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Abstract 

 

  With increasing developments in computer technology and available software, 

simulation is becoming a widely used tool to model, analyze, and improve a real world 

system or process. However, simulation in itself is not an optimization approach. 

Common optimization procedures require either an explicit mathematical formulation or 

numerous function evaluations at improving iterative points. Mathematical formulation 

is generally impossible for problems where simulation is relevant, which are 

characteristically the types of problems that arise in practical applications. Further 

complicating matters is the variability in the simulation response which can cause 

problems in iterative techniques using the simulation model as a function generator. 

  The mixed-variable generalized pattern search with ranking and selection 

(MGPS-RS) algorithm for stochastic response problems is applied to an external 

simulation model, by means of the NOMADm MATLAB® software package. Numerical 

results are provided for several configurations of a simulation model representing a 

multi-echelon repairable problem containing discrete, continuous, and categorical 

variables. Computational experience results are presented.     
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OPTIMIZATION OF A MULTI-ECHELON REPAIR SYSTEM VIA

GENERALIZED PATTERN SEARCH WITH RANKING AND SELECTION:

A COMPUTATIONAL STUDY

I. Introduction

1.1 Background of the Problem

With the increasing developments in computer technology and available software,

simulation is becoming a widely used tool to model, analyze, and improve a real world

system or process. A simulation model is often developed because the system under study

is so complex that an analytical model either is di¢ cult to develop or cannot be formulated.

Each simulation model can be classi�ed as one of two types depending on the presence of

random, or stochastic, elements in the model. Those models without random elements are

called deterministic models. Each time it is run with a particular set of input variables,

a deterministic model yields a unique output, or response, with no variation. Simulation

models that include some randomness, which means the response changes randomly for

each run, are called stochastic models. This research addresses stochastic models with

responses that have variation, or noise, as a result of randomness for each run of the model.

Often an analyst uses the simulation model as an ad hoc means to optimize the

real system. Typically with this approach, the analyst sets the input variables, runs the

simulation for one or more replications, and evaluates the response. The analyst updates

the input variables and repeats the process, ultimately �nding a �best� solution. The

input variables yielding that solution are then implemented in the real system. However,

the evaluation of the response with a given set of input variables is complicated due to the

stochastic nature of the simulation. While the objective may be to optimize an overall

average response, the response for a speci�c set of input variables may only be the result of

a small number of simulation runs. One solution to this problem is to run the simulation

at each set of input variables for a large number of replications. However, this is usually
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not practical, particularly if the number of input variable combinations to be run is large

or the simulation takes a long time to run. What is needed is a procedure that can handle

the noisy response of the simulation to determine which input variables produce the �best�

response.

The noisy response may be modeled as an unknown response function F (x; !) which

depends upon an n-dimensional vector of controllable design variables x 2 Rn, and the

vector !, which represents random e¤ects inherent to the system. The objective function

f of the optimization problem is the expected performance of the system, given by

f(x) = EP [F (x; !)] =
Z


F (x; !)P (d!); (1.1)

where ! 2 
 can be considered an element of an underlying probability space (
;F ; P )

with sample space 
, sigma-�eld F , and probability measure P (51). Because the re-

sponses come from a black-box simulation which cannot be represented analytically, the

probability distribution that de�nes the response F (x; !) is assumed to be unknown but

can be sampled.

An optimal solution for either a deterministic or stochastic simulation model can be

di¢ cult to obtain. Since f is usually unknown and analytical derivatives are unavailable,

classical optimization approaches generally do not apply. Also, simulation runs, necessary

for the numerical evaluation of f , may be computationally expensive. The presence of

noise only complicates matters because f cannot be evaluated precisely. Statistical tests

to determine if one x is better than another, a requirement for many search methods, may

require a large number of repeated samples. Additional complications arise when x con-

tains non-continuous variables, either discrete-numeric (e.g. integer-valued) or categorical.

Categorical variables are those that can only take on values from a prede�ned list that have

no ordinal relationship to one another. For example, a company may have di¤erent types

of materials used in the manufacture of their products. The variables may represent those

materials (i.e. 1 = steel, 2 = aluminum, etc). The class of optimization problems that

includes continuous, discrete-numeric and categorical variables is known as mixed variable

programming (MVP) problems (10).
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1.2 Purpose of the Research

Sriver (50) developed a general algorithm for optimization of a stochastic system.

Using a combined generalized pattern search with ranking and selection approach, the al-

gorithm handles the mixed variable case, where the input vector contains continuous and

discrete/categorical variables, with bound and linear constraints to optimize a black-box

simulation response. This thesis builds on the work of Sriver by developing a simula-

tion representing a real world system to apply the Mixed-Variable Generalized Pattern

Search with Ranking and Selection (MGPS-RS) algorithm for stochastic response func-

tions. Dunlap (24) incorporated the MGPS-RS algorithm into NOMADm, an optimiza-

tion tool written in MATLAB1 programming language by Abramson (1) and the software

used to optimize the simulation model. The simulation model developed represents a

Multi-Echelon Repairable System that has wide use in military and industrial environ-

ments.

1.3 Overview of the Document

The next chapter contains a review of the literature for simulation-based optimization

strategies, including a brief survey of pattern search and ranking and selection, followed by

a description of real multi-echelon repairable systems and related solution methodologies.

Chapter 3 presents the application of the algorithm to a simulation built to represent the

multi-echelon repair problem. Chapter 4 presents computational results. Finally, Chapter

5 o¤ers some concluding remarks and recommendations for further advancement of the

optimization via simulation using the MGPS-RS stochastic algorithm.

1MATLAB
R
is a registered trademark with MathWorks.
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II. Literature Review

Prior to applying the algorithm for the optimization of the system, it is important to

review the literature for competing methods and examine the procedures used in the algo-

rithm. Section 2.1 provides an overview of techniques and methods for simulation-based

optimization. The approach used in this thesis, due to Sriver, uses a generalized pattern

search method modi�ed to handle the stochastic nature of optimization primarily for its

independence from the need for gradient information and for its convergence theory. Sec-

tion 2.2 gives a history and recent advancements of the pattern search class of algorithms.

Sriver�s work focused on extending pattern search methods to stochastic problems with

noisy responses. He accomplished this by augmenting pattern search with a ranking and

selection strategy. Section 2.3 describes some general ranking and selection approaches.

The last section discusses the multi-echelon repair problem and some of the recent solution

methodologies, including approaches that use simulation-based optimization.

2.1 Simulation-based Optimization

There are several papers that discuss the foundations, theoretical developments, and

applications of a variety of techniques for simulation optimization (32, 26, 9, 13, 53). Rank-

ing and selection, described more thoroughly in Section 2.3, is a popular methodology, but

it does not handle a large number of candidate solutions and is impractical in the case

of continuous variables. When applying these procedures to problems with continuous

variables, the variables must be discretized. The intervals are often user-de�ned and can

combinatorically explode the search space when not appropriately speci�ed. Multiple

comparison procedures run a number of replications and make conclusions on a perfor-

mance measure by constructing con�dence intervals (26). Likewise, multiple comparison

procedures work better when the entire decision space is completely discrete. Random

search can deal with a large number of candidate solutions, as well as upper and lower

bounds. However, because previous information is not used at each iteration, formal con-

vergence proofs for random search methods are rare, especially with continuous variables

and noisy response (49).
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Response surface methodology (RSM) is a class of procedures characterized by �tting

a series of regression models to the responses from a simulation evaluated at several speci�c

design points, then optimizing the resulting regression function. RSM is a popular method

because of its use of well-known statistical properties. In application to simulation-based

optimization, much of the research in polynomial based RSM prior to 1990 is summa-

rized in Jacobson and Schruben (32), in which several improvements are discussed such as

screening for variable reduction, allowance for multiple objectives, constraint-handling via

the methods of feasible directions and gradient projection, variance reduction via common

and antithetic pseudorandom numbers, and the e¤ects of alternative experimental designs.

RSM does have drawbacks, notably its lack of convergence and inability to handle cat-

egorical variables (50). Gradient-based methods, such as �nite di¤erence, perturbation

analysis, and likelihood ratio, that estimate gradients of the objective function are well-

known and widely used, but are restricted to the continuous variable problem. Stochastic

approximation is also a gradient-based method that recursively estimates the gradient.

This method possesses some convergence theory and certain variants can be quite e¢ -

cient, but like the other gradient-based methods, it is geared towards continuous variable

problems. The preceding techniques can be classi�ed into two types: those for use with

discrete input parameters and those for use with continuous variables. None of these are

able to deal with the mixed variable problem.

Much of the simulation software available today contains some sort of optimization

package, usually in the form of a heuristic search (27). A search heuristic is a method

used to solve a problem essentially by trial and error. The procedure described at the

beginning in this thesis is also an example of a heuristic. While heuristics often have an

intuitive justi�cation and can yield good solutions, they do not necessarily produce an

optimal solution (56). Examples of search heuristics used in simulation software include

evolutionary algorithms (genetic algorithms, evolutionary strategies and evolutionary pro-

gramming), scatter search, tabu search, and simulated annealing. Their relative ease of

use and generality (they can easily be adapted to mixed-variable problems and require only

black-box response samples) have made them popular choices for simulation-based opti-

mization. However, their application to stochastic problems has been largely unmodi�ed
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Table 2.1 Summary of techniques proposed for simulation-based optimization.

Continuous Discrete Convergence
Numeric Categorical

Ranking & Selection X X X
Multiple Comparison X
Random Search X X x
RSM X X
Gradient-Based X X
Heuristics X X X

from their original form, relying on inherent robustness to noise, rather than explicitly ac-

counting for noise (27). Boesel et al. (15) provide a good framework for simulation-based

optimization. Their work is similar to the algorithms used in this thesis, particularly their

use of ranking and selection. However, they employ the genetic algorithm heuristic, which

requires the continuous variables to be discretized. Moreover, the user must choose the

discrete interval for each continuous variable.

Table 2.1 summarizes this section, listing the techniques with their appropriate use

and convergence theory. A �eld containing an �X�denotes the ability of the particular

method to handle a certain type of variable or shown to have convergence. The small

�x� signi�es that random search methods have some convergence theory, but not when

continuous variables are part of the decision space.

2.2 Pattern Search

Pattern search methods are a class of direct search methods for nonlinear optimiza-

tion. The term �direct�means the methods use minimal information about the objective

function, making a direct comparison of objective function values without the need for ex-

act derivatives or their approximation. Since an objective function from a simulation may

not be easily computed, direct search methods apply well to simulation-based optimiza-

tion. Also, because of their broad applicability, allowing for mixed variable input vectors,

they can be applied to simulations with a variety of discrete and continuous parameters.
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Pattern search methods can be traced back to the work of Box in industrial e¢ ciency

during the 1950s (18) as a way to create a �layman�s�method, not relying on the experi-

mental designs and regression of response methodology. Additional direct search methods

were developed in the 1960s, but these algorithms were not formally shown to have strong

convergence theory (2). However, in the late 1990s, Torczon introduced pattern search

as a generalization of several existing methods and established convergence theory for the

entire class of algorithms (54). Torczon�s paper was signi�cant in that it established a

global �rst-order convergence theory without ever explicitly computing or approximating

derivatives.

2.2.1 Generalized Pattern Search. Pattern search algorithms are de�ned through

a �nite set of directions used at each iteration. The direction set and a step length pa-

rameter are used to construct a conceptual mesh centered about the current iterate (the

incumbent). Trial points are selected from this discrete mesh, evaluated, and compared

to the incumbent in order to select the next iterate. If an improvement is found among

the trial points, the iteration is declared successful and the mesh is retained or coarsened;

otherwise, the mesh is re�ned and a new set of trial points is constructed. Torczon proved

that, for a continuously di¤erentiable function f , a subsequence of the iterates fxkg pro-

duced by the generalized class of methods converges to a stationary point of f by showing

that the mesh size (step length) parameter becomes arbitrarily small.

The mesh is de�ned by a �nite set of directions that must be su¢ ciently rich to ensure

that at least one of them is a direction of descent, provided that the current iterate is not a

stationary point. Lewis and Torczon (36) applied the theory of positive linear dependence

(22) to establish criteria for such a set of directions. Speci�cally, the set of directions form

a positive spanning set for Rn, which is de�ned as a set for which any vector in Rn can

be expressed as a nonnegative linear combination of these directions. Typically this set

forms a positive basis, which is the smallest proper subset of a positive spanning set that

still positively spans Rn. A positive basis contains between n+1 (a minimal set) and 2n (a

maximal set) elements (22). Therefore, the worst case number of trial points per iteration

can be bounded to n+ 1 points by an appropriately constructed direction set.
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2.2.2 Bound and Linear Constraints. Lewis and Torczon extend the results of

(54) to problems with bound constraints (37) and a �nite number of linear constraints (38).

In these situations, the set of positive spanning directions used in the algorithm must be

chosen such that they conform to the geometry of the nearby constraint boundaries. Using

this construct, at least one direction in the positive spanning set must be a feasible descent

direction, unless the current iterate is already a stationary point.

Audet and Dennis (11) devise an alternative version of pattern search for bound

and linearly constrained problems, along with a new convergence theory based on the

nonsmooth calculus of Clarke (20) that generalizes previous results. Second-order behavior

is described in (3). Audet and Dennis explicitly separate the evaluation of points into two

distinct steps, an optional search and a local poll step. The step allows the user to de�ne

a search strategy to seek an improved mesh point. The search step contributes nothing

to the convergence theory, but allows the user to apply any �nite heuristic to increase the

e¢ ciency and possibly a¤ect the quality if a correct search is chosen (17). Examples for

the use of this approach include randomly selecting a space-�lling set of points using Latin

hypercube design or applying a few iterations of a genetic algorithm (50). For problems

with computationally expensive functions, the search step is often used to construct

inexpensive surrogate functions and then optimize the resulting surrogate problem (e.g.,

see (17)). Dunlap (24) studied the use of surrogates in pattern search methods, applied

to mixed variable stochastic problems. The poll step evaluates speci�c points on the

mesh, referred to as the poll set, that are adjacent to the current iterate with respect to

the current set of positive spanning directions.

2.2.3 Nonlinear Constraints. Audet and Dennis (11) extend their approach to

nonlinear constraints by implementing a �lter method (25), which accepts new iterates if

the usual improvement in objective function is found, but also if an aggregate constraint

violation function is reduced. Lewis and Torczon (39) give an alternate approach where

a bounded subproblem, formed from an augmented Lagrangian function (21), is solved

approximately using pattern search. Motivated by weaknesses in the convergence theory

of the �lter pattern search method (11), Audet and Dennis (12) introduced a new class
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of algorithms, called Mesh Adaptive Direct Search (MADS), which generalizes GPS by

allowing more �exibility in the selection of directions. In fact, MADS has been proved

to converge to second-order stationary points, and even local minimizers of general set-

constrained nonlinear optimization problems (5). MADS uses a barrier method, replacing

the �lter method, that assigns a value of +1 to infeasible iterates without ever evaluating

their objective function.

2.2.4 Mixed-Variable Generalized Pattern Search. Audet and Dennis (10) pro-

vided a framework for mixed-variable problems with bound and linear constraints by in-

cluding discrete neighborhood sets in the de�nition of the mesh. Their algorithm was

applied successfully in (35) to the design of a thermal insulation system. In the mixed

variable case, the poll step is augmented with a search of points in a user-de�ned set

of discrete neighbors. If the poll step is unsuccessful in �nding an improved solution,

an extended poll step is performed, in which a poll is performed around any discrete

neighbor that has an objective function value su¢ ciently close to that of the incumbent

(i.e. within a tolerance � > 0). This algorithm allows extension of the convergence theory

to the mixed variable domain but incurs a cost of more function evaluations, particularly

if the user allows a large number of discrete neighbors. Abramson (2) extended the work

done by Audet and Dennis by allowing nonlinear constraints in the mixed-variable case

through the use of a �lter. This work was applied successfully in (4) to the design of a

load-bearing thermal insulation system.

The following description by Sriver (50) explains the de�nition of the mesh and poll

set developed by Audet and Dennis (10):

�A set of positive spanning directions Di is constructed for each unique
combination i = 1; 2; : : : ; imax, of values that the discrete variables may take,
i.e.,

Di = GiZi; (2.1)

where Gi 2 Rn
c�nc is a nonsingular generating matrix and Zi 2 Zn

c�jDij. The
mild restrictions imposed by (2.1) are necessary for the convergence theory.
The mesh is then formed as the direct product of �d with the union of a �nite
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number of meshes in �c, i.e.,

Mk(xk) = �
d �

imax[
i=1

�
xck +�kD

iz 2 �c : z 2 ZjD
ij

+

�
: (2.2)

At iteration k, let Dik � Di denote the set of poll directions corresponding
to the ith set of discrete variable values and de�ne Dk = [imaxi=1 D

i
k. The poll set

is de�ned with respect to the continuous variables centered at the incumbent
while holding the discrete variables constant. Its form is

Pk(xk) =
�
xk +�k(d; 0) 2 � : d 2 Dik

	
(2.3)

for some 1 � i � imax, where (d; 0) denotes the partitioning into continuous
and discrete variables; 0 means the discrete variables remain unchanged, i.e.,
xk +�k(d; 0) = (x

c
k +�kd; x

d
k).�

Within the GPS framework, mixed variables are incorporated through the use of

discrete neighbors N (xk) at each point xk in the domain. The points in N (xk) include the

current point xk and other points that di¤er in at least one of the discrete variables. For

example, if the discrete variables are de�ned as integers, a neighborhood structure may be

de�ned by holding the continuous variables constant and changing only one of the discrete

variables by a single unit, i.e.,

N (xk) = fy 2 � : yc = xck;
yd � xdk

1
� 1g: (2.4)

However, if the discrete variables are categorical, then this neighbor set may not be well-

de�ned. For example, in a manufacturing process, a categorical variable might be material

type, in which case, the norm function is not well-de�ned, since there is no measure of

distance for this nonnumeric variable. In this case, changing the material type from one

designated by a �1�to one designated by a �3�may just as valid a changing it to �2�. Thus

for categorical variables, the discrete neighbor set must be de�ned by the user. It should

also be noted that a change in a discrete variable may force an accompanying change to

the continuous variables. As an example, if a continuous variable, such as thickness, were

associated with each material, then a discrete neighbor would be of a di¤erent material

type than the current point, but it might also have a di¤erent thickness.
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2.2.5 Generalized Pattern Search with Noisy Response. The use of generalized

pattern search applied to stochastic optimization is limited. Trosset (55) analyzed con-

vergence in the unconstrained, continuous case by viewing the iterates as a sequence of

binary ordering decisions. For �k = f(Xk)� f(Y ), where Xk is the current iterate and Y

is a trial point from the mesh, the statistical hypothesis test,

H0 : �k � 0 (2.5)

H1 : �k > 0;

is conducted, in which Y is accepted as the new iterate if the null hypothesis H0 is rejected.

The test is subject to Type I and Type II errors. A Type I error is made if H0 is rejected

when it is actually true and occurs with probability �, the signi�cance level of the test.

A Type I error would select a new iterate incorrectly. A Type II error is made if H0

is accepted when H1 is true and occurs with probability �. A Type II error would not

update the iterate with the new, better point. The number of Type I errors can be

controlled, ensured (with probability equal to one) to be a �nite number, by selecting a

sequence of signi�cance levels f�kg such that
1P
k=1

�k < 1. In addition, let f�kg be a

sequence of alternatives satisfying �k > 0, �k = o(�k), and �k ! 0 that require power

1��k when conducting the test in (2.5). Choosing a sequence f�kg such that
1P
k=1

�k <1

ensures a �nite number of Type II errors when �k � �k. Trosset claims that a sequence

of iterates from a GPS algorithm can be shown to converge almost surely to a stationary

point of f but, in practice, would require a very large number of samples to guarantee

convergence (55). He shows through a power analysis that the number of samples per

iteration grows faster than the squared reciprocal of the mesh size parameter. A power

analysis is a statistical technique to determine the required sample size to guarantee a

probability (1 � �) of rejecting H0 when H1 is true. Also, Ouali et al. (43) applied

multiple repetitions of generalized pattern search directly to a stochastic simulation model

to seek minimum cost maintenance policies where costs were estimated by the model.

Sriver (50) was able to overcome the problem highlighted by Trosset with the use of an

indi¤erence zone in ranking and selection procedures.
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2.3 Ranking and Selection

Ranking and selection (R&S) procedures are �statistical methods speci�cally devel-

oped to select the best system, or a subset of systems that includes the best system, from

a collection of competing alternatives� (28). The following overview of R&S procedures

details their use in iterative search routines applied to stochastic optimization via simula-

tion.

Indi¤erence zone and subset selection are the two main topics in R&S methods (26).

Indi¤erence-zone procedures guarantee a solution within � > 0 above the true best solution

with user-speci�ed probability (1��), where � 2 [0; 1]. The parameter �, which represents

a measure of tolerance known as the indi¤erence zone, is called the indi¤erence zone

parameter. R&S procedures collect response samples from the alternatives using a single

stage or multiple stages of sampling, check a certain stopping criteria, then either continue

sampling or stop and select the alternative with the smallest response estimate in the �nal

stage (49). The original procedure by Bechhofer (14) determines the number of samples

required of each iteration beforehand, or a priori, according to a tabular value related

to the user-de�ned values for � and �. A potential drawback, especially in the area of

simulation, is that Bechhofer�s method assumes that the variance in the response samples

is known and equal across all alternatives.

Dudewicz and Dalal (23) and Rinott (46) extended the approach to apply to problems

with unknown and unequal variances in response samples. They used a two-stage process,

in which an initial stage of sampling is done to estimate the variances, which are then used

to determine the number of samples needed in the second stage to ensure the probability

of correct selection. Subset selection aims to select a subset of at most m points and

guarantees that this subset contains at least the best solution, with probability at least

(1� �) (41). Subset selection is more useful when the number of candidates is large.

To de�ne the requirements for a general indi¤erence-zone R&S procedure, Sriver (50)

gives the following formulation

�...consider a �nite set fX1; X2; : : : ; XnCg of nC � 2 candidate design
points. For each i = 1; 2; : : : ; nC , let fi = f(Xi) = E[F (Xi; !)] denote the
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true objective function value. The fi values can be ordered from minimum to
maximum as,

f[1] � f[2] � � � � � f[nC ]: (2.6)

The notation X[i] indicates the candidate with the ith best (lowest) true ob-
jective function value. If at least one candidate has a true mean within � of
the true best, i.e. f[i] � f[1] < � for some � > 0 and i � 2, then the procedure
is indi¤erent in choosing X[1] or X[i] as the best. The probability of correct
selection (CS) is de�ned as

PfCSg = P
�
select X[1] j f[i] � f[1] � �; i = 2; : : : ; nC

	
� 1� �; (2.7)

where � > 0 and � 2 (0; 1) are user speci�ed. A random selection of the
candidates guarantees at least PfCSg = 1

nC
, so the signi�cance level must

satisfy 0 < � < 1� 1
nC
.�

When a candidate number is large, traditional multi-stage indi¤erence-zone proce-

dures may prescribe too many simulation runs because they are based on the least favorable

con�guration assumption. That is, the best candidate has a true mean exactly � better

than all other candidates, which are all tied for the second best (53). As a result, the pro-

cedures can call for an unnecessarily high number of samples in the �nal stage to guarantee

that (2.7) holds.

Two recent directions in R&S research re�ect attempts to address this issue. The

�rst approach has been to combine R&S with some type of search strategy to explore

a large solution space. Ólafsson (42) and Pichitlamken and Nelson (45) each introduce

an iterative technique that combines R&S with an adaptive sampling algorithm known

as nested partitioning (NP), which is used to search the feasible space of (possibly large)

combinatorial problems for a global optimum. The techniques use discrete time Markov

chains to show almost sure convergence to a global optimum of the discrete variable space.

Heuristic search methods with incorporated R&S procedures have recently been de-

veloped for stochastic optimization. Ahmed and Alkhamis (8) describe and analyze a

globally convergent algorithm for optimization over a discrete domain that uses R&S pro-

cedures within simulated annealing . Boesel et al. (16) and Hedlund and Mollaghasemi

(30) apply R&S procedures to genetic algorithms.

The second approach for resolving the high sample number required for a large set

of candidates combines the two topics of subset selection and indi¤erence-zone selection.
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These procedures identify and eliminate inferior solutions and then select the best from

the remaining candidates. Nelson et al. (41) present a general theory and procedure that

balances computational and statistical e¢ ciency. This approach maintains a probability

guarantee for selecting the best solution when using the combined technique. Kim and

Nelson (33) and Goldsman et al. (28) present e¢ cient fully sequential indi¤erence-zone

techniques that eliminate alternatives deemed inferior as sampling progresses.

Categorical and discrete variables are readily handled by modern R&S techniques

since all design alternatives are determined a priori and corresponding variable values

can be set accordingly. However, R&S procedures have di¢ culty with a large number of

solutions. The existing provably convergent techniques (8, 42, 45) that combine R&S with

adaptive search currently address entirely discrete domains. Continuous variables can be

dealt with through discretization, but depending on the interval chosen, this can cause a

combinatorial explosion of the search space and an increase in computational expense.

To improve on the implementation by Trosset and applicability to the general case,

Sriver uses a ranking and selection procedure to identify a new iterate. Sriver (50) lists

the speci�c advantages to include:

� It is amenable to parallelization techniques since several trial solutions can be con-

sidered simultaneously in the selection process rather than only two (incumbent and

candidate).

� R&S procedures detect the relative order, rather than generate precise estimates, of

the candidate solutions. This is generally easier to do (27) and provides computa-

tional advantages.

� Selection error is limited to Type II error only, i.e., making an incorrect selection

of the best candidate; Type I error is eliminated based on the assumption of a best

system among the candidates.

� The use of an indi¤erence zone parameter can be easily and e¢ ciently adapted for

algorithm termination.

Three such procedures were selected for use in MGPS-RS: Rinott�s two-stage proce-

dure (46), a screen-and-select (SAS) procedure of Nelson et al. (41), and the Sequential

2-11



Selection with Memory (SSM) procedure of Pichitlamken and Nelson (44). The SSM

procedure is implemented by Dunlap (24) in the NOMADm software (1) and explained

further in Chapter 3.

2.4 Multi-Echelon Repairable Systems

2.4.1 Basic Problem. Multi-echelon, or multilevel, problems exist in many are-

nas. One such area that has considerable interest is in the design and performance of

maintenance systems for a repairable item. The general problem to be investigated is the

determination of the optimal spare levels and repair channels in a maintenance system, in

which a �nite number of items is desired to be operational at any given time, and in which

queuing can occur at the repair facilities if all channels are busy (6). The system usually

consists of one or more bases at the lowest level (or �rst echelon), one or more depots

at the highest level, and any number (to include zero) of intermediate levels in between.

Multi-echelon systems can take on many forms to include number of levels, number of fa-

cilities at each level, number of machines in the system that depend on the use of the item,

scheduling, resupply strategies (heirachal and/or lateral), transportation delays, and can-

nibalization or condemnation. It is because of this complexity that multi-echelon models

are often analyzed through simulation (34).

2.4.2 Optimization of Multi-Echelon Systems. Optimization of multi-echelon

models have been approached both analytically and through simulation. Sherbrooke

developed the METRIC model to minimize expected backorders, which is equivalent to

maximizing availability when no cannibalization of parts is assumed (47). Using the as-

sumption of an in�nite number of repair channels, Sherbrooke made use of Palm�s Theorem

to calculate steady-state probability distributions for the number of units due in from re-

pair. Gross et al. (29) relaxed that assumption and, using Markovian properties of the

exponential distribution, formulated the expression for machine availability in terms of the

decision variables, number of spares and number of repair channels at each facility. More

recent applications in this area have been based on simulation-based optimization. Chris-

sis and Gecan (19) use a direct search technique to iteratively seek an optimal solution to
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the multi-echelon system. Ahmed et al. (7) present an integrated approach of simulated

annealing and simulation to determine the design parameters of a multi-echelon repairable

item inventory system. Köchel and Nielander (34) use a genetic algorithm to optimize a

�ve-level simulation model. Alkhamis and Ahmed (6) use the results from the analytical

solution by Gross et al. (29) to validate their evolutionary technique of particle swarm

optimization. Those results are also used in the evaluation of the procedures used in this

thesis.

2.5 Summary

This chapter has provided an overview of the literature pertaining to this study. Sec-

tion 2.1 reviewed the various approaches to simulation-based optimization. Each method

was reviewed to highlight the ability to handle di¤erent types of variables and convergence

properties. The ideas of pattern search and ranking and selection used in the MGPS-RS

algorithm were outlined in Sections 2.2 and 2.3, respectively. Finally, the multi-echelon

repair problem was introduced in Section 2.4, and some previous attempts at optimizing

this type of problem were discussed. The next chapter further details the elements of the

MGPS-RS algorithm and its use in the NOMADm software. It also explains the speci�cs

of the multi-echelon system models used in the application of the MGPS-RS algorithm.
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III. Methodology

This chapter presents the methodology used in the optimization of the multi-echelon repair

system. The �rst section explains the mixed variable generalized pattern search with

ranking and selection algorithm used to optimize the system. Section 3.2 provides details

of the model formulation for the multi-echelon repair problem. The last section discusses

the simulation model and integration with the optimization code.

3.1 MGPS-RS

When using simulation as a black-box generator for objective function values, ob-

viously the true values in (2.6) are not available. Therefore, it becomes necessary to

use samples of the simulation response F to create estimates. Let nc be the number of

candidates in the candidate set C. For each i = 1; 2; : : : ; nc, let si be the total number

of replications and let fFisgsis=1 = fF (Yis)gsis=1 be the set of responses obtained through

simulation, where Yis is the input vector for design i and replication s. Then for each

i = 1; 2; : : : ; nc, the sample mean �Fi is computed as

�Fi =
1

si

siX
s=1

Fis (3.1)

and is an estimator for fi. These sample means may be ordered in the same manner as the

true responses in (2.6). The ranking and selection procedure determines the ordering of the

candidates with the ith best estimated response value denoted by Ŷ[i] 2 C. The candidate

with the lowest mean response, Ŷ[1], is chosen as the best point. A general R&S algorithm,

as given by Sriver (50), is shown in Figure 3.1, where the input parameters include a

candidate set C, signi�cance level �, and indi¤erence zone �. Procedure RS(C;�; �)

returns the best candidate Ŷ[1].
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Procedure RS(C, �, �)

Inputs: A set C = fY1; Y2; : : : ; YnCg of candidate solutions, signi�cance level �, and
indi¤erence zone parameter �.

Step 1 : For each candidate Yq, use an appropriate technique to determine the number of
samples si required to meet the probability of correct selection guarantee, as a function
of �, � and response variation of Yq.

Step 2 : Obtain sampled responses Fis, i = 1; : : : ; nC and s = 1; : : : ; si. Calculate the
sample means �Fi based on the si replications according to (3.1). Select the candidate
associated with the smallest estimated sample mean, Ŷ[1] as having the �-near-best mean.

Return: Ŷ[1]

Figure 3.1 MGPS-RS Algorithm for Stochastic Optimization

Sriver incorporates this R&S procedure into the MGPS algorithm for deterministic

mixed variable optimization, due to Audet and Dennis (10). The MGPS-RS algorithm

of Sriver (50) is presented in Figure 3.2. The binary comparison of the incumbent and

trial points used in the deterministic case is replaced with Procedure RS(C;�; �). The

algorithm can use any speci�c R&S procedure, as long as it satis�es the probability of

correct selection guarantee given in (2.7).
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MGPS-RS Algorithm for Stochastic Responses

Initialization: Set the iteration counter k to 0. Set the R&S counter r to 0. Choose a
feasible starting point, X0 2 �. Set �0 > 0, � > 0, �0 2 (0; 1), and �0 > 0.

1. Search step (optional): Employ a �nite strategy to select a subset of candidate
solutions, Sk �Mk(Xk) de�ned in (2.2) for evaluation. Use Procedure RS(Sk[fXkg,
�r, �r) to return the estimated best solution Ŷ[1] 2 Sk [ fXkg. Update �r+1 < �r,
�r+1 < �r, and r = r + 1. If Ŷ[1] 6= Xk, the step is successful, update Xk+1 = Ŷ[1],
�k+1 � �k* and k = k + 1 and repeat Step 1. Otherwise, proceed to Step 2.

2. Poll step: Set extended poll trigger �k � �. Use Procedure RS(Pk(Xk) [ N (Xk),
�r, �r) where Pk(Xk) is de�ned in (2.3) to return the estimated best solution Ŷ[1] 2
Pk(Xk)[N (Xk). Update �r+1 < �r, �r+1 < �r, and r = r+1. If Ŷ[1] 6= Xk, the step
is successful, update Xk+1 = Ŷ[1], �k+1 � �k* and k = k + 1 and return to Step 1.
Otherwise, proceed to Step 3.

3. Extended poll step: For each discrete neighbor Y 2 N (Xk) that satis�es the
extended poll trigger condition �F (Y ) < �F (Xk) + �k, set j = 1 and Y

j
k = Y and do

the following.

(a) Use Procedure RS(Pk(Y
j
k ), �r, �r) to return the estimated best solution Ŷ[1] 2

Pk(Y
j
k ). Update �r+1 < �r, �r+1 < �r, and r = r + 1. If Ŷ[1] 6= Y jk , set

Y j+1k = Ŷ[1] and j = j + 1 and repeat Step 3a. Otherwise, set Zk = Y jk and
proceed to Step 3b.

(b) Use Procedure RS(Xk [Zk, �r, �r) to return the estimated best solution Ŷ[1] =
Xk or Ŷ[1] = Zk. Update �r+1 < �r, �r+1 < �r, and r = r + 1. If Ŷ[1] = Zk, the
step is successful, update Xk+1 = Ŷ[1], �k+1 � �k* and k = k + 1 and return
to Step 1. Otherwise, repeat Step 3 for another discrete neighbor that satis�es
the extended poll trigger condition. If no such discrete neighbors remain, set
Xk+1 = Xk, �k+1 < �k* and k = k + 1 and return to Step 1.

*NOTE: The update rules for �k in the algorithm can be found in (1) and
have important implications for the convergence of the algorithm.

Figure 3.2 MGPS-RS Algorithm for Stochastic Optimization
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The following assumptions are necessary for the convergence theory of the MGPS-RS

algorithm to hold (50):

A1 All iterates Xk produced by the MGPS-RS algorithm lie in a compact set.

A2 The objective function f is continuously di¤erentiable with respect to the continuous

variables when the discrete variables are �xed.

A3 For each set of discrete variables Xd, the corresponding set of directions Di = GiZi,

as de�ned in (2.1), includes tangent cone generators for every point in �c.

A4 The rule for selecting directions Dik conforms to �
c for some " > 0.

A5 For each q = 1; 2; : : : ; nC , the responses fFqsgsqs=1 are independent, identically and

normally distributed random variables with mean f(Xq) and unknown variance �2q <

1, where �2` 6= �2q whenever ` 6= q.

A6 The sequence of signi�cance levels f�rg satis�es
P1
r=0 �r <1, and the sequence of

indi¤erence zone parameters f�rg satis�es limr!1 �r = 0.

A7 For the rth R&S procedure considering candidate set C = fY1; Y2; : : : ; YnCg, Pro-

cedure RS(C, �r, �r) guarantees correctly selecting the best candidate Y[1] 2 C

with probability of at least (1 � �r) whenever f(Y[q]) � f(Y[1]) � �r for any q 2

f2; 3; : : : ; nCg.

A8 For all but a �nite number of MGPS-RS iterations and sub-iterations, the best so-

lution Y[1] 2 C is unique; i.e., f(Y[1]) 6= f(Y[q]) for all q 2 f2; 3; : : : ; nCg where

C = fY1; Y2; : : : ; YnCg �M(Xk) at iteration k.

Sriver includes a brief discussion on these assumptions. Assumptions A1, A3, and

A5 are noted since they have implications in the model formulation and presentation

of results in this thesis. Under these assumptions, Sriver et al. (52) proved almost

sure convergence (i.e., with probability one) of a subsequence of iterates to a �rst-order

stationary point. First-order stationarity in a mixed variable domain was �rst formally

de�ned by Lucidi et al. (40) in the context of a more general framework for mixed variable

optimization.
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Since the NOMADm optimization code is used, it is important to highlight the spe-

ci�c R&S procedure implemented in the code. Based on the results of the computational

results in (50), Dunlap (24) chose the SSM procedure of Pichitlamken and Nelson (44)

for its superior performance. SSM is a fully sequential procedure designed for use with

iterative search routines, such as the class of pattern search methods. The procedure

collects one sample at a time from every candidate and eliminates clearly inferior alter-

natives as sampling progresses. To identify inferior candidates, SSM performs a pairwise

statistical test at every iteration for each of the candidates. By removing the candidates

that are statistically inferior to all the other members of the candidate set, SSM provides

a computationally e¢ cient procedure to select the best candidate. Dunlap states that an-

other advantage of SSM is the ability to use previously stored sampling data (24). This

mitigates some of the cost of obtaining additional simulation responses at each iteration

of the optimization algorithm.

3.2 Multi-Echelon Repair Model Formulation

Since the multi-echelon repair problem has been solved analytically under certain

assumptions, these solutions can be used as a baseline to compare algorithm performance on

similar models. The speci�c model and analytical solution used as a baseline in this thesis

is from Gross et al. (29), who gives an exact solution to the multi-echelon problem with

exponential distributions for holding rates and arrivals according to a Poisson process; these

results are used as a baseline comparison. Gross et al. devise a simple two-echelon model

with a single base and single depot, where M machines generate item failures according to

a Poisson process with mean � = �U . A failure is removed from the machine and replaced

with a spare from the base inventory. If no spare is available, the machine waits for an item

to become available, either through repair at the base or arrival from the depot. Failed

items extracted from a machine are determined to be either base-serviceable or needing

advanced repair that cannot be performed at the base. A certain percentage of failed

items, �, are deemed to be base serviceable, with the remaining (1� �) sent to the depot

for repair.

3-5



1  β

1  α

α

β

M Operating
λ=µU

y spares

Base Repair
cB Channels

µB

Depot Repair
cD Channels

µD

Node D

N

Figure 3.3 Network for a two-echelon repairable system

Both the base and depot repair items according to an exponential distribution with

mean �B and �D, respectively. Each base has a speci�c number of repair channels. An

item that arrives at a location with all of the channels busy waits in a queue. There is a

single queue at each location, which follows a FIFO (�rst in, �rst out) rule. When a repair

is complete, the item is returned to the spares inventory unless an inoperable machine is

awaiting the item, in which case, the item is installed and the machine returns to service.

However, a percentage of items, �, after undergoing repair at the base, need further repair

and are sent to the depot.

Recall that Gross et al (29), with the assumption that all processes are Markovian,

develop an expression for availability in terms of the decision variables. The decision

variables are number of spares y to be inventoried at the base, and the number of channels

at the base and depot, cB and cD, respectively. The number of spares at the depot is

assumed to be limitless. A diagram of the �ow model is shown in Figure 3.3. The objective

function is de�ned to be a linear combination of the costs of the repair channels and the
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base-inventoried spares. Gross et al (29) de�ne the problem mathematically as

minZ = kyy + kBcB + kDcD (3.2)

s:t:

M+yX
n=M

pn � A;

whereM is the number of machines and ki is the cost per unit, i = y;B;D. The constraint

is absolute availability A, with pn equal to the steady state probability that n units are

operational. Gross et al (29) use

M = 5; ky = 20; kB = 8; kD = 10; A = 0:9; � = 0:5; � = 0:5; �U = 1; �B = �D = 5

as the parameters for this model. Unless noted otherwise, these parameter values are used

in the remainder of the construction of the simulation and mathematical models.

In (3.2), availability is the stochastic component of the problem to be supplied by

the simulation model. However, the availability level appears in the inequality constraint

and not in the objective function. Since MGPS-RS is not currently able to handle stochas-

tic nonlinear constraints, the problem formulation given in (3.2) must be modi�ed. Two

approaches for doing so are considered: 1) reformulate (3.2) as an unconstrained problem

with a term added to the objective function to penalize infeasibility, or 2) swapping the

constraint and objective function. The �rst approach becomes an unconstrained mini-

mization problem with both deterministic and stochastic components. In the latter case,

the problem becomes one of maximizing availability (or minimizing expected backorders,

as in Sherbrooke (48), subject to a linear cost or budget constraint. This problem is es-

sentially an integer knapsack problem, containing a linear objective function subject to a

single linear constraint (56). The �rst formulation is

minZ = 20y + 8cB + 10cD + PA(0:9� F ); (Formulation A)

where PA is the penalty and F is the absolute availability taken from the simulation

response. Penalty terms are well-suited for problems in which some of the constraint

functions require noisy response evaluations from the model, since it cannot be determined
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prior to simulation if a design is feasible with respect to these constraints. However, as

in the deterministic case, it is noted that penalty methods may su¤er from computational

di¢ culties due to ill-conditioning (50).

The second formulation is

minZ = 100

"
1�

 
M+yX
n=M

pn

!#
(Formulation B)

s:t: 20y + 8cB + 10cD � B

where B is the budget constraint. The availability maximization problem is converted

to a minimization problem by subtracting from 1, since MGPS-RS is presented as a min-

imization algorithm. However, the problem still behaves as a knapsack with an increase

in the decision variables yielding a better result. The result is multiplied by the constant

100 simply to signify a percentage.

To apply Formulation A, certain parameters must be determined. The �rst is

how to deal with values above the availability value A. In this formulation, there is no

cost improvement for exceeding the availability threshold. Therefore, the penalty is only

applied for values of availability less than 90% and all responses above are set to the value

of 0:9. Also, the penalty coe¢ cient for the new objective function must be determined.

Since availability was originally a constraint, it is important that the penalty coe¢ -

cient in the objective function dominate the other terms. This approach attempts to force

the solution to satisfy the constraint, and is consistent with the general penalty function

philosophy. In this case, the coe¢ cient was chosen to be ten times larger than the other

terms. Also, the square root of the deviation from the constraint is taken to signify that

even minor violations of the penalty get a harsh penalty. Figure 3.4 shows the e¤ect of

the additional penalty term on the objective function. The resulting model is

minZ = 20y + 8cB + 10cD + 2000
p
(0:9� F0:9) (MODEL1A)

y; cB; cD 2 Z+
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Figure 3.4 Penalty assessed for violation of availability constraint.

where

F0:9 =

8<: F if F � 0:9

0:9 if F > 0:9:

The second approach only requires determination of the budget B. A budget of 96

monetary units was chosen to maintain a comparison with the analytical solution. The

resulting mathematical model is

minZ = 1�
 
M+yX
n=M

pn

!
(MODEL1B)

s:t: 20y + 8cB + 10cD � 96

y; cB; cD 2 Z+:
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The decision variables inMODEL1A andMODEL1B are all discrete. This causes

the decision space to be the set of user-de�ned neighbors because, with no continuous

variables, the mesh is an empty set. The discrete model is still used for analysis of the

algorithm and the results are reported in Chapter 4. To test a true mixed variable problem,

the model is further adapted to provide for the inclusion of continuous variables. In the

updated model, instead of the number of repair channels being decision variables, they are

�xed at three each. To replace them, continuous variables representing the amount of

workday the base and depot operate are introduced. All other variables and parameters

remain the same. The continuous variables can be likened to shift work or overtime,

for example, where 33% indicates a location is open eight hours each day. Changing

the model to a mixed variable problem eliminates any potential for comparison to the

analytical model presented in (29).

The mixed variable problem using Formulation A is

minZ = 20y + 80xB + 100xD + 2000
p
(0:9� F0:9) (MODEL2A)

xB; xD 2 [0:33; 1:00]

y 2 Z+ and xB; xD 2 R

where

F0:9 =

8<: F if F � 0:9

0:9 if F > 0:9:

The coe¢ cients for the base and depot variables increased to 80 and 100, respectively, to

accommodate the change in scale. The mixed variable problem using Formulation B is
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minZ = 1�
 
M+yX
n=M

pn

!
(MODEL2B)

s:t: 20y + 80xB + 100xD � 200

xB; xD 2 [0:33; 1:00]

y 2 Z+ and xB; xD 2 R:

Finally, the simulation model was modi�ed to incorporate the option to use contract

support at the base. Contract support is a �xed cost, but if used, the facility can repair

items quicker, and fewer items need to be sent to the depot for additional repair after

attempting repair at the contractor location. The validity of this option can be seen in

the area of contractor support or outsourcing. The use of contractor support is repre-

sented by a binary variable w, with w = 1 indicating its use. The simulation model was

augmented with a module representing contract support that was enabled only when the

binary variable was set to one. The model formulation that includes the contract option

is

minZ = 1�
 
M+yX
n=M

pn

!
(MODEL3)

s:t: 20y + 80xB + 100xD + 50w � 240

xB; xD 2 [0:33; 1:00]

y 2 Z+; xB; xD 2 R; w 2 f0; 1g:

The contracting option was only incorporated into the budget constrained problem.

3.3 Simulation Model Construction and Integration

The repair model was constructed using the widely available Arena1 discrete-event

simulation software. Arena is easy to use and verify, and it allows input variables that

1Arena
R
simulation software is a registered trademark with Rockwell Software, Inc.
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can be speci�ed by the MGPS-RS algorithm. Also, Arena is packaged with statistical

tools that can be used to provide the necessary availability response for the multi-echelon

repairable system.

Steady-state results for the availability are desired. However, it is also important to

have a degree of noise in the availability response to properly test the algorithm. With

little to no variability, the problem becomes too much like the deterministic setting. To

balance both of these criteria, each simulation replication must be run for an appropriate

length. The approach to determine the simulation length is similar to the one given by

Chrissis and Gecan (19). Ten replications were divided into two batches of �ve each.

The �ve replications of the �rst batch were run for a speci�ed length of time while the

other �ve are run for a slightly longer length. Using the tools provided in Arena�s Output

Analyzer, a hypothesis test to compare means of the two batches was performed. If

the result of the test indicated the means were statistically equal, then the estimator for

availability was formed using the replications. If the hypothesis test result showed di¤ering

means, the replication lengths were increased and the process was repeated. However, this

approach became too expensive computationally to perform for each function evaluation.

The method was still used to determine an appropriate length, but it was done only once

to determine a target replication length. The remaining simulation runs were conducted

using that replication length. The time required to perform one replication of the actual

Arena simulation turned out to be negligible, compared to the cost of integrating it with

the optimization code and the setup cost involved.

Integration of the simulation and the optimization algorithm was particularly di¢ -

cult because neither the optimization code nor simulation model are self-contained. The

NOMADm optimization software runs inside the MATLAB computing environment and

makes function calls, expecting a black box function to return a response. However, the

simulation model runs inside the Arena simulation software, and it does not naturally lend

itself to easy integration with a MATLAB code. To overcome this problem, an interface

was written in Microsoft Visual Basic to integrate the simulation and optimization code.

The MATLAB code outputs the input vector and waits for a signal from Visual Basic to

resume. The simulation reads the input vector, runs a replication given those parameters,
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outputs the availability response, and waits for the next input vector. The simulation

is not stopped at this point because the random number streams would reset, meaning

subsequent identical input vectors would yield the exact same response, resulting in no

variability or noise in the response.

The NOMADm software website (1) gives speci�cs on how to properly de�ne the

initial iterate, function evaluation, discrete neighbors, and linear/bound constraint �les in

the software. Before the algorithm could be implemented, certain �les had to be set up

which de�ne the problem to be solved. Among them, the set of discrete neighbors was

constructed to be the commonly used set given in (2.4). However, as described in Chapter

2, neighbors for categorical variables may include any possible value for the categorical

variable. Since the contracting variable was binary, this de�nition of the neighbor set was

su¢ cient. The linear bound/linear constraints de�nition was important for two reasons.

The �rst was to ensure assumption A1 was satis�ed that the iterates lie on a compact set.

Since the continuous variables xB and xD have both lower and upper bounds, A1 was

satis�ed. The second reason is that for proper de�nition of the linear constraints is that

the set of directions must positively span the tangent cone of the nearby linear constraints.

The MGPS-RS algorithm within the NOMADm software was applied to the multi-

echelon repair models explained in this chapter. The results for each of the models are

presented in the next chapter.
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IV. Results

This chapter presents the results for each of the models outlined in Chapter 3. For

the models that have an associated deterministic or analytical solution, a discussion on

accuracy is presented. Also given is a brief examination regarding the e¤ect on convergence

of the choice of indi¤erence zone and alpha parameters, and the associated decay rates used

in the R&S procedure.

4.1 Discrete Variable Models

In the case with all discrete variables, the poll step of the MGPS algorithm simply

consists of repeated evaluations of discrete neighbor points, and the extended poll step

is empty. In the discrete neighbor search, the algorithm acts similar to a one-factor-at-a-

time approach; it methodically searches the neighbors looking at each of the variables for

the best improvement by increasing each subsequently by one.

The algorithm was run using both models, MODEL1A and MODEL1B, at two

di¤erent levels of machines, M = 5 and M = 20. For both models with M = 5, complete

enumeration of the feasible design space occurred. This is primarily due to a small

decision space and each of the variables having a large and nearly equal e¤ect on the

objective function. However, the optimal solution was obtained in both cases showing

that the noise in the simulation response was overcome. In addition to the analytical

solution, the discrete model results can also be compared to the proposed particle swarm

optimization approach (PSO) by Alkhamis and Ahmed (6). It should be noted that the

PSO algorithm attempts to solve the original formulation (3.2) and Alkhamis and Ahmed

do not provide any measure of computational time. Table 4.1 summarizes the results for

both models with M = 5 compared with the analytical solution from (29) and PSO.

In the case with M = 20, the results for the discrete models di¤ered. The budget

constrained availability model,MODEL1B, behaved similarly to the problem with fewer

machines. However, the search method was able to eliminate some inferior solutions,

so the solution space was not completely enumerated. Conversely, MODEL1A found

no improvement from the initial iterate with M = 20 because the polling of the discrete
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Table 4.1 Model 1A/1B Results, M=5.

y xB xD Evals
True (Analytical) 3 2 2 -
MODEL1A 3 2 2 60
MODEL1B 3 2 2 87
PSO 3 2 2 n/a

Table 4.2 Model 1A/1B Results, M=20.

y xB xD Evals
True (Analytical) 8 5 6 -
MODEL1A 1 1 1 16
MODEL1B 8 5 6 760
PSO 9 4 6 n/a

neighbors failed to yield an improved solution. This can be attributed to the cost of

an increase in any of the decision variables outweighing each of their contributions to

the improvement in availability. A higher penalty on the deviation from the desired 0.9

availability may have remedied this problem. For example, an initial point of f2; 2; 2g

when M = 5 would have likely eliminated reaching f1; 1; 1g, provided the variability in

the model was not too large. Table 4.2 summarizes the results for the discrete variable

models with M = 20 compared with the respective analytical solution and PSO.

It is important to note that a better initial design vector with the variables at higher

starting levels would have likely prevented some of the enumeration, since the knapsack

problem with negative coe¢ cients yields a better solution relative to an increase in the

values of the design variables.

4.2 Mixed-Variable Models

Results forMODEL2A were more interesting. The size of the problem enabled the

continuous variables to be �discretized�in intervals of 0.025, creating a complete discrete

decision space with a �nite number of points. A deterministic model was constructed and
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Table 4.3 Model 2A Results.

y xB xD Z

MODEL2A 5 0.833 0.9583 412.494
Deterministic 2 0.925 0.95 269

run using all possible decision points, completely enumerating the discrete space, to give

an estimated value of the objective function without the random noise. The algorithm

was unable to obtain the global optimum. The results for MODEL2A are also in Table

4.3; the deterministic model indicates an approximate �optimal�solution.

A problem with using the penalty approach is that f is not continuously di¤eren-

tiable, violating the assumptions, listed in Section 3.1, necessary to ensure convergence

to a stationary point. Also, the algorithm has a signi�cant problem at the 0.9 boundary

point particularly because of the random noise. Since the solution is known to have a

true response of 0.9041 (just above 0.9) from the deterministic function, noise can cause

a signi�cant penalty to be assessed. There is no noise in the objective function on the

lower end because, if the availability is above 0.9, the objective function is only made up

of deterministic values. Obviously, the error in the objective function at points that yield

availability values close to 0.9 is not normally distributed. In fact, it is only one-sided.

Figure 4.1 shows the behavior of the objective function for the deterministic model in terms

of the continuous variables when the number of spares is two. Notice the surface sharply

�attens in the area around the optimum, indicating the availability above 0.9. Surface

plots for di¤erent number of spares are located in the appendix.

The algorithm had no problem handling MODEL2B. Since the true objective

function is linear with a single linear constraint, the objective function is simply a series of

planes that are �cut-o¤�by a plane representing the constraint. An approximate solution

was found in less than 750 function evaluations. An estimated true optimal solution was

also obtained for this model using the discretized deterministic model. Table 4.4 compares

the results of the deterministic model with MODEL2B.
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Figure 4.1 Deterministic model using Formulation A, y = 2.
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Table 4.4 Model 2B Results.

y xB xD Z

MODEL2B 2 0.8864 0.8958 13.95
Deterministic 2 0.875 0.9 13.89

Table 4.5 Model 3 Results.

y w xB xD Z

MODEL3 2 �Yes� 0.3333 0.8333 25.69

Results were similar for MODEL3 since the true objective function in MODEL3

is similar toMODEL2B. The algorithm seemed to handle the binary variable quite well.

The indicated optimum found by the algorithm is shown in Table 4.5.

4.3 Indi¤erence Zone

The R&S procedures used in this algorithm require the user to explicitly set the

initial values for the indi¤erence zone � and signi�cance level �, and the respective decay

factors. Sriver (50) does not give guidance for the speci�c values to use, only that the

values be �loose.� The reason � must be initially started high is because this causes more

samples to be required in the beginning of the algorithm when there is little information

known regarding the variability of the simulation model. As additional samples are taken,

the indi¤erence zone may be reduced to identify inferior solutions. The results of changing

the indi¤erence zone value and decay rate verify this assertion. When the indi¤erence zone

or the decay rate were set very low, the algorithm yielded much poorer �nal solutions and

required many more function evaluations. The default values used by Dunlap (24) in the

NOMADm software performed well; however, this may be a coincidence with the scale

of the problems used in this analysis. For MODEL2A, the indi¤erence zone and the

indi¤erence zone decay were each varied. The results, shown in Table 4.6, show that a

smaller initial indi¤erence zone obtained the same solution, but took many more simulation

runs. The smaller decay rate yielded worse results in the same number of simulation runs.
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Table 4.6 Model 2A results using di¤erent indi¤erence zone parameters.

MODEL2A Indi¤erence Zone IZ Decay Rate Z Evaluations
Baseline 100 0.95 412.49 284
Smaller Indi¤erence Zone 50 0.95 406.24 500*
Lower IZ Decay 100 0.75 1028.87 500*

*Note: The number of function evaluations was capped at 500.

Table 4.7 Model 2B results using di¤erent indi¤erence zone values.

MODEL2B Indi¤erence Zone Z Evaluations
Baseline 100 25.73 215
Smaller Indi¤erence Zone 10 26.53 353

A similar result was obtained for MODEL2B using a smaller indi¤erence zone.

Table 4.7 shows the results.

Finally, it should be noted that the computational limits in this study were not in the

optimization code nor the simulation runs. The majority of the overhead came from the

integration and transfer of data between the optimizer and the simulator. The advantages

of using an e¢ cient ranking and selection procedure are usually concerned with sampling

cost, the number of simulations runs necessary to produce a �best�solution from a set of

candidates. However, sampling cost can sometimes be outweighed by switching cost, or

the cost of switching simulation con�gurations. Sriver included the switching cost in his

analysis of R&S procedures. He showed that switching in the SSM algorithm can be quite

signi�cant, �requiring more switches than SAS by approximately two orders of magnitude

on each of the test problems�in Sriver�s computational results (50).

The results presented in this chapter show reasonable results for the use of the MGPS-

RS algorithm for simulation optimization. The next chapter provides some conclusions of

this study, as well as recommendations for future research in this area.
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V. Conclusions and Recommendations

This chapter summarizes the results given in Chapter 4 and gives recommendations for

future research. Possible future work includes continued analysis of the algorithm and

research on integration issues between simulation and optimization applications.

5.1 Conclusions

This thesis provided a framework for applying the MGPS-RS algorithm to a simula-

tion model representing a real-world system. The results on the simple two-echelon model

show promise that the algorithm applies well to simulation optimization. The algorithm

was able to handle random noise in the response, moving towards improving solutions.

Additional �ndings show the selection of indi¤erence zone parameters may have a signif-

icant e¤ect on the number of simulation runs needed to produce a solution and on the

quality of that solution. The research also provided possible pitfalls to the application of

the algorithm to an actual simulation environment. Simulations are not often written in

the software that contain robust optimization algorithms, so the need for software integra-

tion becomes critical, particularly when the number of simulation runs is large. Finally,

the NOMADm software, the only software that implements the MGPS-RS algorithm, was

e¤ectively integrated with an external simulation application.

5.2 Future Algorithm Research

The results of this study highlight some items for future research. The �rst is to de-

velop a more formal design and analysis than used in this thesis. This thesis provides only

an initial study regarding the use of this algorithm for optimization via simulation. Addi-

tional follow-on computational studies should have a formal experimental design structure.

Also, a study on a larger more complex model may yield additional insight into the perfor-

mance, limitations, and abilities of the algorithm. The results from the tests on varying

indi¤erence zone parameters warrants an examination of the user-de�ned R&S parameters,

to include the choice of indi¤erence zone and its decay rate. A way to balance sampling

and switching cost could improve the performance of the algorithm, especially when inte-
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gration becomes a problem. As Sriver suggested (50), a simple modi�cation may be to

implement the minimum switching sequential procedure, developed by Hong and Nelson

(31) as a sequential sampling technique that uses the same number of switches as two-stage

procedures, and determine if its performance warrants inclusion in the algorithm. With

less switching of the input parameters, the simulation could run batches of replications

before returning to the optimization procedure.

5.3 Future Integration Research

Since the integration of the optimization code and the simulation model provided

the greatest cost in the simulation optimization procedure, future research should focus

on mitigating this cost. Sriver discusses switching cost in his analysis of three proce-

dures considered for implementation in MGPS-RS (50), where Rinott�s procedure incurs

no switching cost, SAS calls for a single switch for each candidate, and SSM requires a

switch each time an additional sample is needed in the ranking and selection procedure.

Because SSM performed well with GPS methods in controlling the number of required

function evaluations while guaranteeing the proper level of con�dence in the iterate se-

lection, Dunlap (24) incorporated SSM into NOMADm. For the software to be e¤ective

in situations where the switching cost is more expensive than sampling cost, as in this

thesis, an alternate procedure could be considered. Finally, consideration should be given

to incorporating the optimization code and the simulation model into the same software

application. For example, Boesel and Nelson (15) interface their genetic algorithm using

ranking and selection technique with AweSim! simulation software for seamless operation.

Since MGPS-RS is already encoded into the NOMADm MATLAB software, simulations

using Simulink/SimEvents packages from MathWorks might be considered. However, since

these MATLAB packages are not as widely available, the algorithm, if continued testing

shows positive results, may be considered to replace heuristics in more popular simulation

software.
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VI. Appendix

This appendix shows surface plots for the objective function behavior with no noise for

MODEL2A.
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