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anned air vehicle (UAV) simulation was designed to reveal the effects of imperfectly reliable diagnostic 
ion – a monitor of system health parameters – on pilot attention, as the latter was assessed via visual 
. Four groups of participants flew a series of legs under different automation conditions: a baseline (no 

ion) control, and automation which was either 100% reliable, 60% reliable with a low-threshold bias to 
 false alerts, and 60% reliable with a high threshold to produce misses. A high workload mission completion 
 ground surveillance task were simultaneously imposed. Consistent with the reliance-compliance model of 

ct automation developed by Meyer (2001), miss-prone automation removed visual attention from the 
nce task, while FA-prone automation delayed the alert-driven attention shift to the system monitoring task. 

Introduction 

ed air vehicles (UAV) have realized a recent 
ul history in military aviation, and presently 
ast to play an important role in civil aviation, 
s military UAVs must transition through 
airspace, or as UAVs are called upon to 

 non-military functions such a border 
nce or cargo transport. UAVs, almost by 
n, will require high levels of automation, and 
ring into play issues of pilot monitoring of 
omation. Whether the pilot is called on to 
e a single UAV, as in most intended civilian 
ions, or two or more UAVs, as envisioned in 

ilitary applications, there are two major 
hat mitigate the effectiveness of automation, 
 control (as well as its effectiveness other 
 systems). 

st factor is the level of “workload” 
ced by the human operator. Here we define 
d, as the load imposed on the limited 
tion processing resources of the unaided 
t automation) human operator, in what we 
 as the “baseline” or “manual” condition. 
ad can be imposed from two qualitatively 
sources: the single task difficulty of the task 
ht otherwise be automated, and the multi-
d in which the baseline (vs. automated) task 
rmed. In these two cases, the automation 
 are likely to increase, to the extent that the 
sk to be automated is more difficult (Maltz & 
2003; Dixon & Wickens, 2004), or that 
nt or multi-task load is imposed 
aman et al., 1993).  

ond factor is automation reliability. There is 
ubt that total human-system performance will 
 good if automation is perfect. Conversely, 
rforming a difficult task, performance will be 

poor when automation is so unreliable as to be 
useless. However in between these extremes, lies a 
range of reliability levels where the benefits of 
automation over the baseline may be uncertain. 

Of course there are a wide array of types of 
automation that can be employed to assist the UAV 
pilot, as well as a wide variety of ways in which 
automation can fail. In the current research we focus 
on automated alerts, that are of particular value under 
high levels of pilot workload, because the attention-
grabbing properties of such alerts typically relieve the 
pilot of continuous visual monitoring of the “raw 
data” in the “alerted domain”. In our particular 
domain, the raw data represent indicators of the 
health of various systems on board the aircraft.  

Three reasons lay behind our selection of this 
automated task for our research. First, because 
system monitoring is generally lower on the pilot’s 
task Hierarchy (Schutte & Trujillo, 1996), it is logical 
to relegate this to an automated alert system. 
Secondly, interviews with subject matter experts of 
the Army’s Hunter-Shadow UAV (Wickens & 
Dixon, 2002), revealed the plausibility of rendering 
such system failures as relatively frequent events, and 
therefore legitimate subjects of an experimental 
inquiry of imperfect automation. Finally, the nature 
of potential automated failures in monitoring system 
events generalizes to a much wider class of 
automated diagnostic systems in aviation, such as 
conflict and collision alerts (Bliss, 2003; Pritchett, 
2001), so that lessons learned regarding the 
implications of this imperfect automation for pilot 
attention and decision, can be widely applied. 

Underlying our current modeling approach is the fact 
that automated diagnostic systems must discriminate 
two kinds of events: a “failure” and a “normal 
operating condition”. When asked to make such a 
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discrimination in a probabilistic imperfect world, 
with potentially unreliable sensors, automation will 
make occasional errors. It is then the responsibility of 
the alert designer to “set the threshold” of the alerting 
system to achieve the appropriate balance of alert 
misses, and alert false alarms. Generally, designers 
have chosen to bias this setting in favor of a low 
threshold, which generates many more false alerts, 
than it does missed events (Pritchett, 2001); however, 
neither type of automation error is immune from 
human performance costs, imposed on the pilot who 
must (a) respond to the alert output (if it is true), (b) 
provide some attention to the “raw data” (to the 
extent that the alerting system may be miss-prone) 
and (c) perform a host of attention demanding 
concurrent tasks.  

Some more specific description of what these costs 
are, emerges from a treatment of alert systems 
developed by Meyer (2001, 2004; Maltz & Shinar, 
2003), who distinguishes between two cognitive 
states of human dependence on alerting automation: 
Reliance, characterizes human cognition when the 
alert is silent. A reliant operator will assume that the 
alert will unfailingly sound when the raw data go out 
of tolerance, and hence will have no need to examine 
those data while the alert is silent. Full residual 
attention will be available for concurrent tasks. 
However an imperfect alerting setting that generates 
automation misses will reduce reliance, at the 
expense of visual attention to concurrent tasks. 

Compliance, in contrast, characterizes the operator 
response when the alert sounds. A highly compliant 
operator will rapidly abandon concurrent tasks and 
switch attention to the alerting domain once the alert 
sounds. However an imperfect alerting setting that 
generates many false alarms (the more frequent type 
of setting) will reduce compliance, even if this setting 
has minimal effect on reliance. 

In a pair of UAV simulation experiments, Dixon and 
Wickens (2004; Dixon Wickens and Chang, 2005, in 
press) varied the auditory alerting threshold as well 
as the overall reliability of system monitor gauges in 
their simulated UAV. Examining performance on the 
system monitoring task itself, along with 
performance of a concurrent image surveillance task, 
and a primary mission task, they were able to 
demonstrate performance effects that appeared to 
mirror some of the expected changes in reliance and 
compliance: increasing automation miss rate reduced 
concurrent monitoring; increasing automation false 
alert rate reduced pilot response to system failures. 
Both of these effects reflect the inferred influence of 
automation reliability on pilot attention, either to 

monitor concurrent tasks, rather than the raw data 
(indexing high reliance), or to be immediately 
switched when an alert occurs (for a compliant pilot). 
however we had no direct measures of the allocation 
of visual attention, as revealed through visual 
scanning measures. Because of the critical role 
played by visual attention in aviation (Talleur & 
Wickens, 2003; Wickens, Goh, Helleberg, Horrey & 
Talleur, 2003), in the current study, we measured 
these scan patterns as four groups of pilots monitored 
simulations that varied in the reliability of the 
automated system status monitor: a 100% reliable 
system, an unreliable system (r = 0.60) with a bias to 
false alerts, an equally unreliable system (r = 0.60) 
with a bias to misses, and a baseline system with no 
auditory alerting whatsoever. In each system we 
measured performance, as well as the balance of 
visual attention between the system gauges and 
concurrent tasks (measuring miss-influenced 
reliance), and the visual attention switching time 
following an alert (measuring false-alert influenced 
compliance). 

Methods 

39 student pilots from the Institute of Aviation 
volunteered to participate in the experiment.  They 
were paid $9.00/hour. Each pilot flew the UAV 
through ten different mission legs (one practice, 9 
experimental), while completing three goal-oriented 
tasks commonly associated with UAV flight control: 
mission completion, target search, and systems 
monitoring. They used the interface shown in figure 
1. At the beginning of each mission leg, pilots 
obtained flight instructions via the Message Box, 
including fly-to coordinates and a report question 
pertaining to the next command target (CT). These 
instructions were present for 15 seconds; in case the 
pilot forgot the instructions, pressing a repeat key 
refreshed the flight instructions for an additional 15 
seconds.  



 

Figure 1: the Experimental Display.  

Once pilots arrived at the CT location, they loitered 
around the target, manipulated a simulated camera 
for closer target inspection, and reported back 
relevant information to mission command (e.g., What 
weapons are located on the south side of the 
building?). This challenging CT report demanded 
motor, visual and cognitive resources (Gugerty & 
Brooks, 2001). Along each mission leg, pilots were 
also responsible for detecting and reporting low-
salience targets of opportunity (TOO), a task similar 
to the CT report, except that the TOOs were much 
smaller (1-2 degrees of visual angle) and 
camouflaged. TOOs could occur during simple 
tracking (low workload) or during a pilot response to 
a system failure as described below (high workload). 

Concurrently, pilots were also required to monitor the 
system gauges for possible system failures (SF). This 
was the “automated task”. SFs were designed to fail 
either during simple tracking (low workload) or 
during TOO/CT inspection (high workload). The SFs 
lasted 30 seconds, after which the screen flashed 
bright red and a salient auditory alarm announced 
that the pilot had failed to detect the SF. There were a 
total of 10 SFs, with never more than two SFs 
occurring during any mission leg.  

Automation aids, in the form of auditory auto-alerts 
during SFs, were provided for three of the four 
conditions. The A100 condition (A = automation, 
100% reliable) never failed to alert pilots of SFs. The 
A60f condition (f = false alarm, 60% reliable) failed 
by producing 3 false alarms and 1 miss out of the 10 
SFs. The A60m condition (m = miss) failed by 
failing to notify pilots of a system failure on 3 of the 
10 SFs, while generating a single false alarm. The 
final condition was a baseline manual condition , 
with no automation aid to assist pilot performance. 

Pilots were not aware of the precise level of 
reliability of each automation aid; they were simply 
told that the automation was either “perfectly 
reliable” or “not perfectly reliable” and which way 
the threshold was set (i.e., whether the automation 
would produce false more false alarms or misses).  

Results 

Primary Task performance. The pilots’ primary 
task was to fly the UAV to the command targets and 
make the report. Neither tracking accuracy nor CT 
report were much effected by automation reliability 
level, nor did this level effect pilot’s memory for the 
CT information (as implicitly measured by the use of 
the “repeat” key). Hence pilots optimally protected 
this most important task from resource competition 
imposed by other tasks. 

TOO monitoring. Prior studies had shown that this 
“secondary” task of monitoring the 3D image 
window was sensitive to the demands imposed by 
imperfection of the automation (Dixon & Wickens, 
2004). Table 1a shows performance on the TOO task 
as a function of condition. 

We focused our analysis on TOO responses that only 
occurred under low workload conditions, in which a 
system failure had not occurred (i.e., during the 
period of reliance) and observed the trend in both 
accuracy and speed to be degraded with less reliable 
automation, particularly in the miss-prone condition 
[although this trend was not significant for RT, and 
only marginally so for detection rate (F3, 26 = 2.31, 
p=.10)]. 



Table 1. TOO and system failure monitoring/ 
detection performance.  
 
 Baseline A100 A60F A60M 
(a) TOO 
(low workload) 

Acc (%) 89.00 82.00 75.00 61.00 
RT (S) 6.05 6.50 7.64 10.10 

(b) System Failure 
Low workload 

Acc 100.00 100.00 100.00 100.00 
RT 7.19 2.18 3.02 3.36 

High workload 
Acc 92.00 100.00 42.00 58.00 
RT 11.46 4.82 23.28 14.77 

 
System Failure Detection. Analysis of the system 
failure data revealed no effects of automation 
reliability at low workload, but that response times 
were faster when any type of automation was present, 
F(3,26) = 5.40, p < .01. Importantly, highly 
significant effects of reliability emerged at high 
workload, as revealed by the significant load X 
condition interaction in both Accuracy, F(3,26) = 
7.91, p < .01, and RT, F(3,26) = 9.65, p < .01. Our 
particular interest was in the differential cost between 
miss-prone and false alarm-prone automation, where, 
in the high workload condition, both accuracy 
(t=1.96, p=.04), and RT (t=3.53, p<.01) demonstrated 
a greater cost in the false-alarm prone condition than 
in the miss-prone condition. 

Thus the emerging picture is one in which 
performance on both tasks suffers when automation 
reliability degrades, but SF performance degrades 
more severely, particularly in high workload, and 
with false-alarm prone automation, whereas 
monitoring of the 3D image window for TOOs 
degrades only slightly, and even then only in the 
miss-prone condition. Thus we now ask whether 
visual scanning behavior, a direct manifestation of 
attention allocation and switching, can provide any 
insight as to the role of reliance and compliance in 
mediating the above effects.  

Visual Attention allocation. Table 2 provides a 
measure of the percent dwell time (PDT) that the 
eyes spent within each of the four areas of interest 
(AOI) on the workstation. The data are only reported 
during steady state (low workload) monitoring, not 
during the high workload segments involving 
zooming and panning of the 3D image window to 
identify detected targets. It is during this low 
workload period that pilots rely upon automation to 
alert them if such a system failure occurs. 

Table 2. Percentage Dwell Time that visual fixation 
is spent for the four experimental conditions within 
each area of interest (AOI): 3D image display where 
the TOOs were located, the 2D navigation display, 
the System failure monitoring gauges, and Message 
Box.  
 
 Baseline A100 A60F A60M 
AOI 
3D (TOO) 50.0 58.7 56.4 45.5 
2D 36.7 39.2 32.2 35.1 
SF 13.0 5.7 11.3 18.6 
MB 4.1 6.6 9.0 11.9 
 
A 2 way (AOI X condition) ANOVA carried out on 
the PDT data revealed a significant effect of AOI, 
F(3, 78) = 155.75, p < .001. The 3D image window, 
hosting the most demanding surveillance and 
detection task demanded the most visual attention, 
the 2D nav display, hosting the most important task 
(command target location information) required 
around a third of the pilot’s attention, and the two 
remaining AOIs demanded the least. Importantly, the 
significant AOI X condition interaction, F(9,78) = 
2.41, p = .05, reflected automation reliance. Here we 
see that visual attention to the TOO window 
benefited (relative to baseline 50%) from having 
auditory alerts, whether these were fully reliable 
[100A, t(14) = 2.05, p < .03], or imperfect, but 
having few misses [60F, [t(13) = 1.34, p = .10]. 
However miss-prone automation drew as much, if not 
more visual attention away from the 3D window 
(45.5%) as this window received in the baseline 
condition (50%). While this decrease from the 
baseline was not significant, the difference between 
miss prone and false alarm prone automation was 
significant [t(13) = 1.7, p = .06], indicating the shift 
in attention to concurrent tasks, fostered by a 
designer’s decision to change the alerting threshold.  

Scanning to the 2D image display, hosting 
information for primary task navigation performance 
did not differ significantly between conditions, 
indicating how pilots treated this display which 
hosted primary task information, as of utmost 
priority. However scanning to the SF gauges 
themselves reflected an expected pattern, opposite to 
that of the 3D image window. While perfect 
automation (A100) greatly reduced the visual 
attention required, relative to baseline [t(13) = 3.97, 
p<.01], the miss-prone automation condition required 
far more visual attention to this display, as expected 
given that pilots are, presumably, paying more 
attention to the “raw data” compared to the false 
alarm prone condition [t(13) = 2.05, p=.03], which 
did not differ from baseline. An additional feature is 



that pilots paid even more attention (18%) in the 
miss-prone condition, than in the non-automated 
baseline (13%, t = 1.71, p<.05), a cost that, as we saw 
above, bought them nothing in terms of better SF 
detection performance. There was no difference in 
scanning to the message box across conditions. 

One might not have expected the false alarm rate to 
influence reliance, and indeed it did not appear to 
influence the measures of the residual attention to the 
3D image window where the TOOs appeared. 
However somewhat surprisingly, the higher FA rate 
did compel more attention to the SF display than the 
fully reliable automation condition, and induced no 
less attention there than the baseline condition. Thus 
no attention was “saved” by FA-prone automation 
relative to the baseline, in spite of the fact that nearly 
all failures were alerted. Thus, the general distrust 
induced by false alarms may have led to pilot 
suspicion that such a system requires further 
monitoring. 

Visual Scan Response time. We inferred that 
compliance would be related to the speed with which 
visual attention moved to the SF gauges from 
wherever it was located at the time that the alert 
occurred. These measurements were computed by 
hand from a time-file of scanning across the 4 AOIs. 
The data for these “scan RT’s” are shown in Table 3 
when the alerts occurred during the high workload 
period while the pilot was engaged in image 
scanning: 

Table 3. Scan RTs in seconds. (baseline scans 
represent the delay between the SF and the first look 
at the display. All others represent the delay between 
the auditory alert and the first look). 
 
Baseline A100 A60F A60M 
 
 19s 4.5s 16 s 4.0s 
 
A one way ANOVA on these data revealed a highly 
significant effect of condition, F(3,29) = 5.806, p = 
.004, revealing that looks were as rapid in the miss-
prone condition, as in the perfect automation 
condition (pilots’ perfectly complying with the 
alerts), but were as slow in the false-alarm condition 
as were the unaided glance times. 

Discussion 

The current results extended the previous findings of 
imperfect diagnostic automation in UAVs (Dixon & 
Wickens, in press) to consider the explicit response 
of pilot attention, underlying the two inferred 

constructs of reliance and compliance. These two 
constructs characterize a pilot’s response to 
automation that has a low miss rate and a low false 
alarm rate respectively.  

As in the previous study, we found that an increasing 
miss rate produced a marginal loss in concurrent task 
performance. In the current data we noted that this 
was paralleled (and presumably caused) by a re-
allocation of visual attention away from the 3D 
image window, toward the raw data hosted within the 
SF display (i.e., toward the oscillating bars 
representing system parameter health). 

Also as in the previous study, we found that an 
increasing automation false alert rate, while having 
little effect on concurrent task performance (or 
attention allocation to the concurrent task), yielded a 
pronounced loss in SF detection performance in high 
workload, causing misses of some true alerts, and 
substantial delays in responding to all alerts. 
Interestingly, the increase in mean response time 
from the perfect automation condition to the A60F 
condition was 19 sec (Table 1b), whereas the increase 
in mean scan RT was only 11.5 sec (Table 3). Such a 
difference indicates that, when false alarm rate was 
high, alert-driven looks to the display were followed 
by an additional 7.5 seconds of examining the raw 
data to assure that the alert was a true one, before an 
overt response was given. Overall, this delay, 
reflecting the cost of false-alarm prone automation, is 
of significant duration to be of significant operational 
importance.  

The current data reinforces the notion that imperfect 
automation effects can be well modeled by their 
influence on pilot attention, and that such effects can 
be profound if automation reliability is allowed to 
drop to levels of around 60%, well below the 
threshold of approximately 70% reliability revealed 
to determine when automation is no longer useful 
(Wickens & Dixon, 2005). While such rates may 
seem, at first glance, to be unrealistically low, it 
should be noted that in many aviation circumstances 
diagnostic automation is asked to predict events in a 
probabilistic world, plagued by future uncertainties in 
such variables as human response, or turbulence (Xu, 
Rantanen & Wickens, 2005; Thomas, Wickens & 
Rantanen, 2003; Krois, 1999). Under such 
circumstances, reliability rates not unlike those 
examined here, may be expected. It is therefore 
important that the consequences of these rates to 
pilot/supervisor performance are well understood. 



Acknowledgments 

This research was sponsored by subcontract #ARMY 
MAD 6021.000-01 from Microanalysis and Design, 
as part of the Army Human Engineering Laboratory 
Robotics CTA, contracted to General Dynamics. 
David Dahn was the scientific/technical monitor. Any 
opinions, findings, and conclusions or 
recommendations expressed in this paper are those of 
the authors and do not necessarily reflect the views of 
the Army. The authors also wish to acknowledge the 
support of Ron Carbonari and Jonathan Sivier (in 
developing the UAV simulation). 

References 

Bliss, J. (2003). An investigation of alarm related 
accidents and incidents in aviation. International 
Journal of Aviation Psychology, 13(3), 249-268. 

Dixon, S. R., & Wickens, C. D. (in press). 
Automation reliability in unmanned aerial vehicle 
flight control: Evaluating a model of automation 
dependence in high workload. Human Factors. 

Dixon, S. R., Wickens, C. D., & Chang, D. 
(2005, in press). Mission control of unmanned air 
vehicles: A workload analysis. Human Factors, 47. 

Gugerty, L., & Brooks, J. (2001). Seeing where 
you are heading: Integrating environmental and 
egocentric reference frames in cardinal direction 
judgments. Journal of Experimental Psychology: 
Applied, 7(3), 251-266. 

Krois, P. (1999, July 25). White Paper: Human 
factors assessment of the URET conflict probe false 
alert rate. Washington, DC: Federal Aviation 
Administration. 

Maltz, M., & Shinar, D. (2003). New alternative 
methods of analyzing human behavior in cued target 
acquisition. Human Factors, 45(2), 281-295. 

Meyer, J. (2001). Effects of warning validity and 
proximity on responses to warnings. Human Factors, 
43, 563-572. 

Meyer, J. (2004). Conceptual issues in the study 
of dynamic hazard warnings. Human Factors. 

Parasuraman, R. M., Molloy, R., & Singh, I. L. 
(1993). Performance consequences of automation 
induced “complacency”. International Journal of 
Aviation Psychology, 3, 1-23. 

Pritchett, A. (2001). Reviewing the role of 
cockpit alerting systems. Human Factors & 
Aerospace Safety, 1, 5-38. 

Schutte, P. C., & Trujillo, A. C. (1996). Flight 
crew task management in non-normal situations. 
Proceedings of the 40th Annual Meeting of the Human 
Factors and Ergonomics Society (pp. 244-248). Santa 
Monica, CA: HFES. 

Talleur, D.A., & Wickens, C.D. (2003). The 
effect of pilot visual scanning strategies on traffic 
detection accuracy and aircraft control. Proceedings 
of the 12th International Symposium on Aviation 
Psychology. Dayton, OH: Wright State University. 

Thomas, L.C. Wickens, C.D., & Rantanen, E.M. 
(2003). Imperfect automation in aviation traffic 
alerts: A review of conflict detection algorithms and 
their implications for human factors research. 
Proceedings of the 47th Annual Meeting of the 
Human Factors & Ergonomics Society. Santa 
Monica, CA: HFES. 

Wickens, C. D., & Dixon, S. (2002). Workload 
demands of remotely piloted vehicle supervision and 
control: (I) Single vehicle performance (ARL-02-
10/MAD-02-1). Savoy, IL: University of Illinois, 
Aviation Research Laboratory. 

Wickens, C. D., & Dixon, S. (2005). Is there a 
magic number 7 (to the minus 1)? The benefits of 
imperfect diagnostic automation: A synthesis of the 
literature (AHFD-05-1/MAAD-05-1). Savoy, IL: 
University of Illinois, Aviation Human Factors 
Division. 

Wickens, C. D., Goh, J., Helleberg, J., Horrey, 
W., & Talleur, D. A. (2003). Attentional models of 
multitask pilot performance using advanced display 
technology. Human Factors, 45(3), 360-380. 

Xu, X., Rantanen, E. & Wickens, C. D. (2005). 
Effects of conflict warning system reliability and task 
difficulty on pilots’ conflict detection with cockpit 
display of traffic information. Proceedings of the 
International Symposium on Aviation Psychology. 
Dayton, OH: Wright State University. 

 


