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APPLICATION OF FCT TO INCOMPRESSIBLE FLOWS

1. Introduction

Flux-corrected transport (FCT) algorithms [1-3] are high-order, monotone, conservative,

and positivity preserving methods for solving single or coupled continuity equations with

source terms. One of the major applications of FCT has been to solve the Navier-Stokes

equations for unsteady, compressible flows. In this context, FCT has been applied to a

wide range of problems including flows associated with shocks and shock interactions, flames

and detonations, turbulent flows, acoustics, plasma interactions, and astrophysics, many of

which are described in [4]. This paper presents the first step in applying FCT to incom-

pressible flows. In the past, other nonlinear monotone algorithms developed for compressible

flows were used to solve incompressible flow problems. These include the higher-order Go-

dunov [5] and MUSCL [6] methods, which were used to calculate the convection terms in

the momentum equation.

There are two major numerical instabilities that arise in standard approaches for solving

incompressible flows. The first is similar to what is encountered in compressible algorithms in

that it originates from the discretization of the convection terms. Upwind or upwind-biased

methods are often used for convection terms to control this type of numerical instability. In

this paper, we use LCPFCT [7], a standard version of FCT, to integrate either the convection

terms or the whole momentum equation. The flux limiting procedure embedded in FCT helps

to stabilize oscillations introduced by the discretization of convection terms.

The second numerical instability results from the pressure-correction procedure [8, 9],

and introduce oscillations in the pressure field. To eliminate these pressure oscillations,

incompressible algorithms often use staggered grids in which the velocities and the other

variables are evaluated at different grid locations. The drawback of the staggered grid is

that it can be cumbersome for nonorthogonal grids with complex geometries. Algorithms for

compressible flows, including FCT, generally use colocated grids, where all of the variables

are evaluated at the same locations. Over the years, several approaches have been developed

Manuscript approved November 14, 2005.
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to control this numerical instability in the incompressible algorithms that use colocated grids.

These include introducing a third-order pressure gradient [8, 9] to interface velocities or an

extra source term in the Poisson equation [6, 10, 11]. In this paper, we have found that this

instability results from an odd-even decoupling problem in the discretization of the pressure

gradients in the source term of the Poisson equation. Pressure gradients appear in the source

term because the pressure correction, rather than the pressure itself, is updated by the

Poisson equation, as shown in Section 2. Therefore, we can avoid this numerical instability

by updating the pressure rather than the pressure correction in the Poisson equation, so that

the discretization of the Poisson equation can be free from the odd-even decoupling problem.

We have used this FCT-based method to simulate a two-dimensional (2D) microchannel

flow, a 2D boundary-layer flow, and a 2D cavity driven flow. These results are compared

with either analytical solutions or other published numerical results. Furthermore, a three-

dimensional (3D) microchannel flow containing patterned, herringbone-shaped structures is

simulated to demonstrate the general capability of this method.
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2. Governing Equations and Algorithm

Incompressible flows are governed by the momentum equation and the divergence-free

condition:
Opu +V(puu) + Vp- _V2u = 0, (1)

V.u = 0, (2)

where p is the density, u is the velocity vector (bold font indicates a vector variable in this

paper), p the pressure, and p the viscosity.

2.1. Time Advancement

Using a fraction-step method to discretize equation (1) in time, one obtains

pun~l = pun + AtHn+! - AtVpn+l, (3)

where

H -V- (puu) +gV 2u.

Here n, n + 1, and n + 1 denote times levels. The pressure pf+l is calculated by satisfying

the divergence condition V. un+l = 0, and the final velocity un+l is obtained from equation

(3).

2.2. Standard Approach for Updating Pressure

Following a usual approach, an intermediate velocity u* can be written [8, 9]

pu* = pun + AtHM+½ - AtVp2, (4)

and equation (3) becomes

pun+l = pu* - AtVp', (5)
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where p' is the pressure-correction term and p' = pf+l _p,. Taking the divergence of equation

(5) and applying the divergence-free condition (2) gives the Poisson equation for p',

V p'= V.u*. (6)
At

The quantity pu'+' can be calculated from equation (5) after the pressure field is updated

by equation (6). As observed previously [12], this standard approach is subject to pressure

oscillations.

2.2. Source of the Oscillatory Behavior in the Pressure Field and Its Remedies

If we substitute the intermediate velocity u*, evaluated from equation (4), into the Poisson

equation (6) and assume the divergence-free condition is satisfied at the previous time level

n, equation (6) becomes
Vp' = V.- H'+'- - V.- (Vpe). (7)

In this equation, a compact three-point central-difference algorithm is usually used to dis-

cretize V 2p', for example, the discretization of its x-component can be,

a 2
pýjk

-(Pi+l,,k - 2p' ,j,k + p/ 1i , )/Ax 2

where the odd and the even points are coupled. Because of the nonlinearity of the convection

terms, the discretization of V. H 2+1 is also free from the odd-even decoupling problem. On

the other hand, the odd and even points are decoupled in the discretization of V- (Vp'),

because a central-difference algorithm is usually used for Vpn in momentum equation (4).

For example, the x-component of V- (Vpl) has a dirscretization form

- (Pi +2,j,k - 2 Pij,k + P 2,J,k)/ 4 AX,

where the odd and the even points are decoupled. The decoupling will cause oscillations

in the source term of the Poisson equation and thus in the pressure correction p'. Various

approaches have been proposed in the past to remedy this problem, including filtering out
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the oscillations [13] or adding extra terms to either the cell face velocities or to the Poisson

equation [6, 8].

Since it is the discretization of the pressure gradients in the source term of the Poisson

equation (6) that introduces pressure oscillations, we can eliminate these pressure oscillations

by constructing an intermediate velocity without the contribution of the pressure gradient [9],

so that the pressure gradients will not be included in the source term of equation (6). For

example, we can use

pu* = pu'n+ AtH± +, (8)

and the Poisson equation becomes

V2pn+l - V U*, (9)

At

where the pressure rather than the pressure correction is calculated. If the intermediate ve-

locity u*, evaluated from equation (8), is substituted into equation (9), the Poisson equation

can be also written as

V pn+1 = V -H+2. (10)

Thus, the source term of the Poisson equation equation (9) only has the contribution from the

convection terms. As we have discussed above, the discretization of convection terms does

not have the odd-evening coupling problem. In addition, if the odd-even coupled algorithm

a2pg n+1
- n+l _ + n+1 2

1X 2  i+l,j,k i,j,k _± - j,k

is applied to the operator V 2pn+l on the left side of equation (9), equation (9) does not have

the odd-even decoupling problem and no extra steps are needed to control the oscillations in

the pressure field. In this paper, LCPFCT [7] is used to obtain the intermediate velocity, and

its flux limiting procedure helps to control the oscillations caused by the nonlinear convection

terms. Finally, the velocity is updated by

pup+1 = pu* - AtVp,+'. (11)

5



There are cases in which the intermediate velocity may need to include pressure gradients

due to the requirement of a specific algorithm, intermediate velocity including the pressure

gradients, such as that defined in equation (4), can be first calculated for such occasions.

The contribution of the pressure gradient is then removed from the intermediate velocity

after the integration of the momentum equation, prior to the pressure update from equation

(9).

Rhie and Chow [8] added third-order derivatives of pressure to the cell face values of

velocity u* in the Poisson equation (6) to control these pressure oscillations. These third-

order derivatives result in three extra fourth-order derivatives on the right side of the Poisson

equation. The x-component of these extra terms has the form:
_% 4n 4p 2-

(P•+2,j,k -
4 pi+l,3 ,k + 6 p!1,k - -,j,k + P- 2,j,k)/4Ax,

which is the difference between the odd-even uncoupled algorithm,

(P+2,j,k - 2 Pij,k + Pi- 2,j,k)/4Ax (12)

6nd the odd-even coupled algorithm,

(P±+1,j,k - 2 -- l,J,k)/AX2. (13)

The inclusion of these fourth-order derivatives changes the discretization of V- (Vpn) (in the

source term of equation (7)) from the odd-even uncoupled algorithm (12) to the odd-even

coupled form (13), and thus eliminates the odd-even decoupling problem. If this modified

V (Vp') is moved to the left side of the Poisson equation (7), the resulting equation

would be the same as that shown in equation (9). Therefore, the approach proposed by

Rhie and Chow is equivalent to updating the pressure rather than the pressure correction

in the Poisson equation, such as that done in equation (9). Using equation (9) is more

straightforward and does not need to deal with an extra variable p' and the specification of

its boundary conditions.
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For some cases in which pressure gradient has a large temporal variation, the contribution

of pressure gradients to the velocity field u'+1 in equation (11) may alter the positivity

and monotonicity properties and degrade the stability condition. One way to remedy this

problem is to apply the FCT flux limiter to equation (11). Since there is no convection term

in equation (11), the convection velocity can be assumed to be zero. We have noticed that

applying the flux limiter to equation (11) improves the stability.
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3. Numerical Results

A series of 2D flows were used to test this FCT-based algorithm. These include a channel

flow, a boundary-layer flow and a lid-driven cavity flow. We select these 2D problems due

to the availability of analytical solutions and published data. The conditions describing

these simulations are given in Table 1. A 3D herringbone-mixer flow is also simulated to

demonstrate the capability of this approach.

The Gauss-Seidel method is used to solve the Poisson equation (9). Because of the

pressure-velocity relationship shown in equation (11), a zero-pressure gradient is used for

the pressure boundary condition, and the intermediate velocity at boundary intefaces is

replaced by the real velocity. Although the test problems used here are steady flows, the

FCT-based algorithm is time accurate with an overall accuracy close to second order. The

mask coefficient that controls the global numerical diffusion is set to 1.0 in all simulations

to minimize numerical diffusion [3].

3.1. 2D Channel Flow

The first row of Table I gives the simulation parameters, and Figure 1 shows the simulation

set-up. The channel height is 200 pm and the length is 1600 pm. We use a small Reynolds

number to avoid a long entrance region. The velocity and pressure distributions in Figure

2 show that the flow field is fully developed at the end of the channel. This is further

confirmed by Figure 3a, where the velocity profile agrees well with the analytical solution

of a fully developed channel flow. The pressure profile shown in Figure 3b has a large drop

at the entrance region and gradually reaches the linear profile further down the channel. To

demonstrate the effect of the odd-even decoupling problem in the source term of the Poisson

equation, we have also used the Poisson equation (6) to compute the pressure. Pressure

oscillations are observed in Figure 4, which is consistent with the analysis in Section 2.
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3.2. 2D Boundary-Layer Flow

Figure 5 shows the computational set-up, and the second row of Table 1 describes simu-

lation parameters. A flat plate with a length of 45 crn is placed 5 cm away from the inflow

plane. A slip boundary condition is used for the section between the inflow plane and the

plate. The Reynolds number at the end of the plate is 3 x 10', which assures that the flow is

laminar. A velocity profile near the end of the plate and the skin friction along the wall are

shown in Figure 6. The agreement between the numerical results and analytical solutions

is excellent in regions where boundary-layer theory applies. This FCT-based algorithm is

capable of simulating flows with much higher Reynolds numbers, but such simulations would

create turbulence conditions that require either much finer resolution or turbulence models

to give correct results.

3.3. 2D Lid-Driven Cavity Flow

There is only one dominant velocity gradient in both channel and boundary-layer flows.

A cavity flow, on the other hand, has significant velocity gradients in all directions. Figure

7 shows the set-up for a lid-driven cavity flow, and the descriptive parameters are given in

the third row of Table 1. The Reynolds number is 1000, and the velocity distribution is

shown in Figure 8. The x-component of the velocity along the vertical line at x = L/2 and

the y-component along the horizontal line at y = L/2 are compared with those predicted by

Ghia et al. [14] As in the first two test problems, the agreement is very good.

3.4. 3D Herringbone-Mixer Flow

The three simulations shown above have demonstrated that the FCT-based algorithm is

capable of simulating relative simple, idealized 2D incompressible flows. Here, it is applied

to a 3D microchannel flow containing staggered, herringbone structures similar to those

used in the experiment by Stroock et al. [15] and simulated by Kaplan et al. [16]. Table
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2 summarizes the computing parameters, and Figure 10 presents the geometry and the

boundary conditions. There are 24 herringbone structures placed in a rectangular channel

with a dimension of 4000 pm x 90/,m x 200 pm and a grid dimension of 800 x 18 x 40. The

individual herringbones are 20 pm high in the y direction, and spaced 150 Am apart in the x

direction. The channel contains two sequences of herringbone structures, and each structure

consists of six herringbones with the short segment on the left and the long segment on

the right, followed by six more herringbones with short segment on the right and the long

segment on the left. The ratio of the length of the long segment to short segment is 2:1.

No-slip boundary conditions are used for the herringbone surfaces. The incoming velocity

is Uo, = 1.0cm/s. Because we are using a Cartesian grid and the herringbones are set at

angles to the grid, a stair-cased grid is used for the surface of the herringbone structures,

as shown in Figure 11. This type of grid arrangement has effect of using walls with rough

surfaces. The height of the roughness is 5% of the height of the herringbone sub-channel for

this grid size. The herringbone sub-channel is the space between neighboring herringbone

segments. Since the velocity is small and the hydraulic Reynolds number of the channel is

only 0.89, the effect of this surface roughness can be ignored.

Figure 12 shows the transverse velocity field around the herringbone segments. The her-

ringbones deflect the flow and introduce rotational motions. The magnitude of the transverse

velocity can be as high as 40% of the incoming velocity. Figures 13a and 13b show the ve-

locity vector field (u, w) at y = 17.5 pm, a plane intersecting the structure, and y = 22.5 Mm,

a plane barely above the structures. The vector fields of these two planes show how the

herringbones distort the flow. Figure 14a and 14b present the velocity field (u, v) and the

x-component of the velocity at z = 97.5jm. These figures show that flow passes those

structures in a way similar to a cavity flow.

Figure 15 shows the three components of the velocity at y = 45/jm, which is 25/ jm

above the structures. The herringbone structures introduce large flow variations even in
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regions that are far above these structures. Similar to what Kaplan et al. have observed,

the flow pattern in each herringbone sequence are essentially the same. This is confirmed

by Figure 16, where the transverse velocity fields at two identical locations in the first and

the second sequences are shown. This trend does not change with the magnitude of the

incoming velocity at least up to 100cm/s, as shown in Figures 17 and 18, which show

results from another two simulations with U, = l0cm/s and 100cm/s, respectively. This

similarity may allow periodic boundary conditions to be used in the x direction when multiple

herringbone sequences are used, thus, reducing the computational effort in future studies [16].

Furthermore, Figures 16-18 show that the ratio of the transverse velocity to the incoming

velocity decreases as the incoming velocity increases.
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4. Summary

A FCT-based algorithm has been developed to simulate incompressible flows. The flux

limiting procedure embedded in FCT helps to control the numerical instability introduced by

the convection terms. Another type of oscillation is associated with the pressure calculation.

This type of oscillation is introduced by the odd-even decoupling in the source term of

the Poisson equation when the pressure correction, rather than pressure itself, is updated

by Poisson equation. An algorithm that constructs an intermediate velocity without the

contribution of the pressure gradient is used to remove this odd-even decoupling problem.

This approach is more straightforward than the standard approach of updating pressure

correction, since there is no extra effort needed to control the pressure oscillation.

This FCT-based algorithm has been tested by computing a series of 2D flows (a channel

flow, a boundary-layer flow, and a lid-driven flow) and a 3D microchannel flow containing

staggered herringbone structures. The numerical results agree well with either analytical

solutions or other published simulation results. The herringbone structures in the 3D flow

introduce a transverse velocity with a magnitude of up to 40% of the incoming velocity.

Periodicity of the flow field is found among the herringbone sequences, and it could be used

to reduce the computational effort in future studies.
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Table 1

Parameters for 2D simulations

Cases AX Ay ReL CFL Uo.

Channel Flow 40tm 5[tm 713 0.3 500 cm/s

Boundary-Layer Flow 0.51im 0.02[tm 3 5 0.3 4000 cm/s

Cavity Flow 0.01[tm 0.01[tm 1000 0.3 10 cm/s
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Wall

U00
'5>L Outflow

Inflow

Wall

Figure 1. Schematic diagram of a 2D channel flow. Uo is the inflow velocity. Inflow

boundary: subsonic inflow conditions. Outflow boundary: subsonic outflow conditions.

Wall boundary: adiabatic and no-slip conditions.
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Figure 2a. Distribution of the streamwise velocity in a 2D channel.
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Figure 2b. Pressure distribution (scaled by Pexit) in a 2D channel.
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Figure 3a. Velocity profiles at the end of a 2D channel. Solid line: simulation result.

Symbols: parabolic profile.
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Figure 3b. Pressure distribution at the center of a 2D channel. Solid line: simulation

result. Dashed line: analytical solution.
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Figure 4a. Pressure distribution at the center of a 2D channel when pressure gradient is

included in the intermediate velocity.
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Figure 4b. Enlargement of Figure 4a.
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Free Stream Boundary

Inflow "" Outflow

Wall Boundary
L

Figure 5. The schematic diagram of a boundary-layer flow on a flat plate. U. is the

inflow velocity, and L is the length of the plate. Inflow boundary: subsonic inflow

conditions. Outflow boundary: subsonic outflow conditions. Wall boundary: adiabatic

and no-slip conditions. Free stream boundary: far-field conditions.
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O0 . . . . . 2 :3 . . . . . . . . . ..4 5 6 7

Figure 6a. Normalized velocity profiles as a function of the dimensionless coordinate I,

7I = y,-', at x = 40.5cm. Solid line: simulation result. Symbols: solution of boundary-

layer theory.
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Figure 6b. Skin friction as a function of the streamwise coordinate x in the boundary-

layer simulation. Solid line: simulation result. Symbols: solution of boundary-layer

theory.
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U00

Moving Wall

L

S0

L

Figure 7. Schematic diagram of a lid-driven cavity flow. U, is the velocity of the top

moving wall, and L is the height and the width of the cavity. No-slip boundary conditions

are used for the three stationary walls, and the slip condition is applied to the top moving

wall.
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Figure 8. Distribution of velocity magnitude, 1u2 + v 2 , in a lid-driven cavity flow with
the Reynolds number of 1000.
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Figure 9a. Vertical profile of the x-component of the velocity at the centerline of the

cavity box. Solid line: the present simulation result. Symbols: simulation by Ghia et aL
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Figure 9b. Horizontal profile of the y-component of the velocity at the centerline of the

cavity box. Solid line: the present simulation results. Symbols: simulation by Ghia et aL
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Table 2
Simulation parameters for a microchannel flow containing herringbone structures

Ax=Ay=Az Lx x Ly x Lz V At U.V-
Ax 2

51n 4" xtmx 90jtm x 200m 0.014 (cm2ls) 0.05 1.0 cm/s

S•Ce ,e

200

Figure 10. Geometry of the staggered herringbone structures. The four sides are wall

boundaries. The incoming velocity is specified at the inflow boundary, and zero-gradient

conditions are used at the outflow boundary.
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Figure 11. Staircased grid on a y plane intersecting with the herringbone structures. The

grid points shown above are the cell centers, which are overlaid with the x-component of

the velocity at y = 17.5 [m.
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Figure 12. The secondary velocity field (v, w) at x 597.5j~m, 622.5[tm, and 647.51pm,

respectively, in the herringbone simulation.
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Figure 13a). Velocity vector field (u, w) at y =17.5[xm in the herringbone simulation.
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Figure 13b). Velocity vector field (u, w) at y =22.5tim, barely above the herringbone

structures in the herringbone simulation.
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Figure 14a. Velocity vector field (u, v) at z = 97.5 [tm in the herringbone simulation,

overlaid with the contours of the y-component of the velocity.
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Figure 14b. The x-component of the velocity at z = 97.5 urn in the herringbone

simulation.
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Figure 15a).-The x-component of the velocity at y = 47.5 [trm in the herringbone

simulation.
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Figure 15b). The y-component of the velocity at y = 47.5 pxrm in the herringbone

simulation.
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Figure 15c). The z-component of the velocity at y = 47.5 jim in the herringbone

simulation.
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Figure 16a). Vector field of the secondary velocity (v, w) (normalized by the incoming

velocity UJ,) at x = 647.5 [tm in the herringbone simulation.
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Figure 16b). Vector field of the secondary velocity (v, w) (normalized by the incoming

velocity UJ) at x = 2647.5ptm in the herringbone simulation.
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Figure 17a). Vector field of the secondary velocity (v, w) (normalized by the incoming

velocity U.) at x 647.5[tm for the incoming velocity U. = 10 cm/s in the herringbone

simulation.
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Figure 17b). Vector field of the secondary velocity (v, w) (normalized by the incoming

velocity Uj) at x = 2647.5ptm for the incoming velocity Uo, = 10 cm/s in the

herringbone simulation.
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Figure 18a). Vector field of the secondary velocity (v, w) (normalized by the incoming

velocity Uj,) at x = 647.5Rxm for the incoming velocity Uo, = 100 cm/s in the

herringbone simulation.
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Figure 18b). Vector field of the secondary velocity (v, w) (normalized by the incoming

velocity UJ,) at x = 2647.5pm for the incoming velocity Uc = 100 cm/s in the

herringbone simulation.
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