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1.  Introduction  
 
Facial feature detection is critical for many face-related applications, such as face 
recognition, face expression understanding, human computer interaction, etc. The facial 
features refer to the prominent features such as face-eyebrows, eyes, nose, mouth, and 
chin. Among the facial features, eyes play a significant role for delivering interactive 
signals and revealing the intention or instructions of a user. Eye features are relative 
steady as well as informative. There is intensive research for finding faces and detecting 
eyes. In the past, most of approaches required to restrict the regions of interesting for 
locating facial features. Then geometrical information or texture information could be 
used to detect eyes. Especially, the deformable template based methods have good 
development in the past years. Research based on this kind of methods has been reported 
in [1, 2, 3, 4, 5, 25, 26, 27, 28]. These approaches for eye detection are computationally 
intensive the proper location of face region in advance. There are also some other 
methods for eye location without finding faces [7, 23, 24, 29]. A fractal dimensions based 
method can accurately locate eye pairs in complex images [6]. Z Zhou etc. applied 
projection function for eye detection [8]. Furthermore, some researchers have developed 
facial feature detection and tracking algorithms using the infrared lighting camera [9]. 
 
Because the iris of human eye has large reflection to infrared light, the infrared (IR) 
illumination based technique is widely employed for locating eyes [15, 16]. This 
approach is relatively effective and robust. However, it requires the special hardware with 
IR lighting cameras. The result of detection and tracking still depends on the various eye 
appearances (e.g., orientation, size and eye blinking, etc.) In order to improve the 
performance of eye tracking, Kalman filter [16] or Mean Shift techniques [17, 18, 19] can 
be applied as the alternative remedies for real time implementation with sufficient 
accuracy. 
 
As we know, because of the specific reflection characteristic of pupil, the centers of 
eyeballs are always fuscous. However, the white of eyeball exhibits light-colored. If the 
gray image is looked as a 3D surface with the height of each location denoted by the 
intensity of the corresponding pixel, the eye region shows certain terrain pattern. The 
center consists of pits, surrounded by hillside. This gives us a hint that the eye can be 
detected using its terrain features [10, 11]. 
 
In this project, we propose a novel method for eye detection:  
 

• First, we derive the terrain maps from the original gray level image by applying a 
new method from topographic primal sketch theory.  

 
• Second, we denote the pit points in the terrain map as the candidates for eye pair 

selection.  
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• Third, a GMM (Gaussian Mixture Model) based possibility model is learned as a 
classifier to determine the eyes pair from the candidate points. 

 
After determining the initial eye location, we can further proceed to track eyes through 
dynamically matching their surface patches between two adjacent frames. A mutual 
information (MI) based fitting function is constructed to estimate the similarity between 
two patches. Although the eye location can be tracked by optimizing the fitting function, 
it is computationally expensive if we exhaust all the possible matching in the search area. 
Alternatively, here we apply an efficient strategy to find the optimal feature match. We 
take advantage of the pit terrain features to compute the mutual information selectively in 
the terrain map domain. Using such a strategy brings twofold benefits: 
 

• Firstly, the probability distribution function (p.d.f.) is much easier and more 
precise to be estimated in the terrain map domain than in the intensity domain 
because the terrain map has only twelve types of topographic features while 
intensity domain has 256 levels.  

 
• Secondly, the optimal match can be usually found in the location of pit feature 

pixels. This implies that for most of cases, we do not need to traverse all the 
pixels in the search area. Experiments on eye tracking show that the optimal 
match can be achieved for more than 98% of frames by searching only several pit 
pixels in real video sequences. 

 
The rest of the report is organized as follows. In Section 2, the background of 
topographic classification of pixels for gray scale image is introduced. Section 3 provides 
the detailed feature extraction and classification model. Section 4 describes the eye-
tracking algorithm, followed by the experiments in Section 5. The final discussion and 
conclusion will be given in Section 6. 
 
2. Topographic classification 
 
In topographic primal sketch theory, a gray level image is treated as 3D terrain surface. 
The intensity I(x,y) is represented by the height of the terrain at pixel (x,y). Figure 1 
shows an example of a face image and its terrain surface in the eye region.  
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(c) (d)

(a) (b)

 
 

Figure 1: Face image and the 3D terrain surface of the eye region. The surface level is 
inversed so that the peak denotes the pit in real surface. (a) original face image; (b) 
terrain surface of the eye region of the original image; (c) face image after Gaussian filter 
smoothing(filter size 15 × 15, σ =3.0); (d) terrain surface of the eye region of the 
smoothed image. 
 
 
 
As we know, the intensity variation on a two-dimensional face image is caused by the 
face surface orientation and its reflectance. The resulted texture appearance provides an 
important visual cue in order to classify a variety of facial regions and their features [14, 
20]. If viewed as a 3D terrain surface, the face image shows some 'waves' in the face 
region because the facial surface has certain reflectance characteristics. For eyeball, it 
generally composed of two parts: the black part and the white part. The reflectance 
characteristics of eyeball exhibits in the 3D surface. The center consists of some pit 
features, surrounded  by hillside features.  
 
Mathematically, we can give a strict definition for pits on a terrain surface. Assume that 
the continuous surface is represented by the equation z=f(x,y). Thus, the gradient 
magnitude ||),(|| yxf∇ can be computed as: 
 

         2),(2),( ][][||),(|| y
yxf

x
yxfyxf ∂

∂
∂

∂ +=∇                         (1) 

 
Then, the Hessian matrix H is given as: 
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After applying the eigenvalue decomposition to the Hessian matrix, we can get: 
 

                TT uudiaguuUDUH ][)(][ 212,121 ⋅⋅== λλ                          (3) 
 
Where 1λ and 2λ are the eigen-values and  1u and 2u are the orthogonal eigen-vectors. 
 
A pit feature appears where a local minim gradient is found, which means that the 
gradient is zero and the second directional derivative is positive in all directions: 

0||),(|| =∇ yxf , 01 >λ  and 02 >λ . Similarly, there are also other terrain types: peak, 
ridge, saddle, hill, flat, ravine, or pit [10]. Hill-labeled pixels can be further specified as 
one of the labels: convex hill, concave hill, saddle hill or  slope hill, and  saddle hills can 
be further distinguished as concave saddle hill or convex saddle hill, saddle as ridge 
saddle or ravine saddle. Figure 2 shows the twelve kinds of terrain labels. By using some 
smoothed differentiation filters, such as the filter based on discrete Chebyshev 
polynomials, to fit onto the discrete surface, the topographic labeling techniques can be 
easily to extend to discrete case [12]. The detailed topographic labeling rules for gray 
scale images can be found in [13]. 
 
 

 
 
Figure 2: The topographic labels: The center pixel in each example carries the indicated 
label. (a) peak; (b) pit; (c) ridge; (d) ravine; (e) ridge saddle; (f) ravine saddle; (g) convex 
hill; (h) concave hill; (i) convex saddle hill; (j) concave saddle hill; (k) slope hill; and (l) 
flat. 
 
 
The smoothing preprocessing on the gray scale image before calculating the derivatives is 
necessary for reducing the noise influence. In order to achieve the balance between 
eliminating noise and maintaining enough image details, it is vital to choose proper 
parameters of the smoothing filter. An example of a face image and its 3D surface of the 
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eye region after Gaussian smoothing processing are shown in Figure 1. In the example, a 
Gaussian filter with the size of 15 ×15, the standard deviation σ=3. 
 
 

(a) (b)  
 

Figure 3: (a) The topographic classification of the pixels in the face region. (b) Only the 
pit-labeled pixels are displayed.  
 
By applying topographic classification technique, the pixels in the original gray scale 
image are labeled by one of the twelve terrain classes based on its topographic feature. 
An example of the result of topographic classification is shown in Figure 3. The majority 
of  face region is classified as hill labels. Although the pits-labeled pixels are sparsely 
distributed, it always appears in the eyeball regions. 
 
Based on the above analysis, we make a conclusion that the pits always occurs in the eye 
region if the image is smoothed by a proper filter without losing too much details. 
Accordingly, it is conceivable that the pit-labeled pixels are set as the candidates for eye 
detection. In general, we first merge some pits features which are closely located each 
other. This processing will dramatically decrease the number of candidates and reduce 
the computation for the subsequent classification. 
 
 
3. Learning GMM Based Classifier 
 
In order to classify the candidate pit-labeled pixels, we take into account the terrain 
information around the pixels. Assume that the two points a and b are the centers of two 
eyeballs and the distance of the two eyes is calculated as d. Two rectangular eye patches 
with a size of 0.6d × 0.3d, centered at a and b are cut out. The topographic information of 
the two rectangles is applied for evaluating the possibility of the two points to be a pair of 
eyes. Theoretically, we must take all the pairs of pit-labeled candidates into account. 
However, because some pairs of candidates have unreasonable distances,  those beyond 
the reasonable range of eye-pair distance can be ignored. The terrain feature of a 
reference pixel is discretized to the range of  1,2...M, which is corresponding to the 
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number of types of terrain labels. Thus, after vectorization, the terrain feature can be 
represented as  
 

             },...,...,,{ 21 Ni ttttt =                                                                           (4) 
 

Where Mti <<1 the terrain label of the pixel and N is is the number of pixels. The 
terrain feature can be visualized by gray image. Figure 4 shows some examples from our 
training data set. 
 
 

(c) (d)

(a) (b)

 
 
Figure 4: (a) The sample used as a positive training set, whose corresponding terrain 
patches are shown in (c); (b) The non-eye samples used as a negative training set, whose 
corresponding terrain patches are shown in (d) 
 
A training set with 293 face images are constructed for the learning of classifier. First of 
all, based on the topographic classification, each pixels of the image are labeled by 
certain terrain labels. Then, all the pit-labeled pixels are marked as the candidates for 
training. Third, random pairs of candidates are selected as the training samples, which 
roughly consists of two groups: eye pairs and non-eye pairs. Figure 4 shows some 
examples of these two classes of samples. Because typically human eyes are 
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approximately symmetrical, there are a little difference in the terrain surface between left 
eye and right eye. During the learning, we treat left eye and right eye separately. 
 
 
Based on the Gaussian Mixture Model, all the samples, eye candidates and non-eye 
candidates are supposed to distribute in a high-dimensionality space obeying certain 
Gaussian distribution. Here we employ a Gaussian Mixture Model (GMM) to describe 
the property of the terrain feature vector. If we treat each terrain feature vector of pit 
pixels as a sample, GMM presumes all the samples distribute in a high-dimensional space 
complying with several Gaussian distributions. Among all the samples for both eye 
candidates and non-eye candidates, we can further categorize them into three sub-spaces, 
i.e., a left eye space, a right eye space and an non-eye space. Each of them is described by 
a Gaussian distribution. 
 
Let us define a subspace ξl  for the left eye, ξr for the right eye and  ψ for the non-eye 
candidates, with the probability distribution being  
 

),( lll ΕΡ µ , ),( rrl ΕΡ µ , ),( uuu ΕΡ µ  
 
All these three subspaces constitute a sample space Ο , whose parameterized form is 
defined as: 
 

         },,;,,;,,{ uuurrrlll pppO ΕΕΕ= µµµ                                                 (5) 
 

Where },,{ url ppp are the prior probabilities, },{ Εµ denote the mean and covariance 
matrix of the Gaussian distributions. Given a pair of candidates, a and b, with the terrain 
feature vectors being },{ ba tt , the posterior probability of the candidate pair belonging to 
the eye space  
 

           },{ rl ξξξ =                                                                          (6) 
 

is calculated as follow: 
 

               )|()|{)|()|{),|( arblbralba tptptptpttp ξξξξξ ⋅+⋅=              (7) 
 
It can be represented as the following format: 
 

)|{
)|{

)|{
)|{

)|{
)|{

)|{
)|{),|( Otp

ptp
Otp

ptp
Otp

ptp
Otp

ptp
ba b

llb

a

rra

b

rrb

a

llattp ⋅⋅⋅⋅ ⋅+⋅= ξξξξξ                      (8) 
 
where the probability )|{),|{ OtpOtp ba are calculated as: 

         uarrallaa ptpptpptpOtp ⋅Ψ+⋅+⋅= )|()|()|()|( ξξ                       (9) 



 8

         ubrrbllbb ptpptpptpOtp ⋅Ψ+⋅+⋅= )|()|()|()|( ξξ                        (10) 
 

 
With the estimated parametric model, the real eye-pair can be extracted according to the 
maximum value of probability ),|( ba ttp ξ  

))()(
2
1exp(

)2(

1),|()|( 1
eyeeye

T
eye

eye
deyeeyepEp µµ

π
µ −∑−−

∑
=∑= − tttt   (11) 

 
 
 
We use a training set to learn the parameters of the probabilistic model. Among all the 
candidate pixels (pit-labeled pixels), we randomly select a pair of candidates, and 
generate a terrain patch for each candidate. After obtaining all the terrain patch vectors, 
we divide them into three sets, i.e., two positive sets including a group of left eyes and 
right eyes samples, respectively, and a negative set including a non-eye group.  
 
From the training set, the parameters in formulas 5 can be estimated. By using such a 
probability model, we are able to extract the eye-pair with a maximum probability value 
calculated by Equation 8. Note that during the classification of all candidate pixels, 
searching all possible pairs of candidates is a time-consuming process. In order to reduce 
the search space, we discard the pairs of candidates which have unreasonable distances 
between them (e.g., the distance of a pair of candidates is beyond the range of a normal 
eye-pair distance with respect to the given image size, or the orientation of the eye-pair is 
near the vertical direction.) As such, only a small number of pairs of candidates need be 
examined, and thus the computation load can be greatly reduced. Figure 5 shows four 
examples from the several frames of a videos, where the eyes of four subjects are 
detected correctly from a few of candidate pixels. The topographic eye location approach 
has certain robustness to unconstrained background.  
 
Note that through iteratively extracting the eye pairs and verifying the inter-pair 
appearance features, the eye location approach can be extended to solve multiple-face 
cases. Figure 6. shows the several samples for the eye detection. 
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Figure 5: Examples of eye detection from videos 

 
 
 
 

 
 
Figure 6: Examples of eye detection from images 
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4. Mutual Information Based Eye Tracking 
 
After locating the eye position in the initial frame, the eye motion can be tracked in the 
subsequent frames. It seems that the GMM based model could be used to find the eye 
location in each frame. However, due to the training set only includes frontal facial 
images, it is not feasible to track eyes under various poses. We seek to explore the mutual 
information (MI) between neighbor frames to achieve a fast and robust tracking. Our 
experiments show that it is more reliable to use the eye patch detected in the previous 
frame as a dynamic template to estimate the eye location in the current frame. 
 
Given the eye locations α and β of the ith frame, the eye positions α’ and β’ in the jth 
frame can be found through matching the terrain surface of patches. Figure 7 (a-b) 
illustrates two sample frames, indexed as i and j, where the jth frame is several frames 
after the ith frame. Figure 8 (a-b) shows two smoothed terrain surfaces of the left eye, 
which correspond to the image patches in (a) and (b), respectively. The pupil centers are 
labeled in each surface. As shown in this figure, the two surfaces exhibit the similar 
terrain patterns, while the intensities of the corresponding image patches distribute in 
different ranges: one in 0- 180, the other in 0-200. In order to match two patterns 
efficiently, we use the mutual information to measure the similarity of two terrain patches 
in the terrain map space. 
 
The similarity of the two patterns can be measured in a 3D surface domain or a intensity 
image domain. However, in order to find a match efficiently, we use the mutual 
information to measure the similarity of two terrain patches in a terrain map space. 
 

βα α β’α’

(a) (b)  
 
Figure 7: Frame i (a) and frame j (b) show the centers of pupils, denoted by (α, β) and 
(α’, β’), respectively.  
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Figure 8: Frame i (a) and frame j (b) show the terrain surfaces of the left eye patch in 
frame i and frame j.  
Assume that two patches are centered at α and α’ and the corresponding terrain feature 
vectors are tα and tα’, which are represented by the random variables as X and Y, the 
mutual information between the two variables is calculated as: 
 

           ∑∑=
X Y aYaX

aaXY
aaXY tPtP

ttP
ttPYXg

)()(
),(

log),(),(
'

'

'                              (12)  

 
In order to calculate the mutual information, we must estimate the marginal and joint 
p.d.f. of the random variables X and Y (where 1 < X, Y  < 12). Because there are only 12 
kinds of terrain labels rather than 256 levels in the intensity domain, it is fairly easy and 
fast to estimate the discrete p.d.f. PX, PY and PXY, which correspond to the normalized 1D 
and 2D histograms of the terrain map. 
 
 
As described in Section 2, the appearance based terrain features can be represented by a 
terrain map. Figure 9(a-b) illustrates the terrain maps of two patches corresponding to the 
two surfaces in Figure 9(c-d). Both regions are centered at the eye location α of the ith 
frame. The terrain patch is marked out by a rectangle along the direction of the detected 
eye-pair in the ith frame. Let pi= α denote the determined eye location in the ith frame 
and the variable p∈ P represent the current searching position in the (i+1)th frame, where 
P defines a search area. Then the mutual information can be defined as a function of the 
variable p, as shown in the following formula: 
 

             ),()(),( yx ppgpgYXg ==                                                       (13) 
 
Where ),( yx ppp =  is a 2D coordinate of the patch center in the i+1th frame. The 
function g(p) does not have the explicit form, but it can be computed with the sampled p. 
Figure 9(c) plots the MI values within a patch. From the theory of sparse structuring of 
statistical dependency [27], the variable of terrain features has strong statistical 
dependency with a small number of other variables and negligible dependency with the 
reaming ones. The exactly geometrical alignment of two patches demonstrates the 
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property. As we know, the statistical dependency can be empirically evaluated by mutual 
information (MI). If we take the position of a terrain patch as a variable, the estimated MI 
value varies along with this variable. As illustrated in Figure 9, when the rectangular 
terrain map in (a) matches the region of (b) centered at α ', the MI function outputs a 
maximum value Imax. The statistical dependency described by MI can be visualized in (c) 
and (d). The brightest spot shows the position with strongest statistical dependency 
between the two patches while the dark or shaded areas indicate different degrees of 
patch independency. 
 
 

 
Figure 9: (a-b) The terrain maps of the frames i and j, where rectangles denotes the eye 
regions; (c) MI calculated on the jth frame as a function of the patch position. (d) The 
statistical dependency measured by the empirical mutual information of the jth frame. 
The white spot corresponds to the peak position of (c). 
 
To this end, we formulate the fitting function for patch matching in the (i+1)th frame, 
given the eye location pi in the ith frame: 

                  ηλ
ipp

i epgppf
−

−
⋅+= )(),(                                                      (14) 

 
The fitting function f(…) is composed of two parts: the mutual information g(…) for 
measuring the statistical independency and the distance penalty term for guaranteeing the 
continuity of tracking and preventing the terrain match from distracting by other similar 
regions (e.g., eyebrows). The parameters λ and η are used to balance the weights of the 
two parts. The updated eye locations of the (i+1)th frame is obtained by maximizing the 
fitting function: 
 

                 ),(maxarg1 ppfp i
Pp

i
∈

+ =                                                        (15) 
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It is conceivable that the computation cost is expensive if the fitting function is optimized 
through traversing all the pixels in the search area. Fortunately, our target location (i.e., 
center of eye or pupil) shows, in most cases, the stable pit feature that makes the 
maximum fitting value appear at such a 
pit feature location reliably. Therefore, the eye location can be estimated quickly by 
searching the best-fitted patch in a very few pit locations. 
 
When eyes are completely closed or the head rotation is in a large degree, which makes 
pupils almost invisible, the fitting function outputs a small value, which signifies the loss 
of tracking. In this case, an approximate eye location must be estimated by finding the 
maximum fitting function value through all the pixels in the search area. Note that the 
distance penalty term can prevent the tracking point from jumping far into the other non-
eye pit locations, such as eyebrows. This function maintains the smooth tracking of eyes. 
The complete automatic eye-tracking algorithm is summarized as follows: 
 
 

1. Derive the terrain map of the first frame using topographic classification 
technique and set the pit pixels as eye candidates. 

 
2. Localize the eye-pair positions in the first frame through the GMM probability 

maximization as shown in Equation 8.  
 

3. Given eye locations of the ith frame as pi and the terrain feature ti, determine a 
search area P with size K × K and center pi in the (i+1)th frame for searching the 
current eye location pi+1. 

 
4. Calculate the terrain map of the selected search area P and detect the pit pixels. 

Compute the fitting function at each pit pixel location and get the maximum 
value. 

 
5. If there is no pit pixel in the patch or the maximum fitting value computed in (4) 

is less than the predefined threshold (θ), maximize the fitting function by 
computing f(pi) for each pixel p which belongs to P. 

 
6. Update the current eye locations and eye terrain feature as: i+1  i, pi+1   pi, ti+1 

ti. Go to the step 3 for the next frame tracking. 
 
Note that unlike the computation in the eye detection stage, eye-tracking stage only 
computes the terrain map in a small search area around the eye rather than the whole face 
region, it greatly reduces the computation time. 
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5. Experiments 
 
The proposed eye detection and tracking algorithms are evaluated through the video 
sequences and the face image databases. We used normal webcam to capture the video 
(i.e., with frame resolution of 640 × 480.) The first frame is used for detecting eyes by 
our topographic-based eye detection algorithm. Figure 10 shows the example of the 
developed program interface. 
 

 
 

 
Figure 10: Example of the eye detection and tracking program interface (The images are 
selected from the MMI database [30]) 
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The performance of the initial eye localization is affected by two factors: the candidate 
detection and the estimation of eye pairs from the candidates. The result of candidate 
detection relies on the parameter selection of smoothing filter and differentiation filter, 
especially the scale of the filters. In order to reduce noises as well as maintain facial 
image details, we set the consistent parameters for the following operations, both for the 
training images and for the testing videos. 
 

• The Gaussian filter for smoothing has the size 15 × 15 and σ=2.5; 
 

• The discrete Chebyshev polynomial based differential filter has the kernel with a 
size of 5 × 5; 

 
• The width and height of eye window is 0.6d and 0.3d (d is the distance of a pair of 

eyes). 
 

• The search area for tracking is (0.6d + 15) × (0.3d + 15) pixels. 
 

• For the fitting function, the coefficient λ is 0.4, and the value of η is set as the 
distance of the tracked eye pair in the previous frame. The threshold θ is set as 
0.65. 

 
 
Our eye detector is tested on a static image database (i.e., Japanese Female Facial 
Expression (JAFFE) database [21]). The JAFFE images of each subject show seven 
universal facial expressions. Figure 11 demonstrates some sample results from our eye 
detector. Among 213 facial images, 204 of them are correctly detected. The algorithm 
achieves 95.8% correct detection rate. As an initialization stage, we apply the eye 
detector to ten test videos, which are captured in our lab environment with a complex 
background. Experiments show that our eye detector localized eyes of the first frames of 
all the videos correctly.  
 
 
 



 16

 
 
Figure 11: Examples of eye detection on the JAFFE database [21]. 
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Figure 12: Sample frames of detected and tracked eyes from a video sequence captured 
by a static web-cam. From top-left to bottom-right: frame 1, 20, 40, 60, 80, 100, 120, 
140, 160, 180, 200, and 220. 
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Figure 13: Sample frames of detected and tracked eyes from a video sequence captured 
by an active web-cam. From top-left to bottom-right: frame 1, 20, 40, 60, 80, and 100. 
 
 
We tested our tracking algorithm in two scenarios using both a fixed webcam and a 
movable webcam. 
In each scenario, the eye appearance of a subject is changed along with the a number of 
aspects. For example, facial scales (e.g., moving forward and backward), facial poses 
(e.g., rotating head), gaze directions (e.g., rotating eyeballs), eye status (e.g., blinking, 
opening/closing eyelids by expressions), illuminations (e.g., changing lighting 
orientations and intensities) and partial face occlusions (e.g., wearing eyeglasses or 
hiding non-eye areas). Figure 12 shows an example sequence which was captured by a 
fixed webcam. Figure 13 illustrates the sample frames from a video clip captured by an 
active webcam, which performed panning operations. The experiment shows that our eye 
detection and tracking algorithms perform well under various imaging conditions. 
 
Our eye-tracking algorithm runs on the PC with a single CPU. We tested on a number of 
videos performed by different subjects under varying imaging conditions. Each video has 
300 - 400 frames. Experiments show that most of the time (98% of frames) the system 
outputs the correct tracking result (i.e., locating pupil positions precisely.) Our system 
fails to track eyes if the following cases occur: 
 

• The head rotation is beyond a certain range to make the eye invisible. 
 
• The eye is completely closed. 
 
• The subject is far from the camera, so the size of eye appeared in the image is too 

small. In the situation of missing track, we use the previous frame to find the eye 
location by re-initializing the system or wait until the normal case is restored. 
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As compared to the conventional eye tracking approaches, our approach is advantageous 
in that  
 

• no special hardware (e.g., Infra-red devices) is employed;  
 

• no face tracker is required, which alleviates the potential instability of the system;  
 

• the use of the topographic terrain map makes the MI calculation very fast because 
the iteration is based only on the range of 12 in the terrain domain rather than the 
range of 256 in the intensity domain. 

 
 
 
6. Conclusions and Discussions 
 
In this project, we proposed a system for eye detection and tracking through matching the 
terrain features. Our system works automatically using an ordinary webcam without 
special hardware. The major contribution of this work lies in the proposed unique 
approach for topographic eye feature representation, by which both eye detection and eye 
tracking algorithms can employ the probabilistic measurement of eye appearance in the 
terrain map domain rather than the intensity image domain. In addition, we defined a 
fitting function based on the mutual information to describe the similarity between terrain 
surfaces of two eye patches. With fairly small number of terrain types, the p.d.f. of 
marginal and joint distributions can be easily estimated, and eventually, the eye location 
is determined by optimizing the fitting function efficiently and robustly. 
 
 
Unlike some other approaches[22], our algorithm can detect eyes directly from images 
with complex background. Since the maximum fitting value usually appears on the pit 
feature pixels, the matching process can be only performed on several candidate pit 
locations in the terrain map. This saves us from ransacking all the pixels in the search 
area. The experiments show that our system can track eyes precisely in most of the time 
(98% of frames) using both static and active cameras under various imaging conditions 
and with different facial appearances. In the case of failure (e.g., large head rotation, eye 
invisible or eye close), we take the measure by re-initializing eye locations using the 
previous frame, or waiting until the normal case is restored by monitoring the fitting 
function values. 
 
 
Note that our topographic-based appearance model can alleviate the influence of various 
imaging conditions. However, the image smoothing process and the surface patch fitting 
process are all dependent on the facial scale in the image. Our future work is to include a 
wide variety of training samples with multi-scale facial images and various lighting 
conditions to improve the robustness of eye detection and eye tracking. We will also 
extend the work to further analyzing the facial pose information, as well as extend to 
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detect precise eye information, such as viewing directions. Generating terrain map costs 
the most computation time, however, the nature of the parallel calculation of the terrain 
feature allows us to use dual CPUs to make multiples face tracking simultaneously in the 
future. 
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