21 for odd J and 15 X 15 for even J. 

 The hyperfine coupling constants are used as inputs to the energy-level 

computations. For the I2 ( )+Σ g X 01 -state coupling constants, the values of 

 q Q e 5837.2452−=′′ MHz, and  CSR 162.3=′′ kHz for 0=′′v , 13=′′J  were obtained 

from experimental data in the literature.33 To determine the I2 ( )+Π u B 03 -state coupling 

constants, the following empirical formulas were used: 

 ( ) ( ) ( )261051.10130.08.1964 vGvGv q Q e ′⋅⋅−′⋅−=′Δ −  (36) 
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where q Q e Δ  is given in units of MHz and ( )vG ′ , the vibrational term-value expression 

from Equation (5), is given in units of cm-1, and 

 ( ) ( ) ( )JFvGexpJvC vSR ′⋅+⎟
⎠
⎞

⎜
⎝
⎛ ′+−

⋅+=′′Δ ′012.0
653
249.438141823,  (37) 

where SRCΔ  is given in units of kHz, and ( )JFv ′′ , the rotational term-value expression 

from Equation (1), is given in cm-1.27 The upper state hyperfine coupling constants for  

P(46) 17-1 are q Q e ′= -518.89 MHz, and SRC ′ = 36.92 kHz. For P(53) 19-2, the 

hyperfine coupling constants are q Q e ′= -522.51 MHz, and SRC ′ = 40.52 kHz. 

 The hyperfine line intensities were also calculated by computer program. The 

transition probabilities were calculated by considering the effect of radiation polarized in 

the space-fixed coordinate Z-direction. The B-X transition moment is oriented along the 

I2 bond-axis which is taken to be in the molecule-fixed coordinate z-direction. The matrix 

elements of the transition moment for the case (b)βJ basis are derived by first 

transforming to a case (a) basis. The matrix elements are then 

( ) ( )

X  B MJ  MJ
MMM

F       I    J  
                                       

MMM
F      I     J 

 F  F  MFIJ  MFIJ

zJzZJ
FIJ

FIJMM
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1212,,,,,,
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⎛
−

×
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⎠

⎞
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⎝

⎛
−

′′
++′−=′′ ∑

 (38) 

where zZα  is the direction cosine and X  B zμ  is the electronic transition moment. 

The direction cosine terms for the P and R branch rotational lines of I2 are34 

 
( ) ( )

( ) ( )1212
,,1

−+
−+

=−
J  J 

MJ MJ
 MJ  MJ JJ

JzZJ α  (39) 

and 
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( )( )

( ) ( )3212
11

,,1
++

+−++
=+

J  J 
MJ MJ

 MJ  MJ JJ
JzZJ α . (40) 

To obtain the transition probabilities, the transition moment matrix, μ~ , is transformed 

using the eigenvector matrices from calculations of the B-and X-state energy levels so 

that 

 X  BZ T ~~~~ μ=  (41) 

in which the individual matrix elements ijZ  are dependent on FM .The relative transition 

probability between an i and j state, ijP , is calculated by squaring the ijZ  values and 

summing over FM  to give 

 ( ) 2
3 ∑=

FM
Fijij  MZ   P . (42) 

 Relative frequencies and relative intensities calculated using the matrix theory are 

shown in Table 5 for the I2 P(46) 17-1 hyperfine transitions. Calculations from the high-J 

approximation theory using Equation (32) are also shown for comparison. In Table 6, 

relative frequencies and relative intensities for the I2 P(53) 19-2 hyperfine transitions are 

shown for the matrix theory and the high-J approximation theory. 

 
 
B. Spectral Line Shape and Line Width 
 
 

The spectral lines in absorption or emission spectra are not absolutely 

monochromatic. Each spectral line has, in fact, an intensity distribution of absorbed or 

emitted radiation in a frequency interval about the resonant frequency ( ) h/EEo 12 −=ν  
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of the molecular transition where 2E  is the upper energy level, 1E  is the lower energy 

level, and h is Planck’s constant. 

The spectral “line” can vary in shape or width according to the influence of 

physical processes. In general, lineshapes fall into two categories: homogeneous and 

inhomogeneous. The homogenous lineshape results when all the molecules in the system 

have the same lineshape function as in pressure broadening. In contrast, inhomogeneous 

broadening results where the probability of absorption or emission of monochromatic 

radiation is not equal for all the molecules in the sample, as in Doppler broadening. 

 
 

Table 5. Relative frequencies and relative intensities for I2 P(46) 17-1 hyperfine 
transitions. Calculations are shown from the matrix theory and from the high-J 
approximation theory. 
 

 
 
 
 
 

F-J 

 
 

Matrix 
Theory, 

νΔ  
(GHz) 

 
High J- 
Approx.  
Theory, 

νΔ  
(GHz) 

 
Matrix 
Theory, 
Relative 
Intensity 

(arbitrary units)

High J- 
Approx.  
Theory, 
Relative 
Intensity 

(arbitrary units)

 
 
 
 

Hyperfine 
Component

0 0 0 1 1 t 
-4 0.27752 0.26832 0.9132 0.9140 r 
1 0.28522 0.29157 1.0202 1.0215 q 
-1 0.29453 0.30107 0.9772 0.9785 p 
4 0.30219 0.32432 1.0868 1.0860 o 
-3 0.41604 0.42583 0.9328 0.9355 n 
-2 0.4296 0.43988 0.9543 0.9570 m 
2 0.43892 0.44908 1.0418 1.0430 l 
3 0.45315 0.46313 1.0633 1.0645 k 
0 0.5794 0.59264 0.9980 1 i 
-2 0.7144 0.71740 0.9556 0.9570 g 
-1 0.715 0.73145 0.9758 0.9785 f 
1 0.73355 0.75016 1.0189 1.0215 e 
2 0.73596 0.76421 1.0424 1.0430 d 
0 0.86976 0.88897 0.9987 1.0000 b 



 27

Table 6. Relative frequencies and relative intensities for I2 P(53) 19-2 hyperfine 
transitions. Calculations are shown from the matrix theory and from the high-J 
approximation theory. 
 

 
 
 
 
 

F-J 

 
 

Matrix 
Theory, 

νΔ  
(GHz) 

 
High J- 
Approx.  
Theory, 

νΔ  
(GHz) 

 
Matrix 
Theory, 
Relative 
Intensity 

(arbitrary units)

High J- 
Approx.  
Theory, 
Relative 
Intensity 

(arbitrary units)

 
 
 
 

Hyperfine 
Component

-5 0 0 1 1 u 
0 0.02357 0.02328 1.1045 1.1031 t 
5 0.04651 0.04657 1.2090 1.2062 s 
-4 0.2721 0.29145 1.0194 1.0206 r 
1 0.30951 0.31473 1.1245 1.1237 q 
-1 0.31635 0.32172 1.1245 1.0825 p 
4 0.3524 0.34501 1.1865 1.1856 o 
-3 0.43657 0.44766 1.0401 1.0412 n 
-2 0.45184 0.46046 1.0613 1.0619 m 
2 0.46251 0.47094 1.1452 1.1443 l 
3 0.47329 0.48375 1.1665 1.1649 k 
-3 0.57419 0.58290 1.0407 1.0412 j 
0 0.60201 0.61317 1.1033 1.1031 i 
3 0.63368 0.64345 1.1652 1.1649 h 
-2 0.71356 0.73911 1.0594 1.0619 g 
-1 0.73689 0.7519 1.0814 1.0825 f 
1 0.75457 0.76938 1.1239 1.1237 e 
2 0.7778 0.78219 1.1427 1.1443 d 
-1 0.87856 0.89531 1.0814 1.0825 c 
0 0.88965 0.90812 1.1008 1.1031 b 
1 0.9037 0.92093 1.1227 1.1237 a 
 
 
 

 The lineshape for a homogeneously-broadened spectral line can be represented by 

the area-normalized Lorentzian function defined as 
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where oν  is the resonant frequency, and LνΔ  is the Full Width at Half Maximum 

(FWHM) Lorentzian linewidth in units of frequency. 

 Two cases of homogeneous broadening are discussed in the next two sections: 

natural line-broadening and collision broadening. This is followed by a discussion of 

Doppler broadening (the phenomenon essential to the temperature diagnostic). 

     Natural Line-Broadening. 

 An excited molecule can spontaneously emit radiation to produce a spectral line 

shape with a fundamental width called the natural linewidth. The probability per unit time 

that a molecule in an excited-state energy level 2E  makes a transition to a lower energy 

level 1E  by spontaneous emission is represented by A21, the Einstein coefficient for 

spontaneous emission. The inverse of A21 is the mean time the molecule remains in 2E  

before it spontaneously radiates a photon and transitions to 1E  and is referred to the as 

the radiative lifetime, 

 
21

1
Arad =τ . (44) 

 

The lineshape for natural broadening is Lorentzian. Following the form of Equation (43), 

the natural lineshape can be written as 
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where the FWHM natural linewidth nνΔ  is related to the radiative lifetime by 
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rad

n   τπ
ν

2
1

=Δ . (46) 

 Lifetime measurements for I2 B-X transitions from the literature are shown in 

Table 7.17, 18, 35, 36 The zero-I2-pressure lifetime oτ  is related to the radiative lifetime radτ  

by 

 
nrrado τττ
111

+= , (47) 

where nrτ  is the non-radiative de-excitation lifetime due to spontaneous 

predissociation.17 It has been shown experimentally that the radiative decay rate ( rad/ τ1 ) 

decreases with increasing excited-state vibrational quantum number, v′ .37 Homogeneous 

linewidth measurements for I2 B-X transitions are shown in Table 8 as FWHM values.25, 

32, 38-41 The generic symbols of νΔ  for linewidth and τ  for lifetime are used for column 

headings in Table 8 to encompass the variety of specific linewidths and lifetimes 

presented in each of the corresponding columns. In general, νΔ is computed from 

( )τπν   2/1=Δ . 

 There is an order of magnitude discrepancy between experimentally measured 

lifetimes and the lifetimes computed from linewidth measurements that has been noted 

previously.32, 35, 42-44 While the linewidth/lifetime discrepancy has been present in many 

experiments, an I2 hyperfine component linewidth of 1.7 MHz @ 31 mTorr was 

measured recently using a third-harmonic demodulation technique and shows the best 

correspondence with measured lifetime values.41 
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Table 7. Homogeneous lifetimes for I2 B-X transitions. τ  is the lifetime of the 
transition. oτ  is the zero-pressure lifetime. radτ  is the radiative lifetime. νΔ  is the 
FWHM linewidth. 
 

Measured 
τ  

(ns) 

I2 
Spectral 

Assignment 

 
Experimental

Method 

 
 

Reference

Computed 
Δν  

(MHz) 

τo = 310 +/- 10 v'=6, J'=32 fluor. decay, 
pulse method 

35 0.513 +/- 0.017 

τo = 410 +/- 15 v'=11, J'=128 “ 35 0.388 +/- 0.014 

τo = 1.18 +/- 0.76 v'=17 “ 17 0.135 +/- 0.087 
τo = 1146 +/- 40 v'=17, J'=27 “ 18 0.139 +/- 0.004 
τrad = 183 v'=17 “ 18 0.87 +/- 0.05 

τo = 286 +/- 20 R(93) 16-2 fluorescence 
demodulation 

36 0.556 +/- 0.039 

τo = 279 +/- 20 P(95) 14-1 “ 36 0.57 +/- 0.041 
 
 
 
Table 8. Homogeneous linewidths for I2 B-X transitions. νΔ  is the FWHM 
linewidth. 

2IP  is the iodine pressure. τ  is the lifetime of the transition. 
 

Measured 
νΔ  

(MHz) 

 

2IP   
(mTorr) 

I2 
Spectral 

Assignment 

 
Experimental 

Method 

 
 

Ref. 

Computed
τ  

(ns) 

9 ~10 HFS P(33) 6-3 SAS 32 17.7 
10 ±  1.6 250 HFS P(117) 21-1 SAS 25 15.9 ±  2.5 

7 ±  2 zero pressure, 
low intensity 

HFS P(13) 43-0, 
HFS R(15) 43-0 IMF 38 22.7 ±  6.5 

7 21 HFS R(47) 9-2 Intracavity 
SAS 39 22.7 

8 not stated HFS P(62) 17-1 beam-overlap 
modulation 40 19.9 

1.7 ±  0.1 31 
b10 hyperfine 
component of  
R(106) 28-0 

3rd harmonic 
demodulation 41 93 ±  5.5 
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     Pressure Broadening. 

 In a real source, forces of neighboring molecules, ions, or electrons perturb the 

state of the radiating molecule leading to a broadening of the spectral line which is often 

greater than the natural width. The increase in linewidth is a function of the density of the 

perturbing species and is referred to as pressure broadening. In addition, the perturbations 

can produce a shift in the center-frequency of the spectral line. 

In general, the excited molecule may interact with several perturbers making it 

necessary to average over the various orientations and paths of these perturbers. For line 

broadening at pressures from 0-100 Torr (as was encountered in this work), this 

averaging is performed with reasonable success in the limiting case of the impact (or 

phase shift) approximation in which the mean time between collisions is assumed to be 

much greater than the duration of a single collision.45 

To account for the phenomenon of line shift along with line broadening, 

Lindholm and Foley developed a theory which included the effects of weak, distant 

collisions as well as strong collisions.46 This theory assumes the perturbation causes no 

change in the internal state of the system; the so-called adiabatic approximation. The 

resulting spectral profile due only to elastic collisions is given by 

 ( )
( )

2
2

2

2
1

⎟
⎠

⎞
⎜
⎝

⎛ Δ
+−−

Δ
=

e
o

e

s

g
ν

νν

ν
π

ν  (48) 

which is a Lorentzian lineshape with a FWHM linewidth of 
 

 
π

σ
ν e

e
 v N

=Δ  (49) 
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where N is the number density of the perturbing species, v  is the mean relative velocity, 

and eσ  is the elastic collision cross-section. The shift in line center is given by 

 
π
σ

 
 v N

s s
2

=  (50) 

where sσ  is the cross-section associated with the line shift. It is the weak, distant 

collisions that are responsible for the shift s in the spectral line’s center frequency. In 

foreign-gas broadening of atoms, most of the perturbing gases produce a shift of line 

center towards the red end of the spectrum. Of the noble gases, He and sometimes Ne 

produce shifts towards the violet end of the spectrum.45 In I2, the pressure shift of a 

hyperfine component of R(56) 32-0 due to perturbing I2 molecules has been reported as 

0.17 MHz/Torr.47 

Since it is known that inelastic collisions of atoms and molecules can cause 

transitions between degenerate or nearly degenerate levels, modern developments in the 

theory have attempted to include these non-adiabatic effects.46 On the plausible 

assumption that inelastic (quenching) collisions and elastic (phase-changing collisions) 

occur independently, the two effects can be superimposed so that the spectral lineshape 

can be written as 

 ( ) ( )

( )
2

2

2

2
1
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⎛ Δ+Δ
+−−

Δ+Δ
=
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o
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s

g
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νν
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π
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where nνΔ  is the FWHM natural linewidth and the FWHM collision linewidth due to 

both inelastic and elastic collisions is given by 

 eincoll ννν Δ+Δ=Δ . (52) 
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The inelastic collision linewidth can be expressed as 

 
π
σ

π
ν in

coll
in

 v N
T 

==Δ
1  (53) 

where collT  is the mean time between collisions and inσ  is the inelastic collision cross-

section. Using Equations (49) and (53), the total collision-induced linewidth can be 

expressed as 

 v Nein
coll π

σσ
ν

+
=Δ . (54) 

Substituting into Equation (54) the relations 

 
μπ  
  Tkv B8

= , (55) 

and 

 T k NP B= , (56) 

where 23103806581 −⋅= .kB J/K is the Boltzmann constant, T is the gas temperature, μ  is 

the reduced mass of the excited species and the perturber, and P is gas pressure due to the 

perturbing species, yields 

 P Kcoll =Δν  (57) 

where K is the pressure broadening rate due to the perturbing species given by 

 
T k  

  K
B

ein
μππ

σσ 8+
= . (58) 

Buffer-gas pressure-broadening rates for I2 from the literature are shown in Table 

9.48-51 In a search of the literature over the past 35 years, only one study addressed the 

broadening of I2 hyperfine lines due to a buffer gas. Most of the broadening rates were 

obtained from fluorescence-type experiments. Self-broadening rates for I2 are displayed 
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in Table 10.38, 47, 52-56 Most of these results are related to efforts concerning the frequency-

stabilization of a laser to an I2 hyperfine component. 

 
 

Table 9. I2 pressure broadening rates due to buffer gases. 
 

Buffer 
Gas 

Kbuffer 
(MHz/Torr) 

I2 Spectral 
Assignment 

Spectral 
Description 

Experimental 
Method 

 
Reference

He 7.12 P(46) 17-1 hyperfine 
component 

polarization 
spectroscopy 

48 

Xe 6.2 “ “ “ “ 
      

He 6.2 P(33) 6-3 ro-vibrational 
line 

laser 
induced 

fluorescence 

49 

Ne 6.4 “ “ “ “ 
Ar 6.6 “ “ “ “ 
Kr 7.6 “ “ “ “ 
Xe 9.4 “ “ “ “ 
Air 10.4 “ “ “ “ 
CO2 11.9 “ “ “ “ 

      
He 8.28 v'=62 @501.7 

nm 
upper 

vibrational 
level 

fluorescence 
depolarization 

50 

Ne 4.22 “ “ “ “ 
Ar 5.92 “ “ “ “ 
Kr 5.28 “ “ “ “ 
Xe 5.84 “ “ “ “ 

      
He 0.474 v'=43 @ 

514.5 nm 
upper 

vibrational 
level 

fluorescence 
depolarization 

50 

Ne 0.868 “ “ “ “ 
Ar 0.632 “ “ “ “ 
Kr 0.671 “ “ “ “ 
Xe 0.829 “ “ “ “ 

      
Air 9.93 P(60) 27-0 

&R(97) 28-0 
@ 543 nm 

overlapped 
ro-vibrational 

lines 

laser 
induced 

fluorescence 

51 
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Table 10. Self-broadening rates for I2. 

 
KI2 

(MHz/Torr) 
I2 Spectral 
Assignment 

Spectral 
Description 

Experimental 
Method 

 
Reference 

19.7 R(56) 32-0 
@ λ=532 nm 

hyperfine 
component 

modulation 
transfer 

spectroscopy 

47 

11.6 λ=633 nm hyperfine 
components 

beat frequency / 
1st derivative 
measurement 

52 

8.75 R(127) 11-5 
@ λ=633 nm 

hyperfine 
component 

intracavity 
absorption/ 

2nd derivative 
technique 

53 

16.9 633 nm hyperfine 
component 

beat frequency 
 

54 

14.13 P(48) 11-3 
@ λ=612 nm 

hyperfine 
component 

third harmonic 
detection 

55 

9.5 λ=633 nm hyperfine 
component 

 

intracavity 
absorption/ 

3rd derivative 
technique 

56 

16 P(13) 43-0, 
R(15) 43-0 

@ λ=514.5 nm

hyperfine 
components 

inter-modulated 
fluorescence 

38 

 
 
 
     Doppler Broadening. 
 
 For a gas at low pressure, the primary contribution to spectral linewidth is 

Doppler broadening due to the thermal motion of the absorbing or emitting molecules. In 

this case, a Doppler-broadened spectral line can be represented by the Gaussian lineshape 

function defined as 
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where oν  is the resonant frequency in Hz, 810997924582 ⋅= .c m/s is the speed of light 

(in vacuum), m is the mass of the molecule in kg, and T is temperature of the gas in 

Kelvin. For the I2 molecule, 25102453.4
2

−⋅=Im kg is calculated from 
2IM = 126.9045 

amu and the proton mass 25106726231.1 −⋅=pm kg. 

 The Doppler linewidth at FWHM is given by 

 
( )

m
 T k 

c
Bo

D
2ln8

⋅=Δ
ν

ν . (60) 

Once the Doppler width of a spectral line in a gas is determined, the temperature of the 

gas can be obtained by solving Equation (60) for T to yield 

 ( )
2

2

2

2ln8 D
oB

c
 k 
mT ν

ν
Δ= . (61) 

The standard error in the temperature is57 

 
( )

( )DD
oB

   
  k 

c mT νδν
ν

δ ΔΔ=
2ln8

2
2

2
 (62) 

where ( )Dνδ Δ  is the standard error in the Doppler linewidth. For a single hyperfine 

component of an I2 ro-vibrational line, the Doppler width varies from approximately 285 

MHz at 150 K to 400 MHz at 300 K. 

 Except for the case of very low gas pressure and a large Doppler width, a 

Gaussian lineshape is not sufficient to completely describe a Doppler-broadened spectral 

line. In the rest frame of a select group of gas molecules, the intensity of the emitted 

radiation follows a Lorentzian lineshape that is centered about a resonant frequency oν . 

If each molecule in the select group moves with a definite velocity component zv  
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towards an observer in the laboratory frame, then the observer measures emitted radiation 

that is homogenously broadened about a resonant frequency oν ′  that is Doppler-shifted 

with respect to oν  so that 

 ⎟
⎠
⎞

⎜
⎝
⎛ +=′

c
vz

oo 1νν  (63) 

where zv  is the velocity component in the z direction. The emitted radiation for a specific 

molecular velocity group follows a Lorentzian lineshape given by 
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The emitted radiation from each of the molecular velocity groups combines to produce 

the total intensity distribution of the spectral line observed in the laboratory frame.  Each 

( )zvL ,ν  contributing to the total intensity of the spectral line is weighted by the number 

of molecules that have velocity zv . Since the number of molecules with velocity zv  

follows the Maxwellian velocity distribution, the spectral line is represented by a 

convolution of the Gaussian and Lorentzian lineshapes called a Voigt lineshape given by 
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  (65) 

 Several Voigt lineshapes, each with a different Lorentzian width, are shown in 

Figure 5. These lineshapes were calculated using the TableCurve® computer program.58 

The Gaussian component of each Voigt has the same FWHM Doppler linewidth of 400 

MHz as does the pure Gaussian lineshape included in Figure 5 for comparison. The Voigt 
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lineshape with a Lorentzian FWHM linewidth of 10 MHz shows only a slight difference 

from the pure Gaussian lineshape in the wings. At very low pressures, a Voigt lineshape 

is approximately Gaussian. At high pressures, the Lorentzian contribution to the Voigt 

lineshape causes the Voigt to deviate significantly from a pure Gaussian lineshape. 

 

Δν (GHz)

-1.0 -0.5 0.0 0.5 1.0

V(ν)
V(νο)

0.0

0.2

0.4

0.6

0.8

1.0

 
Figure 5. Comparison of a Gaussian lineshape to various Voigt lineshapes. The 
Gaussian width is the same for all lineshapes: 400 MHz FWHM. The dotted line is a 
Voigt with a 1000 MHz Lorentzian FWHM. The long-dashed line is a Voigt with a 
100 MHz Lorentzian FWHM. The short-dashed line is a Voigt with a 10 MHz 
Lorentzian FWHM. The Gaussian lineshape is the solid line. The y-axis is the 
relative intensity of the lineshape, and the x-axis is the relative frequency. 
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C. Laser Saturation Spectroscopy 

 
 Numerous spectroscopic techniques have been developed which utilize a laser to 

saturate a molecular transition. Several monographs provide comprehensive surveys of 

the experimental and theoretical aspects of these techniques.59-61 In this section, some of 

the basic concepts of linear and nonlinear absorption are briefly reviewed to provide a 

framework for the theory of the cross-beam laser techniques presented in the next 

chapter. In addition, the two well-known, Doppler–free techniques of Saturation 

Absorption Spectroscopy (SAS), and Inter-Modulated Fluorescence (IMF) spectroscopy 

are discussed since these methods were utilized experimentally to investigate phenomena 

that influence the I2 hyperfine structure and consequently the temperature diagnostic. In 

fact, the two new cross-beam techniques developed in this work are variants on the 

Doppler-free techniques. 

     Linear and Nonlinear Spectroscopy. 

 A rate-equation approach serves to describe the interaction of an incident, parallel 

beam of monochromatic light with an open two-level system representing a sample of gas 

molecules. An energy-level diagram for the system is shown in Figure 6. For the 

population densities 21 N,N  of the non-degenerate energy-levels E1 and E2, the rate 

equations are 

 ( ) ( ) 1111212
1     CNRNNgB

dt
dN

+−−= νρν  (66) 

and 

 ( ) ( ) 2222112
2     CNRNNgB

dt
dN

+−−= νρν  (67) 
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where ii N R  is the total relaxation rate including spontaneous emission that depopulates 

level i, and 

 ∑
≠

+=
2,1k

ikkii DN RC  (68) 

accounts for relaxation paths from other k levels that populate level i in addition to the 

diffusion rate, iD , of i-level molecules into the excitation volume dV. The Einstein 

coefficient for absorption is 12B  in units of m3/(J·s2), νρ  is the energy density (in units of 

J/m3) at frequency ν  of the incident radiation. The lineshape is represented by ( )νg  

which has units of 1/Hz (or seconds). The integral of ( )νg  over all frequencies is 

( )∫
∞

=
o

dg 1 νν . The product ( ) νν dg   can be interpreted as the relative probability that 

radiation in the frequency interval ν  to νν d+ will be absorbed by the molecules in 

energy-level 1. In the rate equations, the spectral width of the spectral energy density 

( )νρ  (in units of J s/m3) is assumed to be very small compared to ( )νg  so ( )νρ  can be 

approximated by a δ  function and ( ) ( ) ( ) ( ) ( )νρννννδρνννρ νν g d g - d g ≅′′′≅′′′ ∫∫
∞∞

00

. 

 For steady state conditions ( 0/ =dtdNi ), and iC  that are not significantly 

affected by the incident radiation, the unsaturated population difference for energy 

density 0=νρ  is 

 ( )
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1221
210
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 RCRCNNNN ooo −

=−==Δ=Δ
 

νρ . (69) 
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Figure 6. Open two-level system. 

 
 
 
 For the saturated population difference ( 0≠νρ ), 
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where 

 ( ) ( )ν
ρ

ν ν g 
R

 B
S *

12=  (71) 

is the frequency-dependent saturation parameter, and 
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=∗ .  (72) 

For a homogeneously-broadened spectral line, ( )νS  has a Lorentzian lineshape so 

that 
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 The rate at which the energy per unit volume, 12W , is absorbed on the transition 

from level 1 to level 2 by molecules with population densities 21 N,N  irradiated with a 

monochromatic optical wave is given by 

 ( ) ( ) ( )ν
νρννρν νν S

NgBhNgBh
dt

dW o

+
Δ

=Δ=
1

         1212
12 . (75) 

Substituting Equation (73) into Equation (75) yields 
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The lineshape in Equation (76) is Lorentzian with a FWHM linewidth of 

 ohs S+Δ=Δ 1νν . (77) 

The molecular transition is saturation-broadened. Its linewidth increases as oS  increases. 

 Usually, the frequency-dependent saturation parameter is expressed in terms of 

the intensity of the incident radiation and a collection of constants. The Einstein 

absorption coefficient is related to the spontaneous emission coefficient by 

 
νπ

λ
 h

A
  

c
g
gB 21

2

1

2
12 8

=  (78) 

where h  is Planck’s constant, 21A  is the Einstein coefficient for spontaneous emission, 

λ  is the wavelength. The energy-level degeneracies are given by 1g  and 2g . For this 

discussion, 121 == gg . Substituting Equation (78) into Equation (71), and recognizing 

that the intensity of the incident radiation at frequency ν  is νν ρ cI = , provides a means 
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of expressing the frequency-dependent saturation parameter in terms of the intensity of 

the incident radiation so that 
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where 
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is the frequency-dependent absorption cross-section with dimensions of area and 
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is the absorption cross-section at line-center of the transition. The reciprocal of the 

expression in parentheses in Equation (79) has dimensions of power per unit area so that 

the frequency-dependent saturation parameter can be interpreted as 

 ( ) ( )
sI

I
gS ννν = , (82) 

where 

 ( ) ( )
( )og

gg
ν
νν =  (83) 

and 

 *h
s R  h
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I ν
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21

24 Δ
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is the saturation intensity. For oνν =  and sII =ν , the population-density difference 

NΔ is reduced to one-half its unsaturated value oNΔ , and the linewidth of the absorption 
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transition is increased by a factor of 2 . Some experimental values for sI  of transitions 

in the I2 B-X system are listed Table 11.25, 26, 38, 41, 42, 62, 63 Two results express sI  in terms 

of a pressure dependence. 

 Since the absorbed power per unit volume equals the intensity decrease per unit 

length of the incident radiation having intensity νI : 

 dzdIdtdW //12 ν−= , (85) 

Equation (75) can be written as 
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N  IdI

s

o

ν
νν

ν
νσ

+

Δ
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1
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For weak light sources, such as spectral lamps, where sII <<ν , Equation (86) can be 

approximated to yield 

 ( ) ( ) dz I dz N  IdI o
o

ννν νανσ −=Δ−= 12  (87) 

where ( )ναo is the unsaturated absorption coefficient. In Equation (87), the absorbed 

intensity increases linearly with incident intensity. Integration of Equation (87) over a 

length L yields the Lambert-Beer law of linear absorption for the transmitted intensity: 

 ( )( )L II oot να−= exp . (88) 

In contrast to saturation broadening of homogeneous lines, saturation effects in 

Doppler-broadened transitions give rise to the phenomenon of hole burning. In the rest 

frame of an observer, consider a monochromatic optical wave of frequency ν  moving in 

the +z-direction with a wave vector zkk z ˆ=
r

 through a gaseous sample of molecules with 

a Maxwellian velocity distribution. The optical wave frequency observed in the reference 
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Table 11. I2 saturation intensities from literature. 
 

Is 
(mW/mm2) 

I2 Spectral 
Assignment 

Beam 
Power 

Experimental 
Method 

Reference

60 ±  20 P(117) 21-1 10 mW 
beams 

SAS 25 

150 
 

P(117) 21-1 
& lines 

@ 514.5 nm 

6 mW 
beams 

SAS 26 

80 - 200 P(13) 43-0 & 
R(15) 43-0 
blended line 

30 to 
1000 

mW/mm2 

IMF 38 

0.425.(1+0.214.P)2 
pressure in Pa 

R(47) 9-2 - intracavity 
absorption 

 

62 

120.(1+0.039.P)2 
pressure in Pa 

R(127) 11-5 - 4th harmonic 
detection 

SA 

42 

3.1 ±  0.6 R(77) 15-2 
hyperfine 

component 

1.8 mW 
max 

1st harmonic 
from SAS 

63 

2.4 ±  0.24 P(38) 14-2 
hyperfine 

component 

1.35 mW 
average 

double 
modulation 
technique 

(freq. & amp.) 

63 

0.385 ±  0.142 R(106) 28-0 
hyperfine 

component 
at 543 nm 

< 120 μW 3rd harmonic 
demodulation 

technique 

41 

 
 
 
frame of molecules moving in the +z-direction with velocity zv  is 

 zv 
c
ννν −=′ . (89) 

The incident wave is absorbed when ν ′  equals the resonance frequency oν  of the 

molecule at rest. Under this condition, 
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for cvz << . The incident optical wave of frequency ν is absorbed by the select group of 

molecules moving in the +z-direction with velocity component ( ) ooz c v ννν /⋅−= . 

Furthermore, the frequency response of molecules belonging to a specific velocity group 

follows a Lorentzian lineshape due to the homogeneous broadening of the absorption 

transition. Thus, the absorption cross-section for a transition between energy levels E1 

and E2 of a molecule moving with velocity zv  is 

 ( ) ( )
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h
oz

cv
 v

νννν

ν
σνσ
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where oσ  is the absorption cross-section maximum at line center. The saturation of the 

molecular transition by the incident optical wave burns a hole in the population density 

( ) zz dv vN1  of energy-level 1E  in the velocity interval ohz cv νν /⋅Δ≅Δ , and 

simultaneously produces a peak in ( ) zz dv vN2  of 2E  within the same velocity interval 

according to 
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and 
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where 1R  and 2R  are the relaxation rates for 1E and 2E , respectively.61, 64 The 

homogeneous FWHM linewidth is related to the relaxation rates by the relation 

( ) ( )πν  RRh 2/21 +=Δ , and ∗R  is given by Equation (72). From Equations (92) and (93), 

the difference in the saturated population density is then 
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where ( )z
o vNΔ  follows a Maxwellian velocity distribution. The velocity-selective 

minimum occurring at ( ) ooz cv ννν /⋅−=  in the velocity distribution of Equation (94) is 

referred to as a Bennet hole.65 

 The saturated absorption coefficient ( )να s  can be obtained by recognizing that 

molecules having velocity components in the zv  to zz dvv +  interval contribute 
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to the total absorption coefficient due to all molecular velocity groups so that 

 ( ) ( ) ( )∫
∞
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Substituting Equation (94) for the saturated population-density difference, and Equation 

(91) for the absorption cross-section into Equation (96) yields, with ( )z
o vNΔ  expressed 

explicitly in terms of a Maxwellian velocity distribution, 
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where ( )∫
∞

∞−
Δ=Δ zz

oo dv vNN ,and ( ) 2/1/2 mT k v Bp =  is the most probable velocity 

for a Maxwellian velocity distribution. As shown in Equation (97), the absorption 

coefficient due to saturation of an absorption transition by a monochromatic light source 

has a Voigt profile with a homogeneous FWHM of sνΔ  given by Equation (77). 
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 The exponential term in Equation (97) has little variation over the velocity 

interval osz cv νν /⋅Δ=Δ  in the limit 1<<oS  where the Doppler width is typically 

much larger than sνΔ  for a low-pressure gas. In this circumstance, factoring the 

exponential term out of the integral is a reasonable approximation. Solving the remaining 

integral with ( )[ ] ννννν d ccddv oooz // =⋅−= , the saturated absorption coefficient 

then becomes 

 ( ) ( ) ( ) ( )
o

o

po

o

o

oo
s Sv 

 c
 

S +
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

+
≅

1
exp

1

2
να

ν
νννα

να  (98) 
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and the FWHM Doppler width is 
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 If a single laser-beam incident on a low-pressure gas of molecules is frequency-

tuned across a molecular transition, the Bennett hole burned into ( )zvN ,νΔ  of Equation 

(94) due to absorption would not be directly observable in the recorded signal. Equation 

(98) shows that the effect of saturation by the laser merely reduces the unsaturated 

absorption coefficient ( )να o  by a constant factor of oS+1 . It is possible, however, to 

observe the hole by using two laser beams simultaneously.59, 61 A two-beam experiment 

is discussed in the next section. 
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         Doppler-Free Saturation Spectroscopy. 
 

The Doppler–free techniques of SAS and IMF are discussed because they are 

used to investigate the I2 hyperfine spectrum and because the theory contains concepts 

which apply to the theory for new cross-beam techniques. The key concepts for Doppler-

free techniques are (1) the selection of a single molecular velocity group, namely the zero 

velocity group, for laser excitation which removes the Doppler-broadening in the 

recorded spectral profiles, (2) modulation of one or both laser beams to periodically alter 

the population densities of the upper- and lower–levels of a particular molecular 

transition through laser saturation, (3) to detect the effects of the modulation by recording 

the transmitted laser intensity or laser excitation though a phase sensitive detection 

scheme to eliminate Doppler-broadened background and parasitic noise sources. 

 
          Saturation Absorption Spectroscopy. 
 

In a Doppler-free Saturation Absorption Spectroscopy (SAS) experiment, the 

output beam of a narrow-linewidth, tunable laser is split into a pump beam of intensity 

pumpI  and a probe beam of intensity probeI . The beams are directed counter-propagating 

to each other and overlapped in a sample cell containing a low pressure gas (or vapor) of 

molecules. When the laser frequency ν  is tuned to a resonant frequency oν  of the gas 

molecules, both the pump and probe beams will interact with the 0=zv  velocity group 

of molecules. The detected signal trans
probeprobeSAS IIS −∝  as function of frequency for a 

series of closely spaced Doppler-broadened absorption transitions reveals a broad 

absorption background with small dips (called Lamb dips) in the background at each of 

the resonant frequencies.66 Doppler-free experiments have been performed with a sample 
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cell of I2 placed inside a laser cavity. When the output power of the laser ( )νlaserP  is 

recorded as a function of frequency for a single I2 ro-vibrational absorption transition, the 

resulting profile shows a broad absorption background with small peaks (inverted Lamb 

dips) centered at the resonant frequencies of the hyperfine transitions.39, 62, 67, 68 

Numerous Doppler-free measurements have been performed with a sample cell 

placed external to the laser. This arrangement eliminates the influence of the absorber on 

the frequency and amplitude of the laser. For two counter-propagating waves of equal 

intensity, III == 21 , interacting in a sample cell external to the laser, the saturated 

population-density difference is 
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where ( )z
o vNΔ  is the unsaturated population-density difference having a Maxwellian 

velocity distribution, and oS  is the saturation parameter due to one of the running 

waves.59 

Using Equation (101), the saturated absorption coefficient, in the weak-field 

approximation ( 1<<oS ), for two counter-propagating beams of equal intensity is given 

by 
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which is an unsaturated, Doppler-broadened absorption coefficient, ( )ναo , with a Lamb 

dip at line-center, oνν = .59 

The absorption coefficient of a weak probe-beam counter-propagating against a 

strong pump-beam (with 1<<oS ) is given by 
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where ( ) 2/shs ννν Δ+Δ=Δ ∗ .60 

 If the pump beam is modulated by a mechanical chopper, and the transmitted 

intensity of the probe beam is monitored with a lock-in amplifier referenced to the 

chopping frequency as illustrated in Figure 7, the Doppler background can be removed 

from the absorption profile of a group of closely-spaced, Doppler-broadened absorption 

transitions. The resulting signal consists of the same group of transitions having only 

homogeneously broadened lineshapes. The crossing angle for the beams is exaggerated in 

the schematic. Experimentally, the counter-propagating beams should be overlapped as 

closely as possible within the sample cell to minimize residual Doppler broadening. For a 

strong, chopped pump-beam and a weak probe-beam, the recorded signal for the 

configuration in Figure 7 is proportional to the relative saturated absorption, obtained 

from Equation (103), yielding 
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Figure 7. Doppler Free Saturation Absorption Spectroscopy Set-up. 

 
 
 
          Inter-Modulated Fluorescence Spectroscopy. 

 Experiments employing the Doppler-free technique of Inter-Modulated 

Fluorescence Spectroscopy (IMF) were also pursued in this research effort. This 

technique, shown in Figure 8, involves chopping one of the counter-propagating beams at 

frequency 1f , chopping the other beam at frequency 2f , and subsequently detecting the 

fluorescence signal at the sum frequency 21 fff sum += .38 This technique can provide 

greater sensitivity than SAS especially in low density samples, or when the path length is 

small. The IMF technique overcomes the difficulty in SAS of detecting a very small 

change in the transmitted probe intensity. 

The fluorescence intensity in an IMF experiment can be written as 

 ( )21 II N CI sIMF +Δ=  (105) 
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where the constant C  accounts for transition probability and detector efficiency, 1I  and 

2I  are the incident intensities due to the two counter-propagating beams, and sNΔ  is the 

change in the saturated population density given by61  
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Evaluating Equation (106) at the center of the absorption line ( 0=zv ), yields 
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where 

 
sI 

a
π

1
=∗ . (108) 

Substituting Equation (106) into Equation (105) yields 
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The intensities of the two chopped beams are ( )( )t II o
111 cos1 Ω+=  and 

( )( )t  II o
222 cos1 Ω+=  where ii f  π2=Ω . The quadratic expression in Equation (109) 
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Figure 8. Doppler-Free Inter-Modulated Fluorescence experiment. 

 
 
 
has a term 
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which can be restated, using a trigonometric identity, as 
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When the fluorescence is monitored through a lock-in amplifier at the sum frequency 

where 21 fff sum += , only the first term in Equation (111) contributes to the detected 

signal yielding 
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D. Supersonic Flow in a Nozzle 
 
 
 To employ the spatially-resolved temperature diagnostic in a supersonic flow, a 

small convergent/divergent nozzle like the one depicted in Figure 9 is used to simulate 

the conditions in a COIL supersonic nozzle. The one dimensional approximation of an 

isentropic flow provides formulas useful for characterizing the nozzle. Following this 

approach, the Mach number at any point along the direction of flow in the nozzle 

downstream of the throat can be obtained from the expression for the area ratio:69 
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where A  is the cross-sectional of the nozzle at measurement point downstream of the 

throat, ∗A  is the cross-sectional area of the throat, vp C/C=γ  is the ratio of the heat 

capacity at constant pressure to the heat capacity at constant volume, and M  is the Mach 

number. For supersonic flow, the Mach number is 1 at the throat. Assuming the flow is 

accelerated to a uniform Mach number, the drop in temperature T and pressure P for a 

given Mach number can be computed from69: 

 2
2

11 M 
T
To −

+=
γ , (114) 

and 
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Figure 9. Convergent/divergent nozzle. 
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where oT  is the stagnation temperature, and oP  is the stagnation pressure in the pre-

expansion, stagnation region. The maximum mass flow rate occurs at the throat and is 

given by the expression  
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where R  is the mass-dependent gas constant. 
 
 A laser-based temperature measurement is not expected to have exact agreement 

with the temperature calculated from Equation (114). Factors such as (1) flaws in the 

nozzle design, (2) complex phenomena such as boundary layer effects, and (3) the 

Throat 

exhaust Stagnation 
region 
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introduction of heat into the flow due to the laser-excitation of I2 molecules are not 

assumed in the derivations of the above flow equations. Despite the simplicity of the flow 

model, the temperature calculated from Equation (114) does serve to assess whether or 

not the laser diagnostic temperature is realistic. The other formulas for A, P , and 

maxw were used to estimate the vacuum system requirements necessary to achieve 

supersonic flow in the nozzle. 
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III. Theory 
 
 
 
A. Spatially-Resolved Cross-Beam Doppler-Limited Saturation Spectroscopy 
 
 

The idea of a saturation absorption experiment with two laser beams crossed to 

achieve a small interaction volume has been pursued in the past. The applications have 

been saturation absorption measurements in flames for determining species 

concentration.70-72 In one experiment, the beams were crossed at right angles; and, in the 

other two experiments, beams were crossed at an acute angle and oriented with counter-

propagating directional components. 

     Cross Beam Saturation Absorption Spectroscopy. 

This research effort demonstrates the feasibility of extracting temperature 

information from a spectral profile due to two laser beams crossed at an angle and 

oriented with co-propagating directional components. A schematic for a Cross Beam 

Saturation Absorption Spectroscopy (CBSAS) experiment is shown in Figure 10. The 

probe and modulated pump beams are oriented to interact with the non-zero molecular 

velocity groups within the small volume defined by intersection of pump and probe. The 

beams can be reoriented to overlap at various points within the cell to provide spatial 

resolution not achievable in a single beam experiment where the beam must interact with 

the gas molecules in its path along the entire length of the cell. Thus, the CBSAS 

technique provides a means of correlating a Doppler-broadened spectrum with a spatial 

location within a gas medium. 
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Figure 10. Cross-Beam Saturation Absorption Spectroscopy (CBSAS) experiment. 

 
 
 

 The signal observed at the photodiode detector can be obtained by considering 

Figure 11. If the direction of propagation for the probe beam is chosen to be the +z 

direction, then the probe interacts with molecules having a velocity components vz. Since 

the pump beam crosses the probe beam at an angle, the directional component of the 

pump beam that lies in the +z-direction also interacts with molecules with velocity 

components vz. Along the length L′ , the absorption coefficient for a weak probe-beam 

due to the strong pump-beam component overlapping the probe beam unidirectionally is 

given by 
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Figure 11. CBSAS experiment showing path lengths along which self-absorption 
occurs: L1, L2, L3; and the path length, L′, for mutual interaction between the pump 
and probe beam. 
 
 
 
where oα  is the unsaturated absorption coefficient with dimensions of length per unit 

time, and ( )νg  is the Doppler-broadened spectral profile with dimensions of time.73 For 

1<<oS , Equation (117) can be approximated by 

 ( ) ( ) ( )νανα g Soo −≈ 1  (118) 

so that the change in the absorption coefficient of the probe beam due to the pump beam 

along length L′  is 
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The transmitted intensity, for a weak probe, is given by 
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where o
probeI  is the incident intensity of the probe beam. The linear absorption of the 

probe beam occurs along paths L1 and L2. Since the contribution to trans
probeI  due to 

( )( )να g L I pump ′′  is relatively small, 

 ( )( ) ( ) ( )( )νααανα g L L L exp  g L I  II ooopump
o
probe

trans
probe 211 +′+−′′+≈ . (121) 

The pump beam intensity, chopped at frequency f, is 

 ( )( ) ( )( )να g L  Ω t1 II o
o
pumppump 3expcos −+=  (122) 

where o
pumpI  is the incident intensity of the pump beam, and π f Ω 2= . Equation (122) is 

substituted into Equation (121). From trans
probeI , the signal at the detector monitored through 

a lock-in amplifier at frequency f is given by 

 ( ) ( )( ) ( ) ( )( )ννννα g k-exp g Cg k-exp I I L g  CS o
pump

o
probeCBSAS ′=′′=  (123) 

where C  is a collection of constants related to detector efficiency, ( )νg  is the Doppler-

broadened spectral profile, and ( )32 LLLL k 1o ++′+= α  is the absorption parameter 

which has units of (seconds)-1. 

     Cross-Beam Inter-Modulated Fluorescence Spectroscopy. 

When poor SNR was encountered with CBSAS in the supersonic nozzle 

measurements, a Cross-Beam Inter-Modulated Fluorescence (CBIMF) technique was 

used to overcome this difficulty. A schematic of the experiment is shown in Figure 12 

with the two beams intersecting in a small volume within the gas cell. The laser 

excitation is monitored as side-fluorescence at the sum of the two chopping frequencies. 

The observed signal can be derived by a method similarly used for the Doppler–free IMF 
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signal. By analogy to Equation (106), the saturated population-density difference for two 

nearly co-propagating beams with different intensities can be expressed as 

 
 

 
Figure 12. Cross-Beam Inter-Modulated Fluorescence (CBIMF) experiment. 
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where 1
oS  and 2

oS  are the saturation parameters for each of the respective beams, and 

( ) zz
o dv vNΔ  is the unsaturated population-density difference containing a Maxwellian 

distribution. The contribution to the fluorescence intensity, analogous to Equation (109), 

due to molecules in the interval zv  to zz dvv + is 
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where ∗a  is given by Equation (108). The intensities for the two chopped beams are 
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and 
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where the iL  path-lengths refer to Figure 11, the iα  are absorption coefficients, and ( )νg  

is a Doppler-broadened profile. Substituting Equations (126) and (127) into Equation 

(125), the signal, due to all contributing molecules, observed at the sum frequency of the 

two chopping frequencies is 
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For conditions where the Doppler width is much larger than the homogeneous 

width and 1<<oS , the Lorentzian lineshape can be approximated as a delta function so 

that Equation (128) can then be expressed as 
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The remaining integral can be solved so that the CBIMF signal is 

 ( ) ( ) ( )( ) ( ) ( )( )ννννν g k g Cg k g I I N a CS ooo
CBIMF −′′′=−Δ′′= ∗ expexp21  (130) 

where ( )3211 L L  k αα += . Equation (130) for the CBIMF signal has the same form as 

Equation (123) for the CBSAS signal. 

Finally, while making CBSAS measurements, it is possible to simultaneously 

observe the side fluorescence due only to the modulated pump-beam (Modulated Pump 

Side Fluorescence (MPSF)). For 1<<oS , and small L sα , the signal is 

 ( ) ( )( )[ ] ( ) L  I CL  I CS s
pump

s
pump

MPSF ναναν ≅−−= exp1  (131) 

where ( )να s , for a low pressure gas, is given by Equation (98) so that 
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for a single Doppler-broadened transition. 
 
 
 
B. Spectral Profiles for I2 Ro-vibrational Lines 
 
 

To represent the spectral profile for a single, isolated I2 ro-vibrational line 

obtained from a cross-beam experiment, it is necessary to use a theoretical profile 

composed of a sum of Gaussian lineshapes with resonant frequencies and intensities 

determined by the hyperfine structure of the I2 ro-vibrational line. 

For a low-pressure I2 vapor, the theoretical profile ( )νDg  consists of a sum of 15 

or 21 Gaussian lineshapes corresponding to the number of hyperfine lines composing the 

ro-vibrational line yielding 
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 ( ) ( )∑
=

Δ=
2115

1
,,;

 or 

i
Doi

hyp
iD fGAg νννν . (133) 

where A  is amplitude parameter for the profile, G indicates a Gaussian lineshape as 

defined in Equation (59), ν  is the frequency, hyp
if  is the relative intensity of the ith 

hyperfine line, the oiν  are the hyperfine resonant frequencies constrained to the relative 

hyperfine energy-splittings, and the Doppler width DνΔ  is chosen to be the same for all 

hyperfine lines. 

 Using Equation (133), the I2 spectral data from a cross-beam experiment (either 

CBSAS or CBIMF) was fit with the theoretical signal 

 ( ) ( ) ( )( ) bagkgS DDCB +⋅+⋅−⋅= νννν exp . (134) 

The parameter k in Equation (134) is required to model the self-absorption of the laser 

beam(s) by the I2 vapor. A linear baseline is represented by the parameters a and b. The 

commercial curve-fitting software programs, PeakFit® and Tablecurve®, were used to 

calculate the nonlinear least-squares fit of Equation (134) to the data. The value for the 

Doppler width obtained from the fit was used in Equation (61) to compute the 

corresponding temperature of the I2 vapor within the small volume defined by the crossed 

laser beams. 

The theoretical signal predicted by Equation (134) for a single, isolated I2 ro-

vibrational line with a 15-line hyperfine spectrum is shown in Figure 13 for different 

temperatures (i.e., Doppler widths). As the temperature decreases, the ro-vibrational 

spectral profile resolves into the individual Doppler-broadened hyperfine spectral lines. 

Statistically, the nonlinear least-squares fit of ( )νCBS  to cross-beam spectral data is 
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expected to improve with decreasing temperature. At room temperature and higher, the 

spectral profile is a broad and relatively featureless. More than one set of parameters 

could produce a reasonable fit. At temperatures well below 300 K, there are more 

features present in the spectral profile which increases the likelihood that only one set of 

parameters could result in a fit to such a unique profile. The theoretical signal predicted 

by Equation (134) for a single, isolated I2 ro-vibrational line with a 21-line hyperfine 

spectrum is shown for several temperatures in Figure 14. 

To analyze “blended” ro-vibrational line spectra consisting of two, overlapped ro-

vibrational lines, it was necessary to create a program in Mathematica®. The commercial 

curve-fitting software programs, PeakFit® and Tablecurve®, used to fit the isolated ro-

vibrational line profiles lacked the capability to accommodate a sum of 30 or more 

Gaussian lineshapes. Therefore, a Mathematica® program was developed to fit a 

theoretical signal to the blended-line spectral data and provide fit parameters with 

standard errors. As with the isolated lines, the temperature was extracted from the 

common Doppler width of the hyperfine lines. For two overlapped ro-vibrational lines, 

labeled line A and line B, the blended-line theoretical signal has the form 

 ( ) ( ) ( )( ) ( ) ( )( )( ) baggkggS BABA
CB +⋅++⋅−⋅+= νννννν exp  (135) 

where 
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Figure 13. Theoretical spectral profile of P(46) 17-1 for various temperatures. In 
order of decreasing linewidth, the profile temperatures are 298 K, 250 K, 200 K, 150 
K, 100 K, 50 K, 0.01 K. 
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Figure 14. Theoretical spectral profile of P(53) 19-2 for various temperatures. In 
order of decreasing linewidth, the profile temperatures are 298 K, 250 K, 200 K, 150 
K, 100 K, 50 K, 0.01 K. 
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in which B,AA  is the amplitude parameter and BA
if

,  are the relative hyperfine intensities; 

k is the absorption parameter, and ba +⋅ν  is a linear baseline. The sum of the two 

theoretical profiles, ( ) ( )νν BA gg + , is needed in the exponential term of Equation (135) 

to account for the absorption of the laser beams along the distances in the vapor cell 

leading to (or from) the crossing volume due to both ro-vibrational lines in the frequency 

range where the two ro-vibrational lines overlap. 

 The temperature information contained in the amplitudes of two overlapped 

spectral lines can be explicitly incorporated into the theoretical signal. The amplitude 

parameter has a direct dependence on the Boltzmann factor. This allows the possibility of 

simultaneously constraining the theoretical signal to the temperature dependence in the 

Boltzmann factor for each of the two overlapped ro-vibrational lines and to the 

temperature dependence in the Doppler linewidth. The amplitude parameter is also 

proportional to the Franck Condon factor which can be used to constrain the amplitudes 

of the two overlapped ro-vibrational lines relative to one another. 
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III. Experiments and Results 
 
 
A. Doppler Free Laser Spectroscopy 
 
 

As discussed in the theory section, the theoretical signal used to fit an I2 ro-

vibrational spectral profile is constructed from the hyperfine spectrum of the ro-

vibrational line. To better understand the physical phenomena that affect the hyperfine 

spectrum and to ascertain the impact of these influences on the temperature diagnostic, 

several experiments were performed using Doppler-free spectroscopy techniques. The 

results presented consist of (1) a comparison of Doppler free spectra obtained from two 

different spectroscopic techniques, (2) the influence of velocity-changing collisions, (3) 

self-absorption of the interrogating laser beams in the I2 vapor, and (4) the pressure 

broadening of I2 due to a buffer gas of Ar. 

     Experiment. 

 The Doppler-free Saturation Absorption Spectroscopy (SAS) experiment utilized 

a Coherent 899-21 ring laser configured for dye operation. The pump source for the dye 

laser was a Spectra Physics Beam-Lok model 2080-15 Ar-Ion Laser operating at 514.5 

nm. The dye laser utilized Rhodamine 590 laser dye, from Exciton, Inc., to provide 

wavelength coverage from 553 to 615 nm with maximum output power at 590 nm. A 

typical Ar-Ion laser power was 6 W. The dye laser power varied from 300-500 mW. 

The experiment was performed by splitting the output beam from the Coherent 

899-21 laser into two beams: a high-power pump beam and a low-power probe beam. 

The two beams were then directed counter-propagating though a glass cell containing I2 
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vapor so that the beams overlapped along the axial length of the cell. A set-up schematic 

for the Doppler-free saturation absorption experiment in a pressure-variable cell is shown 

in Figure 15. The transmitted probe beam intensity was detected with a Hammamatsu 

S2281, BNC-connector type, Silicon photodiode. Simultaneously, the side fluorescence, 

from the Doppler-limited laser excitation due to the modulated pump beam was collected 

with a Burle C31034A02 Photomultiplier Tube (PMT) via a fiber optic with a shuttered 

lens positioned above the midpoint of the cell. The signal from each detector was filtered 

through a Stanford Research Systems Model SR850 lock-in amplifier referenced to the 

frequency of a Stanford Research Systems SR540 optical chopper. 

The dye laser is frequency-tuned by computer through Coherent’s Autoscan 

software package. The filtered signals from the lock-in amplifiers were routed to the 

Autoscan system to display the real-time signals during a frequency scan, and to record 

the spectral profile data on computer disk. Autoscan allows the user to set the scan start 

wavelength and adjust the following three parameters: (1) the data interval, in MHz, 

between each recorded data point, (2) the segment scan time in seconds/10 GHz, (3) the 

scan distance in GHz. A typical set of parameters for a Doppler free 15-line hyperfine 

spectrum of a single ro-vibrational line scan is: (1) .04 MHz data interval, (2) 1000 s/10 

GHz segment scan time, (3) a scan distance of 1.1 GHz. For these particular settings, 

30,000 data points were generated for a scan time of 1.83 minutes. 

 The Pyrex® glass cell was equipped with quartz windows; each cut at the 590 nm 

Brewster’s angle for optimal optical transmission. The cell length along the beam path 

was 41.5 cm. The maximum cell width was 4 inches. All connections of periphery 
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Figure 15. Schematic for Doppler-Free Saturation Absorption Spectroscopy 
Experiment. 
 
 
equipment to the cell ports were made with Cajon® fittings incorporating Viton® O-rings. 

The total cell pressure was measured with a MKS 390HA (1 Torr) pressure transducer, or 

when necessary with a MKS 690A (1000 Torr) pressure transducer. The transducer signal 

was processed and readout provided by a MKS Type 270 Signal Conditioner. The cell 

was evacuated with an Alcatel 2015 C2 rotary vane pump having a maximum speed of 

10.6 cubic feet per minute (cfm), and ultimate pressure of 10-3 Torr. I2 vapor was leaked 

into the cell from a side-arm tube containing 5-10 g of I2 crystals (Alfa Aesar, 99.5% 

purity).74 

Inter-Modulated Fluorescence Spectroscopy (IMF) was performed with the same 

set-up except the chopper was repositioned so that the outer ring of slots in the chopper 
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wheel intersected one beam, and the inner ring, with a different number of the slots, 

intersected the other beam. The fluorescence signal was detected with the PMT which 

was then filtered through the lock-in amplifier referenced to the sum of the inner- and 

outer-ring chopping frequencies. 

     Results. 

          Doppler-Free Spectra of I2 Ro-vibrational Lines. 

 Doppler-Free spectra collected with SAS and IMF for I2 P(12) 17-1, and I2 

P(130) 17-1 are shown in Figure 16 - Figure 19. For these measurements, there are a few 

differences in the set-up as shown in Figure 15. All of these spectra were collected from 

the vapor of a few I2 crystals sealed in a glass cell six inches long and one inch in 

diameter as opposed to the pressure variable cell in Figure 15. Also, the fiber optic 

leading to the PMT was not used. The PMT, with a shuttered lens, was mounted directly 

above the glass cell for maximum SNR. For both the SAS and IMF experiments, pumpI  

was 40 mW, and probeI  was 10 mW. 

Each of the four graphs shows 15-line hyperfine spectra of a single ro-vibrational 

line. The hyperfine lines are labeled according to an established convention.75 Some of 

the hyperfine lines were not resolved to due the limit imposed by the dye laser linewidth 

which was ≥ 500 kHz. Even so, a comparison of the low J spectra to the high J spectra 

reveals the variation in the hyperfine resonant frequencies with J, the rotational quantum 

number, as expected from the theory. Also, a comparison of the SAS spectra to the IMF 

spectra shows the improvement of IMF over SAS in terms of the signal-to-noise ratio. 

The 21-line hyperfine spectrum for P(53) 19-2 is shown in Figure 20 in which all but two 
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of the hyperfine lines are completely resolved. Finally, the overlapping hyperfine spectra 

of P(51) 18-2 and P(66) 16-1 are shown Figure 21 as recorded in an IMF experiment. The 

high-frequency hyperfine components of the 21-line P(51) 18-2 spectrum overlap the 

low-frequency hyperfine component of the 15-line P(66) 16-1 spectrum. The overlapped 

spectra serve to illustrate a phenomenon discussed in the next section. 
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Figure 16. I2 P(12) 17-1 hyperfine spectrum from Doppler-free SAS. 
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Figure 17. I2 P(12) 17-1 hyperfine spectrum from Doppler-free IMF. 
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Figure 18. I2 P(130) 17-1 hyperfine spectrum from Doppler-free SAS. 
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Figure 19. I2 P(130) 17-1 hyperfine spectrum from Doppler-free IMF. 
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Figure 20. I2 P(53) 19-2 hyperfine spectrum from Doppler-free IMF. 

        t                             r   qp  o      nm  lk           i            gf ed        b 

 u    t   s                   r   qp  o    n mlk       j  i  h    g  f e d     c b a 



 76

Δν (GHz)

0.0 0.5 1.0 1.5 2.0

R
el

at
iv

e 
In

te
ns

ity
 (A

rb
itr

ar
y 

U
ni

ts
)

0

500

1000

1500

2000

2500

3000

3500

 
Figure 21. I2 P(51) 18-2 & P(66) 16-1 blended line from Doppler-free IMF. The 21-
line P(51) 18-2 spectrum is on the left and the 15-line P(66) 16-1 spectrum is on the 
right. The hyperfine spectra overlap at approximately 1.0 GHz. 

 
 
 

          Velocity Cross Relaxation. 

Doppler-free experiments reveal a pronounced baseline pedestal in the hyperfine 

spectra of some ro-vibrational lines. For example, this pedestal is noticeable in the P(12) 

17-1 spectrum of Figure 17, but is negligible in the P(130) 17-1 spectrum of Figure 19. In 

Figure 22, the low J hyperfine spectrum of R(37) 15-0 (on the left) is shown overlapping 

the high J spectrum of R(127) 19-1 (on the right). This data was collected using the SAS 

set-up and cell of Figure 15 (a buffer gas was not used) at a chopping frequency of 1000 

Hz. It is easily observed that the low-J hyperfine spectrum has a pronounced pedestal and 

the high J hyperfine spectrum is essentially devoid of one. The R(37) 15-0 & R(127) 19-1 
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blended line is shown again in Figure 23 where the SAS data was collected at a chopping 

frequency of 3750 Hz. The increase in chopping frequency reduced the magnitude of the 

pedestal in the low J hyperfine spectrum. The Modulated Pump-Beam Side-Fluorescence 

(MPSF) data in Figure 22 is a portion of the Doppler-limited spectrum of the two 

overlapping ro-vibrational lines. It is the fluorescence signal from the chopped pump 

beam as detected with the PMT shown in Figure 15. 

          Self Absorption. 
 
 The intensities of the hyperfine lines are important for the temperature diagnostic. 

In the model used to fit to the spatially-resolved spectral data, the 15 or 21 hyperfine lines 

are constrained to their statistically-weighted relative intensities. Experimental evidence 

shows deviation from these expected intensities in some instances. Compare the P(70) 

17-1 hyperfine and MPSF profiles in Figure 24 at an I2 pressure of 80 mTorr to those in 

Figure 25 collected at an I2 pressure of 200 mTorr. At the higher pressure, the hyperfine 

spectrum shows an increase in the spectral line intensities in the wings. There is also a 

noticeable flattening of the MPSF profile at 200 mTorr. The effect is attributed to the 

linear absorption of the beams as they pass through the I2 vapor. This self-absorption 

increases as the laser is tuned to the center of the ro-vibrational line resonance. 

 From these observations, it was apparent that an absorption term needed to be 

included in the theoretical signal. Using the set-up of Figure 15, MPSF profiles were 

collected at various I2 pressures. Each of these profiles was fitted with the theoretical 

profiles shown in Equation (134) in which the Doppler width was held constant since all 

the measurements were performed at room temperature. The common profile for the 
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Figure 22. I2 hyperfine spectrum (black) for R(37) 15-0 & R(127) 19-1  blended line 
from SAS with 1000 Hz chopping frequency. The Doppler-broadened MPSF profile 
(gray) is also shown. 
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Figure 23. I2 hyperfine spectrum (black) for R(37) 15-0 & R(127) 19-1 blended line 
from SAS with a 3750 Hz chopping frequency. The Doppler-broadened MPSF 
profile (gray) is also shown. 
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hyperfine lines was Gaussian because 
2IP  was sufficiently low, < 0.31 Torr, that Voigt 

profiles could not provide a better fit. A plot of the absorption parameter, k from 

Equation (134), versus 
2IP  is shown in Figure 26 for the I2 P(70) 17-1 ro-vibrational line. 

A linear regression with the y intercept forced to zero gives a slope of (2.66 1 ±  0.03) X 

10-4 (s Torr)-1. For the regression analysis, each data point was weighted according its 

standard error. The deviation from linearity at low pressure is due primarily to the poor 

SNR in the data and the difficulty fitting to it. 
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Figure 24. I2 P(70) 17-1 hyperfine (black) spectrum from SAS, and MPSF (gray) 
Doppler-broadened profile at an I2 pressure of 80 mTorr. 
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Figure 25. I2 P(70) 17-1 hyperfine (black) spectrum from SAS, and MPSF (gray) 
Doppler-broadened profile at an I2 pressure of 200 mTorr. 
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Figure 26. Absorption parameter as a function of I2 pressure for P(70) 17-1. 
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          Ar Pressure Broadening of I2. 

For the purposes of the temperature diagnostic, pressure broadening of the 

hyperfine linewidth may need to be accounted for in the construction of the theoretical 

profile. The profile of Figure 27 shows the I2 P(70) 17-1 hyperfine spectrum obtained 

from SAS and a portion of the side fluorescence profile from MPSF for an I2 pressure of 

0.1635 Torr. The hyperfine spectrum in Figure 28 was collected at the same I2 pressure 

with 0.9508 Torr of added Ar buffer gas. The effects of broadening by the buffer gas are 

evident in the hyperfine spectrum of Figure 28 where the individual components are less 

resolved and reduced in intensity. There is no discernable change in the shape of the 

MPSF profile. A series of Doppler-free profiles for I2 P(70) 17-1 were collected at 

various Ar buffer gas pressures for a fixed I2 pressure of 0.1635 Torr. Each hyperfine 

spectrum was fitted with 15 Lorentzian lineshapes constrained to share the same width. A 

broad Gaussian lineshape was also included in the fit to account for the baseline pedestal. 

The variation in hyperfine linewidth as a function Ar buffer gas pressure is shown in 

Figure 29. Linear regression resulted in a pressure broadening rate of 8.29 ±  0.30 

MHz/Torr. The y-intercept gave a zero-Ar-pressure linewidth of 8.70 ±  0.17 MHz. The 

pressure broadening effects were also obtained for the I2 P(10) 17-1 line. The variation in 

hyperfine linewidth as a function Ar buffer gas pressure is shown in Figure 30. Linear 

regression gave a pressure broadening rate of 10.70 ±  0.41 MHz/Torr. The y-intercept 

gave a zero-Ar-pressure linewidth of 7.74 ±  0.10 MHz. 

 Measurements of the hyperfine spectral width at Ar pressures higher than 1 Torr 

were not possible due to the low SNR. For Ar pressures greater than 1 Torr, 
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Figure 27. SAS (black) and MPSF (gray) spectra of P(70) 17-1 at 0.1635 Torr I2 
pressure. 
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Figure 28. SAS (black) and MPSF (gray) spectra of P(70) 17-1 at 0.1635 Torr I2 
pressure and 0.9508 Ar buffer gas pressure.
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Figure 29. I2 P(70) 17-1 hyperfine Lorentzian linewidth as a function of Ar buffer 
gas pressure from Doppler-free SAS measurements. 
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Figure 30. I2 P(10) 17-1 hyperfine Lorentzian linewidth as a function of Ar buffer 
gas pressure from Doppler-free SAS measurements. 
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measurements were made using the MPSF signal obtained from a Doppler-free SAS set-

up. Fits were then made to the MPSF signals using a theoretical signal composed of 

Voigt lineshapes. The Gaussian linewidth of the Voigt lineshape was fixed to room 

temperature. A plot of the I2 P(70) 17-1 Lorentzian linewidth as a function Ar buffer gas 

pressure is shown in Figure 31. Linear regression gave a pressure broadening rate of 8.50 

±  0.5 MHz/Torr and a zero-Ar–pressure width of 16.8 ±  8.6 MHz. All of the Ar 

broadening rates discussed here are listed in Table 12. 

     Discussion. 

 Hyperfine spectra collected with the IMF Doppler-free technique provided better 

SNR than those collected with SAS. The SAS technique is based on the difficult task of 

detecting a very small change in the comparatively large transmitted intensity of the 

probe beam. The IMF technique circumvents this difficulty by monitoring the laser-

induced fluorescence which is proportional to the absorbed laser power. Furthermore, 

IMF suppresses the normal Doppler-broadened laser induced fluorescence due to each of 

the beams, and retains only the fluorescence signal due to the mutual interaction of the 

two beams, eliminating the substantial background contribution due to the linear terms in 

Equation (109). 

 Investigations of the baseline pedestal in SAS hyperfine spectra were pursued to 

understand: (1) what conditions influence the pedestal shape and magnitude, and (2) the 

effect the pedestal might have on the spatially-resolved temperature measurements. The 

pedestal magnitude depends on J, the rotational quantum number, and the chopping 

frequency.76 The pedestal is more pronounced for lower J. It was also shown that the 

choice of a higher chopping frequency suppressed the pedestal. The pedestal phenome- 
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Figure 31. I2 P(70) 17-1 Lorentzian linewidth from Voigt profile vs. Ar buffer gas 
pressure from MPSF measurements. 
 
 
 

Table 12. Ar buffer-gas broadening rates for I2. 
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non is attributed to cross-relaxation, a velocity-changing collision effect, which can be 

illustrated by considering the following example: a non-zero velocity group vg of I2 

molecules interacts with the pump beam and then suffers a collision that converts the 

velocity group to –vg. The probe beam is then in resonance with the new velocity group. 

As long as the collision occurs during a single modulation cycle, the probe laser intensity 

is correlated with chopping frequency. Since such collisions can occur for any velocity 

group, vg, a broad feature with Gaussian shape is obtained. At higher pressures and lower 

modulation frequencies, more collisions occur and contribute to a more intense feature. 

Apparently, the dynamics are dominated by rotationally inelastic collisions, yielding a 

strong dependence on rotational state. The effects of cross-relaxation are not expected to 

influence the Doppler-limited profiles (i.e. the extracted temperature) obtained with the 

cross-beam spatially-resolved techniques. 

 The inclusion of a self-absorption parameter in the theoretical cross-beam signal 

is necessary. Without this term, the temperature extracted from the linewidth tends to be 

consistently higher than expected. From fitting numerous cross-beam signals, it was 

found that a strong, low noise signal was critical to achieve a small standard error in the 

absorption parameter. 

 In a literature search over the past 35 years, scarce information was readily found 

on foreign gas pressure-broadening rates of I2 derived from the SAS or IMF technique. 

The only available rates from the literature, as shown in Table 9, for Ar pressure 

broadening were 6.6 MHz/Torr obtained from a single-beam, Doppler-limited 

experiment49 and values of 0.31-2.96 MHz/Torr from fluorescence depolarization 

studies.50 There is not good agreement between these values and the results of this work 
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shown in Table 12. This can be attributed in part to the differences in the techniques and 

the extent of the systematic errors associated with them. As for the two hyperfine 

broadening rates shown in Table 12, both spectral assignments lie in the same vibrational 

band, but differ substantially in rotational quantum number. There is a difference in the 

two Ar-broadening rates that exceeds the standard errors. The P(10) line is located near 

the 17-1 vibrational band head where the ro-vibrational lines are closely spaced. It was 

observed that the hyperfine spectrum for P(10) collected with SAS tended to be noisier 

than the hyperfine spectrum for P(70) resulting in comparatively lower quality fits which 

could contribute to the difference in the two broadening rates. The two hyperfine 

linewidths from SAS extrapolated to zero Ar pressure are comparable to the literature 

values for low pressure I2 linewidths obtained from SAS and IMF experiments listed in 

Table 7. The zero-Ar-pressure linewidth from MPSF is at least twice as large as the 

linewidths from SAS and very poorly determined. This is attributed to the difficulty of 

fitting at pressures where the Lorentzian width in the Voigt lineshape is very small, a few 

MHz, compared to the Gaussian linewidth which is approximately 400 MHz at room 

temperature. The fit parameters tended to have greater statistical errors as the pressure 

approached zero. The MPSF broadening rate for P(70) 17-1, however, does agree within 

the statistical error with the P(70) 17-1 SAS broadening rate. Collecting MPSF data was 

convenient since it could be accomplished simultaneously with the SAS data collection. 

It was found that the hyperfine spectra from SAS were severely broadened and reduced in 

intensity at PAr ≥ 1 Torr. Fits to the individual components were not achievable so the 

MPSF signals were used for analysis at these higher Ar pressures. 
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B. Comparison of Laser Spectroscopy Techniques used for Temperature 
Determination. 
 
 

Although the ultimate application for a temperature diagnostic is in the low-

temperature ( ≈ 150 K) expansion region of a supersonic nozzle, all of the experiments 

discussed in this section were performed in a static cell environment at temperatures from 

293 K to 400 K. This was done primarily because the available supersonic nozzle 

apparatus posed size, operation, and accessibility limitations that prohibited these types 

of experiments. 

The purpose of the static cell experiments was to make comparisons between the 

CBSAS, and the CBIMF techniques to assess their suitability as a temperature 

diagnostics. The MPSF signal was also included in the comparison. The experiments 

involved (1) varying chopping frequency, (2) varying I2 pressure (3) and performing 

measurements at different locations within a temperature gradient. The statistical error in 

the temperature extraction obtained from nonlinear least squares fitting was correlated to 

each of the experimentally varied parameters. The temperatures extracted from 

spectroscopic data were compared to thermocouple measurements. 

     Experiments. 

Each technique was performed in the static pressure cell illustrated in Figure 32. 

The cell was constructed of glass Pyrex® tubing with 1” outside diameter (OD). The cell 

measured 15” in length. Ports of ½” OD allowed for connection to a pump and the I2 

crystal source as well as for insertion of the thermocouples. Quartz glass windows were 

mounted at Brewster’s angle to each end of the cell for maximum optical transmission as 

shown in Figure 33. Vacuum connections were made with Cajon® O-ring fittings. The 
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overlap length of the two beams in the cell’s axial direction was ≈ 1.3 cm. The crossing 

angle was o4.3≈θ . Each beam had a 1 mm diameter. The overlapping volume was 12 

mm3. A Burle C31034A02 PMT with a long-pass filter was positioned directly above the 

measurement point for the MPSF and CBIMF measurements as shown in Figure 33. For 

CBSAS, the exiting probe beam was directed through a series of irises and ND filters 

onto a Hammamatsu S2281, BNC-connector type, silicon photodiode detector. 

 In the first experiment, measurements of the variation in extracted 

temperature, exT , with chopping frequency, f, were performed in I2 vapor only; no buffer 

gas. A series of measurements was performed at different frequencies at a fixed 
2IP  for a 

specific ro-vibrational line. The cell was then pumped out with an Alcatel 2015 rotary 

 
 
 
 

 

 

 

 

 

 

 

 

 
Figure 32. Schematic of the glass cell used for spatially-resolved temperature 
measurements. 
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Figure 33. Glass cell used for spatially-resolved temperature measurements. 
 
 
 
vane pump to an ultimate pressure of 20-30 mTorr. The cell was then sealed off from the 

pump by closing a valve. I2 vapor was leaked back into the cell from a glass side-arm 

containing ≈ 10 g of I2 crystals. A different ro-vibrational line was selected and the series 

of chopping frequency measurements was repeated at the same I2 pressure. This 

procedure was performed for each laser spectroscopic technique. 

 For the second experiment, measurements were made at a fixed chopping 

frequency f while varying the I2 pressure. A series of pressure measurements were made 

for a specific ro-vibrational line. The purpose was to determine how the statistical 

temperature error, exTδ , varied with 
2IP  for each of the three laser techniques. All 

measurements were performed at position X = 3 in the cell (see Figure 32). A temperature 

gradient was not established. The entire cell was maintained at room temperature. 

heater tape 

chopper 
thermocouples 

PMT 
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 In the third experiment, a temperature gradient was established along the length of 

the glass tube by wrapping heater tape around the end of the tube nearest where the laser 

beams entered the cell. Three thermocouples were oriented in the cell perpendicular to 

the beam direction and positioned one inch apart. The overlap region of the two crossed 

laser beams was positioned radially in the center of the tube at a position X and a spectral 

profile recorded. To avoid clipping the beam(s), the thermocouples had to be positioned 

sufficiently far from the overlap region resulting in a discernable difference in the 

location from which optical and thermocouple measurements were made. The overlap 

length of the two beams was ≈ 1.3 cm as measured along the beam direction. The 

distance from the tip of the thermocouple to the center point of the beam overlap region 

was ≈ 0.25 cm at position X = 1 (the highest temperature), 1 cm at X = 2, and 2 cm at X = 

3. This spatial discrepancy allowed for a difference in thermocouple and optically 

measured temperatures especially in the steep thermal gradient at the high temperature 

end of the cell. The purpose of the thermocouple was to verify that the optical 

temperatures were within reasonable expectations. Measurements were performed in I2 

vapor (no buffer gas) for several ro-vibrational lines using each of the following three 

techniques: CBIMF, CBSAS, and MPSF. For a specific position X along the cell length, 

CBIMF was performed, then the chopper re-positioned and beam powers adjusted to 

make CBSAS measurements along with the simultaneous MPSF measurements. The 

beams were then crossed at the next position and the procedure repeated. For the 

fluorescence measurements, the tip of an optical fiber fitted with an Oriel lens was 

positioned directly above the beam-overlap volume so the signal was directed through the 

3 ft fiber optic to the PMT. In the CBSAS set-up, pumpI  was 127 mW/mm2 and probeI  
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was 13mW/mm2. For the CBIMF set-up, each of the two beam intensities was 64 

mW/mm2. 

     Results. 

In all of the experiments, the data consisted of Doppler-limited spectral profiles 

which were analyzed by fitting them to the appropriate theoretical signal consisting of 15 

or 21 Gaussian lineshapes. A Doppler-broadened spectrum of an even J ′′  isolated ro-

vibrational line is shown in Figure 34 and that of an odd J ′′  line is shown in Figure 35. 

Both profiles are from a CBIMF experiment performed at room temperature. As 

expected, the shape of each profile has a noticeable asymmetry due to the hyperfine 

structure and a FWHM linewidth larger than that predicted by the Doppler broadening 

alone to be 400 MHz @ 21.3 oC. The data indicates the significant contribution the 

hyperfine structure makes to the overall width of the spectral profile. A difference in 

shape is discernable between the P(70) 17-1 spectrum consisting of 15 hyperfine lines 

and the P(53) 19-2 spectrum having a 21-line hyperfine spectrum. 

 A fit to an I2 P(46) 17-1 CBIMF profile is shown in Figure 36. The corresponding 

residual trend is shown in Figure 37. The data was collected in the static cell with an 

applied temperature gradient. The measurement was taken at the point where cT = 300 K 

and exT = 316 K ±  1 K. Likewise, a fit to an I2 P(46) 17-1 CBSAS profile is shown in 

Figure 38 from which exT = 302 K ±  4.3 K. The residuals are shown in Figure 39. The 

measurement point was the same for the CBIMF collection. Finally, a fit to a MPSF 

profile shown in Figure 40 was collected under the same conditions as the previous two 

signals giving exT = 312 ±  1 K. Its residuals are shown in Figure 41. 
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Figure 34. I2 P(70) 17-1 isolated ro-vibrational line Doppler-broadened profile at 
17339.8187 cm-1 obtained from the CBIMF technique. 
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Figure 35. I2 P(53) 19-2 isolated ro-vibrational line Doppler-broadened profile at 
17340.2214 cm-1 obtained from the CBIMF technique. 
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Figure 36. CBIMF profile of I2 P(46) 17-1 in static cell. The experimental data points 
are gray. The theoretical fit to the data is represented by the black line. The 
measurement was taken at room temperature. 
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Figure 37. Residual trend for CBIMF profile of I2 P(46) 17-1 in static cell. 
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Figure 38. CBSAS profile of I2 P(46) 17-1 in static cell. The experimental data points 
are gray. The theoretical fit to the data is represented by the black line. The 
measurement was taken at room temperature. 
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Figure 39. Residual trend for CBSAS profile of I2 P(46) 17-1 in static cell. 
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Figure 40. MPSF profile of I2 P(46) 17-1 in static cell. The experimental data points 
are gray. The theoretical fit to the data is represented by the black line. The 
measurement was taken at room temperature. 
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Figure 41. Residual trend for MPSF profile of I2 P(46) 17-1 in static cell. 
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          Beam Modulation Frequency and Temperature Extraction. 

 The effects of f on exT  were obtained for a fixed position in a static cell 

maintained at 297.3 K as measured by thermocouple. A plot is displayed in Figure 42 of 

the extracted temperature statistical error, exTδ , for each laser technique as a function of 

chopping frequency, f , for a ro-vibrational line with a 15 line HFS, P(70) 17-1, and one 

with a 21 line HFS, P(53) 19-2. Above 500 Hz, exTδ  was less than 1.8 K for all three 

techniques. Of the three techniques, the CBSAS gave the largest exTδ  at all chopping 

frequencies for both ro-vibrational lines. 

 Each plot in Figure 43 shows the extracted temperature, exT , as a function of f for 

a specific laser technique and a particular ro-vibrational line. Measurements were made 
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Figure 42. Extracted-temperature error for various chopping frequencies. Static cell 
measurements at fixed temperature of 297 K. P(70) 17-1 CBSAS (gray circle), P(70) 
17-1 CBIMF (white circle), P(70) 17-1 MPSF (black circle), P(53) 19-2 CBSAS (gray 
square), P(53) 19-2 CBIMF (white square), P(53) 19-2 MPSF (black square). 
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on the P(70) 17-1 line and the P(53) 19-2 line. In a given plot, there is some variation 

about a nominal temperature value as a function of f. This variation is smaller in the 

CBIMF and MPSF results than in the CBSAS results. The MPSF P(53) 19-2 results show 

the best agreement with the thermocouple temperature, cT = 297.3 K, for chopping 

frequencies f > 500 Hz. The closest agreement in exT  among all the three techniques and 

with cT  occurs at 500 Hz. At any given f, there is substantial difference between each 

technique’s exT  value and cT . The P(53) 19-2 MPSF and CBIMF exT  data were closest 

in agreement with cT  over the range of f. The P(70) 17-1 MPSF and CBIMF extracted  

temperatures had closer agreement with one another than with cT  or P(53) 19-2 exT . 
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Figure 43. Extracted temperature for various chopping frequencies. Static cell 
measurements at fixed temperature of 297 K. P(70) 17-1 CBSAS (gray circle), P(70) 
17-1 CBIMF (white circle), P(70) 17-1 MPSF (black circle), P(53) 19-2 CBSAS (gray 
square), P(53) 19-2 CBIMF (white square), P(53) 19-2 MPSF (black square), 
thermocouple temperature (solid black line). 
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 The absorption parameter, k, proved to be the most difficult parameter of the 

theoretical signal to fit. Often, the standard error kδ  exceeded k in magnitude. A plot of k 

versus f is shown in Figure 44. It was only for the P(70) 17-1 MPSF, and some of the 

P(70) 17-1 CBIMF k values that kδ  was one order or less in magnitude than k itself. 

Also, these two data sets were the only ones that showed a noticeable variation in k with 

f. 

          Iodine Pressure and Temperature Extraction. 

 The effects of 
2IP  on exT  were obtained for a fixed position in a static cell held at 

a fixed temperature of 295 K as measured by thermocouple. As displayed in Figure 45 

and Figure 46, the CBIMF technique proved to have the smallest exTδ  of all three 
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Figure 44. Absorption parameter at various chopping frequencies. Static cell 
measurements at fixed temperature of 297 K. P(70) 17-1 CBSAS (gray circle), P(70) 
17-1 CBIMF (white circle), P(70) 17-1 MPSF (black circle), P(53) 19-2 CBSAS (gray 
square), P(53) 19-2 CBIMF (white square), P(53) 19-2 MPSF (black square). 
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techniques for 
2IP  > 50 mTorr. The lowest I2 pressure at ≈ 20 mTorr present after 30 

minutes or more of time taken to pump the cell down between each ro-vibrational line 

measurement showing that a substantial amount of residual I2 remained in the cell. There 

was typically enough residual I2 vapor in the cell to obtain a discernable signal for 

CBIMF and MPSF measurements. Sufficient SNR was not achieved for CBSAS in these 

residual I2 vapor measurements. The strongest SNR at the lowest pressure and all other 

pressures was obtained with MPSF. However, CBIMF extracted temperatures proved to 

be the most consistent with the thermocouple measurements followed by MPSF as shown 

in Figure 47 and Figure 48. The temperatures from CBSAS measurements were 

consistently below cT = 295 K. Agreement between cT  and exT  improved with 

increasing 
2IP  for all three techniques. 
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Figure 45. Extracted-temperature error as a function of I2 pressure for P(46) 17-1. 
Static cell measurements at fixed temperature of 295 K. CBSAS (square), CBIMF 
(circle), MPSF (triangle). 
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Figure 46. Extracted temperature error as a function of I2 pressure for R(30) 15-0. 
Static cell measurements at fixed temperature of 295 K. CBSAS (square), CBIMF 
(circle), MPSF (triangle). 
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Figure 47. Extracted temperature as a function of I2 pressure for P(46) 17-1. Static 
cell measurements at fixed temperature of 295 K. CBSAS (square), CBIMF (circle), 
MPSF (triangle), thermocouple temperature (solid line). 
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Figure 48. Extracted temperature as a function of I2 pressure for R(30) 15-0. Static 
cell measurements at fixed temperature of 295 K. CBSAS (square), CBIMF (circle), 
MPSF (triangle), thermocouple temperature (solid line). 
 
 
          Spatially-Resolved Temperatures in a Static Cell. 

 The extracted temperatures from each technique are plotted along with the 

thermocouple temperatures as a function of position, X, (as defined in Figure 32) for a 

specific ro-vibrational line as shown in Figure 49 and Figure 50. An estimate of the 

variation in temperature along the 1.3 cm beam-overlap length centered at the X=1 

position in the cell is shown in each graph as errors bars in the upper right corner. All 

three techniques were capable of resolving temperatures according to spatial location 

within a thermal gradient. The exTδ  results shown in Table 13 were typically < 4 K with 

the errors being greater for the high temperature measurements. The numerical estimates 

of temperature variation along the 1.3 cm beam-overlap length at each of the positions in 

the cell are shown in Table 14. The estimates were based on a best-curve fit to cT , as a 
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Figure 49. Spatially resolved exT measurements from I2 P(114) 18-1 in a static cell 
with thermal gradient. CBSAS (square), CBIMF (black circle), MPSF (triangle), 
thermocouple temperature (gray circle). Errors bars indicate TΔ  along overlap 
length centered at X=1 as estimated from cT measurements. 
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Figure 50. Spatially resolved temperature measurements from I2 P(46) 17-1 in a 
static cell with thermal gradient. CBSAS (square), CBIMF (black circle), MPSF 
(triangle), thermocouple temperature (gray circle). Errors bars indicate TΔ  along 
overlap length centered at X=1 as estimated from cT measurements. 
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Table 13. P(46) 17-1 and P(114) 18-1 extracted temperatures from CBIMF, CBSAS, 
and MPSF in a static cell with a temperature gradient. 
 

X 
(in) 

Tex 
(K) 

k (X 10-5) 
(s-1) 

I2 Spectral 
Assignment

 
Technique 

3 316.47 ± 0.91 2.09 ± 0.07 P(46) 17-1 CBIMF 
2 309.13 ± 0.84 2.72 ± 0.04 “ “ 
1 439.21 ± 1.52 3.16 ± 0.08 “ “ 
     
3 302.01 ± 4.31 3.08 ± 0.6 P(46) 17-1 CBSAS 
2 279.31 ± 1.14 0.0003 ± 0.2 “ “ 
1 398.43 ± 1.45 0.29 ± 0.08 “ “ 
     
3 311.73 ± 1.00 8.36 ± 0.09 P(46) 17-1 MPSF 
2 327.89 ± 0.96 3.29 ± 0.06 “ “ 
1 441.89 ± 1.25 2.25 ± 0.04 “ “ 
     
3 306.41 ± 1.10 1.65 ± 0.06 P(114) 17-1 CBIMF 
2 306.34 ± 1.44 1.65 ± 0.06 “ “ 
1 422.56 ± 2.48 3.54 ± 0.1 “ “ 
     
3 278.16 ± 1.11 0.003 ± 0.1 P(114) 17-1 CBSAS 
2 287.80 ± 1.33 0.009 ± 0.1 “ “ 
1 401.35 ± 2.04 0.001 ± 0.09 “ “ 
     
3 307.22 ± 1.18 4.11 ± 0.09 P(114) 17-1 MPSF 
2 330.23 ± 1.51 2.14 ± 0.1 “ “ 
1 454.41 ± 2.13 1.92 ± 0.08 “ “ 

 
 
 

Table 14. Thermocouple measurements and the estimated temperature gradient 
along the overlap length in static cell for P(46) 17-1 and P(114) 18-1 cross-beam 
experiments. 
 

X 
(in) 

Tc 
(K) 

high
olΔT

(K) 

low
olΔT

(K) 

I2 Spectral 
Assignment

3 299.75 +1 -1 P(46) 17-1 
2 307.15 +5 -3 “ 
1 366.15 +89 -30 “ 
3 295.25 +1 -1 P(114) 17-1 
2 301.75 +5 +3 “ 
1 361.55 +91 -30 “ 
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function of position, X. The difference between cT  at the center-point of the overlap and 

the temperature at 0.25” towards the hot end of the cell is designed by high
olΔT . Likewise, 

the difference between cT  at the center-point of the overlap and the temperature at 0.25” 

towards the cold end of the cell is designed by low
olΔT . This shows that the temperature 

could have varied as much as 50 K along the overlap length of 0.5 inches (1.3 cm) when 

the beams were positioned at the high temperature measurement position (X = 1). Also, as 

noted in the Figure 32 schematic, there was a small spatial gap between the thermocouple 

tip and the beam crossing volume at each measurement location. 

 The MPSF extracted temperatures tended to be the highest of the three techniques 

at each position regardless of ro-vibrational line and showed the least agreement with cT  

at a given position. The CBIMF extracted temperatures were also typically higher than 

the corresponding cT  measurements, and showed better agreement with the MPSF 

temperatures in some cases. The CBSAS temperatures tended to be higher than cT  at hot 

end of the cell, and lower than cT  at the two other positions in the cell. As shown in 

Table 13, there was some difficulty with fitting k in CBSAS where kδ  exceeded k by an 

order of magnitude in all but one case. However, for the CBIMF and MPSF techniques, 

kδ  was one to two orders-of-magnitude smaller than k itself. 

 The P(46) 17-1 spectral profiles at the various positions in the temperature 

gradient for each of the laser techniques are shown in Figure 51-Figure 53. For each 

graph, the maximum amplitude was determined for each profile and scaled relative to the 

high temperature profile. The relative frequencies for each profile were scaled so the 
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Figure 51. CBIMF P(46) 17-1 spectral profile at three positions/temperature. 
Position 1/high temp (black), Position 2 (dark gray), Position 3/low temperature 
(light gray). 

Δν  (G H z)

0.5 1.0 1.5 2.0 2.5

R
el

at
iv

e 
In

te
ns

ity
 (A

rb
itr

ar
y 

U
ni

ts
)

0

1000

2000

3000

4000

 
Figure 52. CBSAS P(46) 17-1 spectral profile at three positions/temperatures. 
Position 1/high temp (black), Position 2 (dark gray), Position 3/low temperature 
(light gray). 
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Figure 53. MPSF P(46) 17-1 spectral profile at three positions/temperatures. 
Position 1/high temp (black), Position 2 (dark gray), Position 3/low temperature 
(light gray). 

 
 
 

relative maximum amplitudes coincided. For a given technique, there is only a small 

difference between the linewidth of the high temperature profile as compared to the 

lowest temperature profile, and there is a barely discernable difference between the 

profiles collected at the two lowest temperatures. 

 Finally, temperatures were extracted from the P(51) 18-2 & P(66) 16-1 blended 

line using all three techniques in the static cell with a temperature gradient. The results 

along with the thermocouple temperatures at each position are shown in Figure 54. The 

same trend occurs here as in the isolated line results. The exT  is much higher than cT  at 

the hot end of the cell where X = 1. Agreement between exT and cT  is better at the other 

two positions in the cell. The exT  results for the blended line are shown in Table 15 along 
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with the fits to k. Estimates of the variation in cT  along the 0.5” beam-overlap length at 

each of the positions in the cell are shown in Table 16. 

X  ( in )

1 .0 1 .5 2 .0 2 .5 3 .0

T 
(K

)

2 8 0

3 0 0

3 2 0

3 4 0

3 6 0

3 8 0

4 0 0

4 2 0

4 4 0

4 6 0

4 8 0

 
Figure 54. I2 P(51) 18-2 & P(66) 16-1 blended line in a static cell with thermal 
gradient. CBSAS (black square), CBIMF (black circle), MPSF (black triangle), 
thermocouple (gray circle). Errors bars indicate TΔ  along overlap length centered 
at X=1 as estimated from cT measurements. 
 
 
 
Table 15. P(51) 18-2 & P(66) 16-1 extracted temperatures from CBIMF, CBSAS, 
and MPSF in a static cell with a temperature gradient. 
 

X 
(in) 

Tex 
(K) 

k (X 10-5) 
(s-1) 

 
Technique

3 294.09 ± 0.79 3.54 ± 0.08 CBIMF 
2 312.50 ± 0.77 2.38 ± 0.06 “ 
1 433.60 ± 1.72 2.86 ± 0.11 “ 
3 304.33 ± 0.82 -5.82 ± 0.1 CBSAS 
2 308.53 ± 0.89 -1.82 ± 0.09 “ 
1 384.26 ± 1.94 -3.85 ± 0.15 “ 
3 309.00 ± 0.71 3.4 ± 0.04 MPSF 
2 323.95 ± 0.95 3.6 ± 0.09 “ 
1 430.07 ± 1.6 1.8 ± 0.08 “ 
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Table 16. Thermocouple measurements and the estimated temperature gradient 
along the overlap length in static cell for P(51) 18-2 & P(66) 16-1 blended line cross-
beam experiments. 

X 
(in)

Tc 
(K)

high
olΔT

(K) 

low
olΔT

(K) 
3 300 +1 -1 
2 307 +5 -3 
1 365 +87 -30 

 
 
 
 As mentioned in the theory section, the fits to the blended line had to be 

performed with Mathematica code. Unlike the Peakfit or Tablecurve programs, the 

nonlinear statistics package in Mathematica did not provide a simple means of 

constraining the fit parameters. Therefore, k could not be constrained to positive values as 

expected for absorption conditions. As it turned out, the Mathematica fits to the CBSAS 

signals consistently produced negative values for k. 

In the blended line fits shown above, a different fit parameter was assigned to 

each ro-vibrational line’s amplitude to account for the difference in statistical populations 

between the two lines as was shown in Equation (135). An alternative approach to the 

blended line fits involved utilizing the temperature dependence present in the amplitude 

parameter via the Boltzmann factor in addition to the temperature dependence contained 

in the Doppler linewidth. In this alternative approach, attempts were made to 

simultaneously constrain each of the two overlapped ro-vibrational lines to the same 

temperature contained in each ro-vibrational line’s amplitude parameter and the Doppler 

linewidth. Unfortunately, the outcome was very poor fits to the data with a large 

discrepancy between the exT  and cT  at each position in the static cell gradient. A fit 

result is shown in Appendix A. 
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     Discussion. 

The beam modulation experiments reveal that f for a temperature diagnostic should be 

higher than 500 Hz to keep exTδ  below 2 K for room temperature measurements. The 

results for exT  versus f shown in Figure 43 were anticipated to be plots coincident with 

the horizontal line corresponding to the thermocouple measurement. On the contrary, 

only one plot, MPSF for P(53) 19-2, met this expectation with the other plots showing a 

small variation about a temperature significantly higher or lower than that of cT . 

 For a given plot, the change in exT  with f is small for f > 500 Hz. The variation in 

exT  for a given ro-vibrational line and technique is most likely due to systematic errors or 

noise rather than a change in f at frequencies above 500 Hz. Regardless of technique, the 

signal is very smooth and featureless at room temperature. 

 From the iodine pressure experiments, a temperature diagnostic based on any of 

the techniques would have greater success for 
2IP  approaching 0.3 Torr. The CBIMF 

technique would be the preferred technique based on temperature accuracy and statistical 

error as compared to the CBSAS and MPSF techniques. However, there is an advantage 

of the absorption-based technique over the fluorescence-based techniques. The intended 

application of a temperature diagnostic is for the COIL. The laser cavity has only two 

transparent windows parallel to each other and positioned on opposite sides of the cavity. 

A measurement of fluorescence from a direction perpendicular to the interrogating beam 

direction would not be possible. This could be overcome by positioning a detector at one 

of the windows so that it is off-axis from the interrogating beams. CBSAS avoids this 

difficulty through measurement of transmitted probe-beam intensity. 
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 From the temperature measurements in the static cell with a thermal gradient, exT  

from each technique showed the best agreement with the other techniques and cT  at the 

lowest temperature (≈ 300 K). In Figure 49 and Figure 50, for the most part, the extracted 

temperatures deviate from one another and cT  in the higher temperatures. At position X = 

1, the beams overlap along an axial length that covers a large span in temperature as a 

result of the steep temperature gradient. The overlap volume spans a smaller temperature 

gradient as the cold end of the cell is approached. The variation in temperature along the 

overlap length is the most likely cause for disagreement between exT  and cT  at positions 

1 and 2. A smaller overlap volume was not achievable due the limitation of the 1 inch 

diameter of the glass tube. 

 The exT  results at each position in Figure 49 and Figure 50 follow a systematic 

trend with MPSF typically producing the highest exT  and CBSAS producing the lowest. 

In the case of the MPSF signal, the spatial region over which the MPSF signal was 

collected was determined only by the field–of-view of the PMT lens which differed from 

that of the beam-overlap volume for CBSAS and CBIMF. The beam intensities could 

also have also played a role in the results. In the CBSAS set-up, the pump beam intensity 

was pumpI  = 127 mW/mm2 and the probe beam intensity was probeI  ≤ 13 mW/mm2. 

Since the laser excitation from the modulated pump beam in the CBSAS configuration is 

the MPSF signal, it is possible that the beam intensity approaches, or exceeds the 

saturation intensity and that this affects the lineshape in ways not accounted for in the 

theoretical signal resulting in an exT  that is higher than expected. For comparison, each 

of the two the CBIMF beam intensities was 64 mW/mm2. It is difficult to ascertain if the 
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beam intensities in all the spatially-resolved measurements were optimal based on 

saturation intensities in the literature since there is such discrepancy between these 

reported values as shown in Table 11. The I2 saturation intensity is difficult to determine 

due to is dependence on pressure and the relaxation kinetics at a specific temperature. It 

is also generally expected to be different for each absorption line. Simply using extremely 

low beam intensities to ensure oS  << 1 would not be practical since the SNR in the 

recorded lineshape would most likely be degraded. This, in turn, would affect the 

temperature extraction, producing unacceptably large standard errors. For the static cell at 

fixed pressure with a temperature gradient, the number of molecules participating in the 

signal decreases at the higher temperatures. This is accompanied by a corresponding 

change in relaxation kinetics with temperature. These effects could have increased oS  

and dramatically affected exT  obtained from the hotter positions in the static cell. 

 To obtain a quantitative estimate of the influence of systematic errors on exT , a 

nonlinear term was introduced into the theoretical signal. The spectral profiles from the 

P(46) 17-1 measurements in the static cell with a temperature gradient (Figure 51, Figure 

52, Figure 53) were fit with the modified theoretical signal of 
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where a frequency-dependent nonlinear term is included into the amplitude parameter so 

that 

 2/1' −= ν AA  (139) 



 113

where A  is the original amplitude parameter from Equation (133) and the expression 

2/1−ν  is a hypothetical choice meant only to illustrate the point of the argument. 

Equation (139) can be re-expressed as 
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where the last expression is the result of a Taylor series expansion. The modified 

lineshape can be expressed in term of the original lineshape and a small correction term 

ε  so that 

 ( ) ( ) ( )νεν cbcb S S −=′ 1  (141) 

where the original amplitude, A, is reinterpreted and 

 610
)17339(2
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Δ
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 1-
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νε . (142) 

in which 1.4 GHz is a typical linewidth for a ro-vibrational line which takes into account 

Doppler width and hyperfine structure, and 17339 cm-1 is a typical wavenumber for an I2 

ro-vibrational line investigated in this work. 

 The exT ′ values from the ( )νcbS ′  fits are shown in Table 17 along with the exT  

values from Table 13 and the cT  values from Table 14 for comparison. The ( )νcbS ′  fits 

produced exT ′  values that gave closer agreement with cT  than the exT  results from the 

( )νcbS  fits. The differences between exT ′  and exT  ranged from 27 K to less than 1 K. 

 The quality of the ( )νcbS ′  fits was consistently worse than the quality of the 

( )νcbS  fits. As an example, a graph of the P(46) 17-1 CBIMF profile at X=1 fitted with 
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( )νcbS  is shown in Figure 55 and the corresponding residuals are shown in Figure 56. 

This is compared to the graph of the P(46) 17-1 CBIMF profile at X=1 fitted with ( )νcbS ′  

shown in Figure 57. Its residuals are shown in Figure 58. 

 The ( )νcbS ′  fits reveal that a very small nonlinearity in y-axis (10-4 %) can yield 

temperatures differing by 10-20 K for room temperature profiles. Although it’s not 

suggested that ( )νcbS ′  should replace ( )νcbS  as the correct model, it does indicate that 

systematic errors in the static cell experiments occurring as small nonlinearities in the 

spectral profile can have a significant impact on the extracted temperatures. 

 

Table 17. Extracted temperatures from three positions in the static cell with a 
temperature gradient for P(46) 17-1 using the CBIMF, CBSAS, MPSF techniques. 

exT ′  values are the results from fits with ( )νcbS ′ . exT  values are the results from fits 
with ( )νcbS . 
 

X 
(in) 

Tex from ( )νcbS  
(K) 

exT ′ from ( )νcbS ′  
(K) 

 
 

exT - exT ′
(K) 

Tc 
(K) 

 
Technique 

3 316.47 ± 0.91 294.01 ± 1.49 22.46 299.75 CBIMF 

2 309.13 ± 0.84 309.38 ± 1.85 -0.25 307.15 “ 

1 439.21 ± 1.52 417.19 ± 2.23 22.02 366.15 “ 

3 302.01 ± 4.31 289.06 ± 2.33 12.95  CBSAS 

2 279.31 ± 1.14 308.34 ± 2.56 -29.03  “ 

1 398.43 ± 1.45 381.61 ± 2.06 16.82  “ 

3 311.73 ± 1.00 295.40 ± 1.51 16.33  MPSF 

2 327.89 ± 0.96 314.81 ± 1.85 13.08  “ 
1 441.89 ± 1.25 414.97 ± 1.86 26.92  “ 
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Figure 55. P(46) 17-1 CBIMF profile at X=1 in static cell with temperature gradient. 
Experimental data (gray) is fit with ( )νcbS  (black line). 
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Figure 56. Residual trend from ( )νcbS  fit to P(46) 17-1 CBIMF profile at X=1 in 
static cell with temperature gradient. 
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Figure 57. P(46) 17-1 CBIMF profile at X=1 in static cell with temperature gradient. 
Experimental data (gray) is fit with ( )νcbS ′  (black line). 
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Figure 58. Residual trend from ( )νcbS ′  fit to P(46) 17-1 CBIMF profile at X=1 in 
static cell with temperature gradient. 
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C. Spatially-Resolved Temperatures in a Supersonic Nozzle. 

      Experiment. 

 To assess the applicability of the spatially-resolved temperature diagnostic to 

COIL, cross-beam measurements were carried out in a small, de Laval nozzle. The nozzle 

schematic is displayed in Figure 59. The gas/vapor mixture enters the inlet from the left, 

passes through a diffuser plate, and is accelerated by the converging walls to achieve a 

Mach number of 1=M  at the throat. The nozzle was designed to achieve a Mach number 

of 2=M  at the exit plane.77, 78 Temperature measurements were made by directing the 

laser beam(s) through the rectangular quartz-glass plates to intersect in the gas flow at the 

point where the nozzle has a cross-sectional area of A=0.7 cm X 1.0 cm. The small hole 

in the stainless-steel nozzle-frame is equipped with a quartz glass plug, allowing for 

optical signal detection perpendicular to the beam direction. The other quartz plug was 

removed and replaced by a ¼” OD polyethylene tube with its end positioned flush with 

the inner wall of the nozzle for pressure measurement. The nozzle itself was housed in a 

sealed vacuum chamber as shown in Figure 60 and Figure 61. The chamber components 

were obtained from MDC Vacuum Products Corporation. The nozzle was placed in a 

stainless steel, six-way cross with minimum clearance between nozzle frame and the 

cross’s inner-walls. The cross was mounted directly to the inlet port of an Alcatel 2063 

CP+ vacuum pump (with Alcatel A300 oil) via a short conical reducer. All connections to 

the cross arms were made with Viton® O-ring assemblies and hinge clamps. Two glass 

view ports were used to transmit the laser beam(s) into and out of the cross. A third glass 

port was used for viewing laser excitation perpendicular to the beam direction (i.e. 

fluorescence passing through the quartz glass plug on the nozzle). To connect the ½” 
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glass tubing, external to the cross, to the ¼” nozzle inlet tube, a ½” to ¼” Cajon® fitting 

was welded in the center of a metal blank, which was fit to the top-most cross-arm. This 

orients the nozzle vertically with its exhaust directed downward into the pump inlet port. 

In Figure 61, the tube for pressure measurements inside the nozzle is shown where it 

extends out of a cross side-arm. 

 The gas/vapor source consisted of a horizontally positioned ½” diameter glass 

tube in which 5-10 gm of I2 crystals were laid out along a 4” to 6” length within the tube 

as shown in Figure 62. The Ar buffer gas passed from its storage tank through ¼” 

polyethylene tubing to connect to the upstream end of the glass tube containing the I2 

crystals. The Ar passed over the crystals carrying I2 vapor into the nozzle. A Baratron 

pressure transducer was placed at a point just external to the cross for a pressure 

measurement upstream of the nozzle. 

 The two nearly co-propagating laser beams were crossed at an angle of o17=θ . 

The power for each beam (1 mm diameter) was 25 mW as measured at the entrance 

window on the six-way cross. The overlapping volume of the beams was 2.4 mm3 and 

fully contained within the interior of the nozzle. At the face of each rectangular quartz 

window on the nozzle, a 2 mm spacing between the beams was visually observed. Since 

the six-way cross was mounted directly on the vacuum pump, the two laser beams had to 

be directed off the optical table on which the laser rested. A PMT, preceded by a long-

pass optical filter, was positioned at the edge of the optical table to view the laser 

excitation signal that was transmitted through the nozzle quartz plug, then though the 

glass view port on one of the horizontal cross arms. The distance from the PMT to the 

face of the cross-arm was 13”.
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Figure 59. Nozzle side-view (upper schematic) and nozzle assembly (lower 
schematic). 
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Figure 60. Supersonic Flow Apparatus (side view). 
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Figure 61. Six-way cross mounted on pump. 
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Figure 62. Gas/vapor inlet plumbing (top photo). Supersonic flow experiment 
(bottom photo). 
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      Results. 

 To compare against exT , a predicted nozzle temperature, testT , was calculated 

using Equations (113) and (114) for the test point where the overlapped laser beams 

interacted with the gas flow. Ar was the choice for the carrier gas. The pertinent data used 

for the calculations along with the results are displayed in Table 18. 

 Additional calculations were performed with Equations (115) and (116) to ensure 

the available vacuum pump could drive the nozzle supersonically. The pertinent data for 

these calculations and the results are also shown in Table 18. The vacuum pump had a 

maximum speed of maxS = 43 cfm. The maximum volume rate in the nozzle is found 

from 

 
throat

w
VR

ρ
max

max = . (143) 

 

Table 18. Nozzle data and calculations. 
 

Nozzle 
Design 
Values 

 
Selected 
Values 

 
 

Constants 

 
Calculated 

Values 
A* = 0.5 cm2 Arγ =1.669 101325=standardP  Pa  61.223=throatT  K 

Atest=0.7 cm2 To  =298.15 K 15.273=standardT  K  Torr  61.14=throatP  

M* = 1 Torr 30=oP  7841.1=Ar
stpρ  gm/L 74 0419.0=throatρ  gm/L

Mexit = 2 maxS = 43 cfm Ro = 8.314510 J/(mole K) 58.0=maxw  gm/s 

 38≅S  cfm 
@ 3.6 Torr MAr = 39.948 gm/mole  Mtest =1.858 

@ Atest 
  133.208=ArR  m2/(s2 K) 5.29=maxVR cfm 
   6.3=exitP  Torr 
   Ttest = 138.37 K 
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The mass density of the gas at the throat can be determined from 

 
throat

standard

standard

throatAr
stpthroat T

T
P
P

ρρ = , (144) 

where Ar
stpρ  is the Ar gas density at standard temperature and pressure. Using these two 

equations, 5.29=maxVR cfm. The pump speed, S , must exceed maxVR . The pump inlet 

pressure was assumed to be exitP . From the pump manufacturer’s data, ≅S  38 cfm @ 

3.6 Torr.79 This indicated the pump was marginally capable of exceeding the maxVR  

necessary to drive the nozzle at supersonic speeds. 

 A spatially-resolved temperature diagnostic was demonstrated in a supersonic 

flow of Ar seeded with I2 using CBIMF. A spectral profile obtained from this technique is 

shown in Figure 63 where the data (in grey) is fit with the Gaussian-based theoretical 

signal of Equation (134) (in black). The profile shows the highly asymmetric shape as 

expected from the theoretical predictions at low temperatures shown in Figure 13. The 

temperature extracted from the fit in Figure 63 is exT  = 146.9 K ±  0.4 K. The residual 

trend for the fit is shown in Figure 64. The data in Table 19 contains repeated 

measurements for I2 P(46)17-1 taken under fixed pressure conditions and at the same 

location within the nozzle. The first five data files in Table 19 were taken at longer scan 

times and longer lock-in time constants than were files 6 through 10. The coefficient of 

determination, r2, for the fit improved for a longer scan time and longer time constant. As 

with the static cell measurements, there was difficulty in the fit to k as shown in trials 4, 

7, 9 and 10. 
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Figure 63. CBIMF in supersonic nozzle for I2 P(46) 17-1. The experimental data 
points are gray. The theoretical fit to the data is represented by the black line. 
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Figure 64. Residual trend for CBIMF profile of I2 P(46) 17-1 in supersonic nozzle. 
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Table 19. CBIMF for I2 P(46) 17-1 in supersonic nozzle with Ar/I2. Consecutive 
measurements for same pressure and location. 
 

 
Trial 

Tex 
(K) 

Pinlet 
(Torr)

Pnozzle 
(Torr)

k (X 10-5) 
(s-1) 

1 146.89 ± 0.43 14.75 1.2 1.52 ± 0.09 
2 150.52 ± 0.62 14.73 1.1 4.19 ± 0.15 
3 141.23 ± 0.51 14.70 1.1 4.14 ± 0.15 
4 149.24 ± 0.54 14.76 1.1 0.007 ± 0.15 
5 162.95 ± 0.64 14.74 1.1 0.3 ± 0.17 
6 139.86 ± 0.81 14.91 1.1 2.62 ± 0.26 
7 147.17 ± 1.16 15.06 1.2 0.003 ± 0.4 
8 136.42 ± 0.81 14.97 1.2 4.81 ± 0.24 
9 153.96 ± 1.11 15.06 1.2 0.03 ± 0.4 
10 151.61 ± 1.06 14.99 1.2 0.03 ± 0.4 

Average 147.98 ± 0.77    
 
 
 
 The same type experiment was performed for I2 P(31) 17-1 ro-vibrational line 

which has a twenty-one line hyperfine spectrum. The SNR was, in general, lower 

compared to the P(46) 17-1 data as shown in Figure 65. The residual trend for the fit is 

shown in Figure 66. Again, as can be seen in Table 20, the absorption parameter proved 

difficult to fit. However, the average temperature of 147 K obtained from consecutive 

measurements agrees well with the P(46) 17-1 average exT  value. 

 For comparison to the CBIMF technique, laser excitation measurements using 

Single Beam Side-Fluorescence (SBSF) were performed under the same conditions as 

stated above for both the P(46) 17-1 and P(31) 17-1 ro-vibrational lines. Without 

changing the two-beam configuration for the CBIMF experiment, one of the incident 

beams was simply blocked from entering the six-way cross. The single beam that did 

enter the six-way cross was oriented at an o8.5  angle relative to a line perpendicular to 

window on the cross-arm and to the rectangular nozzle window. 
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Figure 65. CBIMF in supersonic nozzle for I2 P(31) 17-1. The experimental data 
points are gray. The theoretical fit to the data is represented by the black line. 
 
 

                    Δ ν  (G H z)                     

0.0 0 .5 1 .0 1 .5 2 .0 2 .5 3 .0

R
es

id
ua

ls

-300

-200

-100

0

100

200

300

400

 
Figure 66. Residual trend for CBIMF profile of I2 P(31) 17-1 in supersonic nozzle. 
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Table 20. CBIMF for I2 P(31) 17-1 in supersonic nozzle with Ar/I2. Consecutive 
measurements for same pressure and location. 
 

 
Trial 

Tex 
(K) 

Pinlet 
(Torr)

Pnozzle 
(Torr)

k (X 10-5) 
(s-1) 

1 139.50 ± 1.36 14.79 1.1 0.0003 ± 0.3 
2 147.29 ± 1.43 14.85 1.1 0.0001 ± 0.3 
3 145.98 ± 1.54 14.87 1.1 0.00003 ± 0.3 
4 142.30 ± 1.38 15.14 1.1 0.003 ± 0.3 
5 157.55 ± 1.79 15.05 1.1 0.0002 ± 0.4 

Average 146.52 ± 1.50    
 
 
 
A fit to the SBSF signal for the P(46) 17-1 ro-vibrational line is shown in Figure 67. The 

residual trend for the P(46) 17-1 SBSF fit is shown in Figure 70. A fit to the SBSF signal 

for the P(31) 17-1 ro-vibrational line is shown in Figure 69. The residual trend for the 

P(31) 17-1 SBSF fit is shown in Figure 70. Again, repeated measurements were 

performed under similar conditions for each ro-vibrational line and the extracted 

temperatures, pressure conditions, and absorption parameters are listed in Table 21 for 

P(46) 17-1 and in Table 22 for P(31) 17-1. The signal for the single beam side-

fluorescence measurements is two orders of magnitude stronger than for the CBIMF 

measurement. The fits to the SBSF signals are better than for the CBIMF signals 

according the residual trends. In general, the standard errors in exT  and k were smaller for 

SBSF than for CBIMF. The average SBSF temperature for both ro-vibrational lines was 

47-48 K higher than for the corresponding CBIMF data, which was expected since the 

single beam was not oriented perpendicular to the gas flow. The SBSF beam interacted 

with the flow simultaneously at upstream positions and downstream positions which were 

at different temperatures. Fluorescence from all positions contributed to the SBSF signal. 
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Figure 67. Single Beam Side Fluorescence in supersonic nozzle for P (46) 17-1. The 
experimental data points are gray. The theoretical fit to the data is represented by 
the black line. 
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Figure 68. Residual trend for SBSF profile of I2 P(46) 17-1 in supersonic nozzle. 
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Table 21. Single Beam Side Fluorescence for I2 P(46) 17-1 in supersonic nozzle with 
Ar/I2. Consecutive measurements for same pressure and location. 

 
Trial 

Tex 
(K) 

Pinlet 
(Torr)

Pnozzle 
(Torr)

k (X 10-5) 
(s-1) 

1 195.65 ± 0.45 15.09 1.2 3.68 ± 0.06 

2 198.36 ± 0.47 15.06 1.2 3.21 ± 0.07 

3 196.54 ± 0.40 14.92 1.2 2.90 ± 0.06 

4 196.40 ± 0.43 15.11 1.2 2.29 ± 0.07 

5 197.86 ± 0.42 15.06 1.2 2.48 ± 0.07 

Average 196.96 ± 0.43    
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Figure 69. Single Beam Side Fluorescence in supersonic nozzle for P(31) 17-1. The 
experimental data points are gray. The theoretical fit to the data is represented by 
the black line. 
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Figure 70. Residual trend for SBSF profile of I2 P(31) 17-1 in supersonic nozzle. 

 

 
 
Table 22. Single Beam Side Fluorescence for I2 P(31) 17-1 in supersonic nozzle with 
Ar/I2. Consecutive measurements for same pressure and location. 
 

 
Trial 

Tex 
(K) 

Pinlet 
(Torr)

Pnozzle 
(Torr)

k (X 10-5) 
(s-1) 

nozzle 
condition 

1 289.77 ± 1.78 0.1763 0.1674 0.02 ± 0.1 no flow 
      
2 194.71 ± 0.42 15.13 1.2 0.004 ± 0.04 flow 
3 195.07 ± 0.42 15.08 1.2 0.009 ± 0.04 “ 
4 195.70 ± 0.46 15.02 1.2 0.0005 ± 0.05 “ 
5 193.83 ± 0.42 15.15 1.2 0.02 ± 0.04 “ 
6 193.78 ± 0.48 15.12 1.2 0.6 ± 0.05 “ 

Average 
#2-#6 194.62 ± 0.44     

 
 
 
 Spectral profile data was also collected for the P(10) 19-2 & R(104) 18-1 blended 

line using both the SBSF at non-perpendicular angle to the gas flow and CBIMF, as 

shown in Figure 71 and Figure 72, respectively. The SBSF and CBIMF measurements 

listed in Table 23 were taken at several different pressures. The annotation “no flow/ 
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residual” means the vacuum pump was running, but the valves in Figure 60 were closed 

preventing gas flow from entering the nozzle. In some cases, even after pumping down 

the six-way cross overnight, there was typically enough residual I2 remaining in the test 

region to produce an easily detectable SBSF signal, and occasionally a weak and noisy 

CBIMF signal. The “no flow” SBSF linewidth extracted temperature of 293 K ± 1.4 K 

has reasonable agreement with a room temperature measurement by thermocouple 

external to the cross of 296 K. 
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Figure 71. SBSF in supersonic nozzle for P(10) 19-2 & R(104) 18-1. The y-axis is 
Relative Intensity (Arbitrary Units). The x-axis is νΔ  (GHz). 
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Figure 72. CBIMF in supersonic nozzle for P(10) 19-2 & R(104) 18-1. The y-axis is 
Relative Intensity (Arbitrary Units). The x-axis is νΔ  (GHz). 
 
 
 
 
 
 

Table 23. SBSF and CBIMF measurements for P(10) 19-2 & R(104) 18-1 in 
supersonic nozzle. 
 

 
Trial 

Tex 
(K) 

Pinlet 
(Torr)

Pnozzle 
(Torr)

Gas 
Flow 

 
Technique 

1 292.51 ± 1.39 0.17 0.16 no flow SBSF 

2 317.87 ± 1.17 0.21 0.15 I2 only SBSF 

3 229.08 ± 0.48 13.93 1.07 I2 +Ar SBSF 

4 229.40 ± 0.50 29.94 2.10 “ SBSF 

5 165.88 ± 0.65 13.56 1.05 “ CBIMF 

6 174.28 ± 1.15 15.05 1.10 “ CBIMF 
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Figure 73. CBIMF for P(46) 17-1 in nozzle for various I2/Ar pressures. 

 
 
 
 
 
 
 
 

Table 24. CBIMF for P(46) 17-1 in nozzle for various I2/Ar pressures. 
 

 
Trial 

Tex 
(K) 

Pinlet 
(Torr)

Pnozzle 
(Torr)

k (X 10-5) 
(s-1) 

1 140.61 ± 0.93 13.94 1.1 2.31 ± 0.3 
2 149.92 ± 0.84 14.42 1.1 2.31 ± 0.1 
3 144.52 ± 0.45 14.55 1.1 3.45 ± 0.07 
4 140.84 ± 0.88 14.54 1.1 2.53 ± 0.2 
5 226.02 ± 1.48 5.4 0.52 0.0003 ± 0.2 
6 189.89 ± 1.25 10.26 0.82 1.19 ± 0.3 
7 137.95 ± 1.11 20.91 1.5 0.0005 ± 0.3 
8 165.00 ± 1.72 25.28 1.8 0.002 ± 0.5 
9 187.40 ± 3.25 30.19 2.1 0.002 ± 0.95 
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 It was observed that the nozzle produced supersonic flow and a minimum 

temperature when the inlet pressure was ≈ 15 Torr corresponding to nozzle pressure ≈ 1.1 

Torr measured at the beam crossing point. The CBIMF extracted temperature obtained 

using Gaussian fits increased with increasing nozzle pressure as shown in Figure 73 and 

Table 24. The same was observed for SBSF measurements made at the oblique angle to 

the nozzle as displayed in Figure 74 and Table 25. For CBIMF, the SNR deteriorated 

rapidly above a 30 Torr inlet pressure. Higher-pressure measurements were obtained for 

the SBSF due to stronger SNR. The increase in exT  with increasing pressure above 15 

Torr inlet pressure was not entirely due to pressure broadening. Attempts to fit the data 

with Voigt profiles constrained to have a fixed Lorentzian width still resulted in higher 

temperatures at the higher pressures. As the pressure in the nozzle is increased by 

increasing the inlet pressure, it is plausible that it begins to exceed the pressure (the “back 

pressure”) in the six-way cross external to the nozzle as maintained by the vacuum pump. 

If so, a shock wave could form inside the nozzle at a position dependent on the extent to 

which Pnozzle exceeds the back pressure. As Pnozzle increases above the back pressure, the 

shock wave will appear further upstream and approach the throat. This disturbance in the 

gas flow could influence the temperature measurement at the test point. 

     Discussion. 

 The temperature of a gas in a supersonic nozzle was obtained from CBIMF and 

SBSF measurements. The experimental signals agree with the theoretical predictions 

shown in Figure 13 and Figure 14. Given the differences between the simple calculation 

of temperature in an ideal nozzle and the flow dynamics 
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Figure 74. SBSF for P(46) 17-1 in nozzle for various I2/Ar pressures. 

 
 
 
 

Table 25. SBSF for P(46) 17-1 in nozzle for various I2/Ar pressures. 
 

 
Trial 

Tex 
(K) 

Pinlet 
(Torr)

Pnozzle 
(Torr)

k (X 10-5) 
(s-1) 

1 309.43 ± 1.89 0.1 0.1 5.24 ± 0.12 
2 287.58 ± 0.71 5.8 0.4 2.29 ± 0.07 
3 241.72 ± 0.62 11.8 0.8 4.33 ± .01 
4 206.08 ± 0.33 15.4 1.1 2.4 ± 0.03 
5 195.34 ± 0.35 21.4 1.5 1.34 ± 0.05 
6 199.91 ± 0.38 25.6 1.7 1.99 ± 0.06 
7 204.85 ± 0.38 30.2 2.0 3.16 ± 0.06 
8 218.26 ± 0.50 35.0 2.3 2.15 ± 0.04 
9 213.56 ± 0.48 40.0 2.8 2.60 ± 0.05 
10 218.48 ± 0.63 43.0 3.0 0.05 ± 0.09 
11 211.50 ± 0.58 51.3 3.8 2.58 ± 0.08 
12 214.73 ± 0.70 51.3 3.8 2.58 ± 0.08 
13 222.20 ± 0.66 60.4 4.5 2.51 ± 0.06 
14 243.00 ± 0.75 65.8 4.7 1.99 ± 0.07 
15 270.51 ± 0.73 70.6 4.3 1.93 ± 0.06 
16 265.12 ± 1.33 80.5 4.1 2.58 ± 0.1 
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in a real nozzle, the exT  values are reasonable. The CBIMF results for the blended line 

P(10) 19-2 & R(104) 18-1 were higher in temperature than those for the isolated lines by 

at least 17 K. The profile for this blended line in Figure 72 shows features due to noise 

which likely contributed to the inaccuracy of the extracted temperature. Using isolated 

lines, the experiments in which extracted temperature varied with gas/vapor pressure 

further establish the temperature diagnostic as an indictor of the nozzle performance. 

 In addition to the CBIMF and SBSF measurements, efforts were made to employ 

CBSAS in the nozzle. There was not sufficient SNR in the CBSAS signal for reliable 

temperature extraction. This was most likely due to the small overlap volume and the 

difficulty in detecting a small change in a large signal. To operate within the constraints 

of the experimental configuration, it was necessary to use a minimum 17o beam-crossing 

angle to ensure the overlap volume was contained within the nozzle. Therefore, it was not 

possible to explore any the advantage that a smaller crossing angle (and correspondingly 

larger overlap volume) could provide for the CBSAS technique. 

 To estimate the influence of systematic errors on the extracted temperatures in the 

nozzle, the CBIMF results for P(46) 17-1 were fit with ( )νCBS ′  from Equation (138). The 

extracted temperatures from these fits are shown in Table 26 where the results from Table 

19 are repeated for comparison. The effect of the nonlinearity term in ( )νCBS ′  typically 

lowers the temperatures by less than 8 K. The statistical errors, with one exception, are 

larger. The fits of ( )νCBS ′  to the data are worse in all cases than the ( )νCBS  fits. As an 

example, a ( )νCBS ′  fit is shown in Figure 75. The spectral data is the same as the data in 

Figure 63. The residuals for the ( )νCBS ′  fit are shown in Figure 76. 
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 In general, the differences exT - exT ′  were smaller for the ( )νCBS ′  fits to the nozzle 

signals than for the static cell signals listed in Table 17. At the nozzle temperatures, the 

spectral profile reveals more features of the hyperfine structure than at temperatures > 

293 K where the spectral profiles are broad and featureless. A small variation in the 

spectral signal due to a nonlinearity in the y-axis appears to have less of an impact on the 

extracted temperature for temperatures much less than 293 K. 

          Applicability of Temperature Diagnostic to COIL. 

 To ascertain if the temperature diagnostic would be practical for use in the COIL, 

it is necessary to present some background on the device with emphasis on the operating 

temperature in addition to an estimate of the I2 pressure in the gain region. The physical 

configuration of the COIL must also be considered as it pertains to accessing the gain 

region with the diagnostic. 

 

Table 26. CBIMF for I2 P(46) 17-1 in supersonic nozzle with Ar/I2. Consecutive 
measurements for same pressure and location. exT ′  values are the results from fits 
with ( )νCBS ′ . exT  values are the results from fits with ( )νCBS . 

 
 

Trial 
exT from ( )νCBS

(K)) 
exT ′ from ( )νCBS ′

(K) 
exT - exT ′  
(K) 

1 146.89 ± 0.43 140.47 ± 0.73 6.43 
2 150.52 ± 0.62 144.35 ± 0.56 6.17 
3 141.23 ± 0.51 136.04 ± 0.78 5.19 
4 149.24 ± 0.54 154.59 ± 0.82 -5.35 
5 162.95 ± 0.64 155.73 ± 0.76 7.22 
6 139.86 ± 0.81 134.61 ± 1.08 5.25 
7 147.17 ± 1.16 144.20 ± 1.24 2.97 
8 136.42 ± 0.81 129.63 ± 0.96 6.78 
9 153.96 ± 1.11 145.87 ± 1.10 8.09 
10 151.61 ± 1.06 150.48 ± 1.41 1.14 

Average 147.98 ± 0.77 143.60 ± 0.94 4.39 
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Figure 75. CBIMF in supersonic nozzle for I2 P(46) 17-1.Experimental data (gray) is 
fit with ( )νCBS ′  (black line). 
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Figure 76. Residual trend from ( )νCBS ′  fit to CBIMF in supersonic nozzle for I2 
P(46) 17-1. 
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 The COIL relies on an exothermal chemical reaction to create a population 

inversion. Initially, oxygen is prepared in a metastable excited state, ( )Δ12 aO  with a 

radiative lifetime of 64 minutes. The energy from this metastable reservoir is transferred 

by collision to atomic iodine in the 2/1
2P  state. A population inversion is established 

between ( )2/1
2PI  and ( )2/3

2PI .  Lasing occurs at the wavelength mμλ 315.1= . The 

relationship between the energy levels of the two species is illustrated in Figure 77. 

Details concerning laser generation can be found in numerous references.7, 80 

The threshold for lasing is dependent on the concentration ratio of ( )Δ12 aO  to 

total oxygen. At a temperature of 295 K, this ratio is approximately 15%. Exploiting the 

dependence of the equilibrium constant on temperature can reduce this threshold. By 

employing a supersonic nozzle to mix the oxygen and iodine, a temperature of 160 K is 

attainable at which the threshold yield (the ratio ( ) 2
1

2 / OaO Δ ) is reduced to 5%.10 A 

schematic of a supersonic COIL is shown in Figure 78. 

 In a typical COIL gain region, the static pressure of the supersonic flow is 5 Torr. 

The gas flow is comprised mostly of He and O2 in a ratio of 4:1 plus any secondary He 

flow which is typically added to improve nozzle performance. The I2 molar flow rate is 

typically 1.5 % of the O2 molar flow rate. In a device which has a Cl2 molar flow rate of 

0.5 moles/s, the O2 molar flow rate will be approximately 0.5 moles/s. The corresponding 

molar flow rates for He and I2 are 2 moles/s and 0.0075 moles/s, respectively. If a 

secondary He flow rate of 1 mole/s is assumed, then the total molar flow rate is 3.5075 

moles/s with I2 comprising 0.21% of the flow rate. The partial pressure of I2 is then 11 

mTorr. 
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Figure 77. “Energy-level diagram for the Chemical Oxygen-Iodine Laser illustrating 
the resonant energy transfer from the metastable reservoir O2 (a1Δ) to the upper 
laser level of atomic Iodine, I(2P1/2). The energy-levels for several key states involved 
in the dissociation of molecular Iodine are also provided”.10 
 

 

Figure 78. Schematic diagram of a typical supersonic Chemical Oxygen-Iodine 
Laser (COIL).10 
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 A exTδ  < 1 K is the goal for the temperature diagnostic in COIL. From the 

measurements made in the static cell at room temperature (see Figure 45 and Figure 46), 

this goal was achieved for 
2IP > 50 mTorr using CBIMF. The CBSAS technique and the 

MPSF gave exTδ  > 2 K for pressures > 50 mTorr. For 
2IP  =11 mTorr in a static cell held 

at room temperature or higher, a exTδ  < 1 K or less could prove difficult for the same 

overlap volume. 

 There is an advantage to recording lineshapes at temperatures well below 293 K. 

Fits to the uniquely contoured profiles at temperatures << 298 K had smaller standard 

errors in the fit parameters as compared to the fits to the broad featureless profiles at 

room temperature and higher. Since COIL operates at around 160 K, the advantage in 

fitting the lineshape may offer some reduction in exTδ  to counter the low SNR expected 

at 
2IP  =11 mTorr. In terms of experimental apparatus, incorporation of a photon-

counting detection technique into the diagnostic may further improve the SNR.61 

 The Air Force uses the Advanced COIL Test Stand for laser research and 

development in support of the Airborne Laser Program. The gain length is 10 cm, the 

length of the nozzle bank. Each nozzle is approximately 0.5 cm in width. Power is 

extracted transverse to the gas flow coming out of the nozzle bank using 2 mirrors 

separated by 1 m. The circular gain mirrors are 2” in diameter. The rest of the cavity is 

opaque. From a standpoint of geometry, the CBSAS technique would be the best choice. 

However, for the reasons discussed above, obtaining a signal with sufficiently high SNR 

may not be possible. While the CBIMF technique would most likely provide improved 

SNR, it is not possible to observe the fluorescence from a direction perpendicular to 
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diagnostic laser beams. When the COIL is operated without extracting power, the 2” 

circular mirrors can be replaced with 3.5” X 11” rectangular windows which are used for 

other diagnostic purposes. In this configuration, it would be possible to use the CBIMF 

technique with the detector positioned at one of the windows and off-axis from the 

diagnostic beams. If SNR is still insufficient, SBSF can be used, but the spatial resolution 

would have to be achieved by employing optics in front of the detector. With the 

rectangular windows, there are more options to increase the beam diameters and decrease 

crossing angles with the CBSAS or CBIMF techniques to optimize the SNR. The 

consequence would be, of course, a loss of spatial resolution. 

 A second difficulty with either CBIMF or SBSF involves repositioning the 

detector system for measurements in a different location. This would be most difficult 

with SBSF, less so with CBIMF. With CBSAS, repositioning the overlap volume 

transverse to the flow only requires changing the position where the pump beam crosses 

the probe beam; whereas changing the position of the overlap volume upstream or 

downstream of the flow would require moving the detector. 

 The Air Force also conducts a research program for an Advanced Tactical Laser 

(ATL), a small scale COIL device to be used in lower altitude missions that operates at 

lower powers than the ABL. The COIL test stand for this program has a 20 cm gain 

length. For general diagnostic purposes, a mirror “box” is positioned on either side of the 

nozzle bank allowing optical access to the gain region beyond the exit plane of the nozzle 

bank. The “mirror box” is an evacuated chamber containing optical components to 

facilitate observation of the gain region. In addition, a rectangular window is incorporated 

into the top side of the gain cavity. So, the CBIMF technique could be employed in its 
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usual configuration by directing the diagnostic beams through the mirror boxes and 

collecting the fluorescence through the top-side window. Both the CBSAS and SBSF 

could be utilized in the ATL, but the CBIMF would be the first choice. 
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IV. Conclusion 

 
 

 The primary result from this research is the successful demonstration of the 

CBIMF technique as a non-intrusive method for measuring the translational temperature 

of an I2 seeded, Ar gas flow in a small supersonic nozzle. This cross-beam laser 

saturation technique is a new development. It offers a significant advantage over previous 

single beam LIF methods by providing three-dimensional spatial resolution limited only 

by the volume defined by the overlapping beams. Temperatures extracted from a 2.4 mm3 

overlap volume with ≈  1 K statistical errors are of sufficient accuracy for characterizing 

the temperature of the gas flow in the COIL. In addition, these results indicate that the 

cross-beam technique could be applied to the research areas of flow-field characterization 

and nozzle design where the primary gas is seeded with I2 to facilitate laser-induced 

fluorescence.81, 82 

 Another new development is the CBSAS technique which also offers three-

dimensional spatial resolution. It has an advantage over CBIMF with its simpler 

experimental arrangement. However, CBSAS, as implemented in this work, was not 

successful in the nozzle experiments and therefore not likely to succeed as a diagnostic 

for COIL where the I2 partial pressure is approximately 11 mTorr. Otherwise, the CBSAS 

technique would have greater success for application in a flow field test environment 

where the I2 concentration can be controlled. 

 The Doppler-limited theoretical signal developed for this work is a critical part of 

the diagnostic. It is the first time such a theoretical model constructed from the hyperfine 

components has been used successfully for temperature extraction. The concept of 
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modeling the hyperfine structure has been attempted previously in connection with a 

single beam experiment, but the temperature extraction was not successful.83 Unique to 

this work, however, is the demonstrated need for a self-absorption term in the theoretical 

signal to account for the attenuation of the interrogating laser beam(s). Although it is 

applied to cross-beam spectral data, the theoretical signal is not restricted to these 

techniques. In situations where a single beam LIF experiment is appropriate, the 

theoretical signal is applicable. This was shown in the fits to the SBSF nozzle 

measurements. 

 Additional measurements for multiple ro-vibrational lines were made with the 

cross-beam techniques in a static cell with a steep thermal gradient at temperatures > 293 

K. The extracted temperatures differed from thermocouple measurements by more than 

10 K in several cases. The statistical errors in extracted temperatures were a few degrees 

and typically increased with increasing temperature in cell. This work demonstrated that 

the cross-beam signal at temperatures greater than 293 K is sensitive to the presence of a 

small nonlinearity in the amplitude. If a systematic error in a cross-beam technique 

manifested itself as a nonlinearity in the measured cross-beam signal, it is arguable that 

the nonlinearity could produce large discrepancies (10-20 K) between extracted and 

thermocouple-measured temperatures (as was observed in the static cell experiments) if 

the nonlinearity was not modeled in the theoretical cross-beam signal. This does not 

exclude the possibly that other modifications of the theoretical cross-beam signal may be 

necessary to achieve accuracy in a static environment at temperatures above 293 K. In 

contrast to the static cell measurements, the theoretical cross-beam signal does appear 

sufficient for use in a supersonic nozzle environment. The CBIMF signal at 
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approximately 145 K was demonstrated to be less susceptible to the introduction of a 

nonlinearity in the amplitude of the theoretical cross-beam signal. 

The Doppler-free experiments performed to support the diagnostic development 

produced some valuable results also. The first known Ar pressure broadening rates were 

determined for I2 hyperfine lines using SAS. The sub-Doppler technique was also an 

important practical method for selecting isolated ro-vibrational lines as candidates for the 

diagnostic by examining the hyperfine spectrum for overlapping components from 

adjacent ro-vibrational lines. 

Recommendations for future research include exploring ways to optimize the 

temperature diagnostic. Logical follow-on efforts would be to utilize the CBIMF and 

CBSAS techniques to measure the temperature in the gain region of the Air Force’s 

Advanced Tactical Laser test stand and the Advanced COIL test stand as well as in 

nozzle test environments or wind tunnels. In conjunction with these efforts, efforts could 

be made improve the signal to noise ratio of both the CBIMF and CBSAS techniques. 

One direction to explore is advantage frequency modulation may provide in SNR over 

amplitude modulation. There is also the possibly of exploring the advantages of adapting 

other Doppler–free techniques, such polarization spectroscopy, to a cross-beam 

configuration.  

Other areas of investigation could focus on basic spectroscopic phenomena. 

Efforts could be made to resolve the discrepancies between I2 lifetimes measured with 

fluorescence decay methods and I2 linewidths obtained from Doppler –free techniques. 

Contributions could also be made in determining pressure broadening rates of I2 

hyperfine components due to buffer gases. Finally, further investigations of velocity 
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changing collisions and their effects on the I2 hyperfine spectrum could lead to insight 

into rotational and vibrational energy transfer mechanisms. 
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Appendix A. Blended Lines 

 
 

A Mathematica® program was used to simultaneously constrain the blended line 

fits to the temperature information contained in the lineshape amplitudes and the common 

Doppler linewidth. From Equation (123), the amplitude from a CBSAS profile is given 

by 
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where the unsaturated population difference, for degenerate energy levels, is  
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where ( )1J  g +′′= 21 , and ( )1J  g +′= 22  are the rotational energy-level degeneracies, 

and 
2
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evJi NNf =  is the fractional population density for a particular level, and 

2IN  is 

the total population density of iodine molecules. The population density i
evJN  is given by 

Equation (15). Substituting Equation (146) and the expression for the absorption cross-

section oσ , Equation (81), into Equation (145) yields 
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for the CBSAS signal amplitude. The Einstein coefficient for spontaneous emission, 21A , 

given by Equation (10) can be substituted into Equation (147) to yield for the amplitudes 

of lines A and B: 
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 In I2 B-X transitions, ( ) 2/112/, ≅+′′′′ JS JJ  for large J ′ .23, 37 In addition, the 
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Recognizing that the upper state fractional population densities, if2 , are effectively zero, 

Equations (150) and (151) can be approximated further to yield 
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where, in general, 
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 For the purposes of the model, the constant C ′′  is approximated to be the same 

for line A and line B; BA CC ′′≅′′ . Doing so allows C ′′  to be used as a common fit 

parameter in the computer calculation. The close proximity of the resonant frequencies, 

BA νν ≈ , supports the approximation. The homogeneous linewidth of the two adjacent 

lines should be very nearly the same. The real concern is whether or not ∗
AR  and ∗

BR  can 

be considered nearly equal. With these assumptions, however, the amplitudes of the two 

overlapping lines depend primarily on their respective energy-level degeneracies, FCFs, 

and the fractional population densities for the lower energy levels. 

 A fit to the CBSAS blended line signal of P(51) 18-2 & P(66) 16-1 is shown in 

Figure 79. The data is from the CBSAS static cell experiment. The fit is clearly very poor 

in the vicinity of the P(51) 18-2 line. The extracted temperature is 293 K +/- 0.4 K 

compared to the thermocouple-measured temperature of 300 K +/- 1 K. The difficulty in 

using this approach to fit profiles lies in correctly estimating ∗
AR  and ∗

BR . Given the 

complexity of the kinetics involved, it would seem that this approach isn’t practical for 

extracting temperatures in a gas at 300 K or higher temperatures. 
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Figure 79. A fit to CBSAS signal of the P(51) 18-2 & P(66) 16-1 blended line 
recorded in a static cell experiment. The amplitudes of each ro-vibrational line and 
the common Doppler linewidth are constrained to temperature. The y-axis is 
Relative Intensity (Arbitrary Units). The x-axis is Relative Frequency (GHz). 



 153

 

Bibliography 
 

 
1. The Boeing Company. "Airborne Laser." website. 

http://www.boeing.com/defense-space/military/abl/flash.html. 8 Mar 2005. 
 
2. Duffner, Robert W. Airborne Laser: Bullets of Light. New York: Plenum Trade, 

1997. 
 
3. Hecht, Jeff. "Airborne Laser Achieves "First Light" Milestone," Laser Focus 

World, 41: 15-17 (2005). 
 
4. McDermott, W. E., N. R. Pchelkin, D. J. Benard, and R. R. Bousek. "An 

Electronic Transition Chemical Laser," Applied Physics Letters, 32: 469-70 
(1978). 

 
5. Air Force Research Laboratory, Office of Public Affairs. "Chemical Oxygen-

Iodine Laser (COIL)." Article. http://www.de.afrl.af.mil/factsheets/coil.html. 3 
May 2004. 

 
6. Bloembergen, N., and C.K.N. Patel, et al. "Report to the American-Physical 

Society of the Study-Group on Science and Technology of Directed Energy 
Weapons," Reviews of Modern Physics, 59: S1 (1987). 

 
7. Truesdell, K. A., C. A. Helms, and G. D. Hager. "A History of COIL 

Development in the USA," Proceedings of the SPIE - The International Society 
for Optical Engineering, 2502: 217-37 (1995). 

 
8. Truesdell, K. A., S. E. Lamberson, and G. D. Hager. AIAA, 92: 3003 (1992). 
 
9. Keating, P. B., C. A. Helms, B. T. Anderson, T. L. Rittenhouse, K. A. Truesdell, 

and G. D. Hager, "Two-Dimensional Gain and Cavity Temperature Maps of a 
Small-Scale Supersonic COIL," in Proceedings of the International Conference 
on Lasers '96, 194-201, V. J. Corcoran and T. A. Goldman, STS Press, McLean, 
VA (1997). 

 
10. Perram, Glen P., "Chemical Lasers," in Wiley Encyclopedia of Electrical and 

Electronics Engineering, Vol. 3. Ed. J. G. Webster. New York: John Wiley & 
Sons, 1999. 

 
11. Mulliken, Robert S. "Iodine Revisited," The Journal of Chemical Physics, 55: 

288-309 (1 July 1971). 
 

http://www.boeing.com/defense-space/military/abl/flash.html
http://www.de.afrl.af.mil/factsheets/coil.html


 154

12. Gerstenkorn, S., and P. Luc. Atlas du Spectre d'Absorption de la Molecule de 
l'Iode Entre 14800-20000 cm-1. Paris: Presses du CNRS, 1985. 

 
13. Velchev, I., R. Van Dierendonck, W. Hogervorst, and W. Ubachs. "A Dense Grid 

of Reference Iodine Lines for Optical Frequency Calibration in the Range 571-
596 nm," Journal of Molecular Spectroscopy, 187: 21-7 (1998). 

 
14. Privalov, Vadim E., and Sergey K. Savelyev. "Atlas of Molecular Iodine 

Absorption Lines," Proceedings of SPIE The International Society for Optical 
Engineering, 3687: 2-5 (1999). 

 
15. Xu, S. C., R. van Dierendonck, W. Hogervorst, and W. Ubachs. "A Dense Grid of 

Reference Iodine Lines for Optical Frequency Calibration in the Range 595-696 
nm," Journal of Molecular Spectroscopy, 201: 256-266 (2000). 

 
16. Glessner, John W. Amplified Spontaneous Emission of the Iodine B3Π(O+

u)-
X1Σ(O+

g) System. Air Force Institute of Technology (AU), Wright-Patterson AFB, 
OH, May 1987 (AD-A182590). 

 
17. Capelle, G. A., and H. P. Broida. "Lifetimes and Quenching Cross Sections of 

I2(B3Π0u
+)*," Journal of Chemical Physics, 58: 4212-22 (1973). 

 
18. Broyer, M., J. Vigue, and J. C. Lehmann. "Direct Evidence of the Natural 

Predissociation of the I2 B State through Systematic Measurements of Lifetimes," 
Journal of Chemical Physics, 63: 5428-31 (1975). 

 
19. Bernath, Peter F. Spectra of Atoms and Molecules. New York: Oxford University 

Press, 1995. 
 
20. Townes, C. H., and A. L. Schawlow. Microwave Spectroscopy. New York: Dover 

Publications, Inc., 1975. 
 
21. Herzberg, Gerhard. Molecular Spectra and Molecular Structure, Vol.1: Spectra of 

Diatomic Molecules. New York: Van Nostrand, 1950. 
 
22. Luc, P. "Molecular Constants and Dunham Expansion Parameters Describing the 

B-X System of the Iodine Molecule," Journal of Molecular Spectroscopy, 80: 41-
55 (1980). 

 
23. Tellinghuisen, J. "Intensity Factors for the I2 B-X Band System," Journal of 

Quantitative Spectroscopy and Radiative Transfer, 19: 149-61 (1978). 
 
24. Kroll, M., and K. K. Innes. "Molecular Electronic Spectroscopy by Fabry-Perot 

Interferometry. Effect of Nuclear Quadrupole Interactions on the Line Widths of 



 155

the B3Πο+−X1Σg+ Transition of the I2 Molecule," Journal of Molecular 
Spectroscopy, 36: 295-309 (1970). 

 
25. Hansch, T. W., M. D. Levenson, and A. L. Schawlow. "Complete Hyperfine 

Structure of a Molecular Iodine Line," Physical Review Letters, 26: 946-9 (1971). 
 
26. Levenson, M. D., and A. L. Schawlow. "Hyperfine Interactions in Molecular 

Iodine," Physical Review A (General Physics), 6: 10-20 (1972). 
 
27. Razet, A., and S. Picard. "A Test of New Empirical Formulas for the Prediction of 

Hyperfine Component Frequencies in 127I2," Metrologia, 34: 181-6 (1997). 
 
28. Robinson, G. Wilse, and C. D. Cornwell. "The Interaction with Molecular 

Rotation of the Nuclear Electric Quadrupole Moments of Two Nuclei Having 
Spins 3/2," Journal of Chemical Physics, 21: 1436-1442 (1953). 

 
29. Kroll, M. "Hyperfine Structure in the Visible Molecular-Iodine Absorption 

Spectrum," Physical Review Letters, 23: 631-3 (1969). 
 
30. Heaven, Michael C. Professor, Physical Chemistry, Chemistry Building, 

Department of Chemistry, Emory University, Atlanta, GA 30322. Original 
FORTRAN program provided through personal correspondence. August 2002. 

 
31. Hirota, E., "High Resolution Spectroscopy of Transient Molecules," in Springer 

Series in Chemical Physics, Vol. 40. Ed. E. Hirota. Berlin: Springer-Verlag, 1985. 
 
32. Hanes, G. R., J. Lapierre, P. R. Bunker, and K. C. Shotton. "Nuclear Hyperfine 

Structure in the Electronic Spectrum of 127I2 by Saturated Absorption 
Spectroscopy , and Comparison with Theory," Journal of Molecular 
Spectroscopy, 39: 506-15 (1971). 

 
33. Yokozeki, Akimichi, and J. S. Muenter. "Laser Fluorescence State Selected and 

Detected Molecular Beam Magnetic Resonance in I2," Journal of Chemical 
Physics, 72: 3796-3804 (1980). 

 
34. National Bureau of Standards. The Calculation of Rotational Energy Levels and 

Rotational Line Intensities in Diatomic Molecules. NBS Monograph-115, 
Washington, DC, 1970. 

 
35. Shotton, K. C., and G. D. Chapman. "Lifetimes of 127I2 Molecules Excited by the 

632.8 nm He/Ne Laser," Journal of Chemical Physics, 56: 1012-13 (1972). 
 
36. Klein, U. K. A., J. Mastromarino, and A. Suwaiyan. "Rotational Level Lifetimes 

and Self-Quenching of 127I2 by Fluorescence Demodulation Spectroscopy," 
Chemical Physics Letters, 217: 86-90 (1994). 



 156

 
37. Tellinghuisen, J. "The Electronic Transition Moment Function for the B0+

u(3Π)−
X1Σ+

g," Journal of Chemical Physics, 106: 1305-8 (1997). 
 
38. Sorem, M. S., and A. L. Schawlow. "Saturation Spectroscopy in Molecular Iodine 

by Intermodulated Fluorescence," Optics Communications, 5: 148-51 (1972). 
 
39. Bennett, S. J., and P. Cerez. "Hyperfine Structure in Iodine at the 612 nm and 

640-nm Helium-Neon," Optics Communications, 25: 343-7 (1978). 
 
40. Duffey, T. P., D. Kammen, A. L. Schawlow, S. Svanberg, H.-R. Xia, G.-G. Xiao, 

and G.-Y. Yan. "Laser Spectroscopy Using Beam-Overlap Modulation," Optics 
Letters, 10: 597-599 (December 1985). 

 
41. Cheng, Wang-Yau, and Jow-Tsong Shy. "Wavelength Standard in 543 nm and the 

Corresponding 127I2 Hyperfine Transitions," CPEM Digest, 471-472 (2000). 
 
42. Mironov, A. V. "Broadening and Saturation of Iodine-127 R(127) 11-5 Line 

(0.63299 μm) in a Helium-Neon Laser," Optics and Spectroscopy, 65: 471-3 
(1988). 

 
43. Brillet, A., and P. Cerez. "Quantitative Description of the Saturated Absorption 

Signal in Iodine Stabilized He-Ne lasers," Metrologia, 13: 137-9 (1977). 
 
44. Smith, P. W., and T. Hansch. "Cross-Relaxation Effects in the Saturation of the 

6328 A Neon-Laser Line," Physical Review Letters, 26: 740-743 (29 March 
1971). 

 
45. Corney, Alan. Atomic and Laser Spectroscopy. Oxford: Clarendon Press, 1977. 
 
46. Hindmarsh, W. R., and Judith M. Farr. "Collision Broadening of Spectral Lines 

by Neutral Atoms," Progress in Quantum Electronics, 2: 141-214 (1973). 
 
47. Eickhoff, Mark L., and J. L. Hall. "Optical Frequency Standard at 532 nm," IEEE 

Transactions on Instrumentation and Measurement, 44: 155-158 (2 April 1995). 
 
48. Astill, A. G., A. J. McCaffery, M. J. Proctor, E. A. Seddon, and B. J. Whitaker. 

"Pressure Broadening of the Nuclear Hyperfine Spectrum of 127I2 by He and Xe," 
Journal of Physics B (Atomic and Molecular Physics), 18: 3745-57 (1985). 

 
49. Kireev, S. V., S. L. Shnyrev, and Yu. P. Zaspa. "Effect of Buffer Gases on 

Broadening of the Iodine-127 Resonance Absorption Line at a 633-nm He-Ne 
Laser Wavelength," Optics and Spectroscopy, 78: 550-552 (1995). 

 



 157

50. Berjot, M., L. Bernard, and T. Theophanides. "Variation du Facteur de 
Depolarisation de la Bande Fondamentale de l'iode au Cours du Passage Continu 
de la Fluorescence de Resonance a l'effet Raman de Resonance," Canadian 
Journal of Spectroscopy, 18: 128-130 (September/October 1973). 

 
51. Fletcher, D. G., and J. C. McDaniel. "Collisional Shift and Broadening of Iodine 

Spectral Lines in Air Near 543 nm," Journal of Quantitative Spectroscopy and 
Radiative Transfer, 54: 837-850 (1995). 

 
52. Wallard, A. J., J. M. Chartier, and J. Hamon. "Wavelength Measurements of the 

Iodine Stabilized Helium-Neon Laser," Metrologia, 11: 89-95 (1975). 
 
53. Cerez, P., A. Brillet, and F. Hartmann. "Metrological Properties of the R(127) 

Line of Iodine Studied by Laser Saturated Absorption," IEEE Transactions on 
Instrumentation and Measurement, IM-23: 526-8 (1974). 

 
54. Titov, A., I. Malinovsky, and M. Erin. "Determination of Saturation Parameter in 

Iodine and Precise Molecular Linewidth Measurements in He-Ne/I2 Standard at 
633 nm," Optics Communications, 136: 327-334 (15 March 1997). 

 
55. Glaser, M. "An Improved He-Ne Laser at λ=612 nm, Stabilized by Means of an 

External Absorption Cell," Metrologia, 23: 45-53 (1986). 
 
56. Sakurai, T., S. Iwasaki, T. Oshida, and K. Tanaka. "Pressure and Power 

Broadenings of the Saturated Absorption Lines of Iodine at 633 nm," Japanese 
Journal of Applied Physics, 18: 1199-200 (1979). 

 
57. Taylor, John R. An Introduction to Error Analysis. Mill Valley CA: University 

Science Books, 1982. 
 
58. TableCurve 2D. Version 5.01.01, IBM, 22.6 MB, CD-ROM. Computer software. 

SYSTAT Software Inc., 501 Canal Blvd, Suite C, Point Richmond CA 94804-
2028, USA, 2002. 

 
59. Letokhov, V. S., and V. P. Chebotayev. Nonlinear Laser Spectroscopy. Berlin: 

Springer Verlag, 1977. 
 
60. Letokhov, V. S., "Saturation Spectroscopy," in High-Resolution Laser 

Spectroscopy, Topics in Applied Physics, Vol. 13. Ed. K. Shimoda. Berlin, West 
Germany: Springer-Verlag, 1976. 

 
61. Demtroder, Wolfgang. Laser Spectroscopy. Berlin: Springer, 1998. 
 
62. Cerez, P., and S. J. Bennett. "Helium-Neon Laser Stabilized by Saturated 

Absorption in Iodine at 612 nm," Applied Optics, 18: 1079-83 (1979). 



 158

 
63. Couillaud, B., A. Ducasse, and A. Dienes. "Experimental Method for the 

Measurement of Hyperfine Transition Saturation Intensities in a Gaseous 
Medium," Applied Physics, 21: 135-40 (1980). 

 
64. Shimoda, K., ed. Topics in Applied Physics, Volume 13: High Resolution Laser 

Spectroscopy. Berlin: Springer-Verlag, 1976. 
 
65. Bennet, W. R. "Hole-Burning Effects in a He-Ne-Optical MASER," Physical 

Review, 126: 580 (1962). 
 
66. Lamb, W. E. "Theory of an Optical MASER," Physical Review A, 134: 1429 

(1964). 
 
67. Hanes, G. R., and C. E. Dahlstrom. "Iodine Hyperfine Structure Observed in 

Saturated Absorption at 633 nm," Applied Physics Letters, 14: 362-4 (1969). 
 
68. Knox, J. D., and Yoh-Han Pao. "Absorption Profiles and Inverted Lamb Dips of 

I2 Vapor at 633 nm as Studied with a He-Ne Laser," Applied Physics Letters, 16: 
129-131 (1970). 

 
69. Shapiro, Asher H. The Dynamics and Thermodynamics of Compressible Fluid 

Flow, Vol. 1. New York: John Wiley & Sons, 1953. 
 
70. Goldsmith, J. E. M. "Spatially Resolved Saturated Absorption Spectroscopy in 

Flames," Optics Letters, 6: 525-7 (1981). 
 
71. Kychakoff, George, Robert D. Howe, and Ronald K. Hanson. "Spatially Resolved 

Combustion Measurements Using Cross-Beam Saturated Absorption 
Spectroscopy," Applied Optics, 23: 1303-1305 (1 May 1984). 

 
72. Zizak, G., F. Cignoli, and S. Benecchi. "Spatially Resolved Saturation Absorption 

Measurements of OH in Methane-Air Flames," Applied Optics, 26: 4293-7 
(1987). 

 
73. Baklanov, E. V., and V .P. Chebotaev. "Resonance Interaction of Unidirectional 

Waves in Gases," Soviet Physics JETP, 34: 490-493 (March 1972). 
 
74. Alfa Aesar. Research Chemicals, Metals, and Materials Catalog. publishing place 

unknown: Johnson Matthey Catalog Company, Inc., 1999-2000. 
 
75. Sansonetti, C. J. "Precise Measurements of Hyperfine Components in the 

Spectrum of Molecular Iodine," Journal of the Optical Society of America B 
(Optical Physics), 14: 1913-20 (1997). 

 



 159

76. Morinaga, A. "Cross-Relaxation Effects on the Saturation of Visible Absorption 
Lines of the Iodine Molecule," Journal of the Optical Society of America B 
(Optical Physics), 4: 906-9 (1987). 

 
77. Van Marter, Todd, Michael C. Heaven, and David Plummer. "Measurement of the 

Rate Constant for the Quenching of I(2P1/2) by O2(X) at 150 K," Chemical Physics 
Letters, 260: 201-207 (20 September 1996). 

 
78. Atkinson, Dean B., and Mark A. Smith. "Design and Characterization of Pulsed 

Uniform Supersonic Expansions for Chemical Applications," Review of Scientific 
Instruments, 66: 4434-4446 (September 1995). 

 
79. Alcatel. Pumping and Leak Detection Systems Selection Guide. publishing place 

unknown: Alcatel CIT High Vacuum Technology, April 1997. 
 
80. Bernard, D. J., W. E. McDermott, N. R. Pchelkin, and R. R. Bousek. "Efficient 

Operation of a 100-W Transverse-Flow Oxygen-Iodine Chemical Laser," Applied 
Physics Letters, 34: 40-1 (1979). 

 
81. Hiller, B., and R. K. Hanson. "Properties of the Iodine Molecule Relevant to 

Laser-Induced Fluorescence Experiments in Gas Flows," Experiments in Fluids, 
10: 1-10 (1990). 

 
82. Fletcher, D. G., and J. C. McDaniel. "Temperature Measurement in a 

Compressible Flow Field using Laser-Induced Iodine Fluorescence," Optics 
Letters, 12: 16-18 (1987). 

 
83. Hirai, Etsuro, Koji Teshima, Koichi Kurita, and Shigeru Takahara. "Velocity 

Measurements of Free Jets Using Nuclear Hyperfine Structure of I2
*," Japanese 

Society of Mechanical Engineers International Journal Series B, 40: 501-508 
(1997). 

 
84. Bhale, G. L., S. F. Ahmad, and S. P. Reddy. "A Study of Variation of Electronic 

Transition Moment of the B-X System of I2 from its Laser-Excited Fluorescence 
Spectrum," Journal of Physics B (Atomic and Molecular Physics), 18: 645-55 
(1985). 



 160

 
Vita 

 
 
 

Major Grady T. Phillips graduated from Wofford College in Spartanburg, SC with 

a BS in Physics and a BA in Mathematics. He entered graduate studies at Clemson 

University where he pursued research in high temperature superconductivity and 

graduated with a MS in Physics. He was commission through the Air Force Officer 

Training School at Maxwell AFB, Alabama. 

His first assignment was Air Force Global Weather Central, Offutt AFB, NE 

where he served as a Communications-Computer Systems Officer performing software 

acquisitions program management. Next, he went to the Air Force Technical 

Applications Center, Patrick AFB, FL as an acquisitions officer where he was a Radio 

Frequency Systems Program Manager. He was then selected to attend the Graduate 

School of Engineering and Management at the Air Force Institute of Technology, 

Wright-Patterson AFB, OH. He is currently assigned to the Space Vehicles Directorate of 

the Air Force Research Laboratory, Kirtland AFB, NM where he serves as the Deputy 

Chief for the Space Based Infrared Technology Center of Excellence. 

 



REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of the collection of 
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty 
for failing to comply with a collection of information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

23-03-2006 
2. REPORT TYPE  

Doctoral Dissertation 
3. DATES COVERED (From – To) 

Aug 1999 – Mar 2006 
5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 

4.  TITLE AND SUBTITLE 
 

Spatially-Resolved Temperature Diagnostic For Supersonic 
Flow Using Cross-Beam Doppler-Limited Laser Saturation 

Spectroscopy 
5c.  PROGRAM ELEMENT NUMBER 

5d.  PROJECT NUMBER 
01-145 

5e.  TASK NUMBER 

6.  AUTHOR(S) 
 
Phillips, Grady, T., Major, USAF 
 
 
 

5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
    Air Force Institute of Technology 
   Graduate School of Engineering and Management (AFIT/EN) 
   2950 Hobson Way 
   WPAFB OH 45433-7765 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
     AFIT/DS/ENP/06-03 

10. SPONSOR/MONITOR’S 
ACRONYM(S) 
 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 
      N/A 

11.  SPONSOR/MONITOR’S 
REPORT NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
              APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

 
13. SUPPLEMENTARY NOTES  
 
14. ABSTRACT  
Optical techniques for measuring the temperature in three-dimensional supersonic reactive flows have typically depended on 
lineshape measurements using single-beam laser absorption spectroscopy. However, absorption over extended path lengths in 
flows with symmetric, turbulent eddies can lead to systematically high extracted temperatures due to Doppler shifts resulting 
from flow along the absorption path. To eliminate these problems, Cross-Beam Saturation Absorption Spectroscopy (CBSAS) 
and Cross-Beam Inter-Modulated Fluorescence (CBIMF) have been developed which utilize two crossed and nearly 
copropogating laser beams.to record the spectral signal of an I2 ro-vibrational line in a small three-dimensional volume using a 
tunable CW dye laser. Temperature is extracted by fitting the recorded signal with a theoretical signal constructed from the 
Doppler-broadened hyperfine components of the ro-vibrational line. The CBIMF technique proved successful for extracting 
the temperature of an I2-seeded, Ar gas flow within a small, Mach 2, Laval nozzle where the overlap volume of the two 1 mm 
diameter laser beams was 2.4 mm3. At a test point downstream of the nozzle throat, the average temperature of 146 K +/- 1.5 K 
extracted from measurements of the I2 P(46) 17-1 spectral line compared favorably with the 138 K temperature calculated from 
isentropic, one-dimensional flow theory. 
15. SUBJECT TERMS 
saturation spectroscopy, iodine, linewidth, hyperfine spectrum, temperature diagnostic 

16. SECURITY CLASSIFICATION 
OF:  

19a.  NAME OF RESPONSIBLE PERSON 
Glen P. Perram, AFIT/ENP 

REPORT 

U 
ABSTRACT 

U 
c. THIS PAGE 

U 

17. LIMITATION OF  
     ABSTRACT 
 

UU 

18. NUMBER  
      OF 
      PAGES 

185 19b.  TELEPHONE NUMBER (Include area code) 
(937) 255-3636, ext 4504; e-mail:  
Glen.Perram@afit.edu 

Standard Form 298 (Rev: 8-98) 
Prescribed by ANSI Std. Z39-18 


	Abstract 
	B. Spectral Line Shape and Line Width 
	C. Laser Saturation Spectroscopy 
	          Self Absorption. 



