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Abstract

Known as the fog of war, uncertainty has been prevalent in the conduct of mil-

itary operations throughout human history. Intelligence collection efforts are tasked

to reduce this uncertainty through the collection of information. Utilizing Shannon’s

entropy as a measure of the expected information gain due to an intelligence collec-

tion effort, a methodology is developed to prioritize and allocate intelligence assets

in an efficient manner. Incorporated in this methodology are target priority and the

requirement to reassess dynamic targets. The application area for the methodol-

ogy is Effects-Based Operations. A generalized state model is developed to conduct

adversary system-of-systems analysis. This model forms the basis for the entropy

calculations and the resultant integer program to maximize the information gain.
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Reducing Uncertainty in Effects-Based Operations

I. Introduction

1.1 Background

[U]ncertainty seems to increase of its own accord unless something is done
to reduce it. [14]

Known as the fog of war, uncertainty has been prevalent in the conduct of

military operations throughout human history. As friendly forces act and react, an

adversary also continues to act and react. Without continuous intelligence updates,

the uncertainty associated with an assessment of the adversary’s current state will

continue to grow. Add to the continual need for intelligence a limited supply of

intelligence resources, and the problem becomes one of asset allocation, the goal of

which is to maximize information gain.

Increasingly, intelligence collection has become the limiting factor in performing

military operations as there will always be less intelligence collection opportunities

than intelligence targets. Vying for these limited intelligence collection opportuni-

ties are a number of agencies (e.g., Defense Intelligence Agency, Central Intelligence

Agency, National Security Agency, etc.). The limited intelligence collection efforts

allocated to military operations must be efficiently used in order to properly charac-

terize the current state of an adversary.

The problem of allocating intelligence resources can be related to the field of

computer adaptive tests (CAT) like the Graduate Record Examination (GRE) and

Graduate Management Admission Test (GMAT). At the beginning of the test, the

CAT has no information on the subject’s mastery of the material. The CAT assumes

a prior probability distribution on the subject’s mastery level. Then, the test must

select resources (e.g., questions) to reduce its uncertainty in assessing the subject’s

mastery level. To do so, the CAT selects the question that will reduce the expected
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uncertainty the most. Once the subject answers the question, the test updates the

prior distribution and selects another question to maximize information gain (i.e.,

minimize uncertainty). The process is repeated until the subject’s mastery level is

known. [15]

The same kind of process can be applied to an intelligence collection effort.

Intelligence analysts typically provide qualitative assessments of an adversary entity’s

current state using linguistic quantifiers, or “words of estimative probability” (e.g.,

Almost certain, Probably, etc.). For example, an intelligence analyst may give the

precise location of an airfield, but may provide a judgement or estimate of the use

of the airfield (e.g., “It is almost certainly a military airfield”). It is this linguistic

estimate that is the source of the probabilistic uncertainty. [11] A prior probability

distribution can be assigned to these linguistic quantifiers to describe an adversary’s

current state. Then based on the effectiveness of the available intelligence collection

assets, the assets can be efficiently allocated to collect information on the adversary.

After the intelligence collection efforts, the prior probability distributions are updated,

and the process is repeated.

Military intelligence targets do not have equal priority. Certain entities will

be high priority targets that require a reduction in the uncertainty of their current

states (e.g., location of weapons of mass destruction, location of senior adversary

leadership, etc.). Although not desired, higher uncertainty in the assessment of lesser

priority intelligence targets’ current states may be tolerated. Intelligence collection

efforts must be directed to collect information on the most uncertain, highest priority

adversary entities.

Additionally, an adversary is continually acting and reacting to friendly (blue)

force actions; therefore, unlike CATs, an adversary’s current state will never be known

with total (or near) certainty. Management of the uncertainty is thus extremely impor-

tant. Intelligence collection efforts must be repeatedly tasked to collect information

on adversary systems (nodes) that have been assessed already.
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Finally, in current operations, when an action is taken on an adversary entity,

intelligence assets are tasked to collect information on that entity (e.g., bomb damage

assessment (BDA)). This use of intelligence assets is warranted if the action taken on

an entity has a low probability of success or has an unknown effect. For example,

the probabilities of success associated with nonkinetic operations are often low or

unknown. These nonkinetic operations thus require subsequent intelligence collection

efforts to characterize the effectiveness of the operations. On the other hand, if an

action is taken on an entity that has a high probability of success and has known

outcomes, then using an intelligence asset to collect information on the entity may not

be the best use of the intelligence asset (i.e., may not provide the greatest information

gain). Therefore, prioritizing intelligence assets must account for actions that are

planned against the entities.

1.2 Problem Statement

Perfect knowledge of an adversary is never truly obtained. Considerable uncer-

tainty is always present in characterizing the current state of an adversary. Formally,

uncertainty is defined below. [1]

uncertainty: estimated amount or percentage by which an observed or calculated

value may differ from the true value

In particular, uncertainty is present in describing the current state of an adversary’s

entities (e.g., radars, tanks, leaders, economy, etc.). The goal is to reduce this un-

certainty in an efficient manner. Thus, the problem is prioritizing intelligence assets

to maximize information gain while bound to intelligence asset constraints. The pri-

oritization of intelligence assets must take into consideration target priority and the

need to reassess dynamic targets. To accomplish this, the following are required:

- Mathematical model of an adversary’s entities

- Mathematical representation of linguistic quantifiers used by the intelligence

community (e.g., Probably, Almost certain, etc.)
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- Formal measure of the uncertainty associated with an adversary’s entities

- Priority, planned action, and dynamic updating of the intelligence assessment

associated with an adversary’s entities

- Methodology to allocate intelligence collection assets to collect information on

an adversary’s entities.

1.3 Summary of Current Knowledge

1.3.1 Effects-Based Operations. The Effects-based Operations (EBO) pro-

cess provides a framework from which adversary system uncertainty can be measured.

According to the Joint Warfighting Center (JWFC) Pamphlet 7 on EBO, the current

working definition of EBO is:

Operations that are planned, executed, assessed, and adapted based on a
holistic understanding of the operational environment in order to influence
or change system behavior or capabilities using the integrated application
of selected instruments of power to achieve directed policy aims. [10]

EBO aim to “promote synchronized, overlapping, near simultaneously executed ac-

tions” through a “commonly shared system understanding of the adversary and

the operational environment by all members of the joint, interagency, multinational

team.” In order to gain further understanding and situational awareness of an adver-

sary and the operational environment, a System-of-Systems Analysis (SoSA) is de-

veloped. Each node within the network represents a person, place, or physical thing

that is a fundamental component of the adversary’s system. The linkages connecting

the nodes represent the behavioral, physical, or functional relationships between the

nodes. By developing a interrelated network of a region or nation of interest, planners

aim to take a holistic view of the operational environment. [10]

1.3.2 Uncertainty. Uncertainty may arise from making observations about

ill-defined (or complex) concepts. In addition, uncertainty may arise from creating

rules relating events, when the knowledge of the correlations between events is weak.
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When a system (or concept) is too complex to accurately model, observing outputs

based on inputs to the system can lead to drawing false conclusions about the sys-

tem. Other sources of uncertainty include the aggregation of multiple sources. This

often leads to inconsistencies or “over-estimat[ion] of the likelihood of events due to

assumed, but untrue, dependencies.” [14] Further uncertainty can come from trying

to measure time-dependent variables. These variables change over time, and thus are

subject to temporal uncertainties. Overall, the sources of uncertainty are applica-

tion dependent. The two major sources of uncertainty for EBO are Haimes’ top-level

categorizations: natural variability and knowledge uncertainty. [8] Natural variabil-

ity is due to population variances, and knowledge uncertainty rises from a lack of

understanding or missing knowledge.

The major sources of EBO natural variability are temporal, spatial, and indi-

vidual heterogeneous [8]. Temporal variability is value fluctuation due to changes

over time. Spatial variability relates to fluctuations due to location or area. All other

natural variability is captured by individual heterogeneous.

EBO knowledge uncertainty can be attributed to four main sources: decision

uncertainty, incompleteness, inconsistency, and inaccuracy. Decision uncertainty is

the human subjectivity associated with decision making. Missing data is captured by

incompleteness. Inconsistency involves two pieces of contradicting information. The

final source of knowledge uncertainty is inaccuracy, which relates to incorrect data on

the current true state of a system.

1.3.3 Methods for Handling Uncertainty. The three most common models

used by the uncertainty community to address uncertainty are probability, possibility

and evidence theories. In addition, several other measures, like certainty factors, fuzzy

sets, and rough sets, are used to a lesser degree. Probability, possibility and evidence

theories are similar, but differ in “subtleties of meaning and application.” [14] All

three models are based on a distribution function that distributes some measure of
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uncertainty to the events of interest. This distribution can be based on statistical

data, physical possibility, or subject matter expert (SME) assessment.

The techniques for handling uncertainty fall into two broad categories: quan-

titative and qualitative. The quantitative techniques require enumeration of all the

required quantities; whereas, the qualitative techniques use either strictly qualitative

data or a mixture of qualitative and quantitative data. Each type of technique has its

benefits and drawbacks. The quantitative techniques maintain a high level of preci-

sion, but require vast amounts of data that is often times unattainable. On the other

hand, the qualitative techniques require less specific data but are much less precise.

In fact, the qualitative techniques can lead to no useful information being obtained

due to lack of specificity.

1.3.4 Measuring Uncertainty. In order to maximize information gain through

intelligence asset prioritization, it is necessary to measure the uncertainty present in

a system. Once a distribution has been assigned to the current state of the system

(or subsystem), a measure of uncertainty for the distribution is needed. The uncer-

tainty community has used two measures to quantify the uncertainty associated with

probability and possibility distributions. Shannon’s entropy is the commonly used

measure of uncertainty used for probabilities, and specificity is used to measure the

uncertainty for possibility distributions. The entropy of a random variable measures

its complexity, or degree of randomness. Given a higher entropy of a random variable,

it is harder to predict the value of the random variable. [7] Specificity is an extension

of Shannon’s entropy to possibility distributions.

1.3.5 Intelligence Asset Assignment. The allocation of intelligence collec-

tion efforts from multiple intelligence sources against multiple adversary entities can

be related to the integer program (IP) of assigning multiple resources to multiple con-

tainers, or knapsacks–the multiple knapsack problem. In allocating intelligence assets,

however, the costs (i.e., used intelligence resources) and benefits (i.e., information

gain) associated with each adversary entity is dependent upon the intelligence asset
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assigned to collect information on it. The generalized assignment problem (GAP), a

more general IP, can be used to solve this problem. [12]

1.4 Assumptions

To prove out the methodology and maintain a practical level of analysis, the

following assumptions are made in this thesis:

- The adversary or SoSA network developed during the EBO process is assumed

to be a correct representation of an adversary. The existence of all nodes and

linkages are assumed to be known with certainty.

- The nodes of the SoSA network are assumed to be independent.

Based on the first assumption, this thesis does not address the you don’t know

what you don’t know problem. In military operations, this incompleteness source of

uncertainty is quite prevalent. However, without known existence, allocating resources

against these unknown nodes is not quantifiable. A simple solution is to allocate a

portion of the available assets to investigate the unknown nodes of the system.

The second assumption limits the measure of information gain on the targeted

node. The SoSA network includes linkages (i.e., influences) between the nodes. In-

corporating these linkages would more accurately represent the information gain due

to intelligence collection. For example, it may be easier to collect information on a

neighboring node, which may reduce the uncertainty on the targeted node.

1.5 Thesis Organization

This thesis is composed of five chapters. The present chapter provides a brief

background of the topic, a description of the problem to be addressed, and a summary

of the current knowledge. Chapter 2 delves further into the field of data uncertainty

as it relates to EBO. Methods for handling and measuring uncertainty, as well as

linguistic quantifiers are explored. Finally, the generalized assignment problem is

investigated.
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Chapter 3 presents a mathematical model for SoSA networks, which lays the

framework for a methodology to prioritize a single intelligence asset’s collection efforts.

This methodology is then applied to the problem of allocating multiple intelligence

assets. Chapter 4 applies these methodologies to a notional 20-node, 4-asset example.

Finally, Chapter 5 summarizes the results and provides recommendations for future

research.
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II. Summary of Current Knowledge

2.1 Overview

This chapter presents a review of the current literature on Effects-Based Op-

erations (EBO), knowledge uncertainty, linguistic quantifiers, methods for handling

uncertainty, uncertainty measures, and the generalized assignment problem (GAP).

Each of these plays an integral part in designing a methodology for prioritizing intel-

ligence assets during EBO, which is addressed in Chapter 3.

2.2 Effects-Based Operations

According to the Joint Warfighting Center (JWFC) Pamphlet 7 on EBO, the

current working definition of EBO is:

Operations that are planned, executed, assessed, and adapted based on a
holistic understanding of the operational environment in order to influence
or change system behavior or capabilities using the integrated application
of selected instruments of power to achieve directed policy aims. [10]

EBO aim to “promote synchronized, overlapping, near simultaneously executed ac-

tions” through a “commonly shared system understanding of the adversary and

the operational environment by all members of the joint, interagency, multinational

team.” This shared system understanding is enabled through a collaborative informa-

tion environment (CIE) and a operational net assessment (ONA). A CIE is a virtual

environment designed to improve collaboration and knowledge management across a

combatant command. ONA is a process and product that develops a comprehensive

system-of-systems understanding of the operational environment. [10]

In order to gain further understanding and situational awareness of an adver-

sary and the operational environment, ONA begins with a System-of-Systems Analysis

(SoSA). To develop a SoSA, the operational environment is assumed to be composed

of political, military, economic, social, infrastructure, and information (PMESII) en-

tities (or systems). These six interrelated PMESII systems are represented pictorially

using a multi-dimensional network (see Figure 2.1 on the following page). Each node
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 The ONA process begins when the combatant commander 
designates a priority (specific nation, region, contingency, or entity) within 
the AOR. The initial “baseline” ONA effort for a specific priority is to develop 

a system-of-systems analysis (SoSA)—an important sub-process of ONA—which 
populates the baseline ONA with data on PMESII systems and their organization, 
characteristics, and relationships.  This effort produces a nodal analysis which, 
along with effects development, forms the basis for coupling nodes to effects, 
actions to nodes, and resources to established E-N-A linkages.  Secondary and 
unintended effects also are considered during this process.  Joint force planners use 
this database—updated when a crisis is imminent—to develop, compare, and 
recommend effects-based COAs for the JFC’s decision. 

 As Figure 3 depicts, SoSA emphasizes a multi-dimensional approach toward 
understanding the battlespace, characterized by an analysis of six interrelated PMESII 
systems. Within each of these systems are nodes (a person, place, or physical thing 
that is a fundamental component of a system) and links (the behavioral, physical, or 
functional relationship between the nodes).  SoSA identifies the relationship between 
nodes within individual systems and 
across systems.  These nodes and 
associated links are then identified for 
DIME actions to influence or change 
system behavior and capabilities in 
order to achieve desired objectives. 

Understanding each of these 
systems and their interrelationships 
enables a holistic perspective of the 
operational environment.  Among 
other benefits, this perspective helps 
intelligence analysts identify potential 
sources from which to gain 
indications and warning and allows 
planners to consider a broader set of 
options to achieve objectives and 
focus limited resources.  It also 
increases the understanding of how 
individual actions on one element of 
the system can affect other 
interrelated system components.

 Both the SoSA and the joint intelligence preparation of the battlespace (JIPB) 
are complementary processes that produce the awareness and understanding required 
to plan and execute EBO.  While JIPB doctrine provides for a broader perspective, JIPB 
activities generally have focused on the adversary’s military.  SoSA is intended to 
provide a comprehensive analysis across all PMESII systems.  The SoSA is a valuable  

FIGURE 3:  SYSTEM-OF-SYSTEMS 

Analyze the battlespace as a “system of 
systems.”

Understand the connectivity of key systems, 
nodes and links.

Identify decisive points for action to 
influence or change system behavior.

Nodes

Links

Social Economic

Information

Political

Military

Infrastructure

SoSA

Figure 2.1: Systems-of-systems Analysis [10]

within the network represents a person, place, or physical thing that is a fundamental

component of the system. The linkages connecting the nodes represent the behavioral,

physical, or functional relationships between the nodes. By developing a interrelated

network of a region or nation of interest, planners aim to take a holistic view of the

operational environment. [10]

2.3 Uncertainty

According to the Merriam-Webster Concise Dictionary of English Language,

uncertainty is defined in the following manner:

uncertainty - 1: the quality or state of being uncertain; doubt, 2: some-
thing that is uncertain. [13]

and uncertain is defined as:

uncertain - 1: indefinite, indeterminate, 2: not certain to occur; prob-
lematical, 3: not reliable; untrustworthy, 4 a: not known beyond doubt;
dubious, b: not having certain knowledge; doubtful, c: not clearly identi-
fied or defined, 5: not constant; variable, fitful. [13]
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In other words, knowledge can be uncertain due to inaccurate measurement, vagueness

or ambiguity, variability, source reliability, etc. All of these uncertainties are easily

found in EBO. Inaccurate measurement can be seen in estimations of enemy troop

strengths. Vagueness is displayed in many intelligence assessments, where linguistic

quantifiers such as probable or possible are used. Variability is evident in the time

dependent nature of military operations, and source reliability is obviously evident in

human intelligence (HUMINT) collection.

In order to address uncertainty, one must look at the sources of the uncertainty.

To start, uncertainty may arise from making observations about ill-defined (or com-

plex) concepts. In addition, uncertainty may arise from creating rules relating events,

when the knowledge of the correlations between events is weak. When a system (or

concept) is too complex to accurately model, observing outputs based on inputs to the

system can lead to drawing false conclusions about the system. Often times a system

is assumed to be a black box that responds with certain observable state changes.

These observable state changes may be once, twice, or more times removed from the

actual system state changes. The primary system state changes may be unobserv-

able or indeterminate. Without further knowledge of the system, the conclusions

drawn based on the observed changes can be uncertain. These sources of uncertainty

are obviously present in EBO. The entire SoSA process is full of uncertainty due

to unknown and inaccurate linkages. For example, when trying to plan information

operations (IO), the forms of the adversary response (i.e., in what manner does an

adversary respond to IO) may not be fully known, or even observable, making it dif-

ficult to capture the impact of friendly actions. In turn, assumptions are developed

relating IO actions to planned effects. Obviously, there is a great deal of uncertainty

associated with planning these actions.

Other sources of uncertainty include the aggregation of multiple sources. This

often leads to inconsistencies or “over-estimat[ion] of the likelihood of events due to

assumed, but untrue, dependencies.” [14] Often in intelligence collection, this source

of uncertainty is displayed. For example, given three very unreliable sources of the
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same or similar intelligence, the intelligence analyst is more likely to assign a higher

probability to the event even though the independent sources only warrant a low

probability. The fact that multiple sources point out the same intelligence is the only

grounds the analyst has for increasing the assigned probability.

Further uncertainty can come from trying to measure time-dependent variables.

These variables change over time, and thus are subject to temporal uncertainties. For

example, intelligence data may take too long to analyze to remain valid or relevant.

Or intelligence data may not be attainable because events happen too quickly to

capture accurate and timely intelligence on them. Either way, temporal uncertainty

is present in the system analysis.

Overall, the sources of uncertainty are application dependent. In turn, the

techniques and methods for addressing data uncertainty are also application depen-

dent. In Qualitative Methods for Reasoning Under Uncertainty, Parsons argues for an

“eclectic school of thought”, where different techniques may be needed to address dif-

ferent situations depending on the predominant source or sources of uncertainty. [14]

To characterize the sources of uncertainty in EBO, an uncertainty taxonomy was

developed.

2.3.1 EBO Taxonomy. The literature presents multiple, varying uncertainty

taxonomies. Parsons, working in the field of artificial intelligence, analyzes several dif-

ferent taxonomies, and Haimes, working in the field of risk analysis, presents a single

taxonomy. [14] [8] Parsons’ analysis included Smithson’s [18], Smet’s [17], Bonissone

and Tong’s [2], and Bosc and Prade’s [4] taxonomies. Each of these taxonomies

presented a different construct for categorizing uncertainty. Parsons makes the argu-

ment that an overarching taxonomy for all uncertainty regardless of the application

is unattainable. However, Parsons notes there are some commonalities among the

uncertainty taxonomies. Each taxonomy contains some notion of subjective uncer-

tainty, vagueness, imprecision, incompleteness, inconsistency, and ambiguity. [14] The

taxonomies were reviewed, filtered and organized based on their application to EBO.
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Figure 2.2: EBO Data Uncertainty Taxonomy

For application to EBO, a taxonomy was constructed taking portions of each

of the reviewed taxonomies (see Figure 2.2). The two major sources of uncertainty

for EBO are Haimes’ top-level categorizations: natural variability and knowledge

uncertainty. [8] Natural variability is due to population variances. A situation with

a single entity would have no natural variability. For example, given a country of

interest, not all locations within the country will react in the same manner to some

action. Furthermore, the country may react differently given the timing of the action.

Knowledge uncertainty rises from a lack of understanding or missing knowledge. In

EBO, actions may result in unintended effects. This could be the result of planners

not possessing complete knowledge of a situation.

The major sources of natural variability are temporal, spatial, and individual

heterogeneous [8]. Temporal variability is value fluctuation due to changes over time.

For example, the effectiveness of IO action can be drastically affected by timing. An

operation that may be very successful on day 20 when civilian sentiment is fractional-

ized likely would not be as effective on day 1 when the population is unified. Spatial

variability relates to fluctuations due to location or area. An example of spatial

variability is the geographically separated religious sects in Iraq. All other natural

variability is captured by individual heterogeneous. This thesis will not address nat-
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ural variability. The SoSA network is assumed to be an accurate estimation of the

real system.

EBO knowledge uncertainty can be attributed to four main sources: decision

uncertainty, incompleteness, inconsistency, and inaccuracy. Decision uncertainty is

the human subjectivity associated with decision making. If two people are given the

same data, each might interpret the data differently resulting in different decisions.

Furthermore, subjective judgment regarding the reliability of data is captured in

decision uncertainty. Plus, different decision makers have different biases. This can

be seen in EBO when planners project previous experiences to new situations. For

example, a planner with extensive experience in operations in Southwest Asia may

naively apply the same techniques to an operation in Southeast Asia. Again, we

make the assumption that the SoSA network is constructed accurately and is not

interpreted differently by decision makers. Note, this human subjectivity can be

partially addressed through training and education.

Missing data is captured by incompleteness. As related to EBO, unknown nodes

and/or unknown influences are categorized as incompleteness uncertainty. This the-

sis assumes that all nodes and influences are known. Data that is lacking required

information or is at too broad of a resolution or fidelity is also classified as incom-

plete. This incompleteness is the target of this thesis effort. Intelligence data rarely

provides a definitive probability for an event or state of a system. In contrast, intelli-

gence usually gives linguistic quantifiers of the current state (i.e., confirmed, probable,

unknown, etc.).

Inconsistency involves two pieces of contradicting information. For example,

one intelligence source might indicate an enemy attack on position A whereas another

intelligence source might point at position B. This type of uncertainty is inconsistency.

The final source of knowledge uncertainty is inaccuracy, which relates to wrong data.

This thesis assumes that neither of these are present in the SoSA network.
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One important note is that all of these sources of data uncertainty are not mu-

tually exclusive. In fact, the sources may be quite dependent on one another. For

instance, take the intelligence rating of an enemy attack as probable. The uncertainty

associated with the statement probable might be attributed to incompleteness or de-

cision uncertainty. The rating is incomplete because it does not contain complete

information regarding the event. This qualitative rating leads to further uncertainty,

decision uncertainty, when multiple decision makers are presented the data. Various

decision makers will most likely not interpret the rating the same.

2.4 Methods for Handling Uncertainty

2.4.1 Uncertainty Models. The three most commonly used models by the

uncertainty community to address uncertainty are probability, possibility and evidence

theories. In addition, several other measures, like certainty factors, fuzzy sets, and

rough sets, are used to a lesser degree. Probability, possibility and evidence theories

are similar, but differ in “subtleties of meaning and application.” [14] All three models

are based on a distribution function that distributes some measure of uncertainty to

the events of interest. This distribution can be based on statistical data, physical

possibility, or subject matter expert (SME) assessment.

2.4.1.1 Probability Theory. The basis for probability theory is the

probability distribution, which allocates a probability measure to specific events. The

probability distribution maps the events under consideration to the interval [0, 1]. An

event that is known to occur, or sure event, has probability 1.

P (sure event) = 1

Conversely, an event that is known to not occur has probability 0.

P (¬sure event) = 0
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Total probability states that the probability of an event and its negation equals 1.

P (A) + P (¬A) = 1

There are three axioms that define the behavior of the probability measure. First,

the convexity law states that the probability of event A given information H is once

again a probability measure.

0 ≤ P (A|H) ≤ 1

Second, the additive law relates the probability of two events to the probability of

their union. Given two mutually exclusive events A and B,

P (A ∪B|H) = P (A|H) + P (B|H).

In turn, the sum of the probabilities of all mutually exclusive and collectively exhaus-

tive events equals 1. Finally, the multiplication law relates the probability of two

events happening together to their intersection.

P (A ∩B|H) = P (A|H) · P (B|A ∩H)

Or more generally,

P (E1, E2, . . . , En) = P (En|E1, E2, . . . , En−1) · . . . · P (E2|E1) · P (E1).

Some other useful properties of probability theory are the Law of Total Probability:

P (A) =
n∑

i=1

P (A|Bi) · P (Bi)

and Bayes’ Theorem:

P (a|c, x) =
P (c|a, x) · P (a, x)

P (c, x)
.
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2.4.1.2 Possibility Theory. According to Parsons, possibility theory is

a “non-statistical means of quantifying uncertainty based on . . . fuzzy set theory.” [14]

The basis for possibility theory is the possibility distribution, which maps all the

possible values of a variable to the interval [0, 1]. In possibility theory, an impossible

event has possibility of 0.

πx(u) = 0

Whereas, a possible event has possibility of 1.

πx(u) = 1

In other words, setting πx equal to 0 completely rules out x. Whereas, setting πx equal

to 1 just says that x is not ruled out. In the interval (0, 1), πx relates the possibility

of events, where the possibility of some events is more possible than others. Given

all the possible values, then according to the normalization condition, at least one is

possible.

∃u, πx(u) = 1

Possibility theory captures complete knowledge by the following:

∃u0, πx(u0) = 1

∀u 6= u0, πx(u) = 0.

And complete ignorance by:

∀u, πx(u) = 1.

Next, when given multiple sources of information, the principle of minimum

specificity states the possibility distribution that accounts for these multiple sources

is the least specific distribution. Thus, the joint possibility distribution πx,y is:

πx,y = min(πx, πy).
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This is analogous to the principle of maximum entropy for probability theory.

For example, given x can take on values {x1, . . . , xn}, then without any knowledge on

the probability or possibility of x, then

P (x1) = . . . = P (xn) =
1

n

Π(x1) = . . . = Π(xn) = 1 .

In contrast to probability measures, possibility measures are not additive. Pos-

sibility measures are subadditive:

Π(A ∪B) ≤ Π(A) + Π(B).

Furthermore, a high possibility measure for an event does not imply a high probability

measure, and a low probability measure does not imply a low possibility. A theoretical

connection between probability and possibility exists [14]:

∀x, P (x) ≤ Π(x).

2.4.1.3 Evidence Theory. Evidence theory, which is often referred to

as Dempster-Shafer theory, is based on a mass function or mass distribution function

m(·). Given a frame of discernment, which is the set of hypotheses Θ = {θ1, . . . , θn},

and its power set 2Θ, which is the set of all possible subsets of Θ, a mass function

assigns a measure of uncertainty to each member of the power set. Following are some

properties of the mass function:

m : 2Θ → [0, 1]

m(∅) = 0∑
A⊆Θ

m(A) = 1.
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From this mass function, a belief in a subset A of Θ can be defined as the sum of the

basic belief masses that support A:

Bel(A) =
∑
B⊆A

m(B).

Evidence theory can be thought of as a generalization of probability or pos-

sibility theory. Probability and possibility distributions have a corresponding mass

assignment which gives a belief function. Furthermore, one can think of belief func-

tions as a more tentative representation than probability distributions. In evidence

theory, a mass can be assigned to a set of hypotheses and updated as further infor-

mation is gathered.

There are multiple schools of interpretation of evidence theory. One school

thinks of evidence theory as a generalization of Bayesian subjective probability. This

school of thought believes evidence theory can be related to probability theory by the

following:

∀A, Bel(A) ≤ P (A).

In other words, the belief mass assigned to a hypothesis can never exceed its proba-

bility.

The second school of thought rejects the idea that evidence theory is related

to probability theory. This school of thought interprets evidence theory with the

transferable belief model. For this model, given any subset A of Θ, the belief mass

m(A) is the amount of belief assigned to A. This mass cannot be assigned to any

subset of A due to lack of knowledge. As evidence is obtained, subsets of A can be

excluded, and the original mass assigned to can be transferred to the remaining part

of A.

Finally, evidence theory can be used to accomplish decision analysis. There are

two possible means of using evidence theory for decision analysis. The first uses the

interval interpretation of evidence theory. This interpretation is that Bel(A) is a lower
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bound on the probability of A and Pl(A) is an upper bound for the probability of A,

where Pl(A) is the total belief mass that may ever be assigned to A (i.e., the extent

to which A might be true). Pl(A) is defined as the probability mass not supporting

¬A.

Pl(A) = 1−Bel(¬A)

The second uses the transferable belief model to convert a mass distribution to a

probability distribution. [14]

2.4.1.4 Other Uncertainty Models. Following are a few lesser used

uncertainty models.

Certainty Factors. Certainty factors, which have been used to handle uncer-

tainty, are based on rules of the form

IF evidence E
THEN hypothesis H.

Each hypothesis is characterized by two measures of uncertainty, MB and MD. MB

is the degree which the evidence supports the belief of the hypothesis, and MD is the

degree which the evidence supports the disbelief of the hypothesis. Then the certainty

factor is computed

CF =
MB −MD

1−min(MB, MD)
.

Although widely used, certainty factors are not without flaws. People have

challenged the independence assumptions and the evidence updating ability of the

model.

Fuzzy Sets. Fuzzy sets are a generalization of classical set theory. Fuzzy sets

aim to represent sets in which the boundaries of the set are not clear. Parsons, in [14],

uses the set of all animals as an example for fuzzy sets. Obviously, dogs and cats are

animals, but it is less clear whether bacteria and viruses are animals.

Some work was accomplished by Bonissone, et al. [3] in the late 1980s for com-

bining fuzzy sets with probabilities into fuzzy probabilities for use in a military ap-
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plication. These fuzzy probabilities were shown to be useful in accomplishing naval

and aerial situation assessment, where the goal is to detect, track and identify tar-

gets. Although useful for this military application, the applicability to EBO is not

obvious. In fact, Parsons states that fuzzy sets are used to model vague information

not uncertain information. [14]

Rough Sets. Rough sets are another generalization of classical set theory. Rough

sets model objects that cannot be categorized into one set or another. These objects

possess the qualities of being in the set, but also the qualities of being outside of the

set. Thus, Parsons states that rough sets can be used to model ambiguity. [14]

2.4.2 Uncertainty Computational Techniques. Having discussed the poten-

tial models for dealing with uncertainty, it is important to take a look at the techniques

used to manipulate these measures in order to arrive at useful information. These

techniques fall into two broad categories: quantitative and qualitative. The quan-

titative techniques require enumeration of all the required quantities; whereas, the

qualitative techniques use either strictly qualitative data or a mixture of qualitative

and quantitative data. Each type of technique has its benefits and drawbacks. The

quantitative techniques maintain a high level of precision, but require vast amounts of

data that is often times unattainable. On the other hand, the qualitative techniques

require less specific data but are much less precise. In fact, the qualitative techniques

can lead to no useful information being obtained due to lack of specificity. Thus, it

is imperative that a technique is chosen that will result in truly useful and attainable

data.

2.4.2.1 Quantitative Techniques. Quantitative techniques were devel-

oped to address the large number of probabilities required of probabilistic systems.

For example, given a system composed of n variables, to fully state the relationships

of the system, 2n probabilities are required. For many real world systems where n

is quite large, this becomes computationally prohibitive. Thus, several quantitative
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techniques were suggested in order to overcome the computationally intensive nature

of probability theory.

Causal Networks. Causal networks reduce the number of required probabilities/-

possibilities by only representing the linkages between variables that have an actual

causal relationship. These relationships are presented in a network model where the

nodes are the variables and the relationships between the variables are depicted with

arcs. Thus, a node is only connected with those nodes that directly affect it.

Although useful for reducing the number of computations, causal networks still

require that probabilities/possibilities be obtained for each of the relevant relation-

ships. Thus, for EBO, where linkages are sometimes vague or unknown, causal net-

works are limited in their ability to provide attainable answers (at least from a quan-

titative perspective).

Valuation Networks. Valuation networks are graphical representations of value-

based systems. These systems represent the entities of the system as variables and

the relationship between them as valuations. These valuations can be probability

distributions, possibility distributions or belief mass assignments. Once again, the

difficulty in using valuation networks for EBO is in the development of the respective

distributions for each of the interactions between variables. This is almost always not

possible due to the uncertainties of war.

Influence Diagrams. Influence diagrams, like causal networks, are a graphical

representation of the interactions between a set of variables. Influence diagrams were

developed as a decision analysis tool. Originally, in order to solve influence diagrams,

they needed to be transformed into some other form and then solved. However,

computational methods have been developed that evaluate influence diagrams. Prob-

ability distributions for the chance nodes and value structures for the value nodes are

required; both of which can be difficult to obtain for EBO.

2.4.2.2 Qualitative Methods. The major drawback to all of the quan-

titative methods is: “where are all the numbers coming from?” [14] This is definitely
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the major concern when considering the use of the quantitative methods for EBO.

The possible solutions are qualitative methods that use either partial quantitative

data or strictly qualitative information. These qualitative methods do not provide as

much detail as the quantitative models, but arrive at more robust results with much

less effort. [6]

Qualitative Reasoning. Qualitative reasoning uses the abstraction of real num-

bers into positive, negative, and zero valued quantities. This method has been used

widely to assess highly complex systems such as digital circuits and the human body.

Instead of trying to obtain numerical data regarding a system, qualitative reasoning

aims to identify the interesting features of system behavior. This method is useful in

assessing systems with complexity or ambiguity problems. The results are not very

detailed and for EBO would likely be ineffective.

An extension to qualitative reasoning aimed at reducing the level of abstraction

is order of magnitude systems. For these systems, the qualitative values are further

divided into orders of magnitude (i.e., A is negligible with respect to B, or A has

the same order of magnitude as B). Once again, for EBO purposes the system is too

coarse to be of much use.

Finally, qualitative algebras also seek to reduce the level of abstraction. Quali-

tative algebras use more quantitative information combined with the qualitative infor-

mation. The quantitative information is used as extensive as possible, then translated

into qualitative values. This makes it possible to gain more information than strictly

converting the quantitative values to qualitative values prior to reasoning. Yet again,

though, for EBO this method does not provide the fidelity of solution needed for

planning or analysis.

Interval-Based Systems. Interval-based systems aim to overcome a lack of knowl-

edge by relaxing the requirement for point values. These intervals, whether they are

probability or another measure, make the imprecision of information clear and intu-

itive. This makes them attractive for application to EBO. For interval-based systems,
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the upper probability of a hypothesis A is defined among the set S of probabilities of

A as:

P ∗(A) = sup
P∈S

P (A)

and the lower bound is

P∗(A) = inf
P∈S

P (A).

Thus, if A and B are disjoint events

P ∗(A ∪B) ≤ P ∗(A) + P ∗(B)

P∗(A ∪B) ≥ P∗(A) + P∗(B).

A specific approach of interval probabilities that may prove effective for EBO

is the use of interval probabilities to depict the linguistic quantifiers provided by

intelligence assessments. For example, the intelligence assessments of probable or

possible could be mapped to the intervals [a, b] and [b, c], where 0 < a ≤ b ≤ c < 1.

Abstraction of Quantitative Systems. Another technique that may be effective

in EBO planning and assessment is Wellman’s work using qualitative probabilistic

networks (QPN) for decision analysis. QPNs are constructed based on influence dia-

grams and Bayesian belief networks. The difference is that the relationships among

the variables are qualitative influences and synergies rather than precise probabilities,

which are, as already stated, hard to obtain. [20] [6]

These qualitative influences and synergies make QPNs attractive for EBO. For

example, given a desired effect, there may be several possible actions that can be taken

to obtain that effect. The exact relation among the actions and effects will most likely

not be attainable. However, a planner or intelligence analyst might be able to place

an influence, either positive, negative, or zero, on the action-effect relationship. In

addition, when multiple actions are considered, there might be synergies associated

with the multiple actions. These also are addressed in QPNs.
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A major drawback to QPNs is that in the basic model the variables are binary

(i.e., two possible states). As variables with more than two values are considered, the

concept becomes more complex. To account for this, Wellman suggests thinking of

the multiple values of a variable as two sets of higher and lower values, where higher

and lower are based on some defined order of the values. [14]

Defeasible Reasoning. Defeasible reasoning is reasoning where new information

can invalidate old conclusions. Some times it is necessary to make hypotheses to

account for incomplete information. As new information is obtained the hypotheses

are retracted. In doing this, the problem of inconsistent information is added to the

original problem of incomplete information. These methods are primarily used for

systems which the incomplete information is known to exist. [14] In EBO, there is

incomplete knowledge of how uncertain the information is. Thus, defeasible reasoning

would most likely not be effective for EBO planning and assessment.

2.5 Measuring Uncertainty

In order to maximize information gain through intelligence asset prioritization,

it is necessary to measure the uncertainty present in the system. Once a distribution

has been assigned to the current state of the system (or subsystem), a measure of

uncertainty for the distribution is needed. The uncertainty community has used two

measurements of uncertainty to quantify the uncertainty associated with probability

and possibility distributions. Shannon’s entropy is the commonly used measure of un-

certainty used for probabilities, and specificity is used to measure the uncertainty for

possibility distributions. The entropy of a random variable measures its complexity,

or degree of randomness. Given a higher entropy of a random variable, it is harder to

predict the value of the random variable. [7] Specificity is an extension of Shannon’s

entropy to possibility distributions.

2.5.1 Shannon’s Entropy. Shannon’s entropy was developed in 1948 by

Claude E. Shannon during his research on information theory. Shannon was con-
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cerned with the amount of information, or bandwidth, that could be passed by com-

munication systems. Shannon’s work was the basis for much of the work on data

compression used in today’s internet. Shannon developed a logarithmic measure to

quantify the uncertainty associated with a discrete channel communication system

represented by a Markov process. Following is Shannon’s entropy for discrete proba-

bility distributions:

H = −K

n∑
i=1

pi log2 pi (2.1)

where K is a positive constant and pi are transition probabilities from the current

state to the n possible states. Shannon also developed a continuous measure for

use with signals or messages that are continuously variable. Following is Shannon’s

entropy for continuous probability distributions:

H = −
∫
· · ·

∫
p (x1, . . . , xn) log2p (x1, . . . , xn) dx1 · · · dxn. (2.2)

2.5.1.1 Shannon’s Entropy - Discrete Distributions. Suppose we are

given n possible discrete events with known probabilities p1, p2, . . . , pn. Shannon

states that if a measure of uncertainty, H, exists for the n events then it must have

the following properties. [16]

1. H should be continuous in the pi.

2. If all the pi are equal, pi = 1
n
, then H should be a monotonic increas-

ing function of n. With equally likely events there is more choice, or
uncertainty, when there are more possible events.

3. If a choice be broken down into two successive choices (see Fig-
ure 2.3 on the following page), the original H should be the weighted
sum of the individual values of H...

H
(

1
2
, 1

3
, 1

6

)
= H

(
1
2
, 1

2

)
+ 1

2
H

(
2
3
, 1

3

)
.

Shannon presents the following result with proof. [16]

Theorem: The only H satisfying the three above assumptions is of the
form:

H = −K
n∑

i=1

pi log2 pi
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Figure 2.3: Entropy for Multiple Decision Points

where K is a positive constant.

The constant K is a matter of choice and is simply a unit of measure. K

can be any positive value and is chosen based on application. For example, if one

wanted to normalize the entropy measure, you could divide by the maximum possible

entropy [19]

K =
1

log2 n
.

This results in a measure called relative entropy. [16] By normalizing the entropy, the

effect of the number of possible states, n, is removed. For this thesis, K is assumed

to equal 1
log2 n

due to the need to compare the entropy of nodes with different values

of n (i.e., with different number of states). For example, given a SoSA network where

the most important node is represented by two states and the least important node

is represented by three states, if no information is known regarding the current state

of each node, then the Shannon entropy of each (using Equation (2.1) with K = 1) is

Hmost important = −
(

1

2
log2

1

2
+

1

2
log2

1

2

)
= 1

and

Hleast important = −
(

1

3
log2

1

3
+

1

3
log2

1

3
+

1

3
log2

1

3

)
= 1.585.
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Figure 2.4: Entropy (K = 1) Versus Relative Entropy (K = 1
log2 n

)

If a node is then chosen for intelligence collection, one would choose the more uncertain

node–the one with the highest entropy. In this case, it would be the least important

node.

The effect of n is depicted in Figure 2.4. On the left side of the figure is a plot

of (discrete) probability p versus entropy for various values of n. A system achieves

its highest entropy value at p = 1
n
; however, this highest value does not remain

constant, but grows logarithmically with n. On the right side of Figure 2.4, a plot of

p versus relative (or normalized) entropy for various values of n is given. Again, the

system achieves its highest entropy value at p = 1
n
, but this value is a constant of one

regardless of the possible number of states, n.

The base of the logarithm corresponds to the choice of a unit for the measure-

ment. Base 2 corresponds to binary digits, or bits. Base 2 relates the number of

bits required to store or transmit the information. Using base 10 gives the entropy
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in decimal digits. In the uncertainty community, base 2 (bits) is predominantly used

(presumably due to the community’s close ties to information theory).

Consider the binary system where two mutually exclusive events are possible,

with probabilities p and q = 1− p. Thus, the entropy of the system is

H = − (p log2 p + q log2 q) .

The entropy for this system is plotted as a function of p in Figure 2.5. Note, the

maximum entropy is attained when p = q = 0.5. This corresponds to the values of p

and q for which the least information (or maximum uncertainty) is known regarding

the outcome of the system. Furthermore, minimum entropy is attained when either

event is known to occur with probability 1, p = 1 or q = 1. This corresponds to

perfect information (or no uncertainty) regarding the outcome of the system.

Next, consider the case where there are eight possible mutually exclusive events.

Given a node, ni, let Ni be the state of ni. Ni is a discrete random variable defined
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Figure 2.6: Discrete Distributions with Varying Uncertainties

on a finite set with an associated probability distribution, pi, where pi(x) = P (Ni =

x). Under total uncertainty, one cannot say that any one state is more probable

than another state. Thus, based on the principle of maximum entropy, one has to

assume a uniform distribution for the eight discrete states. [14] No uncertainty, or total

certainty, implies that the random variable is known to equal a single state. Thus, all

pi(x) equal zero except for one, which equals one. In between total uncertainty and

total certainty, Shannon’s relative entropy results in a measure of the varying levels

of uncertainty.

To illustrate, consider the distributions presented in Figure 2.6. Now, using

Shannon’s relative entropy for discrete probability distributions (Equation (2.1)), we

arrive at a measure for the uncertainty of each of these distributions. For A, the total
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uncertainty case, the relative entropy is:

H (x) = − 1

log2 8

∑
x

pi (x) log2 pi (x)

= −1

3
[0.125× 8 (log2 0.125)]

= 1.

For B, the no certainty case, the relative entropy is:

H (x) = − 1

log2 8

∑
x

pi (x) log2 pi (x)

= −1

3
[1 (log2 1)]

= 0

and for C, the case in between total and no uncertainty, the relative entropy is:

H (x) = − 1

log2 8

∑
x

pi (x) log2 pi (x)

= −1

3
[0.125× 4 (log2 0.125) + 0.5 (log2 0.5)]

= 0.667.

Entropy has some interesting properties that further substantiate it as a valid

measure of uncertainty. [16]

1. H is not dependent upon the values of X. It is only dependent upon the

probabilities, P (X = x).
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2. H = 0 if and only if all pi equal 0 except one, which equals 1. Thus, only when

we are certain of the outcome does H = 0. Otherwise, H > 0.

H = −
n∑

i=1

pi log2 pi

= −1 log2 (1)

= 0

3. For a given n, H is maximized and equal to log2 n when all pi are equal (i.e.,

pi = 1
n
).

H = −
n∑

i=1

pi log2 pi

= −n
(
1/n

)
log2

(
1/n

)
= − log2

(
1/n

)
= log2 n

Thus, the maximum H increases as the possible number of events increases.

This is intuitive as the number of possible events increases so too does the

uncertainty associated with the system.

4. Given two events, x and y. The entropy of the joint event is

H (x, y) = −
∑
i,j

p (i, j) log2 p (i, j)

where

H (x) = −
∑
i,j

p (i, j) log2

∑
j

p (i, j)

H (y) = −
∑
i,j

p (i, j) log2

∑
i

p (i, j).
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Thus, the entropy of the joint event is less than or equal to the sum of the

individual entropies.

H (x, y) ≤ H (x) + H (y) .

If the events x and y are independent, then

H (x, y) = H (x) + H (y) .

5. Any change toward equalization of the probabilities p1, . . . , pn increases H.

This property is demonstrated for the binary case in Figure 2.5 on page 29, and

can be easily shown for other n.

2.6 Linguistic Quantifiers

In EBO, it is necessary to develop a methodology for describing the current

states of the individual nodes and the overall network. The sources for characteriz-

ing the current states of the nodes and the network are intelligence data. This data

is often times not exact, and as such contains much uncertainty. If an intelligence

analyst provides a probability for the current state, then these probabilities can be

plugged directly into the network. However, if an intelligence analyst provides lin-

guistic quantifiers, then assigning a probability, possibility or belief to the current

state of a node can be accomplished several different ways. However, for the goal

of quantifying the uncertainty present in the assessment, some techniques are more

acceptable than others.

Intelligence data usually makes use of linguistic quantifiers, or “words of estima-

tive probability.” For example, an intelligence analyst may give the precise location

of an airfield, but may provide a judgement or estimate of the use of the airfield (i.e.,

“It is almost certainly a military airfield”). It is this linguistic estimate that is the

source of the probabilistic uncertainty. [11]
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Table 2.1: Sherman Kent’s Words of Estimative Probability [11]

Possibility or Likelihood Terms Synonyms
Possible conceivable

could
may
might
perhaps

Almost Certain virtually certain
all but certain
highly probable
highly likely
odds [or chances] overwhelming

Probable likely
we believe
we estimate

50-50 chances about even
chances a little better [or less]
than even
improbable
unlikely

Probably Not we believe that . . . not
we estimate that . . . not
we doubt, doubtful

Almost Certainly Not virtually impossible
almost impossible
some slight chance
highly doubtful

Kent [11] provides a list of linguistic quantifiers commonly used by intelligence

analysts. This list is definitely not all inclusive but provides a good unclassified

framework. Kent’s list of synonyms is presented in Table 2.1. Kent also presents a

suggestion for translating these linguistic quantifiers to probabilities (see Table 2.2 on

the following page).

In dealing with Kent’s interval probabilities, the idea of maximum entropy is

quite useful. The principle of maximum entropy can be used to obtain a point es-

timate for a probability interval. If given a probability interval, [a, b], for an event

for which the distribution across the interval is unknown, the principle of maximum
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Table 2.2: Kent’s Probabilities Associated with Linguistic Quantifiers [11]

Probability Linguistic Quantifier
100 % Certainty
93 % ± 6 % Almost certain
75 % ± 12 % Probable
50 % ± 10 % Chances about even
30 % ± 10 % Probably not
7 % ± 5 % Almost certainly not
0% Impossibility

entropy distributes the probabilities equally across the interval (i.e., uniform distri-

bution). According to Jaynes, this is the “least biased estimate possible based on the

given information.” [9] Thus, no single probability is more favored than any other.

Therefore, the expected value for the interval, based on the principle of maximum

entropy, is the midpoint of the interval 1/2 · (a + b). [14]

This thesis uses the midpoint of Kent’s interval probabilities as a point estimate

for the discrete probabilities assigned to the linguistic quantifiers. As an example,

given an eight-state node, the probability distribution for Probably Not in state 5 is

depicted in Figure 2.7 on the next page.

P (Ni = ¬5) = 0.70

2.7 Generalized Assignment Problem

The allocation of intelligence collection efforts from multiple intelligence sources

against multiple nodes can be related to the integer program (IP) of assigning multiple

resources to multiple containers, or knapsacks–the multiple knapsack problem. The

multiple knapsack problem takes the form of m containers with ci capacities and n

items with profits pj. It makes use of a binary indicator variable xij, that takes value 1

when item j is placed in container i and 0 otherwise. The formulation of the problem
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Figure 2.7: Probably Not in State 5

is

maximize
m∑

i=1

n∑
j=1

pjxij (2.3)

subject to
n∑

j=1

wjxij ≤ ci, i = 1, . . . ,m, (2.4)

m∑
i=1

xij ≤ 1, j = 1, . . . , n, (2.5)

xij = 0 or 1, i = 1, . . . ,m, j = 1, . . . , n. (2.6)

Equation (2.4) are the capacity constraints for the knapsacks, and Equation (2.5)

ensures that item j is only added to a knapsack once.

In the objective function, Equation (2.3), the profit pj is the profit (or benefit)

obtained by adding item j to a knapsack. For the multiple knapsack problem, this

value is a constant independent of the knapsack selected. For application to the in-

telligence asset allocation problem, the information gained (i.e., benefit) is dependent

upon the intelligence asset selected to collect the information. Therefore, the GAP

must be used to solve the allocation problem. Strictly speaking, the GAP is not a
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knapsack problem, but the algorithms used to solve it use the knapsack subprob-

lems. [12]

The GAP can be formulated using the terminology of knapsack problems. Given

n items and m knapsacks, with

pij = profit of item j if assigned to knapsack i,

wij = weight of item j if assigned to knapsack i,

ci = capacity of knapsack i,

maximize the total profit by assigning each item to at most one knapsack without

assigning to any knapsack more than its total capacity. [12]

maximize
m∑

i=1

n∑
j=1

pijxij (2.7)

subject to
n∑

j=1

wijxij ≤ ci, i = 1, . . . ,m, (2.8)

m∑
i=1

xij ≤ 1, j = 1, . . . , n, (2.9)

xij = 0 or 1, i = 1, . . . ,m, j = 1, . . . , n. (2.10)

2.8 Chapter 2 Review

This chapter provided a review of the current literature on EBO, knowledge

uncertainty, linguistic quantifiers, methods for handling uncertainty, uncertainty mea-

sures, and the GAP. In Chapter 3, probability theory is used to represent the uncer-

tainty associated with the nodes of the SoSA network. This uncertainty is measured

with Shannon’s relative entropy, and the GAP is used to allocate intelligence resources

to the nodes of the SoSA network with the goal of maximizing the information gain.
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III. Methodology

3.1 Overview

This chapter presents a mathematical model for System-of-systems Analysis

(SoSA) networks, a methodology for prioritizing a single intelligence asset’s collec-

tion efforts, and a methodology for allocating multiple intelligence assets. The SoSA

mathematical model is intended as a general state model which may be used for

other applications dealing with SoSA. It defines notation and terminology and forms

the foundation for the later methodologies for prioritizing and allocating intelligence

collection efforts. The methodology for prioritizing a single asset’s intelligence col-

lection efforts uses Shannon’s entropy [16] to measure the current uncertainty of the

nodal states. This uncertainty is based on the latest intelligence assessments, which

are typically provided using linguistic quantifiers, and the planned actions against

the nodes. The expected reduction in entropy due to an intelligence collection effort

is then calculated. Finally, intelligence collection efforts are selected based on the

greatest possible reduction in uncertainty. This methodology is then extended to the

allocation of multiple intelligence assets. A generalized assignment problem is used

to maximize the amount of information gain from a limited number of intelligence

collection opportunities.

3.2 SoSA Network Mathematical Model

According to the Joint Warfighting Center (JWFC) Pamphlet 7 on Effects-based

Operations (EBO), a SoSA is accomplished in order to gain further understanding

and situational awareness of an adversary and the operational environment. To ac-

complish a SoSA, the operational environment is assumed to be composed of politi-

cal, military, economic, social, infrastructure, and information (PMESII) entities (or

systems). These six interrelated PMESII systems are represented pictorially using

a multi-dimensional network. Each node within the network represents a person,

place, or physical thing that is a fundamental component of the system. The linkages

connecting the nodes represent the behavioral, physical, or functional relationships
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JWFC Doctrine Pam 7 
17 November 2004 

10

 The ONA process begins when the combatant commander 
designates a priority (specific nation, region, contingency, or entity) within 
the AOR. The initial “baseline” ONA effort for a specific priority is to develop 

a system-of-systems analysis (SoSA)—an important sub-process of ONA—which 
populates the baseline ONA with data on PMESII systems and their organization, 
characteristics, and relationships.  This effort produces a nodal analysis which, 
along with effects development, forms the basis for coupling nodes to effects, 
actions to nodes, and resources to established E-N-A linkages.  Secondary and 
unintended effects also are considered during this process.  Joint force planners use 
this database—updated when a crisis is imminent—to develop, compare, and 
recommend effects-based COAs for the JFC’s decision. 

 As Figure 3 depicts, SoSA emphasizes a multi-dimensional approach toward 
understanding the battlespace, characterized by an analysis of six interrelated PMESII 
systems. Within each of these systems are nodes (a person, place, or physical thing 
that is a fundamental component of a system) and links (the behavioral, physical, or 
functional relationship between the nodes).  SoSA identifies the relationship between 
nodes within individual systems and 
across systems.  These nodes and 
associated links are then identified for 
DIME actions to influence or change 
system behavior and capabilities in 
order to achieve desired objectives. 

Understanding each of these 
systems and their interrelationships 
enables a holistic perspective of the 
operational environment.  Among 
other benefits, this perspective helps 
intelligence analysts identify potential 
sources from which to gain 
indications and warning and allows 
planners to consider a broader set of 
options to achieve objectives and 
focus limited resources.  It also 
increases the understanding of how 
individual actions on one element of 
the system can affect other 
interrelated system components.

 Both the SoSA and the joint intelligence preparation of the battlespace (JIPB) 
are complementary processes that produce the awareness and understanding required 
to plan and execute EBO.  While JIPB doctrine provides for a broader perspective, JIPB 
activities generally have focused on the adversary’s military.  SoSA is intended to 
provide a comprehensive analysis across all PMESII systems.  The SoSA is a valuable  

FIGURE 3:  SYSTEM-OF-SYSTEMS 

Analyze the battlespace as a “system of 
systems.”

Understand the connectivity of key systems, 
nodes and links.

Identify decisive points for action to 
influence or change system behavior.
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Figure 3.1: Systems-of-systems Analysis [10]

between the nodes. By developing an interrelated network of a region or nation of

interest, planners aim to take a holistic view of the operational environment. See

Figure 3.1 for a pictorial representation of a SoSA network. [10]

In order to mathematically represent the SoSA network, the following notation

is introduced. Let node i represent the smallest, non-decomposable entity or node in

the network (or at least at the highest resolution that one intends to represent the

network). Let ni denote the node, where i is a unique identifier for the node (i ∈ N+).

Thus a SoSA network composed of k entities can be represented by the set of nodes,

N .

N = {n1, n2, . . . , nk}

However, to fully characterize the network we must describe the current state

of the k nodes, as well as the linkages and possible relationships among the states of

the nodes. To describe the current state of a node, let Ni be defined as the current

state of ni. Ni may be composed of multiple characteristics or qualities associated
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with node ni. Thus, for a node with m attributes, Ni is a vector of current attributes.

Ni =
[
N

(1)
i , N

(2)
i , . . . , N

(m)
i

]
For EBO, these attributes will usually be assessed using linguistic quantifiers provided

from intelligence (e.g., an enemy system could be defined as operational, degraded,

nonoperational, etc.).

For example, a node, na, may possess physical, functional, and behavioral at-

tributes. Then the current state is

Na =
[
N (1)

a , N (2)
a , N (3)

a

]
where, N

(1)
a is the physical state of the node, N

(2)
a is the functional state of the node,

and N
(3)
a is the behavioral state of the node.

Due to possessing multiple attributes, each node can be in any one of u unique

states, where

u =
m∏

z=1

[
# of possible linguistic quantifiers for N (z)

a

]
.

Let Ui be the set of all discrete states for ni.

Back to our example, assume each of the three attributes can be rated as follows

N (z)
a =

 0 , if nonactive

1 , if active.

Then na can be in any one of 23 = 8 unique states.

For a SoSA network composed of k nodes, let C denote the set of current state

vectors for the k nodes within the network (N ).

C = {N1, N2, . . . , Nk}
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Figure 3.2: Multiple parent and child nodes

At this point, it must be noted that this notation describes a static network. If

one is considering a dynamic network, the notation can easily be adapted to account

for time. To accomplish this, let Ni(t) be the state vector for node ni at time t.

Next, notation is introduced for the linkages between nodes. Given two nodes,

ni and nj, the linkage, lij, between states Ni and Nj denotes the existence of a

relationship between the node states. This linkage, lij, can be unknown or directed.

The unknown linkage arises when a relationship between the states Ni and Nj is known

to exist, but quantifying, or even qualifying, the relation is not possible. The directed

linkage exists when the state Nj is dependent upon the state Ni. For the directed

linkage, the independent node is referred to as the parent node, and the dependent

node is referred to as the child node. [5] [Note, the parent/child terminology only

depicts a directed relation between two nodes. For EBO, no hierarchy or ownership is

implied by the terminology. To say a node ni is a parent to node nj only indicates the

state Ni has an influence on the state Nj.] A node may possess one or more parent

or child nodes (see Figure 3.2). Thus, for any two nodes, ni and nj, i 6= j, there

exists no relationship, an unknown relationship, or a directed relationship between

their associated states, Ni and Nj. See Figure 3.3 on the following page.

To complete the directed graph terminology, the terms directed path, ancestor,

and descendant are introduced. A directed path exists between two nodes, ni and nk,
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Figure 3.4: Linkage between ni and nj

if there exists directed linkages from node ni to node nk. For example, in Figure 3.2 on

the page before, a directed path exists from node nf to node nj (i.e., lfi from node

nf to node ni and lij from node ni to node nj). If a directed path exists from node

nf to nj, then node nf is called an ancestor of node nj, and nj is referred to as a

descendant of node nf . [21]

It is important to note that linkages can occur in both directions between two

nodes, ni and nj. In other words, there may exist an interdependence between the

state Ni and the state Nj. To account for this, let lij denote the relationship from Ni

to Nj, and lji denote the relationship from Nj to Ni (see Figure 3.4). If no relationship

exists between the states of two nodes, then lij = lji = 0.
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Thus,

lij =


0 , if no relation exists between ni and nj

1 , if a directed relation exists between ni and nj

[?] , if an unknown relation exists between ni and nj.

For a SoSA network composed of k nodes, let L denote the set of non-zero

linkages between the k nodes. In other words, L denotes the set of all existing linkages

between the k nodes.

L = {lij : lij 6= 0, i, j ∈ [1, k] , i 6= j}

L can also be represented using a k × k adjacency matrix, where the elements

of the matrix, lij, represent linkages from node ni to node nj. In other words, the

rows of L represent the parent nodes, and the columns represent the child nodes. For

example, the adjacency matrix for Figure 3.2 on page 41 is

L =



0 lfg lfh lfi lfj lfk

lgf 0 lgh lgi lgj lgk

lhf lhg 0 lhi lhj lhk

lif lig lih 0 lij lik

ljf ljg ljh lji 0 ljk

lkf lkg lkh lki lkj 0
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=



0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 1 1 0 1 [?]

0 0 0 0 0 0

0 0 0 [?] 0 0


.

Note, due to the unknown linkage between node ni and node nk, lik = lki = [?]. This

holds for any unknown linkage.

Using the adjacency matrix, one can easily identify the linkages associated with

a node. For example, row 1 indicates node nf is a parent only to node ni, and column

1 indicates nf is not a child to any node.

Each existing linkage, lij 6= 0, may possess a function (or mapping) of the state

of ni, Ni, to the state of nj, Nj. Let Lij denote this function (or mapping).

Lij (Ni) = Nj

Lij may be quantitative or qualitative. A quantitative function (or mapping) exists if

numerical data exist to relate the state Ni to the state Nj. In the absence of complete

numerical data (i.e., partial numerical data or complete lack of numerical data), a

qualitative mapping may exist. This mapping relates the state Ni to the state Nj by

qualitatively describing the effect the state Ni has on state Nj. For example, given

a positive (+) change in the state Ni, Lij may qualitatively relate this change to

a positive (+) or negative (−) change in the state Nj. Without more information,

nothing more can be stated regarding the change in state Nj based on a change in

state Ni. For the unknown linkage between the states Ni and Nj, Lij returns an

unknown relation. [14]

Lij(Ni) = [?]
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Taking a closer look at the linkages between the states of nodes, one can see that

some attributes of a node may be more influential on child attributes than others.

Whereas some attributes may have no influence on the state of the child node. To

account for this, Lij may be composed of individual attribute functions (or mappings)

from parent attributes to child attributes.

Lij (Ni) =


L

(1)
ij

(
N

(1)
i

)
L

(2)
ij

(
N

(2)
i

)
...

L
(m)
ij

(
N

(m)
i

)


Next, because each node, nj, may possess more than one parent and thus more than

one state mapped to its state, Nj, notation must be introduced to relate the pj possible

linkages, where pj is defined as the number of parents to nj. See Figure 3.5 on the

following page. Also, it is possible there exist linkages between the pj parent nodes.

Thus, any mapping (or function) relating the pj parent nodes to the state Nj must

also take into account the linkages between the states of the parent nodes. Let fj be

the function that relates all the current states of the pj parent nodes and the linkages

among the parent nodes to the current state Nj.

Nj = fj [Nd, Ne, . . . , Nr, Lde, Ldf , . . .]

For a SoSA network composed of k nodes, let F denote the set of functions (or

mappings) associated with the non-zero linkages between the k nodes.

F = {Lij, fj : lij 6= 0, i, j ∈ [1, k] , i 6= j}

Thus, an entire SoSA network, A, is completely characterized by the nodes

(N ), the current state of the nodes (C), the linkages between the nodes (L), and the
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functions relating the states of the nodes (F).

A = {N ,S,L,F}

In addition, the graphical model of the SoSA network, G, can be entirely represented

using N and L

G = (N ,L)

and the state model, S, can be entirely represented using C and F .

S = (C,F)

To allow planners to abstract or aggregate the network to the appropriately

needed level, the concept of a system is introduced. A system, denoted n[i], is defined

as a non-empty set of nodes and/or systems, current state vectors, linkages, and

functions, which acts as a single entity.

n[i] = {N ′, C ′,L′,F ′}
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Figure 3.6: System notation

where, N ′ ⊆ N , C ′ ⊆ C, L′ ⊆ L, F ′ ⊆ F . This notation allows one to represent

complex systems as single nodes. In Figure 3.6, na, nb, nc, and their associated

linkages are replaced with n[e].

As an example of a system, consider a surface-to-air missile (SAM) battalion

within an enemy integrated air defense system (IADS). Planners may not desire to or

may not be able to assess the current states of individual components of the SAM bat-

talion (e.g., acquisition radar, tracking radar, command vehicle, transporter erector

launcher (TEL). Thus, to represent the battalion within the network, the individual

components, as well as their associated linkages, are encompassed in a system node,

n[i]. Planners can now define effects and actions in terms of the system, n[i], instead

of each of the individual components.

3.3 Prioritizing A Single Intelligence Asset’s Collection Efforts Based

on Nodal Uncertainty

Given a mathematical model of the SoSA network, a methodology for priori-

tizing a single intelligence asset’s collection efforts is developed. At first brush, one

might decide to simply choose the most uncertain node (or nodes) (i.e., highest en-

tropy) and task an asset to collect intelligence on it. However, the possible reduction

in entropy due to an intelligence collection effort is dependent upon the intelligence

asset available as well as the target node. For example, imagery intelligence (IMINT)
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may be very effective in assessing the current state of a tank or Army brigade but

may provide little to no information on the current state of a political party or regime.

Thus, any model developed must account for the dependence between an intelligence

asset and target types. Presented below is a model that maximizes the information

gain (i.e., the reduction in entropy) while accounting for the dependence between

assets and targets.

3.3.1 Overall Model. The overall approach to prioritizing the intelligence

(information) collection effort is:

1. Based upon current intelligence assessments, calculate the uncertainty associ-

ated with each node within the network, ni ∈ N , using Shannon’s entropy

measure, hi.

hi = −Ki

ui∑
l=1

pi,l
′′ log2(pi,l

′′) (3.1)

where,

Ki =
1

log2(ui)

pi,l
′′ = the probability that node i is in state l, Ni = l, adjusted for the

freshness of the intelligence update and planned actions on ni.

2. Next, based on the available intelligence asset, the expected entropy given an

intelligence information collection effort on each node, E [hi
′], is calculated. For

these calculations, the states of the nodes are assumed to be independent. The

expected change in entropy for node ni, δi, is

δi = ρi (hi − E [h′i]) (3.2)

48



Table 3.1: Kent’s Probabilities Associated with Linguistic Quantifiers [11]

Probability Linguistic Quantifier
100 % Certainty
93 % ± 6 % Almost certain
75 % ± 12 % Probable
50 % ± 10 % Chances about even
30 % ± 10 % Probably not
7 % ± 5 % Almost certainly not
0% Impossibility

where ρi is a weighting factor for ni based on the previously determined nodal

priority (i.e., Priority I, Priority II, etc.). Refer to Section 3.3.2 for a discussion

on nodal priorities.

3. Finally, intelligence collection efforts are selected based on the maximum δi.

Given a m-node SoSA network, let pi be defined as the prior probability dis-

tribution of the state of node i, Ni. If ni can be in any one of u discrete states,

then

pi =


pi,1

pi,2

...

pi,u

 .

This prior probability distribution is based upon the latest intelligence assessment on

ni. Using Kent’s [11] mapping of linguistic quantifiers to probabilities (see Table 3.1),

discrete probability distributions are assigned to the states of the nodes. This thesis

uses the midpoint of Kent’s intervals as point estimates for the linguistic quantifiers.

If an intelligence assessment only provides information on a single state of the node

(i.e., Ni is almost certainly in state 0), Kent’s mapping is used to assign a probability

mass to that state. Because no further information is given regarding the remaining

states, the unassigned probability mass is evenly distributed to the remaining states

based on the principle of maximum entropy.
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This prior probability distribution is then adjusted based on the freshness of

the intelligence assessment. The need to adjust the prior probability distribution is

due to the dynamic nature of the nodal states. As time progresses since the last

intelligence update, the uncertainty in the prior probability distribution may grow.

The prior probability distribution can erode toward total uncertainty dependent upon

the amount of time since the last intelligence assessment. Intelligence collection efforts

will need to be directed more often at the nodes that change state more frequently

than those that remain static for longer periods of time. The eroded prior probability

distribution, pi
′, is

pi
′ = (ωi)


pi,1

pi,2

...

pi,u

 + (1− ωi)


1/u

1/u
...

1/u

 (3.3)

where ωi is the erosion factor of the prior probability distribution for ni. ωi is chosen

based on an assessment of how frequently Ni will possibly change states. Although

other weighting schemes exist for ωi, a straight-forward method is to make ωi inversely

proportional to the time since the last intelligence assessment on ni. Thus,

ωi =
1

ti

where ti is the amount of time since the last intelligence update on ni. The units of ti

may be defined differently for different nodes. Some nodes will possibly change state

more frequently than others requiring the units of ti to be hours or days, whereas

others that remain static (assuming no action is taken against the nodes) for longer

periods of time may require the units of ti to be weeks or even months. For example, a

electrical power plant will likely remain in a constant state unless acted upon. Thus,

required intelligence collection efforts will be needed less frequently. On the other

extreme, a political regime may change states often resulting in frequently needed

intelligence updates.
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To illustrate, consider a Priority 1 node, n1, where

N1 =


0 if n1 is nonoperational

1 if n1 is degraded

2 if n1 is operational .

Based on the latest intelligence assessment given one day prior, n1 was assessed to be

almost certainly operational. Thus, based on Kent’s mapping [11] and the principle

of maximum entropy,

p1 =


0.035

0.035

0.93

 .

Using Equation (3.1), the current relative entropy given p1 is

h1 = − 1

log2 (3)
(0.035 log2(0.035) + 0.035 log2(0.035) + 0.93 log2(0.93))

= 0.275.

If N1 is assessed to possibly change state daily (i.e., the units of t1 are days) and the

prior probability distribution was assessed one day prior (ω1 = 1), then by Equation

(3.3)

p1
′ = (1)


0.035

0.035

0.93

 + (0)


1/3

1/3

1/3

 =


0.035

0.035

0.93

 .

The relative entropy of p1
′ (assuming an intelligence update one day prior) is again

h1 = − 1

log2 (3)
(0.035 log2(0.035) + 0.035 log2(0.035) + 0.93 log2(0.93))

= 0.275.
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If the intelligence assessment was provided three days prior (ω1 = 1
3
), then based

on Equation (3.3)

p1
′ =

(
1/3

) 
0.035

0.035

0.93

 +
(
2/3

) 
1/3

1/3

1/3

 =


0.2339

0.2339

0.5322

 .

The relative entropy of p1
′ (assuming an intelligence update three days prior) is

h1 = − 1

log2 (3)
(0.2339 log2(0.2339) + 0.2339 log2(0.2339) + 0.5322 log2(0.5322))

= 0.9242.

Therefore, given the assessment was given three days later, the prior probability

distribution was updated resulting in more uncertainty.

After the prior probability distribution has been updated based on the time

since the last intelligence update, it is necessary to update this distribution based

on actions taken against the node since the last intelligence update, or planned prior

to the next intelligence collection opportunity. Currently in operations, intelligence

assets are tasked to collect information on lots of targets for which actions have been

taken. This is a plausible allocation of intelligence assets if the action against a node

has a low or unknown probability of success. There is a valid need to verify the effect

of the action. However, given a high probability action against a node, it may be less

vital to verify the effect of the action of the node. The following updating scheme

updates the prior probability distribution based on an action’s probability of success

and estimated posterior probability distribution.

Given pi
′ and a set of actions against a subset of N , the pi

′’s need to be updated

based on the probability of success of the actions, αi, and the estimated posterior

probability distributions based on these actions, pi
α. αi and pi

α may be obtained

from previous real world data or by subject matter expert (SME) assessments. The
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prior probability distribution updated for actions is

pi
′′ = (1− αi) pi

′ + (αi) pi
α. (3.4)

If no action is executed or planned against ni, then αi = 0 and pi
′ = pi

′′.

Continuing with the example from above, prior to the next intelligence collection

opportunity an action is planned against n1. It is estimated the action will change

N1 to nonoperational with probability 0.75 or to degraded with probability 0.25.

p1
α =


0.75

0.25

0


The probability of success of the action is 0.75. Thus, by Equation (3.4)

p1
′′ = (0.25)


0.2339

0.2339

0.5322

 + (0.75)


0.75

0.25

0

 =


0.6210

0.2460

0.1330

 .

The new relative entropy given p1
′′ is

h1 = 0.8276.

Once the prior probability distributions have been updated based on the timing

of the latest intelligence assessments and the planned actions, E [hi
′] is calculated next.

In order to calculate E [hi
′], estimates for the effectiveness of the intelligence asset

against ni must be obtained. Specifically, estimates for intelligence asset effectiveness

against each state of each node must be obtained. For example, an asset may be

very effective at assessing operational if the node is in an operational state but only

marginally capable of assessing nonoperational if the same node is in a nonoperational

state. These estimates may be obtained from previous real world data or by SME
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assessments. The needed estimates are

P {asset indicates Ni = a|Ni = a} , ∀ni ∈ N , a ∈ Ui

where Ui is the set of discrete states for ni.

For the example from above, the available intelligence asset is assessed to possess

the following effectiveness against n1.

P {asset indicates N1 = 0|N1 = 0} = 0.95

P {asset indicates N1 = 1|N1 = 1} = 0.75

P {asset indicates N1 = 2|N1 = 2} = 0.75

and, thus

P {asset indicates N1 6= 0|N1 = 0} = 0.05

P {asset indicates N1 6= 1|N1 = 1} = 0.25

P {asset indicates N1 6= 2|Ni = 2} = 0.25.

Note, not all the required probabilities are given above. Using the principle of maxi-

mum entropy, the probability mass associated with P {asset indicates Ni 6= a|Ni = a}

is uniformly distributed among the remaining states.

P {asset indicates N1 = 1|N1 = 0} =
0.05

2
= 0.025

P {asset indicates N1 = 2|N1 = 0} =
0.05

2
= 0.025

P {asset indicates N1 = 0|N1 = 1} =
0.25

2
= 0.125

P {asset indicates N1 = 2|N1 = 1} =
0.25

2
= 0.125

P {asset indicates N1 = 0|N1 = 2} =
0.25

2
= 0.125
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Figure 3.7: Decomposition of an Intelligence Collection Effort on n1

P {asset indicates N1 = 1|N1 = 2} =
0.25

2
= 0.125

Figure 3.7 depicts the decomposition of an intelligence collection effort on ni.

Using the estimates for the asset effectiveness, P {asset indicates Ni = a} is calculated

using the Law of Total Probability.

P {asset indicates Ni = a} =
u∑

l=1

P {asset indicates Ni = a|Ni = l}P {Ni = l}

(3.5)

where P {Ni = l} is based on the updated prior probability distribution, pi
′′. Thus,

for the example from above

P {asset indicates N1 = 0} = P {asset indicates N1 = 0|N1 = 0}P {N1 = 0}+

P {asset indicates N1 = 0|N1 = 1}P {N1 = 1}+

P {asset indicates N1 = 0|N1 = 2}P {N1 = 2}

= (0.95) (0.6210) + (0.125) (0.2460) + (0.125) (0.1330)

= 0.6373.
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Similarly,

P {asset indicates N1 = 1} = 0.21665

P {asset indicates N1 = 2} = 0.1460.

From this, for all b, c ∈ Ui, P {Ni = b|asset indicates Ni = c} follows using

Bayes’ Theorem.

P {Ni = b|asset indicates Ni = c} =
P {Ni = b ∩ asset indicates Ni = c}

P {asset indicates Ni = c}

=
P {asset indicates Ni = c|Ni = b}P {Ni = b}

P {asset indicates Ni = c}
(3.6)

Thus, for the example

P {N1 = 0|asset indicates N1 = 0} =
P {asset indicates N1 = 0|N1 = 0}P {N1 = 0}

P {asset indicates N1 = 0}

=
(0.95) (0.6210)

0.6373

= 0.9257.

Similarly,

P {N1 = 1|asset indicates N1 = 0} = 0.0482

P {N1 = 2|asset indicates N1 = 0} = 0.0261

P {N1 = 0|asset indicates N1 = 1} = 0.0717

P {N1 = 1|asset indicates N1 = 1} = 0.8516
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P {N1 = 2|asset indicates N1 = 1} = 0.0767

P {N1 = 0|asset indicates N1 = 2} = 0.1063

P {N1 = 1|asset indicates N1 = 2} = 0.2106

P {N1 = 2|asset indicates N1 = 2} = 0.6831.

Now, E [hi
′] is calculated.

E [hi
′] =

ui∑
j=1

P {asset indicates Ni = j}hasset indicates Ni=j
i (3.7)

where hasset indicates Ni=0
i is the entropy of ni given the asset indicates Ni = a (i.e., the

entropy of each branch of Figure 3.7. Thus,

hasset indicates N1=0
1 = − 1

log (3)
(0.9257 log(0.9257) + 0.0482 log(0.0482) + 0.0261 log(0.0261))

= 0.2847

hasset indicates N1=1
1 = − 1

log (3)
(0.0717 log(0.0717) + 0.8516 log(0.8516) + 0.0767 log(0.0767))

= 0.4758

hasset indicates N1=2
1 = − 1

log (3)
(0.1063 log(0.1063) + 0.2106 log(0.2106) + 0.6831 log(0.6831))

= 0.7525
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E [h1
′] = (P {asset indicates N1 = 0})

(
hasset indicates N1=0

1

)
+

(P {asset indicates N1 = 1})
(
hasset indicates N1=1

1

)
+

(P {asset indicates N1 = 2})
(
hasset indicates N1=2

1

)
= (0.6373) (0.2847) + (0.21665) (0.4758) + (0.1460) (0.7525)

= 0.3944.

Next, the weighted change in entropy is calculated.

δi = ρi (hi − E [hi
′]) (3.8)

Thus,

δ1 = ρ1 (h1 − E [h1
′])

= (8) (0.8276− 0.3944)

= 3.4656.

Finally, the maximum δi is selected. For the example above, only one node was

examined. If multiple nodes were analyzed, the node corresponding to the maximum

δi would be selected for the intelligence asset effort. Section 3.3.3 demonstrates a

three-node example for a single intelligence asset.

In summary, based on a single intelligence asset, the methodology for selecting

intelligence collection efforts is composed of the following steps. For all nodes ni in

the SoSA network (i = 1, . . . , ui)

1. Establish the prior probability distributions

(a) Based on latest intelligence assessments (pi)

(b) Adjust based on the freshness of the intelligence assessments (pi
′)
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(c) Update based on planned action’s estimated probability of success and

posterior probability distributions (pi
′′)

2. Calculate the current entropy, hi

3. Calculate the expected entropy based on the estimated intelligence asset effec-

tiveness (E [hi
′])

(a) Calculate P {asset indicates Ni = a}

(b) Calculate P {Ni = b|asset indicates Ni = a}

(c) Calculate hasset indicates Ni=a
i

(d) Calculate E [hi
′]

4. Calculate δi

5. Select node corresponding to maximum δi

3.3.2 Nodal Priority. Based on strategic and/or operational objectives, the

nodes of the SoSA network possess different priorities. To incorporate nodal priorities

into the model presented in Section 3.3.1, the different priorities are simply assigned

weights, ρi. Figure 3.8 on page 61 depicts the expected change in entropy given

an intelligence collection effort, δi, for three weighting schemes for different priority

nodes (e.g., Priority 1, Priority 2, Priority 3 ). The graphs were constructed using

Matlabr -generated random numbers from [0, 1] to simulate possible expected changes

in relative entropy. These random numbers were assigned to sixty nodes–20 Priority

1, 20 Priority 2, and 20 Priority 3. The nodes with higher δi’s would be selected for

intelligence collection efforts.

The top graph shows equal priority weighting for each node type (i.e., ρi = 1).

If a limited number of intelligence collection efforts from a single asset was available,

then a quick look at the higher δi’s indicates the nodes that would be selected for

intelligence collection. The middle and bottom graphs show unequal weights for the

priority types with the higher priority nodes weighted more heavily. These schemes
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successfully differentiate the δi’s based on nodal priority. The higher δi’s are composed

predominantly of Priority 1 nodes with only the highest Priority 2 nodes near the

top.

3.3.3 Three-Node Example. To illustrate the methodology for prioritizing

the collection efforts of a single intelligence asset, consider a three-node network com-

posed of two binary-state nodes and one three-state node,

N1 =

 0

1
N2 =

 0

1
N3 =


0

1

2

.

Nodes n1 and n3 are Priority 1, and n2 is a Priority 2 node. According to planner

assessments, Priority 1 nodes should be weighted twice as much as Priority 2 nodes.

Thus, ρ1 = ρ3 = 2 and ρ2 = 1.

Available is one intelligence collection effort from an intelligence asset possessing

the estimated effectiveness against the nodes listed in Table 3.2 on page 62. Note, not

all required probabilities are given in Table 3.2. The principle of maximum entropy

is used to obtain the remaining effectiveness estimates. For example,

P {asset indicates N3 = 0|N3 = 0} = 0.95

P {asset indicates N3 = 0|N3 6= 0} = 0.05.

Thus, using the principle of maximum entropy,

P {asset indicates N3 = 0|N3 = 1} =
0.05

2
= 0.025

P {asset indicates N3 = 0|N3 = 2} =
0.05

2
= 0.025.

Intelligence assessments for the current nodal states, as well as the freshness of

the assessments, are given in Table 3.3 on page 62.
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Figure 3.8: Various Priority Weighting Schemes
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Table 3.2: Three-node Example: Estimates for Intelligence Asset Effectiveness

ni Priority Ni = a Asset Effectiveness P {asset indicates Ni = a|Ni = a}
1 1 0 Not Effective 0.50

1 Marginally Effective 0.75
2 2 0 Effective 0.95

1 Marginally Effective 0.75
3 1 0 Effective 0.95

1 Marginally Effective 0.75
2 Not Effective 0.33

Table 3.3: Three-node Example: Prior Intelligence Assessment

Node (ni) Intelligence Assessment Days Prior (ti) pi

1 Probably in State 1 2

[
0.25
0.75

]

2 Almost certainly in State 0 2

[
0.93
0.07

]

3 Probably Not in State 2 1

 0.35
0.35
0.30
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Table 3.4: Three-node Example: Actions Against ni

Node (ni) Estimated Probability Estimated Posterior
of Success (αi) Probability Distribution (pi

α)

1 0 n/a

2 0.75

[
0.07
0.93

]

3 0.90

 0
0.20
0.80



Using Equation (3.3), the prior probability distributions are updated based on

the time since the last intelligence update. For this example, t is in days for all nodes.

p1
′ =

(
1/2

)  0.25

0.75

 +
(
1/2

)  1/2

1/2

 =

 0.375

0.625



p2
′ =

(
1/2

)  0.93

0.07

 +
(
1/2

)  1/2

1/2

 =

 0.715

0.285



p3
′ = (1)


0.35

0.35

0.30

 + (0)


1/3

1/3

1/3

 =


0.35

0.35

0.30


Actions are planned against two of the nodes, n2 and n3. The estimated prob-

abilities of success and estimated posterior probability distributions are presented in

Table 3.4.
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Using Equation (3.4), pi
′ is updated with the expected probability distributions

given action is taken against the nodes.

p1
′′ = p1

′ =

 0.375

0.625



p2
′′ = (1− α2) p2

′ + (α2) p2
α

= (0.25)

 0.715

0.285

 + (0.75)

 0.07

0.93


=

 0.231

0.769



p3
′′ = (1− α3) p3

′ + (α3) p3
α

= (0.10)


0.35

0.35

0.30

 + (0.90)


0

0.20

0.80



=


0.035

0.215

0.750
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Nodes n1 and n2 can be in two discrete states, and n3 has three discrete states.

Thus, for Shannon’s relative entropy,

K1 = K2 =
1

log2 2
= 1

K3 =
1

log2 3
.

Using Equation (3.1), the current entropies of the probability distributions are

h1 = − (0.375 log2 0.375 + 0.625 log2 0.625)

= 0.9544

h2 = − (0.231 log2 0.231 + 0.769 log2 0.769)

= 0.7798

h3 = − 1

log2 3
(0.035 log2 0.035 + 0.215 log2 0.215 + 0.750 log2 0.750)

= 0.6040.

From the estimates for asset effectiveness and the prior probability distribu-

tions, the P {asset indicates Ni = a} is calculated using Equation (3.5). The re-

sults are presented in Table 3.5 on the following page. Now, using Equation (3.6)

the P {Ni = b|asset indicates Ni = c} are calculated for each of the branches of Fig-

ure 3.7 on page 55. The results are presented in Table 3.6.

For each branch (i.e., P {asset indicates Ni = 0}, P {asset indicates Ni = 1},

and P {asset indicates Ni = 2}), the relative entropies are calculated. Then, the ex-

pected relative entropy, E [hi
′], is computed (see Table 3.7). Figure 3.9 depicts the

E [h1
′] calculation for n1. E [h2

′] and E [h3
′] are similarly calculated for n2 and n3.
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Table 3.5: Three-node Example: P {Asset indicates Ni = a}

Node (ni) Discrete States (Ni = a) P {Asset indicates Ni = a}
1 0 0.3438

1 0.6563
2 0 0.4117

1 0.5883
3 0 0.3101

1 0.4121
2 0.2778

Table 3.6: Three-node Example: P {Ni = b|asset indicates Ni = c}

Node (ni = i) Asset Indicates Ni = c Ni = b P {Ni = b|asset indicates Ni = c}
1 0 0 0.5455

1 0.4545
1 0 0.2857

1 0.7143
2 0 0 0.5330

1 0.4670
1 0 0.0196

1 0.9804
3 0 0 0.1072

1 0.0867
2 0.8061

1 0 0.0021
1 0.3913
2 0.6066

2 0 0.0032
1 0.0968
2 0.9001

Table 3.7: Three-node Example: Expected Entropies

Node (ni) Asset Indicates Ni = c hi
asset indicates Ni=c E [hi

′]
1 0 0.9940 0.9081

1 0.8631
2 0 0.9969 0.4923

1 0.1392
3 0 0.5690 0.5185

1 0.6220
2 0.3087
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{ }1asset indicates N 0 0.3438P = =

{ }1asset indicates N 1 0.6563P = =

{ }1 10 | asset indicates N 0 0.5455P N = = =

{ }1 10 | asset indicates N 1 0.2857P N = = =

{ }1 11| asset indicates N 0 0.4545P N = = =

{ }1 11| asset indicates N 1 0.7143P N = = =

{ }1asset indicates 0
1 0.9940Nh = =

{ }1asset indicates 1
1 0.8631Nh = =

1 0.9081E h⎡ ⎤′ =
⎣ ⎦1N

Figure 3.9: Three-node Example: Expected Entropy, E [hi
′], Calculation for n1

Finally, using Equation (3.8), the weighted expected changes in entropy, based

on the asset effectiveness estimates, the prior probability distributions, and nodal

priorities, are

δ1 = ρ1 (h1 − E [h1
′])

= 2 (0.9544− 0.9081)

= 0.0926
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δ2 = ρ2 (h2 − E [h2
′])

= 0.7798− 0.4923

= 0.2875

δ3 = ρ3 (h3 − E [h3
′])

= 2 (0.6040− 0.5185)

= 0.1710.

δ2 is the maximum weighted change in expected entropy based on an intelligence

collection effort. Thus, the intelligence asset should be directed to collect on n2. This

is an interesting result because n2 was the only Priority 2 node. In addition, h1 is

the highest entropy value, which implies there is the greatest opportunity to reduce

the entropy. However, looking at Table 3.2 on page 62, the result checks out as the

intelligence asset was most effective versus n2 and least effective versus n1. Therefore,

even though n2 is a Priority 2 node, the intelligence asset would be better used being

directed to collect intelligence on n2 as opposed to n1 or n3. If a second intelligence

effort became available, then intelligence should be collected on n3, as it has the next

highest δ.

3.3.4 Sensitivity to Prior Probabilities and Asset Effectiveness Estimates.

The change in expected entropy, δi, is clearly dependent upon the prior probability

distributions, asset effectiveness estimates, and nodal priorities. Figures 3.10 and 3.11

depict the dependence of δi on the prior probability distributions and asset effective-

ness estimates, respectively. Both figures were constructed using a binary node like

n1 and n2 from the previous example.
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Figure 3.10: Dependence of δi on Prior Probabilities

Figure 3.10 plots δi versus P {Ni = 0} using

pi =

 P {Ni = 0}

1− P {Ni = 0}

 .

For Figure 3.10, the intelligence asset was estimated to be not effective at assessing

if Ni = 0 (i.e., P {asset indicates Ni = 0|Ni = 0} = 0.50) and marginally effective at

assessing if Ni = 1 (i.e., P {asset indicates Ni = 0|Ni = 0} = 0.75). Notice that the

maximum δi is obtained when

P {Ni = 0} = 1− P {Ni = 0}

= 0.5

and the minimum when

P {Ni = 0} = 0
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Figure 3.11: Dependence of δi on Asset Effectiveness Estimates

or

P {Ni = 0} = 1.

The maximum change in expected entropy corresponds to the case where no prior

information (i.e., perfect uncertainty) on the current nodal state is possessed. Any

new information provided by an intelligence collection effort is expected to reduce

the entropy, hi. Likewise, if the node is known to exist in either state 0 or 1 with

probability 1, then assuming the state of the node did not change, any new intelligence

collection efforts are expected to have no impact on the entropy. The implication for

this sensitivity is that given a node that has little uncertainty associated with its

nodal state (i.e., hi ≈ 0), then performing additional intelligence collection efforts

on the node will have minimal impact on the level of uncertainty associated with its

nodal state.
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Figure 3.11 on the page before plots δi versus the intelligence asset effectiveness

estimates. For Figure 3.11,

pi =

 0.5

0.5

 .

The maximum δi is obtained when

P {asset indicates Ni = 0|Ni = 0} = 1

P {asset indicates Ni = 0|Ni 6= 0} = 0

or

P {asset indicates Ni = 0|Ni = 0} = 0

P {asset indicates Ni = 0|Ni 6= 0} = 1.

This implies the intelligence asset is able to perfectly discern between Ni = 0 and

Ni 6= 0. Note, the second set of probabilities seem to indicate the intelligence asset

is providing misinformation (i.e., indicating Ni = 0 when Ni 6= 0); however, the

intelligence asset estimates are a priori information. Thus, the intelligence analyst

knows the intelligence asset indication and the true state of the node are perfectly

negatively correlated. Therefore, when the asset indicates Ni = 0, the intelligence

analyst knows that the true state is Ni 6= 0.

The minimum δi’s are obtained when

P {asset indicates Ni = 0|Ni = 0} = P {asset indicates Ni = 0|Ni 6= 0} .

In other words, the P {asset indicates Ni = 0} is independent of the true state of ni.

When the intelligence effectiveness estimates are equal (or nearly equal) then no (or

little) information is provided on Ni. For example, consider a binary node like the
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ones used in Section 3.3.3, where

P {asset indicates Ni = 0|Ni = 0} = 0.75

P {asset indicates Ni = 1|Ni = 1} = 0.25.

Thus,

P {asset indicates Ni = 0|Ni 6= 0} = 0.75

which results in δi = 0.

3.4 Allocating Multiple Intelligence Assets Based on Nodal Uncertainty

In military operations, there will generally always be less intelligence collection

opportunities than the number of nodes within the SoSA network. Thus, the problem

becomes allocating assets to collect intelligence on the highest payoff nodes. The

goal then is to maximize the amount of information gain from a limited number of

intelligence collection opportunities. Now that a measure of the expected change in

entropy given an intelligence collection effort on a node is developed, a methodology

for allocating multiple intelligence assets can be developed.

3.4.1 General Methodology for Allocating Multiple Intelligence Assets .

First, the notation from the methodology presented in Section 3.3.1 must be ad-

justed to account for the multiple available intelligence assets. To accomplish this, a

second subscript, j, is added to E [hi
′] and δi. Now,

E [hij
′] = the expected entropy of ni given an intelligence collection effort by asset j

δij = the weighted expected change in entropy of ni given an intelligence

collection effort by asset j
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In addition, estimates for the effectiveness of asset j against Ni need to be obtained

for all the available intelligence assets and nodes in the SoSA network.

P {asset j indicates Ni = a|Ni = a}

Once, these estimates are established, the methodology from Section 3.3.1 can be

applied to obtain the δij’s for each intelligence asset and node combination.

From this, an integer program (IP), the generalized assignment problem (GAP),

can be accomplished [12]. Given m nodes and n intelligence assets, with

δij = weighted expected change in entropy of ni given an intelligence

collection effort by asset j

wij = amount of asset j capacity required to accomplish intelligence

collection on ni

cj = capacity of asset j.

Then,

maximize z =
n∑

j=1

m∑
i=1

δijxij (3.9)

subject to
m∑

i=1

wijxij ≤ cj, j ∈ {1, . . . , n} (3.10)

n∑
j=1

xij ≤ 1, i ∈ {1, . . . ,m} (3.11)

xij ∈ {0, 1} , i ∈ {1, . . . ,m} , j ∈ {1, . . . , n} (3.12)

where

xij =

 1 if asset j collects intelligence on node i

0 otherwise .
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Equation (3.10) is the capacity constraint for the intelligence asset. Equation (3.11)

ensures that at most one asset looks at a node, and Equation (3.12) makes the xij’s

indicator variables for whether or not asset j is collecting information on node i.

3.5 Chapter 3 Summary

Chapter 3 presented a mathematical model for SoSA networks, a methodology

for prioritizing a single intelligence asset’s intelligence collection efforts, and a method-

ology for allocating multiple intelligence assets. The SoSA mathematical model de-

fined notation and terminology forming the foundation for the later methodologies

for prioritizing and allocating intelligence collection efforts. The methodology for pri-

oritizing a single intelligence asset’s collection efforts was demonstrated for a simple

three-node example. The methodology for allocating multiple intelligence asset’s col-

lection efforts makes use of a generalized assignment problem. This methodology is

demonstrated in Chapter 4 on a 20-node, 4-asset example.
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IV. 20-Node, 4-Asset Example

4.1 Overview

In Chapter 3, a methodology for allocating multiple intelligence resources to

multiple nodes based on nodal uncertainty was developed. Calculation of the current

nodal uncertainty, hi, was performed using Shannon’s relative entropy.

hi = −Ki

ui∑
l=1

pi,l
′′ log2(pi,l

′′)

where,

Ki =
1

log2(ui)

pi,l
′′ = the probability Ni = l adjusted for the freshness of the

intelligence update and planned actions on ni.

A priority-weighted expected reduction in uncertainty was obtained by estimating the

intelligence asset’s effectiveness versus the specific nodal states.

δij = ρi

(
hi − E

[
h′ij

])
where ρi is node i’s priority weighting and E

[
h′ij

]
is the expected entropy of node

i given an intelligence update by asset j. A generalized assignment problem (GAP)

was then formulated to allocate multiple intelligence assets to multiple nodes result-

ing in the maximum expected reduction in uncertainty (i.e., the maximum expected

information gain).

This chapter presents an application of the multiple intelligence asset method-

ology to a notional 20-node, 4-asset example. This example demonstrates the maxi-

mization of information gain through proper allocation of four intelligence assets.
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4.2 20-Node, 4-Asset Scenario

20 nodes are present within the scenario. Each node is one of five generic nodal

category types: person, radar, communications, economic, or vehicle. Using Matlabr

, the 20 nodes were assigned:

- a random number of discrete states (2, 4, or 6),

- nodal priority (1, 2, 3, or 4),

- freshness of the intelligence data (1-6) (i.e., days since the last intelligence up-

date),

- intelligence assessment (Almost Certainly Not in 1, etc.), and

- whether or not an action is planned against the node (0 or 1).

For the nodes for which actions are planned, notional posterior probabilities given an

action were provided. See Figure 4.1 on the following page for the given nodal data. It

was assumed that Priority 1 nodes are twice as important as Priority 2 nodes, which

are twice as important as Priority 3 nodes and four times as important as Priority 4

nodes (i.e., ρPriority 4 = 1, ρPriority 3 = 2, ρPriority 2 = 4, and ρPriority 1 = 8).

Available are four intelligence assets: an imagery intelligence (IMINT) source, a

electronic intelligence (ELINT) source, a human intelligence (HUMINT) source, and

a communications intelligence (COMINT) source. Within a 24-hour period, a limited

number of collection opportunities is available from each of these assets. Table 4.1 on

page 78 presents the collection capacities of each asset. In addition, only one asset can

be allocated per node. Note, this is a simplifying assumption to maintain indepen-

dence between the intelligence assets (and their effectiveness estimates). If multiple

assets were allowed to collect information on a single node, the resulting information

gain would be dependent upon the interaction between the assets.

Each nodal type requires a specific number of intelligence collection looks (wij)

to gather the required information for an intelligence assessment of the current nodal

state. The required number of intelligence looks is dependent upon the type of asset
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Success of A

ction

Posterior Probability 
G
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ction

1 Vehicle 4 1 8 3 Almost Certainly Not in 1 0 0.31 1 0.75 0.6
1 0.07 0.3
2 0.31 0.1
3 0.31 0

2 Radar 4 2 4 2 Almost Certainly in 3 0 0.02333 1 0.75 0.4
1 0.02333 0.4
2 0.02333 0.2
3 0.93 0

3 Economic 2 4 1 4 Probably Not in 1 0 0.7 1 0.75 0.9
1 0.3 0.1

4 Comm 4 1 8 2 Probably in 2 0 0.23333 1 0.75 0.45
1 0.23333 0.45
2 0.3 0.1
3 0.23333 0

5 Vehicle 4 1 8 6 Almost Certainly Not in 3 0 0.31 0 0 0
1 0.31 0
2 0.31 0
3 0.07 0

6 Economic 4 2 4 2 Chances Even in 2 0 0.16667 1 0.5 0.8
1 0.16667 0.1
2 0.5 0.1
3 0.16667 0

7 Comm 2 2 4 2 Probably Not in 0 0 0.3 0 0 0
1 0.7 0

8 Person 2 3 2 2 Chances Even in 0 0 0.5 0 0 0
1 0.5 0

9 Vehicle 4 2 4 2 Probably in 1 0 0.08333 1 0.75 0.75
1 0.75 0.2
2 0.08333 0.05
3 0.08333 0

10 Comm 6 2 4 2 Almost Certainly in 3 0 0.014 1 0.9 0.3
1 0.014 0.3
2 0.014 0.3
3 0.93 0.1
4 0.014 0
5 0.014 0

11 Economic 6 1 8 3 Almost Certainly in 4 0 0.014 0 0
1 0.014 0
2 0.014 0
3 0.014 0
4 0.93 0
5 0.014 0

12 Economic 2 4 1 2 Probably Not in 0 0 0.3 0 0
1 0.7 0

13 Vehicle 2 3 2 2 Probably in 1 0 0.25 1 0.9 0.9
1 0.75 0.1

14 Economic 6 4 1 5 Chances Even in 3 0 0.1 0 0
1 0.1 0
2 0.1 0
3 0.5 0
4 0.1 0
5 0.1 0

15 Person 2 3 2 2 Almost Certainly in 0 0 0.93 0 0
1 0.07 0

16 Comm 4 3 2 2 Probably Not in 2 0 0.23333 1 0.75 0.8
1 0.23333 0.1
2 0.3 0.1
3 0.23333 0

17 Vehicle 6 4 1 2 Probably in 3 0 0.05 0 0
1 0.05 0
2 0.05 0
3 0.75 0
4 0.05 0
5 0.05 0

18 Vehicle 4 3 2 4 Almost Certainly Not 1 0 0.31 0 0
1 0.07 0
2 0.31 0
3 0.31 0

19 Comm 6 2 4 2 Almost Certainly Not in 4 0 0.186 0 0
1 0.186 0
2 0.186 0
3 0.186 0
4 0.07 0
5 0.186 0

20 Vehicle 2 3 2 2 Chances Even in 1 0 0.5 1 0.25 0.95
1 0.5 0.05

Figure 4.1: 20-Node, 4-Asset Example: Given Data
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Table 4.1: 20-Node, 4-Asset Example: Intelligence Source Capacities

Maximum Number of Collection
Source (j) Opportunites Per 24-hour Period (cj)
IMINT 4
ELINT 6
HUMINT 1
COMINT 6

Table 4.2: 20-Node, 4-Asset Example: Nodal Intelligence Requirements (wij)

Intelligence Requirements (wij)
Nodal Type IMINT ELINT HUMINT COMINT
Person 4 5 1 2
Radar 2 1 1 2
Communications 2 3 1 1
Economic 4 5 1 2
Vehicle 1 2 1 4

allocated to collect the information on the node. For example, a radar node may

require only one look from an ELINT source but may require multiple looks from an

IMINT source to capture the required information to perform an intelligence assess-

ment. Table 4.2 presents the intelligence requirements for each nodal type. Note, the

units of these intelligence looks are number of looks in a 24-hour period.

In order to calculate the expected change in entropy, δij, for each node/asset

combination, intelligence asset effectiveness estimates were also provided (see Fig-

ure 4.2 on the next page). These estimates were mapped to probabilities using Ta-

ble 4.3.

Table 4.3: Intelligence Asset Effectiveness Estimates

Asset Effectiveness P {asset indicates Ni = a|Ni = a}
Not Effective 1/u
Marginally Effective 0.75
Effective 0.90
Very Effective 0.98
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Nodal Type Number of States States IMINT ELINT HUMINT COMINT
Person 2 0 Not Effective Not Effective Very Effective Effective

1 Marginally Effective Not Effective Very Effective Very Effective
4 0 Not Effective Not Effective Very Effective Effective

1 Not Effective Not Effective Effective Effective
2 Not Effective Not Effective Effective Effective
3 Marginally Effective Not Effective Very Effective Very Effective

6 0 Not Effective Not Effective Very Effective Effective
1 Not Effective Not Effective Effective Effective
2 Not Effective Not Effective Effective Effective
3 Not Effective Not Effective Effective Effective
4 Not Effective Not Effective Effective Effective
5 Marginally Effective Not Effective Very Effective Very Effective

Radar 2 0 Effective Effective Effective Marginally Effective
1 Very Effective Very Effective Effective Effective

4 0 Effective Effective Effective Marginally Effective
1 Effective Effective Marginally Effective Marginally Effective
2 Effective Very Effective Marginally Effective Effective
3 Very Effective Very Effective Effective Effective

6 0 Effective Effective Effective Marginally Effective
1 Effective Effective Effective Marginally Effective
2 Effective Effective Marginally Effective Marginally Effective
3 Effective Very Effective Marginally Effective Effective
4 Effective Very Effective Marginally Effective Effective
5 Very Effective Very Effective Effective Effective

Communications 2 0 Effective Marginally Effective Effective Very Effective
1 Marginally Effective Effective Effective Very Effective

4 0 Effective Marginally Effective Effective Very Effective
1 Marginally Effective Marginally Effective Marginally Effective Very Effective
2 Marginally Effective Marginally Effective Marginally Effective Very Effective
3 Marginally Effective Effective Effective Very Effective

6 0 Effective Marginally Effective Effective Very Effective
1 Effective Marginally Effective Marginally Effective Very Effective
2 Marginally Effective Marginally Effective Marginally Effective Very Effective
3 Marginally Effective Marginally Effective Marginally Effective Very Effective
4 Marginally Effective Effective Marginally Effective Very Effective
5 Marginally Effective Effective Effective Very Effective

Economic 2 0 Effective Not Effective Very Effective Effective
1 Marginally Effective Not Effective Effective Effective

4 0 Effective Not Effective Very Effective Effective
1 Marginally Effective Not Effective Effective Effective
2 Marginally Effective Not Effective Effective Effective
3 Marginally Effective Not Effective Effective Effective

6 0 Effective Not Effective Very Effective Effective
1 Marginally Effective Not Effective Effective Effective
2 Marginally Effective Not Effective Effective Effective
3 Marginally Effective Not Effective Effective Effective
4 Marginally Effective Not Effective Effective Effective
5 Marginally Effective Not Effective Effective Effective

Vehicle 2 0 Very Effective Not Effective Effective Marginally Effective
1 Very Effective Marginally Effective Effective Marginally Effective

4 0 Very Effective Not Effective Effective Marginally Effective
1 Effective Not Effective Marginally Effective Not Effective
2 Effective Not Effective Marginally Effective Not Effective
3 Very Effective Marginally Effective Effective Marginally Effective

6 0 Very Effective Not Effective Effective Marginally Effective
1 Very Effective Not Effective Marginally Effective Not Effective
2 Effective Not Effective Marginally Effective Not Effective
3 Effective Not Effective Marginally Effective Not Effective
4 Very Effective Marginally Effective Marginally Effective Not Effective
5 Very Effective Marginally Effective Effective Marginally Effective

Asset Effectiveness

Figure 4.2: 20-Node, 4-Asset Example: Intelligence Asset Effectiveness Estimates
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Table 4.4: 20-Node, 4-Asset Example: Expected Changes in Entropy (δij)

Expected Change in Entropy (δij)
Intelligence Asset

Node IMINT ELINT HUMINT COMINT
1 5.312 0.197 3.545 1.017
2 2.767 2.946 2.033 1.930
3 0.230 0.000 0.488 0.342
4 3.359 2.860 3.548 6.197
5 6.353 0.526 4.263 1.218
6 1.736 0.000 2.694 2.364
7 1.301 1.347 2.050 3.327
8 0.098 0.000 1.717 1.380
9 2.288 0.063 1.526 0.449
10 1.959 1.542 1.752 2.965
11 3.534 0.000 5.388 5.196
12 0.325 0.000 0.655 0.512
13 1.016 0.049 0.590 0.200
14 0.498 0.000 0.753 0.722
15 0.078 0.000 1.464 1.118
16 0.718 0.581 0.765 1.290
17 0.718 0.088 0.456 0.088
18 1.600 0.149 1.082 0.328
19 2.198 2.152 2.198 3.690
20 1.649 0.092 1.015 0.359

4.3 20-Node, 4-Asset Model

The methodology for calculating the δij’s presented in Chapter 3 was applied to

each node/asset combination. See Appendix A for the calculations. The calculated

δij’s are summarized in Table 4.4. Next, using the provided wij’s and calculated δij’s,

a GAP was formulated to allocate the intelligence assets.
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maximize z =
4∑

j=1

20∑
i=1

δijxij

subject to
20∑
i=1

wi IMxi IM ≤ 4

20∑
i=1

wi ELxi EL ≤ 6

20∑
i=1

wi HUMxi HUM ≤ 1

20∑
i=1

wi COMxi COM ≤ 6

4∑
j=1

xij ≤ 1, i ∈ {1, . . . , 20}

xij ∈ {0, 1} , i ∈ {1, . . . , 20} , j ∈ {1, . . . , 4}

where

xij =

 1 if asset j collects intelligence on node i

0 otherwise .

4.4 20-Node, 4-Asset Example: Results and Analysis

The results to the GAP are summarized in Table 4.5 on the following page,

Table 4.6 on page 83, and Table 4.7 on page 83. Microsoft Excel’s Solver was used to

solve the GAP. The maximum expected reduction in entropy obtained was 43.05976.

All Priority 1 and Priority 2 nodes were assigned an intelligence asset. Three of

the four intelligence assets were fully tasked, while the ELINT source was under

tasked (i.e., the ELINT capacity constraint was not binding) (refer to Table 4.6 on

page 83). A quick look at the scenario lends insight into why the ELINT source was

undertasked. First, the intelligence requirements, wij, for the ELINT source were

higher for all node types except radar. There is only one radar in the scenario. In

addition, the ELINT source was estimated to be Not Effective or Marginally Effective
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Table 4.5: 20-Node, 4-Asset Example: GAP Results

Indicator Variable (xij)
Intelligence Asset (j)

Node (i) IMINT ELINT HUMINT COMINT
∑
j

δijxij

1 1 0 0 0 5.312294
2 0 1 0 0 2.945542
3 0 0 0 0 0
4 0 0 0 1 6.197174
5 1 0 0 0 6.352986
6 0 0 0 1 2.363909
7 0 0 0 1 3.327207
8 0 0 0 0 0
9 1 0 0 0 2.287929
10 0 0 0 1 2.964695
11 0 0 1 0 5.388013
12 0 0 0 0 0
13 0 0 0 0 0
14 0 0 0 0 0
15 0 0 0 0 0
16 0 1 0 0 0.580939
17 0 0 0 0 0
18 0 0 0 0 0
19 0 0 0 1 3.689797
20 1 0 0 0 1.649275

z = 43.05976

against all node types except radar. Thus, collecting intelligence on these node types

is more effectively performed by the other intelligence assets.

4.5 Extensions to the General Methodology

The GAP presented in Section 3.4.1 and illustrated in the 20-node, 4-asset ex-

ample is intended to be a general methodology for allocating intelligence assets. A

couple extensions to the methodology could greatly increase the utility of the method-

ology. First, Constraint (3.11) restricts the number of intelligence assets allocated to

a single node to one. This restriction does not allow for the increased effectiveness of

tasking multiple assets to collect information on a node. For example, consider the
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Table 4.6: 20-Node, 4-Asset Example: Resource Usage

Resource Usage (wijxij)
Intelligence Asset(j)

Node(i) IMINT ELINT HUMINT COMINT
1 1 0 0 0
2 0 1 0 0
3 0 0 0 0
4 0 0 0 1
5 1 0 0 0
6 0 0 0 2
7 0 0 0 1
8 0 0 0 0
9 1 0 0 0
10 0 0 0 1
11 0 0 1 0
12 0 0 0 0
13 0 0 0 0
14 0 0 0 0
15 0 0 0 0
16 0 3 0 0
17 0 0 0 0
18 0 0 0 0
19 0 0 0 1
20 1 0 0 0

Total 4 4 1 6
Capacity (cij) 4 6 1 6

Table 4.7: 20-Node, 4-Asset Example: Intelligence Asset Allocations

Intelligence Source Node Type Priority
IMINT 1 Vehicle 1

5 Vehicle 1
9 Vehicle 2
20 Vehicle 3

ELINT 2 Radar 2
16 Communications 3

HUMINT 11 Economic 1
COMINT 4 Communications 1

6 Economic 2
7 Communications 2
10 Communications 2
19 Communications 2
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event where information on a surface-to-air missile (SAM) system is to be collected.

Using an IMINT source or an ELINT source by itself would not be as effective as

combining the information provided by both intelligence assets to assess the current

state of the SAM. Next, many intelligence assets are capable of collecting informa-

tion on multiple nodes during a single intelligence collection effort. For example, a

HUMINT source may be able to simultaneously collect intelligence on more than one

node.

To address the need for packaging intelligence assets together to collect infor-

mation on a node, the GAP may be reformulated using the variables xig, δig, and

wig
j, where

g ∈ J

J = the set of all possible collections of intelligence assets

xig = a binary indicator variable for whether g is tasked to collect

intelligence on Ni

δig = weighted expected change in entropy of ni given an intelligence

collection effort by the collection of intelligence assets g

wig
j = amount of asset j capacity required to accomplish intelligence

collection on ni given an intelligence collection effort by the

collection of intelligence assets g

cj = capacity of asset j.
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The GAP is now

maximize z =
∑
g∈J

m∑
i=1

δigxig

subject to
∑
g∈J

m∑
i=1

wig
jxig ≤ cj, j ∈ {1, . . . , n}

∑
g∈J

xig ≤ 1, i ∈ {1, . . . ,m}

xig ∈ {0, 1} , i ∈ {1, . . . ,m} , g ∈ J

where

xig =

 1 if g collects intelligence on node i

0 otherwise .

Note, if J is confined to single-asset collections, then the problem is the same as

the one presented in Section 3.4.1. However, if an operational restriction exists that

no more than k assets can (or will) be tasked against a single asset, then the GAP

consists of v indicator variables, where

v =

 n

k

 +

 n

k − 1

 + · · ·+

 n

1

 .

This accounts for all possible ways of packaging k, k − 1, . . . , and 1 intelligence

assets. Obviously, the number of variables could be greatly trimmed down by various

elimination schemes. One example is to eliminate any collection of assets g that

contains more than one of any single type of intelligence asset (e.g., g can not contain

more than one IMINT source).
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Similarly, to address the capability of a single asset to collect on multiple nodes,

the indicator variables could be redefined to include sets of nodes. Then,

xhj = a binary indicator variable for whether asset j collects

intelligence on the set of nodes h

where,

h ∈ I

I = the set of possible collections of node(s).

To illustrate, given the 20-node, 4-asset example from Section 4.2, add the

requirement that no more than two intelligence assets can be tasked against a single

node. Furthermore, through geographical analysis, it is given that the ELINT source

can collect information on n4, n7, and n8 simultaneously. Let

I = {1, . . . , 20, (4, 7, 8)}

J = {(IM) , (EL) , (HUM) , (COM) , (IM, EL) , (IM, HUM) ,

(IM,COM) , (EL,HUM) , (EL,COM) , (HUM, COM)}

xhg =

 1 if the collection of assets g collects intelligence on node(s) h

0 otherwise .
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Then,

maximize z =
∑
h∈I

∑
g∈J

δhgxhg (4.1)

subject to
∑
h∈I

∑
g∈J

whg
IMxhg ≤ 4 (4.2)

∑
h∈I

∑
g∈J

whg
ELxhg ≤ 6 (4.3)

∑
h∈I

∑
g∈J

whg
HUMxhg ≤ 1 (4.4)

∑
h∈I

∑
g∈J

whg
COMxhg ≤ 6 (4.5)

∑
g∈J

xhg ≤ 1, h ∈ I (4.6)

xhg ∈ {0, 1} , h ∈ I, g ∈ J . (4.7)

Equations (4.2) - (4.5) are the intelligence assets’ capacity constraints, which are

summed across all possible collections of nodes and all possible collections of assets.

Equation (4.6) limits the number of collections of assets that may be allocated to a

single node (or collection of nodes) to one. Finally, Equation (4.1) is the objective

function for all possible collections of nodes and assets.

4.6 20-Node, 4-Asset Example: Summary

This example successfully demonstrated the application of the multiple intelli-

gence asset allocation methodology. Although proven on a rather small example, the

methodology may easily be applied to much larger scenarios.
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V. Conclusions and Recommendations

5.1 Overview

This chapter presents the conclusions from this research effort and the recom-

mendations for future research.

5.2 Conclusions

The primary goal of this research was to develop a methodology to prioritize

the limited supply of intelligence collection efforts. Intelligence collection has become

the limiting factor in performing military operations as there will always be less intel-

ligence collection opportunities than intelligence targets. These intelligence collection

efforts must be efficiently used in order to properly characterize an adversary’s current

state. This research’s methodologies proved to be effective in prioritizing intelligence

assets to maximize information gain while bound to intelligence asset constraints.

Due to the estimations for mapping of linguistic quantifiers to probabilities

and asset effectiveness versus nodes, the methodology is not intended to be the final

solution to prioritizing intelligence collection efforts. However, it will provide a good

first-cut at prioritizing the assets, which can then be adjusted by planners. Much

like the SoSA network within the EBO process, the major benefit of the method is

to provide insight to planners. SoSA networks are constructed of numerous nodes

and linkages; thus, when planning operations, it is difficult for an individual planner

(or even a team of planners) to keep track of all the information contained in the

network as well as available intelligence assets. Matching the two up is a daunting

task without the assistance of a methodology like the one presented in this research.

In the development of this research’s methodology, a mathematical model of

the SoSA network and a method for translating intelligence linguistic quantifiers to

probability distributions were developed. The SoSA mathematical model laid the

framework for the subsequent methodology and may be used for other EBO appli-

cations. Using Kent’s mapping of linguistic quantifiers to interval probabilities and
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the principle of maximum entropy, probability distributions were obtained for the

linguistic quantifiers.

These probability distributions were then updated using a methodology to in-

corporate the priorities of the nodes, the dynamic nature of the nodes, and any actions

planned against the nodes. A simple weighting scheme was used to account for nodal

priorities. Although simple, the weighting scheme was effective in stratifying the dif-

ferent priority nodes and ensuring that intelligence assets were allocated to the most

uncertain, highest priority nodes. The dynamic nature of the nodes was incorporated

into the model using a time-dependent erosion of the probability distribution towards

total uncertainty. Thus, as time passed since the last intelligence update, additional

uncertainty was introduced into the probability distributions. Finally, estimates for an

action’s probability of success and posterior probability distributions given an action

were used to update the probability distribution.

Once the prior probability distributions were updated, Shannon’s relative en-

tropy was used to quantify the uncertainty associated with the probability distribu-

tions. Then, using estimates for the intelligence asset effectiveness versus the nodes,

the expected entropy of the posterior probability distributions given an intelligence

collection effort was calculated. Next, the weighted expected reductions in entropy

given a intelligence collection effort were calculated.

These expected reductions in entropy were then used in an integer program (IP)

(specifically, the generalized assignment problem (GAP)) to allocate the intelligence

assets in an efficient manner. To formulate the GAP, the profits per asset/node

combination were the expected reductions in entropy calculated above. The costs of

the asset/node combinations were defined to be the number of intelligence collection

efforts required to perform an assessment of the node. The total costs for an asset

type were constrained to the maximum capacity of the asset (i.e., maximum number

of collection opportunities in a 24-hour period). The final constraint for the GAP

was that at most one asset could collect information on a node. For a notional 20-
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node, 4-asset example, the GAP was formulated and successfully solved providing an

allocation of the intelligence assets.

Extensions to the GAP were presented in Chapter 4. The GAP presented in

Chapter 3 is limited in that it does not permit multiple assets (i.e., collections of

assets) to be tasked against a single asset. The synergistic effects of tasking multiple

assets to collect information are not accounted for. In addition, the methodology does

not allow for an asset to collect information on more than one node simultaneously,

which may be accomplished operationally (i.e., based on geography or proximity).

To address these limitations, the GAP was reformulated to include the capability to

allocate sets of assets against sets of nodes.

5.3 Recommendations for Future Research

For this research, the nodes were assumed to independent. If an intelligence

collection effort were directed at a node, the resulting reduction in uncertainty had

no impact on neighboring nodes. Therefore, additional research should investigate the

dependence between nodes. One of the SoSA goals is to “determine direct and indirect

relationships between nodes within and across systems.” [10] An investigation into the

propagation of uncertainty across nodes may prove very useful and insightful in the

prioritization methodology. For example, gathering information on a neighboring

node may provide information on a target node at a lower cost than looking directly

at the node.

Next, the midpoints of Kent’s interval probabilities were used as point estimates

to quantify the linguistic quantifiers. Although a good estimate of the linguistic

quantifiers, using point estimates does not capture all the uncertainty associated with

these linguistic quantifiers. Further research should investigate using Kent’s interval

probabilities to quantify the linguistic quantifiers. In turn, the continuous case of

Shannon’s entropy would need to be added to the methodology. Another technique

that may be useful is using the upper and lower probabilities of Kent’s intervals as

bounds for the uncertainty present in the intelligence assessment.
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Chapter 4 demonstrated a 20-node, 4-asset example which used notional asset

effectiveness estimates. These estimates were then mapped to probabilities using a

notional mapping scheme (i.e., Effective = 0.90). The sensitivity of this mapping

needs further investigation. In addition, obtaining these estimates in a real-world

application may prove to be difficult. Methods for obtaining these estimates, which

are critical to the presented methodology, should be developed.

Also in Chapter 4, extensions to the GAP were discussed. These extensions in-

cluded reformulating the problem to account for the packaging of multiple intelligence

assets to collect information on a single node and/or the ability of a single intelligence

asset to collect information on more than one node simultaneously. Research is needed

to prove out the presented extensions to the methodologies. Additionally, the intel-

ligence asset effectiveness estimates would need further exploration as packaging the

assets would require additional estimates.

The nodal priority weighting scheme presented in this research used a simple

mapping to assign weights to the various priority types. Further research should

investigate other weighting schemes. The priority weights are highly influential in

deciding the final intelligence asset allocation. Weighting schemes could be developed

that are dependent upon the type of conflict or operation.

Finally, a quantitative comparison between the presented methodology and the

current methodologies used in operations for prioritizing intelligence assets should be

accomplished. Based on the allocation of intelligence assets from each methodology,

the total reduction in entropy (i.e., information gain) across the entire network could

be used as a measure of effectiveness to compare the two.
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Appendix A. 20-Node, 4-Asset Example: δij Calculations
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ode
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_i=x
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_i=x} K p'
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_i=x} 0 1 2 3 4 5

B
ranch Entropy

Expected Entropy

delta_i

1 4 1 8 3 Almost Certainly Not in 1 0 0.310 1 0.75 0.600 Very Effective 0.980 0.50 0.270 0.518 0.833 0.521 0.973 0.017 0.009 0.001 - - 0.106 0.169 5.312
1 0.070 0.300 Effective 0.900 0.190 0.273 0.254 0.014 0.966 0.019 0.002 - - 0.128
2 0.310 0.100 Effective 0.900 0.270 0.143 0.141 0.024 0.064 0.908 0.003 - - 0.269
3 0.310 0.000 Very Effective 0.980 0.270 0.068 0.083 0.041 0.109 0.057 0.793 - - 0.520

2 4 2 4 2 Almost Certainly in 3 0 0.023 1 0.75 0.400 Effective 0.900 0.50 0.137 0.334 0.957 0.319 0.943 0.035 0.019 0.003 - - 0.192 0.265 2.767
1 0.023 0.400 Effective 0.900 0.137 0.334 0.319 0.035 0.943 0.019 0.003 - - 0.192
2 0.023 0.200 Effective 0.900 0.137 0.184 0.189 0.059 0.059 0.877 0.005 - - 0.344
3 0.930 0.000 Very Effective 0.980 0.590 0.148 0.173 0.064 0.064 0.035 0.836 - - 0.448

3 2 4 1 4 Probably Not in 1 0 0.700 1 0.75 0.900 Effective 0.900 1.00 0.550 0.813 0.696 0.778 0.940 0.060 - - - - 0.328 0.466 0.230
1 0.300 0.100 Marginally Effective 0.750 0.450 0.188 0.222 0.366 0.634 - - - - 0.948

4 4 1 8 2 Probably in 2 0 0.233 1 0.75 0.450 Effective 0.900 0.50 0.242 0.398 0.852 0.408 0.877 0.081 0.029 0.012 - - 0.344 0.433 3.359
1 0.233 0.450 Marginally Effective 0.750 0.242 0.398 0.329 0.040 0.908 0.036 0.015 - - 0.290
2 0.300 0.100 Marginally Effective 0.750 0.275 0.144 0.159 0.083 0.208 0.677 0.032 - - 0.654
3 0.233 0.000 Marginally Effective 0.750 0.242 0.060 0.104 0.128 0.320 0.116 0.437 - - 0.894

5 4 1 8 6 Almost Certainly Not in 3 0 0.310 0 0.00 0.000 Very Effective 0.980 0.50 0.260 0.260 0.998 0.274 0.931 0.032 0.032 0.005 - - 0.226 0.204 6.353
1 0.310 0.000 Effective 0.900 0.260 0.260 0.246 0.007 0.952 0.035 0.006 - - 0.166
2 0.310 0.000 Effective 0.900 0.260 0.260 0.246 0.007 0.035 0.952 0.006 - - 0.166
3 0.070 0.000 Very Effective 0.980 0.220 0.220 0.235 0.007 0.037 0.037 0.919 - - 0.258

6 4 2 4 2 Chances Even in 2 0 0.167 1 0.50 0.800 Effective 0.900 0.50 0.208 0.504 0.873 0.495 0.917 0.026 0.040 0.018 - - 0.270 0.439 1.736
1 0.167 0.100 Marginally Effective 0.750 0.208 0.154 0.161 0.104 0.719 0.123 0.054 - - 0.641
2 0.500 0.100 Marginally Effective 0.750 0.375 0.238 0.216 0.078 0.059 0.823 0.040 - - 0.473
3 0.167 0.000 Marginally Effective 0.750 0.208 0.104 0.128 0.132 0.101 0.155 0.612 - - 0.785

7 2 2 4 2 Probably Not in 0 0 0.300 0 0.00 0.000 Effective 0.900 1.00 0.400 0.400 0.971 0.510 0.706 0.294 - - - - 0.874 0.646 1.301
1 0.700 0.000 Marginally Effective 0.750 0.600 0.600 0.490 0.082 0.918 - - - - 0.408

8 2 3 2 2 Chances Even in 0 2 0.500 0 0.00 0.000 Not Effective 0.500 1.00 0.500 0.500 1.000 0.375 0.667 0.333 - - - - 0.918 0.951 0.098
3 0.500 0.000 Marginally Effective 0.750 0.500 0.500 0.625 0.400 0.600 - - - - 0.971

9 4 2 4 2 Probably in 1 0 0.083 1 0.75 0.750 Very Effective 0.980 0.50 0.167 0.604 0.716 0.604 0.980 0.015 0.004 0.000 - - 0.080 0.144 2.288
1 0.750 0.200 Effective 0.900 0.500 0.275 0.254 0.016 0.973 0.010 0.001 - - 0.106
2 0.083 0.050 Effective 0.900 0.167 0.079 0.085 0.048 0.108 0.841 0.003 - - 0.397
3 0.083 0.000 Very Effective 0.980 0.167 0.042 0.057 0.071 0.162 0.047 0.721 - - 0.621

10 6 2 4 2 Almost Certainly in 3 0 0.014 1 0.90 0.300 Effective 0.900 0.39 0.090 0.279 0.800 0.279 0.901 0.020 0.050 0.026 0.002 0.002 0.244 0.310 1.959
1 0.014 0.300 Effective 0.900 0.090 0.279 0.279 0.020 0.901 0.050 0.026 0.002 0.002 0.244
2 0.014 0.300 Marginally Effective 0.750 0.090 0.279 0.229 0.024 0.024 0.916 0.032 0.002 0.002 0.221
3 0.930 0.100 Marginally Effective 0.750 0.548 0.145 0.135 0.041 0.041 0.104 0.807 0.003 0.003 0.396
4 0.014 0.000 Marginally Effective 0.750 0.090 0.009 0.040 0.141 0.141 0.352 0.183 0.171 0.011 0.884
5 0.014 0.000 Marginally Effective 0.750 0.090 0.009 0.040 0.141 0.141 0.352 0.183 0.011 0.171 0.884

11 6 1 8 3 Almost Certainly in 4 0 0.014 0 0.00 0.000 Effective 0.900 0.39 0.116 0.116 0.900 0.148 0.702 0.039 0.039 0.039 0.142 0.039 0.576 0.458 3.534
1 0.014 0.000 Marginally Effective 0.750 0.116 0.116 0.128 0.018 0.681 0.045 0.045 0.165 0.045 0.588
2 0.014 0.000 Marginally Effective 0.750 0.116 0.116 0.128 0.018 0.045 0.681 0.045 0.165 0.045 0.588
3 0.014 0.000 Marginally Effective 0.750 0.116 0.116 0.128 0.018 0.045 0.045 0.681 0.165 0.045 0.588
4 0.930 0.000 Marginally Effective 0.750 0.421 0.421 0.341 0.007 0.017 0.017 0.017 0.925 0.017 0.213
5 0.014 0.000 Marginally Effective 0.750 0.116 0.116 0.128 0.018 0.045 0.045 0.045 0.165 0.681 0.588

12 2 4 1 2 Probably Not in 0 0 0.300 0 0.00 0.000 Effective 0.900 1.00 0.400 0.400 0.971 0.510 0.706 0.294 - - - - 0.874 0.646 0.325
1 0.700 0.000 Marginally Effective 0.750 0.600 0.600 0.490 0.082 0.918 - - - - 0.408

13 2 3 2 2 Probably in 1 0 0.250 1 0.90 0.900 Very Effective 0.980 1.00 0.375 0.848 0.616 0.834 0.996 0.004 - - - - 0.035 0.108 1.016
1 0.750 0.100 Very Effective 0.980 0.625 0.153 0.166 0.102 0.898 - - - - 0.475

14 6 4 1 5 Chances Even in 3 0 0.100 0 0.00 0.000 Effective 0.900 0.39 0.153 0.153 0.992 0.180 0.765 0.043 0.043 0.065 0.043 0.043 0.513 0.494 0.498
1 0.100 0.000 Marginally Effective 0.750 0.153 0.153 0.153 0.020 0.753 0.050 0.076 0.050 0.050 0.524
2 0.100 0.000 Marginally Effective 0.750 0.153 0.153 0.153 0.020 0.050 0.753 0.076 0.050 0.050 0.524
3 0.500 0.000 Marginally Effective 0.750 0.233 0.233 0.209 0.015 0.037 0.037 0.838 0.037 0.037 0.388
4 0.100 0.000 Marginally Effective 0.750 0.153 0.153 0.153 0.020 0.050 0.050 0.076 0.753 0.050 0.524
5 0.100 0.000 Marginally Effective 0.750 0.153 0.153 0.153 0.020 0.050 0.050 0.076 0.050 0.753 0.524

15 2 3 2 2 Almost Certainly in 0 0 0.930 0 0.00 0.000 Not Effective 0.500 1.00 0.715 0.715 0.862 0.429 0.834 0.166 - - - - 0.649 0.823 0.078
1 0.070 0.000 Marginally Effective 0.750 0.285 0.285 0.571 0.626 0.374 - - - - 0.954

16 4 3 2 2 Probably Not in 2 0 0.233 1 0.75 0.800 Effective 0.900 0.50 0.242 0.660 0.716 0.623 0.955 0.018 0.019 0.008 - - 0.167 0.357 0.718
1 0.233 0.100 Marginally Effective 0.750 0.242 0.135 0.141 0.157 0.722 0.085 0.036 - - 0.616
2 0.300 0.100 Marginally Effective 0.750 0.275 0.144 0.146 0.151 0.077 0.738 0.034 - - 0.594
3 0.233 0.000 Marginally Effective 0.750 0.242 0.060 0.091 0.243 0.125 0.132 0.500 - - 0.878

17 6 4 1 2 Probably in 3 0 0.050 0 0.00 0.000 Very Effective 0.980 0.39 0.108 0.108 0.871 0.119 0.894 0.004 0.018 0.077 0.004 0.004 0.241 0.154 0.718
1 0.050 0.000 Very Effective 0.980 0.108 0.108 0.119 0.004 0.894 0.018 0.077 0.004 0.004 0.241
2 0.050 0.000 Effective 0.900 0.108 0.108 0.108 0.004 0.004 0.899 0.085 0.004 0.004 0.219
3 0.750 0.000 Effective 0.900 0.458 0.458 0.416 0.001 0.001 0.005 0.991 0.001 0.001 0.036
4 0.050 0.000 Very Effective 0.980 0.108 0.108 0.119 0.004 0.004 0.018 0.077 0.894 0.004 0.241
5 0.050 0.000 Very Effective 0.980 0.108 0.108 0.119 0.004 0.004 0.018 0.077 0.004 0.894 0.241

18 4 3 2 4 Almost Certainly Not 1 0 0.310 0 0.00 0.000 Very Effective 0.980 0.50 0.265 0.265 0.996 0.277 0.937 0.025 0.032 0.006 - - 0.212 0.196 1.600
1 0.070 0.000 Effective 0.900 0.205 0.205 0.197 0.009 0.937 0.045 0.009 - - 0.205
2 0.310 0.000 Effective 0.900 0.265 0.265 0.249 0.007 0.027 0.958 0.007 - - 0.151
3 0.310 0.000 Very Effective 0.980 0.265 0.265 0.277 0.006 0.025 0.032 0.937 - - 0.212

19 6 2 4 2 Almost Certainly Not in 4 0 0.186 0 0.00 0.000 Effective 0.900 0.39 0.176 0.176 0.995 0.195 0.816 0.018 0.045 0.045 0.030 0.045 0.427 0.445 2.198
1 0.186 0.000 Effective 0.900 0.176 0.176 0.195 0.018 0.816 0.045 0.045 0.030 0.045 0.427
2 0.186 0.000 Marginally Effective 0.750 0.176 0.176 0.163 0.022 0.022 0.812 0.054 0.036 0.054 0.430
3 0.186 0.000 Marginally Effective 0.750 0.176 0.176 0.163 0.022 0.022 0.054 0.812 0.036 0.054 0.430
4 0.070 0.000 Marginally Effective 0.750 0.118 0.118 0.122 0.029 0.029 0.072 0.072 0.726 0.072 0.561
5 0.186 0.000 Marginally Effective 0.750 0.176 0.176 0.163 0.022 0.022 0.054 0.054 0.036 0.812 0.430

20 2 3 2 2 Chances Even in 1 0 0.500 1 0.25 0.950 Very Effective 0.980 1.00 0.500 0.613 0.963 0.608 0.987 0.013 - - - - 0.098 0.139 1.649
1 0.500 0.050 Very Effective 0.980 0.500 0.388 0.392 0.031 0.969 - - - - 0.201

P{N_i=y | Asset Indicates N_i =x}

Figure A.1: 20-Node, 4-Asset Example: δij Calculations–IMINT
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1 4 1 8 3 Almost Certainly Not in 1 0 0.310 1 0.75 0.600 Not Effective 0.250 0.50 0.270 0.518 0.833 0.239 0.542 0.285 0.149 0.024 - - 0.766 0.808 0.197
1 0.070 0.300 Not Effective 0.250 0.190 0.273 0.239 0.542 0.285 0.149 0.024 - - 0.766
2 0.310 0.100 Not Effective 0.250 0.270 0.143 0.239 0.542 0.285 0.149 0.024 - - 0.766
3 0.310 0.000 Marginally Effective 0.750 0.270 0.068 0.284 0.456 0.240 0.126 0.178 - - 0.915

2 4 2 4 2 Almost Certainly in 3 0 0.023 1 0.75 0.400 Effective 0.900 0.50 0.137 0.334 0.957 0.314 0.957 0.035 0.004 0.003 - - 0.144 0.220 2.946
1 0.023 0.400 Effective 0.900 0.137 0.334 0.314 0.035 0.957 0.004 0.003 - - 0.144
2 0.023 0.200 Very Effective 0.980 0.137 0.184 0.204 0.055 0.055 0.886 0.005 - - 0.325
3 0.930 0.000 Very Effective 0.980 0.590 0.148 0.168 0.066 0.066 0.007 0.860 - - 0.379

3 2 4 1 4 Probably Not in 1 0 0.700 1 0.75 0.900 Not Effective 0.500 1.00 0.550 0.813 0.696 0.500 0.813 0.188 - - - - 0.696 0.696 0.000
1 0.300 0.100 Not Effective 0.500 0.450 0.188 0.500 0.813 0.188 - - - - 0.696

4 4 1 8 2 Probably in 2 0 0.233 1 0.75 0.450 Marginally Effective 0.750 0.50 0.242 0.398 0.852 0.346 0.864 0.096 0.035 0.006 - - 0.359 0.495 2.860
1 0.233 0.450 Marginally Effective 0.750 0.242 0.398 0.346 0.096 0.864 0.035 0.006 - - 0.359
2 0.300 0.100 Marginally Effective 0.750 0.275 0.144 0.176 0.188 0.188 0.612 0.011 - - 0.707
3 0.233 0.000 Effective 0.900 0.242 0.060 0.133 0.250 0.250 0.090 0.410 - - 0.920

5 4 1 8 6 Almost Certainly Not in 3 0 0.310 0 0.00 0.000 Not Effective 0.250 0.50 0.260 0.260 0.998 0.213 0.305 0.305 0.305 0.086 - - 0.936 0.933 0.526
1 0.310 0.000 Not Effective 0.250 0.260 0.260 0.213 0.305 0.305 0.305 0.086 - - 0.936
2 0.310 0.000 Not Effective 0.250 0.260 0.260 0.213 0.305 0.305 0.305 0.086 - - 0.936
3 0.070 0.000 Marginally Effective 0.750 0.220 0.220 0.360 0.181 0.181 0.181 0.458 - - 0.927

6 4 2 4 2 Chances Even in 2 0 0.167 1 0.50 0.800 Not Effective 0.250 0.50 0.208 0.504 0.873 0.250 0.504 0.154 0.238 0.104 - - 0.873 0.873 0.000
1 0.167 0.100 Not Effective 0.250 0.208 0.154 0.250 0.504 0.154 0.238 0.104 - - 0.873
2 0.500 0.100 Not Effective 0.250 0.375 0.238 0.250 0.504 0.154 0.238 0.104 - - 0.873
3 0.167 0.000 Not Effective 0.250 0.208 0.104 0.250 0.504 0.154 0.238 0.104 - - 0.873

7 2 2 4 2 Probably Not in 0 0 0.300 0 0.00 0.000 Marginally Effective 0.750 1.00 0.400 0.400 0.971 0.360 0.833 0.167 - - - - 0.650 0.634 1.347
1 0.700 0.000 Effective 0.900 0.600 0.600 0.640 0.156 0.844 - - - - 0.625

8 2 3 2 2 Chances Even in 0 2 0.500 0 0.00 0.000 Not Effective 0.500 1.00 0.500 0.500 1.000 0.500 0.500 0.500 - - - - 1.000 1.000 0.000
3 0.500 0.000 Not Effective 0.500 0.500 0.500 0.500 0.500 0.500 - - - - 1.000

9 4 2 4 2 Probably in 1 0 0.083 1 0.75 0.750 Not Effective 0.250 0.50 0.167 0.604 0.716 0.243 0.621 0.283 0.081 0.014 - - 0.662 0.700 0.063
1 0.750 0.200 Not Effective 0.250 0.500 0.275 0.243 0.621 0.283 0.081 0.014 - - 0.662
2 0.083 0.050 Not Effective 0.250 0.167 0.079 0.243 0.621 0.283 0.081 0.014 - - 0.662
3 0.083 0.000 Marginally Effective 0.750 0.167 0.042 0.271 0.558 0.254 0.073 0.115 - - 0.804

10 6 2 4 2 Almost Certainly in 3 0 0.014 1 0.90 0.300 Marginally Effective 0.750 0.39 0.090 0.279 0.800 0.245 0.855 0.057 0.057 0.030 0.001 0.001 0.321 0.414 1.542
1 0.014 0.300 Marginally Effective 0.750 0.090 0.279 0.245 0.057 0.855 0.057 0.030 0.001 0.001 0.321
2 0.014 0.300 Marginally Effective 0.750 0.090 0.279 0.245 0.057 0.057 0.855 0.030 0.001 0.001 0.321
3 0.930 0.100 Marginally Effective 0.750 0.548 0.145 0.151 0.092 0.092 0.092 0.720 0.001 0.001 0.510
4 0.014 0.000 Effective 0.900 0.090 0.009 0.057 0.243 0.243 0.243 0.126 0.142 0.003 0.886
5 0.014 0.000 Effective 0.900 0.090 0.009 0.057 0.243 0.243 0.243 0.126 0.003 0.142 0.886

11 6 1 8 3 Almost Certainly in 4 0 0.014 0 0.00 0.000 Not Effective 0.167 0.39 0.116 0.116 0.900 0.167 0.116 0.116 0.116 0.116 0.421 0.116 0.900 0.900 0.000
1 0.014 0.000 Not Effective 0.167 0.116 0.116 0.167 0.116 0.116 0.116 0.116 0.421 0.116 0.900
2 0.014 0.000 Not Effective 0.167 0.116 0.116 0.167 0.116 0.116 0.116 0.116 0.421 0.116 0.900
3 0.014 0.000 Not Effective 0.167 0.116 0.116 0.167 0.116 0.116 0.116 0.116 0.421 0.116 0.900
4 0.930 0.000 Not Effective 0.167 0.421 0.421 0.167 0.116 0.116 0.116 0.116 0.421 0.116 0.900
5 0.014 0.000 Not Effective 0.167 0.116 0.116 0.167 0.116 0.116 0.116 0.116 0.421 0.116 0.900

12 2 4 1 2 Probably Not in 0 0 0.300 0 0.00 0.000 Not Effective 0.500 1.00 0.400 0.400 0.971 0.500 0.400 0.600 - - - - 0.971 0.971 0.000
1 0.700 0.000 Not Effective 0.500 0.600 0.600 0.500 0.400 0.600 - - - - 0.971

13 2 3 2 2 Probably in 1 0 0.250 1 0.90 0.900 Not Effective 0.500 1.00 0.375 0.848 0.616 0.462 0.917 0.083 - - - - 0.411 0.591 0.049
1 0.750 0.100 Marginally Effective 0.750 0.625 0.153 0.538 0.787 0.213 - - - - 0.746

14 6 4 1 5 Chances Even in 3 0 0.100 0 0.00 0.000 Not Effective 0.167 0.39 0.153 0.153 0.992 0.167 0.153 0.153 0.153 0.233 0.153 0.153 0.992 0.992 0.000
1 0.100 0.000 Not Effective 0.167 0.153 0.153 0.167 0.153 0.153 0.153 0.233 0.153 0.153 0.992
2 0.100 0.000 Not Effective 0.167 0.153 0.153 0.167 0.153 0.153 0.153 0.233 0.153 0.153 0.992
3 0.500 0.000 Not Effective 0.167 0.233 0.233 0.167 0.153 0.153 0.153 0.233 0.153 0.153 0.992
4 0.100 0.000 Not Effective 0.167 0.153 0.153 0.167 0.153 0.153 0.153 0.233 0.153 0.153 0.992
5 0.100 0.000 Not Effective 0.167 0.153 0.153 0.167 0.153 0.153 0.153 0.233 0.153 0.153 0.992

15 2 3 2 2 Almost Certainly in 0 0 0.930 0 0.00 0.000 Not Effective 0.500 1.00 0.715 0.715 0.862 0.500 0.715 0.285 - - - - 0.862 0.862 0.000
1 0.070 0.000 Not Effective 0.500 0.285 0.285 0.500 0.715 0.285 - - - - 0.862

16 4 3 2 2 Probably Not in 2 0 0.233 1 0.75 0.800 Marginally Effective 0.750 0.50 0.242 0.660 0.716 0.521 0.951 0.022 0.023 0.004 - - 0.172 0.426 0.581
1 0.233 0.100 Marginally Effective 0.750 0.242 0.135 0.171 0.323 0.595 0.070 0.012 - - 0.658
2 0.300 0.100 Marginally Effective 0.750 0.275 0.144 0.176 0.312 0.064 0.612 0.011 - - 0.643
3 0.233 0.000 Effective 0.900 0.242 0.060 0.133 0.415 0.085 0.090 0.410 - - 0.835

17 6 4 1 2 Probably in 3 0 0.050 0 0.00 0.000 Not Effective 0.167 0.39 0.108 0.108 0.871 0.141 0.128 0.128 0.128 0.540 0.038 0.038 0.765 0.784 0.088
1 0.050 0.000 Not Effective 0.167 0.108 0.108 0.141 0.128 0.128 0.128 0.540 0.038 0.038 0.765
2 0.050 0.000 Not Effective 0.167 0.108 0.108 0.141 0.128 0.128 0.128 0.540 0.038 0.038 0.765
3 0.750 0.000 Not Effective 0.167 0.458 0.458 0.141 0.128 0.128 0.128 0.540 0.038 0.038 0.765
4 0.050 0.000 Marginally Effective 0.750 0.108 0.108 0.217 0.083 0.083 0.083 0.352 0.374 0.025 0.808
5 0.050 0.000 Marginally Effective 0.750 0.108 0.108 0.217 0.083 0.083 0.083 0.352 0.025 0.374 0.808

18 4 3 2 4 Almost Certainly Not 1 0 0.310 0 0.00 0.000 Not Effective 0.250 0.50 0.265 0.265 0.996 0.206 0.322 0.249 0.322 0.107 - - 0.949 0.922 0.149
1 0.070 0.000 Not Effective 0.250 0.205 0.205 0.206 0.322 0.249 0.322 0.107 - - 0.949
2 0.310 0.000 Not Effective 0.250 0.265 0.265 0.206 0.322 0.249 0.322 0.107 - - 0.949
3 0.310 0.000 Marginally Effective 0.750 0.265 0.265 0.383 0.173 0.134 0.173 0.520 - - 0.878

19 6 2 4 2 Almost Certainly Not in 4 0 0.186 0 0.00 0.000 Marginally Effective 0.750 0.39 0.176 0.176 0.995 0.165 0.803 0.054 0.054 0.054 0.014 0.021 0.441 0.457 2.152
1 0.186 0.000 Marginally Effective 0.750 0.176 0.176 0.165 0.054 0.803 0.054 0.054 0.014 0.021 0.441
2 0.186 0.000 Marginally Effective 0.750 0.176 0.176 0.165 0.054 0.054 0.803 0.054 0.014 0.021 0.441
3 0.186 0.000 Marginally Effective 0.750 0.176 0.176 0.165 0.054 0.054 0.054 0.803 0.014 0.021 0.441
4 0.070 0.000 Effective 0.900 0.118 0.118 0.145 0.061 0.061 0.061 0.061 0.733 0.024 0.557
5 0.186 0.000 Effective 0.900 0.176 0.176 0.196 0.045 0.045 0.045 0.045 0.012 0.808 0.437

20 2 3 2 2 Chances Even in 1 0 0.500 1 0.25 0.950 Not Effective 0.500 1.00 0.500 0.613 0.963 0.403 0.760 0.240 - - - - 0.796 0.917 0.092
1 0.500 0.050 Marginally Effective 0.750 0.500 0.388 0.597 0.513 0.487 - - - - 1.000

P{N_i=y | Asset Indicates N_i =x}

Figure A.2: 20-Node, 4-Asset Example: δij Calculations–ELINT
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1 4 1 8 3 Almost Certainly Not in 1 0 0.310 1 0.75 0.600 Effective 0.900 0.50 0.270 0.518 0.833 0.503 0.927 0.045 0.024 0.004 - - 0.233 0.390 3.545
1 0.070 0.300 Marginally Effective 0.750 0.190 0.273 0.236 0.073 0.867 0.050 0.010 - - 0.368
2 0.310 0.100 Marginally Effective 0.750 0.270 0.143 0.149 0.116 0.152 0.717 0.015 - - 0.605
3 0.310 0.000 Effective 0.900 0.270 0.068 0.113 0.153 0.202 0.105 0.540 - - 0.852

2 4 2 4 2 Almost Certainly in 3 0 0.023 1 0.75 0.400 Effective 0.900 0.50 0.137 0.334 0.957 0.349 0.862 0.080 0.044 0.014 - - 0.380 0.449 2.033
1 0.023 0.400 Marginally Effective 0.750 0.137 0.334 0.282 0.039 0.889 0.054 0.017 - - 0.333
2 0.023 0.200 Marginally Effective 0.750 0.137 0.184 0.182 0.061 0.153 0.759 0.027 - - 0.552
3 0.930 0.000 Effective 0.900 0.590 0.148 0.187 0.060 0.149 0.082 0.710 - - 0.649

3 2 4 1 4 Probably Not in 1 0 0.700 1 0.75 0.900 Very Effective 0.980 1.00 0.550 0.813 0.696 0.815 0.977 0.023 - - - - 0.158 0.208 0.488
1 0.300 0.100 Effective 0.900 0.450 0.188 0.185 0.088 0.912 - - - - 0.429

4 4 1 8 2 Probably in 2 0 0.233 1 0.75 0.450 Effective 0.900 0.50 0.242 0.398 0.852 0.405 0.884 0.082 0.030 0.005 - - 0.321 0.409 3.548
1 0.233 0.450 Marginally Effective 0.750 0.242 0.398 0.326 0.041 0.916 0.037 0.006 - - 0.262
2 0.300 0.100 Marginally Effective 0.750 0.275 0.144 0.156 0.085 0.212 0.690 0.013 - - 0.613
3 0.233 0.000 Effective 0.900 0.242 0.060 0.113 0.118 0.294 0.106 0.482 - - 0.867

5 4 1 8 6 Almost Certainly Not in 3 0 0.310 0 0.00 0.000 Effective 0.900 0.50 0.260 0.260 0.998 0.285 0.822 0.076 0.076 0.026 - - 0.467 0.465 4.263
1 0.310 0.000 Marginally Effective 0.750 0.260 0.260 0.233 0.037 0.838 0.093 0.032 - - 0.433
2 0.310 0.000 Marginally Effective 0.750 0.260 0.260 0.233 0.037 0.093 0.838 0.032 - - 0.433
3 0.070 0.000 Effective 0.900 0.220 0.220 0.250 0.035 0.087 0.087 0.792 - - 0.523

6 4 2 4 2 Chances Even in 2 0 0.167 1 0.50 0.800 Very Effective 0.980 0.50 0.208 0.504 0.873 0.511 0.968 0.010 0.016 0.007 - - 0.127 0.200 2.694
1 0.167 0.100 Effective 0.900 0.208 0.154 0.154 0.022 0.904 0.052 0.023 - - 0.298
2 0.500 0.100 Effective 0.900 0.375 0.238 0.226 0.015 0.023 0.947 0.015 - - 0.191
3 0.167 0.000 Effective 0.900 0.208 0.104 0.110 0.031 0.047 0.072 0.851 - - 0.415

7 2 2 4 2 Probably Not in 0 0 0.300 0 0.00 0.000 Effective 0.900 1.00 0.400 0.400 0.971 0.420 0.857 0.143 - - - - 0.592 0.458 2.050
1 0.700 0.000 Effective 0.900 0.600 0.600 0.580 0.069 0.931 - - - - 0.362

8 2 3 2 2 Chances Even in 0 2 0.500 0 0.00 0.000 Very Effective 0.980 1.00 0.500 0.500 1.000 0.500 0.980 0.020 - - - - 0.141 0.141 1.717
3 0.500 0.000 Very Effective 0.980 0.500 0.500 0.500 0.020 0.980 - - - - 0.141

9 4 2 4 2 Probably in 1 0 0.083 1 0.75 0.750 Effective 0.900 0.50 0.167 0.604 0.716 0.575 0.946 0.040 0.011 0.002 - - 0.178 0.335 1.526
1 0.750 0.200 Marginally Effective 0.750 0.500 0.275 0.234 0.086 0.880 0.028 0.006 - - 0.328
2 0.083 0.050 Marginally Effective 0.750 0.167 0.079 0.104 0.194 0.221 0.572 0.013 - - 0.742
3 0.083 0.000 Effective 0.900 0.167 0.042 0.087 0.231 0.263 0.076 0.430 - - 0.900

10 6 2 4 2 Almost Certainly in 3 0 0.014 1 0.90 0.300 Effective 0.900 0.39 0.090 0.279 0.800 0.287 0.875 0.049 0.049 0.025 0.002 0.001 0.289 0.362 1.752
1 0.014 0.300 Marginally Effective 0.750 0.090 0.279 0.237 0.024 0.884 0.059 0.031 0.002 0.001 0.272
2 0.014 0.300 Marginally Effective 0.750 0.090 0.279 0.237 0.024 0.059 0.884 0.031 0.002 0.001 0.272
3 0.930 0.100 Marginally Effective 0.750 0.548 0.145 0.143 0.039 0.098 0.098 0.761 0.003 0.001 0.455
4 0.014 0.000 Marginally Effective 0.750 0.090 0.009 0.048 0.117 0.293 0.293 0.152 0.142 0.004 0.868
5 0.014 0.000 Effective 0.900 0.090 0.009 0.049 0.113 0.283 0.283 0.147 0.009 0.165 0.883

11 6 1 8 3 Almost Certainly in 4 0 0.014 0 0.00 0.000 Very Effective 0.980 0.39 0.116 0.116 0.900 0.131 0.865 0.018 0.018 0.018 0.064 0.018 0.327 0.226 5.388
1 0.014 0.000 Effective 0.900 0.116 0.116 0.120 0.004 0.868 0.019 0.019 0.070 0.019 0.312
2 0.014 0.000 Effective 0.900 0.116 0.116 0.120 0.004 0.019 0.868 0.019 0.070 0.019 0.312
3 0.014 0.000 Effective 0.900 0.116 0.116 0.120 0.004 0.019 0.019 0.868 0.070 0.019 0.312
4 0.930 0.000 Effective 0.900 0.421 0.421 0.389 0.001 0.006 0.006 0.006 0.975 0.006 0.086
5 0.014 0.000 Effective 0.900 0.116 0.116 0.120 0.004 0.019 0.019 0.019 0.070 0.868 0.312

12 2 4 1 2 Probably Not in 0 0 0.300 0 0.00 0.000 Very Effective 0.980 1.00 0.400 0.400 0.971 0.452 0.867 0.133 - - - - 0.565 0.316 0.655
1 0.700 0.000 Effective 0.900 0.600 0.600 0.548 0.015 0.985 - - - - 0.110

13 2 3 2 2 Probably in 1 0 0.250 1 0.90 0.900 Effective 0.900 1.00 0.375 0.848 0.616 0.778 0.980 0.020 - - - - 0.139 0.321 0.590
1 0.750 0.100 Effective 0.900 0.625 0.153 0.222 0.382 0.618 - - - - 0.959

14 6 4 1 5 Chances Even in 3 0 0.100 0 0.00 0.000 Very Effective 0.980 0.39 0.153 0.153 0.992 0.167 0.899 0.018 0.018 0.028 0.018 0.018 0.273 0.239 0.753
1 0.100 0.000 Effective 0.900 0.153 0.153 0.152 0.004 0.905 0.020 0.031 0.020 0.020 0.254
2 0.100 0.000 Effective 0.900 0.153 0.153 0.152 0.004 0.020 0.905 0.031 0.020 0.020 0.254
3 0.500 0.000 Effective 0.900 0.233 0.233 0.223 0.003 0.014 0.014 0.942 0.014 0.014 0.172
4 0.100 0.000 Effective 0.900 0.153 0.153 0.152 0.004 0.020 0.020 0.031 0.905 0.020 0.254
5 0.100 0.000 Effective 0.900 0.153 0.153 0.152 0.004 0.020 0.020 0.031 0.020 0.905 0.254

15 2 3 2 2 Almost Certainly in 0 0 0.930 0 0.00 0.000 Very Effective 0.980 1.00 0.715 0.715 0.862 0.706 0.992 0.008 - - - - 0.068 0.130 1.464
1 0.070 0.000 Very Effective 0.980 0.285 0.285 0.294 0.049 0.951 - - - - 0.281

16 4 3 2 2 Probably Not in 2 0 0.233 1 0.75 0.800 Effective 0.900 0.50 0.242 0.660 0.716 0.620 0.959 0.018 0.019 0.003 - - 0.150 0.334 0.765
1 0.233 0.100 Marginally Effective 0.750 0.242 0.135 0.138 0.160 0.738 0.087 0.015 - - 0.571
2 0.300 0.100 Marginally Effective 0.750 0.275 0.144 0.143 0.154 0.079 0.753 0.014 - - 0.549
3 0.233 0.000 Effective 0.900 0.242 0.060 0.100 0.221 0.113 0.120 0.546 - - 0.841

17 6 4 1 2 Probably in 3 0 0.050 0 0.00 0.000 Effective 0.900 0.39 0.108 0.108 0.871 0.139 0.702 0.039 0.039 0.165 0.039 0.016 0.553 0.416 0.456
1 0.050 0.000 Marginally Effective 0.750 0.108 0.108 0.119 0.018 0.681 0.045 0.192 0.045 0.018 0.561
2 0.050 0.000 Marginally Effective 0.750 0.108 0.108 0.119 0.018 0.045 0.681 0.192 0.045 0.018 0.561
3 0.750 0.000 Marginally Effective 0.750 0.458 0.458 0.364 0.006 0.015 0.015 0.944 0.015 0.006 0.169
4 0.050 0.000 Marginally Effective 0.750 0.108 0.108 0.119 0.018 0.045 0.045 0.192 0.681 0.018 0.561
5 0.050 0.000 Effective 0.900 0.108 0.108 0.139 0.016 0.039 0.039 0.165 0.039 0.702 0.553

18 4 3 2 4 Almost Certainly Not 1 0 0.310 0 0.00 0.000 Effective 0.900 0.50 0.265 0.265 0.996 0.287 0.832 0.060 0.077 0.031 - - 0.451 0.455 1.082
1 0.070 0.000 Marginally Effective 0.750 0.205 0.205 0.194 0.046 0.795 0.114 0.046 - - 0.514
2 0.310 0.000 Marginally Effective 0.750 0.265 0.265 0.234 0.038 0.073 0.851 0.038 - - 0.416
3 0.310 0.000 Effective 0.900 0.265 0.265 0.287 0.031 0.060 0.077 0.832 - - 0.451

19 6 2 4 2 Almost Certainly Not in 4 0 0.186 0 0.00 0.000 Effective 0.900 0.39 0.176 0.176 0.995 0.195 0.816 0.045 0.045 0.045 0.030 0.018 0.427 0.445 2.198
1 0.186 0.000 Marginally Effective 0.750 0.176 0.176 0.163 0.022 0.812 0.054 0.054 0.036 0.022 0.430
2 0.186 0.000 Marginally Effective 0.750 0.176 0.176 0.163 0.022 0.054 0.812 0.054 0.036 0.022 0.430
3 0.186 0.000 Marginally Effective 0.750 0.176 0.176 0.163 0.022 0.054 0.054 0.812 0.036 0.022 0.430
4 0.070 0.000 Marginally Effective 0.750 0.118 0.118 0.122 0.029 0.072 0.072 0.072 0.726 0.029 0.561
5 0.186 0.000 Effective 0.900 0.176 0.176 0.195 0.018 0.045 0.045 0.045 0.030 0.816 0.427

20 2 3 2 2 Chances Even in 1 0 0.500 1 0.25 0.950 Effective 0.900 1.00 0.500 0.613 0.963 0.590 0.934 0.066 - - - - 0.350 0.456 1.015
1 0.500 0.050 Effective 0.900 0.500 0.388 0.410 0.149 0.851 - - - - 0.608

P{N_i=y | Asset Indicates N_i =x}

Figure A.3: 20-Node, 4-Asset Example: δij Calculations–HUMINT
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1 4 1 8 3 Almost Certainly Not in 1 0 0.310 1 0.75 0.600 Marginally Effective 0.750 0.50 0.270 0.518 0.833 0.498 0.780 0.137 0.072 0.011 - - 0.509 0.706 1.017
1 0.070 0.300 Not Effective 0.250 0.190 0.273 0.153 0.283 0.447 0.234 0.037 - - 0.850
2 0.310 0.100 Not Effective 0.250 0.270 0.143 0.153 0.283 0.447 0.234 0.037 - - 0.850
3 0.310 0.000 Marginally Effective 0.750 0.270 0.068 0.198 0.218 0.345 0.180 0.256 - - 0.979

2 4 2 4 2 Almost Certainly in 3 0 0.023 1 0.75 0.400 Marginally Effective 0.750 0.50 0.137 0.334 0.957 0.290 0.866 0.096 0.021 0.017 - - 0.361 0.474 1.930
1 0.023 0.400 Marginally Effective 0.750 0.137 0.334 0.290 0.096 0.866 0.021 0.017 - - 0.361
2 0.023 0.200 Effective 0.900 0.137 0.184 0.226 0.123 0.123 0.732 0.022 - - 0.597
3 0.930 0.000 Effective 0.900 0.590 0.148 0.195 0.143 0.143 0.032 0.682 - - 0.668

3 2 4 1 4 Probably Not in 1 0 0.700 1 0.75 0.900 Effective 0.900 1.00 0.550 0.813 0.696 0.750 0.975 0.025 - - - - 0.169 0.354 0.342
1 0.300 0.100 Effective 0.900 0.450 0.188 0.250 0.325 0.675 - - - - 0.910

4 4 1 8 2 Probably in 2 0 0.233 1 0.75 0.450 Very Effective 0.980 0.50 0.242 0.398 0.852 0.394 0.990 0.007 0.002 0.001 - - 0.047 0.078 6.197
1 0.233 0.450 Very Effective 0.980 0.242 0.398 0.394 0.007 0.990 0.002 0.001 - - 0.047
2 0.300 0.100 Very Effective 0.980 0.275 0.144 0.147 0.018 0.018 0.961 0.003 - - 0.144
3 0.233 0.000 Very Effective 0.980 0.242 0.060 0.065 0.041 0.041 0.015 0.904 - - 0.298

5 4 1 8 6 Almost Certainly Not in 3 0 0.310 0 0.00 0.000 Marginally Effective 0.750 0.50 0.260 0.260 0.998 0.343 0.568 0.189 0.189 0.053 - - 0.799 0.846 1.218
1 0.310 0.000 Not Effective 0.250 0.260 0.260 0.170 0.127 0.382 0.382 0.108 - - 0.893
2 0.310 0.000 Not Effective 0.250 0.260 0.260 0.170 0.127 0.382 0.382 0.108 - - 0.893
3 0.070 0.000 Marginally Effective 0.750 0.220 0.220 0.317 0.068 0.205 0.205 0.521 - - 0.846

6 4 2 4 2 Chances Even in 2 0 0.167 1 0.50 0.800 Effective 0.900 0.50 0.208 0.504 0.873 0.470 0.965 0.011 0.017 0.007 - - 0.136 0.282 2.364
1 0.167 0.100 Effective 0.900 0.208 0.154 0.167 0.101 0.831 0.047 0.021 - - 0.440
2 0.500 0.100 Effective 0.900 0.375 0.238 0.239 0.070 0.021 0.894 0.015 - - 0.311
3 0.167 0.000 Effective 0.900 0.208 0.104 0.124 0.136 0.042 0.064 0.758 - - 0.569

7 2 2 4 2 Probably Not in 0 0 0.300 0 0.00 0.000 Very Effective 0.980 1.00 0.400 0.400 0.971 0.404 0.970 0.030 - - - - 0.193 0.139 3.327
1 0.700 0.000 Very Effective 0.980 0.600 0.600 0.596 0.013 0.987 - - - - 0.103

8 2 3 2 2 Chances Even in 0 2 0.500 0 0.00 0.000 Effective 0.900 1.00 0.500 0.500 1.000 0.460 0.978 0.022 - - - - 0.151 0.310 1.380
3 0.500 0.000 Very Effective 0.980 0.500 0.500 0.540 0.093 0.907 - - - - 0.445

9 4 2 4 2 Probably in 1 0 0.083 1 0.75 0.750 Marginally Effective 0.750 0.50 0.167 0.604 0.716 0.545 0.831 0.126 0.036 0.006 - - 0.409 0.604 0.449
1 0.750 0.200 Not Effective 0.250 0.500 0.275 0.142 0.354 0.483 0.139 0.024 - - 0.782
2 0.083 0.050 Not Effective 0.250 0.167 0.079 0.142 0.354 0.483 0.139 0.024 - - 0.782
3 0.083 0.000 Marginally Effective 0.750 0.167 0.042 0.170 0.296 0.404 0.116 0.184 - - 0.929

10 6 2 4 2 Almost Certainly in 3 0 0.014 1 0.90 0.300 Very Effective 0.980 0.39 0.090 0.279 0.800 0.276 0.990 0.004 0.004 0.002 0.000 0.000 0.039 0.059 2.965
1 0.014 0.300 Very Effective 0.980 0.090 0.279 0.276 0.004 0.990 0.004 0.002 0.000 0.000 0.039
2 0.014 0.300 Very Effective 0.980 0.090 0.279 0.276 0.004 0.004 0.990 0.002 0.000 0.000 0.039
3 0.930 0.100 Very Effective 0.980 0.548 0.145 0.145 0.008 0.008 0.008 0.976 0.000 0.000 0.078
4 0.014 0.000 Very Effective 0.980 0.090 0.009 0.013 0.087 0.087 0.087 0.045 0.691 0.003 0.586
5 0.014 0.000 Very Effective 0.980 0.090 0.009 0.013 0.087 0.087 0.087 0.045 0.003 0.691 0.586

11 6 1 8 3 Almost Certainly in 4 0 0.014 0 0.00 0.000 Effective 0.900 0.39 0.116 0.116 0.900 0.122 0.855 0.019 0.019 0.019 0.069 0.019 0.346 0.250 5.196
1 0.014 0.000 Effective 0.900 0.116 0.116 0.122 0.019 0.855 0.019 0.019 0.069 0.019 0.346
2 0.014 0.000 Effective 0.900 0.116 0.116 0.122 0.019 0.019 0.855 0.019 0.069 0.019 0.346
3 0.014 0.000 Effective 0.900 0.116 0.116 0.122 0.019 0.019 0.019 0.855 0.069 0.019 0.346
4 0.930 0.000 Effective 0.900 0.421 0.421 0.391 0.006 0.006 0.006 0.006 0.970 0.006 0.101
5 0.014 0.000 Effective 0.900 0.116 0.116 0.122 0.019 0.019 0.019 0.019 0.069 0.855 0.346

12 2 4 1 2 Probably Not in 0 0 0.300 0 0.00 0.000 Effective 0.900 1.00 0.400 0.400 0.971 0.420 0.857 0.143 - - - - 0.592 0.458 0.512
1 0.700 0.000 Effective 0.900 0.600 0.600 0.580 0.069 0.931 - - - - 0.362

13 2 3 2 2 Probably in 1 0 0.250 1 0.90 0.900 Marginally Effective 0.750 1.00 0.375 0.848 0.616 0.674 0.943 0.057 - - - - 0.314 0.516 0.200
1 0.750 0.100 Marginally Effective 0.750 0.625 0.153 0.326 0.649 0.351 - - - - 0.935

14 6 4 1 5 Chances Even in 3 0 0.100 0 0.00 0.000 Effective 0.900 0.39 0.153 0.153 0.992 0.155 0.891 0.020 0.020 0.030 0.020 0.020 0.290 0.269 0.722
1 0.100 0.000 Effective 0.900 0.153 0.153 0.155 0.020 0.891 0.020 0.030 0.020 0.020 0.290
2 0.100 0.000 Effective 0.900 0.153 0.153 0.155 0.020 0.020 0.891 0.030 0.020 0.020 0.290
3 0.500 0.000 Effective 0.900 0.233 0.233 0.225 0.014 0.014 0.014 0.932 0.014 0.014 0.200
4 0.100 0.000 Effective 0.900 0.153 0.153 0.155 0.020 0.020 0.020 0.030 0.891 0.020 0.290
5 0.100 0.000 Effective 0.900 0.153 0.153 0.155 0.020 0.020 0.020 0.030 0.020 0.891 0.290

15 2 3 2 2 Almost Certainly in 0 0 0.930 0 0.00 0.000 Effective 0.900 1.00 0.715 0.715 0.862 0.649 0.991 0.009 - - - - 0.073 0.303 1.118
1 0.070 0.000 Very Effective 0.980 0.285 0.285 0.351 0.204 0.796 - - - - 0.730

16 4 3 2 2 Probably Not in 2 0 0.233 1 0.75 0.800 Very Effective 0.980 0.50 0.242 0.660 0.716 0.649 0.997 0.001 0.001 0.001 - - 0.019 0.071 1.290
1 0.233 0.100 Very Effective 0.980 0.242 0.135 0.138 0.032 0.958 0.007 0.003 - - 0.146
2 0.300 0.100 Very Effective 0.980 0.275 0.144 0.147 0.030 0.006 0.961 0.003 - - 0.138
3 0.233 0.000 Very Effective 0.980 0.242 0.060 0.065 0.067 0.014 0.015 0.904 - - 0.284

17 6 4 1 2 Probably in 3 0 0.050 0 0.00 0.000 Marginally Effective 0.750 0.39 0.108 0.108 0.871 0.217 0.374 0.083 0.083 0.352 0.083 0.025 0.808 0.784 0.088
1 0.050 0.000 Not Effective 0.167 0.108 0.108 0.141 0.038 0.128 0.128 0.540 0.128 0.038 0.765
2 0.050 0.000 Not Effective 0.167 0.108 0.108 0.141 0.038 0.128 0.128 0.540 0.128 0.038 0.765
3 0.750 0.000 Not Effective 0.167 0.458 0.458 0.141 0.038 0.128 0.128 0.540 0.128 0.038 0.765
4 0.050 0.000 Not Effective 0.167 0.108 0.108 0.141 0.038 0.128 0.128 0.540 0.128 0.038 0.765
5 0.050 0.000 Marginally Effective 0.750 0.108 0.108 0.217 0.025 0.083 0.083 0.352 0.083 0.374 0.808

18 4 3 2 4 Almost Certainly Not 1 0 0.310 0 0.00 0.000 Marginally Effective 0.750 0.50 0.265 0.265 0.996 0.338 0.587 0.151 0.196 0.065 - - 0.790 0.832 0.328
1 0.070 0.000 Not Effective 0.250 0.205 0.205 0.162 0.137 0.317 0.410 0.137 - - 0.919
2 0.310 0.000 Not Effective 0.250 0.265 0.265 0.162 0.137 0.317 0.410 0.137 - - 0.919
3 0.310 0.000 Marginally Effective 0.750 0.265 0.265 0.338 0.065 0.151 0.196 0.587 - - 0.790

19 6 2 4 2 Almost Certainly Not in 4 0 0.186 0 0.00 0.000 Very Effective 0.980 0.39 0.176 0.176 0.995 0.176 0.981 0.004 0.004 0.004 0.003 0.004 0.069 0.072 3.690
1 0.186 0.000 Very Effective 0.980 0.176 0.176 0.176 0.004 0.981 0.004 0.004 0.003 0.004 0.069
2 0.186 0.000 Very Effective 0.980 0.176 0.176 0.176 0.004 0.004 0.981 0.004 0.003 0.004 0.069
3 0.186 0.000 Very Effective 0.980 0.176 0.176 0.176 0.004 0.004 0.004 0.981 0.003 0.004 0.069
4 0.070 0.000 Very Effective 0.980 0.118 0.118 0.119 0.006 0.006 0.006 0.006 0.970 0.006 0.101
5 0.186 0.000 Very Effective 0.980 0.176 0.176 0.176 0.004 0.004 0.004 0.004 0.003 0.981 0.069

20 2 3 2 2 Chances Even in 1 0 0.500 1 0.25 0.950 Marginally Effective 0.750 1.00 0.500 0.613 0.963 0.556 0.826 0.174 - - - - 0.667 0.784 0.359
1 0.500 0.050 Marginally Effective 0.750 0.500 0.388 0.444 0.345 0.655 - - - - 0.930

P{N_i=y | Asset Indicates N_i =x}

Figure A.4: 20-Node, 4-Asset Example: δij Calculations–COMINT
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