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Abstract

Motivation Protein remote homology prediction and fold
recognition are central problems in computational biology. Super-
vised learning algorithms based on support vector machines are
currently one of the most effective methods for solving these prob-
lem. Thesemethodsareprimarily used to solvebinary classification
problems andtheyhavenot been extensively used to solvethe more
general multiclass remotehomology prediction andfold recognition
problems.

Method s Wedeveloped a number of methodsfor building SVM-
based multiclassclassification schemes in the context of the SCOP
protein classification. These methods includes schemes that directly
build an SVM-based multiclassmodel, schemes that employ a sec-
ond level learning approach to combine the predictions generated
by a set of binary SVM-based classifiers, andschemesthat build and
combine binary classifiers for various levels of the SCOP hierarchy
beyondthosedefining the target classes.

Results Weperformed acomprehensivestudyanalyzingthedif-
ferent approaches using four different datasets. Our results show
that most of the proposed multiclassSVM-based classification ap-
proaches are quite effectivein solving the remote homology predic-
tion andfold recognition problems and that the schemes that use
predictions frombinary modelsconstructed for ancestral categories
within theSCOP hierarchy tend to qualitatively improvethepredic-
tion results.

Website: http://bioinfo.cs.umn.edu/supplements/mc-fold/

Keywords: fold recognition, remote homology, multiclass, hi-
erarchical, structured learning, support vector machines.

1 Introdu ction

Breakthroughs in large-scale sequencing have led to a surge
in the availableprotein sequenceinformation that has far out-
stripped our abilit y to experimentally characterizetheir func-
tions. As a result, researchers are increasingly relying on
computational techniques to classify proteins into functional
and structural famili es based solely on their primary amino
acid sequences. While satisfactory methods exist to detect
homologs with high levels of similarity, accurately detecting
homologsat low levelsof sequencesimilarity (remotehomol-

ogy detection) still remainsa challenging problem.
Over the years several methods have been developed to

address the problems of remote homology prediction and
fold recognition. These includes methods based on pairwise
sequence comparisons [30, 3, 28, 36], on generative mod-
els [21, 4], and on discriminative classifiers [18, 25, 23, 24,
15, 16, 35, 22, 31].

Recent advances in string kernels that have been specif-
ically designed for protein sequences and capture their evo-
lutionary relationships [22, 31] have resulted in the devel-
opment of support vector machines-based (SVMs) [41] dis-
criminative classifiers that show superior performance when
compared to theother methods [31].

TheseSVM-basedapproachesweredesigned to solveone-
versus-rest binary classification problems and to this date,
they are primarily evaluated with respect to how well each
binary classifier can identify the proteins that belong to its
own class(e.g., superfamily or fold). However, from a biol-
ogist’s perspective, the problem that he or she is facing (and
will li ke to solve) is that of identifying the most likely super-
family or fold (or a short list of candidates) that a particular
protein belongs to. This is essentially a multiclassclassifica-
tion problem, in which given a set of

�
classes, we will li ke

to assigna protein sequenceto oneof them.
Even though highly accurateSVM-based binary classifiers

can go a long way in addressing some of the biologist’s re-
quirements, it is still unknown how to best combine the pre-
dictions of a set of SVM-based binary classifiers to solve
the multiclassclassification problem and assign a protein se-
quenceto aparticular superfamily or fold. Moreover, it isnot
clear, if schemes that combine binary classifiers are inher-
ently better suited for solving the remote homology predic-
tionandfold recognition problemsover schemesthat directly
build an SVM-based multiclassclassificationmodel.

Thisproblem wasrecently recognized byIeet al. [17] and
developed schemes for combining the outputs of a set of bi-
nary SVM-based classifiers for primarily solving the remote
homology prediction problem. Specifically borrowing ideas
from error-correcting output codes [10, 2, 8], they developed
schemes that use aseparate learningstep to learn how to best
scaletheoutputsof thebinary classifiers such that when com-
bined with a scheme that assignsaprotein to the classwhose
corresponding scaled binary SVM prediction is the highest,
it achieves the best multiclass prediction performance. In
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addition, for remote homology prediction in the context of
the SCOP [27] hierarchical classification scheme, they also
studied the extent to which the use of such hierarchical in-
formationcan further improvetheperformanceof remoteho-
mology prediction. Their experiments showed that these ap-
proaches lead to better results than the traditional schemes
that use either the maximum functional output [32] or those
based onfitting a sigmoid function [37].

In thispaper, motivated bythepositiveresultsof Ieet al’s.
work, we further study the problem of building SVM-based
multiclassclassificationmodels for remotehomology predic-
tion and fold recognition in the context of the SCOP protein
classification scheme. We present a comprehensive study of
different approachesfor buildingsuch classifiersincluding(i)
schemes that directly build an SVM-based multiclassmodel,
(ii ) schemes that employ a second level learner to combine
thepredictionsgenerated byaset of binary SVM-based clas-
sifiers, and (iii ) schemes that build and combine binary clas-
sifiers for various levels of the SCOP hierarchy. In addition,
we present and study threedifferent approaches for combin-
ingtheoutputsof thebinary classifiersthat lead to hypothesis
spacesof different complexity andexpressivepower.

These schemes are thoroughly evaluated for both remote
homology prediction and fold recognition using four differ-
ent datasetsderived from Astral [5]. Our experimental results
show that most of the proposed multiclassSVM-based clas-
sificationapproachesarequite effective in solving theremote
homology prediction and fold recognition problems. Among
them, schemesemployingatwo-level learningframework are
in general superior to those based on the direct SVM-based
multiclassclassifiers, even thoughthe performance achieved
by the later schemes is quite respectable. Our results also
show that the multiclassclassifiers that use predictions from
binary models constructed for ancestral categorieswithin the
SCOP hierarchy tend to qualitatively improve the prediction
results.

2 Method s

2.1 � -way Class ification Problem

Given a set of � training examples� � � � � � � � � 	 	 	 � � � 
 � � 
 � �
, where example � � is drawn

from a domain  � � �
and each of the label � � is an

integer from the set � � � � � 	 	 	 � � �
, the goal of the

�
-way

classification problem is to learn a model that assigns the
correct label from the set � to an unseen test example. This
can be thought of as learning a function � �  � � which
mapseach instance � to an element � of � .

2.2 Direct SVM-based � -way Class ifier Solu-
tion

One way of solving the
�

-way classification problem using
support vector machines is to use one of the many multi -
class formulations for SVMs that were developed over the
years [11, 12, 42, 1, 9]. These algorithms extend the notions
of separating hyperplanesandmarginsand learn amodel that

directly separates thedifferent classes.
In this study we evaluate the effectivenessof one of these

formulations that wasdeveloped byCrammer andSinger [9],
which leads to reasonably efficient optimization problems.

This formulation aims to learn a matrix � of size
� � �

such that the predicted class � �
for an instance � is given by

� � � ��  ! " � #$ % & ' ( ) $ * + , - * (1)

where � � is the . / 0
row of � whosedimension is � .

This formulation models each class . by its own hyper-
plane (whosenormal vector corresponds to the . / 0

row of the
matrix � ) and assignsan example � to the class . that maxi-
mizes its corresponding hyperplanedistance.

� itself is learned from the training data following a
maximum margin with soft constraints formulation that gives
rise to the following optimization problem [9]:

1 2 3 �4 5 � 4 6 7 
� 8 � 9 � �
subject to: : . � ; < � = > � � � ? 6 @ = > A B C < � B � � � ? D � C 9 �

(2)

where
9 � D E

are slack variables,
5 F E

is a regularization
constant, and

@ = > A B is equal to
�

if ; � � � , and 0 otherwise.
As in the binary support vector machines the dual version

of the optimization problem and the resulting classifier de-
pends only on the inner products, which allows us to use any
of the recently developed protein string kernels.

2.3 Merging � One-vs-Rest Binary Class ifiers

An alternateway of solvingthe
�

-way classification problem
in the context of SVM is to first build a set of

�
one-versus-

rest binary classification models
� � � � � 4 � 	 	 	 � � G �

, use all of
them to predict an instance � , and then based on the predic-
tions of these base classifiers

� � � � � � � � 4 � � � � 	 	 	 � � G � � � �
as-

sign � to one of the
�

classes [10, 2, 37].

2.3.1 Max Class ifier A commonway of combiningthe
predictions of a set of

�
one-versus-rest binary classifiers is

to assume that the
�

outputs are directly comparable andas-
sign � to the classthat achieved the highest one-versus-rest
prediction value; that is, theprediction � �

for an instance � is
given by

� � � ��  ! " � #$ % & ' H $ I + J - K (3)

However, the assumption that the output scores of the dif-
ferent binary classifiers are directly comparable may not be
valid, asdifferent classesmay beof different sizesand/or less
separable from the rest of thedataset- indirectly affecting the
natureof the binary model that was learned.

2.3.2 Cascaded SVM-Learning Approaches A
promising approach that has been explored in combining the
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outputsof
�

binary classificationmodels is to formulate it as
a cascaded learning problem in which a second level model
is trained onthe outputs of the binary classifiers to correctly
solve themulticlassclassification problem [17, 10, 2].

A simplemodel that can be learned is thescalingmodel in
which the final prediction for an instance � is given by

� � � ��  ! " � #$ % & ' � $ H $ I + J - * (4)

where � � is a factor used to scale the functional output of the
. / 0

classifier, and theset of
� � � scaling factorsmakeup the

model that is being learned during the second level training
phase[17]. Wewill refer to this scheme asthescalingscheme
(S).

An extension to the above scheme is to also incorporate a
shift parameter � � with each of the classes and learn a model
whoseprediction isgiven by

� � � ��  ! " � #$ % & ' � $ H $ I + J � � $ - K (5)

The motivation behind this model is to emulate the ex-
pressivepower of the z-score approach (i.e., � � � � � � � � � � �

C � � � � � ) but learn these parameters using a maximum mar-
gin framework. Wewill refer to this as the scale � shift (SS)
model.

Finally, a significantly more complex model can be
learned by directly applying the Crammer-Singer multiclass
formulation onthe outputs of the binary classifiers. Specifi-
cally, the model corresponds to a

� � �
matrix � and the

final prediction isgiven by

� � � ��  ! " � #$ % & ' ( ) $ * H I + J , - * (6)

where � � � � � � � � � � � � � 4 � � � � 	 	 	 � � G � � � �
is the vector con-

tainingthe
�

outputsof theone-versus-rest binary classifiers.
Wewill refer to this as the Crammer-Singer (CS) model.

Comparing the scaling approach to the Crammer-Singer
approach we can see that the Crammer-Singer methodol-
ogy is a more general version and should be able to learn a
similar weight vector as the scaling approach. In the scal-
ing approach, there is a single weight value associated with
each of the classes. However, the Crammer-Singer approach
has a whole weight vector of dimensions equal to the num-
ber of features per class. During the training stage, for the
Crammer-Singer approach if all the weight values � � A 	 �E � : . 
� �

the weight vector will be equivalent to the scaling
weight vector. Thus we would expect the Crammer-Singer
setting to fit thedataset much better during the trainingstage.

2.4 Use of Hierarchical Information

Oneof thekey characteristicsof remotehomology prediction
and fold recognition is that the target classes are naturally
organized in a hierarchical fashion. This hierarchical organi-
zationisevident in thetree-structured organization of thevar-
ious known protein structures that is produced by the widely
used protein structure classification schemes of SCOP [27],

CATH [29] andFSSP[14].
In our study we use the SCOP classification database to

define the remote homology prediction and fold recognition
problems. SCOPorganizestheproteinsinto four primary lev-
els (class, fold, superfamily, and family) based on structure
and sequencesimilarity. Within the SCOP classification, the
problem of remote homology prediction corresponds to that
of predicting thesuperfamily of aparticular protein under the
constraint that the protein is not similar to any of its descen-
dant famili es, whereas the problem of fold recognition cor-
responds to that of predicting the fold (i.e., second level of
hierarchy) under the constraint that the protein is not similar
to any of its descendant superfamili es.1

The questions that arise are whether or not and how we
can take advantage of the fact that the target classes (either
superfamili es or folds) correspondto a level in a hierarchical
classification scheme, so as to improve the overall classifica-
tion performance?

The approach investigated in this study is primarily mo-
tivated by the different schemes presented in Section 2.3.2
to combine the functional outputsof multipleone-versus-rest
binary classifiers. A general way of doingthis is to learn abi-
nary one-versus-rest model for each or a subset of the nodes
of the hierarchical classification scheme, and then combine
thesemodelsusingan approach similar to theCS-schemede-
scribed in Section 2.2.

For example, assume that we are trying to learn a fold-
level multiclassmodel with

� � foldswhere
�  is thenumber

of superfamili es that are descendants of these
� � folds, and

� � is the number of classes that are ancestors in the SCOP
hierarchy. Then, we will build

� � 6 �  6 � � one-versus-
rest binary classifiers for each oneof the folds, superfamili es,
and classes and use them to obtain a vector of

� � 6 �  6
� � predictions for a test sequence � . Then, using the CS
approach, we can learn asecondlevel model � of size

� � �� � � 6 �  6 � � �
and use it to predict the classof � as

� � � ��  ! " � #$ % & ' ( ) $ * H I + J , - * (7)

where � � � �
is avector of size

� � 6 �  6 � � containing the
outputs of the binary classifiers.

Note that the output spaceof this model is still t he
� �

possiblefolds, but themodel combinesinformation both from
thefold-level binary classifiersaswell asthebinary classifiers
for superfamily- and class-level models.

In addition to CS-type models, the hierarchical informa-
tion can also be used to build simpler models by combining
selective subsets of binary classifiers. In our study we exper-
imented with such models by focusing only on the subsets
of nodes that are characteristic for each target classand are
uniquely determined by it. Specifically, given a target class
(i.e., superfamily or fold), the path starting from that node

1Thesetwo constraintsareimportant becauseif they areviolated, then we
are actually solving either the family or remote homology prediction prob-
lems, respectively
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andmoving upwards towards the root of the classification hi-
erarchy uniquely identifies a set of nodes corresponding to
higher level classes containing the target class. For example,
if the target classis a superfamily, this path will i dentify the
superfamily itself, itscorresponding fold, and itscorrespond-
ing classin theSCOP hierarchy.

We can construct a second level classification model by
combining for each target class the predictions computed
by the binary classifiers corresponding to the nodes along
these paths. Specifically, for the remote homology recogni-
tion problem, let

�  be the number of target superfamili es,
� � � � �

the prediction computed by the . / 0
superfamily classi-

fier, � � �> � � �
theprediction of thefold classifier corresponding

to the . / 0
superfamily, and � � �> � � �

the prediction of the class
level classifier corresponding to the . / 0

superfamily, then we
can expresstheprediction for instance � as

� � � � ��  ! " � #$ % & ' � $ H $ I + J � � � �> H � �> I + J � � � �> H � �> I + J - * (8)

where � � � � � �> and � � �> are scaling factors learned during
training of thesecondlevel model.

Notethat theunderlyingmodel in Equation 8isessentially
an extension of the scaling model of Equation 4as it li nearly
combines the predictions of the binary classifiers of the an-
cestor nodes.

In a similar fashion, we can use the scale and shift type
approach for every node in the hierarchical tree. This allows
for an extra shift parameter to be associated with each of the
nodes being modeled. Note that similar approaches can be
used to define models for fold recognition, where aweight
vector is learned to combine the target fold level node along
with its specific classlevel node. A model can also belearned
by not consideringall the levelsalongthepaths to the root of
the tree.

Thegeneric problem of classifyingwithin the context of a
hierarchical classificationsystemhasrecently beenstudied by
themachine learning community anda number of alternative
approacheshavebeen developed [40, 38, 34].

2.5 Structured Output Spaces

The various models introduced in Sections 2.3.2 and 2.4 can
be expressed using a unified framework that was recently in-
troduced for learning in structured output spaces [40, 6, 7,
39].

This framework [40] learns a discriminant function � �
 � � � �

over input/output pairs from which it derives
predictions by maximizing � over the response variable for
a specific given input � . Hence, the general form of the hy-
pothesis � is

� I + � 	 J � �  ! " � #
 � � '  I + * � � 	 J - * (9)

where � denotes a parameter vector. Function � is a � -
parameterized family of functions that is designed such that

� � � � � � � �
achievesthemaximum valuefor the correct output� . Amongthevariouschoicesfor � , if wefocusonthosethat

are linear in a combined feature representation of inputs and
outputs, � � � � � �

, then Equation 9can be rewritten as [40]:

� I + � 	 J � �  ! " � #
 � � ' ( 	 * � I + * � J , - K (10)

The specific form of � dependson the nature of the prob-
lem and it is this flexibilit y that allowsus to represent thehy-
pothesis spaces introduced in Sections 2.3.2 and 2.4 in terms
of Equation 10.

For example, consider the simple scaling scheme for the
problem of fold recognition (Equation 4). The input space
consists of the � � � �

vectors of the binary predictions and the
output space � consists of the set of

� � folds (labeled from� 	 	 	 � � ). Given an example � belonging to fold . (i.e., � �
. ), the function � � � � � �

maps the
� � � � �

pair onto a
� � -size

vector whose . th entry (i.e., the entry corresponding to � ’s
fold) is set to � � � � �

and the remaining entries are set to zero.
Then, from Equation 10wehave that

� I + � 	 J � � ��  ! " � #$ % & ' ( 	 * � I + * � J , - � � ��  ! " � #$ % & ' 	 $ H $ I + J - * (11)

which is similar to Equation 4with � representing thescaling
vector � .

Similarly, for the scale & shift approach (Equation 5), the
� � � � � �

function maps the
� � � � �

pair onto a feature spaceof
size � � � , where the first

� � dimensions are used to encode
thescaling factorsand thesecond

� � dimensionsareused to
encode the shift factors. Specifically, given an example � be-
longing to fold . , � � � � � �

maps
� � � � �

onto the vector whose
. th entry is � � � � �

, it’s
� � . � / 0

entry is one, and the remaining
entriesareset to zero. Then, from Equation 10wehave that

� � � � � � � G �� � � 1 � �� 8 � � < � � � � � � . � ? �

� G �� � � 1 � �� 8 � � � � � � � � � 6 � 4 � � �
(12)

which is equivalent to Equation 5, with the first half of �
corresponding the scale vector � , and the second half cor-
responding to the shift vector � .

Finally, in the case of the Cramer-Singer approach, the
� � � � � �

function maps
� � � � �

onto a feature space of size
� � � � � . Specifically, given asequence � belonging to fold

. , � � � � � �
maps

� � � � �
onto thevector whose

� � entries start-
ing at

� . C � � � � are set to � � � �
(i.e., the fold prediction out-

puts) and the remaining
� � � C � � � � entries are set to zero.

Then, by rewriting Equation 10in terms of the above com-
bined input-output representation, weget

� � � � � � � G �� � � 1 � �� 8 � � < � � � � � � . � ? �

� G �� � � 1 � �� 8 �
� 7 G �	 8 � � � � � � � G � � 	 � 	 � � � � 	

(13)

This is equivalent to Equation 6, as � can be viewed as the
matrix � with

� � rowsand
� � columns.
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Algorithm 1 Learning Weight Vectors with the ranking per-
ceptronalgorithm

Input: � : Number of Training Samples.� � � � �
: Training Samples.5

: User constant to control separationconstraints.� : Learning rate.
Output: � : Weight Vector.

1: � � E
2: while STOPPING CRITERION = false do
3: for . � �

to � do
4: � �� � � � � 1 � � = � � < � � � � � � � � � ?
5: if � �� � � � then
6: � �� � � � � 1 � � = � � � = > < � � � � � � � � � ?
7: end if
8: if < � � � � � � � � � � ? C < � � � � � � � � �� � ? � 5 � � � 4 then
9: � � � 6 � � � � � � � � �

10: � � � C � � � � � � � �� �
11: end if
12: end for
13: end while
14: Return �

2.5.1 Ranking Perceptron. One way of learning � in
Equation 10, is to use the recently developed extension to
Rosenblatt’s linear perceptron classifier [33], called ranking
perceptron [6]. This is an online learning algorithm that it-
eratively updates � for each training example that is mis-
classified according to Equation 10. For each misclassi-
fied example � � , � is updated by adding to it a multiple of� � � � � � � � � C � � � � � � �� � �

, where � �� is given from Equation 10
(i.e., the erroneously predicted class for � � ). This online
learning framework is identical to that used in standard per-
ceptronlearningandisknown to convergewhen the examples
are linearly separable. However this convergence property
doesnot hold when the examplesarenot linearly separable.

For our study, we have extended the ranking perceptron
algorithm to follow a large margin classification principle
whose goal is to learn � that tries to satisfy the following �
constraints:

� � ( 	 * � I + $ * � $ J , � ( 	 * � I + $ * � �$ J , 	 
 � 	 � � * (14)

where � � is � � ’s true class and � �� �
� � � 1 � � = � � � = > � < � � � � � � � � � ? ? �

. The idea behind these
constraints is to forcethe algorithm to learn amodel in which
the correct predictions are well -separated from the highest
scoring incorrect predictions (i.e., those corresponding to� �� ). The degreeof acceptable separation, which corresponds
to the required margin, is given by

5 � � � 4 , where
5

is a
user-specified constant. Note, the margin is expressed in
terms of � ’s length to ensure that the separation constraints
are invariant to simplescaling transformations.

Algorithm 1 showsour extended ranking perceptronalgo-
rithm that uses the constraintsof Equation 14to guide itson-
line learning. The key steps in this algorithm are lines 8–10
that update � based on the satisfaction/violation of the con-
straints for each one of the � training instances. Since the

ranking perceptron algorithm is not guaranteed to converge
when the examples are not linearly separable, Algorithm 1
incorporatesan explicit stoppingcriterion that after each iter-
ation it computes the training error-rate of � , and terminates
when � ’s error rate has not improved in 100consecutive iter-
ations. The algorithm returns the � that achieved the lowest
training error rate over all it erations.

2.5.2 SVM-Struct. Recently, an efficient way of learn-
ing thevector � of Equation 10 hasbeen formulated asa con-
vex optimization problem [40]. In this approach � is learned
subject to the following � nonlinear constraints

: . � 1 � �= � � � = >
� < � � � � � � � � � ? �  < � � � � � � � � � � ? 	 (15)

Note, that these constraintsaresimilar in nature to thoseused
in the ranking perceptronalgorithm (Equation 14).

The SVM-Struct [40] algorithm, is an efficient way of
solving the aboveoptimization problem in which the � non-
linear inequaliti es are replaced by � � � C �

linear inequaliti es
resulting in a total of � � � � � C � �

linear constraints and � is
learned using the maximum-margin principle leading to the
following hard-margin problem [40]:

1 2 3�
�4 � � � 44

subject to < � � � � � � � � � � C � � � � � � � ? D �
: . � : � � � � � � � � 	

(16)

This hard-margin problem can be converted to a soft-
margin equivalent to allow errors in the training set. This
is done by introducing a slack variable,

9
, for every nonlin-

ear constraint of Equation 15. The soft-margin problem is
expressed as [40]:

1 2 3� A �
�4 � � � 44 6 � � 7 �� 8 � 9 � �

subject to < � � � � � � � � � � C � � � � � � � ? D � C 9 �
: . � 9 � D E � : . � : � � � � � � � � 	

(17)

The results of classification depend on the value � which
is the misclassification cost that determines the trade-off
between the generalization capabilit y of the model being
learned and maximizing the margin. It needs to be optimized
to prevent under-fitting and over-fitting the data during the
training phase.

2.6 Loss Functions

The lossfunction plays a key role while learning � both the
SVM-struct and ranking perceptron optimizations. Till now,
our discussionfocused onzero-onelossthat assignsapenalty
of onefor amisclassificationandzero for a correct prediction.

However, in cases where the class sizes vary significantly
acrossthe different folds, such a zero-one lossfunction may
not be the most appropriate as it may lead to models where
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Table 1: Dataset Statistics.
Statistic DS1 DS2 DS3 DS4

ASTRAL filtering 90% 40% 25% 40%
Number of Sequences 2115 1119 1294 1651
Number of Folds 25 25 25 27
Number of Superfamili es 47 37 137 158
Avg. PairwiseSimilarity 12.8% 11.5% 11.6% 11.4
Avg. Max. Similarity 63.5% 33.9% 32.2% 34.3
Avg. PairwiseSimilarity (within folds) 25.6% 17.9% 16.7% 17.4
Avg. PairwiseSimilarity (outside folds) 10.4%11.03%11.2% 11.0

The percent similarity between two sequences is computed by aligning the pair of se-
quences using SW-GSM with a gap opening of 5.0 and gap extension of 1.0. “Avg.
Pairwise Similarity” is the average of all the pairwise percent identities, “Avg. Max.
Similarity” is the average of the maximum pairwise percent identity for each sequence
i.e, it measures the similarity to its most similar sequence. The “Avg. Pairwise Similar-
ity (within folds)” and “Avg. Pairwise Similarity (outside folds)” is the average of the
average pairwise percent sequencesimilarity within the same fold and outside the fold
for agiven sequence.

the rare classinstances are often mispredicted. For this rea-
son, an alternate lossfunction is used, in which penalty for
a misclassification is inversely proportional to the class size.
This implies that the misclassification of examples belong-
ing to smaller classes weigh higher in terms of the loss. This
lossfunction is referred to as the balanced loss[17]. For the
ranking perceptron algorithm (Algorithm 1) the update rules
(statements7 and 8) need to bescaled bythe lossfunction. In
caseof theSVM-Struct formulation, thebalanced losscan be
optimized by reweighting the definition of separation which
can be done indirectly by rescaling the slack variables

9 � in
the constraint inequaliti es (Equation 17).

While using the hierarchical information in the cascaded
learning approaches (Section 2.4) we experimented with a
weighted loss function where a larger penalty was assigned
when thepredicted label did not sharethesame ancestor com-
pared to the case when the predicted and true class labels
shared the same ancestors. This variation did not result in
an improvement compared to the zero-one and balanced loss.
Hence, wedo not report resultsof usingsuch hierarchical loss
functions here.

3 Materials

3.1 Dataset Description

We evaluated theperformanceof thevarious schemesonfour
datasets. The first dataset, referred to asDS1, was created by
Ie et al. [17] to evaluate the performance of the multiclass
classification algorithms that they developed2, whereas the
other threedatasets, referred to as DS2, DS3, and DS4, were
created for this study3. The DS1 dataset was derived from
SCOP 1.65, whereas DS2–DS4 were derived from SCOP
1.67. Table1 summarizes the characteristicsof thesedatasets
and presentsvarious sequencesimilarity statistics.

DS1 andDS2 aredesigned to evaluate theperformanceof
remotehomology predictionandwerederived by taking only

2DS1 is available at http://www1.cs.columbia.edu/compbio/code-
learning/

3DS2, DS3, and DS4 are available at
http://bioinfo.cs.umn.edu/supplements/mc-fold/

the domains with lessthan 95% and 40% pairwise sequence
identity according to Astral [5], respectively. This set of do-
mains was further reduced by keeping only the domains be-
longing to folds that (i) contained at least threesuperfamili es
and (ii ) one of these superfamili es contained multiple fami-
lies. For DS1, the resulting dataset contained 2115 domains
organized in 25foldsand 47superfamili es, whereas for DS2,
the resulting dataset contained 1119 domainsorganized in 25
folds and 37superfamili es.

DS3 and DS4 were designed to evaluate the performance
of fold recognition and were derived by taking only the do-
mains with lessthan 25% and 40% pairwise sequence iden-
tity, respectively. This set of domains was further reduced
by keeping only the domains belonging to folds that (i) con-
tained at least three superfamili es and (ii ) at least three of
these superfamili es contained more than threedomains. For
DS3, theresulting dataset contained 1294 domainsorganized
in 25 folds and 137superfamili es, whereas for DS4, the re-
sulting dataset contained 1651 domainsorganized in 27folds
and 158superfamili es.

3.2 Binary Class ifiers

The various one-versus-rest binary classifiers were con-
structed using SVMs. These classifiers used the recently de-
veloped [31] Smith-Waterman based profile kernel function
(SW-PSSM), that hasbeen shown to achievethebest reported
results for remote homology prediction and fold recognition.

The SW-PSSM kernel computes a local alignment be-
tween two protein sequences, in which thesimilarity between
two sequencepositions is determined using a PICASSO like
scoring function [13, 26], and a position independent affine
gap modeling scheme. We use the optimized parameters for
the affinegap model (i.egap-opening (go) and gap-extension
(ge) costs), andzero-shift (zs) for our base classifiers.

For our performancestudies, weusetheoptimal parameter
settings of go � � 	 E � ge � E 	 � �

and zs � � 	 �
four our kernel

function to build our binary base classifiers using the widely
used SVM �

� � � �
[20] program.

3.3 Direct � -way Class ifier

The direct
�

-way classification models were built using the
publicly available implementation of the algorithm described
in Section 2.2 from the authors [9].

To ensure that the schemes are compared fairly, we use
thesameSW-PSSM kernel function used by thebinary SVM
classifiers (Section 3.2). We tested the direct

�
-way clas-

sifiers using linear kernel functions as well , but the perfor-
manceof theSW-PSSM kernelsweresubstantially better.

3.4 Performance Assess ment Measures

We assessed the performance of final classification using
zero-one error rates (ZE), where every misclassification was
penalized by one. We also evaluated our results using a bal-
anced error rate (BE), which took into account the varying
class size distributions. This class-sensitive error rate had a
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lower penalty for misclassifying a test instancebelonging to
a larger class. In particular the error on each mistake is in-
versely proportional to the true class size.

3.5 Training Methodo logy

For each dataset weseparated theproteins into test and train-
ing sets, ensuring that the test set is never used during any
partsof the learning phase.

For DS1 and DS2 (DS3 and DS4), the test set is con-
structed by selecting from each superfamily (fold) all the se-
quences that are part of one family (superfamily). Thus dur-
ing training, the dataset does not contain any sequences that
arehomologous(remotehomologous) to thesequencesin the
test set and thus allows us to evaluate/assessremote homol-
ogy prediction (fold recognition) performance.

This is a standard protocol for evaluating remote homol-
ogy detection and fold recognition and has been used in a
number of earlier studies [31, 35, 22, 19].

The cascaded models are trained as follows. We split the
training data into 10cross-validationsets, wherewelearn the
binary models from the partitioned dataset and perform clas-
sification onthe held out set to get prediction outputs. These
prediction outputs serve as training samples for the second
level learning using the ranking perceptron or the structured
SVM algorithm. At the final stage, we compute the predic-
tionfor our untouched dataset evaluatingthe accuraciesusing
zero-error andclass sizesensitivebalanced error rates.

3.6 Model Selection

Theperformanceof SVM dependsontheparameter that con-
trols the trade-off between the margin and the misclassifica-
tioncost (“C” parameter in SVM-Struct), whereastheperfor-
manceof ranking perceptron depends on the parameter

5
in

Algorithm 1.
Weperform amodel selection or parameter selectionstep.

To perform this exercise fairly, we split our test set into two
equal halves of similar distributions, namely sets A and B.
Using set A, we vary the controlli ng parameters and select
the best performing model for set A. We use this selected
model and compute the accuracy for set B. We repeat the
above steps by switching the roles of A and B. The final ac-
curacy results are the average of the two runs. While using
the SVM-Struct program we let C take values from the set�
0.0001, 0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0,

4.0, 8.0, 10.0, 16.0, 32.0, 64.0, 128.0
�
. While using the per-

ceptron algorithm we let the margin
5

take values in the set�
0.0001, 0.005, 0.001, 0.05, 0.01, 0.02, 0.5, 0.1, 1.0, 2.0, 5.0,

10.0
�
.

4 Results

4.1 Zero-One and Balanced Error Perfor-
mance

The performance of various schemes in terms of zero-one
and balanced error is summarized in Tables 2 and 3 for re-
motehomology predictionandfold recognition, respectively.

The schemes that are included in these tables are the follow-
ing: (i) the MaxClassifier (Section 2.3.1), (ii ) the direct

�
-

way classifier (Section 2.2), (iii ) the two-level learning ap-
proachesbased oneither thesuperfamily- or fold-level binary
classifiers (Section 2.3.2), and (iv) the two-level learning ap-
proaches that also incorporate hierarchical information (Sec-
tion 2.4).

For the direct
�

-way and two-level learning approaches
these tables show the results obtained by optimizing both
zero-one loss (ZL) and balanced loss (BL). Note that since
theMaxClassifier relies solely ontheoutputsof theindividual
one-vs-rest binary classifiers, it does not explicitly optimize
any particular lossfunction.

For all two-level learningapproaches(with andwithout hi-
erarchical information) thesetables show theresultsobtained
by using the scaling (S), scale & shift (SS), and Crammer-
Singer (CS) schemesto construct thesecond-level classifiers.

4.1.1 Performance of Direct
�

-way Class ifier.
Comparingthedirect

�
-way classifiersagainst theMaxClas-

sifier approachweseethat, in general, the error ratesachieved
by the direct approach are smaller for both the remote ho-
mology prediction and fold recognition problems. In many
cases these improvements are substantial. For example, The
BL-optimized direct

�
-way classifier achievesa10.9% zero-

one error rate for DS2 compared to a correspondingerror rate
of 21.0% achieved by MaxClassifier. The only exception is
theDS3 dataset for which theMaxClassifier achieves slightly
better results in termsof ZL than thedirect classifier. In addi-
tion, unlike the common belief that learning SVM-based di-
rect multiclassclassifiers is computationally very expensive,
we foundthat the Crammer-Singer formulation that we used
to require time that is comparable to that required for build-
ing the various binary classifiers used by the MaxClassifier
approach.

4.1.2 Non-Hierarchical Two-Level Learning Ap-
proaches. Analyzingtheperformanceof thevarioustwo-
level classifiers that do not use hierarchical information we
seethat thescaling(S) andscale& shift (SS) schemesachieve
better error rates than those achieved by theCrammer-Singer
(CS) scheme. The only exception is the DS3 dataset for
which the ZL-based CSscheme achieves the best results.

Sincethe hypothesis spaceof the CS scheme is a superset
of the hypothesis spaces of the S and SSschemes, we found
this result to be surprising at first. However, in analyzing the
characteristicsof themodelsthat werelearnedwenoticed that
the reason for this performancedifferenceis the fact that the
CS scheme tended to overfit the data. This was evident by
the fact that theCSschemehad lower error rateson the train-
ing set than either the S or SSschemes (results not reported
here). SinceCS’s linear model has more parameters than the
other two schemes, due to the fact that thesizeof the training
set for all threeof them is the same and rather limited, such
overfitting can easily occur. We believe that the CS scheme
can potentially outperform the other two schemes for prob-
lems in which the training set is larger, and this is something
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Table2: PercentageError for the remotehomology detection
problem.

DS1 DS2
ZE BE ZE BE

SimpleCombination of Binary Outputs
MaxClassifier 14.7 30.0 21.0 29.7

Direct � -way Classifiers
ZL 13.5 24.8 20.5 26.5
BL 11.5 23.1 10.9 13.0

Two-Level Approaches
Without Hierarchy Information

RankingPerceptron
ZL, S 10.6 18.0 11.7 16.5
ZL, SS 13.2 24.5 10.9 13.4
ZL, CS 17.0 34.3 14.2 19.4
BL, S 9.3 16.1 10.9 13.9
BL, SS 10.1 19.5 12.1 15.8
BL, CS 14.7 28.9 17.6 24.1

SVM-Struct
ZL, S 10.7 18.1 13.4 17.3
ZL, SS 12.4 23.7 13.4 17.3
ZL, CS 12.7 25.2 15.5 19.8
BL, S 9.0 15.9 11.8 15.7
BL, SS 10.7 19.9 12.1 15.1
BL, CS 11.6 19.4 13.0 16.3

With Hierarchy Information
With Fold-level Nodes

SVM-Struct
ZL, S 10.4 18.7 14.7 20.0
ZL, SS 12.4 23.7 14.7 21.4
ZL, CS 13.8 25.0 14.7 19.6
BL, S 11.2 19.6 14.7 21.4
BL, SS 10.1 19.3 12.1 16.9
BL, CS 14.7 26.0 13.0 18.2

With Fold-level andClass-level Nodes
SVM-Struct

ZL, S 10.9 19.1 12.6 17.7
ZL, SS 11.2 20.9 13.4 17.8
ZL, CS 14.1 27.6 12.6 17.1
BL, S 11.2 20.2 13.0 18.8
BL, SS 13.5 24.7 12.1 16.8
BL, CS 14.7 26.1 13.0 17.5

ZE and BE denote the zero-one error and balanced error percent rates respectively. ZL
and BL are the zero-one and balanced lossfunctions respectively. S, SSand CS denote
the scaling, scale & shift andCrammer-Singer schemes respectively.

Table 3: PercentageError for the fold recognition problem.

DS3 DS4
ZE BE ZE BE

SimpleCombination of Binary Outputs
MaxClassifier 42.0 60.3 44.4 64.6

Direct � -way Classifiers
ZL 42.8 59.4 43.0 62.7
BL 38.4 52.3 40.4 56.9

Two-Level Approaches
Without Hierarchy Information

RankingPerceptron
ZL, S 39.9 52.9 32.2 50.6
ZL, SS 38.4 51.3 27.3 44.8
ZL, CS 34.8 48.9 37.7 56.6
BL, S 39.5 48.7 32.5 48.0
BL, SS 38.8 51.0 29.0 43.0
BL, CS 37.7 49.6 36.0 49.6

SVM-Struct
ZL, S 41.3 55.2 33.7 50.0
ZL, SS 41.0 54.3 29.0 46.2
ZL, CS 36.6 49.4 32.5 49.6
BL, S 39.9 52.7 30.8 46.6
BL, SS 39.9 52.5 28.1 42.8
BL, CS 41.3 50.5 31.1 43.3

With Hierarchy Information
With Class-level Nodes

SVM-Struct
ZL, S 39.9 52.2 31.9 50.2
ZL, SS 38.4 52.9 29.3 44.6
ZL, CS 39.2 51.8 32.8 52.9
BL, S 39.2 52.4 29.9 45.0
BL, SS 38.1 51.6 29.0 41.7
BL, CS 41.7 50.9 29.9 41.7

With Superfamily-level Nodes
SVM-Struct

ZL, S 39.5 53.9 31.3 48.8
ZL, SS 39.9 53.4 31.3 48.4
ZL, CS 37.7 52.1 33.4 51.0
BL, S 40.2 52.6 30.5 44.5
BL, SS 40.6 52.7 29.3 42.8
BL, CS 38.8 48.8 31.0 44.9

With Superfamily-level andClass-level Nodes
SVM-Struct

ZL, S 39.2 52.2 27.3 41.0
ZL, SS 39.9 53.9 28.4 44.1
ZL, CS 38.8 54.7 31.3 48.0
BL, S 41.0 50.9 33.7 44.6
BL, SS 39.5 51.5 29.3 42.3
BL, CS 40.2 51.9 30.2 42.4

ZE and BE denote the zero-one error and balanced error percent rates respectively. ZL
and BL are the zero-one and balanced lossfunctions respectively. S, SSand CS denote
the scaling, scale & shift andCrammer-Singer schemes respectively.
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that we are currently investigating. Note that these observa-
tions regarding these three approaches hold for the two-level
approaches that usehierarchical information aswell .

Comparing the performance of the S and SS schemes
against that of the direct

�
-way classifier we see that the

two-level schemesaresomewhat worsefor DS2 andDS3 and
considerably better for DS1 and DS4. In addition, they are
consistently and substantially better than the MaxClassifer
approach acrossall four datasets.

4.1.3 Hierarchical Two-Level Learning Ap-
proaches. Tables 2 and 3 contains results that show
the performance that is achieved by incorporating different
types of hierarchical information in the two-level learning
framework. For the remote homology prediction problem
they present results that combine information from the
ancestor nodes (fold and fold+class), whereas for the fold
recognition problem they present results that combine
information from ancestor nodes (class), descendant nodes
(superfamily), and their combination (superfamily+class).

Analyzing the results obtained for the remote homology
prediction problems we seethat the use of hierarchical infor-
mation doesnot improvethe error rates. In fact, the two-level
schemesthat do not usehierarchical informationachieve con-
sistently smaller error rates than the ones that do. However,
the situation is different for the fold recognition problems in
which the use of hierarchical information leads to some im-
provements for DS4, especially in termsof balanced error.

In termsof which hierarchical information ismorebenefi-
cial, by looking at the various results we can seethat adding
information from ancestor nodes is in general better than
adding information from descendant nodes, and combining
both types of information can sometimes lead to goodclas-
sification performance. In fact, the best performance (ZE of
27.3% and BE of 41.0%) was achieved by such a combined
scheme.

4.1.4 Alternative Performance Assess ment Meth-
ods. Given a sequence � , the various classification func-
tions that are learned during thesecond-level learning (Equa-
tions 4–8) also return a ranking of the

�
classes. This rank-

ing provideskey informationasto what the classifier believes
are the most likely classes of � . In the case of the zero-one
and balanced error only the first class in this ranked order
is considered. If it happens to be correct, then there is no
error, whereas if the highest rank class is incorrect, then �
is considered to be mispredicted. However, from a practical
standpoint, certain mispredictions are worse than others. For
example, if � ’strue classisthesecondranked prediction, then
this is better than if it was the last ranked prediction.

To better understand the multiclass models produced by
incorporating hierarchy information we analyzed the classifi-
cation errors of the two-level approach that does not use hi-
erarchy information and thoseproduced by the approach that
does in terms of their position within the computed ranking.
Due to space constraints, we limited our analysis to the DS3
and DS4 datasets and the hierarchy-aware scheme that uti-

lizesclass-level information.
For each misclassified sequence � we computed two quan-

tities. The first, referred to as IN, is the number of folds that
are part of the same SCOP class with � that were ranked
higher than � ’s true fold. The second, referred to as OUT,
is the number of folds that are part of a different SCOP class
from � that wereranked higher than � ’s truefold. Thesum of
the IN and OUT values for each one of the mispredicted se-
quences for the various schemesareshown in Table 4. These
results show that the schemes that utili zehierarchy informa-
tion have consistently smaller IN and OUT values and in
many cases, these differences are quite substantial. The re-
duction in termsof theOUT values isgeneral higher, indicat-
ing that by incorporating SCOP classinformation, the clas-
sifiers were able to eliminate many of the incorrect rankings
that put a fold that belongs to adifferent SCOPclassasabet-
ter prediction than a fold within the same SCOP class. The
reductionin termsof theIN valuesindicatethat the classifiers
utili zing hierarchy information were able to move the correct
fold higher up in the ranking. Both of these characteristics
aredesirable, indicating that theuseof hierarchy information
does lead to better classifiers, even thoughthey may not re-
ducethe zero-one or thebalanced error.

Table 4: Ancestor Level Errors for the fold recognition prob-
lem.

DS3 DS4
METHOD IN OUT IN OUT

Without Hierarchy Information
ZL, S 91 411 130 506
ZL, SS 96 450 136 499
ZL, CS 91 377 134 490
BL, S 118 487 137 536
BL, SS 109 462 136 525
BL, CS 100 438 137 536

With Class-level Nodes
ZL, S 96 371 103 438
ZL, SS 94 375 102 442
ZL, CS 90 371 131 472
BL, S 93 402 118 454
BL, SS 94 389 118 454
BL, CS 104 400 118 454

IN andOUT are assessment statistics (Seetext for details). ZL andBL arethe zero-one
and balanced lossfunctions respectively. S, SSandCSdenote thescaling, scale& shift
andCrammer-Singer schemes respectively.

4.1.5 SVM-Struct versus Ranking Perceptron.
For the two-level approaches that do not use hierarchical
information, Tables 2 and 3show the error-rates achieved by
both the ranking perceptron and the SVM-struct algorithms.
From these results we can seethat for the S and SSschemes,
the performance achieved by the ranking perceptron are
comparable to and in some cases slightly better than those
achieved by the SVM-struct algorithm. However, in the case
of the CS scheme, SVM-struct is superior to the perceptron
andachieves substantially smaller error rates.

This relative performance of the perceptron algorithm is
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both surprising as well as expected. The surprising aspect is
that it isable to keep upwith the considerably more sophisti-
cated, mathematically rigorous, and computationally expen-
sive optimizers used in SVM-struct, which tend to converge
to alocal minimum solutionthat isclosetheglobal minimum.
However, thisbehavior, especially when the resultsof theCS
scheme are taken into account, was expected because the hy-
pothesis spacesof theSandSSschemesare rather small (the
number of variablesin theSandSSmodelsare

�
and � �

, re-
spectively) andas such theoptimization problem is relatively
easy. However, in the caseof theCSschemewhich isparam-
eterized by

� 4
variables, the optimization problem becomes

harder, and SVM-struct’s optimization framework is capable
of finding abetter solution.

Due to thisobservationwedid not pursue the ranking per-
ceptron algorithm any further when we considered two-level
models that incorporatehierarchy information.

4.1.6 Zero-One versus Balanced Lo ss. Comparing
the two different loss functions we see that for almost all
schemes, balanced loss leads to smaller zero-one and bal-
anced error rates. Even thoughthis result was expected for
the balanced error, for which balanced losswas specifically
designed for, itsadvantagein termsof zero-one error was sur-
prising. Determining the reason for this behavior is currently
under investigation.

4.2 Comparison with Earlier Results

As discussed in the introduction, our research in this paper
was motivated by the recent work of Ie et. al. [17] in which
they looked at the same problem of solving the

�
-way clas-

sification problem in the context of remote homology and
fold recognition and presented a two-level learning approach
based onthescalingscheme(S) with andwithout hierarchical
information. Table 5 shows the results that were reported in
their paper for the DS1 dataset for the remote homology pre-
diction problem. All the methods are similar in nature with
the corresponding schemespresented in Table 2.

Thekey differencesbetween themethods shown in Table5
and our correspondingmethodsare that (i) theone-vs-rest bi-
nary classifiers were obtained using the profile kernel [22]
whereasour schemesused the SW-PSSM kernel, and (ii ) our
results havebeen optimized by performing a model selection
step (Section 3.6). Comparing the performance of the Max-
Classifier scheme in Tables 2 and 5 we can seethat our ap-
proach achieves substantially smaller error rates. This isadi-
rect consequenceof the fact that the SW-PSSM kernel leads
to better binary classifiers than the profile kernel, which is in
agreement with theresultspresented in [31]. Also, theperfor-
manceof our corresponding two-level learners is better than
those shown in Table 5. We believe that this is due to the
improved binary classifiersaswell asmodel selection.

Notethat Ieet. al. [17] also presented resultsin which they
used theDS1 dataset for fold recognitionaswell . However, in
their experiments they used thesameset of famili es that were
kept aside to evaluate the remote homology prediction per-

formance for assessing the performance of fold recognition.
However, as was discussed in Section 3.1, this method does
not provide a representative fold recognition performance,
sincethetest sequencesareremotely homologousto thefolds
that we want to predict. For this reason, we did not use DS1
anditscorrespondingfamily-based test set in our experiments
and we cannot compare our results with the fold-recognition
resultspresented in [17].

Table5: Comparative results for the remotehomology detec-
tion problem on dataset DS1

ZE BE

SimpleCombination of Binary Outputs
MaxClassifier 20.7 38.0

Two-Level Approaches
Without Hierarchy Information

RankingPerceptron
ZL, S 21.9 34.4
BL, S 21.8 36.7

SVM-Struct
ZL, S 21.8 36.7
BL, S 20.7 37.6

With Hierarchy Information
With Fold-level Nodes

RankingPerceptron
ZL, S 23.0 37.6
BL, S 20.6 34.9

SVM-Struct
ZL, S 24.8 37.4
BL, S 20.4 37.5

ZE and BE denote the zero-one error and balanced error percent rates respectively. ZL
andBL are the zero-one and balanced lossfunctions respectively. Sdenotes the scaling
scheme results. Note these results werepreviously published in [17].

5 Discuss ion and Conclusions

The work described in this paper was designed to answer
three fundamental questions. First, whether or not SVM-
based approaches that directly learn multiclassclassification
models can effectively and computationally efficiently solve
the problems of remote homology prediction and fold recog-
nition. Second, whether or not the recently developed highly
accuratebinary SVM-based one-vs-rest classifiers for remote
homology prediction and fold recognition can be utili zed
to build an equally effective multiclass prediction scheme.
Third, whether or not the incorporation of binary SVM-based
prediction models for coarser and/or finer levels of a typi-
cal protein structurehierarchical classificationscheme can be
used to improve themulticlassclassification performance.

The comprehensive experimental evaluation of a num-
ber of previously developed methods or novel methods in-
troduced in the course of this work using four different
datasets derived from the SCOP protein structure classifica-
tion scheme showed that, to a large extent, the answer to all
threeof these questions to be yes. The schemesdeveloped in
this work show that SVM-based approaches are aviable tool
for developing highly effective classifiers and can be used in
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productionenvironmentsunder operational requirements that
better serve theneedsof thebiologists.
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