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Abstract: The difficulty of programming limits the usefulness of computers to many
non-specialist users. This paper surveys the programming language and
environment scene, looking for good ideas that might be exploited to make
programming easier than it is today. It includes brief descriptions of two current
projects inspired by this goal, and ends with some recommendations for research.

The problem.

Programming is difficult and hard to learn. The evidence is all around us:
application programming backlogs that grow, not shrink; scientists who must work
through intermediaries to analyze data or automate experiments; engineering
students spending months or years to develop needed programming skills. Despite
the proliferation of languages since Fortran, and many undeniably useful
innovations, it is hard to point to any development within the programming
mainstream that has had decisive impact in making programming not just a little
easier, but much easier.

If we are to make progress with this pressing problem it seems likely that we must
divide and conquer. We cannot expect ideas that improve the lot of professional
systems programmers to help the non-programmer scientist, since the professional
programmer can afford a much bigger investment in understanding esoteric
concepts and methods than the scientist who wishes to devote his or her effort to
science, not programming.

In this paper I focus on the non-programmer, the person who wants to use the
computer flexibly with minimum study of it. I will review ideas in programming
technology that seem to me to have promise in making programming much easier
to learn and do for the non-specialist. Because of growing interest in user interfaces,
including construction of visual representations of scientific data or of complex
systems under analysis (and because of my own research interests in these topics) I
will pay special attention to ideas that can make the handling of interactive graphics
and animation easier than it is now.

My review will be subjective and incomplete. My aim in presenting it is to interest
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readers in this problem, and to learn from them about aspects of the problem, or
pertinent research, that I have overlooked.

Programming system: Environment, Model of Computation, Notation.

It is now universally recognized, though still not always acted upon, that efficient
and effective programming depends not just upon the language used but also upon
the environment: the supporting tools and facilities that determine how
separately-written programs can be combined, how debugging is done, what is
required to make a change in a program and examine the effects of the change, and
the like. It is also useful to distinguish two aspects of the language itself, the rmodel
of computation on which the language relies, and the notation used to express
programs within this model.

The model of computation could also be called the abstract machine which executes
programs in the language. It is the mechanism which must be understood to predict
the course and outcome of computations. I will not be making fine technical
distinctions among models here. For example, I will consider the model of
computation in Fortran and Ada to be substantially the same, even though the Ada
model is, when considered in detail, much more complex. Broadly, both languages
assume a combination of expression evaluation and sequential execution of
statements. Functional programming, to choose a contrasting model, uses
expression evaluation extended to include function-valued functions, but not
sequential execution.

[ will have less to say about notations, which are the conventions used in writing
programs. I will do little more than suggest ways in which attention to the demands
of comprehending programs may influence the choice of notation.

I must warn the reader not to expect a clear and principled sorting out of notation
from model, and model from environment. These aspects of a programming system
are tightly intertwined, and while I think it useful to try to distinguish them in
organizing a discussion I am not sure that rigid logical distinctions among them are
possible, or useful.

Models of computation.

The model of computation in a language for non-specialists must meet two criteria.
First, it must be easy to grasp, so that only limited time and effort suffices to permit
the new user to anticipate the course of computations and their result. Second, it
must be easy to map the questions or behaviors the user is interested in in his or her
application domain into computations in the model. How do the models associated
with various classes of language measure up?

Ordinary procedural languages. As already mentioned, the most familiar languages,
including Fortran, Cobol, Algol, Basic, Pascal, C, Ada, and many others share a



3

model of computation in which sequential execution of statements is the basic
process. All of these add a facility for the evaluation of expressions, so that the
separate arithmetic operations required in evaluating a formula, for example, need
not be explicitly ordered.

In its simplest form such a model is not hard to understand, but unfortunately it is
also very awkward to use unless some of a bewildering collection of extensions are
added, bringing in iteration, recursion, subroutine linkages (and parameter passing),
and such other notions that make programming a time-consuming subject of study.
Even Basic, designed expressly to support the non-specialist user, has been
relentlessly extended. Indeed, one can argue that the structured programming
movement, which is surely a good thing from the point of view of the specialist
user, requires the replacement of the naive computational model in which
statements are executed in order with a more complex and abstract variant in which
groups of statements are managed somehow.

The sequential model fits some problems well and others poorly. Though it is
surprising to programmers, non-programmers find it quite unnatural, and difficult,
to write out the steps required to find the average of a collection of numbers. In the
user interface domain, it is difficult to specify the simultaneous movement of two or
more graphical objects, because of the need to distribute the flow of control over the
objects being moved.

Object-oriented languages. The model of computation here is of a collection of

objects which exchange messages, that is, requests for particular behaviors. But just
under the covers there is another computational model in which the behaviors
associated with messages are carried out. In Smalltalk, this is a sequential model; in
C++ it is the model for C; in object-oriented extensions to Lisp it is the model for
Lisp, and so on. Thus object-oriented languages do not provide a model of
computation which can be used instead of other models, but rather one that can be
used on top of another model.

The consequence for the non-specialist learner is obvious. The object-oriented
model must be understood in addition to some other model, not instead of it. As the
name suggests, the C++ learner learns C and then some, not a set of concepts that
can supplant the complexity of C.

On the positive side, the object-oriented model does appear to fit many tasks better
than the sequential model. Modern user interfaces, in particular, can be viewed quite
naturally as collections of intercommunicating objects. But because of the

dependence on an underlying model for producing behaviors, usually a sequential
model, some problems remain. Animating multiple objects simultaneously is hard

in Smalltalk, for example, just as it is in a sequential language. DiSessa's Boxer
(diSessa 1985, diSessa and Abelson 1986), a language intended for non-specialists, had
to extend and complicate the computational model to include graphical objects with
their own independent control streams in order to solve this problem.
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Functional languages. Functional languages (for example ML or pure Lisp; see Sethi
1989 for an introduction to this and many other topics discussed here) dispense with
sequential execution and offer only expression evaluation as a computational
model, with the significant extension that functions can return functions as values
and accept them as operands. This is an elegant model of great flexibility, permitting
striking economy of expression for many complex computations. But indications so
far are that it is not easy or natural for non-specialists to understand.

This problem points up sharply the inadequacy of our intuitions, and our theoretical
notions, in the area of conceptual complexity. Why should this elegant and
easily-described model be hard to understand? The notion of function is already a
difficult abstraction for many people, and the notion of functional, or function
which produces or acts upon functions, is that much farther removed from concrete
experience, it appears. However, we may want to reserve some skepticism about this.
It may be that the right way of explaining functional programming has not been
found, and that the difficulties people have now are not unavoidable. By contrast,
the sequential model (with the extensions needed to make it useful) seems
inherently complex, that is, not admitting a simple description at any level of
abstraction.

Like the sequential model, the functional model is a good fit to some tasks and a bad
one for others. Problems involving the control of ongoing processes, including
animation, do not seem to have natural treatments. Handling user actions on a
diverse collection of things on the screen, which is natural in the object-oriented
model, seems very unnatural in functional terms. Even if one uses stream objects as
inputs to and values of functions, so that inputs and values can be extended in time,
it does not seem natural to think of a step in a complex interaction as a piece of a
function evaluation. But as with the functional model itself it may be that ingenuity
will provide a way to make this appear natural, and make it easy to think about.

Equational languages. The model underlying these languages, also called rewriting
systems, is the replacement of patterns; see O'Donnell (1985) for a description. An
equational program for simplifying algebraic expressions might include a rule
indicating that instances of the pattern A*1 should be replaced by the pattern A,
along with many other such rules. An expression would be simplified by searching
in it for occurrences of to-be-replaced patterns, and replacing them, until no
to-be-replaced pattern matches the resulting expression. The model is conceptually
simple, like that of functional programming, but much more concrete. The abstract
notion of variable, possibly with some restrictions on possible values, is used in
specifying the patterns, but no other abstractions are involved in understanding how
execution proceeds. I know of no evidence indicating whether or not this apparently
simple and clear model is simple and clear in practice, to non-specialist users.

The pattern replacement model is a natural fit for many symbol-manipulation
problems, though ingenuity is sometimes needed in devising replacement rules that
perform the desired operations while satisfying the technical requirements needed
to make the execution process tractible. For example, it may be required that no two



patterns can ever match the same expression.

Beyond this sort of difficulty, the pattern replacement model does not seem to fit
situations in which the task is to control a process, or to produce a sequence of
actions. O'Donnell (1985) notes this kind of exception, aiming to apply equational
programming only in situations in which computation can be conceived as a process
that generates answers for questions. Graphical user interfaces of the kind already
discussed do not have this character.

Logic programming. The model of computation here is theorem proving (Kowalski
1979). A program is a collection of axioms and rules of inference, and it is executed by
asking a theorem-prover, acting as interpreter, to attempt to prove a given assertion.
The common logic programming language, Prolog (see for example Clocksin and
Mellish 1987), fills in this model by guaranteeing that the inference process will go
forward in a predictable order, and allowing some of the steps in the inference
process to have side effects, such as displaying a value. These features have the effect
of creating a sequential model of computation which coexists with the logic model.

Without these side effects, logic programming has much the character, and
limitations, of equational programming. With side effects it gains much of the
power of the ordinary sequential model, and Prolog systems exist that support
drawing, dragging, and such operations via side effects. Such systems can be used to
create graphical user interfaces of the familiar kind.

Ennals and coworkers report success in teaching the basics of logic programming to
school children. See Ennals, Briggs and Brough (1984) for a discussion especially
pertinent to this paper. Experience does not suggest that the more complex model
that includes side effects is especially easy to learn, though it may be no more
difficult than the sequential model. Even the basic model appears to be more
difficult to describe than the functional model, or the pattern replacement model,
though as we have seen abstract simplicity and concrete understandability cannot be
equated.

Constraint languages. Sussman and Steele (1980) describe a programming system in
which the computational model is the maintenance of constraints asserted to hold
among related quantities. A typical constraint might specify that the voltage drop
across a simulated electrical resistance must equal the product of the value of the
resistor and the current flowing through it, as dictated by Ohm's law. In fact the idea
of constraint languages grew out of the work of Sussman and colleagues in
modelling electronic circuits.

There has been too little experience with constraint languages to offer much
evidence about the understandability of the ideas involved. There is some
complexity inherent in the fact that most constraints admit of more than one way of
responding to changes, and the user must in some way indicate what ways are
acceptable. In the above example, if E is constrained to be the product of I and R, and
E changes, then the constraint could be satisfied by changing I, changing R, or
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changing both in combination. In this case the user would wish to indicate that R is
constant, so that only I would be changed in response to the change in E.

Borning and colleagues (Borning 1981, 1986; Duisberg 1986) have used closely related
ideas to manage interactive graphical displays and animation. In this latter work one
can attach the end of one line segment to the midpoint of another, so that as the
second segment is interactively moved or stretched the attached segment is moved
as needed. The model appears to provide a natural fit for a variety of tasks involving
interrelated quantities or objects, including highly interactive interfaces for physical
simulations.

Spreadsheets. The spreadsheet computational model can be seen as a simple
specialization of the constraint model in which constraints are strictly
unidirectional. A given quantity in the spreadsheet can be related to other quantities
by a formula, so that when any of these other quantities change the dependent
quantity is recalculated. Unlike the general constraint model there is no provision
for changes in the calculated quantity to be reflected back on the quantities on which
it depends. Thus if E is calculated from I and R it would be possible to change I or R
but not to change E.

It can be argued that the spreadsheet has done more to make computing accessible
than any other development since Fortran. Clearly the computational model it rests
on is easily understood by a wide spectrum of users, and its applications have spread
far beyong the sphere of simple financial calculations for which it was designed.
However, in its ordinary form the model does not support interactive graphics or

the control of sequences of actions, in common with functional programming and
pattern replacement. Familiar implementations of the model do not support

symbolic operations, but there appears to be no obstacle to doing this; for example see
van Emden, Ohki, and Takeuchi (1986) on the use of the model to support logic
programming.

Taking stock of this discussion, it appears that only the spreadsheet model clearly
meets the test of ready comprehensibility, but evidence one way or the other about
some of the other models is scarce. As might be expected, none of the models
handles the whole spectrum of computing tasks in a natural manner. The
conceptually simplest models do not provide a good fit for user interface operations,
in particular.

Notational issues.

Apart from the requirement to grasp the underlying computational model of a
language, the user must cope with the notational conventions used in programs. I
wish to bring up just two points in this connection here, both of which suggest
dissenting views on some common language design practices.

First, virtually all languages make heavy use of variables. Backus' radical functional
programming proposal (Backus 1978) attracted much attention by eliminating
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variables, but the proposed alternative notation was clumsy and subsequent work in
functional programming has reintroduced them, at least in the limited guise of
parameters.

Backus objected mainly to the complexities involved in reasoning formally about
programs with variables. Our non-specialist users will probably not attempt such
formal analysis, but one can argue that even informal reasoning and even simple
comprehension of programs may be interfered with by the use of variables.

What's the problem? In almost all cases, an occurrence of a variable can be
understood only by reference to some information not available in the immediate
local context. Thus a comprehender must integrate information from two separate
sources in arriving at a meaning. Consider for example the Prolog statement

grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

In reading this rule it cannot be determined that Z is existentially quantified in its
occurrences without using the fact that it does not occur on the left. Similarly, the
significance of the second Z is crucially determined by the occurrence of the first Z.
Notice that the functional equation

grandparent = parent o parent,

where o denotes functional composition, avoids these complications (though it does

not express as much as the Prolog example.) Uses of variables to express simple
"wild cards" in pattern matching, where the variable is used only once, can be
understood locally, but all other uses seem to involve some kind of non-local
reference.

A somewhat similar problem is posed by the variety of devices used to modularize
the presentation of programs. A feature of block structured languages is the freedom
they provide to reuse names in different parts of a program, with some control over
whether the names refer to the same or different things. From the point of view of
the program comprehender, this useful freedom is a real nuisance. The
comprehender cannot know what object a name in a block refers to without reading
the declarations in that block, and, in general, several other blocks. This is the same
demand for integration of information from distributed sources that is posed by
variables.

The very useful inheritance feature of object-oriented languages creates this same
problem for comprehenders. Since an object can inherit its response to a message
from any of its enclosing classes, working out the behavior of an object involves
examination of an often extensive body of code. Indeed, object-oriented
programming environments often provide some kind of browsing tool to help
readers find the definitions they need.



Environment issues.

Modern programming environments provide a wide range of tools for
manipulating code, as well as helping the user to examine and manipulate the state
of computations. I want to mention two points here that are especially important for
supporting non-specialist users. First, we need to move away from our traditional
view of programs as things built bit-by-bit from scratch. Rather, we should strive to
support programming by combining and modifying existing examples of working
programs. This approach has been widely advocated for specialist programmers in
the software engineering literature, for example by Winograd (1979). But it may not
be apparent that the same idea has critical advantages for the non-specialist. Perhaps
the key point is that working from examples lessens the requirement to understand
everything about what one is doing. One only has to understand enough about an
example to know what to change and how to change it. Lewis and Olson (1987)
developed this and related points further in a precursor of the present paper.

Second, typical programming environments maintain a barrier between users and
programs. Input data provided by the user passes behind this barrier, where it cannot
be seen or manipulated. Only those computed results that the program chooses to
reveal are passed back through the barrier. If one of many input items is wrong,
typically all data must be resupplied and the entire computation repeated. Draper
(1986) pointed out this problem, and called for a different style of environment in
which user and program share a common data area, represented on the screen. Both
parties can examine and modify the shared data as needed. Input values and
computed results are all posted in the shared data space. Draper also pointed out that
the spreadsheet provides just such an environment, and that the ability to
manipulate input data and view results in a natural and convenient way probably
contributes much to the popularity of the spreadsheet with users who have trouble
imagining what is going on behind the barrier in conventional environments.

Current work: NoPumpG and ChemTrains.

My colleagues and I have been working over the last two years to realize systems
that can capitalize on some of these observations about existing programming
systems in providing superior support for non-specialist programmers. Our
emphasis in this work, as in some of the discussion here, has been on making
interactive graphics accessible to these non-specialist users.

NoPumpG (Lewis 1987) extends the spreadsheet computational model and
environment to control graphical interactions and animation. The key notion is that
graphical objects, such as line segments, are associated with cells in a spreadsheet in
such a way that the coordinates that specify the position of an object are held in these
cells. If the object is dragged by the user, the associated cells are updated to reflect the
new position. If the value of one of these cells is changed by a calculation in the
spreadsheet the corresponding object is moved. Thus input to the spreadsheet can be
accomplished by moving graphical objects (which might take the form of slide
controls, if desired), and output of results from the spreadsheet can be reflected
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Figure 1: A NoPumpG simulation of a mass suspended from an elastic cord. The
formulae in the cells show how the position of the mass is specified from basic
physical principles, with the force due to the cord calculated on the left, the force due
to gravity on the far right, and the change in position due to these forces at the
bottom. The cell S1.y, which determines the vertical position of the mass, contains a
value obtained by adding the change in position to an initial height of the mass.
When the clock runs the mass oscillates up and down because of the time integrals
in some of the formulae.
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graphically in the positions of indicators (say) or the heights of bars. Animation is
accomplished simply by placing a clock in one of the spreadsheet cells. If a cell
containing a coordinate is made to depend directly or indirectly on the clock, the
associated object will move as the clock runs. Many objects can be simultaneously
and independently animated in this way, without confronting the difficult problem
of sharing a sequence of update operations among different objects. Figure 1 shows a
simple physical simulation in NoPumpG.

A prototype implementation of NoPumpG has been running for the last two years,
but it is too limited in function to provide useful support for realistic programming
tasks. We are currently designing and implementing an extended version intended
to support the creation and modification of robot control interfaces.

ChemTrains, a system now being designed and prototyped, is intended to explore a
different portion of the design space from NoPumpG, and to support graphical
depiction of behavior driven by qualitative, not quantitative models. The analytic
geometry which is at the heart of NoPumpG's treatment of graphics is clumsy for
modelling motions which the user can easily visualize or draw, but for which he or
she has no mathematical or physical specification. Similarly, while an object
represented in NoPumpG can change its state and appearance, such changes must be
controlled by numerical computations rather than qualitative logic.

ChemTrains is intended to permit non-specialists to create and manipulate models
like that shown in Figure 2. The objects in the model behave according to rules
provided by the user; for example, memos flow along the paths in the diagram, and
a memo which arrives at the copying machine will be replicated. The figure is taken
from our Hypercard prototype, which is only partly functional as of now.

Objects in ChemTrains are bundles of attributes. Objects are created and destroyed,
and their attributes changed, by a process resembling a chemical reaction. Objects
which find themselves in the same place in a model may react, according to reaction
rules provided by the user. The reaction process is intended to have a character
similar to the pattern replacement model of computation discussed above, and in
particular to be equally concrete and simple.

Pictures are associated with an object in a manner dependent upon its attributes;
thus a reaction can change the way in which an object is displayed on the screen.

Places are connected by paths. Each end of a path has an associated filter, which
passes or rejects objects according to their attributes. An object in a place will leave
the place and move along a path if its attributes satisfy the path's filter.

The specification of reaction rules in ChemTrains is influenced by the arguments
about comprehensibility of notation developed above. In contrast to rules in
equational programs, they contain no variables. This entails some loss of expressive
power, in that some complex patterns cannot be specified, and experience must show
whether any gain in comprehensibility balances this deficit.
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Reaction rules are global in ChemTrains, contrary to one's language design instincts
that would permit behaviors to be specified within an object, or possibly within a
place. The intent is to reduce the integration of information from different sources
that is required to understand what behavior has been specified. If rules of behavior
are specified once and for all in one place, then one never need check to see if new
rules are in effect in understanding how some new part of the model will behave.

Research agenda.

I hope that this discussion has made clear that the world of possible programming
languages, and indeed computational models, is a large one, and that there is much
territory to explore in seeking language ideas that may extend the power of
programming to new users and new applications. I think it also makes clear that the
theoretical support for this search is weak, and should be improved. As designers we
must make judgements about "comprehensibility" and "conceptual clarity” without
adequate models of the mental processes which determine what structures have or
lack these characters. My colleagues and I are embarked on work to strengthen these
foundations (see e.g. Kintsch 1988, Mannes and Kintsch 1988), but there is far to go.

An avenue we are not exploring yet in our work is that of programming by
modification. Following the argument sketched above I suspect that no approach
that neglects this idea can be fully successful.

I think a special urgency and excitement attaches to this broad area of research when
we consider the advent of massively parallel machine architectures. As computer
scientists we may not all share an interest in the support of non-specialist
programmers, which is the problem I have used to structure this discussion. But we
can all recognize that the challenge of exploiting these radically new machines will
force us to discover new ways to think about computing, and new languages to
express these thoughts.
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