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1. INTRODUCTION 
The DARPA Mixed-Initiative Control of Automa-Teams (MICA) Program has 

focused on changing the control and coordination of unmanned aerial vehicles (UAVs) 

from a situation where five or more people are required to manage one vehicle into a 

situation where tens of vehicles can be controlled by a single operator. This challenging 

problem requires both advances in distributed planning and control, and in approaches to 

mixed-initiative interaction between operators and advanced planning and control 

systems.  

Autonomous and semi-autonomous vehicles will operate in highly dynamic, 

inherently uncertain and adversarial environments. Their commanders must plan their 

actions with only partial knowledge of their future environment, and the threats that will 

surround them. Vehicle plans must enable reactions based both on what they observe, and 

on what they expect to observe as they move, which itself may change over time. 

CMU, with subcontractors BBN and the University of Washington, set out to develop 

a hierarchical control system that uses mixed-initiative planning guidance to control 

heterogeneous teams of vehicles. The scientific framework they laid out takes a number 

of kinds of uncertainty into account at a fundamental level.  

The role of the CMU portion of the team was primarily the development of new 

techniques for reasoning about uncertainty, including methods for belief tracking, 

planning under uncertainty, and communication with other human and automatic 

reasoners at various levels of the mixed-initiative hierarchy. It also included developing 

the specification of the contractors’ mixed initiative hierarchy, including the roles of 

various agents within the hierarchy and message formats for communicating among 

them.  As such, the CMU team developed numerous new reasoning techniques which 

enabled new functionality in the context of the MICA effort; these techniques are detailed 

below, but include methods such as Rao-Blackwellized particle filtering, market-based 

planning, and the Query-Response algorithm for distributed belief tracking. 

The role of the University of Washington was to work on highly efficient belief 

tracking algorithms and otherwise support the CMU effort. 

BBN’s focus was primarily on the mixed-initiative interaction between warfighters 

and the tools developed by CMU for planning and execution under uncertainty. BBN’s 
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goal was to identify key concepts for incorporation into an easy-to-use, high-level 

command interface by which multiple teams of robots could be controlled in a wide array 

of combat situations. BBN also played an instrumental role as integrator of the planning 

and surveillance algorithms developed by CMU into a demonstration prototype that 

enabled those algorithms to be tested with Boeing’s Open Experimental Platform (OEP).  

A key technical claim of this project is that probabilistic multi-robot control systems 

can be developed which accommodate both uncertainty and user advice at many levels. 

We developed this control model using a hierarchy of partially observable Markov 

decision processes (POMDPs).  POMDPs are a probabilistic method for control under 

uncertainty. The approach bases control on the information state (knowledge state), not 

the actual world state. POMDPs generate plans that are really global control policies for 

acting in any observed state. Our approach uses efficient techniques to dynamically and 

frequently regenerate policies as new information is learned, and adjust control strategies 

accordingly, e.g., by regenerating team formations if some agents are damaged, or 

adapting task assignments and paths in the presence of new threats.  

Our team’s approach to scalable hierarchies of POMDP controllers was based partly 

on prior related work with hierarchical MDPs. We demonstrated that hierarchical 

POMDPs can be more efficient, and can be used within a planning cycle for a team of ten 

or more UAVs to support adaptive to user-based command and control. Our hierarchy 

spanned path planning, to multi-vehicle coordination, dynamic team composition, and 

operator command and control. Our mixed initiative user interaction model and 

interfaces enable users to describe constraints at multiple levels of the hierarchy in 

conjunction with visualization of the environment and plans/policies generated in order to 

help users interpret problems that arise during both planning and execution. Planning 

policies and uncertainty information can be visualized on demand, or shown 

automatically when critical decisions are required. Speech input can optionally be used to 

provide additional planning constraints or explicit direction. Operational constraints 

suggested by users are incorporated dynamically during execution-time replanning. The 

overall effect is be to make timely and reliable interactive planning possible in the face of 

uncertainty, adversarial effects, and vehicle failures. 
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2. OBJECTIVES AND OVERALL APPROACH 
The CMU/BBN/UW team’s overall objective was to develop a hierarchical control 

system that uses mixed-initiative planning guidance to control heterogeneous teams of 

vehicles.  We approached this objective by organizing our work into a group of several 

efforts: 

• To develop algorithms for planning and situation awareness in the face of 

multiple kinds of uncertainty. 

• To develop an architectural framework for integrating the mixed-initiative 

user interaction layer to the other layers of the hierarchical planning system 

and to the simulation testbed (OEP).  

• To develop a language for relaying the objectives and constraints of users to 

the planning system.  

• To develop a mixed-initiative interface to the hierarchical POMDP-based 

planning and execution system that supported a variety of mechanisms for 

visualizing the ongoing state of execution and planning policies for 

accomplishing the user’s given objectives 

We pursued all of these objectives consistently throughout the effort.  Initially we 

focused on research and experimentation, while as the project progressed we spent 

correspondingly more effort on implementation and testing. The following sections will 

review our progress and achievements in each of these areas. 

The primary objective of our efforts was developing a mixed-initiative control 

paradigm for planning under uncertainty. Four different sources of uncertainty need to be 

considered for this kind of combat planning and execution environment: 

1. Randomness: Randomness in the environment causes uncertainty. For example, 
robots might malfunction at random; the speed and direction of a vehicle are random 
(within bounds), etc. Randomness can usually be accommodated using robust 
controllers, although randomness that exceeds planned-for bounds can require plan 
adjustments at multiple levels in the hierarchy. 

2. Incomplete knowledge. Lack of knowledge causes uncertainty. For example, a 
controlled vehicle might not know the location of enemy vehicles or threats. 
Information gathering is an important planning strategy that needs to be addressed as 
part of the overall planning approach in order to manage the incomplete knowledge 
problem. 
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3. Temporal phasing: Not only must vehicles participating in a military plan address 
the uncertainties in their operating environment due to their own incomplete world 
models, they must also operate so as to respect the time phasing of the overall 
operation. Plans with timing constraints typically call for multiple agents to achieve 
objectives at approximately the same time, or at particular times relative to each 
other. Thus, it may be just as problematic to arrive early as it is to arrive late. 
Furthermore, when operating against an adversary that is also moving, getting to an 
objective too late is just as bad as not getting there.  

4. Adversarial effects: The enemy will move (within a strategy) in ways that 
maximally impede the mission goals. Usually, the enemy strategy is unknown and 
therefore causes additional uncertainty. This type of uncertainty is the most difficult 
one, since the opponent can be expected to act in the worst possible way relative to 
one’s own mission. We did not address this kind of uncertainty in the first two years 
of the project.  

 
As we began this effort, no existing approach in the literature addressed all four types 

of uncertainty. Control theory and planning has focused on the first two types of 

uncertainty, while planning and combinatorial optimization focus on the third.  Game 

theory has focused on the fourth (but not as much on the first three). Our team’s objective 

was to provide a scalable approach for dealing with all four types of uncertainty, by 

bringing the best of today’s planning, control, and optimization approaches and 

integrating them into a single mathematical framework that could be controlled by human 

operators.  The mixed initiative framework would take advantage of the human 

operators’ special abilities: in particular, humans can often be more sensitive to and able 

to adjust for the second and fourth types of uncertainty (incomplete knowledge and 

adversarial effects).  

CMU’s approach to planning under uncertainty is based on harnessing techniques 

based on partially observable Markov decision processes (POMDPs), extending this 

family of algorithms to address the need for distributed hierarchical control given the 

number of semi-independent agents (UAVs) that need to be controlled.  In order to apply 

POMDPs to this planning problem, we require methods for distributed planning under 

uncertainty (so that agents can reason about the parts of the plan which are relevant to 

them and about which they have knowledge) as well as distributed situation awareness 

(so that all agents can coordinate their actions in support of the chosen plan).  The 

methods we developed are detailed below; but they include Rao-Blackwellization of 

particle filters for distributed situational awareness; reasoning about communication (the 



 5

query-response protocol); market-based techniques for distributed planning; and fast 

planning techniques for POMDPs.  

In support of rapid and effective user decision making for our planning process, our 

operator-planner communication development efforts (headed by BBN) focused on: 

• Development of an internal language for representing user objectives and 

constraints on the planning problem for concise communication to the 

planning subsystem. (In collaboration with CMU) 

• Experimentation with a variety of input modalities and mechanisms by which 

users could interactively communicate new objectives, constraints and advice 

to the planning system in a natural, convenient and timely fashion in order to 

respond to a constantly changing operational picture. These input mechanisms 

translated into the internal input language of the planner.  

• Experimental development of plan visualizations based on observations 

constituting situation awareness, together with the output of POMDP 

planning, namely, action policies.  

Policies are potentially high dimensional mappings of all possible observations to 

actions to take given those observations. The policies suggest optimal actions to take in 

all circumstances based on a Markov assumption relationship between observations and 

those future execution states. Effective visualizations for mixed initiative oversight of 

these planning systems must combine policy information with presentation of the 

sequence of activities that are anticipated as the best plan given the currently observed 

and anticipated conditions, and relevant known information about that current state.  

It is extremely difficult to convey in a single picture all of the actions recommended 

by even a simple policy. Figure 1 depicts one visualization method we experimented with 

briefly. Here, the surface represents the essentially the utility of each possible observed 

state (the x-y plane) with the policy suggesting the action to take at any <x,y> to avoid 

threat areas (low utility) and reach the goal state (in red) is to move ‘uphill’, maximizing 

gradient ascent. As temporal effects are introduced into the domain, the state space grows 

in dimensionality extremely rapidly, and this kind of visualization is rendered useless. It 

was, in any case, not easily explained to naïve users. We return to a discussion of 

visualization techniques in a later section.  
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3. MAJOR ACCOMPLISHMENTS 

3.1 PUBLICATIONS 
In support of the MICA effort we have prepared a number of publications in peer-

reviewed journals, conferences, and workshops.  Many of these publications are available 

from the CMU PI’s website  
http://www.cs.cmu.edu/˜ggordon  

while others are available on request. 

 
Refereed journals and magazines 

 

Nicholas Roy, Geoffrey Gordon, and Sebastian Thrun. Finding Approximate POMDP 

solutions Through Belief Compression. Journal of Artificial Intelligence Research 

23:1, 2005. 

Vandi Verma, Geoff Gordon, Reid Simmons and Sebastian Thrun. Particle Filters for 

Fault Diagnosis. Robotics and Automation Magazine, special issue on Human 

Centered Robotics and Dependability, 2004. 

 

Refereed conferences and workshops 

 

Matthew Rosencrantz, Geoff Gordon, and Sebastian Thrun. Learning Low Dimensional 

Predictive Representations. In Proceedings of the International Conference on 

Machine Learning (ICML), 2004. 

Rosemary Emery-Montemerlo, Geoff Gordon, Jeff Schneider, and Sebastian Thrun. 

Approximate Solutions For Partially Observable Stochastic Games with Common 

Payoffs. In Proceedings of the 3rd International Joint Conference on Autonomous 

Agents & Multi-Agent Systems (AAMAS), 2004. 

Joelle Pineau, Geoff Gordon, and Sebastian Thrun. Applying Metric-Trees to Belief-

Point POMDPs. In Sebastian Thrun, Lawrence Saul, and Bernhard Scholkopf, 

editors, Advances in Neural Information Processing Systems (NIPS), volume 16, 

2003. 
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Curt Bererton, Geoff Gordon, Sebastian Thrun, and Pradeep Khosla. Auction Mechanism 

Design for Multi-Robot Coordination. In Sebastian Thrun, Lawrence Saul, and 

Bernhard Scholkopf, editors, Advances in Neural Information Processing Systems 

(NIPS), volume 16, 2003. 

Allison Bruce and Geoffrey Gordon. Better Motion Prediction for People-Tracking. In 

Proceedings of ICRA, 2004. 

H. Brendan McMahan, Geoffrey J. Gordon, and Avrim Blum. Planning in the presence of 

cost functions controlled by an adversary. In Proceedings of the International 

Conference on Machine Learning (ICML), 2003. 

Matt Rosencrantz, Geoff Gordon, and Sebastian Thrun. Decentralized sensor fusion with 

Bayes filters. In Christopher Meek and Uffe Kjaerulff, editors, Uncertainty in 

Artificial Intelligence (UAI), volume 19, 2003. 

Joelle Pineau, Geoff Gordon, and Sebastian Thrun. Policy-contingent abstraction for 

robust robot control. In Christopher Meek and Uffe Kjaerulff, editors, Uncertainty in 

Artificial Intelligence (UAI), volume 19, 2003. 

Nicholas Roy, Geoffrey Gordon, and Sebastian Thrun. Planning under Uncertainty for 

Reliable Health Care Robotics. In Proceedings of the 4th International Conference on 

Field and Service Robotics (FSR), 2003. 

Geoffrey J. Gordon. Generalized2 linear2 models. In Suzanna Becker, Sebastian Thrun, 

and Klaus Obermayer, editors, Advances in Neural Information Processing Systems 

(NIPS), volume 15. MIT Press, 2003. 

Nicholas Roy and Geoffrey J. Gordon. Exponential family PCA for belief compression in 

POMDPs. In Suzanna Becker, Sebastian Thrun, and Klaus Obermayer, editors, 

Advances in Neural Information Processing Systems (NIPS), volume 15. MIT Press, 

2003. 

Joelle Pineau, Geoff Gordon, and Sebastian Thrun. Point-based value iteration: An 

anytime algorithm for POMDPs. In Anthony G. Cohn and Georg Gottlob, editors, 

Eighteenth International Joint Conference on Artificial Intelligence (IJCAI), 2003. 

Mary Berna, Brad Lisien, Brennan Sellner, Geoff Gordon, Frank Pfenning, and Sebastian 

Thrun. A learning algorithm for localizing people based on wireless signal strength 
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that uses labeled and unlabeled data. In Anthony G. Cohn and Georg Gottlob, editors, 

Eighteenth International Joint Conference on Artificial Intelligence (IJCAI), 2003. 

Matt Rosencrantz, Geoff Gordon, and Sebastian Thrun. Locating moving entities in 

dynamic indoor environments with teams of mobile robots. In Tuomas Sandholm and 

Makoto Yokoo, editors, Proceedings of the 2nd International Joint Conference on 

Autonomous Agents and Multi-Agent Systems (AAMAS), volume 2, 2003. Won “best 

student paper” award. 

Vandi Verma, Geoff Gordon, and Reid Simmons. Efficient monitoring for planetary 

rovers. In Seventh International Symposium on Artificial Intelligence, Robotics and 

Automation in Space (i-SAIRAS), 2003. 

M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit.  FastSLAM: A factored solution 

to the simultaneous localization and mapping problem.  In Proceedings of the AAAI 

National Conference on Artificial Intelligence, Edmonton, Canada, 2002. AAAI. 

Carlos Guestrin and Geoffrey Gordon. Distributed planning in hierarchical factored 

MDPs. In A. Darwiche and N. Friedman, editors, Uncertainty in Artificial 

Intelligence (UAI), volume 18, 2002. 

 

Technical reports 

 

Maxim Likhachev, Geoff Gordon, and Sebastian Thrun. ARA*: Formal Analysis. 

Technical Report CMU-CS-03-148, Computer Science Department, Carnegie Mellon 

University, July 2003. 

S. Thrun. Simultaneous mapping and localization with sparse extended information 

filters:  theory and initial results. Technical Report CMU-CS-02-112, Carnegie 

Mellon University, Computer Science Department, Pittsburgh, PA, 2002. 

 

3.2 YEAR 1 

 
Our efforts during year one were focused in several areas: 

• We developed an XML-based language for communicating MICA domain 

planning constraints, operator objectives and advice to the Hierarchical 

POMDP planning system.  
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• We explored approaches to visualizing POMDP policies. 

• We designed and implemented an architectural framework for user control of 

frequent interactive planning during execution in order to manage the 

uncertainty of a largely unknown adversarial situation.  

• We designed new algorithms for situational awareness and belief tracking in 

the sorts of complex environments that we anticipated encountering in the 

OEP challenge problems. 

By the end of the year, we had developed a demonstration platform with which we 

could begin testing both the capabilities of the POMDP planner and begin to examine and 

experiment with how users could control and advise such a planning system.  We had 

also begun work on algorithms for the physical robotic testbed described below (the 

robots themselves were available from previous funding; our effort under MICA was 

limited to using them as a secondary evaluation platform for strategies in SEAD 

missions). 

We also developed an initial POMDP-based planning algorithm and attempted to 

integrate it into our OEP tests; but we determined that this planner was going to be too 

slow to use repeatedly in a dynamic environment, and did not adequately support 

temporally ordered goals and waypoints. So, we began to design and integrate a new 

simpler planner for lower-level decisions at that time, and implemented autonomous 

agent behaviors to avoid threats discovered during flights, to give the system time to 

replan.  

Finally, we started work on the technologies required for inter-agent communication; 

work on these technologies (such as market-based planning architectures, described 

below) continued throughout the project. 

3.3 YEAR 2 

 
During the second year of the project, our focus shifted as we had developed the basic 

integration infrastructure and began to experiment with the environment we had 

developed. Our goal was to determine which aspects of the planning and control problem 

were most appropriate for the user to do and which could be handled by the automated 

parts of the planning hierarchy.  
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We also, in response to government feedback, shifted some of the emphasis we had 

been placing on situational awareness to focus more on decision-making: since the OEP 

already contained simulations of the outcomes of belief tracking algorithms, there was 

less place than we had anticipated for some of the reasoning algorithms we had designed. 

• We developed interactive mechanisms for users to specify pre-formed 

planning templates for such missions as SEAD missions, so that plans of 

multiple partially autonomous UAVs on teams could be coordinated.  

• We developed tactical behaviors for UAVs within the action policies provided 

by the POMDP planner so that rapid reactions to unforeseen threats could be 

used to avoid weapon loss within the timeframe of the replanning.  

• We developed the intrastructure for and performed experiments on the 

effectiveness of our overall framework.  

• We explored a variety of techniques for operators to express planning 

constraints rapidly and effectively to support replanning, including 

preliminary demonstrations of an approach to speech input based on prior 

related work. 

• We finished work on several algorithms which individual agents could use for 

planning under uncertainty. 

• We refined and tuned our centralized planning algorithms for teams of agents. 

• We continued the development of our market-based algorithms for 

decentralized planning. 

Selected of these topics from both years are reviewed in the following sections. 
 

4. ESTIMATION OF COMPLEX BELIEF STATE 

Our research in belief state tracking treats two types of Rao-Blackwellized 

particle filters, conditional particle filters and FastSLAM.  We have researched RBPFs in 

order to scale state tracking up to the high-dimensional, nonlinear models needed in the 

MICA domain. 

This technology is relevant to some extent at all levels of the hierarchy, but it is 

most helpful at higher levels where partial observability is most prevalent.  For example, 

the low-level reactive planner for a given unit can observe its own position via GPS, and 
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is told waypoints and areas to avoid by the team coordination planner.  So, for practical 

purposes it has complete observability and can avoid solving complicated belief state 

tracking problems (which is good because it needs an extremely fast cycle time to keep 

up with the real world). 

Conditional particle filters take advantage of the fact that, in our belief state (the 

posterior probability distribution over states of the world at the current time), there are 

often many statistical conditional independence relationships.  For example, if we knew 

the exact position of a friendly aircraft when it detected two enemy vehicles, then the 

positions of the enemy vehicles would be independent. 

We can take advantage of these independences by factoring our belief state.  In 

the above example, we would write 

  P(state) = P(my location) * P(enemy vehicle 1 location | my location) *  

P(enemy vehicle 2 location | my location) 

Such a factorization allows us to represent each component of the belief state 

separately, allowing a lower-dimensional representation.  The remainder of this section 

describes several individual advances in situational awareness and belief tracking which 

are based on the above intuition. 

 

Role-based particle filters.  We designed technology for allowing a particle filter 

to represent a distribution over a large number of enemy locations by factoring identity 

uncertainty away from position uncertainty.  By doing so, we are able to track a belief 

such as “the UAV which I saw at coordinates <x,y> has now advanced to <x’,y’>” even 

if we cannot determine whether this UAV is the same vehicle as another UAV which we 

saw 20 minutes earlier. 

FastSLAM.  FastSLAM is our name for a set of computational methods which 

we have designed to help make RBPFs scale to larger spaces.  These methods are based 

on organizing the particles into a tree and updating pieces of the tree for each new 

observation. 
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Query-response model.  In this algorithm for distributed situation awareness, 

agents maintain independent beliefs, ask neighbors for data, and pass useful data down 

the chain of network links in response to queries.  Data which is being considered for 

communication is evaluated according to the metric of surprise: if the information which 

I have would be surprising to my neighbor, I will send it to him at the next available 

opportunity.  We have evaluated the query-response algorithm in simulation and 

experiments, and determined that it provides bandwidth and scalability benefits in 

comparison to alternative communication rules. 

 

 

Figure 2.  The query-response algorithm in action.   
 
In the center panel, a team of two agents with unlimited communication (green and grey 
circles) is able to determine the correct posterior distribution (blue dots) for the location 
of an enemy UGV (red circle) by combining their observations: the green agent can tell 
that the red UGV has not passed through the left-hand corridor, while the gray agent can 
tell that the red UGV has not passed through the right-hand corridor.  In the left panel, the 
green agent alone is unable to determine the correct posterior.  In the right panel, by using 
the query-response algorithm, the green and gray agents are able to maintain an accurate 
approximation of the true posterior distribution even though they are only able to 
communicate over a limited-bandwidth link. 
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Intent tracking.  Traditionally, belief tracking is limited to physical parameters 

of enemy unmanned vehicles.  We have implemented a system which tracks evidence 

about the intent of enemy vehicles as well: by comparing observed movements to an 

expert-provided “playbook” of possible hostile maneuvers, we are able to predict some 

information about the likely future motions of the vehicles. 

 

Figure 3.  The intent tracker.  

 
Four UAVs are being tracked through noisy observations.  The posterior distribution for 
their current position is shown in blue; predicted future locations are shown in black.  The 
intent tracker predicts that the UAVs will either continue forwards, or begin to spread out 
according to the maneuver shown below. 
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Figure 4.  A sample play from the playbook: four vehicles travel in formation until 
reaching a waypoint near the target, then spread out to approach the target from 

multiple angles. 
 

5. PLANNING UNDER UNCERTAINTY 
Because the problem of planning under uncertainty for multiple agents is an 

active open area of research, we developed several new efficient planning algorithms for 

use in the MICA domain.  This section describes three areas where our research achieved 

advances to the state of the art: belief compression for single-agent planning, what-if 

analysis for planning in the presence of an adversary, and market-based coordination 

methods for decentralized planning. 

 

5.1 BELIEF COMPRESSION 
Standard value function approaches to finding policies for Partially Observable 

Markov Decision Processes (POMDPs) are intractable for large models. The 

intractability of these algorithms is due to a great extent to their generating an optimal 

policy over the entire belief space. However, in real POMDP problems most belief 

states are unlikely, and there is a structured, low-dimensional manifold of plausible 

beliefs embedded in the high-dimensional belief space. 

We introduced a new method for solving large-scale POMDPs by taking 

advantage of belief space sparsity.  In this method we reduce the dimensionality of the 

belief space by exponential family Principal Components Analysis, which allows us to 

turn the sparse, high-dimensional belief space into a compact, low-dimensional 
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representation in terms of learned features of the belief state. We then plan directly on the 

low-dimensional belief features.  By planning in a low-dimensional space, we can find 

policies for POMDPs that are orders of magnitude larger than can be handled by 

conventional techniques. 

Large Partially Observable Markov Decision Processes (POMDPs) are generally 

very difficult to solve, especially with standard value iteration techniques.  Maintaining a 

full value function over the high-dimensional belief space entails finding the expected 

reward of every possible belief under the optimal policy. However, in reality most 

POMDP policies generate only a small percentage of possible beliefs. For example, a 

UAV navigating in a combat theater is extremely unlikely to ever encounter a belief 

about its pose that resembles a checkerboard. 

If the execution of a POMDP is viewed as a trajectory inside the belief space, trajectories 

for most large, real world POMDPs lie near low-dimensional manifolds embedded in the 

belief space. So, POMDP algorithms that compute a value function over the full belief 

space do a lot of unnecessary work. Additionally, real POMDPs frequently have the 

property that the belief probability distributions themselves are sparse. That is, the 

probability of being at most states in the world is zero. Intuitively, unmanned vehicles 

and other real world systems have local uncertainty (which can often be multi-modal), 

but rarely encounter global uncertainty.  We will take advantage of these characteristics 

of POMDP beliefs by using a dimensionality reduction technique, exponential family 

Principal Components Analysis (E-PCA).  In E-PCA, we employ a link function to 

transform the data into a space where it lies near a linear manifold. E-PCA will allow us 

to find manifolds with only a handful of dimensions, even for belief spaces with 

thousands of dimensions. 

Our algorithm begins with a set of beliefs from a POMDP. It uses these beliefs to find a 

decomposition of belief space into a small number of belief features. Finally, it plans over 

a low-dimensional space by discretizing the features and using standard value iteration to 

find a policy over the discrete beliefs. 
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Figure 5.  A schematic representation of belief compression.   

 
The triangle represents the set of possible belief distributions in a world with 3 states.  
(Real problems have many thousands of states, but such a diagram would not fit on a 2-
dimensional page.) The blue curve represents a lower-dimensional manifold within the 
set of possible beliefs.  The green dots are beliefs which were encountered while 
exploring the world; they lie near but not on the blue curve.  The red circles are the 
projections of the green dots onto a learned manifold; they trace out a path which lies 
near the blue curve, demonstrating that our learning algorithm successfully discovered 
the underlying structure in the data.  Our planner would then use a subset of the red dots 
as states for its planning process. 
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Figure 6.  A snapshot of the execution process for our belief compression planner.  

 
 In the top panel is the current state of the world: our planner (the red UGV) is searching 
a building for the blue UGV.  The true blue location is unobservable.  Our belief about 
the blue location is shown using green dots; the entire distribution of green dots 
corresponds to a single data point in the previous figure.  Given the current belief, our 
planner compresses it to a set of 6 real numbers, and uses these numbers to look up its 
best action in a policy table computed by the planning algorithm.  The bottom panel 
shows the current compressed belief (red dots); it is a good (although not perfect) 
approximation to the true belief distribution. 
 
 

 

5.2 MARKET-BASED COORDINATION 

We have designed models for multi-agent planning problems that can be decomposed 

into separate single-agent MDPs which interact through the production or consumption of 

fictitious resources. These resources may be physical goods such as fuel; or they may be 

logical resources such as the right to pass over a bridge at a particular time, the right to 

explore an area of the environment, or the right to collect reward for achieving a 

particular subgoal. Time may be part of the individual robot states, in which case a 
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resource could be the right to consume a unit of fuel at a particular time (a futures 

contract).  

More formally, we will phrase each individual agent’s MDP as a linear program in flow 

form: each agent (indexed with i) has a vector of state-action visitation frequencies fi 

which must satisfy its own local dynamics Aifi = bi. These dynamics ignore any other 

agents in the environment. Each gent will also have a cost c i (s,a) for each state-action 

pair. This cost ignores any interaction with other agents.  If they were to plan 

independently, the agents would minimize their total cost fi ⋅ ci subject to the constraints 

Aifi = bi and  fi ≥ 0.   

Sometimes, we may wish to force some of the state action visitation frequencies to take 

on integer values. For example, to represent a deterministic policy in a domain where 

time is included in the state we require that every state action visitation frequency fij be 

either 0 or 1.  

In a multi-agent MDP where agents must coordinate, the robots are not independent 

and the model above is insufficient. The agents will interact through the consumption and 

production of resources. We define the production or consumption of resources by robot i 

by a matrix Di. Element (j; k) of Di is the amount of resource j which is produced or 

consumed by robot i in stateaction pair fik . 

Given a description of how much of resource j each possible state action pair of every 

agent generates or consumes, we can write linear constraints which guarantee that 

production equals consumption on every time step.  These constraints couple the different 

planning problems. We will call these kinds of constraints resource constraints.  

If we combine the inter-agent resource constraints with the individual robot dynamics 

and individual agent objectives, we have a mixed integer program representation of the 

multi-agent MDP.  This mixed integer program is exactly the representation that we use 

to represent our multi-agent coordination problem. 

To solve this mixed integer program, we experimented with multiple different 

algorithms.  All of the algorithms were based on searching for fair prices for each 

resource: given fair resource prices, each agent will independently plan to use its 

appropriate share of each resource.  So, combining all of the agents’ independent plans 

will yield a consistent global plan. 
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Figure 7. Combination of market-based coordination for multi-agent planning with 
what-if analysis for adversarial planning, as applied to our robotic testbed for the 

SEAD task.   
(See text for details.) 

 

5.3 WHAT-IF ANALYSIS FOR GAME-THEORETIC PLANNING 
 In addition to the above market-based decomposition for teams of agents into 

independent planning problems for each agent, we investigated how to plan when there 

was an adversary in the mix.   

We can represent a general planning problem as a matrix game where each row 

corresponds to a team policy and each column corresponds to an enemy policy.  This is a 

very large (exponential size) game, but we developed efficient algorithms to solve it by 

reducing it to a sequence of small linear or mixed integer programs. 

One of our experimental results is illustrated in the figure: two Green team robots 

(representing UAVs on a SEAD mission) must plan a path from the near side of the arena 

to the target area on the far side.  Simultaneously, two Blue team robots (representing 
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transporter-erector missile launchers) must decide where to set up their defensive 

positions. The Green robots must coordinate their paths to reach a timing point 

simultaneously, and must also cooperate to produce an unpredictable approach pattern to 

reduce the Blue team’s ability to defend the target area. 

In this scenario, the Green robots start by planning shortest paths from their 

current location to the target location.  They check to make sure that the timing 

constraints are satisfied, and if necessary insert holding patterns to ensure coordination.  

Then they consider what the Blue team would do in response.  In this case, the Blue team 

will place its defensive units in a bottleneck between obstacles (representing terrain 

features such as mountain ranges) along the shortest path.  This position virtually 

guarantees them a good shot at the Green units as they approach the target area. 

In response to the predicted Blue plan, the Green units devise a new plan: they 

will take a longer route around the Eastern side of the mountain ranges.  In response to 

this Green plan, the Blue units can devise a new plan, and so forth. 

Given a set of potential Green plans, the Green units will now determine their best 

randomization among these plans. By randomizing among plans, they make their 

approach less predictable, and make the Blue units’ interception task harder.  Within 

finitely many steps, our algorithm is guaranteed to converge to a minimax equilibrium of 

the scenario: we will determine the best possible randomized approach plan for the Green 

robots, and the best possible defense locations for the Blue robots. 

Shown in the figure is one possible outcome of the randomization: the Green 

robots choose to skirt the “mountains” and approach the target area from either side, 

while the Blue robots have chosen to defend the central bottleneck.  So, the Green team 

successfully meets at the target area without taking Blue fire.  Other possible outcomes of 

the randomization include having the Blue team partially block several of the approach 

routes, and having the Green team attempt to fly through the central “mountain pass” 

area.  If the Green team determines that they have chosen a route which is too well-

defended, they are programmed with a reactive behavior which causes them to turn back 

and try again with a different plan. 
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6. INTEGRATION ARCHITECTURE 
A substantial effort during especially the first year of the project involved 

establishment of a software architecture for integrating our mixed-initiative interaction 

framework, the POMDP hierarchy being developed by CMU that automated much of the 

MICA hierarchy, and the Boeing MICA OEP simulation environment we were required 

to use for testing. BBN designed and developed virtually all of this framework for our 

team’s efforts.  

Figures 8 shows our overall approach to the system architecture, designed to enable 

testing with several different operating environments, including the MICA OEP. 

Execution agents in this distributed agent architecture are the software agents that interact 

directly with the ‘operational’ environment, provided by the OEP in most cases. These 

agents direct the simulated physical agents in the OEP to move, sense, and fire weapons. 

These agents also have a certain amount of reactive capability to perform tactical 

movements in direct response to such things as radar hits they detect.  

We implemented this framework using a software agent architecture based on 

OMAR-J that had previously been developed by BBN for several large-scale agent 

systems efforts for DARPA CoABS program. We used this framework to wrap the 

uncertainty-modeling planning and distributed information fusion algorithms developed 

at CMU so that they could be associated with individuals or teams of UAVs and invoked 

repeatedly as information was gathered from the OEP.  

Frequent planning is needed as qualitative changes in the level of uncertainty occurs 

in a dynamic situation. For example, when new threats and targets are identified by 

surveillance UAVs, or when users made decisions regarding objectives and priorities, the 

constraints faced by the UAV team require updating, and the action policies for each 

team member need to be reviewed. Only when a policy already covers the contingency 

that is revealed through observations can the overall policy remain unchanged. That kind 

of uncertainty was primarily related to UAV locations, which are not very uncertain in 

the OEP environment (and likewise would be relatively certain in real UAVs using GPS). 

Similarly, since the sensor platform positions are known with high precision, opposition 

element locations can be determined with less uncertainty, making distributed 

information fusion less critical in this somewhat artificial environment. As our team’s 
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approach to managing both predicable event uncertainty and unpredicted observation 

uncertainty was the cornerstone of our research effort, we designed our architecture to 

support several different experimental platforms to be able to effectively evaluate our 

work.  
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Figure 8. Architectural framework for MICA U4 interaction with testbeds. 
Sensor reports from agents with sensing capability can pool the information that they 

collect using distributed techniques to develop uncertain models of object locations using 

one of several techniques under development by the CMU and University of Washington 

team members.  

The POMDP-based planning system uses this processed observational information in 

conjunction with threat and objective information provided through the mixed-initiative 

interface to develop or revise action policies for all agents, including possibly reassigning 

tasks to different agents as targets come and go, or threats change the optimal paths to 

objectives.  

Figure 9 shows an early conception of the relationship between different agents 

operating both as elements of the MICA hierarchy and the console for interacting with a 

human operator, displaying the overall situation and current state of planning. Note that 
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this display is similar to (using the same mapping subsystem) but contains different 

information and controls than the OEP native display. Agents 2 and 3 in this figure 

represent individual UAVs executing missions within an overall plan developed by a 

team leader agent that might be associated with a surveillance aircraft. The 

communication between the team planner and the human operator is done using an XML 

–based constraint and objective description language described briefly in the next section. 
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Figure 9: Relationships among agents and situational views. 

 

6.1 PLANNING CONSTRAINT LANGUAGE 
In order to support effective interactions between what is essentially a map-based 

interactive display and the hierarchical POMDP-based planning system, we worked 

closely with CMU over the first six months of the effort to design an interaction language 

that could be used to represent planning constraints and objectives that could be acquired 

using GUI tools (possibly combined with natural language interactions) and communicate 

them to the agents doing planning.  

This inter-agent communication language expresses a combination of goal/utility 

information and its converse (threat/avoidance), in conjunction with spatial and temporal 
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relations suited to reformulation as POMDP input elements with appropriate indications 

of levels of uncertainty. Users can thus describe points and regions in space as  

• Threats or obstacles (represented as Gausians over areas to avoid) 

• Goals as points or regions in space x time x heading 

• ‘Corridors’ assigned to sets of agents (in multi-layer POMDP policies) that 

introduce sequences of agent-specific subgoals with avoidance regions (called 

‘waypoints’). 

 
The initial version of this language addressed primarily path-planning constraints. Its 

elements are summarized in Figure 10. During the third year of the project we had 

planned to extend this formalism to address uncertainty in conjunction with more explicit 

coordinating temporal constraints among multiple agents. 

 

 

 

• Positions (Points, Regions)
– certain (exact positions)
– fuzzy (points w. variance)

• Objects (OEP types)
• Vectors (point+heading)
• Relations

– At (agent, pos|obj), 
– Near (agent, pos |obj)
– Distance-from (obj1, obj2)
– On (agent, vector)

• Actions (other than move)
– e.g. fire weapon

• States
– logical combinations of 

relations, actions
• Goals, Waypoints

– specified as states  with 
positive utility

– May include action to take in 
goal state (e.g., fire 
weapon)

– may be temporally ordered
• Threats, Obstacles

– specified as states with 
negative utility

 
Figure 10: Elements of Constraint Language 
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<Mission ID="mission463"> 
 <MissionType>recon</MissionType> 
 <sequence> 
  <waypoint>  
   <location>...</location> 
   <variance>.0001</variance> ; degrees2  </waypoint> 
  <survey>   
   <agent><UAV ref="UAV12"/></agent> 
   <region ID="region1"> 
    <corner>...</corner> 
            ... 
   </region> 
   <subject> 
    <type>Red-Unit</type> 
    <max-cnt>5</max-cnt> 
    <certainty>.75</certainty> 
   </subject> 
  </survey> 
     </sequence> 
</Mission> 

Figure 11.  Example constraint language expression 

7. MIXED-INITIATIVE INTERACTION TECHNIQUES 
 

7.1 VISUALIZATION OF PLANNING POLICIES 

     
Figure 12.  Year One views of single UAV (best) plan and overall policy.  
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Strike goalRecon goal

BDA goal Intermediate waypoint
 

Figure 13: Iconography of Plan/Situation Visualizer from Year 2 
 
 

8. REACTIVE AGENT BEHAVIORS 
We provided our UAV controller agents with a suite of behaviors that improve 

performance on the SEAD mission’s goals of destroying enemy SAM sites with minimal 

UAV loss.  These behaviors implement high level tactics that either provide constraints to 

the planner, or react to events in the simulation in a pre-determined way.  The 

commander can enable or disable these behaviors at initialization time.  It is certainly 

possible for the commander to also turn on or off the behaviors dynamically, while the 

UAVs when are in flight, however the functionality for doing so hasn't yet been built into 

our commander's interface.  We ran experiments to determine the effectiveness of these 

behaviors by comparing the performance metrics of the UAVs with each behavior turned 

on or off.  The experiments were run in a Monte Carlo fashion, with 20 runs averaged for 

each condition.  The following sections describe each behavior and its effect on UAV 

performance.  Appendix X gives the detailed statistics gathered for these experiments. 
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Figure 14.  An example of a reactive behavior.   

 
Reactive behaviors can range from simple to complex; in this behavior, three UAVs (with 
sensor ranges indicated by red circles) try to avoid threat areas (black circles) while 
keeping enemy UGVs under surveillance. 
 

8.1 OEP PARAMETERS 
The scenario goal for all of the experiments described in this section was to destroy 

all SAM Sites in Area 2, the kill region directly north of the blue base.  This region 

contained 7 SAM sites, two long range and five medium range.  At the start of the 

scenario, the commander knows the approximate location of two of the SAM sites, one 

long range, and one medium range.  The remaining five SAM sites must be discovered by 

the UAVs.  Five UAVs were assigned to the team responsible for this SEAD mission, 

two small weapon UAVs, two small sensor UAVs, and one small combination UAV.  All 

UAVs had sensors capable of locating a SAM site. The weapon and combo UAVs were 

able to destroy SAM sites by shooting a seeker missile.  The sensor UAVs were able to 

perform BDA (battle damage assessment) to determine if a SAM site was destroyed or 

not.  For the performance metrics, a SAM site was only recorded as destroyed if a sensor 

UAV was able to perform a successful BDA, even if the site was actually destroyed in 
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the OEP.  Therefore, if both sensor UAVs get destroyed or both weapons and the combo 

get destroyed, no more SAM sites will be destroyed, regardless of how long the scenario 

runs.  The experiments ran for a set length of time, which ended up being about four 

hours of OEP simulated time.  This length of time was large enough that the UAVs either 

destroyed all 7 SAM sites, or enough UAVs were destroyed, making it impossible to 

complete the mission. 

The OEP used the 3-D radar signature for the UAVs (not the fuzz ball signature), so 

that UAVs moving away from or perpendicular to a tracking radar have a higher 

probability of being detected than a UAV moving directly at a target.  Running the 

scenario with the fuzz ball signature instead (UAVs have a low chance of detection from 

all angles) made it too easy for the UAV team to achieve near perfect performance. 

8.2 LONG SAM FIRST 
This behavior added a simple constraint to the planning system.  Any long range 

SAM sites must be struck before any medium or short range SAM site.  Since this is 

implemented as a high level tactic, it is a hard constraint, not allowing the planner to plan 

any strike action against any medium range SAM site until all long range SAM sites have 

been struck.  The perceived benefit for this constraint is increased survivability for the 

UAVs, since they are eliminating the greatest threats first.  The threat areas of the SAM 

sites overlap enough, so that when a UAV engages a medium SAM site, it might be 

necessary to fly through the threat region of a long SAM site.  Due to the radar signatures 

of the UAVs, they have a lower likelihood of getting tracked by the SAM radar while 

heading straight at a target, which would be the case when a UAV is striking a target, 

then when flying perpendicular to the target, which would usually be the case when 

flying through a threat region to get to another target.  The downside for using this tactic 

would be the extra time required, when some of the UAVs that could be striking targets 

are forced to wait for the long SAMs to be destroyed first.   

The simulation results confirm this prediction.  On average, one more target was 

destroyed using the "Long SAM First" behavior than without it.  The end time of the 

simulation however, was almost double.  In addition, the results show that some of the 

other behaviors, described below, were necessary for successfully shooting down the 

long range SAM sites.  With no other behaviors turned on, "Long SAM First" performed 
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much worse on than off.  This is because the UAVs sent after the long range SAM sites 

were struck down fast.  Without this behavior on, those same UAVs were able to take out 

a medium SAM site or two before getting destroyed. 

8.3 SHOOT LONG SAM SITES TWICE 
Another simple behavior, "Shoot Long SAMs twice" was an operational tactic that 

didn’t impact the planning system.  Instead of firing one missile at a long range SAM 

site, the UAV would fire two.  This tactic makes sense, since long range SAM sites have 

numerous components and could still function even if some of the components were 

damaged or destroyed.  This behavior would have more implications for the planner if we 

included a resource model for the missiles, and planned for returning to the base and 

reloading.  Since the scenario we experimented with was a small subset of the full 

challenge problem, we were able to avoid resource usage constraints, and assume the 

UAVs have enough missiles to carry out their mission.  

With "Shoot Long SAM sites twice" and "Long SAM First" turned on, the UAVs 

were able to destroy 2 more SAM Sites on average.  This is because the strike UAVs 

after the long range SAM sites have a higher probability of kill, and thus can survive 

longer to strike other targets.  Without "Long SAM First", the "Shoot Long SAM sites 

twice" behavior didn’t make much of a difference, because most of the SAMs destroyed 

were the medium range ones.   

8.4 FACE THREATS 
This is a reactive behavior that was triggered whenever a UAV's threat warning 

sensor indicated that a SAM radar was locked on.  Since a UAV presents a smaller radar 

signature when pointed directly at a hostile radar site, flying towards a threatening radar 

may be a better tactic than turning around and presenting a larger radar cross section 

while trying to leave the threat region. This is an example of a type of behavior where it 

would be interesting to have the commander dynamically add the behavior after noticing 

UAVs getting shot down when they turn to flee a threat region. Our current commander's 

interface does not support the capability to dynamically add a behavior. 

This behavior had the largest effect with "Long SAM First" turned on. Three more 

SAM sites were destroyed on average with "Face Threats" on.  Even with "Shoot Long 

SAMs twice" turned off, "Face Threats" allowed the UAVs to shoot down two more 
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SAM sites on average.  The effect is less pronounced when engaging medium range 

SAM sites, because it the time a UAV needs to travel inside the threat region of a 

medium SAM is much lower than for a long SAM.  

8.5 DIVE WHEN THREATENED 
Another simple reactive behavior, the "Dive when Threatened" tactic causes the 

UAVs to decrease altitude whenever their threat warning radar is active.  Tactically, a 

downside to this behavior is that a lower altitude opens the UAV's up to hand-launched 

AAA weapons, which can strike without warning.  Strategically, a lower altitude limits 

the sensor range of the UAVs, lowering the chance of detecting a target from a longer 

range.  After the threat warning sensor turns off, this behavior causes the UAVs to return 

to their cruising altitude (chosen by the commander), which limits the strategic downside.  

Since this behavior only turns on when the UAV is in direct danger of being shot down 

by a hostile SAM site, the added danger of small arms fire is not too important, since the 

likelihood of a kill by small arms fire is low.   

Most of the experiments were done with "Dive when Threatened" turned on.  One set 

of runs varying the state of "Dive when Threatened" showed the expected performance 

improvement.  With the behavior active with "Long SAMs first" on, and "Shoot Long 

SAM sites twice" off, the UAVs were able to destroy two more SAM sites on average 

when with "Dive when Threatened" off.  When striking medium range SAM sites, the 

effect was much less noticeable, but there still seemed to be a performance improvement 

with this behavior turned on. 

8.6 LOITER CENTER 
One of the latest versions of the planner allowed for the inclusion of a Loiter goal.  A 

UAV with no tasks to do could loiter near the Loiter goal location, instead of just 

loitering wherever it happens to be.  The newer version of the planner was smart enough 

to pick a spot to loiter as close to the Loiter goal location as possible without being inside 

a known threat region.  Without this tactic, the UAVs would just loiter wherever they 

happened to finish their last task, which could be inside an active threat region.  Since 

there is no downside to using this behavior, the results should show an improvement in 

performance.  With a Loiter goal added, and "Shoot Long SAMs first" turned off, the 

UAVs did much better, shooting down most of the SAM sites.  With this behavior, when 
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a UAV strikes a medium SAM Site in a threat region of a long range SAM site, it is 

usually able to get out of danger before the long SAM can lock on and fire.  With "Shoot 

Long SAMs first" turned on, the results showed a slight decrease in the number of SAM 

sites destroyed.  The high standard deviation and low number of runs points to the 

possibility that this result was a statistical anomaly.  In addition, the average number of 

UAVs destroyed was lower by almost one whole UAV. 

8.7 PLANNER PARAMETER EXPERIMENTS 
The utility function used by the CMU planner to determine the value of a plan had a 

number of parameters that affected mission performance.  We tuned those parameters by 

running experiments in a similar manner as for the behaviors, with all behaviors except 

"Loiter Center" turned on.  The utility function is controlled by three weights, Maximum 

Length, Sum Squared Weight, and Total Cost Weight.  The utility function calculates the 

maximum length of any one UAV's plan, the sum of the squares of the length of all 

UAVs plans, and the total length of all UAV plans added together, and multiplies each 

value by the appropriate factor, after normalization.  These three weights must sum to 

1.0, which leaves two free parameters.  We hand picked ten sets of values for these 

parameters and ran five trials with each set.   

A value of 0.8 for Max Length, 0.2 for Total Cost, and 0 for Sum Squares yielded 

near perfect performance.  Decreasing the Max Length weight and increasing the Total 

Cost weight led to a decrease in the number of SAM sites destroyed, since more UAVs 

were getting shot down before they could complete their missions.  Increasing the Sum 

Squared parameter also led to a decrease in performance, with a drastically increased 

replanning time.  With Sum Squares at 0.0, the replan time was around 200 milliseconds, 

and with Sum Squared closer to 1.0, the replan time was over 2 seconds. 

In addition, we experimented with the obstacle cost parameter. A higher value for the 

obstacle cost would cause the route planner to avoid threat regions more diligently, flying 

a longer path to avoid entering a threat region.  A value of 10.0 for obstacle cost meant 

the planner would go ten units of distance out of the way to avoid flying in a threat region 

for one unit of distance.  The standard setting for obstacle cost was 10.0.  We 

experimented with values of 1, 4, and 40, with varying values for the utility function 

parameters.  Predictably, a value of 1 led to the worst performance, since the UAVs 
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basically ignored the threat regions and got shot down fairly fast.  There didn’t seem to 

be much of a difference between 4 and 40, and only a minor decrease in performance 

from 10. 

 

9. ROBOTIC TESTBED FOR SEAD MISSIONS 
In addition to the OEP testbed described above, our team used a group of physical 

robots to evaluate some of our algorithms for reasoning and planning.  There were two 

main reasons for the use of this alternative testbed: first, it forced us to design our 

algorithms so that they could be interfaced to a real physical system (as well as to a 

software system like the OEP).  This consideration required us to design for real-time 

efficiency as well as for real observability constraints.  And second, it forced us to design 

our algorithms to handle the sorts of uncertainty that arise from real physical sensors, in 

addition to the OEP’s simulated sensors.  Since the OEP’s sensor simulations were 

designed to be qualitatively rather than quantitatively accurate, we felt that it was 

important perform additional tests on this physical testbed. 

The additional tests we performed were in the context of a suppression of enemy 

air defenses (SEAD) task: some robots became simulated UAVs, while others remained 

in a fixed location to simulate air defense units such as missile launchers.  A typical 

scenario would require the UAV team to decide on an approach path to a given target 

area, while the defense team would have to deploy its missile launchers to attempt to 

block the most likely approach paths.  As shown in the figure, the UAV team was able to 

plan to randomize their approach paths to avoid air defense units, and was able to use 

reactive behaviors to quickly alter their paths in case they ran across an unexpected 

hazard. 
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Figure 15.  Two of the robots used in our SEAD testbed.   

 
They are approximately 30cm in diameter, and can travel at 2 m/s and rotate at 10 rad/s.  
Their primary sensor is a SICK laser rangefinder.  We have 7 of these robots, of which up 
to 4 at a time were used in the evaluations. 
 




