Software Process Modeling and Execution
Within Virtual Environments

John C. Doppke

CU-CS-805-96

University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
JUL 1996 2. REPORT TYPE 00-00-1996 to 00-00-1996
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Softwar e Process Modeling and Execution Within Virtual Environments | o\ n\UMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Department of Computer Science,University of REPORT NUMBER
Colorado,Boulder,C0O,80309

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 41
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS

EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND

DO NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED
IN THE ACKNOWLEDGMENTS SECTION.

Software Process Modeling and Execution
Within Virtual Environments

John C. Doppke
doppke@cs.colorado.edu

CU-CS-805-96 July 1996

&

University of Colorado at Boulder
Technical Report CU-CS-805-96

Department of Computer Science
Campus Box 430
University of Colorado

Boulder, Colorado 80309

* Software Process Modeling and Execution
Within Virtual Environments

John C. Doppke
doppke@cs.colorado.edu

July 1996

Abstract

While multi-user virtual environments have been developed in the past as venues for
entertainment and social interaction, recent research in virtual environments has focused on
their utility in carrying out work in the real world. This recent research has identified the
importance of a mapping between real and virtual that permits the representation of tasks
in the virtual environment. In this paper we investigate the use of virtual environments—
in particular, MUDs (Multi-User Dimensions)—in the domain of software process. In so
doing, we define a mapping, or metaphor, that permits the representation of software process
within a MUD called LambdaM00. The system resulting from this mapping, called PrRoMO,
permits the modeling and execution of software processes.

Keywords: Software process, virtual environments, MUD.

Contents
1 Introduction - 4
2 Software Process 5
2.1 Definitions L 5
2,11 Activity . .. 5
2.1.2 Agents 6
2.1.3 Artifacts 6
2.1.4 Product 6
2.2 Process-centered environments 6
3 MUDs and Virtual Environments 8
3.1 History . . o o o 9
3.1.1 TinyMUD vs. LPMUD e e e 10
3.2 LambdaMOO 10

The material contained herein is based upon work sponsored by the Air Force Material Command, Rome Labo-
ratory, and the Advanced Research Projects Agency under Contract Number F30602-94-C-0253.

3.2.1 Architecture
3.2.2 Object structure
3.2.3 Containment e
3.3 Virtual environment research L
3.3.1 Constructionism
3.3.2 Workinthevirtual

Implementing Software Process Within Virtual Environments
4.1 Motivation: Metaphor

4.2 Metaphors e
4.2.1 Task-centered metaphor
4.2.2 Agent-centered metaphor: Workspaces
4.2.3 Artifact-centered metaphor oL
4.2.4 Product-centered metaphor L
4.2.5 Hybrid metaphors

4.3 Otherissues o,
4.3.1 Interface
4.3.2 Proactivity oL i

Design of PrROMO

5.1 ProMO metaphor.
5.1.1 Artifact: Object
5.1.2 Human agent: Player
5.1.3 Action: Verb
5.1.4 Task: Room

5.2 Interface L,
5.2.1 Processstate
5.2.2 Process training
5.2.3 Process history
5.2.4 User Interface

5.2.5 Toolinterface

6 Implementation of PrRoMO
6.1 Artifacts
6.2 Constraints
6.2.1 Constraint types
6.2.2 Constraint rationales
6.3 Actions e
6.3.1 ProMO toclient e
6.3.2 Client to promo_command
6.3.3 promo_command to specific tools L.

6.3.4 promo_command to PROMO

13
13
14
14
14
15
15
15
16
16
16

17
17
17
18
18
19
20
20
20
21
21
21

7 Example Process 26

7.1 Statement of the process 26
7.2 Modeling the process 26
7.2.1 Process artifacts 27

7.3 Top-level state machine 27
7.3.1 Rooms 27
732 Exits. e e 28

7.4 Implementation task 30
TA1 Rooms . . . v v o e e e e 30
742 Exitso e 32

7.5 Requalification task L 32
8 Conclusion - 33
8.1 Future work e 33
8.1.1 Comparisons with other metaphors 33
8.1.2 Proactivity e e e e 33
8.1.3 Integration of PRoOMO with the environment 33
8.1.4 Constraint language Lo 33
8.1.5 Additional examples L o 34

List of Figures

© 00~ O Uk W

A transcript of a portion of a MediaMOO session. 4

The client/server architecture of a typical MUD. 8
A sample transcript of a session with a MUD. 9
Architecture of the PROMO action invocation system.. 24
SPADE state-machine model of the top-level problem report process. 28
ProMo model of the top-level process. LL.029
SPADE model of the ImplementRIMO task. 31
ProMo model of the Implement task. e 31
SPADE model of the task RequalificationOfUpdates. 32

Chapter 1
Introduction

> connect guest

** Connected ***

The LEGO Closet

It’s dark in here, and there are little crunchy plastic things under your feet! Groping around, you discover
what feels like a doorknob on one wall.

Obvious exits: out to The E&L Garden

> out

The E&L Garden

The E&L Garden is a happy jumble of little and big computers, papers, coffee cups, and stray pieces of
LEGO.

Obvious exits: hallway to E&L Hallway, closet to The LEGO Closet, and sts to STS Centre Lounge
You see a newspaper, a Warhol print, a Sun SPARCstation IPC, Projects Chalkboard, and Research
Directory here.

Amy is here.

> say hi

You say, “h”

Amy says, “Hi Guest! Welcome!”

Figure 1: A transcript of a portion of a MediaMOO session.

Virtual environments have typically been developed in the past primarily for their entertainment
value. Indeed, the earliest MUDs survived precisely because of their popularity as games.

Recently, however, a movement began towards the creation of MUD-like environments whose
main purpose was not gaming but the building of virtual worlds. While the earliest systems
with this purpose were still intended for entertainment value, the promise of an extensible
virtual environment has intrigued researchers and has prompted the question of the viability of
such systems in aiding work and collaboration in the real world.

In this paper, then, we examine the use of virtual environments—in particular, a MUD
called LambdaM00—in support of software process modeling and execution. We have chosen
software process because it provides us with a “bird’s-eye view” of tasks; that is, instead of
attempting to model a specific task within the MOO, we are attempting model the process of
completing tasks within the MOO.

Before investigating the possibility of integrating the two domains of virtual environments
and software process, we shall examine each domain separately.

Chapter 2
Software Process

A software process is typically defined as a set of activities carried out to build, deliver, and”
evolve a software product, from the inception of an. idea to the delivery and retirement of a
system [23]. However, this seemingly simple definition requires a great deal of elucidation in
order to determine what pieces make up a process and how they interact.

Software process has become an area of active research. One major area of research concerns
the representation of processes using a consistent (and often formal) process model. A second
area of research concerns the development of software to support the development of software
based on a given process; such products are referred to as process-centered environments. Such
systems require that they be given some process model in order to support the execution of the
process.

We shall discuss process in further detail, then, by first laying out definitions of the different
entities involved in processes—that is, all the various pieces that are part of any consideration
of process. Based on these definitions, we then list the types of support a process-centered
environment should provide.

2.1 Definitions

2.1.1 Activity

The notion of an activity within a process requires some elucidation. Since the granularity
of the process model is largely an issue left to the discretion of the modeler, different models
for the same process may disagree about what the activities within the process are. Within
this paper, we will use the word activity (and the word task) to denote some sequence of one
or more operations (or actions). Presumably, the definition of a particular activity is guided by
an understanding of the semantics of the process. For example, we may consider “testing” an
activity or task because we have a semantic understanding of how the specific operations within
the testing task (generation of test cases, running the program against them, etc.) fit together.
We may also desire the definition of subtasks within larger tasks, thus forming a hierarchy of
tasks. ‘

Note that the definition of a particular task need not be specific about what actions consti-
tute the task or in what order they occur; the means of defining the task depends greatly on
the process modeling language being used. The definition of a task may, for example, consist of
a specification of the conditions that must hold before the task is considered complete, rather
than a prescriptive set of actions.

2.1.1.1 Sequencing and history

The sequencing of activities is a key factor in how a process is executed. This sequencing
is usually not linear; in fact, the sequencing of future activities usually depends on the state of
the process that results from past activities.

2.1.1.2 Actions

Actions within the process may or may not be understood to be atomic; for the sake of
simplicity, we shall assume that actions are indeed atomic. Actions may be grouped together
into transactions to permit the atomicity of groups of actions. The execution of an action also
requires the availability of an appropriate tool.

2.1.2 Agents

Any discussion of operations and activities within a process raises the issue of agents—the
‘human or machine involved in carrying out an activity. When multiple people collaborate
in carrying out a set of activities, the issue of who performs which activity is an extremely
important question. Many accounts of software process include the notion of a role, a unit of
functional responsibility [15]; in such models, a role is assigned to each activity, and one or more
of the human agents who are authorized to take on this role must do so in order to complete the
activity. Other accounts of process [24] eschew this notion of roles because of its tendency to
conflate issues that should remain separate: threads of control, unification of similar activities,
and access control.

2.1.3 Artifacts

Software process also governs the definition of artifacts within a system. That is, activi-
ties within a process must be carried out on pieces of the system being developed, and these
pieces must be explicitly defined. Often the definition of artifacts entails the definition of a
set of artifact types; such a typing system may be used to guide the definition of the set of
actions that may be taken on an artifact. Since artifacts form parts of the larger project, their
interrelationships must also be defined.

2.1.4 Product

Finally, the process concerns the final product itself. We may also choose to partition the
product into subproducts in much the same way as we partitioned tasks into subtasks. Note
that although a product generally contains a set of artifacts, the product also corresponds to a
larger view of the product; it can be thought of, in essence, as a project or reified process.

2.2 Process-centered environments

In order for a process-centered environment to support the modeling and execution of a
process, it must first address all of the aspects of the process and model them in some convenient
and systematic way. First, it must be able to represent all the entities listed above within the
process. This representation need not be complicated; for example, a system may represent
human agents by simply using user IDs provided by the operating system. Typically, however, a
representation of some process entity consists of an abstraction over the machine and operating
system. For example, artifacts may be reified within the system in such a way as to obscure
the actual files within the file system that contain the artifacts’ data.

Closely coupled with the representation of process entities is the manifestation of connections
among these entities. For instance, a system must not only represent tools and artifacts but
also encapsulate the ability to invoke a tool on a specific artifact.

Finally, an environment must provide an interface through which the user may interact with
the process. While the use of the word “interface” suggests a discussion of user interface (e.g.,
graphical or textual), the term is intended here to designate a whole set of methods through
which the user may query the system about the process. The user may wish to know information
about the current state of the process—for example, what human agent is carrying out which
task with respect to what artifact(s)—and the system must provide a means of answering these
questions. Furthermore, it must provide this means within the framework of the representations
chosen for the entities and their connections.

Chapter 3
MUDs and Virtual Environments

Multi-User Dimensions, or MUDs, were first created as simple text-adventure games to be
played by several users simultaneously. The term MUD generally refers to a system that
permits multiple users to connect to it (via a network, or via the telephone system) and that
presents to these users a virtual world in which each user is represented as a player. A diagram
of this architecture is given in Figure 2. MUDs began as text-only systems, and nearly all

Client ' Client

Player Player

MUD

Player Player

Client Client

Figure 2: The client/server architecture of a typical MUD.

are still essentially text-based; however, many now are beginning to offer more sophisticated
interfaces of various kinds [20, 26, 35, 6].

The world that the MUD provides to the user consists of a set of rooms and, within those
rooms, myriad objects, including other players. The MUD’s world represents space by means of
spatial relationships among objects—for example, connections between rooms—but not specific
distances or directions. This permits the system’s description of the world and the user’s
traversal and manipulation of the world by simply textual means. MUDs thus differ from
other virtual reality systems that wish to present an accurate three-dimensional (or even two-
dimensional) view of the world. An example of interaction with a MUD is given in Figure 3.

Noticeable differences of opinion exist on the “point” of a MUD. While MUDs were begun
as multi-user games in the spirit of text-adventure games (such as ADVENT [32]), the concept
of what constitutes a MUD has grown over time to encompass the general field of virtual
environments. Accordingly, while many MUDs still exist primarily as games—and many MUD

>look

Corridor

The corridor from the west continues to the east here, but the way is blocked by a purple-velvet rope
stretched across the hall. There are doorways leading to the north and south.

You see a sign hanging from the middle of the rope here.

>read sign

This point marks the end of the currently-occupied portion of the house. Guests proceed beyond this
point at their own risk.

— The residents

>go east

You step disdainfully over the velvet rope and enter the dusty darkness of the unused portion of the
house.

Figure 3: A sample transcript of a session with a MUD.

aficionados enjoy them for this reason—other systems have eliminated many of their game-
oriented aspects and have focused instead on the creation and exploration of their virtual
worlds. Systems of this latter kind are often as social in focus as technical; many MUDs are
~devoted to a certain topic (e.g., biology [6] or media research [30]), and such MUDs serve as
sites for virtual collocation and collaboration.

The difference of opinion on MUDs suggests a dual approach to our study of MUDs: first,
in terms of details particular to MUDs, and second, in terms of virtual environments in general.

3.1 History

The original MUD, entitled “Multi-User Dungeon” (and originally abbreviated MUD but
referred to as MUD1 in the literature), was created by Roy Trubshaw at Essex University in
1978 [4, 11]. Trubshaw’s interest in the game was mostly technical: MUD1 was the first MUD to
have been designed as a multi-user game, as opposed to the multi-user variants of Adventure-
style games; and MUD1 had a database design language whose development was one of Trub-
shaw’s chief interests in the system [3]. Richard Bartle became involved in the effort shortly
after it was created and was primary in designing the game-oriented aspects of MUD1.

Despite the programmer’s technical intentions, MUD1 became wildly popular as a game and is
generally recognized as the ancestor of nearly every MUD in existence (a notable exception being
Klietz’s “Scepter of Goth” [11]). MUD1 already contained most of the basic features associated
with MUDs: the ability to manage of multiple players, both local and remote; a database of
rooms, along with the ability to add new rooms during play; an environment centered around
fantasy and role-playing, along with game-related features like scoring systems; and so on. MUD1
thus became quite seminal in this field—in fact, as of 1990, a version of MUD1 was still running
on the online service CompuServe.

The popularity accorded to MUD1 led to the creation of numerous MUDs derivative of MUD1;
Bartle’s 1990 survey [3] lists some 47 types of MUDs. Many of these MUDs were essentially
similar, both in features and in spirit, to MUD1. However, a turning point occurred in 1989 with
the release of two new independent systems, LPMUD and TinyMUD, that both featured greatly
enhanced world-building facilities. In particular, both systems were among the first to make

player-created objects persistent (whereas such player creations were not persistent in previous
systems).

3.1.1 TinyMUD vs. LPMUD

One important difference between these new systems lay in the fact that whereas only the
“wizards” (experienced players) on LPMUD were allowed to build objects and rooms, any player
was entitled to do so within TinyMUD. While this distinction may seem minor, it caused a
severe rift among the otherwise similar systems that persists to this day: namely, the focus of
TinyMUD shifted to the building of the virtual world and to the social interaction within that
world, whereas LPMUD remained more game-like in its focus. Fans of MUDs as games (such as
the creators of game-like MUDs [3]) reviled TinyMUD for its lack of adventure and for its chaos.

TinyMUD, however, thrived as a new kind of MUD and gained popularity among a new
set of people—as with MUD1, much more popularity than its creator, Jim Aspnes, expected.
Furthermore, a whole collection of systems were created based on TinyMUD. One such derivative
system, TinyMUCK, featured some limitations on who could build rooms and objects, and it
provided its own language, TinyMUF (“Multi-User Forth”), as the building language. In May
1990, Stephen White created TinyM0O0 as a derivative of TinyMUCK, where MOO stood for “MUD,
Object-Oriented.” TinyMOO provided a C-like language along with some object-oriented features
such as a class hierarchy and inheritance.

3.2 LambdaMOO

In October 1990 [11], Pavel Curtis of XEROX PARC brought up his new system, LambdaM00,
for the first time. Based on TinyMO0O, LambdaM0O provided a fully object-oriented language
tightly coupled with an object-oriented database. Since the original database—the so-called
“core” database—was fairly small, the original opening was not publicly announced; however,
by February 1991 the database had become sufficiently populated that Curtis opened it to the
public. The term LambdaM00 thus refers both to the MOO system and to its original incarnation,
though generally we shall use it to refer to the system.

3.2.1 Avrchitecture

A LambdaMO00 system consists of two parts: the server program [18] and the database. The
server provides the low-level functionality for the system—in particular, it provides the MOO
code interpreter and database engine. However, much of the functionality actually used by the
LambdaM00 is encapsulated within objects in the database. As a result, a LambdaM00 is seldom
started from scratch; usually, the MOO administrator (“archwizard”) downloads a database of
core objects as the starting point for the MOO. The most common core database is the database
distributed along with the LambdaMOO system itself, called LambdaCore [17]; the objects in this
database, numbering about 100150, comprise some basic MUD-related objects (player, room,
exit, etc.) along with some utility functions (string and list manipulation, coding and network
utilities, etc.). The core database is built by the maintainer of the LambdaM00 at XEROX PARC,
who periodically extracts the core objects from that LambdaM00’s database, builds LambdaCore
so that it contains only those objects, and then offers this database for downloading.

This server/database architecture greatly aids the implementation of systems within LambdalM00;
instead of modifying the server’s code to add new features, the developer may simply add or

10

modify database objects and program them in the MOO’s object-oriented programming lan-
guage. Some server patches and modifications do exist, and recently new “core” databases have
been offered by MOOs besides the LambdaM00 at XEROX PARC (for example, JHM [26]).

3.2.2 Object structure

Objects in LambdaM00 are identified by their object identifiers and are characterized by their
attributes, properties, and verbs (akin to methods in more conventional OO systems) [19]. The
attributes on each object consist of a flag designating the object as a player, the object ID of the
object’s parent, and the object IDs of its children. Fach object has exactly one parent and may
have any number of children; this parent-child relationship forms a hierarchy that represents
a combination of typical OO notions of inheritance and instantiation. Each object has eight
built-in properties that govern naming, location, and permissions; in addition, the set of verbs
and properties on any object may be extended indefinitely. '

3.2.2.1 Common objects

The LambdaM00 object model is sufficiently rich to support the modeling of any types of
objects the programmer may wish. However, it is perhaps more useful to understand what
types of objects are commonly encountered in the course of using the system. These common
objects include:

o Players: Every user of the system is represented by a player.

o Rooms and erits: A room is a space designed to contain players, and an exit is a one-
way connection between rooms. While these are very simple objects, they are extremely
important in forming the basis of the spatial metaphor in LambdaM00. On a technical level,
these rooms and exits in LambdaM00 form a directed graph which the players navigate.
More importantly, however, nearly all action that takes place in a LambdaM0O centers
around some room, so navigating among the rooms is of paramount importance.

e Bots: Since the LambdaM00 server is capable of performing actions independent of players,
various kinds of automated agents—including robots, animals, and the like—are often
found in LambdaM00. Some bots, like the Housekeeper, perform useful actions within the
MOO; others are just for testing out ideas and for entertainment.

e Utility objects: Not usually seen by ordinary LambdaM00 users, utility objects generally
encapsulate some set of functionality available to programmers. For example, the Code
utilities object contains a number of functions that help the system and the programmers
maintain MOO code.

Note that the semantics of these objects resides primarily in convention; often LambdaM00 does
not enforce the meaning of a given object very strictly. For example, one could pick up a room
and carry it to remote parts of the world—all without disrupting the people inside.

3.2.3 Containment

Two built-in properties on every LambdaM00 object are .location and .contents, and
together these properties form a containment hierarchy of all objects within the MOO. That

11

is, each object has another object as its location and zero .or more objects as its contents.
LambdaM00 maintains tehse properties carefully across all objects to ensure that they remain
consistent and acyclic—i.e., an object’s location must contain the object, and no object main
contain itself, either directly or indirectly.

It is interesting to note that LambdaM00 does not necessarily assign one specific meaning to
the .location and .contents propefties. If an object’s .locationis a room, then we may say
that the room contains that object; if .location is a player, we may say the player is holding
the object; if .1location is the Recycler object, then the object is a “dummy” object waiting to
be recreated. The fact that containment, possession, and object status differ from one another
semantically does not cause any difficulty with respect to the use of these properties.

3.3 Virtual environment research

Our interest in MUDs focuses on their place in the more general field of virtual environments.
While some researchers [20] have used the term wvirtual reality to describe systems such as
MUDs, this term typically refers to systems that attempt to represent the real world accurately
(using three dimensions, etc.). In MUDs this is often not the case: the absence of a real-
world-like spatial metaphor, the ability to perform tasks that are impossible in real life (e.g.,
teleporting objects), and the MUD-specific communicative and social forms [12] all point to a
major difference between MUDs and reality. Accordingly, we shall use the more generic and less
loaded term virtual environment to refer to any system that presents a (possibly unrealistic)
world or space for users to visit and inhabit.

3.3.1 Constructionism

Bruckman [8, 9, 10] has contributed a great deal to the field of virtual environment research,
particularly in the use of MOOs for educational purposes. In particular, Bruckman and Resnick
[9] argue that the construction and reconstruction of the virtual world leads to a heightened
effectiveness in collaborative learning and interaction. Based on their experience in running
MediaMOO [30], the paper illustrates the effectiveness of the constructive aspect of the virtual

in encouraging interaction within a professional community.

3.3.2 Work in the virtual

Kaplan’s work [22] on the use of virtual environments to accomplish work in the real world
makes some useful distinctions. He points out the existence of a mapping between the virtual
world and the real—in his terms, between the “sites and means” (spaces and methods) of the
virtual and the “social world” (real-world domain). He defines the term locale to designate
some portion of the social world that corresponds to a given element of the virtual: that is, a
locale is an abstraction of the virtual space in terms of the semantics of the real-world domain.

12

Chapter 4
Implementing Software Process Within
Virtual Environments

Given the potential utility of virtual environments as systems for accomplishing work in the real
world, we examine the potential for using such environments with respect to software process.
It behooves us, then, to explain what virtual environments can offer to software process and
what forms such systems might take. We begin by discussing the motivation for such a system,
continue by listing some different metaphors that might prove useful, and conclude by discussing
some other issues related to the system.

4.1 Motivation: Metaphor

As pointed out above, the chief feature of a virtual environment that makes it attractive
for accomplishing work is its mapping of the real-world domain into the virtual. Any system
that exploits such an environment, then, must define this mapping with respect to the domain
of interest. We refer to this mapping as the metaphor of the environment.

In section 2.2 we laid out some requirements for what a process-centered environment must
provide to its users. Chief among these requirements was the need to represent the entities of
software process and the connections among these entities within the system. In the case of a
virtual environment, then, this representation must be defined in terms of the environment’s
metaphor.

We must be extremely careful, however, in defining this metaphor. If the virtual environ-
ment is to provide a useful abstraction of software process, then it needs to satisfy certain
requirements:

o Correspondence: The environment should represent each software process entity in a
manner that preserves the properties of that entity. For example, the environment’s
metaphor should not undly restrict access to artifacts.

o Collaboration: One of the more appealing aspects of virtual environments is virtual collo-
cation, or the ability to be in the same “space” with another person in the virtual world
despite physical separation from that person in reality. A system that implements software
process ought to use this collocation to its advantage and to allow maximal collaboration
as a result,

o Realism: While a virtual world need not be identical to the real world, it should represent
a limited extension of concepts in the real world. For example, while moving objects
from room to room is generally quite natural within environments, picking up rooms and
moving them through other rooms would tend to disrupt the metaphor (and makes the
users of the environment a little confused).

There may be times when these criteria represent a trade-off; in many cases, for example, one
may achieve greater realism at the cost of diminished correspondence. Furthermore, it may
be acceptable or even preferable for a metaphor not to correspond exactly to software process;
such a metaphor may lead to new insights into process because of its unique perspective.

13

4.2 Metaphors

While the set of potential mappings between the virtual and the real worlds is nearly
limitless, we wish to choose one that respects the features of both domains as much as possible.
We proceed, therefore, by selecting the most prominent features of both domains and attempting
to map them to one another.

Since we have chosen LambdaM00 as our virtual environment of choice, we have also chosen
the concepts of rooms, exits, and players as the most prominent aspects of our environment.
Since mapping human beings onto players is such an obvious mapping, we presume that this
is a part of any metaphor, and so we shall choose different metaphors by mapping the other
process entities onto the room structure. We then attempt to evaluate each metaphor with
respect to the criteria mentioned above.

4.2.1 Task-centered metaphor

A first metaphor to consider is that in which each task (i.e., activity) corresponds to a room
within the MOO. Since we defined a process as a sequence of activities, a mapping of activity
onto room suggests a mapping of activity sequences onto the room layout using exits. Such a
system could represent actions in one of several ways: for example, by reifying tools and using
them to effect the action, or by using the MOOQ’s verbs to invoke actions.

This metaphor corresponds well to more conventional notions of process activities, especially
those that use state machine— or Petri net-based process modeling languages; it also maps well
to a fairly natural human concept of motion as progress. One can imagine, for example, the
MOO artifact objects as the manifestation of tokens in the Petri net and the player being the
force that pushes them through transitions. Furthermore, the metaphor does support some
collaboration, in that people working on the same task are in the same room together; however,
those performing distinct tasks do not enjoy the collocation that the MOO offers.

One respect in which the task-centered metaphor, as stated thus far, fails to correspond .
to the real world is, interestingly enough, in the mapping of person to player. Since people
often work on several different tasks “simultaneously”—that is, they alternate among these
tasks—the MOO using this metaphor needs to provide for the ability for a person to leave one
project and go back to another at the same point where she or he left off. LambdaM00 does not
provide this capability, and in PRoMO we have had to add a facility to support this alternation
of tasks. We shall refer to this problem as one of “multi-threading” to suggest the similarity
between this alternation among tasks and the manner in which operating systems alternate
among threads of control within a concurrent problem. The multi-threading difficulty is not
unique to the task-centered metaphor; in fact, it is shared by nearly all of the other metaphors.

Since the task-centered metaphor forms the basis for PRoMO, we shall examine the metaphor
in greater detail in chapter 5.

4.2.2 Agent-centered metaphor: Workspaces

The phrase “agent-centered metaphor” may seem a bit misleading; given the use of termi-
nology for the other metaphors, this would seem to indicate that agents were being mapped
onto rooms. Instead of performing this seemingly strange mapping, we map the notion of agent
onto a MOO player but map the notion of person onto a MOO room. In this way, the MOO
player performs only one task at a time, and the person’s many “threads” are unified in that

14

all the person’s activities are carried out in her or his room. For this reason we refer to this
metaphor as the workspace metaphor: the person’s room acts as her or his personal workspace.

One clear advantage to this metaphor is its realism: the notion of workspace is quite familiar
to anyone who has ever had an office. The correspondence of this metaphor with notions of
process, however, is unclear; no mapping between the remaining process entities and the MOO
is obvious. TFurthermore, such a metaphor would have to elucidate how collaboration would
occur; while a player could certainly visit someone else’s workspace, the process system ought
to specify more closely how players—and, perhaps more importantly, artifacts—should travel
between workspaces.

4.2.3 Artifact-centered metaphor

In an artifact-centered metaphor, the artifacts are mapped onto rooms and the agents onto
players. While this could be a viable metaphor—for example, exits could be used to represent
relationships among artifacts (rooms)—it immediately seems a bit cumbersome in that the
artifacts would then be stationary. The ability to combine artifacts—at least spatially—would
be lost; and since process often involves manipulating and combining artifacts, this is a point
where the metaphor severely fails to correspond to process. The same criticism applies to a
tool-centered metaphor, since we may easily consider a tool to be an artifact of a process.

Work done by Masinter and Ostrom [29] in integrating Gopher into a MOO seems to bear
out our hypothesis about stationary artifacts. Their first attempt at providing access to Gopher
within a MOO was a “Gopher room” that acted much like a traditional Gopher client. However,
they discovered that the need to travel to the room both for the tool and for the data made
the tool very cumbersome, and as a result they opted for metaphors that provided for greater
portability of tools and data (e.g., a portable “Gopher slate”).

4.2.4 Product-centered metaphor

A product-centered metaphor would map each separate product onto a different room. If
sub-products were defined, then they could be represented as separate rooms connected to
the parent product room either by exits or by containment. As before, each agent would be

_represented as a player and each artifact as an object.

This metaphor would certainly facilitate a great deal of collaboration among people working
on the same project, although those working on corresponding tasks in separate projects would
not be collocated and would not have such collaboration facilitated. While the metaphor
supports a view of software process based on product structure, most process systems model
processes based on activities and not on products; hence the metaphor does not fare well with
respect to correspondence. In addition, this metaphor has the same problem as the task-centered
metaphor in its need to support a person’s ability to switch among threads.

4.2.5 Hybrid metaphors

After spending a great deal of time defining semantics of different mappings, we should note
that in the real world people do not require precise semantics. Rooms in the real world may
be task-related rooms (meeting rooms or classrooms), workspaces (offices), artifact-centered or
product-centered rooms , or tool-centered rooms (workshops); and we are not put off by the
mixing of these distinct types of rooms.

15

However, even though the mere presence of different types of rooms within a MOO is not
problematic, it may be useful for the software process side of a system to enforce specific
semantics. Omne possible avenue of future research concerns the ability to provide different
metaphors for the same process and the same database, in much the same way that DBMSs
provide multiple views on the same data. In such an environment, one could enforce one
metaphor within one set of rooms and a different metaphor within another and thereby create
a hybrid system.

4.3 Other issues

4.3.1 Interface

Once a means of representing a process within a virtual environment is defined, the envi-
ronment must provide the user with an interface to processes—i.e., a means of interacting with
processes. While the interface issue encompasses the narrower issue of user interface—i.e., tex-
tual, graphic, etc.—it also encompasses a whole range of issues regarding how the user/process
interaction should take place within the metaphor of the virtual environment.

Some features the interface should provide include:

o Process state: The environment should be able to represent and answer queries about the
state of a process.

o Process training: The environment should convey information about how to execute a
process to users—particularly to users unfamiliar with the process.

e Process history: The environment should permit the querying of previous actions within
the current process.

o User interface: The user should be able to interact with the environment in a convenient '
way.

e Tool interface: The environment should provide simple access to any tools needed to
execute the process. ‘

4.3.2 Proactivity

A second question raised by the fact of executing processes via software concerns the degree
of automation of such a system. While many actions within a process must be carried out by
a human agent, others may often be carried out in automatic fashion. A system that supports
this degree of automation is considered proactive; various techniques exist for implementing this
automation, including rule bases [25] and events and triggers [1].

Systems that provide little or no proactivity may afford the user a great deal of flexibility
in executing the process, but it is interesting to note that this flexibility may be a liability in
many cases. A user whose actions are not guided by the system may be at a loss as to how to
make progress within the process.

16

Chapter 5
Design of PROMO

In an effort to illustrate the concepts discussed in the previous chapter, we have created PrRomo,
a prototype process-centered environment based on the LambdaM00 system. The metaphor used
in ProMoO is the task-centered metaphor described in section 4.2.1. PrRomMo is based on and
extends the LambdaM00 system [18] and its core database, LambdaCore [17].

In this chapter we shall discuss the design decisions made in creating PRoMO in light of the
discussion of issues in the previous chapter. In doing so, we shall evaluate the specifics of the
metaphor using the criteria set-out in section 4.1. A discussion of the architecture of PRoMO
along with a discussion of more technical issues regarding its implementation are in chapter 6.

5.1 PROMO metaphor

PrROMO represents software process within LambdaM00 using the task-centered metaphor
described in section 4.2.1. Our description of PROMO must begin with a more in-depth ex-
amination of the PRoMO metaphor. We state this metaphor as a mapping of process entity
to PROMO representation, and in the process of detailing this mapping, we also indicate how
these representations interact. As we shall see, the role of process modeler is, as in all process-
centered environments, a key role; the decisions made by this person (or this set of people)
regarding the granularity of modeling have a profound effect on the resulting PRoMO system.
Our discussion below therefore highlights the likely effects of differing modeling choices.

5.1.1 Artifact: Object

Each artifact within the process is represented by a single object within PrRoMo. That is,
while the data of the artifact is assumed to exist outside the MOO (presumably in the file
system), every artifact to be manipulated within the process is represented by a corresponding
object within PRoMmo. The PROMO object contains a URL [5] that acts as a pointer to the
actual artifact; beyond that, the object may contain as much or as little information about the
actual artifact as is desired by the modeler (i.e., as much as is needed for the process).

The artifact-to-object mapping thus provides us immediately with an instance of the mod-
eling granularity issue. On one hand, if the PROMO object contains a great deal of information
about the actual artifact, keeping the artifact and its corresponding object in synch becomes
a difficult task. Any tool that modifies the artifact must propagate all information about the
changes to the artifact back into PRoMo. (Section 6.3 goes into greater detail about the mech-
anism by which this propagation is accomplished.) On the other hand, if an object contains
too little information about the artifact, the state of the artifact—and thus the state of the
process—becomes difficult or impossible to track within PrRomo.

PrROMO can, of course, represent information about an artifact that may not be contained
within the artifact’s file(s). In particular, properties on the PRoMO object can represent inter-
object relationships and artifact state. For example, a source module may contain a “pointer”
to (i.e., the object ID of) its related object module, and an object module may contain pointers
to the executables that use it. In addition, an object may contain a property indicating its
completion status as the result of a manager’s approval.

17

The “type” of an artifact is generally represented within PRoMO by exploiting the parent-
child relationships inherent in the LambdaM00 database. Every object in LambdaM00 has exactly
one parent and zero or more children; this parent-child relationship represents a combination
of the ideas of inheritance and instantiation. For example, the modeler may create a generic
source module object, create a generic C source module object as its child, and then create
specific C source module objects as children of the generic C source module. Indeed, one of the
core PROMO objects is a generic artifact object called $artifact, and all artifact objects are
expected to be descendants (i.e., children, or children of children, etc.) of $artifact.

While this mapping of artifact to object is a fairly natural one, it does pose some prob-
lems with respect to our criteria for evaluating a metaphor. The single-containment property
mentioned in section 3.2.3 raises an interesting questions about artifacts: how does the MOO
represent the concept of having access to an artifact? The requirement that a player pick up an
artifact’s ob ject before using the artifact does not correspond to the typical process assumption
that many people may read an artifact simultaneously. On the other hand, a multiple-access
paradigm, while preserving correspondence with typical process concepts, would be difficult to
model within the MOO without causing surprising actions-at-a-distance and thereby violating
our realism criterion. Essentially, this problem introduces the concept of pointers not only into
ProMO’s implementation but also into the user’s view of PROMO, whereas the real world does
not contain pointers in this sense.

While this problem is as yet unsolved in PROMO, one possible solution would entail in-
troducing a concept of “virtual presence”—i.e., a player would be able to have (and pick up,
hand to other players, etc.) an ethereal copy of an object without having the actual object.
Such a solution would preserve the feel of the MOO as a conceivable (if slightly implausible)
extension of the real world, satisfy the technical constraints of implementing software process,
and still maintain the consistency of the metaphor. (A possible implementation for this concept
is suggested by Smith’s solution to an unrelated problem in [34].)

5.1.2 Human agent: Player

As suggested by the description of artifacts above, the human agents in the process are
represented as players in PROMO. As mentioned in section 4.2.1, this poses a problem in that
it fails to account for the multiple “threads” of activity that a person carries out., While some
systems use the notion of roles to solve this issue, we eschew this solution, since the notion of
role implied by such an approach conflates too many issues that should be separated [24].

Instead, we identify each of the person’s threads as a persona: that is, a persona corresponds
to a person within a certain process at a certain stage (i.e., working on a certain task) with
respect to one or more artifacts. In this way, we may continue to identify a person with a
LambdaM00 player; if the person wishes to change threads, she or he may simply switch personae.
The fact that we define a persona as being at a certain stage with respect to artifacts is crucial
in that it permits us to define the process in terms of the artifacts’ state and not in terms of
the human agents. In moving away from the notion of roles, we have effectively freed the users
to act independently in various contexts (i.e., in various processes) without constraint.

5.1.8 Action: Verb

A given action (or operation) within a process is modeled within PRoMO as a verb. For
example, in order for a player to edit an artifact, she or he issues the command

18

edit <object-name>

where <object-name> is the name-of the object corresponding to that artifact.

The similarity between the semantics of process actions and those of MOO verb calls suggests
this mapping. A process action is intended to be a single, atomic operation on the artifact,
and a request for the action should result in the immediate invocation of the action; however,
the action may take an arbitrarily long time to complete. Similarly, within the MOO, a single
verb call is also intended to take place immediately, but its long-term effects may not be felt
until some time later (particularly if the verb involves interaction with another player or with
a robot).

Since the player actually corresponds to a networked user who may be very distant from the
actual MOO, the invocation of an action must be carefully coordinated with the user’s client.
We have chosen an architecture for action invocation that relies on a “smart client” on the
user’s side. When an action is invoked, the MOO issues to the client a command to invoke the
action along with a set of information about the action. In this way, we push the decision about
which tool to execute onto the client, ensuring that the appropriate platform-specific tool will
be invoked for the action. '

An alternate metaphor for action invocation would entail the reification of the tool itself.
That is, instead of issuing a verb to perform the action, the player could “hit” the artifact
(or otherwise operate on it) with the tool, and this would invoke the specified action. While
we have not implemented this metaphor within PrRoMo, it is conceivable that this would be
desirable (as in [29]). In particular, tool reification could provide the ability to subclass tools:
the process modeler could design, for example, a generic editor tool, and then subclass that
with platform- and artifact-type—specific editors.

5.1.4 Task: Room

The centerpiece of the metaphor used in PROMO is the identification of tasks with rooms.
Since we defined a task as a semantically meaningful set of actions, we must specify how to
define tasks.- Within PRoMO, a task is defined by a constraint, a set of conditions that must
hold before the task is to be considered complete. The transitions between tasks are represented
within the metaphor as exits; each exit has associated with it a constraint that, if violated with
respect to some object, will not allow the passage of that object through the exit.

The constraint language developed for use with PRoMO is quite generic and allows for many
different types of constraints to be written. However, constraints are intended to apply not to
the players but to the objects being moved through the process. The freedom of movement
that results from this use of constraints is important so that players may switch among multiple
personae and walk through rooms to query the state of a process.

5.1.4.1 Sub-buildings

In support of the concept of sub-tasks, PRoMO provides the ability to create a “sub-
building”—that is, a building within a room. The sub-building may have as many rooms
within it as are desired, and it may have as many doors as are desired. The sub-building
thus enables passage through a sequence of rooms, with their own exits and constraints, while
staying within a larger room.

19

The sub-building model provides two main advantages. First, it permits the representation
of sub-tasks while maintaining the containment of objects. That is, if an object is contained
within a room corresponding to a sub-task, it is indirectly contained within the room corre-
sponding to the parent task. Hence we may ask questions about a running process or about
the state of an artifact simply by phrasing the question as one of containment: for example,
we could say that an artifact was in the Update subtask of the enclosing Implement task. Sec-
ond, sub-buildings are a means of implementing transactions: for example, the first room in a
sub-building could have an exit constraint that a transaction have been begun, and the sub-
building’s exit door could require the successful termination of that transaction. The main
disadvantage of the sub-building model is that it does not correspond to a real phenomenon;
enclosed spaces within larger rooms are not commonly found in reality.

5.2 Interface

While the semantics of the process-to-MOO mapping are important, the interface by which
the user interacts with PrRomo is equally important. Below we discuss how PrRoMO addresses
the interface issues previously mentioned. Admittedly, many interface issues within PrRoMoO
remain in the realm of future work.

5.2.1 Process state

Because of the task-centered model that PROMO uses, the state of a given artifact may always
be determined by simply examining the artifact object’s location. Although this examination
may sometimes require traversing the containment tree in the case of sub-tasks, it provides a
convenient way of tracking artifact state.

Since no object exists within PRoMo that corresponds to an entire process, however, query-
ing the state of an entire process is not easily supported within PRoMo. Such a facility Would be
fairly straightforward to add by simply exploiting the location of artifacts and the relationships
between artifacts. Currently, a player may walk through the set of rooms corresponding to the
process and examine the objects found therein to determine process state.

5.2.2 Process training

Trying to understand an unfamiliar process can be a cold and forbidding task, particularly
in a non-proactive system (like PRoMO) wherein finding out what actions are not permitted
is easier than finding out what actions are possible. Since MOOs are text-based and typically
foster a great facility with textual description [31], PRoMO places the onus of describing the
process on the shoulders of the process modeler.

However, the structure of rooms and exits in PRoMO does provide a convenient structure on
‘which to place process documentation. Since each room corresponds to a task that presumably
has some meaning, the .description property for the room may be set to a string describing
that meaning. Furthermore, rooms within PROMO are designed so that looking at a room lists
all its exits, which may also have documentation strings attached to them. Hence, simply by
looking at a room, the player may find out what the room is intended for as well as what
conditions are necessary to exit in any of several ways.

A further facility for documenting processes is provided in the constramt creation facility.
A string may be attached to any constraint that the user will see should the constraint fail.

20

Hence the constraints may be tailored in such a way that they tell the user why the constraint
failed—in terms of the real-world domain—and perhaps indicate some action or set of actions
that are needed to cause the successful evaluation of the constraint.

5.2.3 Process history

The facility that PrRoMO provides for querying process history, like that for querying process
state, resides with each artifact. That is, one can list what actions have been taken on a given
artifact. While this may not provide enough information to the user about the history of the
collective process, the problem of providing information about process history is one found in
most process systems [27].

5.2.4 User Interface

One common criticism of MUDs is their basis in textual communication. While this textual
foundation often leads to forms of communication that are of interest to sociologists and lin-
guists [13, 14, 12, 33, 16], the interface is considered by some to be adequate at best in terms
of usability [21, 27].

One of the main moves in MOO interface work has involved a push for WWW interfaces;
several MOOs [6, 35, 26] now offer such interfaces. However, it is not clear that these interfaces
typically offer major improvements over the older interfaces; since the data in MOOs are still
largely textual, the WWW interface provides hypertext links but few graphics. Furthermore,
WWW technology does not permit these interfaces to be as interactive as their textual coun-
terparts, and this has a severe negative impact on the collaborative character of MUDs. An
interface recently added to BioMOO [6] may provide an exception to this rule; the interface
combines a traditional textual connection with a WWW interface.

ProMoO currently uses the traditional textual interface, although the addition of a WWW
interface (in addition to, not instead of, the usual interface) is another possible future direction.

5.2.5 Tool interface

PromO’s interaction with tools occurs solely through the action invocation system described
in sections 5.1.3 and 6.3. While this is a convenient model for tool invocation, it presumes that
all the desired tools will be invoked from within PrRoMo. However, this need not be the case;
for example, an artifact may be edited or executed from outside the system, and PRoMO cannot
currently track such outside actions.

21

Chapter 6
Implementation of PROMO

This chapter discusses the implementation of the important features of PrRoMo. While this
discussion is by no means intended to be a complete account of the implementation, it touches
on the important issues arising from the design of PRoMO discussed in the previous chapter.

6.1 Artifacts

As previously mentioned, each process artifact is represented within PRoMoO by an object
that has $artifact as an ancestor. However, this PROMO object is not intended to store the
artifact’s data; it merely acts as the manifestation of the artifact within PrRoMo. Instead, the
artifact’s data is stored in a file specifiable by a URL. Storing and referring to artifacts in
this way serves two purposes. First, it frees PRoMO and the tools it uses from the need to
represent the artifact’s data within LambdaM00 and to transfer the artifact’s data in and out of
the database. Since LambdalM00 is not designed to handle 8-bit ASCII, both the representation
and the transfer of complex data would be extremely difficult. By keeping the data in a URL,
we rely on mechanisms designed to handle such data to perform any necessary transfers.

Second, it permits the system administrator to place artifacts at strategic points of the
network in a manner that makes sense given the network configuration; since PROMO may
be used in a wide-area context, the local availability of artifacts may be an important issue.
Admittedly, PRoMO does not solve the problem of ensuring continued access to artifacts over
a possibly unreliable network; it simply provides a mechanism for artifacts to be strategically
placed over a network by the system designer.

Currently PrRoMO supports only URLs corresponding to local files. However, the use of
URLs provides a mechanism for future support for remote artifact retrieval and manipulation.

6.2 Constraints

The exit constraints used in PROMO represent a fairly powerful and complete method of
guaranteeing task completion on exits. FEach exit has a property, .constraint, that stores
the constraint that must be satisfied in order for that exit to permit an object through it; the
constraint is evaluated with respect to every object that attempts to pass through the exit and
is recursively evaluated on all the contents of those objects. A false value of the constraint on
any contained object will cause the main object’s attempt through the exit to fail.

Constraints are typed expressions that are built by calling functions to create an internal
representation. Since certain types of constraints take other constraints as arguments, the
constraint can built in bottom-up fashion by starting with atoms (string, list, and integer
literals), supplying these atoms to functions that build constraints, supplying the results of
these functions to other functions, and so on. Future work on this aspect of PROMO concerns
the design of a constraint language along with a parser for this language so that this arcane
method of building constraints may be avoided.

22

6.2.1 Constraint types

The types of constraints available include:

o Relational operators: <, <, >, >, =, #

o Arithmetic operators: +, —, %, /; unary negation operator

¢ Boolean operators: and, or, xor, implies

o Property retrieval: Obtains the value of a property on an object.

o Let expressions: Permit binding of variables and subsequent reference to these variables.
o Type checking: isa-style ancestry checking.

o Quantifiers: forall, exists

6.2.2 Constraiht rationales

As previously mentioned, every constraint may have attached to it a string that the user
will see should the constraint fail. Called the rationale, this string makes the failure of a
transition constraints much easier for a user to understand, and liberal use of rationales is
highly recommended to the process modeler.

6.3 Actions

Our decision about locating artifacts’ data outside of PRoMO was largely motivated by
considerations of the potential wide-area use of PRoMO and the difficulty of representing com-
plex data within LambdaM00. Similarly, we assume that the tools necessary to carry out actions
within PRoMo will reside outside the system; furthermore, information about available and
appropriate tools for a given task may depend on the user’s platform, which may not be known
to ProMoO. Hence we must address the issue of how to invoke actions and obtain results from
them.

A diagram of the action invocation system in PRoMO is shown in Figure 4 and is described
in more detail below.

6.3.1 PRoOMO to client

While invoking an action within the MOO is a fairly simple task—as easy as issuing any
verb—it begins a complex set of steps that actually cause the action to be carried out.

A number of clients exist for MUDs that provide facilities for “triggering” actions based
on strings sent by the MUD; by presuming that the client is “smart” in this way, PROMO can
simply print out a block of information about the desired action to the terminal. Currently,
the only client supported by PromMo is TinyFugue [28].

Among the information sent to the client are the following:

e a unique ID identifying this action;

e the object ID and name of the object on which the action is being carried out;

23

Promo

results
(via Notifier)

TinyFugue

results

TinyFugue

action info

[promo_c ommand]

"~ tool

Figure 4: Architecture of the PRoMO action invocation system.

o the object ID and name of the player carrying out the action;
¢ the object ID and name of the room in which the action was invoked;
e the MIME type! of the artifact; and

o the name of the action as a string (e.g., edit).

PROMO also supports arbitrary extensions to this block of information; a verb exists in the
generic artifact object that can be overridden by artifact subtypes that allows the addition of
arbitrary tag-value pairs to this block.

6.3.2 Client to promo_command

Once the client has recognized that PrRoMO is sending it a block of information for an action,
it captures this entire block and gives it to promo_command, which is responsible for invoking
the tool. promo_command uses the action’s name and the artifact’s MIME type, along with a
mapping file, in order to determine which tool should be invoked.

6.3.3 promo_command to specific tools

promo_command is written in Tcl and relies on the ability of the system administrator to
encapsulate every tool within Tcl. promo_command first parses the block of information received

*We use a MIME-like notation—type and subtype—to inform the client of the type of an artifact’s type. The
types used, however, are not to be confused with officially registered MIME types [7].

24

from the client; it then consults its mapping file to find the Tcl procedure that encapsulates
the desired tool. Creating these encapsulations is fairly straightforward; we have currently
encapsulated the editors vi and emacs, the C compiler gce, and a script used to run programs
against input files.

The encapsulation should provide information to promo_command to return to the MOO. In
particular, it should return:

o A list of eventsthat the action generated. The events are strings that should be understood
by the artifacts within the MOO; making use of these events will be described below.

- o A comment describing the result of the action (for human consumption).

¢ Optionally, a set of property-value pairs. The properties of the object on which the action
was invoked will be assigned the corresponding values from this list.

6.3.4 promo_command to PROMO

promo_command then sends the results back to PRoMo. In fact, the mechanism for commu-
nicating these results is the same client used by the user, TinyFugue; promo_command accom-
plishes this communication by defining triggers and then running TinyFugue in batch mode. In
particular, promo_command uses the client to log into the MOO as a pseudo-player called the No-
tifier, issue special commands available only to this pseudo-player that update the appropriate
artifacts, and then disconnect.

The information reported back to PRoMO is then given to the artifacts. Each event is
matched against the a list of property specifications belonging to the artifact; each specification
permits the automatic setting of properties to certain values should an event occur. For example,
an event modify could set the checked property to a false value, since the previous checking
of the artifact may have been invalidated by the modifications made. Also, if an artifact has a
verb :<event>_trigger for some event type <event>, then this verb is called when the event
is found. For example, a verb :modify trigger on a source module could be used to notify
the corresponding object module that it is out of date.

25

Chapter 7
Example Process

As an illustration of the use of PRoOMO, we have taken a problem report process from the
literature [2] and implemented it using PRoMO. As the paper from which the process was
taken presented only selected illustrative portions of the process, so we shall present those
portions of the process that correspond to those found in the paper.

7.1 Statement of the process

The process in question concerns the generation and ﬁandling of problem reports (PR), also
called anomaly reports, for a piece of software. The steps in this process are as follows:

¢ The configuration management group (SGMR), which is in charge of the problem report,
checks the report for correctness of form (all the proper fields must be filled in, etc.).

e The SGMR then summons the Change Control Board (CCB), which reviews the problem
report to determine whether it is a valid report. If the CCB decides that it is not valid, the
report is rejected. If it is found to be valid, the CCB accepts it and generates modification
requests (MRs, called RIMOs in the paper)—i.e., requests for changes to made to the
product in order to fix the problem. The CCB may also suspend its investigation of an
problem report.

o Development and Qualification groups implement the requested modifications, and they
also perform the tests indicated by the CCB and issue a test launch report (TLR). The
TLR and changed artifacts are placed under configuration control.

¢ A review team performs V&V activities both on the artifacts modified and on the TLR;
they issue a verification & validation report (VVR) based on their findings.

o The SGMR receives the VVR and determines the new status of the modification requests
and problem report based on the report.

After describing the above process, the paper gives a model of parts of this process using the
process modeling language SLANG. A SLANG specification consists of finite state machines and
ER nets, which are extensions to Petri nets in which the tokens represent objects in an object-
oriented database. ER nets also permit the abstraction of nets by providing an “interface” to
a given set of places and transitions. .

7.2 Modeling the process

The three main portions of the process modeled in the Bandinelli paper are: the top-level
items in the process, modeled as a finite state machine; the activity entitled ImplementRIMO,
modeled as an ER net; and the activity entitled RequalificationOfUpdates, also modeled as an
ER net. Accordingly, we shall illustrate PRoMO by showing our implementation of these three
process fragments.

26

7.2.1 Process artifacts

Although -the PROMO metaphor determines much of the way in which we map this process
into the system, we must decide what types of artifacts we shall create; furthermore, we have
to determine the relationships among these artifact types. The artifact types we have used are:

e Problem report.
e Modification request: Many-to-one relationship with Problem report

o Ezecutable: One-to-many relationship with Problem report. The executable essentially
represents the product being modified, and it is possible that there should be a separate
object, Product, that represents the product. However, for the sake of simplicity we have
assumed that a product consists of a single executable, and so the identification of product
with executable is not a difficulty.

o Source module: Many-to-many relationship with Modification request.

. Objeét module: One-to-one relationship with Source module; many-to-many relationship
with Fzecutable.

o Test set: One-to-one relationship with Modification request

o Text file.

o Input file: Child of Text file; many-to-many relationship with Modification request.
e Qutput file: Child of Text file; many-to-many relationship with Modification request.
o Test report: One-to-one relationship with Test set.

While additional artifact types may exist beyond these—for example, language-specific
source and object modules or editor-specific documents—the above constitue the basic types
and their relationships. ‘

7.3 Top-level state machine

The state machine used in modeling this process in SPADE is shown in Figure 5.

7.3.1 Rooms

Since the room structure in PROMO closely resembles a state machine, we begin our modeling
of this top-level process by attempting to re-cast the state machine in terms of the ProMo
metaphor—i.e., in terms of tasks. In doing so, we must try to determine what task is actually
being performed while an problem report is in a given state. If we can identify such a task,
then we may consider the state and the task to be in correspondence; if not, or if the state
corresponds to a task already modeled, then we must consider deleting the state from the new
model.

Figure 6 shows the set of rooms designed to correspond to the top-level state machine. The
two models do correspond, particularly in the initial stages when the anomaly report is the
main artifact being manipulated. For example, the Originated state corresponds to the Review

27

Anomaly Report delivered
to Configuration Management

Originated

Notification to Project

and Quality
@v

% Suspended

FormIncorrect

Form re-edited

Unique Rimo,
solved First RIMO
solv
Partially { Cancelled

Solved

All RIMOs
solved

More RIMOs
solved

Figure 5: SPADE state-machine model of the top-level problem report process.

PR room, since the task performed on a PR in the Originated state is the task of reviewing the
PR.

However, the state machine was intended to track the state of the anomaly report. Many
states of the anomaly report correspond to no task or to several tasks, and these states mark
points where the two models differ. For example, the Pending state in the state machine
corresponds to a great deal of activity with respect to the modification requests and ancillary
reports, and so this state had to be expanded into two separate tasks, each of which has subtasks.
The Suspended state did not correspond to any task, and so it was removed; the intention is
that an incomplete problem report may just be left within the room corresponding to the task
not yet complete,

The Partially solved state is an interesting case; according to the state machine, it is the
state entered when at least one modification request has been solved. However, the same task—
implementing and testing modification requests—are carried out in both Pending and Partially
solved, suggesting that the two states should be unified into a single task. Furthermore, since
the edges incident to Partially solved are, with only one exception, identical to those incident to
Pending, the unification of these two states was trivial. The room resulting from this unification
is the Implement room. : '

7.3.2 Exits

Note that while the edges in I'igure 6 are directed, this does not mean that each edge
corresponds to a single one-way exit within PRoMo. Since we wish the players to be able to
walk freely among the rooms corresponding to the process, we create for each edge two exits—

28

Originate

C—
1

Implement

' Solved

Figure 6: ProMO model of the top-level process.

29

one forward and one backward—and simply constrain the backward edge if necessary so that
no objects may pass through it. ‘
The constraints on each edge are as follows:

o Originate — Review PR: The PR must have been checked for correctness of form; a suc-
cessful checking sets the property .checked on the problem report to a true value, so the
constraint simply checks this value.

o Review PR — Reject: No constraint on entering the Reject room, but no problem report
may return to the Review PR room once it has been rejected.

o Review PR — Implement: The PR must have at least one MR associated with it. That
is, the PR’s .modreq property must be a list containing at least one descendant of the
generic MR, object.

o Implement — Cancel and V&V — Cancel: As with Reject, no constraints are placed on
entering Cancel, but no problem report may return via the return exit.

o Implement — Redeﬁne: No MRs may pass through this exit, but a PR may pass through
in order to allow additional MRs to be attached to it. The edge returning to Implement
is unconstrained.

o Implement— VEV: Any MR passing through the exit must be complete (i.e., its . complete
property must have a true value). Generally, completion status is set by a combination
of error-free compilation of the product and adequate testing results. Furthermore, any
MR with a test object attached must also have a TLR attached to the test object.

o V&V — Solved: Any PR passing through the exit must have only completed and verified
MRs and must have been approved (by the SGMR).

7.4 Implementation task

The ImplementRIMO task consists of an ER net that is used to implement a modification
request as shown in Figure 7.

7.4.1 Rooms

Since the model of the task within SPADE is given as an encapsulated ER net, we model
this in PROMO by means of a sub-building as shown in Figure 8.

The interaction with the configuration management represented in the SPADE model can
easily be represented as simple actions within PRoMO, so we do not need to represent these as
tasks. We are left, then, with a simple transition between two tasks. One notable difference
between the two models is that while the SPADE model permits the player to bypass the
Requalification Of Updates task if no tests need to be performed, the PRoMO model has only one
branch to the process flow and so requires all objects to pass through Requalify.

30

RIMOs UpdatedItem
lemsQ Q' O~ riMONotOK

StartUpdate

UpdatcAg_ain Project

_____ - — T N Function
|
UpdateCompleted |
CMResults() |
| I I
StartRequalification |

|

CMRequests .L‘ |
I RequalificationDo I
| I
| TLROutput) |
ImplementRIMO |

Transfeﬂtem&TLRg Transferltermn
TLR UpdatedItern

Figure 7: SPADE model of the ImplementRIMO task.

Implement

— Update

Requalify e

- J

Figure 8: PrRoMO model of the Implement task.

31

7.4.2 Exits

The only exit in the PRoMO model of the Implement task lies between Update and Requalify.
The constraint on this exit requires simply that the product associated with the MR be up-
to-date with respect to its sources. While this constraint hardly guarantees that the MR has
actually been implemented, there is in fact no way of ensuring this; this simply ensures that
the product has been successfully built, so that at least the product is in a stable state.

7.5 Requalification task

While the SPADE model of the RequalificationOfUpdates is fairly intricate as shown in
Figure 9, most of it centers around retrieving the tests and items. In fact, the only real action

TerminatedRIMO

Item Q

StartRequalification

{ \
I |
TtemTo
I Requalif]
‘ RetrieveTests i I
Retrieveltems

CMRequests] ¥ * ¢ ForTests |
¥ |

CMResults | TestReqID
O= " !
! GetTests L= !
I I
|

l Tests
| |
I |
I |
| |
| I
] |
| \ # |
\l ¥ |
I RequalificationOfUpdates I
N e e e o - — SO Y 7

RequalificationDone

{O TLROutput

Figure 9: SPADE model of the task RequalificationOf Updates.

or subtask within RequalificationOfUpdates is the actual running of tests. In PRomo, therefore,
the Requalify task consists of only one room.

32

Chapter 8
Conclusion

Promo demonstrates the utility of the metaphors provided by virtual environments in modeling
and executing software processes. I'urthermore, we believe that the use of metaphors in permits
a type of collaboration and synergy not seen in many process-centered environments.

8.1 Future work

8.1.1 Comparisons with other metaphors

Although we chose the task-centered metaphor in designing PRoMO, many of the other
metaphors show promise in their ability to model software process. One avenue of future work,
then, concerns the elucidation of these other metaphors and the comparison of those metaphors
with the task-centered metaphor.

Such a comparison would also lead to another avenue of research: the attempt to unify
these metaphors within one system. Just as a DBMS allows users to view data in any of several
different ways, a virtual environment might permit different portions of the environment to
represent software process using distinct metaphors. Ideally, the ability to combine metaphors
would mitigate the liabilities that any one metaphor demonstrates.

8.1.2 Proactivity

PrOMO is currently a “passive” system; the player is expected to carry out all necessary
actions, and only when attempting to complete a task (exit a room) does the player receive
feedback on her or his progress through the process. Accordingly, one potential avenue of
research would investigate the possibility of incorporating a greater degree of automation within
the process. Other systems [25, 1] do provide this facility, and so using their approaches—or
perhaps integrating PROMO at an architectural level with one of these systems—would be an
interesting experiment in proactivity within a metaphor.

8.1.3 Integration of PROMO with the environment

As described in chapter 6, PROMO does communicate with the environment outside it in
order to invoke actions. However, the communication is limited in various ways. First, the
method in which PROMO communicates is fairly primitive; it does not permit the passing of
complex data into or out of the MOO. Second, and perhaps more importantly, PROMO assumes
that it has complete control over the artifacts and that no additional events will take place that
were not begun within Promo.

Both of these omissions make the modeling and execution of processes more difficult within
the system, and so PROMO ought to provide better facilities for tool integration and communi-
cation. '

8.1.4 Constraint language

As mentioned in the discussion of constraints in section 6.2, the manner in which the process
modeler is expected to describe exit constraints is rather arcane. Accordingly, the creation of a

33

constraint language to describe these constraints, rather than forcing the modeler to call several
functions to create the constraints, would be quite useful.

8.1.5 Additional examples

We have claimed that PROMO is a useful tool for modeling and executing any software pro-
cess. However, our current work has led to the modeling of only one actual process. Farther use
of PromoO for additional processes is needed to justify claims of its general utility. Alternately,
it is possible that ProMO will be found to be more useful for certain types of processes than
for others, and this too is an important result to discover.

34

REFERENCES

[1] S. Bandinelli, M. Braga, A. Fuggetta, and L. Lavazza. The architecture of the SPADE-1
process-centered SEE. In Proc. 8rd European Workshop on Software Process Technology,
Grenoble, France, February 1994.

[2] S. Bandinelli et al. Modeling and Improving an Industrial Software Process. IEEE Trans-
actions on Software Engineering, 21(5):440-454, 1995.

[3] Dr. Richard Bartle. Interactive multi-user computer games. Research report commissioned
by British Telecom plc., December 1990. ftp://parcftp.xerox.com/pub/M00/papers/
mudreport.ps.Z. ‘

[4] Richard Bartle. Early MUD history. Article posted to USENET group rec.games.mud,
15 November 1990. http://www.utopia.com/talent/lpb/muddex/bartle.txt.

[5] T. Berners-Lee, L. Masinter, and M. McCahill. Uniform resource locators (URL). Pro-
posed as Network Working Group Request for Comments 1738, December 1994. http://
www.w3.org/pub/WWW/Addressing/rfc1738.txt.

[6] BioMOO. biocinfo.weizmann.ac.il, port 8888. The biologists’ virtual meeting place.
http://bieinfo.weizmann.ac.il/BioM0Q.

[7] N. Borenstein and N. Freed. MIME (Multipurpose Internet Mail Extensions): Mechanisms
for specifying and describing the format of internet message bodies. Network Working
Group Request for Comments 1341, June 1992.

[8] Amy Bruckman. Programming for fun: MUDs as a context for collaborative learning. In
Proceedings of the National Educational Computing Conference, Boston, MA, June 1994.
National Education Computing Association.

9] Amy Bruckman and Mitchel Resnick. The MediaMOO project: Constructionism and
professional community. Convergence, 1(1), Spring 1995.

[10] Amy Susan Bruckman. Moose crossing: Creating a learning culture. PhD
thesis proposal, December 1994. ftp://ftp.media.mit.edu/pub/asb/papers/
moose-crossing-proposal.ps.

[11] Lauren P. Burka. ~The MUDline. Published on the WWW, 1995. http://
WWwW.utopia.com/talent/lpb/muddex/mudline.html.

[12] Eva-Lise Carlstrom. The communicative implications of a text-only virtual environ-
ment, or, Welcome to LambdaMOQO! Published on the WWW, 15 May 1992. ftp://
parcftp.xerox.com/pub/M00/papers/communicative.txt.

[13] Lynn Cherny. The modal compleixty of speech events in a social MUD. Electronic Journal
of Comumunication, 5(4), November 1995.

[14] Lynn Cherny. The situated behavior of MUD back channels. In Proceedings of the AAAI
Spring Symposium, March 1995.

35

[15]

[16]

[17]

[18]

[19)

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

B. Curtis, M. Kellner, and J. Over. Process Modeling. Communications of the ACM,
35(9):75-90, September 1992.

Pavel Curtis. Mudding: Social phenomena in text-based virtual realities. Published on
the WWW, 3 March 1992. ftp://parcftp.xerox.com/pub/M00/papers/DIACI2.ps.Z.

Pavel Curtis. LambdaCore, 25 December 1995. The “core” database distributed along
with LambdaMOO. ftp://parcftp.xerox.com/pub/M00/LambdaCore-25Dec95.db.Z.

Pavel Curtis. LambdaMOO, May 1996. The server code for the multi-user game Lamb-
daMOO, version 1.8.0p5. ftp://parcftp.xerox.com/pub/M00/LambdaM00~-1.8.0p5.

Pavel Curtis. LambdaMOO Programmer’s Manual. XEROX Palo Alto Research Cen-
ter, May 1996. For LambdaMOO version 1.8.0p5. £tp://parcftp.xerox.com/pub/M00/
LambdaM00-1.8.0p5.

Pavel Curtis, Michael Dixon, Ron Frederick, and David A. Nichols. The Jupiter au-
dio/video architecture: Secure multimedia in network places. In Proceedings of the Third
Annual ACM International Multimedia Conference and Ezposition, San Francisco, CA,
5-9 November 1995. Association for Computing Machinery.

Pavel Curtis and David Nichols. MUDs grow up: Social virtual reality in the real world.
In Proceedings of the Third International Conference on Cyberspace. XEROX Palo Alto
Research Center, May 1993.

Geraldine Fitzpatrick, Simon Kaplan, and Tim Mansfield. Physical spaces, virtual places
and social worlds: A study of work in the virtual. Submitted to the 1996 ACM
Conference on Computer Supported Cooperative Work (CSCW ’96), 1996. http://
acsl.cs.uiuc.edu/kaplan/Papers/cscw-96-study.ps.

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering.
Prentice Hall, Englewood Cliffs, NJ, 1991.

Dennis Heimbigner and Leon Osterweil. An argument for the elimination of roles. Position
paper for the 9th Int Software Process Workshop, 5 March 1994.

George T. Heineman, Gail E. Kaiser, Naser S. Barghouti, and Israel Z. Ben-Shaul. Rule
chaining in Marvel: Dynamic binding of parameters. IEEE Expert, 7(6):26-32, December
1992.

Jay’s House MOO (JHM). jhm.cﬁcs‘neu.edu, port 1709. Research-oriented MQO.
http://jhm.moo.mud.org:7043/.

Simon M. Kaplan, Geraldine Fitzpatrick, Tim Mansfield, and William J. Tolone. MUD-
dling through. Submitted to the 1996 ACM Conference on Computer Supported Coop-
erative Work (CSCW ’96), 19 March 1996. http://acsl.cs.uiuc.edu/kaplan/Papers/
cscw-96-mud.ps.

Ken Keys. TinyFugue, 28 May 1996. Software package used as a “smart client” to MUDs,
version 3.balphal9. http://glia.biostr.washington.edu/%7Ehawkeye/tf/.

36

[29]

[30]

[31]
[32]

Larry Masinter and Erik Ostrom. Collaborative information retrieval: Gopher from MOO.
In Proceedings of INET’93. The Internet Society, June 1993.

MediaMOO. mediamoo.media.mit.edu, port 8888, maintained by Amy Bruckman. Pri-
vate MOO restricted to people doing media research. http://lcs.www.media.mit.edu/
people/asb/MedialM0a/.

Pueblo. A text-based virtual learning community. http://pc2.pc.maricopa.edu/.

Eric S. Raymond. The Jargon File. Published on the WWW, 25 January 1996. http://
www.fwi.uva.nl/%7Emes/jargon/t/Top.html.

Elizabeth Reid. Cultural formations in text-based virtual realities. Master’s thesis, Uni-
versity of Melbourne, January 1994.

Graeme Smith. hiding .location. Message sent to mailing list MOO-Cows, message-
ID <Pine.A32.3.91.960707010709.42700B-100000@fn1.freenet.edmonton.ab.ca>, 7
July 1996.

WWW5 Discussion Forum MOO. spsyc.ac.nott.uk, port 5555. MOO used to facilitate
two ongoing online workshops: “Virtual Environments and the WWW?” and “Artificial
Intelligence-based tools to help W3 users.”.

37

Pat Libhart, 1:50 PM 7/2...,Re: Tech Report Number

X-Sender: libhart@columbine

Mime-Version: 1.0

Date: Thu, 25 Jul 1996 13:50:00 -0600

To: John Doppke <doppke @mroe.cs.colorado.edu>
From: libhart@cs.colorado.edu (Pat Libhart)
Subject: Re: Tech Report Number

John:

I'm so sorry for the delay. Please use tech report number CU-CS-805-96.
Once you have your paper all done, please give me a hard copy and | will
get it made into a tech report. If you need copies of this report, let me
know how many and | will get them made up.

Thanks, Pat

>>>> "pl|" == Pat Libhart <libhart@cs.colorado.edu> writes: -

>

>pl> We need the title, author and abstract of your thesis to get
>pl> a tech rpt number from Pat Libhart in the main office.

>

>0K, here it is...

>

>Title: Software Process Modeling and Execution Within Virtual Environments
>Author: John C. Doppke
>Abstract:

VVVVVVVVVYVVYVVYVYVYVYV

While multi-user virtual environments have been developed in the
past as venues for entertainment and social interaction, recent
research in virtual environments has focused on their utility in
carrying out work in the real world. This recent research has
identified the importance of a mapping between real and virtual that
permits the representation of tasks in the virtual environment. In

this paper we investigate the use of virtual environments--in
particular, MUDs (Multi-User Dimensions)--in the domain of software
process. In so doing, we define a mapping, or metaphor, that
permits the representation of software process within a MUD called
LambdaMOO. The system resulting from this mapping, called Promo,
permits the modeling and execution of software processes.

Keywords: Software process, virtual environments, MUD.

>- -
>John Doppke <doppke @cs.colorado.edu>

>

>It looks like blind screaming hedonism won out.

Printed for libhart@cs.colorado.edu (Pat Libhart)

