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ABSTRACT

Traditional programming language design has focussed on
efficiency and expressiveness, with minimal attention to
the ease with which a programmer can translate task
requirements into statements in the language, a
characteristic we call “facility.” The programming
walkthrough is a method for assessing the facility of a
language design before implementation. We describe the
method and its predictions for a graphical programming
language, ChemTrains. These predictions are contrasted
with protocols of subjects attempting to write their first
ChemTrains program. We conclude that the walkthrough
is a valuable aid at the design stage, but it is not infallible.
Our results also suggest that it may not be enough for
programmers to know how to solve a problem; they must
also understand why the solution will succeed.

KEYWORDS: language design, graphical programming,
usability evaluation, walkthrough.

I. INTRODUCTION

The design, implementation, and testing of a new
programming language is a time-consuming and labor-
intensive process. Much attention has been given to the
features that a language needs to ensure its efficiency and
expressive power [11], and these qualities can be analyzed
to some extent at the design stage. Less effort has been
directed at improving a language’s facility, the ease with
which a programmer can translate the requirements of a
task into statements in the language. The work of Brooks
[3], Soloway and colleagues [17,18], and Green and
colleagues [6,16] has produced some understanding of the
mental processes that underlie programming, but language
designers have generally not used this work to guide their
efforts.

We have developed a procedure called the programming
walkthrough, which evaluates a language's ease of use at
the design stage. The procedure is an analysis at the
knowledge-level [13] which identifies the language-specific

facts needed to perform one or more well-defined tasks with
a proposed language design. In this paper we summarize
the results of a programming walkthrough that evaluated
the facility of ChemTrains, a graphical language intended
to allow nonprogrammers to create animated simulations.
We then describe empirical testing in which subjects were
asked to write a program in a prototype ChemTrains
implementation. We compare the predictions of the
walkthrough to the subjects' behavior in the tests, and
conclude that the walkthrough successfully predicts much
of the required knowledge. We also find, however, that
programmers’ metacognitive strategies sometimes demand
more knowledge than a pure knowledge-level analysis
would suggest.

Il. USING THE PROGRAMMING WALKTHROUGH
METHOD TO DESIGN CHEMTRAINS

In this section we describe the programming walkthrough
methodology, and how the method was applied during the
design of the ChemTrains language.

The Programming Walkthrough --
A Knowledge-Level Evaluation

The programming walkthrough is a method of evaluating
two important aspects of a programming environment:
expressiveness, the ability to state solutions to hard
problems simply, and facility, the ability to solve
problems easily. In the walkthrough, a programming
environment is evaluated by analyzing the mental steps
that a programmer would most likely take in solving a
specific problem. The method is an outgrowth of work on
cognitive walkthroughs, which are used to critique end-user
interfaces [9].

The programming walkthrough method requires two
things: a representative set of tasks or problems that the
system is intended for, and a document describing what a
naive user needs to know about the system, which we call
the doctrine. Doctrine includes general concepts of the
system and its use, as well as advice on how to go about
solving problems. The problem-solving advice supplies
what Soloway calls plans, which the programmer needs to
bridge between task requirements and individual
programming statements or operations [18].



Once the doctrine is fixed, the facility of a design is
evaluated by doing walkthroughs on sample problems. A
sequence of decisions adequate to develop a solution to each
problem is outlined, and the difficulty of each decision is
assessed. If all decisions are directly guided by doctrine,
facility will be good. If there are decisions that are
unguided, or for which wrong choices are consistent with
doctrine, facility will be poor. The nature and quantity of
doctrine is also considered: a design that requires little
doctrine, and doctrine that is judged easy to understand,
should show greater facility than one which needs much
complex doctrine. We used this way of assessing facility
to guide the design of the ChemTrains graphical
programming system.

Design of ChemTrains

ChemTrains is intended to permit users without
programming background to construct animated graphical
models of systems for which they have a qualitative
behavior model, such as document flow in an organization
or the phase change of a substance as temperature varies.
ChemTrains models show objects participating in reactions
similar to chemical reactions and moving among places on
the screen along paths. The name “ChemTrains” was
suggested by the role of the reactions and the role of paths,
thought of as railroad tracks.

The design process we used for ChemTrains is described at
length in Lewis, et al. [10]. After a design period in which
six problems were used as a platform to discuss design
alternatives, we produced and recorded a design space in
which decisions on 28 specific design features could
determine a unique ChemTrains design. Here are some of
the features, which had been stated as yes/no questions:

» Do objects have text labels associated with them?

 Can places overlap?

Do reaction rules support the use of variables?

* Are reaction rules specified by demonstration?

» Can reactions occur between objects in multiple

places on the screen?

At this point we stopped exploring new design features and
defined three complete designs, ZeroTrains, ShowTrains,
and OPSTrains, which represented distinct combinations of
features within the design space. In ZeroTrains the simpler
alternative for a feature was chosen whenever possible.
OPSTrains chose features for power and was influenced by
the OPS family of rule-based systems [5]. ShowTrains
chose a mix of powerful features, but mainly differs from
the other designs by how the rules are specified. In
ShowTrains rules are expressed by demonstration, a
technique suggested by Maulsby’s work on specifying
procedures by example [12].

Walkthrough Evaluation of Alternative Designs
Doctrine, the language-specific knowledge required to do
the programming walkthroughs, was developed iteratively,
using the following procedure:
» Prepare an initial list of doctrine items, representing
all special knowledge that seems to be needed to
solve the target problems.

¢ For each target problem, step through the user
actions that lead to a solution. If the user has
insufficient reason to take an action in the sequence
of required actions based on the current doctrine and
the problem statement, then add or modify an item of
doctrine.
« Step through the solutions again, until a complete
and unambiguous set of doctrine is ensured.
Part of the doctrine for OPSTrains is shown in Table 1.
Each of the three designs required between 20 and 30 items
of doctrine roughly the size of the items shown. Having
completed the doctrine, we then evaluated the facility and
expressiveness of the designs by doing programming
walkthroughs on problems that had not considered in the
design process.

OPSTrains, predictably, proved to be the most expressive.
Perhaps surprisingly, it also showed the greatest facility,
because the central ideas of the problem statement could be
translated quite directly into OPSTrains rules guided by
doctrine of about the same size and complexity as for the
other designs. ZeroTrains placed last in both dimensions,
because each solution required work involved in
overcoming the lack of power. ShowTrains also had many
of these shortcomings.

Table 1. Excerpts from the OPSTrains doctrine.

RO1: If  starting,
then draw a picture of envisioned interface as it
would initially appear to the user.
an object can move or can be placed in a
particular area of the interface that is not
drawn,
then draw an object that is big enough to contain
the objects, and specify that the object is to
be "Hidden in Simulation.”
an object can move or be placed on top of an
object that is too small to contain the
object,
then draw an object that is big enough to contain
the object, and specify that the object is to
be "Hidden in Simulation.”

RO2: If

RO3: If

RRS5: If  an object in the pattern of a rule may match
any object regardless of its display,
then specify that this object is a variable.

(a big V will be placed over the variable

object in the pattern)

iIl. EMPIRICAL RESULTS -

THE CHEMTRAINS PROTOCOLS

The walkthrough results clearly indicated that OPSTrains
was the design of choice, both in expressiveness and
facility. But did our walkthrough analysis reflect reality?
It is possible that our assessment of the decisions faced by
users, or the ability of the OPSTrains doctrine to guide
these decisions, were very wrong.

The ChemTrains Prototype

We implemented a prototype of ChemTrains based on the
OPSTrains design. A graphical simulation program in
this prototype is built by first drawing a picture of the



simulation as an end user would initially see it. The user
specifies changes that should occur on the simulation by
drawing pattern/result rules. A rule editor allows the user
to draw a pattern picture that is to match a subset of
graphical objects on the simulation, and a result picture
that is to replace these matched graphical objects. Figure 1
shows the prototype, which contains the main simulation
picture, the pattern and result pictures of a single rule, and
the commands for editing these pictures. The example
shown in this figure is one of our original six problems,
the Bunsen Burner problem, stated in Table 2. The user
tests the simulation by entering “Execute Mode.” In this
mode, when the pattern of a rule matches objects in the
simulation, ChemTrains fires the rule and replaces the
matched objects with the objects in the result picture of the
rule. The rules continue to fire until no rules match. If
the user changes the screen during execute mode, the rules
are again executed.

Table 2. The bunsen burner problem.

Show how the flame of a bunsen burner responds when the
user moves a control knob to the off, low, or high position.
Show water in a beaker above the flame changing from ice to
water to steam as the flame changes.

Our claim from the programming walkthroughs was that a
nonprogrammer could use this version of ChemTrains to
solve the problems we had considered, relying only on the
knowledge described by the doctrine. To test this claim,
we asked subjects to program the bunsen burner
simulation, using the prototype.

Subjects and Method

Six subjects performed the task, working individually.
Subjects were all volunteers, with five having backgrounds
in anthropology, chemistry, or psychology. Of these five,
four had some traditional programming experience. A
sixth, added as an informal control, was an experienced
programmer, All had completed at least a four-year
university degree. All protocols were videotaped, and
subjects were asked to think aloud as they worked. [8]

The instructional material given to the subjects was
essentially the same doctrine used in the programming
walkthroughs. We rewrote the doctrine in complete
sentences and: made some word substitutions to avoid
jargon (see Table 3 for the rewrite of the original doctrine
shown in Table 1). The first three subjects were given the
doctrine in written form and asked to read through it. For
the second three, an experimenter went through the doctrine
with the subject, briefly explaining it and making pencil
sketches to illustrate most items. The subjects were then
given a written statement of the bunsen burner problem
(Table 2) and asked to program a solution using the
ChemTrains prototype. Because we were interested in the
sufficiency of the doctrine, not in a subject’s ability to
memorize it, the written doctrine remained available to
subjects as they worked. Three of the subjects operated the
ChemTrains prototype directly; the other three gave
instructions to an experimenter, such as “draw a box on the
screen,” and the experimenter operated the interface.
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Figure 1. One possible solution to the bunsen burner problem. The main window (top) shows a beaker containing an ice
cube. Below it is a diamond-shaped holder object for the flame. The control box contains another holder that surrounds
the “off” and “<=="labels. In the pattern picture, the flame and the water have been variabilized.




Table 3. Excerpts from the doctrine as used by the
empirical subjects (compare Table 1).

To begin, draw a picture showing the things you want to see
on the screen initially.

Things can be inside other things.

You can draw things wherever you want, but rules can’t put
things in the middle of nowhere on the screen. If you need a
thing to appear somewhere where there is no thing to put it
inside of, you can create a new thing to act as a holder. If
you don’t want to see the holder thing you can make it
invisible when the program runs.

If you want a thing to appear near a thing that is too small to
hold it, create a new thing big enough to hold both. You can
make the holder invisible when the program runs.

If a thing in the Pattern picture has to be there but could be
any kind of thing, indicate that it is a variable. It will be
marked with a big V.

We established several levels of fallback for subjects who
encountered difficulty with the task. First, after letting

we pointed out the specific item of doctrine that would
help them with their current problem. Third, if they were
still lost, we explained how the conditions for the given
item of doctrine were matched by the current situation,
without explaining what action the doctrine implied.
Finally, if this failed or if no item of doctrine addressed the
problem, we explained the solution.

Results

All six subjects were able to apply the more
straightforward items of doctrine and make initial progress
toward a solution. The experienced programmer, our first
subject, completed the entire task with only minor
problems. The next two subjects found the doctrine
inscrutable and the graphics interface frustrating; it was at
this point that we decided to provide a better explanation of
the doctrine and to have the experimenter operate the
interface. Note that we were interested in the sufficiency of
the doctrine, not the quality of its write-up or the ease with
which the subjects could learn and use the interface.

Even with the improved explanation of doctrine, there were
several areas in which subjects had difficulties. Major
areas of success and difficulty for all subjects are

them struggle for a brief time, we directed them to review

the doctrine. Second, if this general review wasn’t helpful, summarized in Table 4.

Table 4. Important successes (shown as '+’) and problems (shown as '-’) of subjects using ChemTrains.

Success or problem (before fallback) number of subjects. (out of 6)
General doctrine

+ started by drawing picture of bunsen DUMET 01N SCIEEN....civiiiiiiiiiiiiiiiiiiiiriitciriiesiicrriesseracirisainas 6

+ created rules with “pattern” and “result” Parti.......ccccciciiiii e 6

+ copied main picture into pattern and resulti.......oiiiiii s 5

+ modified result to show desired changes.........c.veiieiiiiiiiiiiiii 5
Overall program operation

- didn’t understand how user would interact with simulation .......c.coveviviiiiiiiiiiii i

- confused about how rules affected the screen at run-time........ovcveviiiviiiiiiiiniii i,

- thought rules fired only when user clicks on rule name

- thought different screen needed for each result......c..cocviiiiiiiiiiiiiiii

- thought pattern should contain burner control, result should contain burner itself

- thought control and flame should be off in pattern on in result......ccciiiiiiiiiniicnn,
Holders and adjacency

- didn’t realize need for ROIAErs .....cvuiiiiieiiii i 6

- expected system to distinguish adjacency relationships.......ccccoevviiiicivniiiiiiiiiiiiiiiii, 6

- assumed flame would be drawn above bumer.......c..coiiii 3

- assumed positioning control knob next to label would WOrk.......cccvviiiiiniiiniiiiiiiiii 5

- assumed steam would be drawn above Deaker......cviiiiiiiiiiiiiiiiiii 1
Variables

+ used variables correctly WithoUt PrOmMPUIE «..vuvvieriniiiiiiiriiii e 1

- needed variables but didn’t think of using them ......c.iiiiiiiiiiiiiiiiiiii e 4

+ recognized that large number of rules was a potential problem .........coviieiiriiiiiiiiiiin e 2

+ recognized need to ShOW ZENETiC PALIEITL ..u.iuiuirnen et et e et eer e e e e e e eeeaeer et e enaeeennnen 1

- identified how to use variables correctly, but tried to understand how they worked before applying them... 3

- made holder a variable instead Of itS COMLENIS.....ciiiiiiieeiiiiiiiceerere i e ee e s

- considered making the control a variable -- “it varies”....

- thought system would match all possibilities as a variable..........coovvieiiiiiiiiiiii

- thought system would match empty space like a variable .........cocoeeiiiiiiiiiiiiii
Multiple objects (subject used more than one ChemTrains object to represent a single real-world object

or substarce, and assumed ChemTrains would treat the multiple objects as one.)

- treated label and box as a single ObJECt ... .vuiviiniiiiiii i 1

- treated steam bubbles as a single ObBJeCL.....ccciiiiiiiiniiiiiiiiic 2

- treated lines of 1Ce 8S SINEle ODJECL . iiiruuieiiiiiiiiiiiieiieeeriiitrtaaiesseeseerereneaaereeeeneaasaeesereererensrennns 1




As Table 4 indicates, all subjects had some problem
understanding the general way in which ChemTrains
operated. Most of this seemed to clear up as soon as
subjects completed their first rule and saw it execute. Even
though the doctrine explained how to use holders, all
subjects assumed that ChemTrains would recognize when
two objects were close to each other, an assumption that
blocked their ability to recognize places where holders were
needed. This was also a fairly easy misconception to
correct. Except for the experienced programmer, subjects
had the greatest difficulty applying the section of the
doctrine describing the use of variables. Variables are not
essential to the bunsen burner solution, but they allow it
to be programmed with fewer rules, since a variable can
match (for example) either water or ice in the beaker,
transforming either to steam when the control is placed on
high. Even after fallback hints helped subjects identify the
doctrine explaining how to use variables, they hesitated to
apply the doctrine, expressing uncertainty as to what
should be variabilized or whether variables were the right
solution.

IV. DISCUSSION - EMPIRICAL FINDINGS
COMPARED TO WALKTHROUGH PREDICTIONS
At the outset we note that the help provided through
fallbacks placed all subjects in a better position than a
naive nonprogrammer who had simply read the doctrine (cf.
Perkins, [14] for the beneficial effect of similar fallbacks).
This paper examines problems that evidently go beyond
simple accessibility of knowledge.

We place subjects” problems into three categories, each of
which has implications for the programming walkthrough
methodology and for ChemTrains. First, some of the
problems were caused by holes in the doctrine. Subjects’
inability to comprehend how a user would interact with the
system and how the firing of a rule would affect the main
screen fall into this category. In writing the doctrine we
were simply too close to the problem to appreciate the
need to state all the basic facts. We might have avoided
this failure by performing the walkthrough at a more
detailed level, demanding a chain of exact or near matches
leading from the task description through elements of
doctrine to a solution, in the manner of Kintsch’s
construction-integration model of text comprehension [7].
However, the implications for the ChemTrains design are
minimal, since the missing knowledge was easily
comprehended by subjects when it was presented to them.

A second category of problems occurred when subjects’
real-world knowledge interfered with doctrinal
prescriptions. This was the case with holders and
adjacency. The relevant item of doctrine was fairly clear as
to where holders were required, and subjects understood the
doctrine once it was pointed out to them in context. But
every subject initially assumed that ChemTrains could
distinguish a pattern by evaluating how close two objects
were to each other, just as there is a real-world distinction
between a knob pointing at “on” and one pointing at “off,”
or a pot on the stove and one on the table. Interference

from real-world knowledge also explains the difficulties
subjects had when multiple graphical objects represented a
single real-world object.

Predicting interference from real-world knowledge during
the walkthrough is difficult, and adjusting the doctrine to
trap all possible misconceptions would be impossible: the
doctrine simply can’t be extended to describe everything
that the language cannot do. This may be an area where
empirical testing is required to identify particularly
attractive false paths that the doctrine should block. For
the ChemTrains design, revised doctrine is a possibility,
but we are considering adding the ability to recognize
adjacency relationships, which all subjects expected, as
well as the ability to group multiple objects so they will
act as one.

The third category of problems involves situations for
which the doctrine prescribed programming procedures, but
the doctrine didn’t convince the subject that the
recommended procedures would work. The notable
example here is variables. One of us (CL) has advocated
eliminating variables from the ChemTrains design since its
initial conception, because they make it difficult to read
and understand an existing program. But program
readability was not directly addressed by either the
walkthrough or the empirical test. Because the doctrine
stated exactly where and how a variable should be used, the
walkthrough predicted that a programmer familiar with the
doctrine should be able to write programs using variables.
To use Soloway’s terminology, the doctrine supplied the
necessary plan.

Subjects’ initial fumbling with the concept of variables
indicated that the plan was indeed sufficient, since four
subjects, including the experienced programmer, were able
to read the item of doctrine and correctly state which object
in the rule should be variabilized. A fifth subject realized
that an object should be variabilized, but initially targeted
the wrong object. However, none of the nonprogrammer
subjects was comfortable with this approach. Having
determined how to apply the doctrine, they tried to
understand how it would affect the program, and they tried
to identify other items of doctrine that might yield better
solutions to their current problem. These efforts actually
prevented them from acting on their original, correct
interpretation of the doctrine. A similar desire for
understanding was evident when subjects learned about
holders. Thus doctrine that is informationally adequate
may fail because users do not feel that they understand it.

The behavior we observed is similar to the metacognitive
strategies of math students reported by Schoenfeld [15].
Faced with several potential paths to a geometry proof,
Schoenfeld's subjects used rough pencil drawings to
convince themselves that a proof would succeed before
committing to the work of a formal construction with
compass and ruler. Carry, Lewis, and Bernard [4] analyzed
protocols of novice algebra students trying to solve
equations. Like our empirical subjects, and unlike the



oversimplified situation envisioned by the walkthrough,
these students were often uncertain as to which of several
operations to apply, and they used several strategies to
guide the selection process. ~The need for such
metacognitive strategies has often been claimed (see review
in Alexander and Judy [1]).

Recent work by Anderson [2] suggests that there is good
reason for our subjects’ cautious strategy. Faced with
potentially infinite combinations of operations that might
solve a problem, the rational problem solver must choose,
based on prior experience, an approach that advances toward
the solution at an acceptable cost. In attempting to apply
this strategy, the problem-solver will find it difficult to
select among items of doctrine that prescribe actions but
fail to describe their results. We conjecture that this
difficulty is not so great in the case of doctrine such as
“draw a picture,” since subjects have prior knowledge of at
least the surface effects of drawing a picture -- effects which
partially match the goal of producing an animated on-
screen graphic.

This analysis implies that doctrine should describe the
results of each action it prescribes, so the programmer can
confidently select and take the action when applicable.
Describing the effect of variables raises again the issue of
their implications for program readability, and we conclude
that variables must be reconsidered for the ChemTrains
design.

V. SUMMARY

The programming walkthrough is a knowledge-level
approach to evaluating the power and ease of use of a
programming language design. We judge the method to
be useful but not infallible. Using design and doctrine
vetted by a walkthrough, six subjects were all able to make
significant progress in solving a well-defined task. The
difficulties that subjects had could apparently be corrected
with minimal changes to the design or the doctrine.
However, the doctrine suffered from hidden assumptions
and failure to counter preconceptions based on real-world
knowledge, both of which the walkthrough failed to
identify. The walkthrough was also unable to predict the
effect of metacognitive strategies, which may require
knowledge beyond what a knowledge-level analysis of the
task would suggest.
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