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Learning With Case-Injected Genetic Algorithms
Sushil J. Louis, Member, IEEE, and John McDonnell, Member, IEEE

Abstract-This paper presents a new approach to acquiring Typically, a GA randomly initializes its starting population so
and using problem specific knowledge during a genetic algorithm that the GA can proceed from an unbiased sample of the search
(GA) search. A GA augmented with a case-based memory of past space. However, since problems do not usually exist in isolation,
problem solving attempts learns to obtain better performance
over time on sets of similar problems. Rather than starting anew we expect a system deployed in an industrial setting to confront
on each problem, we periodically inject a GA's population with a large number of problems over the system's lifetime. Many of
appropriate intermediate solutions to similar previously solved these problems may be similar. In this case, it makes little sense
problems. Perhaps, counterintuitively, simply injecting solutions to start a problem-solving search attempt from scratch when pre-
to previously solved problems does not produce very good re- vious searches may have yielded useful information about the
suits. We provide a framework for evaluating this GA-based problem domain. Instead, periodically injecting a GA's popula-
machine-learning system and show experimental results on a set
of design and optimization problems. These results demonstrate tion with relevant solutions (we describe what we mean by rel-
the performance gains from our approach and indicate that our evant later) or partial solutions from previously solved similar
system learns to take less time to provide quality solutions to a problems can provide information (a search bias) that reduces
new problem as it gains experience from solving other similar the time taken to find an acceptable solution. Our approach
problems in design and optimization. borrows ideas from case-based reasoning (CBR) in which old

Index Terms-Case-based reasoning, genetic algorithm (GA), problem and solution information, stored as cases in a case base,
optimization. helps solve a new problem [10]-[12]. In our system, the data-

base, or case base, of problems and their solutions supplies the
1. INTRODUCTION genetic problem solver with a long-term memory. The system

does not require a case base to start with and can bootstrap it-
P ROBLEMS seldom exist in isolation. Any useful system self by learning new cases from the GA's attempts at solving a

must expect to confront many related problems over problem.
its lifetime and we would like such a system to be able to The case base does what it is best at, i.e., memory organi-
improve its performance with experience. Such a learning zation; the GA handles what it is best at, i.e., adaptation. The
system requires memory, a place for storing past experiences resulting combination takes advantage of both paradigms; the
to guide future operations. The storage area may be distributed GA component delivers robustness and adaptive learning while
or localized, but a system without a memory is forced to the case-based component speeds up the learning process.
start from scratch in trying to solve every given problem. The Case Injected Genetic AlgoRithm (CIGAR) system pre-
Genetic algorithms (GAs) are randomized parallel search sented in this paper can be applied in a number of domains from
algorithms that search from a population of points [11, [2]. computational science and engineering to operations research.
Current GA-based machine-learning systems, such as classifier We concentrate on one design problem, the design of combina-
systems, use rules to store past experience in order to improve tional logic circuits, and on two optimization problems, strike
their performance over time [1]-[5]. However, many appli- force asset allocation and job shop scheduling, to use as testbeds
cation areas are more suited to a case-based storage of past in this paper.
experience [6]-[9]. We propose and describe a system that uses It must be pointed out that our system differs significantly
a case base as a long-term knowledge store in a new GA-based from classifier systems [1]. One way that classifier systems
machine-learning system. Results from three design and OPti- differ is that they use rules to represent domain knowledge;
mization problems show: 1) that our system, with experience, our system uses cases. We will describe other differences with
takes less time to solve new problems and produces better classifier systems in Section II.
quality solutions and 2) simple syntactic similarity metrics Although we only consider using GAs and a case base of past
lead to this performance improvement. In addition, our system experience, we believe that our approach is not limited to either
mitigates domain-dependent indexing, a difficult issue in purely GAs or to case-based memory. We conjecture that properly
case-based systems. combining a robust search algorithm with some implementation

of an associative memory can result in a learning system that
Manuscript received February 17, 2003; revised November 20, 2003. This learns, with experience, to solve similar problems quickly. What

work was supported in part by the National Science Foundation under Grant we mean by similarity and how to identify similar problems and
9624130 and by the Office of Naval Research under Contract N00014-03-I- solutions will be discussed at length in the subsequent sections.
0104.

S. J. Louis is with the Evolutionary Computing Systems Laboratory, De- We define the CIGAR system and a framework for the
partment of Computer Science, University of Nevada, Reno, NV 89557 USA learning task in the next section. We then discuss related work
(e-mail: sushil@cs.unr.edu). and delineate the difference between problem and solution

J. McDonnell is with the Space and Naval Warfare Systems Center, San similarity the subseqent setion ples our s olthre
Diego, CA 92110 USA (e-mail: john.mcdonnell@navy.mil). similarity. The subsequent section applies our system to three
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asset allocation, and job shop scheduling, that are used to high- GA Module CBR Module
light issues addressed by this work. The last section presents ions
conclusions and directions for future work. Genetic •ihe rvenpngr

Algorithm rrin

II. FRAMEWORK FOR LEARNING DURING SEARCH
Initial 1 During Inithliztiion

Mitchell defines a machine-learning program as follows [131. PopIlation 1" I Case Base
A computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P if
its performance at tasks in T, as measured by P, improves with
experience E. Fig. I. Conceptual view of CIGAR.

Using this notation, we let T = {tl, t2, t,• , } denote the set
of tasks with solutions found in the search space defined by the tasks to the set of integers, where I denotes the set of integers,
set S. Casting our definition of the set of tasks in terms of search, or from pairs of solutions to the set of integers
S becomes the search space for the GA for all t E T. Feedback (D : T x T -+ I) or (9 : S x S -- I).
is provided to the GA by the finite set, 0 = {o1, 02,..., o,0}
of objective functions corresponding to the set of tasks, which Let PGA be the time taken to solve a task using a randomly
map candidate solutions to the set of real numbers. That is initialized GA and let the corresponding time for CIGAR be

(0 Idenoted by PCIGAR" With increasing experience, we would ex-
{pect PA ! PPCIGAR for a particular level of solution quality.

where 7Z is the set of real numbers, the range of the mapping. We would also expect PGA - IGAR for a given amount of
GAs attempt to maximize a fitness function, a function of the ob- time. That is
jective function that maps objective function values to the set of i t ,A (ti, S, f )lIM PCIGARt (ti) S) fi, 79 ej) _< PGA t,,' i 9
nonnegative real numbers I_>O. Thus, F = {fl, f2,..., fN}, --

the set of corresponding fitness functions, is a set of maps from and
points in S to 7Z> 0

lim PCIGArt (tiI S, fi, I D, ej) >_ PGA (ti, IS, fi, I ))
(F : IS --+ _>0}). j--cc

Note that the space of possible solutions S remains syntactically This mathematical framework allows us to evaluate how the
(or representationally) the same for all t E T. This is not usually system described in this paper learns with experience.
an issue for GAs since solutions tend to be encoded as binary or Although we cater to the definition of machine learning in
real strings. CIGAR makes use of this property to avoid domain Mitchell's book, unlike classifier systems and many other ma-
dependent indexing, chine-learning algorithms, we do not explicitly induce patterns

Elements of F define different search landscapes generating (generalize) from experiencing data nor do we expect to obtain
search biases which may lead to different points in S as solu- concept descriptions from exposure to exemplars, or to learn
tions to tasks in T. A task is then the search problem of finding weights, or rules. Instead, think of repeated searches using the
a solution s* c S that maximizes the fitness function fi for task system as exploring a domain, gleaning useful information
ti to a certain degree of precision. More formally, a task can be about the domain, storing this in a long-term memory, then
described in the following way: retrieving and using this information to bias future searches in

the domain. More specifically, we use cases to store domain
Given: ti - (fi : S --+ 7>O) information in a case base, then retrieve a subset of these cases

Find: s! E S : Vs E S [fA(87) >- fi(s)], from the case base and inject them into the GA's population to
bias future searches in the domain. Note that cases stored in

CIGAR gains experience by attempting to solve tasks in T. long-term memory may, in fact, implicitly embody a domain
Thus, we define a problem-solving experience e E E to be an model.
attempt to solve a task t E T. Performance can be measured
in terms of the time taken to solve a task, denoted P', and in A. Problem Similarity
terms of the quality of solutions found pq, with improvement in How do we combine a GA with case-based memory? Our
either or both constituting an increase in performance. Without first approach worked as follows. When confronted with a (new)
any loss of generality, we define performance as a function from problem, the CBR module looks in its case base for similar
E to the set of integers problems and their associated solutions. Note that CBR research

(Pt : E --+ I) and (Pq : E __- I) has shown that defining a problem similarity metric is nontrivial
[ 12]. If the system finds any similar problems, a small number of

where I is the set of integers, their solutions gets injected into the initial population of the GA.
We assume that CIGAR will experience similar tasks over This is case-based initialization. The rest of the population is ini-

time. In order to exploit this similarity, CIGAR needs a simi- tialized randomly (to maintain diversity) and the GA searches
larity metric 29, defined on the set of tasks T or on the set of from this combined population. This works well if we have a
solutions S. The similarity metric is a function from pairs of good measure of problem similarity. Fig. 1 shows a conceptual
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Store intermediate solutions

Inject cases

PO P P2 P

Fig. 2. Solving problems in sequence.

view of this CIGARp working on the basis of problem simi- 1) As the distance between problems increases, injecting or
larity. As the figure shows, while the GA works on a problem, seeding Pnew with cases that had lower fitness in Pold
promising members of the population are stored into the case results in better performance on Pnew than when seeding
base through a preprocessor. Subsequently, when starting work Pnew with cases that had higher fitness in Pold.
on a new problem, suitable cases are retrieved from the case 2) The above tendency is amplified with increasing problem
base and are used to populate a small fraction (say 10%) of the size.
initial population. In this paper, a case is a member of the popu- 3) Injecting cases with higher fitness in Pold tends to lead
lation (a candidate solution) together with ancillary information to a quicker flattening out of the performance curve (av-
including its fitness and the timestep at which this case was gen- erage or maximum fitness) versus time than when in-
erated [14]. During a GA search, whenever the fitness of the best jecting cases with lower fitness individuals in PolId.
individual in the population increases, the new best individual The interested reader can access the references above for more
is stored in the case base. details but we can summarize as follows. Problem similarity

This problem similarity-based CIGAR system has been re- measures tend to be domain (or problem) specific and we will
ported in [15] and [16] and led to several principles for working need to devise a different similarity metric for every domain.
with CIGARp. We elucidate these principles in the context of One way to deal with this issue is by abstracting the similarity
the following simple experiment. Let a GA be applied to Pold. metric computation to a separate module, thus making it easier
During a genetic search on Pold, the system saves individuals in to customize our system to difference domains. Note, however,
the population to the case base as described above. Note that that even an inexact problem similarity measure can be accom-
we are saving partial solutions with differing fitnesses to the modated if we cover our bases and save and inject a set of in-
case base. Pold is changed slightly to Pnew, and we look at the dividuals with differentfitnesses saved at different generations
effect of injecting individuals saved at different generations of of the GA's run on Poid. If the solutions to the problems are
P.od into the initial population of the GA trying to solve Pnew. "further" apart, the individuals from earlier generations1 will
If cases from Pold contain good building blocks or partial so- probably help more than if the solutions to the problems are
lutions, the GA can use these building blocks or schemas to "closer." In this situation, individuals from later generations will
quickly approach a solution to Pn0 w. help more. Since we are injecting a variety of individuals from

Fig. 2 generalizes the situation to the case of n problems being Po1(d saved at different points during the evolution of Pold'S solu-
solved sequentially. Initially, the case base is empty. When con- tion, we are covering our bases and letting the GA decide which
fronted with P0, the system starts with a randomly initialized of these injected cases are useful and which are not. The GA
GA but generates cases to be stored in the case base. The CIGAR takes care of culling those individuals that do not contribute to
attempting P1 injects cases from P0 and generates cases from the solution of the problem being solved. If none of the injected
P1 for the case base. When attempting P 2, CIGAR injects cases individuals are useful, selection quickly removes them from the
from the case base which now contains cases from both P0 and population and the (relatively large) randomly initialized com-
P1 . In addition, while working on P2 , CIGAR generates cases ponent is used as the starting point for the search and the system
from P2 to be added to the case base, and so on. Thus, when reverts to a GA. If any injected individuals contribute to the
attempting P,,, CIGAR can potentially use cases generated by problem being solved, the GA's performance increases.
P0 through P,,- 1 for injection into Pa's population. However, GAs are applied in "poorly understood" domains

Using this methodology with just two problems, Pold and where domain-dependent problem similarity metrics may
Pnew, we use a CIGARp to design a parity checker and a circuit be hard to design. A case-injected GA that did not use a
similar to the parity checker. Three observations surface [15],
[16]. 'Lower fitness is associated with earlier generations.
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GA Module CBR Module whether our system is designing a circuit or optimizing resource
Solutions allocations.

Geuidcit While running r What happens if our similarity measure is noisy and/or leads
i [to unsuitable retrieved cases? By definition, unsuitable casesAlgorithm A t will have low fitness and will quickly be eliminated from the

Periodically GA's population. CIGAR may suffer from a slight performance
SWhile running Case Base hit in this situation but will not break or fail; the genetic search

component will continue making progress toward a solution. In
addition, note that diversity in the population, "the grist for the

Fig. 3. Conceptual view of CIGAR.,. mill of genetic search [2]," can be supplied by the genetic oper-
ators and by injection from the case base. Even if the injected
cases are unsuitable, variation is still injected. CIGAR is robust.

problem-dependent similarity measure for indexing cases in The system that we have described injects individuals in the
its case base would be more widely (and perhaps more easily) case base that are deterministically closest, in hamming dis-
applicable than the system described above. CIGARt, assumes tance, to the current best individual in the population. We can
that "similar problems have similar solutions." This is a strong also choose schemes other than injecting the closest to the best.
assumption but it seems to work well on the many problem do- For example, we have experimented with injecting cases that are
mains we have considered. If we turn the statement around and the furthest (in the case base) from the current worst member of
consider that "similar solutions must solve similar problems," the population. Probabilistic versions of both have also proven
we have the foundation for a CIGAR system that works on the effective.
basis of solution similarity. Reusing old solutions has been a traditional performance im-

provement procedure. This work differs in that we: 1) attack a

B. Solution Similarity set of tasks; 2) store and reuse intermediate candidate solutions;
and 3) do not depend on the existence of a problem similarity

When CIGAR operates on the basis of solution similarity metric.
(CIGAR,), we periodically inject a small number of solutions Pseudocode for the CIGAR, algorithm is given.
similar to the current best member of the GA population into
the current population, replacing the worst members. The GA t = 0;
continues searching with this combined population. Note that Initialize P(t);
Fig. 3 shows cases being periodically injected into the evolving While (not termination condition)
population. The idea is to cycle through the following steps. Let Begin
the GA make some progress. Next, find solutions in the case if((t% injectPeriod) == 0)
base that are similar to the current best solution in the popula- InjectFromCaseBase (P(t), CaseBase);
tion and inject these solutions into the population. If injected Select P(t + 1) from P(t);
solutions contain useful cross-problem information, the GA's Crossover P(t + 1);
performance will be significantly boosted. Fig. 4 shows this sit- Mutate P(t + 1);
uation for CIGAR, when it is solving a sequence of problems. t = t + 1;
In contrast to Fig. 2, each Pi, 0 < i < n undergoes a peri- if (NewBest (P(t)))
odic injection of cases. We have described one particular im- CacheNewBestindividual (P(t), Cache);
plementation of such a system. Other less elitist approaches for End
choosing population members to replace are possible, as are dif- SaveCacheToCaseBase (Cache, CaseBase).
ferent strategies for choosing individuals from the case base. We The code in boldface differentiates CIGAR, code from that
can also vary the injection percentage, the fraction of the popu- of the canonical GA. In every injectPeriod iteration, we choose
lation replaced by chosen injected cases. and inject cases from the case base into the GA's population.

We have to periodically inject solutions based on the makeup These injected cases replace the worst members of the current
of the current population because we do not know which previ- population. Whenever there is an increase in the GA popula-
ously solved problems are similar to the current one. We do not tion's maximum fitness (a new best individual has been found),
have a problem similarity metric. By finding and injecting cases we set aside (or cache) this new best individual to be later
in the case base that are similar to the current best individual stored into the case base. Just before we exit, we store these
in the population, we are assuming that similar solutions must cached individuals into the case base. This pseudocode shows
have come from similar problems and that these similar solu- that changes that need to be made to the canonical GA are quite
tions retreived from the case base contain useful information to small and our results show that these changes lead to significant
guide genetic search.Anide adneticseageh. o simprovements in performance. The rest of this paper only dealsAn advantage of using solution similarity arises from the wihtsCIA,
string representations typically used by GAs. A chromosome
is, after all, a string of symbols. String similarity metrics are
relatively easy to come by, and, furthermore, are domain inde- III. RELATED WORK
pendent. For example, in this paper, we use hamming distance One early attempt at reuse can be found in Ackley's work
between binary encoded chromosomes for the similarity metric with SIGH [171. Ackley periodically restarts a search in an
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Store intermediate solutions

Per dically inj ct cases

P P
0 P1  P

Fig. 4. Solving problems in sequence with CIGARV,. Note the muliple periodic injections in the population as CIGAR attempts problem Pi, 0 < i <n.

attempt to avoid local optima and increase the quality of so- Lifelong learning seeks to address the problem of knowledge
lutions. Eshelman's algorithm, a GA with elitist selection and transfer between related tasks in the context of learning con-
cataclysmic mutation, also restarts a search when the popula- trol algorithms for robotics [29], [30]. The authors believe that
tion diversity drops below a threshold [18]. Other related work knowledge transfer is essential for scaling robot learning algo-
includes Angeline's compression and expansion operators [ 19], rithms to more realistic and complex domains. Lifelong learning
Koza's automatically defined functions [20], and Schoenauer's differs from our approach in that they are interested in an in-
constraint satisfaction method [21]. More recently, Ramsey and cremental learning situation seeking to build behavioral com-
Grefenstette come closest to our approach by using previously plexity with experience. Work by Louis provides strong support
stored solutions to initialize a GA's initial population and thus for the CIGAR approach to control problems in robotics, thus
increase a GA's performance in an anytime learning environ- indirectly and independently providing more evidence for the
ment that changes with time [22], [23]. Automatic injection utility of lifelong learning [31].
of the best solutions to previously encountered problems bi- CIGAR makes the assumption that similar solutions must
ases the search toward relevant areas of the search space and have come from similar problems. Here, similarity means dif-
results in the reported consistent performance improvements. ferent things in different contexts. What do we mean by problem
Reynolds' cultural algorithms have also extracted and reused similarity? What is the difference between problem similarity
domain knowledge, represented in various forms including and solution similarity? The next few sections address these
version spaces, to solve problems [24]. Sheppard and Salzburg questions.
combined memory-based learning with GAs in finding better
plans for the pursuer-evader game within a reinforcement IV. INDEXING AND SIMILARITY
learning framework [25]. Their experiments indicate that the
combined approach performed better than either approach Indexing, or how we define similarity, is a basic issue in all the
alone. To our knowledge, the earliest work in combining GAs systems described above. Previous work has dealt with the sim-
and case-based reasoning was done by Louis et al. who used pler case where a similarity metric exists in the problem space
case-based reasoning principles to explain solutions found by a [32]. Simply put, when we know that two problems are similar,
GA search [14]. Preliminary work in this area solved pairs of the system can use information from attempting one problem
similar problems with a clear performance advantage for the to improve performance on the other. However, a problem simi-
combined system [16]. These approaches, except for Reynolds' larity metric is not easy to come by and remains a major issue for
cultural algorithms, only attack a single problem not a related case-based reasoning systems; in GA applications, the problem
class of problems. Moreover, these approaches do not relate is compounded because we usually apply GAs to poorly under-
problem/solution similarity to the quality of injected solutions stood problems where domain specific similarity metrics may
and performance. be harder to find. In this paper, we study the more realistic

Work on multitask learning suggests, as we do, that it is easier case where we do not need a similarity measure on the problem
to learn many tasks at once, rather than to learn these same tasks space. Since GA solutions are encoded as binary or real strings,
separately [26]-[28]. Multitask learning can be applied to clus- purely syntactic similarity measures lead to surprisingly good
ters of related tasks in parallel or in sequence and provides an performance, a necessary property for applications to poorly un-
inductive bias that often leads to better generalization perfor- derstood systems. Solution similarity measures avoid the tradi-
mance on the tasks. While MTL addresses generalization, we tional CBR's issue of coming up with a domain dependent sim-
lean toward improving search performance for sequential tasks. ilarity metric.
Parallel GAs using the island model provide one possible av- The next three sections describe our three testbed prob-
enue toward information exchange on related tasks in parallel lems. We start with combinational logic design, an example
for GA-based machine-learning systems. of the more general configuration design problem. We use
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this problem to delineate the difference between problem and TABLE I

solution similarity. Subsequently, we describe an asset allo- OUTPUTS OF THE THREE-BIT PARITY CHECKER (A 3-0) AND (A 3-1) PROBLEM

cation problem which uses a similar positional representation Inputs 3-bit parity problem 3-1 problem

as the first problem. Finally, the job shop scheduling problem 000 0 0
(JSSP) offers an example of a problem that is suited to an 001 1 L[]1
order-based encoding where where the order of the allelles 010 1 1

matters. Order-based encodings, as we shall see, require a dif- O00 0 0
100 1 1

ferent similarity metric than do the positional representations 101 0 0
used in the first two problems. 110 0 0

111 1 1

V. COMBINATIONAL CIRCUIT DESIGN

The general problem can be stated as follows: Given a func- 1 2 3tion and a target technology to work within, design an artifact-

that performs the specified function subject to constraints. For ..................... . ........................
parity checkers, the function is parity checking and the target 4.. .

technology is combinational logic gateg such as Boolean AND

and OR gates. A GA can be used to design combinational cir- 7 9i
cuits as described in [33]. A five-bit parity checker is one of I
22" = 232 = 4 294 967 296 different five-input one-output ___

combinational circuits (Boolean functions). If we are trying to
solve this class of problems, one way of indexing (defining simn- Output
ilarity of problems) is given.

First, concatenate the output bit for all possible five-bit input u
combinations counting from 0 through 31 in binary. This re- 3 4 9

sults in a binary string of output bits So of length 32. We call
this binary string of output bits the output string. Strings that Genotype
are one bit different from So define a set of Boolean functions,
as do strings that are two bits different, and so on. This way of Fig. 5. Mapping from 1-D chromosome to 2-D circuit.

naming Boolean functions provides a distance metric and in-
dexing mechanism for the combinational circuit design prob-
lems that we consider in this paper. That is, we have a metric
for measuring problem similarity. Specifically, let Pi and Pj be
two n-bit Boolean functions and let Oi and Oj be their corre-
sponding output strings. Then, the problem distance between
Pi and Pj is the hamming distance between Oi and Oj. That is,
the distance between Pi and Pj is

k=2'•

E (Pi,Pj) = O O0
k=O

Input Output
where the T represents the exclusive or operator and Oi repre-
sents the kth bit of the output string. The equation above counts Fig. 6. Gate in a 2-D template gets its second input from one of two gates in

the previous column.
the number of differences in bit values at corresponding posi-

tions in O and Oj.
Problems are constructed from the parity problem by ran- new problem is a distance of 1 away from the parity problem in

domly changing bits in the output bit string. The fitness of a can- terms of our problem similarity metric.
didate circuit is the number of correct output bits. Thus, five-bit
problems would have a maximum fitness of 25 = 32. A. Representation

As a simple example, consider the three-bit parity checker as Since a solution similarity metric depends on how solu-
shown in Table I. The first column in Table I shows all possible tions/circuits are encoded, we describe our representation. An
inputs for a three-bit parity checker, the second column shows individual in the GA's population encoded as a bit string maps
the correct output for each input. We construct a three-input one- to a two-dimensional (2-D) circuit as shown in Figs. 5 and
output problem that is similar to the three-bit parity checker by 6. We use four (4) bits to encode all 16 possible two-input
randomly choosing and flipping one of the output bits of the one-output gates. An additional bit specifies the location of the
three-bit parity checker as shown by the boxed 0 in the table. The second input. A gate Gij gets its first input from Gij-1 and its
correct output bits for the new problem (one bit different from second from one of Gi+ij -1 or Gi-ij -1, as shown in Fig. 6.
the three-bit parity checker) are shown in the third column. This If the gate is in the first or last rows, the row number for the
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second input is calculated modulo the number of rows. The The optimizer's goal is to select the most effective platforms
gates in the first column Gi,0 receive the input to the circuit. P1,. . , P,, to achieve the targeting objectives T1 ,... , T,. The

platform allocation strategy is represented as an m x n matrix
B. Solution Similarity X where xij = 1 if platform Pi is assigned to objective Tj and

The solution similarity metric needs to measure the distance zero otherwise. A platform can be assigned to more than one

between encoded circuits (solutions). We are assuming that sire- objective up to a maximum of M/ objectives that a platform Pi

ilar circuits have a similar function. Whether this is a reasonable can accommodate.

assumption for our representation of a circuit will be seen in Each platform has a load-out, the set of loaded assets, that is

Section VIII. Since we use a binary string to encode combina- configured prior to launch. The total number of assets in the

tional circuits, the hamming distance, the number of bits that overall strike package is represented as a set of assets A =
are different, between these bit strings suffices as our similarity A1 ,..., Aq. The binary variable Fij represents the assignment

metric on this problem. Real number strings could use Euclidean of the jth asset to the ith platform. Once the platforms are al-

distance. That is, let A and B be two encoded binary chromo- located to targeting objectives, the optimizer assigns the most

somes representing candidate solutions (circuits). Then, if 1 is effective weaponry from the existing load-out to achieve the de-

the length of the chromosome, our solution similarity distance sired effectiveness. This assignment of resources may be repre-

metric is given by sented as a binary n x q matrix Q1 that indicates asset Aj has
been allocated to objective Ti.

i=I The proficiency of the pilot of platform Pi in using an
D(A, B) = A e Bi (1) on-board asset Aj is represented as 5•j. This term can also

i=0 accommodate the usage of smart munitions that have charac-

where the D represents the exclusive or operator and Ai repre- teristics independent of a particular pilot's capabilities. If wij

sents the ith bit of chromosome A. That is, the hamming dis- represents the effectiveness (probability) of asset A3 achieving

tance is simply the number of positions at which the chromo- objective Ti, then, assuming statistical independence between

somes differ. We explain how we use this solution similarity dis- onboard assets in achieving the targeting objectives, the proba-

tance metric in Section VIII. In the next section, we describe the bility of platform Pi achieving objective T, is

asset allocation problem and its encoding. Although this domain q

is very different from configuration design, we use the same so- Pik = 1 - 11(1 - rijbijfkjwjk)
lution similarity measure, hamming distance between binary en- j=1
coded representations of an allocation.

where q is the total number of assets in the strike package.
VI. STRIKE FORCE ASSET ALLOCATION The overall probability of an objective Tk being achieved by

The problem essentially is to allocate a collection of strike all platforms in the strike package is given by

force assets to a set of targets. An air-strike package typically m
consists of attack, fighter support, suppression of enemy air de- sk 1 - J(i - xikPik)

fenses (SEAD), and command and control (C2) platforms. The
problem is dynamic and various unforseen factors may require
a quick reallocation of assets. GAs usually require many objec- where m is the number of platforms. We also incorporate a pri-
tive function evaluations in order to come up with a promising ority term pi for each objective Ti and include it in the objective
solution, thus implying that the GA may be unable to provide a function. Thus, the effectiveness U(X) of an allocation is given
viable solution within stringent time limits. CIGAR learns from by
experience, either offline or online, and reduces the time needed
to obtain a quality solution. Under battlefield conditions with
strict time limits, a CIGAR system, thus, provides a promising U(X) =. pi1
alternate approach to pure GAs for this problem. 1=1

An air-strike package consists of a variety of platforms, each where n is the number of objectives.
of which has a specific role in the mission. A platform's ef- The coupling of assets to jointly achieve an objective can pro-
fectiveness depends on the assets loaded on the platform and vide a marginal benefit and is described by the term V(X)
proficiency of the pilot. Our mathematical formulation of the
problem is based on the work done by Abrahams [34]. We mod- n q q

ified the problem formulation to accommodate pilot (or smart V(X) = E E T (I4)k1k2QjkiQjk2
munitions) performance capabilities and relax the single plat- i=1 k1=1 k2=1

form-to-objective constraint that had been imposed. The objec-
tive function now consists of three terms. U(X) measures an where (Iiklkk2 defines joint effectiveness obtained by simultane-
allocation's effectiveness, V(X) measures the marginal benefit ously assigning assets Akl and Ak2 to the same objective, Ti. It
of allocating multiple assets to one target, and Y(X) measures is important to note that 4) can be negative as well as positive.
the risk to the platform in achieving the objective. The objective The risk Y(X) to the platforms, as well as their value, should
function to be maximized is a weighted sum of these measures, also be addressed in the objective function. If each platform Pi
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tl t 2 ti t2' t. ýt2 * .tl problem. The next section uses the JSSP to propose and evaluate
a solution similarity distance metric for order-based encodings.

P1' P2 P3 . Pn

Fig. 7. Individual represents an allocation of platforms to targets. VII. JOB SHOP SCHEDULING (JSSP)

The JSSP has been well studied elsewhere in the GA literature
has an associated value vi, and the risk associated with allo- [35]-[38]. In the general j x m JSSP, there are j jobs and m ma-
cating platform Pi to objective Tj is rij, then the cost term chines. Each job contains an ordered set of tasks each of which

n , n must be done on a different machine for a different amount of
Y(X) = vi E rij.xij time. Our objective function is to minimize makespan, the total

i=1 j=1 time from the beginning of the first task until the end of the last
task.

needs to be included in our objective function.
Our combined objective function measures the effectiveness A. Representation

of the strike as well as the risks and costs entailed in carrying
out the mission. We want to maximize effectiveness and mini- We encode a candidate schedule according to the scheme pro-

mize risk. Combining the effectiveness terms U(X) and V(X) posed by Fang [36] and our chromosome is a string of integers.

with the risk/cost component Y(X) yields the function to be Fang's method envisions a chromosome as a series of operations

optimized to be scheduled, where each gene ranges from one to the number
of jobs. A separate list is maintained of uncompleted operations

J(X) = agl(X) + !3V(X) - 3yY(X). (2) for each job. A gene's value i is interpreted by the scheduler as:
schedule the next uncompleted task of the ith job. This task is

J(X) should be maximized in order to maximize the effective- then removed from the list. The scheduler views the ith uncom-
ness while minimizing the risk. In our work, we set a, /3, and y pleted job modulo the list size, so as jobs are completed and the
to 1.0. length of the list shrinks, the ith job will vary. Thus, no gene

represents, by its value, any specific job, and no chromosome is
A. Representation ever illegal.

Each individual was encoded in a binary string composed Hamming distance suffices when using positional encodings.

from substrings corresponding to each platform (see Fig. 7). Our JSSP encoding is order based since the effect of a decoded

Each substring encodes the targets to which the platform has allelle depends on the preceding sequence of allelle values.

been allocated and the concatenation of these platform sub- Hamming distance does not capture this ordering information.

strings encodes the allocation of platforms to targets for the What similarity metric does?

strike force. As shown in Fig. 7, each platform Pi was allocated
to two targets t, and t 2 . B. Solution Similarity

We use the longest common subsequence (LCS) similarity
B. Solution Similarity measure described in [39]. A subsequence of a given sequence

The solution similarity metric that CIGAR used for this is just the sequence with some elements (possible none) missing.
problem was once again the hamming distance. We expect Given two sequences X and Y, we say Z is a common subse-
hamming distance (or euclidean for real encodings) to suffice quence of X and Y if Z is a subsequence of both X and Y. For
for the positional encodings used both for circuit design and example, if X = ABCDABDB and Y = ADAABCDB,
for strike force asset allocation. Letting A and B be two binary then Z = ADABD is a common subsequence of X and Y,
chromosomes representing candidate solutions to the strike although it is not the longest common subsequence. We use
force asset allocation problem, our solution similarity distance the dynamic programming solution to the problem of finding
metric is given by (1) and is reproduced as the longest such subsequence given in the book. This measure

runs in 0(n 2) time where n in this case is the length of the
D(A, B) E Ai D Bi chromosome. The longer the LCS, the more similar the two en-

A = A coded solutions. We find LCS to be a suitable similarity metric
since it pays attention to the sequence (or order) of alleles in our

where 1 is the chromosome length for this problem. That these order-based encoding of a schedule.
two very different problems can use the same similarity metric Recently, Hart and Ross [37] proposed a new heuristic com-
strongly indicates the domain-independent nature of our ap- bination method approach that they referred to as a heuristically
proach. In other words, both problems have binary positional guided GA (HGA). HGA evolves not only the selection heuristic
encodings and can therefore use the same distance metric; other but also the algorithmic method used to generate the conflict set.
than the evaluation function, no changes are needed to use The two algorithms they used were the Giffler and Thompson
CIGAR on this problem. (GT) and nondelay (ND), a variant of GT based on the set of

The JSSP, however, is an example of a problem that uses an nondelay schedules that creates a test set of the earliest possible
order-based encoding. Hamming distance does not pay attention operations. They reported very good results on a set of dynamic
to order and thus will not be a suitable distance metric for this JSSPs when compared to previous work. Although we are aware
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of this work, we decided to use an order-based encoding (like where 1 is the chromosome length, n is the number of cases
Fangs') for the JSSP because our objective in this paper is to in the case base, and E) is given by (1) for binary encoded
define and evaluate similarity metrics related to the goal of in- chromosomes. Since E) is the hamming distance between two
vestigating CIGAR's learning behavior. We have also looked chromosomes, (1 - D) provides the similarity between the two
at order-based encodings and CIGAR in the context of the tray- chromosomes.
eling salesperson problem and obtained results qualitatively like The results provide empirical evidence concerning the above
those reported here. relations [(3) and (4)] from the domains of combinational logic

design, asset allocation, and job shop scheduling.

VIII. RESULTS B. Combinational Circuit Design

For each of the three problems we developed problem gener- Using the parity problem as a basis, we generate 50 problems
ators to produce problems that were similar; the degree of simi- that are similar in terms to our problem similarity metric by ran-
larity was configurable. We configured these generators to pro- domly choosing and flipping between 10 - 20 (uniform distri-
duce a sequence of 50 similar problems which was at the limit of bution) output bits of the six-bit parity checker's 26 = 64-bit
our computational capacity in obtaining reasonable turnaround output bit string. We use all 24 = 16 two-input one-output logic
times. We start by describing our expectations, as guided by our gates as possible design elements and therefore need four bits
mathematical framework, then characterize problem generation to represent a gate in our encoding. An additional bit locates the
for each problem and our results with CIGAR. specified logic gate's second input and we therefore use five bits

to represent each logic gate.

A. Expectations The set of tasks T, defined in Section II for this problem,
is the set of six-bit input one-bit output combinational logic

According to our theoretical framework, for 50 problems, we circuits. There are 22' = 18 446 744 073 709 551 616 possible
need to show Boolean functions (or fitness functions, F) that can be defined

for six-input and one-output circuits. The 50 Boolean functions
-imo P&Ar (ti, S, fi, I -, e G) P&A (ti, S, fi, I') (3) for which CIGAR attempts to design circuits belong to this

much larger set.

and CIGAR uses a population of size 30 runs for a maximum
of 30 generations to solve these six-bit combinational circuit

lim PGIGArt (ti, 5, fi, D9, e1 ) < PGA (ti, s, .fl, D) (4) design problems (similar to parity checkers). This results in a

j-50 150 length chromosome (six rows, five columns, five bits per

gate) with a corresponding search space of 2150. Thus, for each
for the 50 problems in our set to provide evidence that CIGAR t E T, the search space S's size is 2150. The probability of
is learning from experience. Our graphs show this by the crossover is 0.95 and the probability of mutation is 0.05. All
following. plots are averages over ten runs.

1) Plotting the number of problems solved on the x axis In all cases, we replace the three (10% of the population size)
versus the best fitness found by the algorithm on the y worst individuals in the population with the individuals chosen
axis. We would expect that PCIGAR over the 50 problems by the injection strategy. We chose the injection interval, the
attempted would be as good as or better (fitness is greater number of generations between injections, to be [log 2 (N)1
than or equal to) for all problems Pi E {Po ... P50} than where N is the population size. This formula reflects the

PGA over the same set of problems. takeover time when using CHC selection. We inject three cases
2) Plotting the number of problems solved on the x axis into the population every [log 2 (30)1 = 5 generations to replace

versus the time needed to find this best solution (item 1) the three worst individuals.
from above) on the y axis. In this case, we would expect The injection percentage, which determines the number of
that tPCIGAR over the 50 problems attempted would be injected cases (and the number of lowest fitness individuals re-
lower or the same as (less or equal time taken) for all placed), and the injection intervals are adjustable parameters to
problems Pi E {Po ... P50 } than PGA over the same set the case-injected GA. Injection percentage controls the influ-
of problems. ence of injected cases; the higher the injection percentage the

We use a "probabilistic closest to the best" injection strategy more genetic search is driven by past experience. We also ex-
to choose individuals from the case base to be injected into pect less diversity and faster convergence with higher injection
CIGAR's population. Here, the probability of a case being percentages.
chosen for injection into the population is proportional to its Fig. 8 compares performance in terms of time taken to find
similarity to the current best individual in the population. More a solution for CIGAR and a randomly initialized GA that uses
formally, let I be the current best individual in the population, the same GA parameters. The figure plots time taken to find the
then the probability of a case C in the case base being selected best solution on the vertical axis and the number of problems
for injection is solved on the horizontal axis.

The randomly initialized genetic algorithm (RIGA) uses the

Prob(C) = I - D(1, C) same set of parameters. Fig. 9 plots the fitness of the best solu-Zn ( ,tion found on the vertical axis and number of problems solved
( 1 (Jon the horizontal axis. These figures show that (3) and (4) hold
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24,0 consists of 4 x 2 = 8 bits and for ten targets we end up with a

22.0) RIGA chromnosomne length of 8 x 10 = 80 bits (Fig. 7).
To generate problems, we start by constructing a baseline

20.0) asset allocation problem Ao using fixed values for all platform,

18.0) tpilot, target, and asset properties. Risk was the only factor that
varied. We generated a risk matrix by initializing the diagonal

16M0 elements of the matrix to 0.0 and all other elements to 1.0. Thus,

=14.M the optimal allocation for this initial problem was platform PA
o to target Ti. We generate A1 by randomly choosing two rows
ý12.0) or two columns and swapping them and repeating this process
0

'(m1) 0 5 times. This ensures that there is exactly one 0.0 entry in
every row and column and all other entries are 1.0, thus keeping

8the problem simple. Continuing in this way, using A1 as a basis
for A=, and A 2 as a basis for A 3, and so on, we generate 50 prob-

6.0, lems A0 through A49 . Note that problems close to each other in
4.o0 the sequence are probabilistically more similar than problems

farther apart in the sequence.
2.01 CIGAR The set of task T, defined in Section II for this problem, is

0.01 the set of 10 x 10 asset allocation problems. In the general case,
there is an infinite number of possible problems, since the riskWU OOO 2U.UU ,5U.UU 40.001 bO.Oj

No. of Problems attempted matrix is a matrix of probabilities, but restricting risk (rij) to

Fig.8. Time to best design found. As more problems are solved, CIGAR takes be between 0.00 and 0.99 inclusive (a precision of two decimal
less time. places) gives us the size for S to be 10010.

As with the design problem, we used the CHC selection al-
65.o01 gorithm with a crossover rate of 1.0 coupled with point mu-

tations with a mutation rate of 0.05. A population size of 80
was used and the GA ran for 80 iterations; CHC converges fast

60.0) without a highly disruptive crossover operator and 80 genera-
tions was enough for convergence with two-point crossover. The
randomly initialized GA used exactly the same parameters as
CIGAR.

65.0) CIGAR used the "probabilistic closest to the best" strategy
for case injection and we injected 10% of the population with
individuals from the case base every nine generations.

U-
so0o. Fig. 10 compares the time to convergence of a GA versus

CIGAR while Fig. 11 compares the quality of the converged
solution produced by a GA versus that produced by CIGAR.

45.0 Specifically, Fig. 10 plots average time taken to find the best
sol u tion on the vertical axis and the number of problems solved
on the horizontal axis. Fig. 11 plots average objective function

RIGA value on the vertical axis and the number of problems solved on
40.0) the horizontal axis.

The thin straight lines on both graphs are the linear regression
lines for the distributions represented by our performance met-

0.0u Iu.uu zuuu 3U u.uu 40.0U b0.ou! rics. These regression lines provide a simple model to predict
No of problems attempted performance trends. The figures show that, once again, CIGAR

Fig. 9. Solution quality. As more problems are solved, CIGAR produces better takes less time to produce better quality solutions as its problem
solutions. solving experience increases. We have similar results from using

other injection strategies and other sizes of problems.
for this problem. That is, the figures provide clear evidence that Compared with the circuit design problem, we see less of an
CIGAR takes less time then the GA to produce better quality so- increase in performance for both of our criteria. The structure of
lutions as it gains experience from attempting more problems; the search spaces are different and we should therefore expect
thus, CIGAR learns from experience, to see such differences across problem domains.

C. Asset Allocation D. .Job Shop Scheduling

The problem configuration that we constructed here had ten We first construct a JSSP J1 with randomly generated task
platforms, ten targets, and 40 assets. Each platform could be durations. Each of the 50 similar problems are then generated
allocated to two targets. We need four bits to associate a unique by modifiying a randomly picked set of tasks (40% of the total
id for each of ten targets and thus each platform's substrings number of tasks of the problem) and then changing the picked
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SPEED
46.0090)

E
85.0 GA

44.00 C

42.00 I 0

- 75.0)

40.00 70* j.0)
00.

A j ~ 65.0)1
36.00 t ltP

3800 . 556.0 .... t-.i
34.00 E V5.0 "I

65.0)

32.00 \5.0 C

CIGAR 4. E

30.00 GA - , . , . . Z

Number of Problems attempted (experience)
28.00 Fig. 12. Convergence speed for JSSP. As more problems are attempted,

CIGAR reduces the time taken to achieve convergence.
0.00 10.00 20.00 30.00 40.00 50.00

Experience 10

Fig. 10. Time to best solutions: GA versus CIGAR. GA
1.0

QUALITY

9.78 1.0

9J78 CIGAR - 0.9

GA -
0.9

9.78

970.9 I9.78 0,9 ......

0.9
9.770.

9.77
0.9

9.7701 1010 Uu i 2..07= Il.. 4UU0 Z109.77 Number of problems attempted (experience)

9.76 Fig. 13. Convergence quality for JSSP. At the same time, as more problems
are attempted, CIGAR produces better quality solutions.

9.76

0.00 10.00 20.00 30.00 40.00 50.00 performance. Again, we used the CHC selection strategy [18]
Experience (number of problems attempted) of greedy crossover [40] with a probability of 1.0 and swap mu-

Fig. 11. Solution quality: GA versus CIGAR. tation with probability 0.5 that an individual would be mutated
round out the parameters used.

tasks' durations by a randomly picked amount upto 20% of the CIGAR used the "probabilistic closest to the best" strategy
maximum duration of a task. Each of the 50 problems is gener- for case injection in the following results and we injected 10%
ated by modifying J1 as described above, of the population with individuals from the case base every ten

The set of tasks T, according to our formulation, is the set of generations.
15 x 15 JSSP problems. As with asset allocation, in the general Figs. 12 and 13 compare a randomly injected GA with
case there is an infinite number of possible problems, since task CIGAR on 15 x 15 JSSPs. Fig. 12 plots the time taken to find
durations can be real numbers. Restricting task durations to d the best solution on the vertical axis and the number of prob-
leads to us to estimate the cardinality of T to be d15x15. lems solved on the horizontal axis. Fig. 13 plots the makespan

We used a population of size 100 and ran the algorithms for of the best solution found on the vertical axis and number of
100 generations. We needed larger population sizes to get good problems solved on the horizontal axis.
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The thin straight lines on both graphs are the linear regres- our implementation, members of the population form the cases
sion lines for the distributions represented by our performance stored in the case base and provide CIGAR with a long-term as-
metrics, time to convergence, and quality of solution at conver- sociative memory of problem-solving experience. CIGAR thus
gence. combines the strengths of GAs and case-based reasoning and

uses domain-independent indexing schemes to do so. The cases
E. Summary of Results chosen by the indexing scheme and injected into the evolving

GA population provide random variation and variation based onThe mathematical framework developed in Section nI pro- past experience. This proves useful in increasing CIGAR perfor-

vided two indicators of learning performance. Measuring these pa nce Ti s po usefulniniincreas.

indications, empiricial results from circuit design, asset alloca- mance relative to a GA on similar problems.

tion, and job shop scheduling indicate that CIGAR learns to in- We defined two similarity metrics for indexing: hamming dis-
crease probrshopnchedwith e riendcae. FthermoreGalethouh an- tance for positional encodings and the LCS for order-based en-crease performance with experience. Furthermore, although an codings. Empirical evidence from three problems using these
increase in solution quality or time to best solution would have metrics indicates their relative effectiveness as domain-inde-

sufficed to show an advantage, CIGAR does better than a ran- pet imilates for Ga applctions In ourimple-

domly initialized GA on both criteria for these three problems. pdetant similarity metrics for GA applications. In our imple-

Given our encodings, we believe that combinational logic de- mentation, you can set flags to determine the distance metric

sign is an easier problem compared to job shop scheduling or (hamming distance or longest common substring) and injection
asset allocation for the GA since low population sizes (30) run strategy to be used by the system. The results indicate that theseasse alocaion or he A snce ow opuatin sies 30)run distance metrics work well with the probabilistic closest to the
for a small number of generations (30) lead to acceptable perfor- distanjetics worat e ll on the problem s ticdres se st th e

mance. When we look at performance across problems we thus best injections strategy on the problems addressed in this paper.
seelogic We have similar results on other problems as well [41], [42].circuit design versus those for strike force asset allocation and CIGAR's performance depends on two parameters. For in-

job shop scheduling. The difference in performance between jection percentage, injecting between 5%-15% of the popula-

CIGAR and the GA is greater for combinational logic design tion size with individuals from the case base strikes a good bal-

than for the other two problems. It appears that, in this domain, ance between exploration of the search space and concentrating
search in promising areas defined by injected individuals. ThisCIGAR finds it easier to obtain and reuse domain information ijcinpretg aaee a etndt utapriua

to quickly improve performance over the GA. injection percentage parameter can be tuned to suit a particular

The graphs indicate that although the trend for increasing domain. There are several injection strategies that can be used

performanceto choose cases from the case base for injection. We can injectperfrmace ay e clarforexaple fro th reresion the closest (individuals in the case base) to the best individual
lines, it is difficult to predict CIGAR's relative difference in per- in the posestin, in these from to worst ind ividual

formance between problems. The performance on a particular intepopulation, the farthest from the worst, and probabilistic
frn bteproblemdependsonpast experiene pe trormancems o ave pa r versions of both. This parameter too can be tuned to a particularproblem depends on past experience (what problems have been domain. Work that we have done indicates that the probabilistic
solved in the past) and the relationship of those problems to the vrin edt e etrpromneadta netn o

current problem. If CIGAR is able to retreive and store relevant versions tend to get better performance and that injecting too

cases from past problems, we expect a performance boost on the many individuals into an evolving population tends to quickly
lead to lower quality solutions [16], [43].

current problem relative to a GA starting from scratch. We can The case-indected GA technique described and evaluated in

also expect an increase in performance if the cases that CIGAR q
injects add useful diversity to the population. this paper provides a simple effective method for increasing GAThese results show that wther a problem uses positional performance across similar problems. Our results have shown

Thorder-based resu th whprenther asproblemustionswecal sethe potential of combining GAs and case-based memory but
or order-based encodings to represent solutions, we can use much work remains to be done. We are beginning investigation
simple domain independent similarity metrics to effectively of problem structure, population distibutions, operator effects,
guide CIGAR's case injection, and injection parameters to characterize problems and predict

their suitability to the CIGAR approach. We are also interested
IX. DISCUSSION AND CONCLUSION in investigating similarity metrics for variable length encod-

This paper makes three contributions. We defined a frame- ings. Finally, we are applying and evaluating case-injected Gas
work for machine learning in the context of search algorithms, on several real-world applications and investigating whether
described the algorithm (CIGAR) that combines genetic search problem sequences in the real-world result in performance
with case-based memory to learn to increase performance with improvements for case-injected GAs.

experience, and defined similarity metrics for indexing cases for
positional and order-based encodings. Empirical evidence from ACKNOWLEDGMENT

three different application areas show the viability of our ap-
proach when compared to a GA that starts from scratch on every The authors would like to thank the reviewers for their in-
new problem in an application domain. The results show that sightful feedback.
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