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Abstract

In recent work [Phys. Rev. E 68 (2003) 025103], it was shown that the requirement of Galilean invariance determined
the form of the H function used in entropic lattice Boltzmann models for the incompressible Navier-Stokes equations in D
dimensions. The form obtained was that of the Burg entropy for D = 2, and the Tsallis entropy withg = 1—2/D for D # 2.
The conclusions obtained in that work were restricted to particles of a single-mass and speed on a Bravais lattice. In this work,
we generalize the construction of such Galilean-invariant entropic lattice Boltzmann models by allowing for certain models
with multiple masses and speeds. We show that the required H function for these models must be determined by solving a
certain functional differential equation. Remarkably, the solutions to this equation also have the form of the Tsallis entropy,
where ¢ is determined by the solution to a certain transcendental equation, involving the dimension and symmetry properties
of the lattice, as well as the masses and speeds of the particles.
© 2004 Published by Elsevier B.V.

Keywords: Lattice Boltzmann models; Entropic lattice Boltzmann models; Galilean invariance; Navier—Stokes equations

1. Introduction

Lattice Boltzmann models of fluids [2,3] evolve single-particle distribution functions in discrete-time steps on a
regular spatial lattice. That is, velocity space is discrete, and is comprised of (possibly linear combinations of) the
lattice vectors themselves. In spite of this very radical simplification of the Boltzmann equation, it has been shown
that the incompressible Navier—Stokes equations emerge unscathed in the limit of small Mach and Knudsen numbers.

In the most general situation, the collection of velocities that is retained do not all have the same magnitude, and we
denote them by ¢, j, where the index a is associated with the magnitude, ¢, = |c,, j|, and j enumerates the velocity
vectors with that speed; velocities with the same index a are said to be in the same speed class. The single-particle
distribution corresponding to lattice vector ¢, ; at lattice position x and time step ¢ is denoted by N, j(x, £). The
simplest lattice Boltzmann models employ a collision operator of BGK form [4], so that their evolution equation is

Naj(X+eqjot+ Af) = Na (%, + = [N(e‘”(x £) = Na, j(x, 1)] )

for j = 1,..., by, for each speed a. Here b, is the number of velocities with speed c,, N((:;-l) (x, ?) is a specified
- equilibrium distribution function that depends only on the values of the conserved quantities at a site, and  is
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a characteristic collisional refaxation time. Using a discrete-velocity version of the Chapman—Enskog analysis
[3], we shall show that the mass and momentum moments of the distribution function obey the incompressible
Navier-Stokes equations for certain choices of equilibrium distribution.

The viscosity that appears in the Navier—Stokes equations obtained from these models is proportional to T — 1 /2.
To lower viscosity and thereby increase Reynolds number, practitioners often “over-relax” the collision operator
by using values of 7 in the range (1/2, 1]. Though the method is guaranteed to be numerically stable for T > 1, no
such guarantees apply when 7 < 1, and the method is fraught with numerical instabilities, which limit the highest
Reynolds numbers attainable. :

In an effort to understand and thereby avoid these instabilities, there has been much recent interest in entropic
lattice Boltzmann models [5-7]. These models are motivated by the fact that the loss of numerical stability is due to
the absence of an H-theorem [7]. Numerical instabilities evolve in ways that would be precluded by the existence of
a well-behaved Lyapunov function. The idea behind entropic lattice Boltzmann models is to specify an H function,
rather than just the form of the equilibrium distribution; of course, the latter is that which extremizes the former.
The evolution will be required never to decrease H, yielding a discrete-time H-theorem; this is to be distinguished
from other discrete models of fluid dynamics for which an H-theorem may be demonstrated only in the limit of
vanishing time step [8], or not at all.

To'ensure that collisions never decrease H, the characteristic collision time 7 is made a function of the incoming
state by solving for the smallest value 7y, < 1 that does not increase H. The value then used is T = tyn /k, where
0 < « < 1. It has been shown that the expression for the viscosity obtained by the Chapman-Enskog analysis will
approach zero as « approaches unity [5-7]. Thus, the entropic lattice Boltzmann methodology allows for arbitrarily

low viscosity together with a rigorous discrete-time H-theorem, and thus absolute stability. The upper limit to the
Reynolds numbers attainable by the model is therefore determined by loss of resolution of the smallest eddies,
rather than by loss of stability [7,9—11].

In an earlier paper, we constructed entropic lattice Boltzmann models for the incompressible Navier—Stokes
equations that are Galilean-invariant to second order in Mach number, and we showed that the requirement of
Galilean invariance makes the choice of H function unique. More specifically, we showed that the required function
has the form of the Burg entropy [12] in two dimensions, and the Tsallis entropy in higher dimensions. These
conclusions were based on single-speed lattice Boltzmann models on Bravais lattices.

In this work, we generalize the construction of such Galilean-invariant entropic lattice Boltzmann models by
allowing for the treatment of certain models with multiple particle masses and speeds. We show that the required
H function for these more general models must be determined by solving a certain functional differential equation.
Remarkably, the solutions to this equation also have the form of the Tsallis entropy, where g is determined by the
solution to a certain transcendental equation. This equation involves the dimension and symmetry properties of the
lattice, as well as the masses and speeds of the particles in the model.’

In Section 2, we describe the lattices used for our multispeed lattice Boltzmann models. In particular, we introduce
notation for sums of outer products of velocity vectors, which play an important role in the Mach number expansion
of the equilibrium distribution and the Chapman-Enskog analysis. To make the analysis tractable, we restrict our
attention to multi-speed models for which each speed class separately satisfies the isotropy requirements. In Section 3,
we specify the form of the equilibrium distribution function, assuming only that the H function is of trace form,
and we derive the Mach number expansion of this equilibrium. In Appendix A we construct a lattice BGK kinetic
equation with this equilibrium distribution and apply the Chapman—Enskog analysis to it, solving it in the asymptotic
limit of small Knudsen and Mach number. The resulting hydrodynamic equations are presented in Section 4. These
are of Navier—Stokes form, and the derivation yields the equation of state for the pressure, the viscosity, and the g
factor that may multiply the convective derivative. In Section 5, we examine the requirement that g = 1, needed to
restore Galilean invariance in the context of four examples. The first is the single-speed model, in order to show that
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our methodology is able to recover the previously known results; the second is a single-speed model augmented by
the addition of rest particles of the same mass; the third allows the rest particles to have a different mass from the
moving particles; and the fourth is the general case, subject to the above-described restriction on our lattice.

2. Description of lattice

As noted above, velocity vectors are grouped into “speed classes” based on their magnitudes. We may associate
these magnitudes with speeds, since the unit of time is taken to be At = 1. We denote the velocity vectors by
¢z, j, and assume that these are (linear combinations of) lattice vectors. Here a is an index denoting a certain speed
class, and j indexes the vectors within that class. All lattice vectors within a speed class have the same magnitude
|ca, j| = ¢4, and are associated with particles of the same mass, mg. .

Sums of outer products of the velocity vectors arise frequently in the analysis of lattice Boltzmann models. Within
a speed class, these sums are denoted by '

ba
n
bna = Z@ Ca,j» ) ,
J

so that, in particular, bp ; = b,. We assume that these quantities vanish for odd », and that they are isotropic tensors
for even n < 4. That is, we assume that

by = bal, | - (3)

bsq = bsaper(1® 1), ) @
where “per” denotes a sum over all symmetric permutations of tensor components.! A Bravais lattice [1,3] will have

bc?
bra= %, | | &)
bac4

byg=—2a 6

= DD+2) ©

but we shall not specialize to this case in what follows. The assumption that the outer products of lattice vectors for
evenn < 4 beisotropic tensors, separately within each speed class, is restrictive. It eliminates from our consideration
certain interesting models (such as the D2Q9, D3Q15 and D3Q19 models [3]) in which these tensors are not isotropic
within each speed class, but are so when combined in weighted sums across speed classes. Nevertheless, it admits
an important class of multi-speed models while simplifying the analysis considerably, so we restrict attention to
that case in this paper.

3. Equilibrium distribution

The conserved quantities that we shall consider are the mass density, given by

n

: by '
p = ZZmﬂN"’j’ ‘ _ (7)
a

! That is, if A,py are the components of a rank-three tensor, then per(A)agy = Aogy + Ayup + Appa-
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and the momentum density, given by

n by

ou ~ZZmac,,, 0. 3)

We do not consider a hydrodynamic equation for energy since, in the incompressible limit, that decouples from
the evolution equations for mass and momentum. That is, the incompressibility condition and momentum equation
may be solved for p and u without need for the energy equation though, of course, the reverse is not true. In other
words, the energy becomes a passive variable with respect to the dynamics in the incompressible limit, so we need
not consider it here.

In keeping with earlier work [1], we assume that the H function is of trace form

b
H=Y"3"h®, | ©)

a j=1

where h'(x) > 0 for x > 0. If we extremize this under the assumption that p and pu are conserved, we find the
equilibrium distribution function

NED = g(umg + B maca ), - (10)

where u and B are the Lagrange multipliers determined by the constraints, and ¢ the inverse function of /'.
We expand the equilibrium distribution to second order in Mach number formally, using 8 as an expansion
parameter

NED = p(uma) + mad (uma)B - ca,j + 3m2¢" (uma) BB : ca,jCa,j. an

Egs. (7) and (8) are then used to derive the constraints

p=3 malNgP =3 mad(uma)bo.a+ BB : 3 mod (umadbz.a, (12)
a,j a a ) i
pu = Zmaca ]N(eq) =B ngfpl(ﬂma)b&a- - (13)
a

Under the assumption that bg , = by 41, for £ < 4, the above equations become

p= Z mabo a$(1ima) + = Z m3by o9 (umyg), (14)
pu = ﬂZmibg,aqs’(uma). | (15)
a
The second of these yields
= S ol ) 1o
and the first then yields

amn

2.2 3 "
P Za myby o@" (umg)
p= 2 mgbo, mg) + .
a ¢ a‘é(/‘ ¢ 2 [Za mgbZ,aW(lf‘ma)]z
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To proceed. we deline the functions

By(z) = ) Mabn.a®(@my). | (18)

a

Note that the £th derivative of these is given by

o) = Zm“'bm“)(zma) | 1

In terms of these, p may be written

p2u? P () | T A (7))
= P!
AT e 5 EADICADIL

p2u?  Ph(w) )
=g 20
°<“+ 2 B WIT,GP 20)

The Lagrange Iriultiplier u is then obtained by first writing

p=Po(u) + ——

prut Id’(u) . @1
A A DIAC)

'and applying this equation to itself iteratively, until the right-hand side no longer contains p explicitly. We find

p*u? &5 (P5 (o))

p=5"(0) -

w=2o5' (o) ~ 22)
s 2 o (@5 (@5 (PP
It follows that the first term on the right in Eq. (11) may be written
' . 2.2 =1 g1
- u® @y (Py (P)mad' (P " (P)ma)
B(umg) = $(@y (pymg) — L —2 0 LB L0 P 23)
’ 2 (P (NP (P (PN)]
Finally, the Lagrange multiplier 8 is given by
u u
B=-" ’ | @4)

AT AN

and we are ready to write down the complete Mach-expanded equilibrium d1str1but1on function, expressed in terms
of the conserved quantmes p and pu

a¢’(¢a‘(p>ma)

NED = p(@; (ma) +
v ° (5" (0))

. c(l,j
ptuu

—_: (25)
2A DY (P (o)

(P al<p>> }

”Q) aa'a"‘a’_l ) ——3
{ a¢( (p)m ) jCa.j m¢(¢0 (p)¢)¢/(¢61( )

4. Hydrodynamic equations

We now insert the form of the equilibrium distribution derived in Section 3 into the BGK kinetic equation, Eq. (1),
and perform the Chapman—Enskog asymptotic analysis for small Knudsen number. In fact, we take the Knudsen
and Mach numbers to be of the same order, as is appropriate for the incompressible Navier—Stokes equations. The
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details of this analysis arc presented in Appendix A. The resulting hydrodynamic equations are V - u = 0 and the
incompressible Navier—Stokes equation ‘

du 2 '
5+gu-Vu=—-VP+vV u, (26)
where we have defined the scalar pressure

) 45045:{ 450(15/2/ pu2
P=0 - ety 27
2+[(¢,2)2 srot | @

the kinematic viscosity
/
b (r— %) % : 28)
and the factor multiplying the convective derivative
_ (DQCDZ
RNCATE

(29)

Here, all of the functions @, are understood to be evaluated at Dy 1 (p). We note that the correct form of the convective
derivative, and therefore Galilean invariance, is recovered when g = 1.

It should be noted that the expression for v above is specific to the choice of a BGK collision operator with
constant 7, but the results for g and P are more general than that. Once we determine the form for the function A
that will make g = 1, we could use it to construct a variable-t entropic lattice Boltzmann collision operator, with
relaxation parameter « as described above, and perform a Chapman-Enskog analysis of that. The important result
that g = 1 would be unaltered, as would the equation of state, but the expression for the viscosity would be different,
approaching zero as k approaches unity. We shall not provide the details of this entropic collision operator in this
paper, but rather focus solely on the determination of 4.

S.  Examples

The requirement of Galilean invariance is then g = 1, or

Dy ¢Z

@y = b - (30)

In this section, we solve this equation for four different example lattice models. The first is the single-speed lattice
Boltzmann equation with a Bravais lattice; here we make contact with previous results. In our second example, we
generalize this to include a zero-velocity component to the distribution—the case of so-called “rest particles”—with
the same mass as the moving particles. Here we show that the solution for A still has power-law form, and present
an analytic form for it that generalizes the result for a Bravais lattice. In our third example, we allow the rest particle
to have a different mass from the moving particles. Remarkably, we can show that a power-law solution for # s still
obtained, that the power required satisfies a certain transcendental equation, and that this equation is guaranteed to
have a solution for that power. Finally, we treat the general case, subject to the restrictions on our choice of lattice
that were described above. We show that the power-law form again holds, and that the power required again satisfies
a certain transcendental equation; in this general case, however, we are unable to demonstrate the existence of a
solution for that power.
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5.4 Single-speed maodels

In the case of a single-speed model, the index a takes on only one value, which we may suppress. We have

Po(z) = mbog(zm), ' (B31)
b
P2(2) = mba(am) = 3= P0(2), (32)
. by
P4(z) = mbag(zm) = %d?o @, (33)
so Eq. (30) yields
$(D)"(x) = 27§ (1)1, | (34)
where we have defined the new independent variable x = zm, and the coefficient
by ‘
A= . (35)
' boby
Eq. (34) is a generalization of the differential equation derived in [1]. This equation has solution
$() = A(x — BV (36)
where A and B are arbitrary constants. The inverse function of this must then be
, 7\ 1-A2
_ z 37
Ho=8+(5) . G7)
which integrates to yield
ho+Bz+Alnz if A=+2,
h(z) = 22— 1 2-2% 38
@ ho + Bz — ()ﬂ — 2) AM-1 (EAT:TZ otherwise. | (38)

The leading linear function of z is unimportant, as it results in nothing more than a constant addition to the H
function; likewise, the multiplicative constant in front of the remaining piece is unimportant and may be set to unity.
What remains has the form of a Tsallis entropy with g = 2 — A2 for A /2, and a Burg entropy otherwise. For a
Bravais lattice, we have A = /T +2/D, so that g = 1 — 2/D, as reported in earlier work [1].

5.2. Models with rest particles of the samé mass

To understand the complications that arise when more than one speed is used in entropic lattice Boltzmann
models, we next consider the addition of b, “rest particles” to the b, single-speed model described above. Here
we have introduced the speed labels a = r for the rest particles, and ¢ = m for the moving particles. We note that
bg,r = by, but that b, , = b4 , = 0 since the rest particles have zero speed. It follows that

Po(2) = Mmbo,m(@mm) + mybo.r$(amy), . (39)
P2(2) = mmbym@(2m), _ E (40)

P4(2) = Myba,md(2mm), @
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so Eq. (30) yields .
[P(x) + ¥ (ux)1g” (x) = A2 [¢' (x))%, (42)

where we have defined the new independent variable x = zm, and the coefficients

A= __Iﬁﬂ___, (43)
v bO,mb4.m :
=T, | | (44)
mMm
b
y = —r 20r (45)
My bo,m

If the rest particles have the same mass as the moving particles, then u = 1, and Eq. (42) reduces to
a2 "
Ppx)¢" (x) = ——1[¢'(0)])". (46)
1+y

This is of the same form as the equation obtained with no rest particles, except with the substitution A2 — A2/(1+7).
It follows that the required H function again has the form of the Tsallis entropy with

)\'2

=2- 47

q T4y 7
with the Burg entropy recovered in the special case that A2 = 2(1 + ).
For a Bravais lattice, the expression for g reduces to
1+2/D

=2 —_— (48

? 1+ bo,/bom )

When the number of rest particles, by, , goes to zero, this reduces to the single-speed result.
5.3. Models with rest particles of a different mass

If the movihg particle mass and rest particle mass differ, then u # 1, and Eq. (42) is an example of a functional
differential equation [13]. Such equations relate the dependent variable and its derivatives at more than one value
of the independent variable.? In this case, the value of the dependent variable ¢ and those of its derivatives at x are
related to its value at wx. Such equations are difficult to solve, even when they are linear and the relevant values
of the independent variable are related by additive shifts; our equation is nonlinear, and the relevant values of the
independent variable are related by a multiplicative shift. Remarkably, in spite of all this, our equation admits an
analytic solution, namely the power-law

¢(x) = AP, (49)
where A is an arbitrary constant, and B solves the transcendental equation
1+wf B
= . 50
=T (50)

2 Here we are using the term functional differential equation in a sense most often used by mathematicians [13]. Physicists often use the term
to refer to differential equations that involve what they call functional derivatives, which are what mathematicians call Frechet derivatives. Lest
there be any confusion, that is most emphatically not what we are talking about here.
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The inverse function of ¢ is

, Z\ /8
—(* 51
W =(2)". (51)
and this integrates to give
' AR /z\1+1/B
hz) =hg+ ——(— 52
() =ho+ 7 ﬂ( =) (52)

The contribution to H from a given site is then

n o by n

b, \ n by
DD hWay=ho| D D1 +le/73-(l—£—ﬂ)ZZij‘/ﬂ. (53)
@] aJ ]

Since A and hg are arbitrary, it is clear that this can be brought into correspondence with the Tsallis entropic form,
which is a linear function of the sum over N:f, - We thus identify ¢ = 1 + 1/8, where g must be found by solving’
the transcendental equation, Eq. (50).

Since we would like the distribution function ¢ to decrease with increasing argument, we are interested in solutions
with 8 < 0.If A > 1 and g > 1, such a solution will always exist. To see this, note that the function A28/(8 — 1)
is zero when B = 0 and approaches 22 > 1 as B — —oo; then note that the function 1 + yuf is 1 + ¥ > 1 when
B = 0 and approaches 1 as 8 — —o0. Since both curves are continuous, they must cross for some g < 0.

5.4. The general case
Encouraged by the last example, we may check to see if a power-law solution always exists for ¢. If we assume
$(x) = AxP, then
B (2) =) MabnoAlema)’ = APy m; Ph, .. , | (54)
[ a

Inserting this into Eq. (30), we quickly find that 8 must satisfy the transcendental equation

(Earn) () 5 * e

2 —
) (Za mzlz+ﬂb2,a) . p—1

The existence of power-law solutions for ¢ then hinges on the existence of solutions to this transcendental equation
with 8 < 0. Though we saw that such solutions exist for single-speed models and models with a single-speed
plus rest particles, it seems difficult to draw conclusions about the existence of more general solutions to this
transcendental equation, and we leave the matter to future inquiry.

6. Conclusions

Previous work [1] has established that the requirement of Galilean invariance determines the form of the H
function for single-speed, single-mass entropic lattice Boltzmann models on a Bravais lattice. This function was
found to have the form of a Tsallis entropy, with ¢ = 1 — 2/D, where D is the spatial dimension. In this study, .
we have extended the validity of this result to models with multiple speeds, and particles of different masses. We
carried out the full Boltzmann/Chapman—Enskog analysis for such models, and applied our results to four examples.
The first was the single-speed model, to verify that we could reproduce the earlier result. The second was the same
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model with the addition of rest particles of the same mass; here we showed hat the only effect was to change the
value of ¢. Our third and fourth examples involved particles of more than one mass; here we showed that A must
satisfy a certain functional differential equation, that this equation has a solution in power-law form, and that the
power is determined by a transcendental equation. Thus, we have shown that the power-law form for # is extremely
robust.

We note that our choice of the form of H differs from that of Karlin et al. [6], which is of the form H =
Zf? N;In(N;/W;), where the W; are speed-dependent weights. These weights are equal to the global equilibrium
at zero flow; thus, when N; = W; they have H = 0. Thus, by allowing weighted contributions to H, they found
solutions for which A has the form of a (relative) Boltzmann entropy; by contrast, the present work assumes uniform
contributions to H, and finds solutions for which 4 is not a Boltzmann entropy. Both approaches are capable of
yielding Galilean-invariant hydrodynamics. A more general form for H that will subsume both approaches as special
cases, remains an interesting theoretical challenge.

Another outstanding problem involves the restriction that we imposed on the choice of lattice. Though the
requirement that the second-rank and fourth-rank tensors formed from sums of outer products of the velocities
be isotropic within each speed class separately allowed for a simplified analysis, it seems unnecessary. There are
known lattice Boltzmann models for which this is not true, but which nevertheless yield the isotropic Navier—Stokes
equations in the hydrodynamic limit; this is because the union of velocity vectors across all speed classes does
satisfy the isotropy requirements. For example, the very popular D2Q9, D3Q15 and D3Q19 models fall into this
category [3].

The analysis of the transcendental equation for 8, Eq. (55), to see under what circumstance there exist solut1ons
with 8 < 0, remains yet another outstanding problem.

Finally, in addition to these technical challenges, it would be useful and enlightening to have some physical
reason for the appearance of the Tsallis entropic form in this context. This form has often been reported as arising
from a lack of ergodicity, or a fractal spatiotemporal structure. There is no clear reason to believe that either of
these ingredients are present in the current context; yet the Tsallis entropic form appeared quite naturally from our
mathematical development. Thus, a clear and illuminating physical interpretation of our result remains perhaps the
most important outstanding challenge that we leave for future work.
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Appendix A. Lattice Boltzmann equation and Chapman—Enskog analysis

Using the equilibrium distribution function derived in Section 3, the kinetic equation, Eq. (1), may be rewritten
as

Naj(%, 1) + T[N j(X + €a.j» t + A8 — Ny j(X, D] = N(eq)(x ) (A1)
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oF
{1'+ T [exp(cm i-V)exp (At%) — 1]] No j(x,0) = N(eq)(x 0, ., (A2)

which has the formal solution |
Ny j(x, 1) = { 1+t [exp(ca, i+ V)exp (At%) — 1]} NEP(x, 1), (A3)

We introduce the order parameter € by the following prescription, appropriate for viscous incompressible flow
(Mach and Knudsen numbers of order €)

Cqj —> €Cq j, (A4)
At — €2At, . . (A.5)

and we allow for the equilibrium distribution to be ordered in Mach number
00 . '
Nod = 3 €Nt ®. (A.6)

The result ,
3 Tf&

Ngj= {l + [exp(eca,j - V)exp (ezAt—) - 1]} Z eequ’l) (A7)
at J pard ¥

may be solved perturbatively by ordering N, ; in the expansion parameter €

o

Naj=Y €N _ _ (A.8)
=0 )

At orders zero, one and two, we find .
N = NE3O (A9)
N = NE9D — veq ;- VNERD, (A.10)

3 1 .

ND = NED —1e, ;- VNEID — ¢ [Ata - (‘L’ - 2) CajCa;: VV] NEIO. (A11)

We shall use these to derive the leading gradient corrections to the distribution function, and insert these into the
conservation equations to arrive at the hydrodynamical equations for the system.
We now proceed to the Chapman—Enskog analysis. The ordering of our local equilibrium distribution function is

NEFO = g7 (oma), o (A12)
11
N[Ee;],l) _ ma (ds(?_l(l))ma) u- e, ' (A13)
’ L (@5 (o))
2 —1
NED = Tl (@7 (0)ma)ea, jea; — (@] (oym a—”—ﬂﬂ (A14)
TP T T cestar =80 (5 (o))
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Inserting Egs. (A.12)—(A.14) into Egs. (A9—(A.11), we get
0 -
N = ¢(25" (0yma), (A.15)

1y _ mad' Py (P)ma)
@5 (o)

u - C(,_j, (A]G)

2 ' o

@ p uu 1y -1 r el o (p,! (p))

s ¢ (@5 (P)ma)eq, j€a.j — mad (D5 (P)mg) 221

“I 2@ (@ ()12 {“ erertad a0 ST g @51 (o)

g (85 (P)ma)
— 2% ey jeg j : (V). (A.17)
¢2(¢0 (0)) ) ‘
The solution to the kinetic equation to second order is then the sum of these

Noj =N+ eND + NP + 0, , (A.18)

and the conservation equations are obtained by taking moments of the Taylor-expanded kinetic equation to second
order

L+ %ca,jc,,,j : VVN,,:j = 824 ;, (A.19)
where £2, ; denotes the collision operator. The mass moment yields
2'[3 +V.-(ou)+ = VV i i Mma€q, j€a,jNaj | =0, (A.20)
" <7

while the momentum moment yields

n b n b,

9 1
a(pu) +V. Z Z MaCq, j€a,jNaj | + —2-VV > Z Zmaca,jca,jc,,,jNa,j =0. (A.21)
“\a j a j

We now evaluate the second and third moments which appear in these equations, order by order. For the second
moments, we find

n by
3N maca jea NS = D2, (A22)
a j ’
n b, .
3 maca jea N =0, (A23)
a ' , '
Dol Doy pu? @) @

2 0 0

szaca jea iNS)= [ @ )‘2‘ ‘1’64’2] WG )2 0 uu—r—p[(V W14+ Vat+ (V)T (A.24)

where the superscript T denotes “transpose”, and the arguments of all the @’s are understood to be @ 1(p). For the
third moments, we find

n by

33" maeq, jea jea ;N =0, (A.25)

a j
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n b,

m_ P
szucu J€a. jCa, jNa i@ —pper(l1®u), - (A26)
j 2

n b,

Z Z Mt 1eaiNC) =0, (A27)

where, as noted earlier, “per” denotes a sum over all symmetric permutations of tensor components.
We now insert the above results into Eqgs. (A.20) and (A.21), and we adhere to the incompressible limit so that
time and space derivatives of p are of higher order in € and hence ignored. The hydrodynamlc equations given in
Section 4 follow immediately.
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