
TOWARDS A FORMAL VERIFICATION OF A SECURE

AND DISTRIBUTED SYSTEM AND ITS APPLICATIONS1

Cui Zhang, Rob Shaw, Mark R. Heckman, Gregory D. Benson,
Myla Archer, Karl Levitt, and Ronald A. Olsson

Department of Computer Science

University of California, Davis, CA 95616

Email: Last-Name@cs.ucdavis.edu

Abstract

This paper presents research towards the formal speci�cation and veri�cation of a secure dis-

tributed system and secure application programs that run on it. We refer to the whole system

| from hardware to application programs written in a concurrent programming language |

as the Silo, and to a simpli�ed view of the Silo as the miniSilo. Both miniSilo and Silo consist

of a collection of microprocessors interconnected by a network, a distributed operating system

and a compiler for a distributed programming language. Our goal is to verify the full Silo by

mechanized layered formal proof using the higher order logic theorem proving system HOL.

This paper describes our current results for verifying the miniSilo and our incremental approach

for evolving the veri�cation of the miniSilo into the veri�cation of the full Silo. Scalability is

addressed in part by extending the distributed operating system with additional servers which

in turn provide services that extend the programming language.

Keywords: veri�cation, distributed operating systems, security servers, distributed program-

ming languages.

1 Introduction

This paper describes our research on a long term project called the Silo. This project is aimed

at verifying a complete distributed computer system by mechanized layered formal proof. Our

layered system includes a set of microprocessors, a network model, the operating system kernel and

servers (some in support of security) running on each microprocessor (hence, a secure distributed

operating system), the concurrent programming language microSR (a derivative of SR [1]), and a

Hoare-like programming logic. Each layer will be formally modeled as an interpreter that interacts

with the other layers. Our layered approach will allow us to verify that secure and distributed

applications run correctly on the entire system. In its �nal form, the Silo will be somewhat limited

when compared to \real" computer systems; however, we hope it will be the most comprehensive

distributed computer system that is veri�ed and demonstrates a methodology for "full system

veri�cation" of distributed systems.

The CLI stack [2] has shown the feasibility of full system veri�cation for a sequential system

using a layered proof technique, but their model does not allow for concurrency and distributed

programming, nor have they fully integrated the operating system into their \stack". When we

began specifying the Silo system, we realized that an incremental approach is necessary for revealing

unforeseen di�culties and for making the formal proof more manageable. Rather than attempting

to specify and prove the entire Silo, we have identi�ed a subset of the Silo to specify and prove

correct by limiting the scope of each layer to reduce the complexity. As shown in Figure 1, we

refer to this simpli�ed view of the Silo as the miniSilo. As our preliminary results on miniSilo have

1This work was sponsored by the National Security Agency University Research Program under contract DOD-

MDA904-93-C-4088 and by ARPA under contract USN N00014-93-1-1322 with the O�ce of Naval Research.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
Towards a Formal Verification of a Secure and Distributed System and
Its Applications

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California (Davis),Department of Computer Science,1
Shields Avenue /2063 Kemper Hall,Davis,CA,95616

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

11

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Interface:

Implementation:

Interface:

Interface:

Interface:

Interface:

miniSilo Silo

Distributed
OS Layer

Processor
Layer

Application
Layer

Language

Layer

Mpmachine
Layer

Network
Layer

Implementation
Implementation:

Implementation:

Implementation: CPU & Memory

Implementation:

Infinite set of variables & true

Generation of simple machine
instructions

simple instruction set

Hardwired data lines and
infinite resources

Finite resources, memory mapped
I/O via interrupt mechanism

Full symbol tables, richer target
language with system calls

Simplified processors with Richer instruction set with
true user/system modes

SR IPC mechanisms

microSR & a Hoare Programming Logic

Formal Semantics of microSR including IPC

Instruction Set

Host-host Communication Network

Soundness Proofs

Compilation Functions

Network Controllers & Interconnect

Static process naming, few
variables, simple send/receive

IPC System Calls Secure

OS Kernel & Servers
(including security servers)

communication through system provided mailboxes
multiplexed across the processors and
User & system processes running with time

Figure 1: Overview of UCD Silo and MiniSilo

shown the usefulness of our layered proof methodology, we are now growing the miniSilo system

into the full Silo by developing the system and proof by incrementally adding functionality to all

layers. Our speci�cation, veri�cation, and augmentation process is being carried out using the

Cambridge HOL theorem prover [8], because it allows the de�nition of embedded theories, such

as we are using for a programming logic of concurrency and a generic model of a layer. We also

hope our work demonstrates the expressiveness, exibility, and feasibility of higher order logic in

formal speci�cation and veri�cation for more complicated computer systems, including a concurrent

programming language that support security applications and a distributed operating system.

This paper concentrates on our miniSilo e�ort, as a step in the full Silo e�ort. Section 2

describes our work on the network layer. Section 3 gives our work on the mpmachine layer. Section

4 describes our e�ort on the language implementation for microSR. Section 5 presents the Hoare

logic derived from the microSR semantic speci�cation. Section 6 concludes our work.

2 The Network

2.1 The Network for MiniSilo

The lowest layer of miniSilo consists of a network which allows individual processors (vmachines,

see Section 3) to communicate through message passing. The miniSilo network consists of a set of

processors and an interconnect service. Each processor communicates with the network through a

Network Interface Unit (NIU), as shown in Figure 2. In miniSilo we assume that a processor has

dedicated, hardwired data lines that interface directly with an NIU. The network provides reliable

transmission of messages and preserves message ordering between communicating processors.

P PP
1 2 n

Interconnect

NIU1 NIU2 NIUn

Figure 2: The MiniSilo Network

The miniSilo network is speci�ed abstractly. By specifying the network in general terms, we

do not impose any restrictions on the network topology or on the communication protocol. We do

ensure that the network provides the properties that the higher miniSilo layers assume of the net-

work. Later, if desired, one could develop an implementation of the abstract network speci�cation.

The next logical layer is the protocol layer. There has been considerable work on the veri�cation of

network protocols [5, 12], which could be used to implement the abstract speci�cation presented.

For \complete" veri�cation the protocol layer must ultimately be speci�ed in terms of the under-

lying hardware. Protocol and network hardware veri�cation are beyond the scope of this project.

The network is also speci�ed operationally, where each NIU is modeled as an interpreter that reads

and modi�es state. The entire network is modeled as the composition of all the NIUs. The network

interpreter is driven by send requests from the processors. Send requests result in receive requests

from an NIU to a processor, which allows for nonblocking I/O at the operating system level. Sends

and receives are accomplished through memory mapped I/O.

The set of NIUs are modeled as a fully connected network through send and receive queues,

collectively called in-transit queues. For n processors, each NIU has n � 1 send queues and n � 1

receive queues. Each queue is shared by exactly two NIUs, one NIU views the queue as a send

queue and the other NIU views it as a receive queue. The send and receive queues form the InTran-

sit State. The NIU State for each NIU combined with the Intransit State form the Network State.

The speci�cation of the network interpreter is a relation, Network State!Network State!Bool.

This interpreter is used to prove properties about the network itself, as well as to serve as an

implementation for the higher layers of miniSilo.

Because the miniSilo network speci�cation is given in terms of abstract operational semantics,

we need to prove certain safety properties to ensure that the network functions correctly. The most

important safety property is the ordering of messages between communicating processors. This

property follows from the representation of the InTransit State. Other safety properties, such as

no duplication of messages, are also veri�ed.

2.2 The Network for Silo

The proof obligation of the mpmachine requires us to verify that the network speci�cation combined

with the vmachine speci�cation logically imply the mpmachine speci�cation. In miniSilo, the

distinction between the mpmachine communication abstractions and the network abstractions are

small, but this will change once the full Silo is developed and each layer is expanded to more realistic

speci�cations of a distributed system. In particular, the network speci�cation will be modi�ed in

two respects. First, the network will be speci�ed in terms of �nite resources rather than in�nite

resources. Currently the speci�cation allows in�nitely many messages to be present in the in-transit

queues. Therefore, each NIU is always ready to send another message, the processor is not required

to wait or resend messages. Moving from in�nite queues to �nite queues entails certain speci�ed

error conditions and can result in storage channels. In miniSilo, we also assume that the message

being transferred is a single, but in�nite integer. We intend to alter the speci�cation to handle

�nite packets. Second, the interface between an NIU and a vmachine will be enhanced to one based

on memory-mapped I/O and interrupts rather than memory-mapped I/0 alone. This will allow the

operating system to implement non-blocking I/O, and more importantly, allow for more than one

process and operation per processor as described in Section 3. The new processor to NIU interface

will also be enhanced to handle simple error conditions such as a network busy error or packet lost

error, both of which will result in the processor resending the packet. Again, there are security

implications to these decisions, which we will consider.

3 The Mpmachine

3.1 The MiniSilo Mpmachine

The miniSilo abstraction mpmachine represents multiple processors, each running a single process.

Processes communicate by passing messages through a network. From a user process's point of

view, the operating system interface appears as an \extended machine", consisting of the basic

machine instructions plus communication primitives (system calls). The communication primitives

are used to send and receive messages, through message queues. MiniSilo has one message queue

per process, where only one process can read from the queue and all other processes can send

messages to the queue.

The vmachine speci�cation describes a single processor in miniSilo. Each vmachine2 consists of

an in�nite set of registers, an in�nite set of memory locations, and a program counter. Since these

are modeled in HOL using natural numbers, each location may hold a non-negative integer of any

size. A single vmachine operates much as one would expect, interpreting a typical set of simple

machine instructions consisting of load, store, arithmetic, comparison, and branching instructions.

It can not, however, issue any kind of communication action with other vmachines; the mpmachine

provides this ability. This modularization is intended to isolate the processor from changes in

the network hardware | the mpmachine is responsible for the compatibility of these two lower

components and for de�ning the pool of message queues and system calls. Neither component

depends upon the other's speci�cation in any way.

An mpmachine containsN vmachine processors andN network interface units (NIUs) connected

to a bus. Within the mpmachine speci�cation, however, this bus is abstracted as a pool of queues.

This pool contains one queue for each NIU, representing the ordered list of pending messages

destined for the vmachine corresponding to the particular NIU. The external appearance of an

mpmachine, therefore, is an N -tuple of vmachines (whose appearance is \passed-up", unaltered),

plus a pool of \in-transit" message queues.

Similarly, the language interpreted by an mpmachine is an N -tuple of lists of instructions.

The set of instructions contains all the operations executable on a vmachine, plus communication

primitives. Similar to earlier e�orts [4, 10], the actual operation of the mpmachine is modelled with

2Initially, we chose this term as an abbreviation of \virtual machine". Presently, however, \vanilla machine" is

perhaps more appropriate

transition relations. Each kind of transition allows a single component of the N -tuple to advance a

single step. To issue a vmachine instruction, only the state of the corresponding vmachine hardware

is a�ected. To issue a communication primitive, however, the global pool of queues may be altered

as well.

The HOL speci�cation of this machine model consists of straightforward type de�nitions for the

objects described, plus the transition relation associated for each kind of mpmachine instruction.

These relations have the type Args!MPprocess !MPprocess! V id! Bool. The type Args

characterizes the numerical operands to the instruction. An MPprocess represents a pair whose

�rst component is the local state of the vmachine which is executing this instruction, and whose

second component is the pool of queues. Finally, Vid is the index of the executing vmachine; this

information is not available within an MPprocess. If we were to include, say, a read-only \processor

id register" in each vmachine, then the information in Vid above would become redundant.

From this type de�nition, we see that the following question can be answered of each mpmachine

instruction: Given the indicated operands, and the indicated initial con�guration of the mpmachine,

is it possible to arrive in a given con�guration after the indicated processor executes this instruction?

For example, the relation for a simple vmachine jump instruction would require that the pools in

both MPprocess objects are identical, because a jump does not a�ect communications. Moreover,

the underlying vmachine speci�cation would ensures that the register and memory contents of the

vmachine object within the �rst MPprocess must also be identical to the corresponding vmachine

within the second MPprocess. Only the processor's program counter will di�er between the two

con�gurations, and this di�erence must agree with the target location given in the operand to the

jump (indicated in the Args). The mpmachine speci�cation does not directly contain these facts,

but rather defers to the vmachine speci�cation itself. As an example of message passing, if the

instruction in question were a receive operation, both the processor and the pool contents will

di�er accordingly. In particular, after the instruction is complete, the destination register in the

processor will contain the received value, and the appropriate queue in the pool (indicated by the

Vid) will have one less message than it did before the instruction began.

Armed with a semantic relation for each instruction, the mpmachine speci�cation only requires

two more de�nitions to encompass the complete system behavior. The �rst of these, is an inductive

de�nition of how a thread, an instance of a sequential program piece, may legally execute for k � 0

steps. To execute for zero steps, both the initial and the �nal MPprocess must be completely

identical. To execute for k > 0 steps, there must exist an intervening MPprocess value, call it M ,

such that the appropriate semantic relation allows a one-step transition from the initial state into

M , and the �nal (k � 1)-step transition from M into the �nal state is allowed inductively. The

second de�nition describes the legal behaviors of complete programs on an mpmachine, and it is

not inductive. Here, a �nal state of the entire system is reachable from an initial one precisely when

the corresponding initial and �nal MPprocess's for each component of the program are allowed by

the above inductive de�nition, for some k � 0.

3.2 Growth to Complete Silo

The complete Silo system consists of multiple processors, connected by a network and each run-

ning a copy of the Silo operating system. The operating system design is based on the kernel

and server model used, for example, in Mach [14] and in Synergy [15]. The kernel provides a

multi-programmed, message passing environment for the server processes and user processes on a

particular processor. The abstraction of a distributed system is maintained by the servers. As

shown in Figure 3, from a user process's point of view, the operating system interface in Silo will

extend that of miniSilo with richer basic machine instructions and system calls. In this way, the

User Processes

Global Pool of Mailboxes

Ports

. . .

Single processor abstraction

Single operating system mailbox
abstracted as multiple queues.

instructions and system calls)
O.S. Interface (Machine

Figure 3: Operating System Speci�cation: View from User Process

language work can proceed concurrently with the operating system work. Silo includes additional

system calls for processes to create message queues, called mailboxes, and for processes to request

access to speci�c mailboxes. The mailbox management calls are subject to a system security policy

implemented by a security server, as shown in Figure 4. These calls, while an essential part of the

Silo system speci�cation, are only relevant to user processes when an application is initially loaded

and, therefore, do not require signi�cant changes to our language work.

A mailbox is a queue of messages with at most one process receiving messages through the

mailbox and possibly many senders. The complete operating system speci�cation guarantees that

messages sent by a particular process to the same mailbox will be queued in the mailbox in the same

order that they were sent but, due to the concurrent nature of the system, does not guarantee the

relative ordering of messages sent by di�erent processes. For this reason, Silo speci�es a mailbox

as a set of queues { one per sender, rather than one per receiver as in miniSilo.

A major challenge in the Silo project is to specify the entire distributed operating system at

its interface to user processes, to specify each of the servers and the kernel, and to prove that a

composition of the server, kernel and network speci�cations satisfy the secure distributed operating

system speci�cation. We are accomplishing this in stages: �rst composing the servers that manage

mailboxes, then adding the servers that implement system security and support the security features

in the programming language.

4 Implementation of MicroSR

4.1 MicroSR Semantics

The interpreted language at this layer is microSR whose constructs include those basic to common

sequential programming languages, in addition to an asynchronous send statement, a synchronous

receive statement, a guarded communication input statement, and a co statement for specifying

concurrent execution. This language has the appearance of a high-level system programming lan-

guage that supports distributed applications. For each statement, we have a semantic transition

relation of type Gstate ! Gstate ! Pid ! Bool. These semantic relations are analogous to,

though more complex than, the mpmachine relations. Here, the type Gstate (for \global state")

represents a complete system con�guration, and the relation is true if and only if the system may

evolve from the �rst Gstate into the second Gstate by the execution of the given microSR state-

ment within the logical process indicated by Pid. The semantics are also formalized operationally,

using multiple copies of a local state abstraction conjoined with a shared pool of messages. These

User process

Port Server

1. User process requests a port to a particular mailbox.

2. Port Server receives request, queries Security Server.

3. Security Server compares user clearance with mailbox

 classification. Returns boolean result to Port Server.

4. Port Server tells kernel to create port or else denies request

 based on result from Security Server.
1

2

3

4

Kernel

Other

(NDSM)

Mandatory
Security Server Security Server

(e.g., DAC)

Figure 4: Operating System: Security management

local states are now mappings from variable names into values, rather than register and memory

contents. However, the internal structure of this microSR message pool is almost identical to that

of the mpmachine | for each program thread, the pool contains a queue of all messages which

have been sent to this thread, plus an indication of which ones have been received thus far. To

handle security, processes and objects are assigned security levels, and transitions are allowed if

they satisfy the standard multilevel security policy.

4.2 Compiler Correctness

Like the previous successful e�orts to prove compiler correctness for sequential languages [6, 9], to

claim that a compiler is correct is to claim that the target code behavior achieve the source code

semantics. Yet, as we have seen, the mpmachine behaviors and the microSR semantics are distinct

enough that no canonical equivalence exists between them. We, as the veri�ers, must provide this

mapping from the abstract microSR global states down into the more concrete mpmachine states.

As shown in Figure 5, once this mapping is available, the compiler correctness proof becomes

an equivalence proof of two relations, given by the dashed line and the dotted line. For any

given starting state, S, of the microSR program, these two relations must agree on which �nal

mpmachine con�gurations are reachable. In particular, the compiler correctness condition is the

following logical equivalence: If, the microSR semantics for the source program indicate that a

certain �nal state, F , is reachable, then it must be true that the mpmachine semantics for the

compiler's output code indicate that F 0 = Mapdown(F) is reachable from S
0 = Mapdown(S). The

compiler itself is simply another mapping function over the domain of legal microSR programs that

provides a list of mpmachine instructions for each construct.

A few implementation details are not evident in Figure 5. First of all, since both the Mapdown

function and the compiler assign variables to registers, these two assignments must agree in order for

Start State

Initial Configuration

Final State

Compilation of the

mpmachine code
source program into

Operation of the mpmachine
Final Configuration

Semantics of a microSR program

on the compiler output

Mapdown Mapdown

(S) (F)

(F’)(S’)

Figure 5: Necessary Mappings for Compiler Correctness

the above equivalence to hold. Consequently, the Mapdown function takes a symbol table argument

that indicates the compiler's choices. In miniSilo, there is a �xed symbol table because the microSR

language has a small, �xed set of legal variable identi�ers. To allow arbitrary strings as identi�ers,

the compiler needs simply to make an initial pass over the source and gather the necessary symbol

table information needed by Mapdown and the second pass. This process involves no concurrency

nor composability issues whatsoever other than requiring the extra argument to Mapdown { an

aspect that has been accommodated.

As described above, the \dashed" relation, whether true or false, must be equal to the \dotted"

relation. This is not entirely possible because a small amount of information is lost across the

Mapdown function. For instance, a microSR global state contains a component that indicates the

current time of the state. Suppose that we have two states, S1 and S2, which are legal starting and

ending states for some program. Both the dashed and dotted relations indicate truth. However,

suppose that we now alter S2 ever so slightly, by making its time indicator earlier than that of S1.

Since the global time does not appear in the mpmachine speci�cation, the result of mapping down

S2 is just as it was before, and the dotted relation continues to indicate truth. The dashed relation,

however, does not allow for time to decrease, and indicates falsity. The use of the time counter

is merely an example; the microSR semantics contain other auxiliary data, such as the number of

receives on a particular channel, that are not mapped down to the hardware level. Indeed, when the

full Silo contains a kernel with many internal tables, it would not even be clear how the language-

level receive counts should be mapped. We do not want the language layer imposing bookkeeping

requirements on the kernel, and the correct choice is to not map down the information that is only

needed by the language semantics. As a result, the compiler proof is not a complete equivalence,

but it must distinguish di�erent means by which the language semantics may indicate falsity.

Similarly, the mpmachine abstraction also contains some items that are not within the image

of Mapdown. The �rst few memory locations are considered to be \reserved" for system use, and

the Mapdown function does not dictate the values of the addresses. The fact that the language

layer relation holds does not impart any knowledge about this hidden system state within the

mpmachine. Consequently, the actual proof requires a third machine con�guration (not shown)

which is both reachable from S
0 and equivalent to to F

0 in all respects except the hidden system

state. Finally, within this proof, the complete program is really viewed as a collection of processes,

and the picture indicates what must be shown for each individual process. Rather than use fully

de�ned states and con�gurations, we show that for each process, the relationships of Figure 5 hold

amongst that process' view of the system state.

5 MicroSR Applications

5.1 The Hoare Logic for MicroSR

The top application layer is a mechanized Hoare logic for verifying microSR concurrent applica-

tions. Our e�ort to formally derive, using HOL, a sound Hoare logic from microSR semantics is a

generalization of similar work by Gordon for a small sequential language [7, 13]. We use semantic

relations, rather than functions, in our formal speci�cation for microSR constructs; doing so obvi-

ates the possible need for powerdomains in the state abstraction for microSR programs due to the

inherent non-determinism. To handle the interference problem arising from concurrent execution,

We introduced atomicity and global invariants [2] into our logic system. This logic has been for-

mally proven to be sound within HOL, i.e., axioms and inference rules are all mechanically derived

in HOL as the logical implication of the same microSR semantic speci�cation against which the mi-

croSR implementation is veri�ed. This logic allows one to reason and state formal assertions about

concurrently executing processes that do not share any data objects, but communicate through

shared channels that are called operations in SR terminology.

The partial correctness speci�cation in our logic has two levels. The de�nition of predicate

SPEC shown below gives our interpretation of fP and/or GIg S fQ and/or GIg, the intra-process

partial correctness speci�cation, where S is the microSR statement, P and Q are assertions mainly

on program variables, GI is the assertion of global invariant mainly on operations, associated with

executing S and taken with respect to a particular process. The de�nition of predicate G SPEC

gives our interpretation of the global partial correctness speci�cation ff(P list) ^ GIgg S ff(Q list)

^ GIgg, where S is the top level statement for specifying concurrent executions, global invariant

GI is the assertion mainly on operations, P list and Q list are assertion lists mainly on program

variables. The ith elements of the two lists are taken with respect to a particular process for

executing the ith sequential program within the top level statement S. Notice that all arguments of

SPEC and G SPEC in the following de�nitions are abbreviated forms of their meaning functions.

SPEC (P and/or GI, S, Q and/or GI) = ` def 8 Gstate1 Gstate2 Pid .

P and/or GI(Gstate, Pid) ^ S(Gstate1, Gstate2, Pid)

) Q and/or GI(Gstate2, Pid)

G SPEC ((P list) ^ GI, S, (Q list) ^ GI) = ` def 8 Gstate1 Gstate2 Pid list .

(8 i . (El i P list)(Gstate1, (El i Pid list)) ^ GI(Gstate, (EL i Pid list))) ^

S(Gstate1, Gstate2, Pid list)

) (8 i . (El i Q list)(Gstate2, (El i Pid list))^GI(Gstate2, (EL i Pid list)))

The following gives our representative axioms and inference rules in the derived logic for mi-
croSR. Those axioms and rules for microSR sequential constructs, such as the Skip Axioms, As-
signment Axiom, If Rule, Do Rule, Sequencing Rule, Precondition Strengthening Rule, and Post-
condition Weakening Rule, are not listed below, because their appearance is similar to that in [2,
7], though the way to formally specify and derive them for microSR is actually more complex.
All axioms and inference rules are theorems of our language semantics. The \sent-set" � and
\received-set" � denote all messages ever sent and received on that channel. Frontier(�op) denotes
the earliest message in the channel op that has not been received. � is simply a message constructor
function for converting an entity of type integer into one of type message.

� Co Rule
fGI ^ Pig SLi fGI ^Qig

ffGI ^ P listgg co SL1 // ... // SLn oc ffGI ^Q listgg

� Send Axiom

fP ^GI ^GI
�op

�op[�(E)g send op (E) fP ^GIg

� Receive Rule
P ^GI ^ �(E) 2 Frontier(�op)) Qv

E
^ GI

�op

�op[�(E)

fP ^GIg receive op(v) fQ ^GIg

� In Rule

fP ^GIgreceive op1(v)fR1 ^GIgS1fQ ^GIg; fP ^GIgreceive op2(v)fR2 ^GIgS2fQ ^GIg

fP ^GIg in op1(v) -> S1 [] op2(v) -> S2 ni fQ^GIg

5.2 Extensions for Silo

Following our incremental approach, we expect that our �nal language for Silo will be close to its

parent language in its expressive power for distributed computing and our logic will be extended

as well. For instance, in our current version of microSR, input statements support only message

passing because operations serviced by an input statement can only be invoked by send statements.

In our later version, we will allow operations to be invoked by call statements, which will provide

rendezvous. We will also extend our input statement with synchronization expressions to allow

selective receipt. We will also add some feature into our language to allow users to specify the

security level of their programs, resources and processes that they create. The current results at

this layer serve as a basis of our research for the complete Silo, since our research so far indicates that

SR concurrency features, such as dynamic process creation and that synchronization via message-

passing, remote procedure calls, and rendezvous, are all amenable to a Hoare-like programming

logic, because the components of our semantic model for microSR have already formalized most

of entities and behaviors that SR programmers must consider during their design process. We

are now also evaluating the expressive power of our logic by carrying out proofs of programs.

The preliminary attempts at manual proof of microSR programs have motivated us to establish

a systematic method for creating annotated microSR programs. Another challenging task is to

develop, using HOL as well, an interactive prover of LCF [11] style for microSR.

6 Conclusion

Our research on miniSilo has shown how to structure proofs according to vertical layers, how

to formally model di�erent layers, how to model the interactions between layers, how to express

the proof obligations between layers, and how to compose all the proved layers together. We

are extending our research on system design and proof to show that how to evolve miniSilo to

Silo in an incremental manner. By our layered proof, we hope to demonstrate that secure and

distributed applications can be veri�ed with respect to the entire system, namely showing that

microSR applications that are proved correct in our Hoare logic will run correctly on our Silo

system.

References

[1] G.R. Andrews, R.A. Olsson, M. Co�n, I.J.P. Elsho�, K. Nilsen, T. Purdin, and G. Townsend, An

Overview of the SR Language and Implementation, ACM Transactions on Programming Languages and

Systems, 10 (1988) 51-86.

[2] G.R. Andrews, Concurrent Programming: Principles and Practice, The Benjamin/Cummings Publishing

Company, Inc. Redwood City, CA, 1991.

[3] W.R. Bevier, W.A. Hunt, J.S. Moore, and W.D. Young, An approach to systems veri�cation, Journal of

Automated Reasoning, 5 (1989) 411{428.

[4] W.R. Bevier, and J. Sogaard-Andersen, Mechanically Checked Proofs of Kernel Speci�cations, in CAV

'91, number 575 in Lecture Notes in Computer Science, pp.70-82, Springer Verlag, July 1991.

[5] R. Cardell-Oliver, Using Higher Order Logic for Modelling Real-time Protocols, in TAPSOFT '91, num-

ber 494 in Lecture Notes in Computer Science, pp. 259-282, Springer Verlag, April 1991.

[6] P. Curzon, Of What Use is a Veri�ed Compiler Speci�cation, Technical Report No.274, Computer Lab-

oratory, University of Cambridge, November 1992.

[7] M. J. C. Gordon, Mechanizing ProgrammingLogics in Higher Order Logic, in G. Birtwistle and P.A. Sub-

rahmanyam, Eds., Current Trends in Hardware Veri�cation and Automated Theorem Proving, Springer-

Verlag, New York, 1989.

[8] M. J. C. Gordon and T. F. Melham, Introduction to HOL: A theorem proving environment for higher

order logic, Cambridge University Press, Cambridge, 1993.

[9] J.J. Joyce, Totally Veri�ed Systems: Linking veri�ed software to veri�ed hardware. In M. Leeser and G.

Brown, Eds., Speci�cation, Veri�cation and synthesis: Mathematical Aspects, Springer-Verlag, 1989.

[10] Z. Manna and A. Pnueli, Veri�cation of Concurrent Programs: A Temporal Proof System, Proc. of the

Fourth School of Advanced Programming, Amsterdam, 1982.

[11] L. C. Paulson, Logic and Computation: Interactive Proof with Cambridge LCF, Cambridge University

Press, Cambridge, New York, 1987.

[12] V. Yodaiken and K. Ramamritham, Veri�cation of a Reliable Net Protocol, Proc. of the Second Inter-

national Symposium on Formal Techniques in Real-Time and Fault-Tolerent Systems, number 571 in

Lecture Notes in Computer Science, pp. 193-215, Springer Verlag, January 1992.

[13] C. Zhang, R. Shaw, R. Olsson, K. Levitt, M. Archer, M.Heckman, and G. Benson, Mechanizing a

Programming Logic for the Concurrent Programming Language microSR in HOL, in J.J. Gordon and

C.H. Seger, Eds., Higher Order Logic Theorem Proving and Its Applications, The 6th International

Workshop, HUG'93, number 780 in Lecture Notes in Computer Science, pp31-44, Springer-Verlag, March

1994.

[14] MACH 3 Kernel Principles, Open Software Foundation and Carnegie Mellon University, May 1991.

[15] USA INFOSEC Research and Technology, Synergy: A Distributed, Microkernel-based Security Archi-

tecture, November 1993.

