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A Model to Predict Temperature Acceleration of Dielectric-
Charging Effects in RF MEMS Capacitive Switches 

Xiaobin Yuan, Student Member, IEEE, James C. M. Hwang, Fellow, IEEE, David Forehand, 
Member, IEEE, and Charles L. Goldsmith, Senior Member, IEEE 

 
Abstract ― Temperature acceleration of dielectric-

charging effects in state-of-the-art RF MEMS capacitive 
switches was characterized and modeled. From the 
measured charging and discharging transient currents 
across the switching dielectric, densities and time constants 
of traps in the dielectric were extracted under different 
temperatures. It was found that, while charging and 
discharging time constants are relatively independent of 
temperature, steady-state charge densities increase with 
temperature. A charging model was constructed to predict 
the amount of charge injected into the dielectric and the 
corresponding shift in actuation voltage under different 
temperatures. Good agreement was obtained between the 
model prediction and experimental data.  
 

Index Terms ― RF, MEMS, switch, dielectric, charging, 
trap, temperature acceleration. 

I. INTRODUCTION 

Despite their near-ideal high frequency characteristics, 
lifetime of electrostatically actuated RF MEMS 
capacitive switches is limited by dielectric-charging 
effects [1]. To date, dielectric-charging effects in RF 
MEMS devices have been studied by different research 
groups [2]-[4]. The authors have proposed an approach 
to characterize the switch dielectric and extracted a 
charge model to predict charge injection and actuation-
voltage shift at room temperature [2]. However, for 
switch applications in harsh environment (e. g., military 
temperature range from -55 °C to 125 °C), temperature 
effects on the charging failure need to be understood. In 
this paper, we present the results on temperature 
acceleration of the dielectric-charging effects in state-of-
the-art RF MEMS capacitive switches. By using the 
methodology proposed in [2], a temperature-dependent 
charging model was extracted to predict the actuation-
voltage shift under different temperatures and found to 

be in good agreement with the experimental data. 

II. EXPERIMENTAL 

The device used in this study is a state-of-the-art 
metal-dielectric-metal RF MEMS capacitive switch 
fabricated on a glass substrate [2]. The dielectric is 
sputtered silicon dioxide with a thickness of 0.25 μm and 
a dielectric constant of 4.0. The top electrode is a 0.3-
μm-thick flexible aluminum membrane that is grounded. 
The bottom chromium/gold electrode serves as the 
center conductor of a 50 Ω coplanar waveguide for the 
RF signal. Without any electrostatic force, the 
membrane is normally suspended in air 2.5 μm above 
the dielectric. Control voltage in the range of 25-35 V is 
applied to the bottom electrode, which brings the 
membrane in contact with the dielectric thus forming a 
120 μm x 80 μm capacitor. The dielectric-charging 
effect was studied by applying a stress voltage (-30 V) 
on the bottom electrode of the switch for different time 
periods under different temperatures while measuring 
the corresponding actuation-voltage shift.  

In order to extract the temperature-dependent charging 
model, charging and discharging transient currents [2] 
were measured under different temperatures on large 
metal-insulator-metal (MIM) capacitors (500 x 500 μm2) 
with the same electrode and dielectric material as the 
switch. A precision semiconductor parameter analyzer 
(HP 4156C) was used to force a voltage pulse (-30 V) on 
the bottom electrode of the MIM capacitor while sensing 
the transient current. Well-guarded probe station and 
probes were used to suppress the capacitive and leakage 
currents in the measurement path, thus extending the 
transient current measurement range below pA level. 

When a voltage pulse is applied to a MIM capacitor, 
the total current across the capacitor includes 
displacement current, trap charging current, and steady-
state leakage current. Since the time constant for the 
displacement current is of the order of milliseconds, the 
transient currents measured in the seconds range 
comprise mainly trap charging and steady-state leakage 
currents. Similarly, transient currents measured after the 
voltage pulse is removed comprise mainly trap 
discharging currents [2]. In this case, trap densities, 
charging/discharging time constants, and steady-state 
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program. 
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leakage currents can be extracted from the measured 
transient currents under different temperatures.  

III. MODEL EXTRACTION 

The injected charge density in the dielectric can be 
modeled as [2] 

),/exp()]/exp(1[ J
DOFF

J

J
CON

J ttQQ ττ −−−=∑      (1) 

where QJ is the steady-state charge density of the Jth 
species of trap, τC and τD are the charging and 
discharging time constants, tON and tOFF are the on and 
off times of the switch corresponding to the charging 
and discharging times. 

Assuming all traps are empty before applying the 
charging voltage pulse, transient current after the voltage 
is turned on is 
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where q is the electron charge, A is the surface area of 
the dielectric, and IS is the steady-state leakage current 
across the dielectric. This is a combination of transient 
trap-charging current and steady-state (DC) leakage 
current. Similarly, assuming the traps are all charged 
during the voltage pulse duration, transient current due 
to the discharging of the traps after removal of the 
voltage is 
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 Charging model parameters (QJ, τC, and τD) were 
extracted at each temperature (-50, -25, 0, 25, 50, and 75 
°C) by fitting the measured transient currents under -30 
V bias with exponential functions in (2) and (3). Two 

exponential functions, representing two trap species, 
were found to give good fit. 

As shown in Fig. 1, the extracted steady-state leakage 
current increases with temperature. Similarly, the 
extracted steady-state charge densities for trap 1 and trap 
2 both increase with temperature as shown in Fig. 2. 
This indicates that a “leaky” dielectric might not be able 
to reduce the amount of charging. Instead, for the 
sputtered silicon dioxide that we characterized, the 
amount of charging increases when the dielectric 
conducts more steady-state leakage current at higher 
temperatures. Temperature dependence of the steady-
state charge density for the Jth trap is modeled using the 
standard equation for a thermally activated process 

),/exp(0 kTEaQQ J
JJ −=                     (4) 

where Ea is the activation energy of the process while 
Q0 is a fitting parameter. By using (4), temperature 
dependence of the steady-state charge density was fitted 
reasonably well for temperatures above 0 °C as shown in 

Fig. 1.  Steady-state leakage current extracted from the measured 
transient currents on the 500 x 500 μm2 capacitor under -30 V bias.
Measurement temperatures are -50, -25, 0, 25, 50, and 75 °C. 
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Fig. 2.  Comparison of (symbols) extracted and (lines) fitted
temperature dependence of steady-state charge densities for (a) trap 1 
and (b) trap 2. Measurement temperatures are -50, -25, 0, 25, 50, and 
75 °C. 
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Fig. 2. For temperatures below 0 °C, extracted data 
points deviate from the fitted line. However, since 
steady-state charge density is larger at higher 
temperatures while the membrane is more prone to 
charge-induced stiction (smaller spring constant at 
higher temperatures), it is more important to make the 
model work accurately at higher temperatures. In 
contrast, the extracted charging and discharging time 
constants are relatively independent of temperature as 
shown in Fig. 3. Therefore, τC and τD were taken as the 
average of the time constants extracted under different 
temperatures. 

From the measured charging and discharging transient 
currents on the 500 x 500 μm2 MIM capacitor, charging 
model parameters were extracted for -30 V bias using 
the above-described approach and were listed in Table I. 
This charging model was used to predict the measured 
actuation-voltage shift under different temperatures.  

IV. MODEL VERIFICATION 

The dielectric-charging effect on the state-of-the-art 
RF MEMS capacitive switch was measured by applying 
a stress voltage on the bottom electrode of the switch for 
different time periods while measuring the 
corresponding actuation-voltage shift. The stress voltage 
used in the experiment is −30 V, which is sufficient to 
actuate the switch at all measurement temperatures (0, 
25, and 50 °C). The actuation voltage was shifted in the 
positive direction after the stress indicating injection of 
negative charges from the bottom electrode into the 
dielectric under all temperatures. 

The actuation-voltage shift due to dielectric charging 
can be expressed as 

,/ 0 rqhQV εε=Δ                          (5) 

where h is the distance between the bottom electrode and 
the trapped charge sheet, Q is the injected charge density 
predicted by (1), ε0 is the permittivity of free space, and 
εr is relative dielectric constant of the switch dielectric. 

Since h can not be directly measured, the actuation-
voltage shift for a certain stress period is predicted by 
the charge model (1), (4), and (5) with h optimized to 
give the best fit between model prediction and 
experimental data at all temperatures. Fig. 4 shows the 
measured and modeled actuation-voltage shifts after 
different stress periods at different temperatures. Good 
agreement was obtained for all temperatures by using h 
= 180 nm, which is about two thirds of the dielectric 
thickness. 

V. DISCUSSION 

The extracted charging and discharging time constants 
are independent of temperature. This is because the 
extracted time constants are not the exact capture and 
emission times for the traps. (It is well known that trap 
emission time is temperature dependent.) Instead, charge 
tunneling injection, trap-to-trap hopping, and charge 
redistribution across the thick (250 nm) dielectric all 
contribute to the measured transient currents. Therefore, 
the extracted charging and discharging time constants 
should not be construed as capture and emission times. 

TABLE I 
EXTRACTED MODEL PARAMETERS 

J τC (s) τD (s) Q0 ( cm-2 )  Ea (eV)  

1 9.8 13.2 1.07×1016 0.30 

2 66.5 123.6 1.71×1017 0.35 
 

Fig. 4.  Measured actuation-voltage shift for ( □ ) 0 °C, ( ◊ ) 25 °C, 
and ( Δ ) 50 °C. Modeled actuation-voltage shift for ( ▬ ) 0 °C, ( --- ) 
25 °C, and ( ··· ) 50 °C. Measurement was taken after 20, 40, 80, 120, 
160 and 200 s of -30 V stress on the bottom electrode of the switch. 
The sheet charge is assumed to be 180 nm away from the bottom 
switch electrode. 
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The injected charges are most likely distributed across 
the thickness of the dielectric. Since their collective 
effect on the actuation voltage can be approximated by a 
sheet charge, it greatly simplifies the model by using the 
sheet-charge assumption. In addition, the difference 
between the MIM capacitor and the actual switch is also 
absorbed in the h parameter which defines the location 
of the sheet charge. 

Dielectric with high leakage current is not necessarily 
desirable to reduce charge trapping. As shown in Fig. 1, 
2, and 4, although the steady-state leakage current 
increases at elevated temperatures, the steady-state 
charge density and corresponding actuation-voltage shift 
also increase. On the other hand, the spring constant and 
restoring force of the membrane decrease at elevated 
temperatures; therefore, the switch is more prone to 
charge-induced stiction when temperature increases. 
Conversely, lowering the temperature will increase the 
membrane spring constant while reducing the charge 
injection, which will render a better switch lifetime. 

VI. CONCLUSION 

For the first time, temperature acceleration of 
dielectric-charging effects in state-of-the-art RF MEMS 
capacitive switches was characterized and modeled. It 
was found that, while charging and discharging time 
constants are relatively independent of temperature, 
steady-state charge densities increase with temperature. 
A temperature-dependent charging model was 
constructed to predict the amount of charge injected into 
the dielectric and the corresponding shift in actuation 
voltage. Good agreement was obtained between the 
modeled and measured actuation-voltage shift.  
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