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1. Introduction 

The increasing levels of integration in semiconductor fabrication and the exponential growth in the number of chip 
transistors has given rise to a myriad of not only handheld and mobile applications but also personal computers and 
desktop servers. The increase in performance and functionality in those has also been accompanied by unprecedented 
levels of power dissipation and energy consumption. Unfortunately, power efficiency, battery capacity, size and 
weight have improved in much slower rates, creating a bottleneck in the utility of portable and mobile digital 
computer and desktop servers.   
 
There are a large number of technologies for reducing energy/power in digital computers. Current technologies, 
however, are low-power rather than power-aware and suffer from four key shortcomings: 

1) They use ad hoc power management policies that are typically based on stochastic state machines that use 
device  (e.g., memory, disk or network card) activity to decide when to make transitions to low power states. 
These policies do not take into account application demand for speed and timing (or real-time) constraints, or 
device usage patterns; 

2) They do not exploit demand for resource allocation and scheduling across a variety of applications to find 
optimal power-/energy-efficiency given a set of application QoS constraints; 

3) They offer a system-wide tradeoff between high performance and low energy/power, neglecting an 
application’s/algorithm’s variability in demand for performance in individual system resources (e.g., disk bound 
applications do not benefit from CPU speed); 

4) They do not predict system activity thereby incur high overheads (e.g., over two orders of magnitude in latency 
in Rambus DRAM) when system components make transitions between low-power and active states; 

PowerTap achieves the best performance of the system within a given power budget, or the best power efficiency 
under given constraints of each application’s demand such as timing constraints (deadline) in real-time applications, 
video and audio quality in multimedia applications, high disk bandwidth usage in video servers, application mission-
time in the limited power system, etc. The PowerTap is a power-aware system design in which the software (e.g., the 
operating system and tools) in collaboration with the hardware manages and minimizes power consumption while 
providing quality of service guarantees to applications and the overall system. In PowerTap system 
software/hardware dynamically monitor and adjust power levels for all critical system components periodically to 
meet application timing, and system power/energy demands. 

PowerTap’s Power-Aware Real-Time Operating System (PARTOS), is a morphable real-time operating system 
that manages power in the system hardware resources such as the disks, the network interface card, and the memory. 
PARTOS also manages the power levels in the system software services (e.g., TCP/IP stacks), periodic activities 
(e.g., interrupt handlers), and tunes the system software computational requirements. PARTOS morphability allows 
for adapting its power management policies depending on the available power source (battery, or AC). For example, 
when operating under battery power source, it balances the discharging rates and the recharging rates of the batteries. 
On the other hand, the low average power rate is focused when the power source is AC.  

PowerTap exploits the Power-Aware Resource Allocation Model (PAQ-RAM), which is an extension of QoS-
Resource Allocation Model (Q-RAM) developed at Carnegie Mellon University, to balance multiple applications’ 
quality of service requirements on their usage of multiple finite-resources and maximize the utility (users’ 
satisfaction) of the overall system. Some systems (such as portable computers with battery operated) have a 
restricted energy usage requirement  (the discharge rate of the battery has to be lower than the charge rate to maintain 
stability). Airplanes and other mobile vehicles are also fallen into this category.  Sharing the same goal with Q-
RAM, PAQ-RAM, hence, takes this energy budget into account with other resources and adjusts the quality of 
service of individual application based on its criticality and the amount of resources available.     
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2. PARTOS: Power-Aware Linux/RK 
Energy-Aware Linux/RK stands for Linux/Resource Kernel with Energy-Aware functionality extension, which 
incorporates real-time and power-aware computing extensions to the Linux kernel to support the abstractions of an 
energy-efficient resource kernel. An energy-efficient resource kernel is a real-time kernel (operating system) that 
provides timely, guaranteed and enforced access to system resources for applications whiles minimizing energy 
consumption of the system. It allows applications to specify only their resource demands leaving the kernel to satisfy 
those demands using hidden resource management schemes. This separation of resource specification from resource 
management allows OS-subsystem-specific customization by extending, optimizing or even replacing resource 
management schemes. As a result, this resource-centric approach can be implemented with any of several different 
resource management schemes.  
 
The following represents the key properties of resource kernel.  
 
• Applications can explicitly state their timeliness requirements using the reserve specification {C, T, D} where C 

is the amount of maximum required resource, T is the period of resource accesses and D is the deadline of 
resource accesses.  For example, in case of CPU reservation, C is the amount of processor cycles a task requires 
in each timer interval T with deadline D. 

• The kernel decides whether a reservation can be granted during the admission control when a reservation is 
created.  

• The kernel determines the most energy-efficient operating point both statically and dynamically which can 
satisfy timing constraints of all guarantees and suit best for a given hardware platform, such as the level of CPU 
voltage supply, processor speed, energy-aware CPU scheduling policy, memory management scheme, etc.  

• Once the reservation is granted, the kernel not only guarantees that timing constraints of resource accesses are 
satisfied but also minimizes energy.  

• The kernel enforces maximum resource usage by applications to maintain temporal isolation among tasks.  
• The kernel supports high utilization of system resources which include CPU, memory and energy. 
• Applications are allowed to create multiple reservations to timely access different system resources 

simultaneously.   
 

In this report, we will describe briefly about Resource Kernel (RK) architecture, its energy-aware extension and the 
description of its API. We will also include the detail of our energy-aware CPU scheduling policies for hard-real-
time applications, the integration work of classical real-time scheduling policies with our dynamic voltage scaling 
schemes.  

A new reserve paradigm for multimedia applications, multigranularity reservation (Multi-RSV), is also presented. 
Multi-RSV is specifically designed for soft-real-time multimedia applications whose timing constraints can be 
relaxed and their much varying demand consumes much less resource in average compared to their peak requests. 
For this document, we focus on the implementation of Energy-Aware Linux/RK based upon Linux Kernel 2.4.x 
across different architecture (2.4.26 for x86, 2.4.19 for iPAQ (arm), 2.4.22 for PowerPC RAD750 (joint project with 
BAE) and 2.4.19 for BitsyX (joint project with Vitronics).  

  

2.1. Resource Kernel Architecture 
Figure 1 depicts the reservation architecture inside Resource Kernel (RK). The system guarantees resource accesses 
by means of resource reservation. One or more reservations can be grouped together and reside in a resource set 
which will be bound to one or more tasks. As a result, tasks are allowed to exclusively use their reserved amount of 
resources inside their resource set.  A reserve is created based on the {C, T, D} reserve specification. The kernel 
performs the schedulability analysis of the system whenever a new reserve is created. Appropriate scheduling and 
enforcement of a reserve by the resource kernel guarantees that the reserved amount is always allocated for all 
granted reserves and the system achieves high resource utilization.   
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Figure 1: Resource Kernel Reservation Architecture 

 

2.1.1 Reserve Type 

The resource enforcement in Resource Kernel ensures that a misbehaving task cannot jeopardize other tasks by 
overusing its reserve. Whenever a task uses up its reserved resource for each period, the kernel marks the task as a 
depleted task and the corresponding reserve as a depleted reserve. At the end of each period, a reserve will obtain a 
new quota and is said to be replenished. Three types of reserves have been defined: hard reserve, soft reserve and 
firm reserve. Each has different behavior on the resource enforcement and replenishment after the depletion as 
follows: 

• Hard Reservation: The reserve will not obtain any more resource until it is replenished. Basically, a task 
attached to this reserve will always be halted until its next period.  

• Firm Reservation: The reserve will be allowed to obtain more resources only if no other tasks are ready to 
access the resource. In other words, a task attached to this reserve will be executed only if no other undepleted 
and unreserved tasks are ready to run.  

• Soft Reservation: The reserve will be allowed to share the remaining resources from the undepleted reserves. 
Therefore, a task attached to this reserve will be executed along with other unreserved tasks and depleted tasks.  

 

2.1.2  Resource Guarantee Mechanisms 

Four main mechanisms are contributed to provide fine-grained timing guarantees among tasks.  

• Admission Control: RK uses mathematical analysis to determine whether a new reserve can be granted without 
jeopardizing timing guarantees of other tasks. The current implementation of Linux/RK supports Rate-
Monotonic (RM) and Deadline-Monotonic (DM) scheduling policies. The response time (RT) test (a.k.a. the 
exact completion time test) is performed during admission control to provide more precise analysis and achieve 
high system utilization under both schemes. Note that the rest of the documents will focus only on the Deadline-
Monotonic scheme.  

• Reserve Accounting and Enforcement: After a reserve is granted by the admission control, the priorities of all 
reserves are reassigned according to their deadlines. The reserve with the shorter deadline will be given the 
higher real-time priority. A task without a reservation is executed with a user-given normal priority which is 
always lower than any real-time priority assigned to the reservations. In other words, it will be scheduled only if 
no task with reserves is active. RK keeps track of how much of resources each reserve has been used. One 
enforcement timer is used to account for the remaining reserved amount of the current task. Once the current 
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task uses up its reserve (i.e. the enforcement timer expires), it will be removed from the ready queue or assigned 
a lower priority depending on the type of its corresponding reserve.  

• Reserve Replenishment: RK implements one replenishment timer per reserve to resume a task at the 
beginning of reserve periods. Its corresponding reserve priority and resource quota (or part of the quota) will be 
restored.  

• High Resolution Timer: RK enables the fine-grained resource control by setting a hardware timer to a single-
shot timer mode. This setting replaces a periodic 10 ms interval timer mode usually configured in Linux kernel. 
A software timer queue is used to keep track of all required timer interrupts. Depending on the availability of 
hardware timers, the software timer queue also maintains the kernel jiffy interrupts (10-ms interval interrupts) if 
RK and the Linux kernel must share the same interrupt line.  

2.1.3.  Resource Synchronization  

RK currently implements the reserve inheritance protocol to provide bounded priority inversion. Whenever a higher 
priority reserve is blocked and waiting for a sharing resource from a lower priority reserve, RK transfers the priority 
and resource quota of the higher priority reserve to the blocking task.  The detailed information of the protocol is 
presented in [1].  

2.1.4. Energy-Aware Extension of Linux/RK 

Figure 2 depicts the architecture of the energy-aware extension of Linux/RK. Tasks are allowed to create a 
reservation of CPU cycles with the specification {C, T, D} where C is the number of processor cycles needed in each 
interval period T with the deadline D. During the admission control, the kernel verifies if the new taskset is 
schedulable. If the reserve is granted, an appropriate voltage-scaling scheme is chosen based on the platform and 
taskset characteristics to determine the energy-efficient clock frequency (CPU speed) and the minimum voltage 
supply which can deliver the desired clock frequency in order to minimize energy consumption. The resource 
accounting, replenishment and enforcement are managed such that not only the temporal isolation but also the 
energy isolation is maintained.  

 
Figure 2: Energy-Aware Linux/RK Architecture 
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2.2.  Voltage Scaling Algorithms in Linux/RK  
Energy-Aware Linux/RK incorporates dynamic-voltage-scaling algorithms on CPU to minimize the energy 
consumption and still maintain temporal isolation for applications. This is based on the fact that power consumption 
in CMOS circuits is proportional to the product of the frequency and the square of the supply voltage which is given 
by fVaCP DDL

2=  where a is the average activity factor, LC is the average load capacitance, DDV  is the supply 
voltage and f is the operating frequency. Hence, any reductions in the operating frequency and supply voltage of 
the processor can lead to significant energy savings (and better heat dissipation).  

A variety of dynamic voltage scaling techniques [3-7] has addressed the tradeoffs between system performance and 
energy efficiency. These techniques make use of operating system information about the current workload in order to 
reduce the processor voltage when the full system performance is not necessary. Some of these techniques target 
real-time systems where the timing constraints of tasks must be satisfied. The above techniques typically assume that 
(1) the energy consumption is minimized whenever the supply voltage is scaled down and (2) the voltage-scaling 
overhead is negligible. Unfortunately, these assumptions may not always be correct in practice. In some practical 
processors, Akihiko et al. [8] showed that there are some energy-inefficient operating frequencies in the sense that 
operating the same workload with a higher frequency will counter-intuitively consume less energy. Those energy-
inefficient operating frequencies therefore must be avoided under all circumstances. In addition, operating 
frequencies usually cannot be continuously varied, and are only available as a small number of discrete points. To 
sustain acceptable performance and timeliness guarantees, these processors have to operate at the next higher energy-
efficient operating frequency if a desired frequency is neither available nor energy-efficient.  This inevitably results 
in more energy consumption. In addition, we must also explicitly consider the effect of the overhead of changing 
processor frequencies. Whenever frequency scaling is performed, processor internal clocks and DRAM timings need 
resynchronization.  Depending upon the implementation, these frequency-or voltage-scaling delays can be either 
small enough to be negligible or large enough that they can disrupt taskset timings significantly. 

With varying characteristics across hardware platforms, we support four voltage-scaling algorithms, Sys_Clock, 
PM_Clock, DPM_Clock and Progressive DPM_Clock (or Progressive in short term). Each is suitable for different 
system characteristics and will be selected automatically by our reservation-based resource kernel. The description of 
each scheme is as follows: 

• System Clock Frequency Assignment (Sys-Clock): This scheme is suitable for systems such as iPAQ [9] 
where the overhead of voltage- or frequency- scaling is too high to perform at every context switch. One clock 
frequency is determined at admission control and kept constant until the taskset changes. 

• Priority-Monotonic Clock Frequency Assignment (PM-Clock): This scheme is suitable for systems with low 
voltage- or frequency-scaling overhead such as our modified version of the XScale BRH board [10]. Each task 
is assigned its own clock frequency. The scheme scales voltage and frequency at every context switch based on 
the frequency assigned to the next task to run. 

• Dynamic PM-Clock (DPM-Clock): This scheme is suitable for systems where the average execution time of a 
task is considerably less than its worst case.  Like PM-Clock, this scheme is suitable for systems with low 
voltage- or frequency-scaling overhead.  

• Progressive DPM-Clock (Progressive): This objective of this scheme is similar to DPM-Clock scheme but 
delivers higher performance in energy saving by trading off its algorithm complexity.  

 
We also study the optimal scheme, Optimal Clock Frequency Assignment (Opt-Clock), which uses non-linear 
optimization techniques to determine the optimal clock frequency for each task in order to minimize the energy 
consumption. Opt-Clock has high complexity and is not suitable for on-line usage. Several pruning techniques are 
proposed to dramatically reduce the scheme's complexity for off-line usage. All these algorithms assume the 
deadline-monotonic scheduling policy. However, they can be easily applied to other fixed-priority preemptive 
scheduling policies by computing the preemption time based on the assigned task priorities. Error! Reference 
source not found. summarizes the properties of proposed algorithms. We will present more details of each algorithm 
in the following subsections.  
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Table 1: Summary of DVS Algorithms 

 

2.2.1.  System Model and Terminology 

We use a reservation-based resource kernel [11, 12] as the system model. A task iτ  has its specification 

as },,{ iii DTC , where iC  is its worst-case required processor cycles, iT  is its period and iD  is its relative deadline 

from arrival time.  The clock frequency we refer throughout the paper is a relative frequency normalized to maxf . By 

convention, we assume that nDDD ≤≤≤ …21 . In addition, we assume processors have a convex nondecreasing 
power-frequency relation which is expected to be true in practice. We use the term “frequency-scaling” which 
actually scales both frequency and voltage simultaneously if a platform is voltage-scaling enabled. 

2.2.2.  Sys-Clock Algorithm 

Sys-Clock applies a well-known property of a processor with a non-decreasing convex power-frequency function: 
the energy is minimized if the processor executes its workload at the lowest possible constant speed. However, in a 
system using a fixed-priority preemptive scheduling policy, the workload needed to complete a task's request 
composes of the task's own execution and the preemption by higher priority tasks. When there are multiple task 
periods, the preemption is not uniformly distributed over the task's critical zone. The critical zone assumes that the 
requests of all tasks arrive simultaneously.  This leads to the worst-case scenario [13]. The workload hence varies in 
preempting processor cycles and depends on when the task completes.  Sys-Clock determines the energy-minimizing 
clock frequency by finding the minimum clock frequency that allows every task to complete before its deadline. We 
will illustrate the algorithm by an example. Note that we assume the use of DM scheduling policy.  

Consider a taskset that has three tasks },,{ 321 τττ with the task specification as shown in Figure 3. The 

timeline depicts the critical zone of task 3τ  at the maximum clock frequency maxf .  As can be seen, the completion 

time of 3τ is 9, which we refer to as the earliest possible completion time. If the processor operates at a lower clock 
frequency, not only the execution time needed by all tasks increases but also the number of preempting processor 
cycles. Since 3τ  can be preempted by 1τ  at time 30 to 32, the task will definitely miss its deadline if it cannot 
complete before time 30. We refer to this last time instant that a task can complete and meet its deadline as the latest 
possible completion time. Since the workload changes at the end of each idle period1, Sys-Clock determines the 
clock frequencies which allow a task to complete execution exactly at the end of each idle period between the 
earliest and latest possible completion time. The energy-minimizing clock frequency of a task is chosen to be the 
minimum clock frequency among these frequencies.  

Run at fmax = 1 cycle/time unit

Earliest Possible Completion Time Latest Possible Completion Time

τ1 {3, 10, 10}
τ2 {4, 23, 23} 

τ3 {2, 32, 32}
Run at fmax = 1 cycle/time unit

Earliest Possible Completion Time Latest Possible Completion Time

τ1 {3, 10, 10}
τ2 {4, 23, 23} 

τ3 {2, 32, 32}

τ1 {3, 10, 10}
τ2 {4, 23, 23} 

τ3 {2, 32, 32}

 
Figure 3: Workload versus Completion Time 

                                                 
1 An idle period is a time period where the processor is idle. 

Sys-Clock     One freq. for all tasks    high scaling                                     low              iPAQ H3760 
                    at admission control       overhead                                                         (15-20 ms overhead) 
 
PM-Clock       One freq. per task                              execution time         medium            our modified  
                   at admission control                            close to WCET                               voltage-scaling 
                  (Change freq every         acceptable                                       high               XScale BRH 
Opt-Clock      context switch)                scaling                                       (off-line)               board 
                                                       overhead 
DPM-Clock/   One freq. per task                             varying execution      medium 
Progressive       instance at                                     Low AVG/WCET       
                    admission control                              (Multimedia App)   
                  and context switch 

Algorithms 
 

Frequency
Assignment 

Suitable
Platform 

Suitable
Taskset 

Computational
Complexity 

Platforms 
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By convention, we denote the workload needed by a task and its total preemption at time t as t
iβ , the corresponding 

constant clock frequency as t
iα  and the energy-minimizing clock frequency as iε where i  represents an index of 

task iτ  and t represents the end of an idle period. For this example, the ends of idle periods to consider for 3τ  are 
10, 20 and 30; 

 

      
                     , 
 
                      ,   
 
 
                        .       (1) 
 

Hence, 

6.0}63.0,6.0,9.0min{},,min{ 30
3

20
3

10
33 === αααε .                                   (2) 

Note that this clock frequency is a relative frequency normalized to maxf . The energy-minimizing clock frequency of 

a task iτ  is the clock frequency needed by the task itself and its higher priority tasks to minimize the energy and 

meet iτ ’s deadline. However, this frequency may not satisfy other tasks' timing constraints. For schedulability, Sys-
Clock will set the system clock frequency to the maximum frequency among energy-minimizing clock frequencies 
of all tasks. For this example, Sys-Clock assigns the system clock frequency to 6.0},,max{ 321 =εεε .  Figure 4 
summarizes the Sys-Clock algorithm. 

 

 
Figure 4: Sys-Clock Algorithm 

 
From an energy perspective, Sys-Clock is optimal for fixed-priority preemptive scheduling policies that use a single 
clock frequency. The only way for other schemes to consume less energy than Sys-Clock is assigning a lower system 
clock frequency to a taskset. However, lowering the clock frequency than the Sys-Clock frequency which is an 
energy-minimizing clock frequency of a task will cause the task to miss its deadline. Sys-Clock thus is optimal in the 
sense that there is no other scheme that consumes less energy and guarantees timing constraints of a taskset.  
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2.2.3.  PM-Clock Algorithm 

PM-Clock is adapted from Sys-Clock. First, it determines energy-minimizing clock frequencies of all tasks like Sys-
Clock. With different timing constraints, it is possible that a high priority task Hτ  may have a more stringent timing 

constraint and hence need a higher clock frequency than a low priority task Lτ . To meet Hτ 's deadline, it is 

necessary to assign a higher clock frequency than that for Lτ . In addition, it is also possible that the desired 
frequency is neither available nor energy-efficient, and hence a higher frequency needs to be chosen. In either case, 
PM-Clock will save more energy by recalculating a lower clock frequency for tasks such as Lτ  exploiting the slack 

from these higher frequency assignments for tasks such as Hτ .  

 

Consider a set of two tasks as shown in Figure 5.  Following the energy-minimizing clock frequency calculation 
described in Section 2.2.2, we obtain 50.01 =ε and 45.02 =ε .  As can be seen, even though 2τ only requires 

1τ running at 0.45, 1τ must run at a higher operating frequency of 0.50 to satisfy its schedulability.  We refer to this 

higher frequency as an inflated frequency with respected to 2τ .  The use of an inflated frequency by a higher priority 
task leads to more available slack for a lower priority task.  PM-Clock then recalculates the new energy-minimizing 
clock frequency of 2τ  by fixing the clock frequency of 1τ  at their inflated frequency.  Figure 5 shows the critical 

zone of 2τ  before and after the effect of inflated frequency.  The new slack for 2τ  becomes 

4)*5.0/4(20 max1 =− fC .  Therefore, the clock frequency for 2τ can be reduced to 25.04/1 = .  Figure 6 
summarizes the PM-Clock algorithm.  

 

Note: The term “priority-monotonic” comes from the fact that PM-Clock always assigns task clock frequencies in 
priority order.  In other words, a high priority task will always be assigned a higher or same clock frequency 
compared to a low priority task. 

 

 
Figure 5: An Example of PM-Clock 

τ1{2, 5, 4} and τ2 {1, 20, 20}

Inflated Frequency 
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Figure 6: PM-Clock Algorithm 

 

2.2.4.  DPM-Clock Algorithm 

DPM-Clock is an on-line DVS scheme which can monitor actual execution times of tasks, and further minimize 
energy consumption when those execution times are less than the pre-reserved and guaranteed worst-case execution 
times. It detects the early completion times and makes use of the additional slack time created at run-time by 
reducing the processor speed. Even though the available slack from the early completion of a task instance can be 
shared among multiple tasks, DPM-Clock instead devotes all slack to the next ready task which has lower or same 
priority.   

The new operating frequency of this “lucky” task is computed relative to its current assigned operating frequency. 
Every new invocation of a task instance always starts with its original operating frequency assigned by PM-Clock 
and changes its operating frequency dynamically only if it gets the slack. We denote jν and j'ν as jτ 's PM-Clock 

and dynamic clock frequency. We denotes the slack from iτ 's early completion as iS . DPM-Clock expands the 
execution time of left cycles to fill all the slack. Therefore,  

j
ijj

jj
j SLEC

LEC
'

)'/(
)'/(

' ν
ν
ν

ν ∗
+

= ,                                               (3) 

iiii CECWCECS ν/)( −= .                                               (4) 
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Where LEC, WCEC and CEC denote the unexecuted, the worst-case desired and the actual desired processor cycles 
of the current task instance.  

When there is no ready task in the queue after the early completion of an invocation, DPM-Clock decrements the 
available slack time when the processor remains idle. The next arriving task whose priority is lower than or equal to 
the early completed task would receive the updated slack time if the slack is still available (i.e., greater than 0). 

This dynamic frequency adjustment of DPM-Clock maintains schedulability since there is no priority change. The 
frequency reduction of jτ will delay only tasks with same or lower priority. Hence, the preemption time seen by 
tasks is the same.  

2.2.5.  Progressive DPM-Clock Algorithm 

Like DPM-Clock, Progressive is an on-line DVS scheme which detects run-time slack and further diminishes energy 
consumption by reducing the processor speed and corresponding voltage supply to expand executions over the slack 
time.  However, instead of transferring slack to the whole demand of the next scheduling task, Progressive 
aggressively reclaims the available slack for the expected workload towards the next scheduling point.  Moreover, by 
investigating the next two scheduling points, it can claim slack not only from higher priority tasks but also from 
lower priority tasks, itself and possible idle period.   

2.2.5.1. Progressive Slack Detection 

During context switches, Progressive collects runtime slacks from early-executed cycle slack, unused reserved cycle 
slack and unreserved cycle slack as followings.  Progressive prioritizes and always claims slack in the descending 
order of its priority. This is based on the fact that the preemptive scheduling will always execute high priority task 
first.  

• Early Executed Cycle Slack:  Slack from active task instances which are executed ahead of the schedule.  At 
context switches, Progressive computes the number of processor cycles the current task is supposed to be 
execute if all priority slack preempts the task.  In other words, it is the amount of processor cycles the current 
task will be executed if all tasks are scheduled by PM-Clock and always use up their reservations.  At the 
preemption, the scheme then monitors if the task has been executed more than the expectation.  These 
additional cycles are the product of (1) the use of higher operating frequency when a desired frequency is not 
available due to finite operating frequencies and (2) the overwhelming slack.  Let us denote iec  , ic  and 

e
iS as iτ ’s expected processor cycles, actual processor executed and early executed cycle slack at the last 

context switch, respectively.  Therefore the slack with priority of iτ  is given by iii
e
i eccS ν/)( −= where 

iν is the task’s clock frequency which is initially assigned by PM-Clock.  

• Unused Reserved Cycle Slack: Slack from completed task instances which request executions less than their 
worst-case amounts which are pre-reserved and guaranteed. Let iac denote the accumulated execution a task 

iτ  has been executed until its last context switch. Let iC and c
iS denote the task’s reserved cycles and its 

slack from early completion. Therefore, when a task is completed, the early completion slack is given 
by iiii

c
i ecacCS υ/)( −−= . 

• Unreserved Cycle Slack: Slack from an idle period after the current task is executed. By investigating the 
next two scheduling points in advance, Progressive is able to predict whether there will be an idle period after 
the task’s execution and further scale down the task’s execution to complete at the end of the idle period.  

2.2.5.2. Progressive Slack Distribution 

As previously mentioned, Progressive orders slacks by the task priority of their owners, considering that slack from 
idle periods is the lowest-priority slack. We now describe how Progressive distributes those slacks among tasks. Let 

iτ is the current task to be executed.  

At context switches, Progressive first determines if the current task iτ is able to complete its execution before the 
next context switch under PM-Clock worst-case schedule. If all high priority tasks use up their reservations, the high 
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priority slack H
iS , which is slack time for higher or same priority will be occupied by those high priority executions. 

If the task can complete its execution and a lower priority task Lτ is the next task to run, the task will be able to use 

slack whose priority is higher than Lτ ’s priority as well. In addition, the task can claim slack from idle period if 
available. In summary, the slack distribution of Progressive can be categorized to two main case scenarios as shown 
in Figure 7. 

 
Figure 7: Possible Scenarios in Progressive Slack Distribution 

  

• When the current task gets preempted:  Let t and Ht be the current time and the next preemption time. If 
the current task iτ cannot complete its job within its quota time, all of higher-priority slacks will be distributed 

to the portion of iτ ’s expected execution. We denote the quota time of a task iτ as qt  which is given 

by H
i

Hq Sttt −−= . The current task gets preempted if iii
q acCt ν∗−< )( . Therefore, 
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 The reasons that we distribute slack to only portion of the current task’s execution are as follows: 

1.  Slack can be exhausted when no use. 

2. Adequate slack is needed to step-down the voltage for processors with finite frequencies so aggressive 
slack is needed for efficient energy saving. 

3. The algorithm is much simpler to keep track of all slacks.  

Note that it is possible that the current task is way ahead of its schedule, in other words when ttS HH
i −≥ . 

For this scenario, Progressive will execute the current task at the lowest speed and the advance execution will 
be accounted as early executed cycle slack previously described.  

• When the current task completes: This case happens when the left reserved cycles of the current task 
executing at the clock frequency iν will be completed before Ht . Assume that Lτ is the next low priority 

reserved task to run after the current task. With the same preemption seen by Lτ and other following low 
priority tasks, the current task can use the slack time not only from middle priority tasks but also from the idle 
period if available (when iii

L
i

H
i

L acCSStt ν∗−+++> )( ). Let St be the elapsed time that the current 
can occupy and still maintain the schedulability of the task set. Therefore,  

))(,max( L
iiii

H
i

LS SacCSttt +∗−+−= ν ,                                         (7) 

S
iii tacC /)(' −=υ .                                                                                              (8) 

After each execution and the end of any idle period, Progressive updates the available slacks by deducting the 
execution from those in descending order of their priorities.  

t
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(b) The current task completes. 
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2.2.6.  Opt-Clock Algorithm 

Finding the optimal task clock frequency is not a trivial problem but can be a large-scale non-linear optimization 
problem. Consider a voltage-scaling processor with a convex nondecreasing power-frequency function given by 

3,)( ≥= xcffP x  where c is a constant value.  Assume that a fixed-priority preemptive scheduling policy is 
used. We can prove that the optimal task clock frequency assignment algorithm is a convex non-linear minimization 
problem as follows: 

The goal of Opt-Clock scheme is to minimize the energy consumption of a taskset in one hyper-period2. Every 
instance of a task iτ takes )*/( maxffC ii time unit where if  is its assigned clock frequency. The energy consumed 
over one hyper-period (E) is as follows: 

 

 

 

(9) 

 

 Denote )/( iTH  as the number of each task instances in a hyper-period, iU as its utilization given by ii TC / and 

iδ as the reciprocal of if , respectively. From if xf has a second derivative in [a, b] then a necessary and sufficient 

condition for it to be convex on that interval is that the second derivative ],[,0)(" baxxf ∈∀> . Combine this 
theorem with a property of convex functions that the combination and the scaling of convex functions are also 
convex. It can be shown that this problem has a convex  objective function. 

As described in Section 2.2.2, a task's workload varies with its completion time, i.e. the clock frequency assigned to 
each task. Consequently, each task has multiple choices of constraints in order to complete the workload at any time 
before its deadline. For example, consider the taskset shown in Figure 3. The constraint of task 2τ  can be either one 
of the following conditions: 

 

 ,  (10) 

(11) 

 

Inequalities (10) and (11) are necessary conditions to complete the task before time 10 and 20, respectively. These 
constraints are linear and can be considered as convex. Hence, the optimal task clock frequency assignment is a 
convex non-linear minimization problem since its non-linear objective function and constraint set are convex. 

The problem size of Opt-Clock grows dramatically not only with the number of tasks but also the number of 
constraint choices of each task. This latter number depends on the number of idle periods in the task’s critical zone 
and can be very large if the ratio of the task’s and the highest priority task’s period is large. We now present three 
pruning techniques which can potentially decrease the problem size: 

1. Pruning of High Workload Constraints:  A constraint is said to be a high-workload constraint if it requires 
a shorter completion time Sβ and has higher average processor demands from all higher priority tasks than 

another constraint with a longer completion time Lβ .  This technique eliminates such redundant high 

workload constraints. Since the average demands from all tasks decrease if the task completes at Lβ , using 

the optimal frequency set that satisfies the constraint for Sβ will definitely generate some slack. Consequently, 
some task's clock frequencies can always be reduced to save more energy. Therefore, the solution from the 
constraint set for Sβ will impossibly give the optimal solution and can be pruned. 

                                                 
2 Consider n  periodic tasks with ],1[},,{ niTC iii ∈=τ . The hyper-period is given by ]},1[|{ niTLCM i ∈ . 
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2. Pruning of Conflict Constraints: From constraints left over from the previous step, this technique eliminates 
infeasible combinations of constraints where a lower priority task requires a shorter completion time than a 
higher priority task, which is not schedulable by fixed-priority preemptive scheduling. 

3. Pruning of Inactive Constraints: Unlike the first two techniques, this technique uses additional information 
from a solution of one problem to prune others. It first determines an inactive constraint from the current 
solution. Note that an inequality constraint Dg ≤)(δ  is said to be inactive at xδ  if Dg x <)(δ . It is active at 

if Dg x =)(δ . Apply the Karush-Kuhn-Tucker (KKT) theorem that the optimal solution subject to a set of 
active and inactive constraints is the same as that subject to only active constraints. Since a better result is not 
obtained by adding more constraints to the problem, it is sufficient to eliminate other constraint sets which 
alter only the inactive constraints. 

2.2.7.  Algorithm Comparison 

We compare the energy consumption of our voltage-scaling algorithms with that of well-known  algorithms called 
the static voltage scaling algorithm (SVS) and the cycle-conserving RT-DVS (CYCLE) proposed in [5].  The 
processor is modeled based on 3kfP = power-frequency relation, zero idle energy and ten available operating 
points. A real-time taskset is generated randomly. Each task has a uniform probability of having a short (0.1-1 ms), 
medium (1-10 ms) or long (10-100 ms) period. Task period is uniformly distributed in each range. Task computation 
is randomly selected and then adjusted based on the system utilization and the ratio of the best-case (BCET) to 
worst-case execution time (WCET). For the first experiment, we randomly generate tasks and scaled their utilization 
equally to achieve the desired total utilization. For the second experiment, we randomly generate tasks such that each 
task instance requests a random number of processor cycles which is uniformly distributed between BCET and 
WCET3.   

Figure 8 shows the average energy consumption normalized to energy of no-DVS system from the first experiment. 
Figure 9 shows the effect of BCET/WCET ratio at system utilization of 0.5 where the energy shown is normalized to 
energy of SVS algorithm. As can bee seen from both experiments, Sys-Clock and PM-Clock always outperform 
SVS. This is due to the fact that both algorithms determine the frequency needed to complete the task at the end of 
the idle period which has minimum workload, not the deadline as SVS does. PM-Clock performs better than Sys-
Clock as expected with the tradeoff of additional voltage-scaling overhead during each context switch. With varying 
BCET/WCET ratio in the second experiment, the cycle-conserving algorithm performs very well when the 
BCET/WCET is low but somewhat poorly when the BCET/WCET is high. This is because the scheme always 
executes any task at low speed with the hope of saving energy in the future if the task uses less resource. DPM-Clock 
performs very close to the cycle-conserving scheme when BCET/WCET is low, and better otherwise even though it 
has much less complexity. Progressive performs best among all schemes with a little bit more complexity at each 
context switch compared to DPM-Clock.  

 

 
Figure 8: Energy vs. System Utilization at BCET/WCET=0.5 

 
 
                                                 
3 These execution times are subjected to maxf . 

(a) BCET/WCET=0.5 (b) BCET/WCET=1.0 
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Figure 9: Energy vs. BCET/WCET at U=0.5 

 

2.2.8.  The Effect of Finite Frequency Granularity 

Practical processors usually provide a finite number of operating frequencies. To sustain timeliness guarantees, these 
processors have to operate at the next higher operating frequency if a desired frequency is not available. This 
inevitably results in more energy consumption. We refer to such an energy loss as the energy quantization error. We 
investigate an operating frequency grid which minimizes the worst-case energy quantization error for a processor 
with N operating points. The result is as follows: 

 

            , (12) 

 

                            .  (13) 

 

Our study shows that the minimum energy quantization error varies with the number of operating points as follows: 

N
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Δ .                                                                     (14) 

The detail of the proof is presented in [2].  

2.2.9. The Implementation  
We have implemented these voltage-scaling schemes on CMU's Linux/RK, extensions of which are commercially 
available from TimeSys Corporation.  We refer to the resulting kernel “Power-Aware Linux/RK”.  We currently 
have two different hardware targets for Power-Aware Linux/RK.  The first of these targets is the 206 MHz Compaq 
iPAQ H3700 personal digital assistant, a popular and easily accessible target not unlike the ubiquitous PC.  On this 
target, frequency scaling is possible but not voltage-scaling.  Also, frequency scaling requires re-synchronization 
between the CPU and SDRAM timing, which in turn takes a relatively astronomical delay of 20 ms. In other words, 
once frequency scaling is initiated, the processor becomes unavailable for 20ms!  Such a delay is unacceptable for 
many real-time systems.  Linux/RK therefore uses the Sys-Clock algorithm to scale the frequency based on the 
taskset workload only at admission-control time or on task deletion. The changes to the Linux/RK kernel are 
therefore confined to the admission control and task exit modules.  These changes constitute less than 100 lines of 
code.  Another quirk of the iPAQ hardware is that the entire range of operating frequencies (about 70 MHz - 
206 MHz) is not usable: the processor can operate within only one of two non-overlapping ranges (~70 MHz - 
140 MHz or ~155 MHz - 206 MHz).  The frequency cannot be scaled from a value within one range to a value in 
another range. Multimedia applications including a music player have been ported to demonstrate the functionality of 
our kernel. This kernel with its support for frequency-scaling can be downloaded from http://www.cs.cmu.edu/~rtml. 
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As is already known, more significant energy savings can be obtained by voltage-scaling.  We have successfully 
modified the XScale BRH single-board computer, which boasts a 733 MHz XScale processor a 128 MB memory to 
support voltage scaling.  The Maxim 1855 evaluation kit [14] which is a high-power dynamically adjustable 
notebook CPU power supply application circuit, was used to provide the programmable supply voltage for the 
XScale processor card. The kit provides a digitally adjustable voltage from 0.6 to 1.75 V.  A total of 11 voltage 
settings (1.0 to 1.5 V with a step of 0.5 V) is available for the OS.  A particular value is chosen by simply writing a 
4-bit value to a memory-mapped address.  Voltage and resulting frequency changes take a negligible amount of time 
(of the order of a few microseconds).  We have ported Power-Aware Linux/RK with Sys-Clock, PM-Clock and 
DPM-Clock algorithms to this modified BRH board.  The Linux kernel has successfully been loaded and tested. 
With the low voltage-scaling overhead, the modified XScale BRH board can efficiently save more energy using the 
PM-Clock and DPM-Clock schemes.  

We have also implemented our Energy-Aware Linux/RK on BitsyX platform (a joint project with Vitronics). The 
BitsyX is a full-featured single board computer using Intel's PXA255 RISC microprocessor with an SA-1111 
StrongARM companion chip. Since the BitsyX uses PXA255 which requires time for 20 ms to resynchronize an 
LCD during frequency scaling, we set the Sys-Clock algorithm by default. The software can be downloaded at 
http://www-2.cs.cmu.edu/~rtml/bitsyx/bitsyx-linux-2.4.19.tgz. The QT voltage and frequency monitoring tool is also 
available at http://www-2.cs.cmu.edu/~rtml/bitsyx/ bitsyxmon.tgz. 

For a joint project with BAE and ISI, we have implemented our Energy-Aware Linux/RK on PowerPC RAD750 
platform. This platform has much less timing overhead in voltage and frequency scaling compared to BitsyX and 
BRH. There are seven operating frequencies available, 4.125, 8.25, 16.5, 33, 99, 115.5 and 132 MHz. The minimum 
voltage supply needed for each operating frequency varies across hardware from 2.1 mV to 2.5 mV. The software can 
be downloaded at http://www-2.cs.cmu.edu/~rtml/bae/bae_linux_2.4.22_rk.tgz.  

 

2.3.  Multi-Granularity Reservation for Multimedia 
Resource reservation has been recently supported by many real-time operating systems to provide applications with 
hard-guaranteed and timely access to system resources.  Typically, reservations are based on the worst-case 
requirements, and therefore can inflate resource demands unnecessarily.  Many multimedia applications such as 
MPEG video streams (1) have high worst-case to average-case demand ratio and (2) can tolerate some deadline 
misses.  To support such applications, we propose a “multi-granularity” reservation model. Instead of the classical 
{C, T, D} model of resource reservation, the multi-granular reserve specification is given by {{C, T, D},…,{Cx, 
x⋅T},…, {Cy, y⋅T}} which represents a guarantee of the highest-granularity reserve for C units of resource during 
every successive periodic interval of T only as long as the resource usage by each of its low-granularity reserves 
(e.g., Cx units of resource in every recurring time of T) is maintained. This multi-granular reservation approach 
delivers higher system utilization than the pessimistic strategy of worst-case reservation and better temporal isolation 
than other stochastic and heuristic guarantees in the literature.  We perform a detailed schedulability analysis of this 
model using deadline-monotonic scheduling and derive an appropriate admission control test. We also present 
detailed analyses and simulation results comparing our reservation scheme for MPEG-4 streams with average-case 
resource reservation, constant bandwidth server (CBS), and (m,k)-firm guarantee. 

We first now list some important considerations that influence the design of multi-granularity reservation. 

• Flexibility of QoS Specification: The classical Liu and Layland real-time task model is originally designed 
for hard real-time systems where any deadline miss is undesirable. This model does not provide good support 
for QoS demand of multimedia applications whose timing constraints can be relaxed and therefore a more 
flexible QoS specification model is needed. 

• QoS Isolation and Deterministic Guarantee: The ability to manage resources for maximum QoS return is a 
potential objective of real-time and QoS-guaranteed systems. To be able to collaboratively optimize 
deliverable QoS among applications with a middle-ware QoS manager, OS must be deterministic such that the 
requested QoS is always delivered regardless of the behavior of other tasks. 

• Efficient Resource Utilization: The main goal of real-time scheduling is to achieve high utilization and still 
guarantee timing constraints and QoS requirements for applications. Therefore, the system should satisfy the 
resource demand just enough to provide guarantees with high system utilization. 

• Varying Demand Tolerance: Since multimedia applications generally have very high fluctuation on demand, 
the new reservation scheme should modify resource allocations to suit these characteristics. 
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2.3.1.  The Multi-Granularity Reservation Model 

Instead of using one ratio as in the classical resource reservation model, the multi-granular reserve specification is 
given by }},{,},,{,},,,{{ iyixiii yTCxTCDTC …… . The highest granular reserve },,{ iii DTC  denotes an 

instantaneous resource demand of iC units every recurring time interval iT before a relative deadline iD , while the 

low-granular reserve },{ ix xTC  denotes the average resource demand of xC  units in the longer time interval of ixT . 
With multiple granularities, the scheme gives flexibility to users to specify its average resource requirement in the 
long run and simultaneously obtain guarantees for bursty requests as long as the average resource consumption over 
a longer  time frame is maintained. Conceptually, the scheme behaves like cascading water tanks. The inflow 
resource refills the next tank with size, e.g. yC units, at the rate of a low-granular reserve, e.g. yC units of resource 

every iyT  units of time. At the last tank, the outflow rate varies upon the user demand and the availability of the 

resource inside, and is limited to the rate of the highest-granular reserve },,{ iii DTC . Figure 10 depicts the concept.  

 
Figure 10: Cascading Water Tanks Concept in Multi-granularity Reserve 

 

With this cascading water tank concept, multi-granularity reservation addresses all the designing goals we previously 
mentioned. Users can flexibly control the budget in fine-grained fashion, enable the precise resource allocation and 
therefore achieve efficient system utilization. The tank sizes police resource consumption not to exceed the budget 
establishing QoS isolation. The resource containment in the last tank supplies the inter-period mutual budget. In 
other words, it automatically saves underused resources for future use providing varying demand tolerance. 

2.3.2.  Multi-Granular Resource Replenishment and Enforcement 

A k-level multi-granularity reserve maintains k steps of resource replenishment. The replenishment can be divided 
into three case scenarios. First, when the available immediate lower-granular budget is larger than xC , the maximum 

allowance of xC  will be given. Second, when the available immediate lower-granular budget is smaller than xC , 
that total amount will be transferred. Third, when there is no available budget, no refill happens. To ensure QoS 
isolation, an enforcement mechanism must ensure that no resource consumption in each interval will exceed the 
budget of any reserve granularity. In each period iT , an associated task is allowed to access the resource up to its 

maximum allowance of the highest-granular reserve, which is given by ),max( ji cC where jc represents the 

existing budget of the immediate lower granular reserve },{ jj TC . 

We now describe the implementation of replenishment and enforcement algorithms. For replenishment, k timers will 
be generated. Each has a period corresponding to its granular reserve period, ii kTT ,,… respectively.  At each 

granular timer interval (e.g., ijT ), a corresponding reserve budget (e.g., jC ) will be refilled.  If its budget is 
previously depleted, all higher granular reserves will be triggered to be resynchronized with its replenishment timer. 
For enforcement, when an associated task is executed, the amount of the granted resources is given by 

),,min( ki cc … . If the task executes more than the granted amount, the task's priority is downgraded to the same 
level of other non-real-time tasks. 
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2.3.3.  Schedulability Analysis 

Our schedulability analysis follows an approach similar to that of Liu and Layland [13] and Mok and Chen [15]. 
However, the multi-granularity reservation model has some subtle assumptions and constraints. We assume the use 
of the deadline-monotonic (DM) scheduling policy and the existence of n multi-granular reserves, nRRR ,,, 21 … , 

respectively. Each reserve iR  is assumed to have ig levels of granularity where +∈ Igi and its reserve specification 
is given by 

}},{,},,{,},,,{{ iggixxiii TCTCDTC
ii

εε …… ,                                                      (15) 

where xε denotes the ratio of the xth granular period with the highest granular one.  By convention, we assume 

that nDDD ≤≤≤ …21 .  One task is associated with each reserve and denoted as nτττ ,,, 21 …  respectively.  
Note that a traditional reserve can be simply included in the analysis by considering it as a 1-level multi-granularity 
reserve.  To obtain the analytical results, we assume that tasks are independent, periodic and always ready to run 
without blocking. We also assume that the reserved amount of low-granular resource is always larger than that of 
high granularity. 

2.3.3.1. Critical Instant of Multi-Granularity Reserve 

There are two factors for a task associated with a multi-granularity reserve to miss its deadline: (1) the preemption of 
higher priority reserves and (2) its own insufficient budget. Assuming a task does not violate its resource quota 
constraints, one main goal of multi-granularity reserve is to provide the task its promised resource regardless of the 
behavior of other reserves and non-real-time tasks.  

Under the multi-granularity reservation model, a critical instant for a task occurs whenever the task's request arrives 
simultaneously with requests from all higher-priority tasks, they request resources at their maximum allowances, and 
their first preempting requests in the critical zone are synchronous with their lowest-granular periods. 

2.3.3.2. The Worst-case Response Time Test  

We now demonstrate the worst-case response time test by an example and generalize the worst-case response time 
test for n tasks at the end of this section. Consider a set of two tasks, 1τ and 2τ , with reserves {{3, 5, 5}, {7, 20}, {13, 
50}} and {{40, 80, 80}, {60, 160}} respectively. 

Figure 11 illustrates 2τ 's critical zone as defined in Section 2.3.3.1. The preemption pattern of 1τ during time 
interval [0, t] is shaped in the ascending order of its multi-granular level of enforcement. Consider the case when 
t = 56. Due to its lowest granular enforcement, 1τ 's execution during time interval [0, 56] cannot be larger than twice 
of its lowest granular budget, which is given by 

2613)1
50
56( =⋅+⎥⎦

⎥
⎢⎣
⎢

.                                                                        (16) 

While 1τ will obtain the resource for 13 time units for the first interval of 50 time units, in the second interval its 
execution may be enforced by other higher granular enforcements. The next higher granular enforcement limits the 
execution in its second interval to 
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However, the highest granular enforcement ensures that the task must not obtain resources more than 3 units each 
during time [50, 55] and [55, 60]. In addition, during time interval [55, 56], the maximum demand 1τ can impose is 1 

time unit. Consequently, the maximum time 1τ can preempt 2τ  during time interval [0, 56] is 17, which is given by 
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Figure 11: Multi-RSV Critical Zone 

 

The first three terms of Expression (18) basically represent the resource amount that 1τ has been fully guaranteed by 
multi-granular periods, labeled as (1), (2) and (3) in Figure 11 respectively.  The last term represents the maximum 
imposed demand for the partially guaranteed resources.   

We can generalize the computation of a high priority task iτ 's preemption time to a low priority task during timer 
interval [t0, t0+t] assuming that both tasks' requests arrive at time t0.  Let 
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and  

01 =+igm .                                                                                            (20) 

The preemption, denoted as ),( 00 tttP + , will be shaped by multi-granular enforcements, 1L  to
igL , as follows: 

(21) 

Note that at the highest granular enforcement, the right hand term of the first inequality for L1 granularity is the same 
as the first term in MIN () operation of second inequality.  Therefore, 

 

 

 

                        ⋅                 (22) 

Figure 12 shows the polynomial algorithm to determine the preemption time by a multi-granularity reserve. The 
worst-case response time of a task thus is the summation of its required computation time and possible preemption 
from all higher priority tasks. This leads to Theorem 1. 

0 5 10 1 22 3 35 4 4 50 5 66 7 75 

τ1 {{3,5,5},{7,20},{13,50}} τ2 {{40,80,80},{60,160}} 

t(1)  10T1 (2)  4T1 

(3)  T1
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Figure 12: Multi-Granularity Preemption Computation Algorithm 

 

Theorem 1 

For a multi-granularity resource reservation system, the worst-case response time for a task iτ is the smallest 
solution to the following equation: 

∑
<

+ +=
ij

ji
k k

PC ),0(1 ωω ,                                                          (23) 

where ),0( k

jP ω can be determined by the equation (1) or the algorithm listed in Figure 12. This formula must be 

solved recursively starting with iC=0ω and finishing when kk ωω =+1 on success or when i
k D>+1ω  on failure.    

2.3.3.3. The Utilization Bound Test  

We now derive a simple utilization bound test for a multi-granularity reservation. Consider two tasks in the system, 

iτ and jτ using the same notation previously described. The preemption rate seen by jτ varies with its period jT and 

is given by
ix

x

T
C
ε

where ))()1(|( jiki TTgkIkMAXx ≤∩≤≤∈= + ε . We denote this effective granularity 

as ijγ . Therefore, considering its possible preemptions from all higher-priority tasks, the schedulability of a task, jτ , 
can be determined as follows: 
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.                                                                      (24) 

where n is the number of tasks in consideration.  Note that to determine the schedulability of the task set, the 
utilization bound test of all tasks must be performed. 

2.3.4.  Multi-granularity Reservation Deployment  

Multi-granularity reservations are specifically designed for soft real-time guarantees where requests can miss 
deadline occasionally. Specifically, MPEG-4 streams [16] use frames are encoded into three types: I, P and B-
frames. An I-frame is encoded as a single image with no reference to any frames and typically has larger size than 
other frames. A P-frame is encoded relative to the past reference P or I-frame. A B-frame is encoded relative to the 
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past reference frame, the next future frame, or both frames which again are the closest I or P frames. Each video 
sequence is composed of a series of Groups of Pictures (GOP). A GOP is an independently decode-able unit that can 
be of any size as long as it begins with an I-frame. 

One effective and simple example of a multi-granularity reserve for an MPEG-4 video decoder is reserving its 
maximum decoding time in frame period granularity and its average decoding time per frame for each GOP period as 
given by 

Rmpeg4 = {{max_decoding, T}, {avg_decoding *GOP_size, GOP_size * T}}                      (25) 

Since a multi-granular reserve always delivers resources as long as the budget is available, the above reserve always 
guarantees the successful decoding of I frame for all GOPs and any GOP that requires smaller decoding time than 
(avg_decoding * GOP_size) is also guaranteed.  

Note that a more stringent and relaxed QoS specification and even probabilistic guarantees can be easily obtained by 
detailed profiling of the video stream. 

2.3.4.1. Multi-granularity Reserve vs. (m, k)-Firm Guarantees  

All (m, k)-firm guarantee schemes mark m out of k consecutive requests as mandatory requests. Only these requests 
are considered as preemption to low priority tasks assuming the worst-case demand. Some (m, k) schemes (e.g.[17]) 
subtly assign mandatory requests to reduce interference among tasks. However, these schemes need the knowledge 
of phasing among applications which is somewhat difficult in practice. 

Our scheme does not assume such knowledge and enables budget to be shared across periods. Consider an MPEG-4 
multi-granular reserve as given in Equation (25). If we assume that all requests require the maximum demand, at 
least mrsv_guarantee = (avg_decoding*GOP_size)/max_decoding frames are guaranteed.  In the performance 
evaluation, we will compare this reserve with (mrsv_guarantee, GOP_size)-firm guarantee. We will show that our 
scheme always performs better than (m, k)-firm guarantee with the same amount of allocated resource. Note that a 
Pfair schedule [18] of multi-granularity reserve can also be modeled by adding one more middle-granular reserve to 
equally distribute budget its lower-granular period. 

2.3.4.2. Multi-granularity Reserve vs. Generalized Multiframe Model  

A multi-granularity reserve can be considered as a special case of generalized multiframe model. Any multi-
granularity reserve can be conservatively converted into a generalized multiframe task model. Fundamentally, the 
worst-case execution time patterns of consecutive frames will be conservatively assumed by our worst-case 
response-time test. For instance, a reserve given by {{3, 5, 5}, {7, 25}} can be converted to < (3, 6, 7, 7, 7), 5>.  Note 
that our model also allows tasks to have deadlines different from their periods. 

2.3.4.3. Multi-granularity Reserve vs. Constant Bandwidth Server (CBS)  

Instead of assuming fixed-priority scheduling policies, CBS uses earliest deadline first (EDF) scheduling. Our 
scheme shares the same concept with CBS in the sense that it is tolerant to varying instantaneous demand yet in the 
long run the multimedia workload will be shaped into its average-case specification. Through the dynamic 
adjustment of requests' deadlines, CBS handles high-demand requests as the second-priority class in EDF fashion 
starving all other non-real-time tasks. Moreover, its guarantee for the multimedia stream is not deterministic. In other 
words, a highly dynamic real-time workload can cause an unacceptably high failure rate. On the contrary, in the 
same scenario, multi-granularity reservations will be able to detect this failure rate and reject the guarantee or 
negotiate the QoS. Such predictability property is crucial for real-time and QoS-guaranteed systems.  

2.3.5. Performance Evaluation  

 

We evaluate the performance of multi-granularity reservation scheme with average-case reservation, (m, k)-firm 
guarantee and CBS, which we will call in short MULTI-RSV, AVG-RSV, MK-RSV and CBS respectively.  A series 
of simulations is performed to study QoS and temporal isolation, the response time of non-real-time tasks and the 
system utilization among those schemes.  Four MPEG-4 video traces from [19]: Jurassic Park, Silence of the Lamb, 
News and Lectures Room Cam are chosen to represent four different kind of movies. The trace lengths are 60, 60, 15 
and 60 minutes respectively.  All video streams are encoded using the GOP pattern given by IBBPBBPBBPBB while 
data in the video streams typically occur as IPBBPBPBBPBB. Table 2 summarizes the frame statistics. 
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Table 2: Video Frame Statistics 

  
Unless explicitly stated, five real-time tasks are randomly generated to achieve the given total real-time utilization. 
Each task has a uniform probability of having a short (1-10 ms), medium (10-100 ms) or long (100-1000 ms) period. 
Task period is uniformly distributed in each range.  Five non-real-time tasks are randomly generated in the same 
fashion but without reservations.  We estimate the video decoding time of each frame using the linear relationship 
with its corresponding frame size as suggested in [20].  Four parameters will be measured as follows: 

• Miss: the ratio of the number of deadline-missing frames to the total number of frames.   

• MissI: the ratio of the number of deadline-missing I-frames to the total number of frames (of all types).  

• MissD: the ratio of the number of undecodeable frames (due to a deadline miss or the failure of its reference 
frames) to the total number of frames.  

• Dynamic: the ratio of dynamic errors [21]4 to the total number of possible k-consecutive frame sets.  

2.3.5.1. Single Stream Evaluation 

We first evaluate the performance of one single video stream competing with real-time and non-real-time workload 
using four different schemes. We believe that this scenario is most likely to happen in most handheld devices and 
personal computers. We create a multi-granularity reserve and a (m, k)-firm guarantee as described in Subsection 
2.3.4. For CBS and average-case reserve, we allocate resources based on its average demand. Note that the missing 
video requests are immediately dropped at their deadlines for all schemes in order to avoid a queueing delay effect.  

Figure 13 shows the performance of one Jurassic movie at four different real-time and total system utilization 
scenarios: low workload (RT-U=0.4, U=0.5), low workload high background (RT-U = 0.4, U = 1.5), high workload 
(RT-U = 0.65, U = 0.75) and full system load (RT-U = 0.65, U = 1.5).  RT-U and U denotes the real-time task 
utilization and the total system utilization, both numbers exclude the video stream utilization. For clearer view, we 
zoom in the missI ratio axes in Figure 13(c) and plot the dynamic ratio axes shown in Figure 13(d) using logarithmic 
scale. As expected, AVG-RSV and MK-RSV perform poorly at high system utilization. At high workload and full 
system load, more than 35 persent of frames miss the deadline and more than 65 percent of frames are undecodeable 
under both schemes. MK-RSV delivers more I-frames for 4 percent due to the worst-case demand assumption on 
resource allocation and therefore achieves a little bit better MissD ratio. MULTI-RSV and MK-RSV satisfy the (m, 
k) constraint as expected. Even though our MULTI-RSV allocates resources for approximately the same amount as 
MK-RSV, it always achieve lower failure rates and yields better system utilization, ~4-30 percent and ~10-57 
percent less Miss and MissD ratios respectively. Unlike other schemes, the performance of CBS does not suffer from 
the presence of non-real-time tasks. This is due to its preference of high-demand workload over non-real-time tasks. 
Note that MULTI-RSV has no missing I-frames at all, which results in a better MissD ratio than CBS. 

 

                                                 
4 Dynamic error is defined by Hamdaoui et al. as the failure of a system to satisfy timing constraints of at least m frames out of 
any k consecutive frames. 
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Figure 13: Miss Ratio versus Utilization for Jurassic Stream 

 

We repeat the same experiment with the other three video streams. Figure 14 shows the results. For clearer view, we 
zoom in the missI and dynamic ratio axes to 0.1 and 0.25 respectively.  Overall, Lecture obtains the better 
performance than others due to its much smaller variance in frame size. However, since most of its I-frames 
represent the group of the largest frame size and are likely to miss deadlines, any loss in the major reference frames 
results in bad MissD ratios of the Lecture stream. Again, note that the performance under CBS is independent from 
the existence of the non-real-time workload and therefore the graphs respected to low and high background workload 
are completely the same. 

Note that even though the buffering technique can relax the timing constraints and reduce the variation of resource 
demands, due to the long-range-dependence property of MPEG4 streams a very large buffer resulting in long delay is 
required to effectively smooth the burst. Therefore, in practice the combination of buffering with multi-granularity 
reserve is necessary to compromise delay with high system utilization. 

2.3.5.2. Multiplexing Streams Evaluation 

We now simultaneously run three streams, Jurassic, News and Lecture with RT-U = 0.35 and U = 1.5. This 
utilization is chosen to fully utilize the system reserve capacity. Figure 15 shows the performance of algorithms on 
multiplexing video streams. Comparing both experiments, multiplexing video streams yields better performance 
overall, especially the reduction of the MissI ratio in MK-RSV. This is because of two main reasons. First, there is 
typically a low-probability that video streams that are statistically independent of each other will request resources at 
the peak rate simultaneously. Second, the worst-case resource allocation per frame used by MK-RSV more properly 
manages priorities for a complete I-frame execution. Again, Lecture obtains better performance than other streams 
due to its smaller fluctuation in demand. MULTI-RSV successfully delivers all I-frames and achieves a low missD 
ratio. In addition, it maintains (m, k) constraints. In summary, this experiment shows that despite the benefit of the 
video multiplexing in a server where multiple streams can share resources, the efficient deterministic guarantees is 
nevertheless crucial for protecting unpredictable high failure rate during overload. Note that we plot the missI and 
dynamic ratio axes using logarithmic scale. 



23 

 
Figure 14: Performance Comparison on Different Video Streams 

 

 
Figure 15: Performance Comparison on Multiplexing Video Streams 
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2.3.6. System Response Time Comparison  

In this section, we study the effect of CBS and MULTI-RSV algorithms on the system response time. A random 
number of short non-real-time requests, 0 to 3 requests, are generated every 40 ms to compete for CPU resources 
with one video stream Jurassic. The sizes of the requests are uniformly distributed between 10 and 20 ms. The 
average CPU utilization of the video stream is about 0.11. A set of real-time tasks with total utilization of 0.5 is 
generated in the same fashion as in the first experiment. We measure the normalized response time defined as  

normalized_response_time = completion_time/required_decoding_time 

As can be seen in Table 3, even though both schemes deliver comparable performance (5 percent difference) on 
multimedia streams, CBS delays the non-real-time responses by approximately 17 percent. 

 

Table 3: CBS and MULTI-RSV Comparison 

 

 

2.3.5.3. Performance Predictability  

Unlike CBS, multi-granularity reservation trades some system capacity against the provision of a (m, k)-firm QoS 
guarantee. In this section, we confirm the necessity of predictability in scheduling policies. We experiment with 
multiple video streams using CBS. A real-time task set again is randomly generated as in previous experiments with 
the highest utilization allowed by CBS. None of non-real-time task is created since it does not affect CBS 
performance as previously discussed.  

As can be seen in Table 4, the performance of video streams uncontrollably depends on competing real-time tasksets 
despite of the same utilization. The worst-case performance5 may even have 27% of frames missing with 10% of 
dynamic errors. Such unpredictability is generally unacceptable in many QoS-guaranteed systems. 

 

            Table 4: CBS Performance at highest allowance load 

 
 

 

                                                 
5 We define this as the highest average ratio among all performance matrices. 
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3.   Memory Reservation 
 

Multitasking operating systems manage the sharing of multiple system resources including CPU cycles, physical 
memory, disk space, disk bandwidth and network bandwidth. Applications such as multimedia tasks that require 
timely response must be given predictable access to these system resources.  In recent years, significant research has 
been conducted on the use of time-multiplexed resources including processor cycles, disk bandwidth and network 
bandwidth. However, to our knowledge, work on spatial resources (and memory usage) particularly in the context of 
demand paging has not been studied at length.  In a multitasking environment, background and other non-real-time 
applications can steal memory pages forcing the working set of a high importance multimedia application to be 
swapped out. Consequently, when the multimedia application resumes, it might be forced to pay a timing penalty for 
swapping pages back in, and encounter jitter and even unacceptable delays. Operating system support is required for 
ensuring that tasks with QoS and predictability requirements get guaranteed access to time-shared and spatial 
resources. We also expect that such schemes will also gain more importance as consumer devices become smaller 
and more cost-sensitive.  

In this project, we propose a memory reservation abstraction for application tasks. Specifically, memory reservations 
can significantly enhance predictability and hence satisfy QoS needs.  Variants of the same mechanism can be 
utilized as different types of sand-boxes to enforce limits on memory usage.   

Limiting the energy consumption in mobile/embedded systems such as laptops, PDA's and cell phones is becoming 
increasingly important. Similarly, power-aware mechanisms are increasingly critical in the context of high-end 
server systems where heat levels and cooling requirements are becoming important considerations. Current hardware 
technology allows various system components to operate at different power levels and corresponding performance 
levels. We have implemented energy-aware extensions to our memory reservation implementation in the Linux 
operating system, wherein memory reserves can be bank-aligned to RAMBUS banks and can be associated with 
particular power-states at particular times, thus maximizing power savings while minimizing performance 
degradation.  The banks used by the reservation can then be put into a lower-energy state when the application is not 
in use. In order to reduce page-scattering effects, we pack reservations into the minimum number of banks possible 
without affecting performance. 

 

3.1.   Shortcomings with Current Memory Systems 
 
We illustrate the problems with current memory architectures with a simple example.  Consider sorter (a sorting 
routine that is representative of many database applications) that  is running in a 16 MB memory system in parallel 
with a malicious adversary  swapper, which declares a large array and then accesses array elements interleaved by 
the page frame size. When run in isolation, sorter incurs zero capacity misses. A capacity miss is a request for  a 
page that has already been accessed at some point in the past and has been evicted from memory by the paging 
policy and hence has to be fetched from disk.  As shown in Figure 16, swapper commences at t = 2 s and stops at 
t = 12 s, stealing pages of the memory.  This results in capacity misses and unpredictable page flushout delays for 
sorter which causes a 200 percent increase in run-time for sorter.  Similarly, for a convex optimization algorithm 
amrmd [30] running in parallel with swapper in a 32 MB memory system, there is an 80 percetn increase in run-time. 
These problems are discussed in detail in [28]. The problem here is that of the lack of memory isolation in the 
operating system due to the spatial multiplexing of the shared memory resource. Similar problems also plague the 
swap space. Our proposed scheme of memory and swap reservations addresses the above problems by isolating the 
effects of memory management of different applications from each other. Further more, it gives each application 
control over its own memory availability and usage, thus enhancing timing predictability and performance. 
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Figure 16: The problems in current memory subsystems 

 
 

 
3.1.1. Related Work 
 
Extensive work has been done in the domain of memory management for general-purpose operating systems. While 
application controlled page-replacement [22,23,24,25] and adaptive page-replacement [26,27] are very well-
researched topics, our work focuses on the orthogonal topic of firewalling memory behavior of each task to a 
separate physical domain.  The closest work related to ours in the domain of general-purpose operating systems is 
[28] by Hand. While they study the impact of firewalling on the performance of normal applications, our focus is on 
soft real-time tasks. In particular, we allow applications with QoS need to specify their memory requirement which is 
then guaranteed by the OS. Besides, in our case, the paging is implicitly triggered by the operating system rather than 
by an application handler. Our “self-clocking” paging mechanism focuses on complete predictability with regard to 
the paging operations.  

In the domain of real-time systems, memory pages of (real-time) applications could be wired down in the Mach [32] 
and RT-Mach operating systems, and therefore could not be paged out causing unpredictable future delays. 
However, for large applications and resource-constrained systems, such wiring may be very expensive (when 
possible) and may prevent other applications from running at all. In [29], Nakajima et al. added the ability to mark 
memory pages as belonging to a particular real-time application, which when used up, generated a trigger to the 
system. In contrast, each memory reservation in our case is a complete “virtual” memory subsystem which 
automatically self-pages only within that reserve, thus not affecting other tasks. 

While extensive research has been carried out in power-aware management for computing systems, energy-aware 
memory management is a relatively new area of research. In [34] and [35], combined hardware-software hybrid 
schemes are proposed to determine when particular banks are turned off using trace-driven experimental set-up. Our 
scheme leverages information that is exclusive to the OS and we have implemented our changes in the Linux kernel. 
Energy-aware memory optimizations using compiler techniques has been covered for generic embedded systems in 
[39,38] and for real-time systems in [37]. These optimizations are complementary to our work, which targets 
multitasking systems and relies on OS only strategies. In [36], Pillai et al. have implemented power-aware memory 
management in general-purpose OS scenarios without reservation support and have validated the phenomenon of 
“page-scattering”. While their work does not characterize performance effects due to the energy optimizations, our 
scheme saves energy with zero performance hit. Besides, since we leverage the concept of reservations to ensure that 
applications are packed into a minimum number of RDRAM banks, we minimize “page-scattering” for long running 
applications, thus saving significantly more energy over long periods of time. While our work assumes all active 
banks to be turned on with zero performance degradation, we could use a control framework and algorithms such as 
that proposed in [40] for more aggressive power-optimizations, albeit at the cost of a bounded performance hit. 

Finally, our work augments the Resource Kernel (RK) paradigm [33], which provides a unified abstraction for 
resource reservation, to accommodate memory which is a spatially multiplexed (as compared to time-multiplexed) 
resource. 
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3.2.   Memory Reservation Architecture 
 
3.2.1. Design Objectives 
 
Our design goals for the new memory subsystem architecture are as follows: 

• Timeliness and Predictability: An application must be able to specify its memory (resource) demands from a 
resource kernel.  Once granted, the requested number of memory page frames must be exclusively available to 
it.  Failure to honor a request will be used by user-level managers for appropriate recovery action. 

• Enforcement and Protection: The operating system must ensure that potential abuse/misuse of system 
resources by  any application does not affect the performance of other well-behaved applications. 

• Optimal memory utilization: The admission control mechanism should ensure that the available system 
memory is well-used. The system should also ensure that the apportioning of memory among applications is 
such that precious memory pages are allocated where their need is most.   

• Customizable Page Update Policy for application: Applications may exhibit special access patterns that the 
page-replacement policy would like to exploit. For example, the Least Recently Used (LRU) policy is known 
to perform extremely poorly for applications with predictable access patterns. Besides, for a given memory 
policy, the various parameters that affect the policy can be tuned to suit the application profile best w.r.t 
predictability and performance. 

• Compatibility with RK Abstractions: The Resource Kernel (RK) paradigm [33] provides a unified abstraction 
for managing multiple resources such as CPU, bandwidth and disk subsystem. We would like the abstractions 
for memory management to be compatible with that of other (time-multiplexed) resources in RK. 

The resource parameter that the application specifies in the memory reservation model is the size of the memory 
required by the application in bytes. This, in turn, is translated to the number of pages depending on the page size 
supported by the memory architecture.  The memory subsystem may internally use efficient management structures 
such as the buddy system, and therefore the number of pages reserved may be higher (but never smaller) than the 
requested size. 

When the set of free pages of a reservation is used up completely by the application, the memory reservation is said 
to have “filled up”.  We associate two types of policies with a memory reservation that is currently filled up. 

Hard Reservation: In a hard reservation, a process bound to it is not allowed to use pages beyond what is available 
in the memory reservation.  This is true even if unused/unreserved physical memory is abundantly available. In case 
the reserve is filled up, the process starts swapping pages within its own reserve to satisfy subsequent requests.  This 
provides a powerful sand-boxing mechanism for enforcing the memory usage of untrusted and potentially malicious 
applications, or even for the use of applications which must exhibit deterministic and predictable behavior every time 
they are run, while not compromising on performance optimizations such as page sharing of dynamic linked 
libraries. Strictly speaking, even an application that uses a hard memory reserve will not have the exact memory 
behavior when it is re-run because the disk buffering system is shared with other tasks. However, these variations 
will still be significantly lower than without the use of a hard memory reserve. 

Firm Reservation: In a firm reservation, when a reservation is filled up, a process bound to the reservation is 
allowed to use pages from the unreserved freelist. However, when the unreserved pages are needed by others 
(unreserved or soft reserved applications), these “borrowed” pages have to be returned. Applications such as 
multimedia tasks that require a lower bound on performance but could use improved performance should use firm 
reservations. 

An application can reserve the amount of swap space that it requires.  It can therefore not be affected by the abuse of 
swap resources by contending threads.  We treat swap reservations only as hard reservations, and do not support firm 
reservations. 

Multiple application threads/processes can be bound to a single reservation.  This is consistent with other resource 
kernel [33] abstractions for time-multiplexed resources, and allows one or more applications to “reside” within a 
virtual machine that comprises a fraction of the resources of the underlying physical machine. 

Memory reservation provides the mechanisms for memory partitioning. This abstraction of resource partitioning is 
also extensible in a hierarchical fashion.  That is, an application can create a "child" reservation (recursively) carved 
from its parent memory reserve and can specify appropriate policies for its use. For example, this type of 
functionality could be targeted at large multimedia applications which are multi-threaded, where we would like to 
apportion the total memory reservation in a controlled predictable manner among the various children threads. 
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3.3. Customizing Memory Management 
 
Applications such as multimedia streaming players or data compression tools always tend to access new data blocks. 
We call such applications capacity-insensitive applications or look-forward applications because typically they never 
look back very far into the past to access old data or code.  In contrast, applications like databases that implement 
mergesort algorithms regularly process previously used data. They may also transition to different phases of 
execution, where new code pages will be brought in, but earlier code/data may be revisited for aggregation purposes.  
We call such applications capacity-miss-sensitive applications or look-back applications. 

It is natural to assume that given the QoS support added to real-time operating systems in the recent past, memory 
reservations are useful for real-time and multimedia applications. In order to further enhance the predictability and 
performance of real-time tasks, we next introduce a novel self-clocking scheme for triggering memory management. 
This harnesses the isolation of memory usage of each application in order to provide deterministic paging 
characteristics for each application.   

 
3.3.1. Application Behavior, Self-Clocking and Memory Policies 
 
The knobs that can be used to characterize the memory behavior of applications in a reservation-based scenario are 
the size of the reservation and the size of the look-back window, which corresponds to the memory pages that were 
accessed by an application in the past but still retained in the memory subsystem as active pages. These two 
parameters affect the extent to which capacity misses can occur for an application. We try to match the parameters of 
the page-replacement algorithm with the application profile in order to minimize the number of capacity misses. 

 
Like standard implementations of page-eviction, we associate a parameter called Age which is decremented 
periodically by the operating system unless it was touched during the last “aging interval” in order to maintain a 
look-back window which includes the working set of a process. In our approach, however, rather than using wall-
clock time for triggering aging, we use the number of remaining free pages in the reservation as an implicit trigger to 
conduct the aging operation. This results in significantly reduced number of capacity misses since in-use pages are 
evicted only upon need. We call this implicit predictable triggering of page-eviction in reservation-based systems 
self-clocking, since page evictions are automatically adjusted based on the application memory needs. 

  
As mentioned, for capacity-miss-sensitive applications, beyond large reservation sizes, the look-back window should 
be as large as possible, meaning the size of its memory reservation.  However, this implies that the number of pages 
that need to be evicted when there is need for a free page is rather small. When the reservation has depleted its pages, 
every time a page fault occurs, a small number of pages must have their buffers flushed out to disk before being 
returned to the freelist. This flushout operation is expensive due to the slow relative speed of the disk.  Thus, we need 
to balance the size of the look-back window against the size of the pages that are evicted when the freelist becomes 
(nearly) empty. 

 
The above discussion suggests two different degrees of freedom in self-clocking policies: 
 
• Forced Eviction Policy: Retain all accessed pages until a new page is needed. At this point, forcibly evict 

exactly N pages where N is an application-specific parameter.  The aging of pages is used to decide which 
pages are picked for eviction. 

 
• Aging Only Policy: Use a look-back window. Pages that are beyond this window of look-back are eligible to 

be evicted at any time.  Window sizes should be chosen such that there is no possibility of a scenario where all 
pages in the reservation are in the look-back window and there is the need for a new page. 

 
The above two options can also be combined to form a hybrid scheme: 
 
• Automatic Decay Policy: Use a look-back window and allow forced evictions under scenarios where there are 

no free pages.  This offers the leeway  of choosing larger window sizes since the forced evictions can handle 
bursts of requests before the next aging interval. 

 
We evaluate these schemes in Section 3.8. 
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3.4. Energy-aware Reservations 
 
Modern memory architectures such as RAMBUS provide multiple states for power control. There are four power 
levels defined in the RDRAM specification - Attention, Standby, Nap and Powerdown. Banks can be put into lower 
power levels by disabling auxiliary sub-components of the memory circuitry. Our techniques incorporate information 
that is available exclusively to the operating system to significantly augment power savings. 

The memory reservation paradigm can naturally be extended to achieve energy-awareness. The basic observation 
used is simple - all unused banks can be turned to PowerDown mode (maximum power savings mode) and hence the 
energy incurred by these banks being on is saved. The reason that we consider only the PowerDown mode is that the 
bank turn-off decision is coupled with the scheduling decision. Thus when the operating system schedules a 
particular task, it knows for sure that the banks of all other processes will not be used and hence can safely turn them 
off to the lowest power state. At any instant of time, only the banks associated with the currently active process are 
kept on.  

Typical programs may, however, use memory-mapped files belonging to other processes, dynamically linked library 
files etc. This results in a process touching pages outside its reservation banks. This page-scattering effect has been 
confirmed by [36] in non-reservation-based scenarios and results in sub-optimal energy savings. Our solution to 
page-scattering is collocation of tasks i.e. we try to minimize the total number of banks used, thereby containing 
page-scattering effects. 

 

3.5.  Memory Reserves Implementation 
 
In this section, we describe our implementation of Linux memory reservation in the Linux 2.4.18 kernel.  

 
3.5.1. Memory Reserves  
 
A physical memory reservation is created upon the invocation of a create() system call as follows. First, an 
unreserved portion of system memory sufficient to hold the requested size is chosen.  The data structures associated 
with each reservation consists, among other fields, of a set of freelists (one associated with each size of memory 
chunk as explained in Section 3.1 and a buddy bitmap for handling the merging and splitting of memory chunks. 
Each page is, in turn, populated onto the reservation freelists at the appropriate level, and is marked as belonging to 
the reservation.  If a page is not free (but dirty), it is flushed to the disk before being added to the freelist. At this 
stage, the memory reservation has been created. When a process binds to a reservation with another system call, the 
task control block is attached to the particular reservation, with another pointer from the task to its memory 
reservation. Multiple processes can attach to the same reservation.   

 

 

 
3.5.1.1. Paging Policy: Lessons Learned 
 
There are several subtle but important design issues involved in page eviction.  Our initial design was as follows.  
When the reserve is nearly filled up, the pages in the inactive list need to be freed and reused. As a part of the API 
set, we supported two thresholds: a low watermark and a high watermark.  If the number of free pages in the 
reservation fell below the low watermark, the reservation started cleaning itself by evicting some aged pages.  The 
API also allowed the specification of a parameter NUMPAGES-EVICTED that denoted how many pages will be 
evicted, after eviction is triggered.  The intent was that this parameter can be chosen depending on the waiting time 
that the application is willing to tolerate.  Once the low watermark is encountered, for every page fault, 
NUMPAGES-EVICTED pages are cleaned until the high watermark is reached.  At that point, eviction is disabled 
for the reservation. 

Later, we found that this scheme is not desirable for two reasons.  One, it does not clearly capture the look-back 
window control that we seek.  In this scheme, aging takes place only when memory pressure is detected in the 
reservation (the low watermark is reached), after which all pages are treated equally. There may be many pages that 
could be beyond the lookback window of this application that could be reclaimed that are not reclaimed.  Two, once 
memory pressure is detected and eviction is triggered, every page fault involves cleaning out pages which requires 
writing buffers to disk, an expensive operation.  
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3.5.1.2.  Paging Policy: Implementation 
 
Our first implementation made it evident that reservation pages must be aged and evicted not on every page fault, but 
periodically every few page faults.  We therefore designed and implemented the self-clocking scheme described 
earlier. 

For every page fault that the process encounters, pages from the reservation are used to satisfy the page requests and 
are added to the Active page list of the reservation.  Aging of the pages in the reservation is carried out after a 
constant number of page faults occur in this reservation. Pages are moved to the inactive list of the reservation 
according to the paging policy in use as described earlier. As a performance optimization, we ensure that the buffer 
cache is shared so that pages swapped in by some application can be used by other applications without having to 
swap in a local copy of the data. 

For firm reserves, once the reserve is filled up, they can potentially steal unused pages from the unreserved portion, 
marking them as borrowed.  When the number of pages in the unreserved portion falls below a particular threshold, 
we return the most aged inactive borrowed pages to the LRU lists of the unreserved portion (the default system 
freelist). This ensures that an application using a firm memory reservation is always guaranteed not to experience 
higher response times than when using a hard reservation of the same size. 

      
3.5.2. Swap Reserves 
 

Linux implements swap space as a simple linear array, which makes implementing a swap reservation relatively 
straightforward. We recommend that the swap reservation value specified by an application be at least the stable 
steady-state swap usage obtained over long periods of runtime.  To be safe, an extra safety margin will normally 
need to be applied in practice. Our swap reservation implementation allows an application to reserve a sub-section of 
the array for exclusive use to the particular swap reservation.  This array is collocated as much as possible for 
batching efficiency of disk writes/reads. If contiguous blocks are not found, then the swap reservation creation API 
returns a failure message. 

 
3.5.3. Hierarchical Memory Reserves  
 
The implementation of hierarchical memory reservation in the Linux kernel is also fairly straightforward. In this 
case, when a forked child makes a hierarchical reservation using our hierarchical memory reserve interface, a child 
reservation is created from the memory reserved for the parent reservation.  Subsequently, the forked child can get 
exclusive access to the child reservation which behaves exactly like a level-1 reservation.  This concept can be 
recursively applied for hierarchical (level-i) reservations. If the requested number of pages exceeds the available 
number of pages in the parent reservation, the reservation request is rejected. 

3.5.4. Implementation of Energy-Aware Reservations 
 
When the first task's reservation is created, it is bank-aligned.  The system has information of the number of pages in 
each of the bank that has been filled up (and hence the residual space in each bank). Each of the partially filled banks 
is equally eligible for packing new reservation requests, thereby reducing the page-scattering effect. All banks 
belonging to all tasks other than the currently scheduled task are put into power-down mode. 

When the reservation spans multiple banks, each memory bank has its own data structures that manage the pages of 
that bank. This ensures that within a reservation, memory management mechanisms such as buddy management and 
freelist management are contained within the particular banks and do not propagate to neighbor banks. 

In addition, we use profiling information to further augment the energy savings when reservations span multiple 
memory banks. Using the application “look-back” profile, when we do a context swap, we keep track of the 
“working banks” of the just-swapped-out task which are the few banks in the immediate past that service most recent 
page-faults. In cases where the programs exhibit locality of reference, we can ensure that only the “working banks” 
are turned on while all other banks of the reservation can also be turned off, thus augmenting savings. Hierarchical 
reservations can be used to collocate all threads of a multi-threaded application to the same bank(s). 
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3.6.   Evaluation of Memory Reserves 
 
In this section, we evaluate our implementation of the memory reservation paradigm in the Linux 2.4.18 kernel.   We 
have implemented memory reservation, hierarchical memory reservation and swap reservation by incorporating 
changes to the Linux memory subsystem.  Our measurements were conducted on a Dell Dimension 8200 2.0 GHz 
Pentium-4 machine with 512 MB RAM.  Our implementation supports reservation sizes from 2 MB to 128 MB. 

 
3.6.1. Hard Reservations 
 
We first demonstrate the ability of memory reservations to enforce limits on the usage of memory pages of 
applications.  In this experiment, we create a hard reservation of 32 MB for the popular cycle-accurate simulator tool 
SimpleScalar running a simulated execution of the bzip utility.  The look-back window was set to 6000 accesses and 
when the application encountered memory pressure in the form of lack of free pages in the reservation list, exactly 
128 pages were evicted. Figure 17 tracks the number of page frames used by this application over time.  As can be 
seen, the total number of pages used by the application never exceeds 32 MB (8192 pages of 4 KB each). This 
experiment also depicts the usage of reservations as an instrumentation framework that can be used to profile 
application memory characteristics. There are marked phases in the program which denote the vast drops in page 
usage (many pages are not used and hence age to zero).  As can be seen from the intervals 5s..7s and 17s..20s, when 
there were no pages in the freelists, only 128 pages are returned (the height of the sawtooth-like waveforms at those 
points). The slope of the graph for any time t on the graph denotes the rate at which the application is generating 
page faults at that point in time. 
 

 
Figure 17: Hard Reservations 

 

 
3.6.2. Firm Reservations 
 
We next demonstrate the effect of firm reservations which provide guaranteed access to a specified amount of 
physical memory allocated to a reservation but which allow access to more memory (if available).  All parameters 
are the same as in the previous experiment.  In Figure 18, we simultaneously plot the number pages used by the 
application and the number of pages that belong to a reservation that the application attaches to.  The difference in 
the heights of the two graphs at any point corresponds to the number of pages beyond the reservation size that is 
borrowed from the system freelist.  For firm reservations, whenever the reservation runs out of free pages, it steals 
pages from Linux's page allocator.  Hence, there is no need to forcibly evict any reservation pages that have not 
aged.  This is reflected in the lack of any 128-page high saw tooth waveforms at the reservation's size limit. 
Borrowed pages are lazily returned to the OS (rather than the application) freelists once they have aged.   
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Figure 18: Firm Reservations 

 
 

 
3.6.3. Hierarchical Memory Reservations 
 
We next demonstrate the effects of hierarchical reservations where a reservation can, in turn, be split into 2 (or more) 
child reservations. In this example, a reservation of size 64 MB was split into 2 equal 32 MB reservations that run in 
parallel. 

Amrmd [30] is a convex optimization algorithm with polynomial complexity that has distinct execution phases. 
During the first phase, multiple files are opened and their contents read into RAM. During the next phase, data 
elements in the files are merged together and processed, after which the program moves on to a third phase where 
values are output. 

We utilize this opportunity to depict the self-clocking property (where the number of residual pages rather than 
absolute time is used to trigger paging operations) by plotting the graph in Figure 19 for page fault number along the 
x-axis rather than wall-clock time. Note that the aging operation is deterministic and occurs once every 1500 
accesses, as denoted by the breaks in the graph other than at instants when the reservation is depleted and pages are 
forcibly evicted. This value was chosen for the following reason: given that we want to minimize capacity misses in 
the merging phase, we want a large window (we chose 6000 accesses) before a page is aged and is deemed to be 
inactive. This, in turn, is factored into a page age limit of 4 and an update frequency of once every 1500 accesses. 
We also want to ensure that the number of pages evicted under memory pressure is low.  Note that there are very few 
points for amrmd where the memory pages have depleted (at around page fault index 10000), and 16 pages are 
forcibly released every time that there are no pages in the reservation's freelists. The various execution phases of 
amrmd when files are read in (interval 0..10000), merging algorithms are executed (interval 10000..19000) and 
results are aggregated, are clearly visible in the graph.   

 

 
Figure 19 : Hierarchical Reservations 
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Next we run the amrmd (using a 32 MB reserve) in parallel with the SimpleScalar simulator application (again using 
32 MB) in a parent reservation of 64 MB. In particular, we choose the same parameters as before. The graphs are 
plotted in Figure 19. Note that each reservation does not use the complete 64 MB parent reservation but is 
constrained only to the child reservation portion of 32 MB each.  

 
3.6.4. Swap Space Reservations 
 

Long-running applications such as server tasks or cron-jobs can benefit from our support for swap space 
reservation.  Even if other malicious or buggy applications start thrashing and use up swap space, we want to be able 
to ensure that other applications get access to necessary swap space.  Since the swap requirements are very 
application-specific, we suggest that the user (or preferably the application developer) profile the application to 
determine its swap usage.  For example, the swap usage of the X Server was less than 50 pages, that of using the 
make utility to build the Linux 2.4.18 kernel was 0 pages, that of SimpleScalar irrespective of the benchmark was 
found to be around 500 pages, while that of amrmd was up to 35,000 pages for bad choices of window and forced 
eviction threshold values. Typically, good choices of look-back window sizes and eviction counts minimize capacity 
misses and lead to reduced swap usage. 

 

3.7.   Determining Application Reservation Sizes 
 
In this section, we propose a novel scheme to determine reservation sizes for an embedded task-set such that the sum 
of run-times of all tasks in the system is minimized. The intuition behind our scheme is that the run-time is related to 
its memory requirement by a concave function. In particular, while increased memory allocation to a process results 
in lower run-time, the returns in reduction of run-time diminishes with increased memory allocation.  

We define the runtime insensitivity of a task, given an allocation of M MB of memory as  (1 - C(M)/ C(Mmin)) where 
C(M) is the application run-time, and Mmin denotes the minimum memory requirements provided to any task in the 
system. Mmin equals the smallest possible reservation size of the system which equals 2 MB. In Figure 20, we show 
the run-time insensitivity profile of two applications amrmd and SimpleScalar with variation of reservation size. 
Applications such as amrmd which are more sensitive to memory needs have a steady slope as compared to an 
abrupt steep slope that is characterized by tasks such as Simplescalar. For a system with unconstrained memory 
resources, the point at which the concave curve flattens corresponds to its memory reservation requirement because 
at this stage, the number of capacity misses becomes zero. Thus, amrmd should be allocated 64 MB and 
SimpleScalar 32 MB to minimize the capacity misses. 
  

 
Figure 20:  Run-Time Variation with Reservation Size 

 
 

When the system memory resources are insufficient for optimal allocation to all tasks, we must apportion it 
efficiently. In particular, assuming a set of n tasks (T1..Tn) in a system with R units of memory resources, each task 
Ti with K choices of reservation sizes Mi = (Mi

1 .. Mi
K)  and corresponding run-times (Ci

1 .. Ci
K)  ,we would like to 

choose reservation sizes Ri for each  task from Mi to maximize the sum of run-times insensitivity indices (Ctot = 
sum(Ci) ) of all tasks in the system subject to the memory size constraints in the system(sum(Ri) < R).  
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3.7.1.   Run-Time Minimization Algorithm 
 
 
An algorithm to determine the optimal reservation sizes Ri for each application Ti to obtain Ctot is as follows: 
 
• Let the current allocation of memory to Ti be Ri. Let the unallocated quantity of the memory be R1. Compute 

the slopes corresponding to the rate of change in run-time with memory allocation for the task-set. 
• Identify (a) the sub-collection of applications with the largest value of C'i(Ri), (b) the number of applications 

in that  sub-collection (denoted by k), and (c) the application (denoted by j) with the second largest value of 
this quantity if any such application exists. If the largest value of C'i(Ri) is 0, then stop. No further allocation 
will increase system utility and spare resources are available. 

•  Increase Ri for each of the members of the sub-collection so that their values of C'i(Ri) decrease but continue 
to be equal until either (i) this value becomes equal to the second largest value or (ii) the additional resources 
added to this sub-collection equal Rl. In case (ii), stop as all resources have been optimally allocated. 

• In case (i), one or more new applications should be added to the sub-collection. Return to Step 1. 
 
This algorithm results in optimal reservation sizes (R1 .. Rn)  for the task-set such that the sum of their run-times is 
minimized. This algorithm uses the Karush Kuhn-Tucker condition and is very similar in spirit to the Q-RAM SRSD 
algorithm in [42]. The interested reader is  referred to it for proof correctness. 

 

3.8.   Exploiting Memory Reservation 
 
In the previous section, we proposed an algorithm to determine optimal memory reservation sizes for an embedded 
task-set. We now describe how memory reservation can be used productively by applications by customizing paging 
policy parameters so as to enhance performance gains. 

 
3.8.1. QoS-Sensitive and Multimedia Applications 

 

For multimedia applications such as mpeg players and videoconferencing tools, since page-faults generated due to 
capacity misses typically result in application-level jitter, we recommend that such applications be associated with 
firm reservations. For example, most mpeg players, due to their look-forward nature, do not need more than a 
memory space of 16 MB. Thus, we associate a firm reservation with these multimedia applications in order to 
guarantee jitter-free functioning. In an experiment, we associated a firm reservation of 16 MB with mplayer, an 
mpeg player. In parallel, we ran a malicious application that greedily consumed both memory and processing time 
and found that it did not affect the mpeg player's performance at all. 

For multimedia tasks, we also provide the functionality to turn paging off completely so that no disk overhead will 
be incurred at the application layer since the total memory requirements of such multimedia tools easily fits within 
the system memory. For example, the total memory requirements of the popular mpeg player mplayer running an 
mp3 song of 7.32 minutes took 37,381 pages. For applications with predictable memory profiles such as multimedia 
players, it is possible to prefetch data pages into the memory reserve to counter the performance hit due to cold 
misses. Similarly, we also have extensions that allow the application to specify when to clean up the reservation 
rather than having the operating system do it implicitly. 

We note that in soft real-time multimedia systems, due to the capacity-insensitive nature of the applications, the 
benefits of determining optimal reservation sizes (see Section 3.7) far outweighs the impact of the paging policy 
used. 

 
3.8.2. Application Customized Paging Policy 
 
In this subsection, we explore the impact of the various “self-clocking” paging policies on the performance of  
typical applications. The application under concern was amrmd, which was chosen as a representative benchmark 
due to its high sensitivity to capacity misses. Capacity-insensitive applications are not affected much by policy.  
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3.8.2.1. Memory Policy for Capacity-Sensitive Applications  

As far as page-faults are concerned, forced eviction performs well, especially for a low Forcibly Evicted Pages 
threshold, the parameter which signifies the number of pages that are forcefully evicted under memory pressure. 
However, since only a few pages can be evicted when  the freelist is empty, multiple page flushes cannot be 
amortized over  one disk access and hence there is considerable run-time overhead (Figure 21(a)). We found that the 
capacity misses increase by 23% when the reservation size is reduced from 32 MB to 16 MB. 

 

 
Figure 21:  Self-clocking Paging Policy                                                   Figure 22: Energy-aware Reservation 
 
 

For the aging-only policy, the knob that can be varied is the window size. As the reservation size and/or the look-
back window size increases, the number of capacity misses is reduced. This effect is evident in the run-time graph of 
Figure 21(b). With the same 32 MB reservation, different look-back window sizes lead to significantly different 
execution times, ranging from about 35 seconds for a 1600 page look-back window to 54 seconds for a 800 page 
look-back window. However, if the window size gets too large, there may be quick spurts of high page-fault rates 
leading to requests for free pages when the reservation freelist is empty. We found that for amrmd, it is not possible 
to make the window size more aggressive (larger) than 1600 (400*4) accesses. 
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The results indicate that the hybrid of the forced eviction and aging-only policies is worth exploring. The run-time 
results for a 16 MB reservation for the forcibly-evicted pages parameter choices of 4, 64 and 512 pages can be seen 
in Figure 21(c).As the number of pages evicted gets larger, the look-back window size is decreased and therefore the 
number of capacity misses increases. This behavior is repeated when the reservation size is 32 MB, except that the 
absolute number of capacity misses was found to be less, resulting in lower absolute run-times as can be seen. 
Forcibly evicting a small number of pages (4) under pressure leads to the best performance and using a 32 MB 
reservation yields better run-times as can be expected. In summary, when the number of forcibly evicted pages is 
small and the window size is large, the automatic-aging policy performs the best in terms of minimizing runtime. 

We also evaluated the impact of interaction of multiple application types when attached to the same reservation. We 
experimentally verified that multiple capacity-sensitive applications could affect each other adversely when attached 
to the same reservation, causing up to 26% performance degradation. On the other hand, capacity-insensitive 
applications are insensitive to interaction effects when attached to the same reservation. 

 

3.8.3. Evaluation of Energy-Aware Reservations 
 
We now evaluate the effectiveness of energy-aware reservations in saving memory power by strategically turning 
unused banks off. Since there are documented hardware bugs in the RDRAM memory controller, we had to resort to 
indirect measurements based on kernel statistics rather than directly measure the memory energy consumption. Since 
the operating system has no way of ascertaining whether shared pages which exist in other banks are touched by a 
given process, we pessimistically assume that all currently in-use banks can be touched. Hence, by bin-packing the 
reservations into the minimum number of banks, we ensure that memory power is minimized with zero impact on 
performance. We compare our energy-aware reserves with a baseline system without reservations but where unused 
banks are kept turned off. 

We classify application-workloads into multiple categories:  multimedia workloads with media streaming and 
processing applications, simulation workloads like trace simulators, emulators etc,  interactive workloads involving 
interactive programs such as the X server that consume a lot of  memory pages with relatively infrequent user-
propelled activity and average workloads with a typical mix of these tasks. 

We found that the kernel and its allied threads occupy 3 banks of memory. Linux, as it stands, maps the kernel to the 
first few banks of RDRAM while user memory is allocated proceeding downward from the highest bank. We made 
changes to make physical memory allocation sequentially increasing so that the first user memory bank uses the 
remaining portion of the partially filled third kernel bank, thus saving us 1 bank.  

For multimedia and simulation workloads, since the applications are capacity-insensitive applications, the working 
set size is small and hence the reservation sizes can be made small.  In our example, we consider mplayer running in 
parallel with an mpeg tool Avi2Mpeg - the optimal reservation sizes for each is 16 MB. Given the RDRAM bank 
granularity, this directly translates to 1 bank. Figure 22(a) plots the memory power consumed by applications that 
use energy-aware reserves as compared to the naive turn-off policy discussed above. In operating systems without 
reserves, long video files soon result in the application occupying the entire memory space, thus requiring all banks 
to be eventually turned on. In comparison, only 4 banks need to be kept on in the reservation case as compared to 16 
banks in the unreserved scenarios. Similarly, multiple threads of  SimpleScalar were run in the simulation workload. 
This is shown in the first two pairs of bars of Figure 22(a). The kernel banks are always turned on since the 
application threads typically invoke kernel system  calls such as file reads. This directly translates to energy savings 
of 3.0 watts. Each RDRAM device drains 313 mW of power in Attention mode, 225 mW in Standby mode , 11 mW 
in Nap and 7mW in Powerdown mode, for the banks that are turned on, we assume that an active bank is in Standby 
mode 50 percent of the time and in Attention mode the rest of the time which corresponds to 75 percent as compared 
to no reservation but with no performance impact. 

For interactive workloads, we consider the X-Server running a browser and spreadsheet application for 10 minutes. 
We found that a reservation size of 64MB (2 banks) was sufficient for smooth operation of X and the spreadsheet, 
thus requiring a total of 5 banks to be turned on. As compared to that, when X was launched without a reservation, 
along with typical X-based applications, X needed a steady state requirement of 6 banks of memory, thus requiring 9 
banks in total to be kept turned on as shown in the third pair of bars of Figure 21. For interactive applications, we 
save up to 44.4 percent power. 

When an “average” work-load with multiple types of applications, the combined savings is 2.5 Watts (62.5%) as 
shown in the final pair of bars of Figure 22(a). This is because the  X server and  SimpleScalar require just 3 banks 
while in the unreserved case, media applications and  SimpleScalar alone occupied all 16 banks. For capacity-
sensitive applications such as database indexing /searching programs, the look-back window is as large as the 
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reservation size. Hence there is not much possibility of power savings for capacity-sensitive applications beyond 
carefully chosen reservation sizes without a performance hit.  

Energy-aware reserves are automatically associated with soft reservations since the cost involved in keeping a disk 
spun-up due to additional paging activity outweighs the energy gained by turning banks off. Our approach, however, 
ensures that so long as there is an opportunity to save energy by judicious bank-alignment of  pages, we save energy. 
Our results demonstrate that this is indeed the case in most practical systems with realistic workloads.   

 
3.8.3.1. Finer-Granularity Memory Banks 
 
We now explore whether applications can make use of banks with finer granularity than the 16MB/32MB currently 
supported by  RAMBUS. When application memory reservations span multiple banks, the scheme discussed so far 
was to keep only the banks associated with the scheduled task on. However, when the application look-back window 
is small, there is no need to turn on all memory banks. Suppose the working bank as the memory bank that services 
most application requests in the last time-window (say 100 ms) of application execution. The formula for the stride 
distance of  bank bkidx w.r.t the working bank bkhot when the number of banks in the reservation equals N is ( bkidx   -  
bkhot + N )mod N. Thus if a reservation spans 8 banks, the stride distance of bank 2 w.r.t bank 3 is 1  while the stride 
distance of bank 4 w.r.t bank 3 is 7. Since page allocation in a reserve is sequential, the stride distance signifies the 
time into the past when a particular bank was touched in the current interval.  

We are interested in the way page faults are spread out among the banks - the wider they are spread out relative to 
the working bank, the less locality is exhibited by the application. This information can, in turn, be used to turn off 
banks in a reservation. Thus, these graphs can be used to determine the granularity of bank sizes that would be 
optimal for use. We do not consider memory bank sizes lower than 2 MB because at this point the bank sizes equal 
the size of the highest contiguous memory chunk that typical operating systems use. 

Thus for the experiments, we collect kernel statistics for memory bank sizes of 4 MB. As the program executes, we 
periodically checkpoint the number of page faults w.r.t the working bank in the last 100 ms of program execution.  
Our results are shown in Figure 22(b).  They show that capacity-insensitive applications can save an additional 88.5 
percent energy for gzip compared to the savings got when bank sizes are coarse-grained (32 MB)! Similarly for 
SimpleScalar, the additional energy savings when bank sizes were reduced were 75 percent. This clearly shows that 
finer granularity banks can be used by some applications to augment power savings without a performance hit. 
However, it can be seen that for capacity-sensitive applications, there is no significant opportunity for additional 
power savings without degrading performance. In particular, for 16 MB reservation sizes,  the savings is 0 percent 
while even for 32 MB reservation sizes, the maximum possible energy savings is only 18.75 percent as shown in 
Figure 22(c). We therefore conclude that finer granularity banks of at least around 2 MB or 4 MB can be leveraged 
by capacity-insensitive applications to save memory power consumption. 
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4. Conclusion 

We have introduced a new power-aware, system-energy management scheme known as PowerTap.   In normal 
operation, PowerTap optimizes the performance of a system within a given power budget.  Alternately, PowerTap 
can achieve the best power efficiency while observing performance and other constraints associated with each 
application.  Examples of such constraints include: timing or deadline constraints in real-time applications, video and 
audio quality constraints in multimedia applications, high disk bandwidth usage in video servers, application 
mission-time in the limited power system, etc.  Within PowerTap, the operating system and other software tools 
collaborate with the hardware to manage and minimize power consumption while providing quality of service 
guarantees to applications as well as the overall system.   System software and hardware monitor power levels for all 
critical system components, and adjust these levels dynamically to meet application timing, and system 
power/energy demands. 

An important component of PowerTap is the Power-Aware Real-Time Operating System (PARTOS).  PARTOS is 
a morphable real-time operating system that manages power in the system hardware resources.  Such resources 
include disks, memory, and network interface cards.  PARTOS also manages power levels for periodic activities 
such as interrupt handlers, and for system software services such as TCP/IP stacks.  Furthermore, PARTOS tunes the 
system software computational requirements.  Since PARTOS is morphable, it can adapt its power management 
policies depending on the available power source (battery, or AC).  Under battery power, it balances the discharging 
rates and the recharging rates of the batteries. Under AC power, the low average power rate is focused.  

Carnegie Mellon University has previously developed the Quality of Service (QoS)-Resource Allocation Model 
(Q-RAM).   PowerTap exploits an extension of Q-RAM called the Power-Aware Resource Allocation Model 
(PAQ-RAM).  Applications running under PARTOS have various quality of service requirements with respect to  
their usage of finite system resources.  PAQ-RAM allows PARTOS to balance these multiple quality of service 
requirements and maximize the utility (users’ satisfaction) of the overall system.   Portable, battery operated systems 
have a restricted energy usage requirement  (the discharge rate of the battery has to be lower than the charge rate to 
maintain stability).  Airplanes and other mobile vehicles also fall into this category.   PAQ-RAM takes this energy 
budget into account with other resources and adjusts the quality of service of individual application based on its 
criticality and the amount of resources available. 

In conclusion, PowerTap is analogous to a water tap, allowing applications to draw as much power and performance 
as they need, but no more.  This approach economizes power and extends the mission life of energy-poor systems 
such as battery-operated and energy-harvesting platforms.  PowerTap will see significant use in military and space-
borne applications.   
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