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Abstract

Motivation  Protein remote homology prediction and fold
recmgntion are central problems in computationd biology. Super-
vised learning dgorithms based on suppat vedor machines are
currently one of the most effedive methods for solving these prob-
lem. These methods are primaril y used to solvebinary dasdfication
problems andthey have not been exensively used to solve the more
general multi class remote homology prediction andfold recognition
problems.

Methods Wedevdoped a number of methodsfor buil ding S/M-
based multi class clasdfication schemes in the context of the SCOP
protein clasdfication. These methodsincludes schemes that direaly
build an S/M-based multiclassmodel, schemes that employ a sec
ond leve learning appoach to combine the predictions generated
by a set of binary SYM-based clasdfiers, andschemes that build and
combine binary dassfiers for various levés of the SCOP hierarchy
beyondthose defining the target classes.

Results  We performed acomprehensivestudy andyzingthe dif-
ferent approaches using four different datasets. Our results show
that most of the proposed multiclass SYM-based clasdfication ap
proaches are quite dfedivein solving the remote homology predic-
tion andfold reagnition problems and that the schemes that use
predictions from binary models constructed for ancestral categories
within the SCOP hierarchy tend to quditativey improvethe predic-
tionresults.
Website:  http://bioinfo.cs.umn.edu/supd ements/me-fol d/
Keywords: fold recogrition, remote homology, multiclass hi-
erarchical, structured learning, suppat vedor machines.

1 Introduction

Bre&kthrougts in large-scde sequencing have led to a surge
in the avail able protein sequenceinformation that has far out-
stripped our ability to experimentally charaderizetheir func-
tions. As a result, reseachers are increasingly relying on
computational tedhniques to classfy proteins into functional
and structural famili es based solely on their primary amino
add sequences. While satisfadory methods exist to deted
homologs with high levels of similarity, acarately deteding
homologs at low levels of sequencesimil arity (remote homol-

ogy detedion) still remains a chall enging problem.

Over the yeas svera methods have been developed to
address the problems of remote homology prediction and
fold recognition. These includes methods based on pairwise
sequence ammparisons [30, 3, 28, 36], on generative mod-
els[21, 4], and on dscriminative dassfiers [18, 25, 23, 24,
15, 16, 35, 22, 31].

Recent advances in string kernels that have been spedf-
icdly designed for protein sequences and capture their evo-
lutionary relationships [22, 31] have resulted in the devel-
opment of suppat vedor madines-based (SVMs) [4]] dis-
criminative dassfiers that show superior performance when
compared to the other methods [31].

These SV M-based approaches were designed to solve one-
versus-rest binary clasdficaion problems and to this date,
they are primarily evaluated with resped to how well eat
binary clasgfier can identify the proteins that belong to its
own class(e.g., superfamily or fold). However, from a biol-
ogist’s perspedive, the problem that he or she is fadng (and
will i ke to solve) isthat of identifying the most likely super-
family or fold (or a short list of candidates) that a particular
protein belongs to. Thisis essentially a multiclassclassfica
tion problem, in which given a set of K classes, we will li ke
to assgnaprotein sequenceto ore of them.

Eventhough highly acarate SVM-based binary classfiers
can goalongway in addressng some of the biologist’s re-
quirements, it is gill unknovn haw to best combine the pre-
dictions of a set of SVM-based hinary classfiers to solve
the multi classclasdficaion problem and assgn a protein se-
quenceto a particular superfamily or fold. Moreover, it isnot
clea, if schemes that combine binary clasdfiers are inher-
ently better suited for solving the remote homology predic-
tionandfold recognition problems over schemesthat diredly
build an SVM-based multi classclasdfication model.

This problem was recently recognized by leet al. [17] and
developed schemes for combining the outputs of a set of bi-
nary SVM-based classfiers for primarily solving the remote
homology prediction problem. Spedficdly borrowing ideas
from error-correding output codes[10, 2, 8], they developed
schemes that use aseparate leaning step to learn haw to best
scdethe outputs of the binary clasdfiers aich that when com-
bined with a scheme that assgns a protein to the dasswhose
correspondng scaed hinary SVM prediction is the highest,
it achieves the best multiclass prediction performance. In



addition, for remote homology prediction in the context of
the SCOP [27] hierarchicd clasdfication scheme, they aso
studied the extent to which the use of such hierarchicd in-
formation can further improve the performance of remote ho-
mology prediction. Their experiments showed that these go-
proaches lead to better results than the traditional schemes
that use ather the maximum functional output [32] or those
based onfitting a sigmoid function [37].

In this paper, motivated by the positive results of le et al’s.
work, we further study the problem of building SVM-based
multi classclassficaion models for remote homology predic-
tion and fold recognition in the context of the SCOP protein
clasdgficaion scheme. We present a comprehensive study o
diff erent approachesfor buil ding such clasdfiersincluding (i)
schemes that diredly build an SVM-based multi classmodel,
(i) schemes that employ a seaond level leaner to combine
the predictions generated by a set of binary SVM-based clas-
sifiers, and (iii ) schemes that build and combine binary clas-
sifiers for various levels of the SCOP hierarchy. In addition,
we present and study three diff erent approaches for combin-
ingthe outputs of the binary clasdfiersthat lead to hypdhesis
spaces of different complexity and expressve power.

These schemes are thorougHy evaluated for both remote
homology prediction and fold reagrition using four differ-
ent datasets derived from Astral [5]. Our experimental results
show that most of the proposed multiclass SVM-based clas-
sification approaches are quite df edivein solving the remote
homology prediction and fold recognition problems. Among
them, schemes employing atwo-level leaning framework are
in general superior to those based onthe dired SVM-based
multi classclasdfiers, even thoughthe performance adieved
by the later schemes is quite respedable. Our results also
show that the multi classclassfiers that use predictions from
binary models constructed for ancestral categories within the
SCOP hierarchy tend to qualitatively improve the prediction
results.

2 Methods
2.1 K-way Classification Problem

Given a set of m training examples
{(z1,v1);--- , (Tm,Ym)}, Where example z; is drawn
from a domain X C R" and ead of the label y; is an
integer fromtheset Y = {1,..., K}, thegodl of the K-way
clasdfication problem is to learn a model that asdgns the
corred label from the set Y to an urseen test example. This
can be though of as leaning afunction f : X — Y which
maps ead instance z to an element y of V.

2.2 Direct SVM-based K-way Classifier Solu-
tion

One way of solving the K-way classficaion problem using
suppat vedor machines is to use one of the many muilti-
class formulations for SVMs that were developed owver the
yeas[11, 12, 42, 1, 9]. These dgorithms extend the nations
of separating hyperplanes and margins andlearn amodel that

diredly separates the diff erent classes.

In this gudy we evaluate the df edivenessof one of these
formulations that was developed by Crammer and Singer [9],
which leals to reasonably efficient optimization problems.

Thisformulation aimsto lean amatrix W of size K x n
such that the predicted classy* for aninstancez is given by

y = argi{nax {(W;,z) }, 1)
i=1
where W; isthe it? row of W whose dimensionisn.

This formulation models ead classi by its own hyper-
plane (whase normal vedor corresponds to the i** row of the
matrix W) and assgns an example x to the dassi that maxi-
mizes its correspondng hyperplane distance

W itself is leaned from the training data following a
maximum margin with soft constraints formulation that gives
rise to the following ogimization problem [9]:

min FBW? + 30, &,
subedto: Vi,z (Wy,,z;) + 8y, — (W, zi) > 1-¢;
2

where §; > 0 are sladk variables, 5 > 0 is aregularizaion
constant, and d, ., isequal to 1 if z = y;, and 0 dherwise.

Asin the binary suppat vedor machines the dual version
of the optimizaion problem and the resulting classfier de-
pends only onthe inner products, which allows us to use any
of the recently developed protein string kernels.

2.3 Merging K One-vs-Rest Binary Classifiers

An alternate way of solvingthe K-way clasdficaion problem
in the context of SVM isto first build a set of K one-versus-
rest binary classficaionmodels {f1, f2,-.. , fx}, use dl of
them to predict an instance z, and then based onthe predic-
tions of these base dassfiers {f1(z), f2(z),..., fx(z)} as
signz to ore of the K clases[10, 2, 37].

2.3.1 Max Classifier A commonway of combiningthe
predictions of aset of K one-versus-rest binary classfiersis
to asaume that the K outputs are diredly comparable and as-
sign z to the dassthat achieved the highest one-versus-rest
prediction value; that is, the prediction y* for aninstancez is
given by

y' = argiax { fi(z) }. @)

However, the asumption that the output scores of the dif-
ferent binary clasdfiers are diredly comparable may naot be
valid, asdiff erent classes may be of different sizesand/or less
separable from the rest of the dataset- indiredly affedingthe
nature of the binary model that was leaned.

2.3.2 Cascaded SVM-Learning Approaches A
promising approach that has been explored in combining the



outputs of K binary classficaionmodelsisto formulateit as
a cacaded leaning problem in which a second level model
istrained onthe outputs of the binary classfiers to corredly
solve the multi classclasdfication problem [17, 10, 2].

A simple model that can be leaned isthe scding model in
which the final prediction for aninstancez is given by

y" = argmax {wifi(z)}, @
where w; isafador used to scde the functional output of the
ith clasdfier, and the set of K w; scaing fadors make up the
model that is being leaned during the second level training
phase[17]. Wewill refer to this ssheme asthe scaling scheme
(S).

An extension to the aowve scheme isto also incorporate a
shift parameter s; with ead of the dasses and lean a model
whase predictionis given by

Y= arg{{nax {wifi(z) +si}. (5)

The motivation behind this model is to emulate the ex-
pressve power of the zscore gproach (i.e., w; = 1/0;,8; =
—ui/o;) but lean these parameters using a maximum mar-
gin framework. We will refer to this as the scale & shift (S9
model.

Finaly, a significantly more complex model can be
learned by dreadly applying the Crammer-Singer multiclass
formulation onthe outputs of the binary classfiers. Spedfi-
cdly, the model correspondsto a K x K matrix W and the
final predictionisgiven by

y' = argiax { (Wi, f(2)) }, ©)
where f(z) = (f1(z), f2(z), ..., fx(z)) isthe vedor con
tainingthe K outputs of the one-versus-rest binary classfiers.
We will refer to this asthe Crammer-Singer (CS) model.

Comparing the scding approach to the Crammer-Singer
approach we can see that the Crammer-Singer methodd-
ogy is a more general version and shoud be ale to lean a
similar weight vedor as the scding approach. In the scd-
ing approad, there is a single weight value asciated with
ead of the dasses. However, the Crammer-Singer approach
has a whae weight vedor of dimensions equal to the num-
ber of feaures per class During the training stage, for the
Crammer-Singer approad if all the weight values w; ; =
0,Vi # j the weight vecor will be ejuivalent to the scding
weight vedor. Thus we would exped the Crammer-Singer
setting to fit the dataset much better during the training stage.

2.4 Use of Hierarchical Information

One of the key charaderistics of remote homology prediction
and fold recogrition is that the target classes are naturally
organized in a hierarchicd fashion. This hierarchicd organi-
zaionisevident inthetreestructured organizaion o the var-
ious known protein structures that is produced by the widely
used protein structure dassficaion schemes of SCOP [27],

CATH [29] and FSSP[14].

In ou study we use the SCOP clasdficaion database to
define the remote homology prediction and fold recogrition
problems. SCOP organizesthe proteinsinto four primary lev-
els (class fold, superfamily, and family) based on structure
and sequence simil arity. Within the SCOP classficaion, the
problem of remote homology prediction corresponds to that
of predicting the superfamily of aparticular protein under the
constraint that the protein is not similar to any of its descen-
dant famili es, whereas the problem of fold recogntion cor-
responcs to that of predicting the fold (i.e., second level of
hierarchy) under the constraint that the protein is not similar
to any of its descendant superfamili es.

The questions that arise ae whether or not and hav we
can take advantage of the fad that the target classes (either
superfamili es or folds) correspondto alevel in ahierarchicd
clasdfication scheme, so as to improve the overall classfica
tion performance?

The gproad investigated in this gudy is primarily mo-
tivated by the different schemes presented in Sedion 23.2
to combine the functional outputs of multi ple one-versus-rest
binary classfiers. A general way of doingthisistolean abi-
nary one-versus-rest model for ead or a subset of the nodes
of the hierarchicd clasdficaion scheme, and then combine
these models using an approach simil ar to the CS-scheme de-
scribed in Sedion 22.

For example, assuume that we ae trying to lean a fold-
level multi classmodel with Ky foldswhere K, isthe number
of superfamili es that are descendants of these K ; folds, and
K. is the number of classes that are ancestors in the SCOP
hierarchy. Then, we will build Ky + K, + K. one-versus-
rest binary classfiersfor ead ore of the folds, superfamili es,
and classes and use them to oltain a vedor of Ky + K, +
K, predictions for a test sequence z. Then, using the CS
approach, we canlean asecondlevel model W of size K¢ x
(K + K, + K,.) and weit to predict the dassof z as

y" = argmax{ (Wi, £(2))}, ™
where f(x) isavedor of size Ky + K, + K, containing the
outputs of the binary classfiers.

Note that the output spaceof this model is dill the Ky
possblefolds, but the model combinesinformation bah from
thefold-level binary clasdfiersaswell asthebinary clasdfiers
for superfamily- and classlevel models.

In addition to CS-type models, the hierarchicd informa-
tion can also be used to buld simpler models by combining
seledive subsets of binary clasdfiers. In our study we exper-
imented with such models by focusing oy on the subsets
of nodes that are charaderistic for eadt target classand are
uniquely determined by it. Spedficdly, given atarget class
(i.e., superfamily or fold), the path starting from that noce

1These two constraints are important becauseif they are violated, then we
are adually solving either the family or remote homology prediction prob-
lems, respedively



and moving upwvards towards the roat of the dassficaion hi-
erarchy uniquely identifies a set of nodes correspondng to
higher level classes containing the target class For example,
if the target classis a superfamily, this path will i dentify the
superfamily itself, its correspondngfold, andits correspond
ing classin the SCOP hierarchy.

We can construct a seaond level clasdficaion model by
combining for ead target class the predictions computed
by the binary clasdfiers correspondng to the nodes along
these paths. Spedficdly, for the remote homology recogni-
tion problem, let K, be the number of target superfamili es,
fi(z) the prediction computed by the i** superfamily class-
fier, Fas (z) the prediction d thefold classfier correspondng
to the i** superfamily, and f - (z) the prediction o the dass
level clasdfier correspondng to the i*? superfamily, then we
can expressthe prediction for instance z as

y* = arghax{uwifi (@) + wys frr (@) + wpcfp; @), @

where w;, Wy 1 and wp. are scding fadors leaned duing
training o the secondlevel model.

Note that the underlyingmodel in Equation 8isessentially
an extension o the scding model of Equation 4asit li nealy
combines the predictions of the binary classfiers of the an-
cestor nodes.

In a similar fashion, we can use the scde and shift type
approach for every node in the hierarchicd tree This allows
for an extra shift parameter to be associated with ead of the
nocdes being modeled. Note that similar approaches can be
used to define models for fold reaogrition, where aweight
vedor is leaned to combine the target fold level node dong
withits gpedfic dasslevel node. A model can also beleaned
by na considering all the levels alongthe paths to the roct of
thetree

The generic problem of classfying within the context of a
hierarchicd classficaionsystem hasrecently been studied by
the machine learning community and a number of aternative
approades have been developed [40, 38, 34].

2.5 Structured Output Spaces

The various models introduced in Sedions 2.3.2 and 24 can
be expressed using a unified framework that was recantly in-
troduced for leaning in structured ouput spaces [40, 6, 7,
39.

This framework [40] leans a discriminant function F' :
X x Y — R over inpu/output pairs from which it derives
predictions by maximizing F' over the resporse variable for
a spedfic given input z. Hence, the general form of the hy-
pothesish is

h(z;0) = argg;}ax {F(z,vy;0)}, 9)

where 0 denotes a parameter vedor. Function F' is a 6-
parameterized family of functions that is designed such that
F(z,y;0) achievesthe maximum value for the corred output
y. Amongthe various choicesfor F, if we focus onthaose that

are linea in a combined feaure representation o inpus and
outputs, ¥ (z, y), then Equation 9can be rewritten as [40]:

h(z; 0) = argmax {(6, ¥(z,y))} (10
yey
The spedfic form of ¥ depends on the nature of the prob-
lem and it isthisflexihility that all ows us to represent the hy-
pothesis gacesintroduced in Sedions 2.3.2 and 24 in terms
of Equation 1Q
For example, consider the ssimple scding scheme for the
problem of fold recogntion (Equation 4). The inpu space
consists of the f(z) vedors of the binary predictions and the
output space) consists of the set of K folds (labeled from
1...Ky). Given an example z belongngto fold ¢ (i.e., y =
1), the function ¥(z, y) maps the (z,y) pair onto a K ;-size
vedor whose ith entry (i.e., the entry correspondngto z's
fold) is =t to f;(z) and the remaining entries are set to zero.
Then, from Equation 10we have that

Ky , Ky
h(z;0) = ar;ggax{(@,\ll(m,z))} = argmax {6:f:(x)}, (11

which is smilar to Equation 4with 6 representing the scding
vedor w.

Similarly, for the scde & shift approach (Equation 5), the
¥(z,y) function maps the (x, y) pair onto afeeure spaceof
size2K ¢, where the first Ky dimensions are used to encode
the scaing fadors and the seaond K ¢ dimensions are used to
encode the shift fadors. Spedficdly, given an example z be-
longngto fold ¢, ¥(z,y) maps (z,y) onto the vector whose
ith entry is fi(z), it's (2¢)*" entry is one, and the remaining
entries are set to zero. Then, from Equation 10we have that

h(z; 0) :ar%ax{w,\ll(m,i))}

(12
= argthax {6: fi(z) + 02}
i=1
which is equivalent to Equation 5 with the first half of 6
correspondng the scde vedor w, and the second Helf cor-
respondngto the shift vedor s.

Finaly, in the cae of the Cramer-Singer approach, the
¥(z,y) function maps (z,y) onto a feaure space of size
K x K;. Spedficdly, given asequencez belongngto fold
i, ¥(z,y) maps (z, y) onto the vedor whose Ky entries dart-
ingat (i — 1)Ky areset to f(z) (i.e., thefold prediction ou-
puts) and the remaining (K; — 1)Ky entries are set to zero.
Then, by rewriting Equation 10in terms of the &ove cmm-
bined inpu-output representation, we get

h(z;6) = ar;gzlfiax {(6,%(z,4))}

13
K
= arg_nf}ax { S fzfl 0(1'_1)Kf+jfj($)} .

1=

This is equivalent to Equation 6, as 6 can be viewed as the
matrix W with K¢ rowsand Ky columns.



Algorithm 1 Leaning Weight Vedors with the ranking per-
ceptron algorithm

Input: m: Number of Training Samples.
(z,y): Training Samples.
B User constant to control separation constraints.
a: Leaning rate.
Output: 6: Weight Vedor.
16«0
2: while STOPANG CRITERION = false do
3 fori=1tomdo

4: y; = argmax,cy (0, ¥(z;,y))

5; if y¥ =y, then

6: y; = argmax,cy . (0, ¥(zi,y))
7: end if

8 if (6, ©(zi,5:)) — (0, ¥(zi, y;)) < Bl6]|2 then
o 6+ 0+ a¥(z;,y;)

10: 0+ 60— a¥(z;,yr)

11 end if

12 end for

13 end while

14 Return 6

2.5.1 Ranking Perceptron. Oneway of leaningf in
Equation 1Q is to use the recently developed extension to
Rosenblatt’s linea perceptron clasdfier [33], cdled ranking
perceptron [6]. This is an orline leaning algorithm that it-
eratively updates 6 for ead training example that is mis-
clasdfied acording to Equation 1Q For ead misclass-
fied example z;, 0 is updated by adding to it a multiple of
(U(zi,y:) — ¥(zi,y))), wherey} isgiven from Equation 10
(i.e., the eroneously predicted class for x;). This online
leaning framework is identicd to that used in standard per-
ceptronleaningandisknown to converge when the examples
are linealy separable. However this convergence property
does nat hald when the examples are nat linealy separable.

For our study, we have extended the ranking perceptron
algorithm to follow a large margin classficaion grinciple
whaose goal isto lean 6 that tries to satisfy the following m
constraints:

Vi (0,%(xi,u:)) — (0, Y (xi, ui)) > BllO]l2, (19

where y; is ;s true dass and y} =
argmax,cy ., {(6, ¥(zi,y)))}.  The idea behind these
constraintsisto forcethe dgorithm to learn amodel in which
the corred predictions are well-separated from the highest
scoring incorred predictions (i.e., thase correspondng to
y;). The degreeof acceptable separation, which corresponds
to the required margin, is given by 3||6||2, where 3 is a
user-spedfied constant. Note, the margin is expressed in
terms of 6’'s length to ensure that the separation constraints
are invariant to simple scding transformations.

Algorithm 1 shows our extended ranking perceptron algo-
rithm that uses the constraints of Equation 14to gudeitson-
line leaning. The key steps in this algorithm are lines 8—10
that update 6 based on the satisfadion/violation o the con-
straints for ead ore of the m training instances. Since the

ranking perceptron algorithm is not guaranteed to converge
when the examples are not linealy separable, Algorithm 1
incorporates an explicit stopping criterionthat after ead iter-
ation it computes the training error-rate of 6, and terminates
when @’s error rate has not improved in 100conseautive iter-
ations. The dgorithm returns the 6 that achieved the lowest
training error rate over all it erations.

2.5.2 SVM-Struct. Recatly, an efficient way of lean-
ing the vedor 8 of Equation 10 tes been formulated as a con+
vex optimization problem [40]. In this approad 6 is leaned
subjed to the following m norlinea constraints

Vi: max {(0,¥(zi,y))} < (0, ¥(zi,u:))- (19
yeY/y;
Note, that these constraints are similar in nature to thase used
in the ranking perceptron algorithm (Equation 14).

The SVM-Struct [40] agorithm, is an efficient way of
solving the ébowve optimizaion problem in which the m non
linea inegudliti es are replacal by || — 1 linea inequdliti es
resultingin atotal of m(])| — 1) linea constraints and 6 is
leaned using the maximum-margin principle leading to the
following hard-margin problem [40]:

min 3613
Vi, Yy € {¥/yi}.

This hard-margin problem can be oonwerted to a soft-
margin equivalent to allow errors in the training set. This
is dore by introdwcing a dad variable, &, for every norin-
ea congtraint of Equation 15 The soft-margin problem is
expressd as [40]:

min 5[l6]3 + § i &

subjed to

subectto (0, O(zi,y;) — U(zsy)) >1-& (17

The results of clasdfication depend on the value C which
is the misclasdfication cost that determines the trade-off
between the generalization capability of the model being
learned and maximizing the margin. It needsto be optimized
to prevent under-fitting and ower-fitting the data during the
training phese.

2.6 Loss Functions

The lossfunction days a key role while leaning 6 bath the
SVM-struct and ranking perceptron ogimizations. Till now,
our discussonfocused onzero-one lossthat assgns a penalty
of onefor amisclasdficaionandzerofor a corred prediction.

However, in cases where the dass $zes vary significantly
aaossthe different folds, such a zeo-one lossfunction may
not be the most appropriate @ it may leal to models where



Table 1. Dataset Statistics.

the domains with lessthan 95% and 4% pairwise sequence

Statistic

DSI DS2 DS3 D4 identity acordingto Astral [5], respedively. This st of do-

ASTRAL filtering
Number of Sequences
Number of Folds 25 25 25
Number of Superfamili es a7 37
Avg. Pairwise Simil arity

Avg. Max. Simil arity

Avg. Pairwise Simil arity (within folds)
Avg. Pairwise Simil arity (outside folds)

9% 40%

25% 40%

2115 1119 1294 165 . . . . .
»7 and (i) one of these superfamili es contained multi ple fami-

137 158 lies. For DS, the resulting dataset contained 2115 daonains
12.8% 11.5% 11.6% 11.4
63.5% 33.9% 32.2% 34.3
256% 17.9% 16.7%17.4
1049%11.03%11.2% 11.0

mains was further reduced by keegping ony the domains be-
iong' ngto folds that (i) contained at least threesuperfamili es

organized in 25folds and 47superfamili es, whereas for DS2,
the resulting dataset contained 1119 daonains organized in 25
folds and 37superfamili es.

DS3 and D4 were designed to evaluate the performance

The percent similarity between two sequences is computed by aligning the pair of se-
quences using SW-GSM with a gap opening o 5.0 and ggp extension o 1.0. “Avg.
Pairwise Similarity” is the average of al the pairwise percent identities, “Avg. Max.
Similarity” is the average of the maximum pairwise percent identity for ead sequence
i.e, it measures the simil arity to its most similar sequence. The “Avg. Pairwise Simil ar-
ity (within folds)” and “Avg. Pairwise Similarity (outside folds)” is the average of the
average pairwise percent sequence simil arity within the same fold and ouside the fold
for agiven sequence.

the rare dassinstances are often mispredicted. For this rea
son, an alternate lossfunction is used, in which penalty for
amisclasdficationisinversely propationa to the dass $ze
This implies that the misclasdfication d examples belong
ing to smaller classes weigh higher in terms of the loss This
lossfunction is referred to as the balanced loss[17]. For the
ranking perceptron algorithm (Algorithm 1) the update rules
(statements 7 and 8) need to be scded bythelossfunction. In
case of the SVM-Struct formulation, the balanced losscan be
optimized by reweighting the definition o separation which
can be dore indiredly by rescding the sladk variables &; in
the constraint inequaliti es (Equation 17).

While using the hierarchicd information in the cascaded
leaning approadies (Sedion 24) we experimented with a
weighted lossfunction where alarger penalty was assgned
when the predicted label did na share the same ancestor com-
pared to the cae when the predicted and true dass labels
shared the same ancestors. This variation dd na result in
an improvement compared to the zeo-one and balanced loss
Hence, we do nd report results of usingsuch hierarchicd loss
functions here.

3 Materials
3.1 Dataset Description

We evaluated the performance of the various hemes onfour
datasets. The first dataset, referred to as DS1, was creded by
le etal. [17] to evaluate the performance of the multiclass
classfication algorithms that they developed?, whereas the
other threedatasets, referred to as DS2, DS3, and D4, were
creaed for this gudy®. The DS1 dataset was derived from
SCOP 1.65, whereas DS2-D4 were derived from SCOP
1.67. Table 1 summarizesthe charaderistics of these datasets
and presents various squence simil arity statistics.

DS1 and DS2 are designed to evaluate the performance of
remote homology prediction and were derived by taking ory

’DS1 is available & http://wwwa.cs.columbia.eduw/comphio/code-
leaning

3DS2, DS3, and D4 are avail able &
http://bioinfo.cs.umn.edw/supd ements/me-fold/

of fold recogrition and were derived by taking orly the do-
mains with lessthan 25% and 40% pairwise sequence iden-
tity, respedively. This st of domains was further reduced
by keeping orly the domains belongng to folds that (i) con-
tained at least three superfamilies and (ii) at least three of
these superfamili es contained more than threedomains. For
DS3, the resulting dataset contained 1294 danains organized
in 25folds and 137 superfamili es, whereas for D4, the re-
sulting dataset contained 1651 danains organized in 27folds
and 158superfamili es.

3.2 Binary Classifiers

The various one-versus-rest binary clasdfiers were n-
structed using SVMs. These dasdfiers used the recently de-
veloped [31] Smith-Waterman based profile kernel function
(SW-PS3M), that has been shown to achieve the best reported
results for remote homology prediction and fold reaogrition.

The SW-PS3M kernel computes a locd alignment be-
tween two protein sequences, in which the simil arity between
two sequence positions is determined using a PICASSO like
scoring function [13, 26], and a position independent affine
gap modeling scheme. We use the optimized parameters for
the &fine gap model (i.e gap-opening (go) and gap-extension
(ge) costs), and zero-shift (z9 for our base dasdfiers.

For our performancestudies, we use the optimal parameter
settings of go = 3.0,0e = 0.75 and zs= 1.5 four our kernel
function to buld our binary base dassfiers using the widely
used SVM¥ght [20] program.

3.3 Direct K-way Classifier

The direa K-way clasdficaion models were built using the
pubicly avail able implementation o the dgorithm described
in Sedion 22 from the authors[9].

To ensure that the schemes are compared fairly, we use
the same SW-PS3M kernel function used by the binary SVM
clasdfiers (Sedion 32). We tested the dired K-way clas-
sifiers using linea kernel functions as well, but the perfor-
mance of the SW-PS3M kernels were substantially better.

3.4 Performance Assess ment Measures

We asesed the performance of final clasdficaion using
zero-one aror rates (ZE), where every misclassficaion was
penalized by ore. We dso evaluated ou results using a bal-
anced error rate (BE), which took into acourt the varying
class $ze distributions. This classsensitive eror rate had a



lower penalty for misclassfying a test instance belongng to
alarger class In particular the eror on ead mistake is in-
versely propational to the true dass $ze

3.5 Training Methodo logy

For ead dataset we separated the proteins into test and train-
ing sets, ensuring that the test set is never used duing any
parts of the learning phese.

For DS1 and DS2 (DS3 and D$4), the test set is con
structed by seleding from ead superfamily (fold) all the se-
guences that are part of one family (superfamily). Thus dur-
ing training, the dataset does not contain any sequences that
are homologous (remote homologots) to the sequencesin the
test set and thus allows us to evaluate/asessremote homol-
ogy prediction (fold recognition) performance.

Thisis a standard protocol for evaluating remote homol-
ogy cetedion and fold recogntion and has been used in a
number of ealier studies[31, 35, 22, 19].

The cascaded models are trained as follows. We split the
training datainto 10crossvalidation sets, where we learn the
binary models from the partitioned dataset and perform clas-
sificaion onthe held ou set to get prediction ouputs. These
prediction ouputs srve & training samples for the second
level leaning wsing the ranking perceptron a the structured
SVM agorithm. At the final stage, we compute the predic-
tionfor our untouched dataset evaluatingthe acairadesusing
zero-error and class $ze sensitive balanced error rates.

3.6 Model Selection

The performance of SVM depends onthe parameter that con-
trols the trade-off between the margin and the misclassfica
tioncost (“C” parameter in SV M-Struct), whereas the perfor-
mance of ranking perceptron depends on the parameter 3 in
Algorithm 1.

We perform amodel seledion a parameter seledion step.
To perform this exercise fairly, we split our test set into two
equal halves of similar distributions, namely sets A and B.
Using set A, we vary the controlling parameters and seled
the best performing model for set A. We use this sleded
model and compute the acarracy for set B. We repea the
abowe steps by switching the roles of A and B. The fina ac
curagy results are the average of the two runs. While using
the SVM-Struct program we let C take values from the set
{0.0001 0.001, 0.005, 0.01, 0.02, 0.05,0.1, 0.2, 0.5, 1.0, 2.0,
4.0, 8.0, 10.0, 16.0, 32.0, 64.0, 1280}. While using the per-
ceptron algorithm we let the margin 3 take values in the set
{0.0001, 0.005, 0.001, 0.05, 0.01, 0.02, 0.5, 0.1, 1.0, 2.0, 5.0,
10.0}.

4 Results

41 Zero-One and Balanced Error
mance

Perfor-

The performance of various hemes in terms of zero-one
and belanced error is mmearized in Tables 2 and 3 for re-
mote homology prediction and fold recogrition, respedively.

The schemes that are included in these tables are the foll ow-
ing: (i) the MaxClasdfier (Sedion 23.1), (ii) the dired K-
way clasdfier (Sedion 22), (iii) the two-level leaning ap-
proaches based oneither the superfamil y- or fold-level binary
classfiers (Sedion 23.2), and (iv) the two-level leaning ap-
proadches that also incorporate hierarchicd information (Sec
tion 24).

For the dired K-way and two-level leaning approaches
these tables show the results obtained by opimizing bah
zero-one loss (ZL) and balanced loss (BL). Note that since
the MaxClassfier relies lely onthe outputs of theindividual
one-vsrest binary clasdfiers, it does nat explicitly optimize
any particular lossfunction.

For all two-level | earning approacdhes (with andwithou hi-
erarchicd i nformation) these tables show the results obtained
by using the scding (S), scde & shift (S, and Crammer-
Singer (CS) schemesto construct the second-level classfiers.

4.1.1 Performance of Direct K-way Classifier.
Comparingthedired K-way clasdfiers against the MaxClas-
sifier approach we seethat, in general, the eror ratesachieved
by the dired approach are smaller for both the remote ho-
mology prediction and fold reagrition problems. In many
cases these improvements are substantial. For example, The
BL-optimized dired K-way clasdfier achievesa 10.9% zero-
one aror rate for DS2 compared to a correspondng error rate
of 21.0% achieved by MaxClassfier. The only exceptionis
the DS3 dataset for which the MaxClasdfier achieves dightly
better resultsin terms of ZL than the dired clasdfier. In addi-
tion, unlike the common kelief that learning SVM-based di-
red multiclassclassfiers is computationally very expensive,
we foundthat the Crammer-Singer formulation that we used
to require time that is comparable to that required for buil d-
ing the various binary clasdfiers used by the MaxClasdfier

approach.

4.1.2 Non-Hierarchical Two-Level Learning Ap-
proaches. Analyzingthe performanceof the varioustwo-
level clasdfiers that do nd use hierarchicd information we
seethat the scding (S) andscde & shift (S schemesadieve
better error rates than those adieved by the Crammer-Singer
(CS) scheme. The only exception is the DS3 dataset for
which the ZL -based CS scheme adieves the best results.
Sincethe hypahesis gaceof the CS schemeis a superset
of the hypahesis gpaces of the S and SS schemes, we found
this result to be surprising at first. However, in analyzing the
charaderistics of the modelsthat werelearned we naticed that
the reason for this performance diff erenceis the fad that the
CS scheme tended to owerfit the data. This was evident by
the fad that the CS scheme had lower error ratesonthe train-
ing set than either the S or SSschemes (results not reported
here). Since CS'slinea model has more parameters than the
other two schemes, due to the fad that the sizeof the training
set for al threeof them is the same and rather limited, such
overfitting can easily occur. We believe that the CS scheme
can paentialy outperform the other two schemes for prob-
lems in which the training set is larger, and this is something



Table 2: Percentage Error for the remote homology detedion

problem.
DSl DSs2
ZE BE ZE BE
Simple Combination o Binary Outputs
MaxClassfier 147 300 210 297
Dired K-way Clasdfiers
ZL 135 248 205 265
BL 115 231 109 130
Two-Level Approaches
Withou Hierarchy Information
Ranking Perceptron
ZL,S 106 180 117 165
ZL,SS 132 245 109 134
ZL,CS 170 343 142 194
BL,S 93 161 109 139
BL, SS 101 195 121 158
BL, CS 147 289 176 241
SVM-Struct
ZL,S 107 181 134 173
ZL,SS 124 237 134 173
ZL,CS 127 252 155 198
BL,S 9.0 159 118 157
BL, SS 107 199 121 151
BL, CS 116 194 130 163
With Hierarchy Information
With Fold-level Nodes
SVM-Struct
ZL,S 104 187 147 200
ZL,SS 124 237 147 214
ZL,CSs 138 250 147 196
BL,S 112 196 147 214
BL, SS 101 193 121 169
BL,CS 147 260 130 182
With Fold-level and Classlevel Nodes
SVM-Struct
ZL,S 109 191 126 177
ZL,SS 112 209 134 178
ZL,CS 141 276 126 171
BL,S 112 202 130 188
BL, SS 135 247 121 168
BL, CS 147 261 130 175

ZE and BE denote the zego-one aror and balanced error percent rates respedively. ZL
and BL are the zgo-one and belanced lossfunctions respedively. S, SSand CS denate
the scding, scde & shift and Crammer-Singer schemes respedively.

Table 3: Percentage Error for the fold recogrition problem.

DS3 D4
ZE BE ZE BE
Simple Combination o Binary Outputs
MaxClassfier 420 603 444 646
Direa K-way Clasdfiers
ZL 428 594 430 627
BL 384 523 404 569
Two-Level Approaches
Withou Hierarchy Information
Ranking Perceptron
ZL,S 399 529 322 506
ZL,SS 384 513 273 448
ZL,CS 348 489 377 566
BL,S 395 487 325 480
BL, SS 388 510 290 430
BL,CS 377 496 360 496
SVM-Struct
ZL,S 413 552 337 500
ZL,SS 410 543 290 462
ZL,CSs 366 494 325 496
BL,S 399 527 308 466
BL, SS 399 525 281 428
BL, CS 413 505 311 433
With Hierarchy Information
With Classlevel Nodes
SVM-Struct
ZL,S 399 522 319 502
ZL,SS 384 529 293 446
ZL,Cs 392 518 328 529
BL,S 392 524 299 450
BL, SS 381 516 290 417
BL,CS 417 509 299 417
With Superfamily-level Nodes
SVM-Struct
ZL,S 395 539 313 488
ZL,SS 399 534 313 484
ZL,CS 377 521 334 510
BL,S 402 526 305 445
BL, SS 406 527 293 428
BL,CS 388 488 310 449
With Superfamily-level and Classlevel Nodes
SVM-Struct
ZL,S 392 522 273 410
ZL,SS 399 539 284 441
ZL,CS 388 547 313 480
BL,S 410 509 337 446
BL, SS 395 515 293 423
BL,CS 402 519 302 424

ZE and BE denate the zgo-one aror and belanced error percent rates respedively. ZL
and BL are the zeo-one and balanced lossfunctions respedively. S, SSand CS denote
the scding, scde & shift and Crammer-Singer schemes respedively.



that we ae aurrently investigating. Note that these observa-
tions regarding these three gproaches hdd for the two-level
approaches that use hierarchicd i nformation as well .

Comparing the performance of the S and SS schemes
against that of the dired K-way clasdfier we see that the
two-level schemes are somewhat worse for DS2 and DS3 and
considerably better for DS1 and DS4. In addition, they are
consistently and substantially better than the MaxClassfer
approach aaossall four datasets.

4.1.3 Hierarchical Two-Level Learning Ap-
proaches. Tables 2 and 3 contains results that show
the performance that is achieved by incorporating dff erent
types of hierarchicd information in the two-level leaning
framework. For the remote homology prediction problem
they present results that combine information from the
ancestor nodes (fold and fold+clasg, whereas for the fold
recogntion problem they present results that combine
information from ancestor nodes (clasy, descendant nodes
(superfamily), and their combination (superfamil y+clasg.

Analyzing the results obtained for the remote homology
prediction problems we seethat the use of hierarchicd infor-
mation daes not improve the aror rates. In fad, the two-level
schemesthat do nd use hierarchicd information achieve con-
sistently smaller error rates than the ones that do. However,
the situation is different for the fold recognition problemsin
which the use of hierarchicd information leads to some im-
provements for D4, espedally in terms of balanced error.

In terms of which hierarchicd information is more benefi-
cial, by looking at the various results we can seethat adding
information from ancestor nodes is in genera better than
adding information from descendant nodes, and combining
both types of information can sometimes leal to goodclas-
sificaion performance In fad, the best performance (ZE of
27.3% and BE of 41.0%) was achieved by such a combined
scheme.

4.1.4 Alternative Performance Assess ment Meth-
ods. Given a sequence z, the various clasdfication func-
tionsthat are learned during the second-level leaning (Equa-
tions 4-8) also return aranking o the K classes. This rank-
ing provides key information asto what the dasdfier believes
are the most likely classes of z. In the case of the zeo-one
and balanced error only the first classin this ranked order
is considered. If it happens to be wrred, then there is no
error, wheress if the highest rank classis incorred, then z
is considered to be mispredicted. However, from a pradicd
standpdnt, certain mispredictions are worse than others. For
example, if z’strue dassisthe secondranked prediction, then
thisis better than if it was the last ranked prediction.

To better understand the multiclass models produced by
incorporating hierarchy information we analyzed the dassfi-
caion errors of the two-level approach that does not use hi-
erarchy information and thase produced by the gpproach that
does in terms of their position within the computed ranking.
Due to space onstraints, we limited our analysis to the DS3
and D4 datasets and the hierarchy-aware scheme that uti-

lizes classlevel information.

For ead misclassfied sequencez we computed two quan-
tities. The first, referred to as IN, is the number of folds that
are part of the same SCOP class with z that were ranked
higher than z’s true fold. The second, referred to as OUT,
is the number of folds that are part of a different SCOP class
from z that were ranked higher than z’strue fold. The sum of
the IN and OUT values for ead ore of the mispredicted se-
quences for the various hemes are shown in Table 4. These
results show that the schemes that utili ze hierarchy informa-
tion have consistently smaller IN and OUT values and in
many cases, these differences are quite substantial. The re-
ductionin terms of the OUT valuesis general higher, indica-
ing that by incorporating SCOP classinformation, the das-
sifiers were ale to eliminate many of the incorred rankings
that put afold that belongs to a diff erent SCOP classas a bet-
ter prediction than a fold within the same SCOP class The
reductionin termsof the IN valuesindicaethat the dasdfiers
utili zing hierarchy information were eble to move the crred
fold higher up in the ranking. Both of these charaderistics
are desirable, indicating that the use of hierarchy information
does leal to better clasdfiers, even thoughthey may not re-
ducethe zeo-one or the balanced error.

Table 4: Ancestor Level Errors for the fold recogrition prob-
lem.

DS3 D4
METHOD IN OUT IN OUT
Withou Hierarchy Information
ZL,S 91 411 130 506
ZL,SS 96 450 136 499
ZL,CSs 91 377 134 490
BL,S 118 487 137 536

BL, SS 109 462 136 525
BL, CS 100 438 137 536

With Classlevel Nodes

ZL,S 96 371 103 438
ZL,SS 94 375 102 442
ZL,CSs 90 371 131 472
BL,S 93 402 118 454
BL, SS 94 389 118 454

BL,CS 104 400 118 454

IN and OUT are asesanent statistics (Seetext for details). ZL and BL arethe zgo-one
and balanced lossfunctions respedively. S, SSand CS denate the scding, scde & shift
and Crammer-Singer schemes respedively.

4.1.5 SVM-Struct versus Ranking Perceptron.
For the two-level approaches that do nd use hierarchica
information, Tables 2 and 3 show the eror-rates achieved by
bath the ranking perceptron and the SVM-struct algorithms.
From these results we can seethat for the S and SSschemes,
the performance adieved by the ranking perceptron are
comparable to and in some cases dightly better than those
achieved by the SVM-struct algorithm. However, in the case
of the CS scheme, SVM-struct is superior to the perceptron
and achieves substantially smaller error rates.

This relative performance of the perceptron algorithm is



bath surprising as well as expeded. The surprising asped is
that it is able to kegp upwith the considerably more sophisti-
caed, mathematicdly rigorous, and computationally expen-
sive optimizers used in SVM-struct, which tend to converge
toalocd minimum solutionthat is close the global minimum.
However, this behavior, espedally when the results of the CS
scheme ae taken into acourt, was expeded because the hy-
pothesis gpaces of the S and SSschemes are rather small (the
number of variablesin the Sand SSmodelsare K and2K, re-
spedively) and as such the optimization problem isrelatively
easy. However, in the case of the CS scheme which is param-
eterized by K2 variables, the optimizaion problem becomes
harder, and SVM-struct’s optimization framework is cgpable
of finding a better solution.

Due to this observationwe did nat pursue the ranking per-
ceptron algorithm any further when we considered two-level
models that incorporate hierarchy information.

4.1.6 Zero-One versus Balanced Loss. Comparing
the two different loss functions we see that for almost all
schemes, balanced loss leads to smaller zero-one and bel-
anced error rates. Even thoughthis result was expeded for
the balanced error, for which balanced losswas edficdly
designed for, its advantage in terms of zero-one eror was ur-
prising. Determining the reason for this behavior is currently
uncer investigation.

4.2 Comparison with Earlier Results

As discussd in the introduction, our reseach in this paper
was motivated by the recent work of le et. al. [17] in which
they looked at the same problem of solving the K-way clas-
sificaion problem in the context of remote homology and
fold recogrition and presented atwo-level leaning approach
based onthe scding scheme (S) with andwithou hierarchicad
information. Table 5 shows the results that were reported in
their paper for the DS1 dataset for the remote homology pre-
diction problem. All the methods are similar in nature with
the correspondng schemes presented in Table 2.

Thekey diff erences between the methods shownin Table 5
and ou correspondng methods are that (i) the one-vs-rest bi-
nary classfiers were obtained using the profile kernel [22]
whereas our schemes used the SW-PS3M kernel, and (ii) our
results have been optimized by performing amodel seledion
step (Sedion 36). Comparing the performance of the Max-
Classfier scheme in Tables 2 and 5we can seethat our ap-
proach achieves substantially smaller error rates. Thisisadi-
red consequence of the fad that the SW-PS3M kernel |eads
to better binary clasdfiers than the profile kernel, which isin
agreement with the results presented in[31]. Also, the perfor-
mance of our correspondng two-level leaners is better than
thase shown in Table 5. We believe that this is due to the
improved binary clasdfiers aswell as model seledion.

Notethat leet. al. [17] also presented resultsin which they
used the DS1 dataset for fold recogritionaswell. However, in
their experiments they used the same set of famili es that were
kept aside to evaluate the remote homology prediction per-

10

formance for assessng the performance of fold recognition.
However, as was discussed in Sedion 31, this method daes
not provide arepresentative fold recgntion performance
sincethe test sequences are remotely homologousto the folds
that we want to predict. For this reason, we did na use DS1
anditscorrespondngfamil y-based test set in our experiments
and we canna compare our results with the fold-recognition
results presented in [17].

Table 5: Comparative results for the remote homology detec
tion problem on dataset DS1

ZE BE
Simple Combination o Binary Outputs
MaxClasdfier 20.7 380
Two-Level Approaches
Withou Hierarchy Information
Ranking Perceptron
ZL,S 219 344
BL, S 218 367
SVM-Struct
ZL,S 218 367
BL, S 207 376
With Hierarchy Information
With Fold-level Nodes
Ranking Perceptron
ZL,S 230 376
BL,S 206 349
SVM-Struct
ZL,S 248 374
BL,S 204 375

ZE and BE denate the zeo-one aror and belanced error percent rates respedively. ZL
and BL are the zeo-one and balanced lossfunctions respedively. S denates the scaing
scheme results. Note these results were previously published in [17].

5 Discussion and Conclusions

The work described in this paper was designed to answer
three fundamental questions. First, whether or not SVM-
based approaches that diredly lean multiclassclasdgficaion
models can effedively and computationally efficiently solve
the problems of remote homology prediction and fold recg
nition. Second whether or nat the recently developed highly
acairate binary SVM-based one-vs-rest classfiersfor remote
homology prediction and fold recogntion can be utilized
to buld an equally effedive multiclass prediction scheme.
Third, whether or not the incorporation o binary SVM-based
prediction models for coarser and/or finer levels of a typi-
cd protein structure hierarchicd classfication scheme can be
used to improve the multi classclassficaion performance
The cmprehensive experimental evaluation o a num-
ber of previously developed methods or novel methods in-
trodwced in the murse of this work using four different
datasets derived from the SCOP protein structure dassfica
tion scheme showed that, to alarge extent, the answer to all
threeof these questions to be yes. The schemes developed in
this work show that SVM-based approaches are aviable toadl
for developing highly effedive dasdfiers and can be used in



production environments under operational requirements that
better serve the needs of the biologists.
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