Multi-Model Algorithms
for Optimization

Richard Gordon Carter

May 1986

TRS86-3



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
MAY 1986 2. REPORT TYPE 00-00-1986 to 00-00-1986
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Multi-M odel Algorithmsfor Optimization £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Computational and Applied M athematics Department ,Rice REPORT NUMBER
University,6100 Main Street M S 134,Houston, T X,77005-1892

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 182
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



RICE UNIVERSITY.

MULTI-MODEL ALGORITHMS
FOR
OPTIMIZATION

by

RICHARD GORDON CARTER

A Thesis Submitted
In Partial Fulfillment Of The
Requirements For The Degree

DOCTOR OF PHILOSOPHY

Approved, Thesis Committee:

John E. Dennis Jr.,
Professor of Mathematical Sciences
Chairman

'
| {4
Richard A. Tapia,

Professor of Mathematical Sciences

Z&Zé/z/ ﬂ%w

Richard D. Yourg,

Professor of Economics

Houston, Texas

May, 1986






ACKNOWLEDGEMENTS

This thesis was only possible through the support of colleagues and friends.

Thanks go to my committee: John Dennis, Richard Tapia and Richard Young. In
particular, both ears and the tail should be awarded to John Dennis for his aid in

clarifying the text presented herein.

For introducing me to the field of Numerical Analysis, I thank my good friend
Jim Solomon. For aid in the preparation of the manuscript, I am indebted to Vivian
Choi and Luis Beguiristain. Special praise goes to Bill LeFebvre for his tireless
efforts with the laser printer.

This research was supported by NSF grant MCS-81-16779 and by AFOSR85-

0243.

Revised edition, 6/3/86






MULTI-MODEL ALGORITHMS
FOR
OPTIMIZATION

by

RICHARD GORDON CARTER

ABSTRACT

A recent approach for the construction of nonlinear optimization software has
been to allow an algorithm to choose between two possible models to the objective
function at each iteration. The model switching algorithm NL2SOL of Dennis, Gay
and Welsch and the hybrid algorithms of Al-Baali and Fletcher have proven highly
effective in practice. Although not explicitly formulated as multi-model methods,
many other algorithms implicitly perform a model switch under certain circumstances

(e.g., resetting a secant model to the exact value of the Hessian).

We present a trust region formulation for multi-model methods which allows the
efficient incorporation of an arbitrary number of models. Global convergence can be
shown for three classes of algorithms under different assumptions on the models.
First, essentially any multi-model algorithm is globally convergent if each of the

models is sufficiently well behaved. Second, algorithms based on the central feature



of the NL2SOL switching system are globally convergent if one model is well
behaved and each other model obeys a ‘‘sufficient predicted decrease’ condition. No
requirement is made that these alternate models be quadratic. Third, algorithms of
the second type which directly enforce the ‘‘sufficient predicted decrease’ condition

are globally convergent if a single model is sufficiently well behaved.
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CHAPTER 1

.

General Introduction : Muiti-model Algorithms for Optimization

1.1. Introduction

In this thesis, we are concerned with a class of algorithms for the solution of

problems of the form:
minimize f (x) (1.1)

where f : IR — R! is twice continuously differentiable with gradient g(x) and
Hessian H(x). We refer to this as the unconstrained minimization problem.
Historically, many different solution algorithms have been created for this problem,
most of which are based on different ways of creating a local model of the objective
function. At each iteration, some scheme produces a single model for the objective
function and uses this to determine the next approximation to the function minimizer.

Consider Newton’s method for solving (1.1).



Algorithm A.l.1 : Newton’s Method
0) Initialize.
1) Repeat until convergence :

Set xpyq =X — H )™ g () -
2) End.

For a convex! function f , this is equivalent to the following algorithm.

Algorithm A.1.2 : Newton’s Method
0) Initialize.
1) Repeat until convergence 2.
. 1
Set x, . =argmin{ f () +8 () (x —x )+ 3 (x —x )'H () (x—x ) }.
X

2) End .

The function f is modeled at each iteration by the Newton model, which is the first
three terms of a Taylor expansion. New iterates are generated by computing the

minimizer of this model.

Since most minimization algorithms have been based on quadratic local models,
the process of ‘‘producing a model” has essentially been that of determining an

approximation to the Hessian of the objective function. If the exact Hessian was

I A function is said to be convex if for every pair of vectors x,y e R* and every &e [0,1] it follows
that £ €x +(1-8)y) <& )+ 1-E)f ().
2 The notation x* denotes the transpose of the vector x. The notation argmin{ k (x)) denotes the value of

x which minimizes the function 4 (x) provided such a minimizer exists and is unique.
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available, the Newton model could be used. If it was not, or if it was too expensive
to calculate, then a finite difference Hessian approximation could be used. If this

seemed to be too expensive, one could turn to one of the secant methods, such as the

well known BFGS and DFP updates.3 If the problem had special structure, other

models could be used to take advantage of this.

An alternative approach has begun appearing in the literature over the last few
years, notably in the algorithm NL2SOL of Dennis, Gay, Welsch [1981 a,b] and the
works of Nazareth [1980, 1983], Al-Baali, Fletcher [1985], and Dennis, Sheng, Vu
[1985]. In this approach, an algorithm considers more than one possible model at a
given stage of the iteration. Nazareth, Fletcher, and Al-Baali call such algorithms
hybrid methods, but we refer to them as multi-model algorithms. In simplest form,

algorithms of this type are structured as follows.

Algorithm A.1.3 : A Multi-Model Algorithm

0) Initialize.

1) Repeat until convergence :
2) Choose a model from two or more possibilities.
3) Compute an approximate minimizer for this model.
4) Either accept this minimizer as x;,, and proceed, or

return to 2) and try another model.
5) End .

3 See, for example, Broyden [1970], Davidon [1959] and Fletcher, Powell [1963].



The multi-model algorithms discussed above are for a special case of prob-

lem (1.1), the nonlinear least squares problem :

minimize f (x) = 1 Hreo)ll ?

2 (1.2)

r :R” - R”

These algorithms are among the best available methods for solving (1.2), yet little is
known concerning their theoretical properties. Furthermore, thel literature focuses to
some extent on specific models introduced rather than developing the concept of
multi-model algorithms fully, and little consideration is given to using multi-model
algorithms for other special cases or for general unconstrained optimization. The lack
of a theoretical framework is particularly unacceptable in light of the observation that
other methods in the literature can be considered to be multi-model algorithms, even
though not formulated explicitly as such. Typical of these are the many algorithms

that ‘‘reset’” or ‘‘refresh’” a Hessian approximation under certain conditions. These

conditions are typically defined arbitrarily, or at best determined heuristically.

The purpose of this thesis is twofold. First, the concept of using multiple
models for general unconstrained minimization is dissected at length to clarify both
the structure and goals of such algorithms. We classify existing methods using the
framework thus constructed, discuss how well they satisfy our goals, and point out
new ways of utilizing multiple models. Second, we develop a global convergence
theory for trust region implementations of a large class of multi-model algorithms.

This theory is surprisingly general, both in terms of the small number of restrictions
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on allowable model switching logic and in terms of the number of options allowed in

the trust region logic. We can even include nonquadratic models in a natural way.

Throughout this paper, we use the following definitions and notation. The
function to be optimized is f (x), its gradient is g (x), and its Hessian is H(x). The
residual vector of the nonlinear least squares problem is called r (x), and the Jacobian
of r is denoted J(x). Depending on context, x* denotes a local minimizer of f or a
point satisfying g (x)=0. Our iterate at step k is denoted x;, and a step away from
x; is called p, p;, or pi. The expressions g, , Hy ,r; , and J; are shorthand for
g(x) , H(x) , r(x;) , and J(x;) respectively. An approximation to H(xy) is
denoted by B, or Bf. The Euclidean norm of a vector v € R" is denoted by Il v Il
For a matrix B € R?*, || Bl refers to the operator norm induced by the Euclidean
vector norm, while Il B Il  refers to the Frobenius norm of B.* DGW [1981] refers

to references Dennis, Gay, Welsch [1981 a,b].

In actual implementation, modifications must be added to algorithms such as
A.1.2 and A.1.3 to make them practical. The most significant changes are designed
to aid the algorithm if the initial iterate is far from the solution. This can be done by
adjusting the length of the step just computed (a line search procedure) or by
imposing an adjustable constraint on the model at each iteration (a trust region
procedure). A complete description of these procedures must be deferred to later

chapters, but a rough sketch of the structure of Algorithm A.1.3 with the inclusion of

4 The Frobenius norm of 8 € R* is defined by Il 8 Il = [zb,, 3] "
iJ



a trust region strategy is as follows.

Algorithm A.1.4 : A Multi-Model Algorithm with Trust Region Logic
0) Initialize.
1) Repeat until convergence :
2) Select a model from two or more possibilities, and choose a trust radius
A.
3) Compute an approximate local minimizer £ for this model subject to
I 2—x, I <A.
4) Either accept £ as x;,; and proceed, or
return to 2) and try another model and/or trust radius.
S) End .

1.2. Examples

In this section we present examples of situations where an algorithm using several
models should be considered. These examples are included primarily for motivation
at this point since detailed descriptions of implementations must be postponed until

more notation is established.

There are several difficulties that a user must face in choosing from an available
set of algorithms to solve a typical problem and that an expert must face in designing
an algorithm for a specific type of problem. Four of these difficulties can be
addressed by a multiple model algorithm. The first such difficulty is the identification
of the type of problem. The second is the proper utilization of models which perform
inconsistently as an iteration progresses. The third difficulty is the incorporation of

newly derived models with unknown or unproven properties. A fourth difficulty is
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that of deciding between a mediocre model with low overhead and a more expensive
high performance model. The first three difficulties are illustrated vividly by the
nonlinear least squares problem.

Example 1.1 : Nonlinear Least Squares (NLS)

When encountered in the real world, an NLS problem falls into one of three
categories : the zero-residual case, the small residual case, and the large residual case.
In the zero residual case, r(x*) is zero. The other two cases lack a precise definition,
but a problem is considered to be a small residual case if r(x*)is “small’’ or r is

““almost linear’” at x*, and considered to be large residual otherwise.

Common methods for solving NLS problems have been the Gauss-Newton
algorithm, the Levenberg-Marquardt algorithm (Levenberg [1944], Marquardt [1963]),
and any of the standard secant algorithms for unconstrained optimization. Both the

Gauss-Newton and Levenberg-Marquardt algorithms use

0 x+p )=—;- 117 0op+r o)ll 2 (1.32)

=fO)+pJx)rix)+ %p'J(x)'J(x)p (1.3b)

as the local model, while a secant algorithm uses
1
o(x+p ) =f ) +p T 'r@)+ —p'Bp . (1.4)

These models differ only in how they approximate the Hessian of f. A secant
method approximates the true Hessian H (x) using some update formula, while the

other two use the so-called Gauss-Newton Hessian @ J (x)'J (x).
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Let us assume for the moment that the secant update we are considering is the

well known BEGS update. Then properly constructed trust region > algorithms based

respectively on the two models have the properties shown in Table 1.

Now consider the ‘‘difficulties”” mentioned above. First consider identification
of problem type. We see that if a user wants to efficiently solve a problem using a

single model algorithm, it is very important to know whether or not it is a zero

TABLE 1
RESULTS OF USING DIFFERENT
MODELS IN OTHERWISE IDENTICAL ALGORITHMS

Algorithm based on Gauss-Newton Hessian

Converges in one step on linear problems.
Q-quadratically convergent on zero residual problems.
Rapidly Q-linear on small residual problems.

Very slow linear convergence on large residual problems.
Globally convergent under mild assumptions on r.

Algorithm based on BFGS Hessian

Locally Q-superlinearly convergent for any residual size.
More robust than an algorithm based on GN Hessian.
Global convergence an open question.

Does not take advantage of problem structure.

5 To get the ‘‘global convergence’’ cited in Table 1 when using a trust region algorithm, we need
only assume an upper bound on the norm of the Gauss-Newton Hessian. Line search algorithms re-
quire more restrictive assumptions, such as a full rank Jacobian.
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residual case. This information is often not available in advance. Second, there is
the problem of inconsistent performance. Algorithms based on the Gauss-Newton

Hessian often outperform secant methods for several iterations even in relatively large
residual cases.® Third, the structure of the NLS problem lends itself to the

construction of alternative models. Most of these alternatives are generated by

different approximations to the second order term S (x), where

SEYysHx)-Jx)J(kx)

=3 1, 0V 2r; (0)
i=1

(1.5)

At least twenty different ways for doing this exist in the literature. Some, such as
DGW [1981], approximate S explicitly, while others, such as Nazareth [1980, 1983]
or Al-Baali, Fletcher [1985] use the structure to treat S as an implicit part of B,
without explicitly carrying along an approximation to it. Further complications are
introduced by some authors, such as schemes for ‘‘sizing”” (DGW [1981]) or
““scaling’’ (Oren, Luenburger [1974]) S to allow it to adapt to local conditions more
rapidly. Furthermore, new models continue to appear in the literature. The
theoretical properties of most of these models are not known. Even if analysis of
some of these models is possible, the existing schemes differ from one another

sufficiently that it is unlikely that this analysis would apply to the whole group.

® One potential explanation of this behavior involves the number of iterations required for a
secant method to build up second derivative information. Additionally, the second order information
inserted into B, by the secant method may, in some cases, become quickly outdated due to rapid
changes to H over the course of several long initial steps or in the course of rapid convergence to a
zero residual solution. The Gauss-Newton Hessian, although incomplete, bases itself only on informa-
tion at the current point.
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Despite this lack of analysis, many of these schemes perform well and have been
used successfully for years. However, the idea of trying out a code for years to see
whether it stands the test of time seems inferior to proving that it will work when
originally coded. We show in this thesis that a multi-model algorithm can be
designed using one model with known properties and another model having totally
unknown properties in such a way that global convergence is retained. This removes
some of the urgency about having a full analysis of a new model before widespread

use.

Lest the reader decide that multi-model algorithms are only attractive for
nonlinear least squares problems, let us consider examples of multi-model algorithms
for solving general unconstrained problems.

Example 1.2 : Constant Matrix for Model Hessian versus the Newton Model

The evaluation of an exact Hessian H, is frequently prohibitively expensive.

Using a fixed approximation B does away with this expense and substantially reduces
linear algebra overhead, but may converge unacceptably slowly. The following

multi-model algorithm is a compromise between the two extremes.
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Algorithm A.1.5 : Newton Model versus Constant model
0) Initialize.
1) Repeat until convergence :
2) Set B, =B .
3) Set x;,; to an approximate local minimizer of the model.
4) If x;; is unsatisfactory, then
If B, =B, then set B, =H (x;) and go to 3),
Else reduce the trust radius and go to 3).
5) Adjust the trust radius and proceed.
6) End .

Many other compromises are possible, of course. This particular version always
tries the inexpensive model first, but quickly abandons it whenever faced with a trust
radius reduction. An alternative would be to abandon it only if several such
reductions are necessary, or to use another test entirely. Yet another alternative is to
replace ‘B’ in the algorithm by ‘“B;_;”’ so that rather than initially trying a fixed
default model at each iteration, the algorithm initially tries the most recently
computed exact Hessian. This algorithm and most of its variations are shown to be
globally convergent in Chapter 4.

Example 1.3 : Secant Models and Full Newton Models

A more useful example is to apply a multi-model algorithm such as A.1.5 to a
secant model and a full Newton model. Algorithms are already in existence which
normally use a secant method because of its low expense, but which “‘refresh’ this
model to the exact Hessian occasionally. The theory in Chapters 5 and 6 show how

this may be done in a globally convergent manner.



12
1.3. Synopsis In the remainder of this thesis, we are concerned primarily with
establishing global convergence for as wide a class of algorithms as possible.
Chapter 2 presents preliminary definitions and reviews single model trust region
methods and results. Chapter 3 presents in more detail the goals one should keep in
mind when designing a multi-model algorithm and gives examples of algorithms
which fail to meet these goals. Chapter 4 presents a general trust region algorithm
for model switching and establishes a form of global convergence based on the
assumption that all the models are sufficiently well behaved. Specifically, we extend
the global convergence theory of Schultz, Schnabel, and Byrd [1985] to allow the
inclusion of any finite number of alternative quadratic models with uniformly
bounded curvature. Chapter 5 presents a form of the algorithm which is slightly
more restrictive in the choices allowed for model switching, but which allows looser
conditions on the behavior of the models. The central feature of this class of
algorithms is the test used in NL2SOL to distinguish between models. In Chapter 6
we present methods of exploiting these looser requirements to produce algorithms
which are globally convergent if at least one of the models is sufficiently well
behaved. The global convergence theory introduced in Chapter 5 and developed fully
in Chapter 6 is therefore a significant and comprehensive extension of standard trust
region theory to the multi-model case. Chapters 5 and 6 each present a slight
variation of NL2SOL which is globally convergent under different assumptions on the
models. Chapter 7 presents an illuminating example concerning local convergence

rates of multi-model algorithms and discusses future work to be done in this area.



CHAPTER 2

Trust Regions Methods for Single Model Algorithms

2.1. Introduction

The two major strategies used for improving the global behavior of optimization
algorithms are line search methods and trust region methods. In this thesis, we will
restrict ourselves to trust region methods. Although line search methods generally
require less code complexity, trust region methods seem more appropriate for a
multi-model context. Theory developed for trust region methods can often be applied
directly to line search methods. Trust region theory requires slightly less restrictive
conditions on the models, and trust region methods extend more naturally than line

search methods to models that are not quadratics with positive definite Hessians.

In the following sections, we present briefly the background necessary for the
rest of this thesis. The first section deals with elementary definitions and some
properties of functions in IR" that will be used in later chapters. The remaining
sections review current trust region theory and practice for single model algorithms.

Trust region algorithms, particularly when applied to multiple models, involve a
fairly extensive amount of notation. The reader is encouraged to make liberal use of
Appendix A, which includes a brief glossary of the most important abbreviations,

13
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acronyms, symbols, and parameters used in this thesis.
2.2. Preliminaries

2.2.1. Models

Consider the objective function f :IR” - RR! and let x, be a vector in R*. A

model of f with index i is denoted by
o) : ©f > R, 2.12)
where ©/ is a subset of IR” containing x;,. We also define an associated function
predi(p) = f () = Qi (xc+p) (2.1b)

and call this the predicted reduction. Notice that pred,ﬁ is expressed in local

coordinates about the point x,. We also define the actual function reduction as

aredy (p) = f () = f (e +p) 2.1¢)

so that pred} is intended to approximate ared;. For convenience, we will usually

refer to pred} as the model rather than of.

For the rest of this chapter, we will assume that a single quadratic model is
computed at each iteration k£ and drop the superscripts from ¢/ and pred]. For

x;, € R" and a symmetric matrix B;, a quadratic model in standard form refers to
1
Op(x) =F(x)+8 ) (x—x)+ 5 (x=xp)" By (x—xy) (2.2a)

or the associated function
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1
pred, (p)=-g{p — 3p‘ka - (2.2b)

The matrix B, is said to be the model Hessian.

Even a partial treatment of the models commonly used in optimization is beyond
the scope of this thesis. Although not completely necessary, a basic familiarity on the
part of the reader with such topics as finite difference approximations of gradients
and Hessians, secant methods, and elementary numerical linear algebra is strongly
recommended. A concise yet thorough introduction to these subjects can be found in

Dennis and Schnabel [1983].
2.2.2. Elementary Notation

We make the following definitions.
Definition 2.1 : The sequence {x; } in IR” is said to converge if there exists x* such

that lim |lx,—x*Il = 0 . Furthermore, this is denoted by x;, —>x”.
k —eo

Definition 2.2 : The sequence {x,} in IR” is said to be first order stationary point
convergent if g, — 0. Henceforth this will be denoted by FOSPC for brevity.
FOSPC will also refer to an algorithm that generates sequences of iterates

{x; } that are FOSPC.

Definition 2.3 : The sequence {x;} in IR” is said to be weak first order stationary

point convergent if li’{n inf Il g, Il =0 . This property will also be denoted by
—yoo

the abbreviation WFOSPC.
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Notice that {x; } is WFOSPC if and only if some subsequence of g, — 0.
Definition 2.4 : A set Qe IR” is said to be convex if for every pair of vectors

x,y cQ and every £ e [0,1] it follows that Ex +(1-E)y € Q..

Definition 2.5 : A sequence {x,} is said to have the descent property with respect

to f if f(xpe1) S f(xg) foralk 2 1.

Definition 2.6 : Given a point x;€ IR”, the set L(f x))={x : f(x)<f(xy } is

called the level set of f at x,. Furthermore, the closed convex set

LExp={x:x=8y+(1-8)z, Ee[0,1], yzeLFfx))
is said to be the convex hull of L (f ,x).

Definition 2.7 : Given a convex set QcIR”, a function f Q- R! is said to be

convex if for every pair of vectors x ,y € Q and every § e [0,1] it follows that

FEX+(A-Ey)SEf(x)+(A-)f(y).

2.2.3. Some Multivariant Calculus Background

In future sections we will make use of the following definitions and results. Lemmas
2.1 through 2.5 are adapted from Lemmas 4.1.2, 4.1.5, and 4.1.9 of Dennis and

Schnabel [1983].

Definition 2.8 : For a given x € IR” and nonzero p € IR", the directional derivative

of f at x in the direction p is
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& ()= lim = (f (x+ep)=F (x))
D €0 &

if the limit exists. The second directional derivative of f at x in the

direction p is

¥

= im L (2L _of
o () = lim = ( » (x+ep) 3 x))

if the limit exists.

Lemma 2.1 : If the function f:IR" = R! is continuously differentiable with gradient
g in an open set containing the point x, then for any nonzero p € R", the

directional derivative of f at x in the direction p exists and has the value

g)p.

Lemma 2.2 : If the function f:R" —R! is twice continuously differentiable with
Hessian H in an open set containing the point x, then for any nonzero
p € R, the second directional derivative of f at x in the direction p exists

and has the value p* H(x)p .

We will often use the second directional derivative to characterize the shape of a

function.

p'Hx)p
p'p

Definition 2.9 : For a nonzero vector p € R”, is said to be the curvature

of f in the direction p.

Definition 2.10 : Any vector p € R" that satisfies p'H (x)p <0 is said to be a
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direction of negative curvature for the function f at the point x.

Definition 2.11 : A symmetric matrix B € R™ is said to be positive definite if
x'Bx >0 for every nonzero x € IR”, positive semidefinite if x'Bx >0 for
every x € R”, indefinite if x'Bx >0 for some x € R" and y‘By <0 for some

y € IR”, and negative definite if x‘ Bx <0 for every nonzero x € R".

Definition 2.12 : A point x" e R” is said to be a saddle point of the function f if

g(x™)=0 and H(x") is indefinite.

Lemma 2.3 : If the function f:R" —IRY is continuously dijferentiable in an open
convex set QcIR", then for any x, x +p € Q

1
fa+p)-f&x)=fgx+rp)pdhr . (2.3)
0

Lemma 2.4 : If the function F :IR" - R™ is continuously differentiable in an open

convex set Q CIR", then for any x,x +p € Q,

1
F(x+p)=F(x)=[VF x+Ap)pd\ (2.4)
0

where V F is the transpose of the Jacobian of the function F .

Lemma 2.5 : If the function F:IR" -5 R"” is continuously differentiable in an open
convex set Q IR", then for any x,x +p € £,

1
I F@x+p)-F@)Il <lipll jll VF (x+Mp) 1l dh . (2.5)
0
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Lemma 2.6 : If the function f:R" —IR! is twice continuously differentiable in an

open convex set QCIR", then for any x, x +p € Q

1
fO)=fGx+p)=-gx)p-[p'Hx+&)p(1-BdE . (2.6)

0
Furthermore, if x;, X, +p € Q and if pred, is a quadratic model in standard

form, we have
1
aredy (py)—predy (i) = j(l -E)oy) (By —H (xx +Ep)) (pr) dE . 2.7)
0

Proof : From Lemma 2.3 we have that

1
fO)=fG+p)=—fgx+Ap)pdh
0

From Lemma 2.4 we have that

1
gOr+hp)=g@)+[Vgx+thp)hpdt
0

A
=g(x)+[Hx+Ep)pdt .
0

Combining the two gives
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!

1 A
fE-fx+p)=—-[|g@)+[H@x+E)p d&} p dr
0 0

1 1x
=—fgx)pd\-[[p'H(x +Ep)p dEdL
0 00

(2.8)
1|1
=-g)p-[|[p"Hx+Ep)p )| dE
0
1
=-g@)p-[(1-Ep'Hx +E)p d§
0
which proves the first part of the lemma. We then have
1
predi (p) = =8 (0)' P — > P ) B (0i) (2.9)

1
=g () e —(P0)' B ) [(1-8) dE
0

1
= —g () p = [ (1-8)@y) By () dE
0
so that setting x =x, and p =p; and subtracting (2.9) from (2.8) establishes the

second part of the lemma. [ |

2.3. The Trust Region Subproblem

Before considering the full trust region algorithm, we must first discuss what is

known as the trust region subproblem.

Definition 2.13 : Given A, >0, the trust region subproblem (denoted TRS) is

.. d .
rﬂz:;)ﬂrSmAzke pred, (p) (TRS)

The ball {p :llpll <A, } is known as the trust region.
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An important practical point in trust region algorithms is the inclusion of a
positive definite scaling matrix, D, which replaces the spherical trust region

heretofore assumed with the hyperellipse
IDpll<A, . (2.10)

Typically, D is a diagonal matrix. If D is constant, then its inclusion amounts to a
simple change of variables w =Dp that converts the problem defined by (2.10) back

to the standard problem TRS with
pred,(w)=—gi D~'w - %W'D-IB,(D-’W

so that the trust region theory is unaffected. Other trust region methods use a
sequence of scaling matrices {D; } instead of a single fixed D. Much of the existing
global convergence theory can be extended to these methods provided both {D;} and
{D;!} are uniformly bounded. An excellent reference to scaling matrices is Mor¢ and

Sorensen [1983]. For simplicity, we will take D, =[ throughout this thesis.

Computation of an exact solution to problem (TRS) is not practical except in
certain special cases (such as when ¢, is convex and the constraint |l p |l <A, is not
binding). Consequently much of the literature deals with methods of computing
approximate solutions to the problem TRS. A good introductivn to these techniques
is Dennis and Schnabel [1983]. Some excellent references for a more advanced
treatment are Moré [1982], Moré and Sorensen [1982, 1983], Schultz, Schnabel, and

Byrd [1985] and Steihaug [1981]. A very brief review of some of these methods

follows.
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2.3.1. Optimal Locally Constrained Steps

Some methods approximate a solution to problem TRS by computing an exact
solution to a ‘‘nearby’’ problem which is easier to solve. In this context, a
convenient ‘‘nearby’’ problem is to maximize pred, subject to a different constraint
(say, llpll<A, where A, =A;). We refer to such methods as optimal locally
constrained (or OLC) methods. The reader is referred to Moré and Sorensen [1983]
for the history, theory and practice of these methods, but for the purposes of this

discussion we only need to point out a few properties.

OLC steps (that is, the approximate solutions to problem TRS generated by an
OLC method) do not necessarily lie in the trust region, but are allowed to lie in the
region {p:llpll <(1+06,)A;} where o©,€(0,1). NL2SOL uses 0©;=0.1, but
algorithms which use values such as ©;=0.5 are also found in the literature. A
minimal requirement for an OLC step is that the predicted reduction for this step
must be at least a given fraction of the predicted reduction of the exact solution to
problem TRS. That is, if p; is the solution to problem TRS and p, is an
approximation generated by an OLC method, there exists ¢,>0 independent of &

such that

pred; (py) 2 c,pred; (p,:) . (2.12)

Moré and Sorensen [1983] present an algorithm that will generate a p, satisfying

(2.12) in a finite number of steps. Furthermore, computational experience indicates
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that on the average less than two steps (each involving the Cholesky! factorization of
an nxn matrix) are required to generate p, satisfying (2.12). The algorithm does not
require that ¢, be convex, and in fact makes use of directions of negative curvature

to inhibit convergence to saddle points and to choose directions of rapid decrease.

2.3.2. Restricted Subspace Methods

Another approach to approximating pr is to consider only the values of p in a given

subspace Q;, cR".

Definition 2.14 : Given a scalar A, >0 and a subspace Q;, cIR”, the restricted

subspace trust region subproblem is

maximize pred; (p)
Pk (2.13)
s/t pll<a

A restricted subspace method will compute an approximate solution to (2.13),
and use this as approximation to p;. If Q, is of small dimension when compared to
IR”, then such a method can subsequently reduce overhead. Typically, €2, is chosen
to be the two dimensional space spanned by —g, (the direction of steepest descent)
and —(B, )1 g, (the quasi-Newton direction). For positive definite B, these two
directions are natural because they represent p,f in the two limiting cases A; — 0 and
A, —> oo, respectively. Furthermore, solving (2.13) over a two dimensional subspace

is equivalent to solving a fourth order polynomial in one unknown, which is a

L See, for example, Golub and Van Loan [1983], Section 5.2.
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computationally tractable problem. A disadvantage of most of these methods is that
they do not ensure (2.12), but instead lead to a weaker condition: that the predicted
reduction is at least a fraction of the predicted reduction at the solution of (2.13).
When g, € €, solving (2.13) implies that there exists ¢;>0 independent of k such

that

pred, (py) 2 ¢ pred, (pf) (2.14)

where pg solves

maximize pred, (p)
P =08k (2.15)
sit Upll <A;

We refer to pg as the Cauchy step.

A much more complete description of restricted subspace methods can be found

in Mor€ [1982].

2.3.3. Dogleg Methods.

A third approach to approximating p,:‘ can be motivated in several ways.
Definition 2.15 : Let , be a subspace of IR” with g, € ;. Consider a curve p (o)
in Q, with o defined on [0,1]. This curve is said to be a generalized dogleg

if it satisfies the following conditions.
(@ p(0)=0.

(b) g4 is tangent to p (o) at =0.
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(c) Ilp(ll is strictly monotone increasing in o.
(d) pred, (p(a)) is strictly increasing in o over [0,1].

(e) p(l)is a global maximizer of pred, over Q, if B, is positive semidefinite, else

p ()l 2A,.

Loosely speaking, a generalized dogleg is a curve in IR", starting at the origin,
proceeding in a path that increases pred,, and terminating at the global maximizer of

pred, (if such a maximizer exists). Thus the problem

maximize predy (p (o))
ae{0.1] (2.16)
sitllpll < A,

has two possible solutions p o) :

o =1,p)=p; (2.17)

or

«“e©0,) , llp@Hll =A, . (2.18)
The first occurs when p (1) lies within the trust region. For positive definite By, p(1)
is simply the quasi-Newton step, —Bk‘lgk, denoted py. The second case occurs when
no global maximizer exists, or when it is outside the trust region. Here, p(a®) is

simply the point of intersection of p (o) with the surface of the trust region.

Expressed in this fashion, problem (2.16), is clearly meant to be similar to the
restricted subspace problem (2.13), but with the potential of requiring even less
computational overhead. The original dogleg was suggested by Powell [1970 a,b],

who used the curve
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20pf o<
pl = (2.19)

21— o)pf+(Qa—)pf a2

= —

This curve consists of two line segments. The first starts at p =0 and proceeds to the
Cauchy step pf and the second joins the Cauchy step with the quasi-Newton step py.
The only matrix factorization needed to define p(a) and compute p(a*) is the
original factorization used to compute py. For secant methods that update B, in
factored form, the overhead drops even further to order n2. Further savings can be
realized when the problem TRS must be resolved with a different A,. OLC methods
must resolve the problem almost from scratch, entailing even more matrix
factorizations. Dogleg algorithms need only compute the new point of intersection of

p (o) with the surface of the new trust region.

Dennis and Mei [1979] present a double dogleg algorithm similar to Powell’s
dogleg method, but which uses three line segments in n (o). Steihaug [1981]
develops a multi-segmented dogleg method, based on the conjugate gradient method.
This technique is natural and attractive in that successive conjugate gradient steps
maximize pred, over a sequence of successively expanding Krylov subspaces.
Dogleg procedures that take advantage of indefiniteness are presented by Schultz,

Schnabel and Byrd [1985] and Steihaug [1981].

Although dogleg algorithms have the advantage of reduced overhead, they may
generate steps inferior to those produced by OLC algorithms. The ideal dogleg

would follow the curve of solutions to problem TRS as A, increases from zero. This

may differ considerably from the path defined by a dogleg or double dogleg.
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However, computational experience with dogleg algorithms suggests that any decrease
in performance is not significant enough to outweigh the dogleg’s advantages. At

present the choice between dogleg and OLC methods seems to be a matter of taste.

Dogleg algorithms generate steps that satisfy slightly different conditions from
OLC algorithms. Taking the Dennis-Mei double dogleg (with B, assumed to be
positive definite) as an example, the generated step p, satisfies equations (2.14) and
(2.15) rather than the stronger (2.12). Furthermore, we have either

pr =— B,y g, and llp, Il <A, (2.20)

or
Up Il =A, . (2.21)
For a more extensive survey of dogleg type algorithms, including material on

preconditioning, the reader is again referred to the excellent article Mor€ [1982].

2.4. Trust Region Algorithms

Different authors have created many different versions of trust region algorithms.
Although the central features are the same, some of the details differ sufficiently to
cause a certain amount of fragmentation in the theory as presented in the literature.
Proofs of most results are specific to a given implementation, and it is often not
immediately clear whether a slightly different implementation is equivalent. Much of
this is the result of sacrificing generality for clarity; including the possibility of many
options may obscure more important points about an algorithm or proof. In this

thesis we present simplified sample algorithms when clarity is desired but otherwise
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present theory for algorithms written to allow a large number of different

implementations.

We now present three representative trust region formulations.?

Algorithm A.2.1 : A Minimal Version of a Trust Region Algorithm
0) Let x;€IR” and A;>0 be given.
1) Repeat until convergence :

2) Compute an approximate solution p to problem TRS.

aredk(Pk)< 1
pred, (p,) 100

, then set A, =A;/4 and return to 2.

4) Set Xp+1 =Xk +pk R Ak+1 = Ak'

ared )
—k—(pk——> L then set Ay =2xA;.

predk(pk) - 2

6) End.

This algorithm should be a clear demonstration of the central idea. The rust
radius A, is adjusted at each iteration so that the model and function values retain at
least a minimal amount of agreement over the trust region. The measure used for

judging the agreement between model and function is the ratio of the actual reduction

2 Trust region algorithms generally include several parameters that differ from implementation to
implementation. The sample formulations presented in this chapter do not include the full range of
parameters we will use in Chapters 4 and 5. In order to keep our notation consistent, the subscripts
used with parameters in this chapter are defined to match the subscripts needed in later chapters. The
reader is referred to Appendix A for typical values assigned to these parameters.
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to predicted reduction for the last step. No step is accepted unless this ratio achieves
a certain minimum value. We will sometime refer to a step as ‘‘satisfactory’’ or

“‘unsatisfactory’’ based on this criterion.

The approximate solution to problem TRS can be computed by the methods of
the last section, and is required to satisfy (2.12) or (2.14) as well as the matching

conditions on the norm of p, with respect to A;.

A well-known result (see, for example, Powell [1975]) is that either (2.12) or

(2.14) is sufficient to imply that there exists ¢ >0 independent of k for which

gl
pred;, (p;)zc |l g min{ A, , B )} . (2.22)
k

This in turn implies that the sequence of iterates produced by the algorithm is FOSPC
provided {B,} is uniformly bounded and f satisfies certain mild conditions.
Now that we have demonstrated the basic elements, let us examine the

formulation presented by Powell [1984].
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Algorithm A.2.2 : Trust Region Algorithm / Powell [1984]
0) Let 0<y<y; <113, 0<n3< 1, x;€ R?, A; >0 be given.
1) Repeat until convergence :

2) Compute p,; satisfying (2.22) and either (2.20) or (2.21).

3) If ared, (p;)>0, then set x; ., =x; +p; and update B,
Else set x; . =x;.

4) If ared, (p,) =M pred; (p;) then set Ay 1€ [ p Il ,ysllpedt ],
Else set Ay, € [Vl pe Il vy ipe 11 T

5) End.

Powell [1984] shows that this algorithm produces iterates that are WFOSPC

under mild conditions on f provided there exist constants B, and B, for which

B, Il <B,+Bok. (2.23)

This algorithm differs from A.2.1 in several particulars. A.2.2 updates the trust
radius based on |lp, |l rather than A, as in A.2.1. The steps computed for A.2.2

must satisfy (2.20) or (2.21), while A.2.1 allows the more relaxed bound

ared, (p;)

More importantly, Powell allows the acceptance of a step if —————>
predy (p; )

rather than demanding that the ratio be greater than a positive constant.
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Schultz, Schnabel and Byrd [1985] give an abstract version of a trust region
algorithm that admits most of the trust region logic in use today. Their algorithm,
which is FOSPC when {B, } is uniformly bounded and f satisfies mild conditions, is

defined as follows.

Algorithm A.2.3 : Trust Region Algorithm / SSB [1985]
0) Lety;,mn;,My€ (0,1),x;€ R* ,Ay>0 be given.
1) Repeat until convergence:

2) Find A, and compute p; =p, (A;) satisfying Il p, [l <A, and

—— 271}, and
predy(py)

b) Either A, =2A,_4, or

A, 21l B g, I with B,_, positive definite or
1
For some AS—A,; ,

Y1

aredk(pk(A)) <y or aredk_l(pk_l(A)) <
pred, (p,(A)) 2 predi_{(pe_(A)

3) Let X 41 =X +D; and k = k+1 .

4) End.

Rather than directly specifying a technique to be used for computing steps py,
Schultz, Schnabel, and Byrd present general conditions that steps must meet to be

considered acceptable. These conditions therefore define the allowable range of
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options in the unspecified portions of the algorithm.

Much of our multi-model theory is a generalization of the trust region theory in
this paper. We shall abbreviate all references to this paper for brevity, calling it SSB
[1985]. Furthermore, the general algorithms we present will be abstract in the same
sense as A.2.3; parts of the algorithm will be left undefined except for our

specification of certain conditions the algorithm must obey.



CHAPTER 3

Motivation and Nomenclature for Multi-model Algorithms

3.1. Introduction

In this chapter we examine some classes of multi-model algorithms. Section 3.2
examines the motivations and principles we use in designing a multi-model algorithm.
Section 3.3 introduces nomenclature for classifying multi-model algorithms into
different categories, points out where the existing algorithms fall in such a
classification scheme, and gives a preliminary discussion of the advantages and

disadvantages of algorithms in these categories.

3.2. Motivation and Goals

Before examining the theory or implementation of a multi-model algorithm, we
should closely examine what we hope to accomplish. Multi-model algorithms
invariably require more computational overhead, storage, and code complexity. Thus
it is imperative that any such algorithm be examined closely to see that it does at
least something better than either of the corresponding single model algorithms.
Several possibilities suggest themselves immediately. A multi-model algorithm may

perform better in practice, it may have better theoretical global convergence

33
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properties than a corresponding single model algorithm, or it may 'have better

theoretical local convergence properties.

Extensive testing of diverse multi-model algorithms for NLS problems has
shown them to be often superior to single model algorithms, even for somewhat ad-
hoc incorporation of the additional models. Given this practical success, we deal
strictly with theoretical properties in this thesis. However, this theory must deal with
practical algorithms, and thus we must discuss what properties a “‘practical”’

algorithm should have.

One necessary property is efficiency. Any procedure devised for selecting or
switching models cannot add so much overhead that the algorithm is too expensive to
run. The ‘‘ideal’’ solution would be an algorithm that selects the single best model at
each iteration without any extra overhead or function evaluations. A ‘‘worst case’’
example might involve computing and testing trial steps for each possible model at

each stage of the algorithm. Such an algorithm might be as follows.
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Algorithm A.3.1 : Sample algorithm with excessive overhead
0) Initialize.
1) Repeat until convergence :
2) Repeat until all models have been tried.
Select a model.
Compute a trial iterate for this model.
Compute f for this trial iterate.
3) Choose the ‘‘best” iterate computed above. If it is ‘‘unsatisfactory,”
then reduce the trust radius and return to 2).
4) Adjust the trust radius.
5) End.

Although this process reduces the number of external iterations -- the loop between 1)
and 5) -- needed to achieve a given tolerance, it is clearly too inefficient to be useful
unless the function evaluations and linear algebra involved are exceedingly
inexpensive. Even if only two models are used and the trust radius is never
decreased, this algorithm doubles the number of function evaluations needed to
perform a given number of iterations. For more than two models, and with a typical
frequency of trust radius reductions, both the number of function evaluations and the

amount of numerical linear algebra needed can be a large multiple of the

corresponding single model algorithm.

Another necessary goal is reliability. In looking at theoretical global or local
properties, the best of all possible worlds would be a model switching algorithm that
always behaves at least as well as would be expected for a single model algorithm
using the ‘‘best’” model. With this in mind, we often examine how well a proposed

multi-model algorithm can handle the case when one of its models becomes



36
arbitrarily bad, and we are most satisfied with algorithms that do not have their
performance degraded by such models. As discussed in the examples of Section 1.2,
such a multi-model algorithm allows one to include in production code models which
may sometimes perform badly, or even entirely speculative models, without fear of
disaster. For a SSB [1985] type single model trust region algorithm such as A.2.3,
FOSPC can be obtained under mild conditions on f if the sequence of model
Hessians is uniformly bounded. For a Powell [1984] type trust region algorithm such
as A.2.2, the condition on the sequence of model Hessians is relaxed slightly, but the
convergence result is weaker (WFOSPC rather than FOSPC). In a multi-model
algorithm, we consider it quite reasonable to require that one model obey the stronger
condition. Consequently, we put our algorithms in a framework similar to SSB
[1985] to obtain the stronger results. References to ‘‘global convergence’ should be
interpreted as FOSPC unless otherwise stated. An algorithm is referred to as “‘safe’’

if we can specify conditions on the models which imply that the algorithm is FOSPC.

Many of the obvious ways to avoid arbitrarily bad models are incompatible with
the goal of ‘‘efficiency.” Algorithm A.3.1 above certainly satisfies our goal of
reliability but is not efficient in most cases. Another reliable algorithm is as follows.

Let B be a given symmetric matrix.
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Algorithm A.3.2 : Sample algorithm which is reliable but inefficient

0) Initialize.
1) Repeat until convergence :
2) Set B, to be a secant update of B, _;.
)l B, U>IBI setB; toB.
4) Compute a trial iterate for this model.
5) If it is ‘‘unsatisfactory,”’ then reduce the trust radius and return to 4).
6) Adjust the trust radius.
7) End.

Now, if B is defined so that it properly reflects the scale of the problem over the
entire range of iterates, this algorithm is both safe and efficient. However, if B does
not reflect the scale of the problem, it can force the algorithm to use a highly
inappropriate model even if the secant model is performing well. As an extreme
example, consider using the identity matrix for B. Then whenever the norm of the
secant update is greater than one, B, is set to / and the algorithm reverts to the

method of steepest descent.

In analyzing efficiency, the hierarchy usually assumed is that evaluating an exact
Hessian is much more expensive than evaluating a gradient, which is much more
expensive than evaluating a function, which is more expensive than calculating a trial
step for a given model, which is more expensive than evaluating the predicted
reduction for a trial step. A major feature of multi-model algorithms is that they can
be tailored to specific cases within this hierarchy, or to other hierarchies altogether.

For example, although Algorithm A.3.1 is quite inefficient under the standard
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hierarchy, it becomes reasonable if the expense of evaluating g, is extremely large
with respect to the expenses associated with computing steps and evaluating f.
Other special cases may also make A.3.1 attractive. For certain classes of array
processors and certain classes of objective functions, f can be simultaneously
calculated for a large number of different x values at little more expense than a
single function evaluation. In such a situation A.3.1 would be competitive.
Flexibility in algorithm design is also needed to take advantage of tradeoffs between
“‘expensive”” and ‘‘inexpensive’’ models as in Examples 1.2 and 1.3. Algorithms
specifically designed for such cases are important enough to warrant inclusion in this
thesis. Thus it is imperative that our global convergence theory be flexible enought

to allow such possibilities.

None of these properties or goals can be sacrificed in favor of the others if our
theory is to be realistic. Chapters 4, 5, and 6 present algorithmic frameworks flexible

enough to allow a wide range of different implementations for different situations

while retaining both reliability and high efficiency.

3.3. Nomenclature for Multi-model Algorithms

At this point we introduce some more nomenclature. Most of it concerns the
switching system : the scheme used to decide which models to use and how to use
them. We define three different types of switching systems as follows.

Definition 3.1 : A model selection algorithm is one in which a single model is

selected at the end of each iteration for use throughout the next iteration.
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This approach is very amenable to analysis with standard global convergence

theory since only one model is being used at each iteration. All Al-Baali, Fletcher
[1985] and Nazareth {1980,1983] algorithms are of this type.

Definition 3.2 : A model switching algorithm is one in which two or more candidate

models are available to the system at any iteration. The algorithm can use any

or all of these models to compute and/or test steps, and it can change models

during an iteration based on these computations.

NL2SOL (DGW [1981]) is an algorithm of this type, and all model selection
algorithms are special cases of model switching algorithms.
Definition 3.3 : A concurrent model algorithm is one in which more than one model

can be used simultaneously in a given iteration.

For example, a possible algorithm mentioned by Nazareth (but not tried)
involved computing two steps -- each based on a different model -- and choosing the

actual step to be some convex combination of the two steps.

We now discuss each of these types in detail and preview some of our future

results.

3.3.1. Model Selection Algorithms

3.3.1.1. The Algorithm

Model selection algorithms are the most common type in the literature.

Implementations are simple and reportedly highly successful. Furthermore, since only
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one model is used at each iteration, global results can be stated immediately about
many of these algorithms if implemented consistently with one of the trust region
frameworks of Chapter 2, and if the sequence of model Hessians selected is
uniformly bounded. Consider the nonlinear least squares problem (NLS). Fletcher,
Al-Baali, and Nazareth hybrid algorithms always deal with the Gauss-Newton model
J (x;)'J (x;) (which we assume is bounded in k), and a model produced by a secant
method. If there exists a uniform upper bound on the curvature of the models
produced by the secant method, then most trust region algorithms are FOSPC no
matter how the models are combined. However, the existence of such an upper
bound is an open question. Furthermore, if we assume such a bound, we beg the
question of what role model selection actually plays in helping the algorithm achieve
FOSPC. The really interesting question is whether any of the tests in the literature
can distinguish between a sequence of model Hessians which is uniformly bounded

and a sequence which is unbounded. This question is answered in Section 3.3.1.3.

Algorithm A.3.3 is an example of a model selection algorithm written as a trust
region method. Details not pertaining directly to the use of more than one model are

suppressed for clarity.



Algorithm A.3.3 : Model Selection

0) Let x, € R* be given.
Define an initial trial trust radius A, > 0, and a set of model Hessians {B/ }.
Choose one of the models to be the current preference.
Let i be the index of this model.

1) Repeat until convergence :

2) Compute a trial step p,;'_ that appx;oximately solves (TRS) for the trial trust radius
A, and current model with index i . Then either

(a) Accept A, = A, and py, or

(b) Find a reduced trust radius A, < A, and compute a ‘‘satisfactory’’ p,‘: that
approximately solves (TRS) for the currently preferred model.

Set px =pi.
3) Choose a trial radius Ay, for the next step.

4) Perform any calculations required to make the models available at the next itera-
tion, and select the model Hessian B},; to be used.

5) Set xpet =Xk + P> frn1 =fk » 8er1 = Es)s k =k + 1.

6) End.

Some of the model selection algorithms in the literature are implemented as line
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search methods, but we analyze them as if they were implemented using trust regions.

Most consider only two models at each iteration. Algorithm A.3.3 allows for any

number of quadratic models to be generated at each iteration, but only one is actually

selected. The choice of the model to be used in the next iteration can be made before

or after the models are updated or recalculated. In general, steps 3) - 5) can be done

in any order desired.
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Step 4) is phrased to allow the possibility of not actually forming a model unless

it is needed in the next iteration.

3.3.1.2. Tests for Choosing Among Alternative Models

There are several schemes in the literature for choosing a model for the next iteration.
We first consider the different tests used to evaluate the performance of a model and
then demonstrate how the algorithms put these tests to use. Each test is based on
computing some measure of how ‘‘good’’ a model is. This value can then be tested
against a fixed constant to classify the model as ‘‘acceptable’” or ‘‘unacceptable,” or
two models can be compared by computing the ‘‘goodness’” measure for each model
and comparing the values. Al-Baali and Fletcher [1985] suggest a variational test

for the nonlinear least squares problem. This test calculates
V,BHy=1l U= (B gy (3.1

for a positive definite Hessian approximation B,ﬁ, where U is a BFGS type update of
Bf and Il *llpy is the weighted Frobenius norm defined by
A Npy=ll UTV2AU 21l . Values close to zero indicate a ‘‘good” model.
The matrix U could actually be any symmetric positive definite matrix, but the above
definition allows this test to be interpreted in a natural fashion. If the test is applied
to the matrix B} after it has been computed at the end of iteration k-1, it can be
viewed as a measure of ‘‘how close’” the matrix B/ is to satisfying the secant
equation. However, to be meaningful when the model B,ﬁ being tested is itself a

structured version of the BFGS secant model, the test must be done before the
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update, since otherwise the value of V) for this model is automatically zero. Testing
before the update leads to the interpretation that V, measures ‘‘how close’’ the matrix
B,ﬁ_l is to satisfying the secant equation, or (for the BFGS case) ‘‘how much the
model will change.”’ Fletcher and Al-Baali use as their two models the Gauss-Newton
Hessian and a structured BFGS secant approximation. Although their implementation
tests the Gauss-Newton model after it is generated and thus mixes the interpretations
above, they report a great deal of success in practice. Their test does not require any
extra function evaluations and can be implemented without excessive amounts of
extra numerical linear algebra. It should thus be considered as a viable method for
selecting a model for use in the next iteration. The major drawback from the general
point of view is that there exist many models to which it is not applicable. Some of
the structured models for nonlinear least squares do not necsssarily remain positive
definite, so the test cannot be applied.! Nonquadratic models are also untestable by
this measure. Furthermore, it can only be used for model selection and not for model
switching.

Other tests used by various authors compare the observed accuracy of different

models for a given step. Given a test step §, a p test calculates the ratio

ared, (D)
pred{(@)

pi(p) (3.2)

! Although this test can be applied formally to positive semidefinite matrices also, the meaning of
V, is ambiguous in this case.
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Values close to one denote a ‘‘good’” model. This test seems very natural given
the success of trust region methods that use this ratio to control the trust radius. It is
not limited to positive definite quadratics but can be applied to any general model for
which a predicted reduction can be computed. Furthermore, it can be used both for
initial model selection and for model switching. The test step p for selection of the
trial model is typically the iterate p, just computed. For model switching, p is
typically the most recently computed trial step. A function evaluation is required
whenever this test is used, but in many cases this function evaluation would have

been required anyway.

Several implementations using this test are investigated by Al-Baali, Fletcher
[1985]. Their algorithms use the Gauss-Newton model until p for this model
becomes unacceptable (p<0.05) and then switch to a BFGS model. Nazareth
[1980,1983] uses this test to control an algorithm that superficially looks different
from A.3.3. Instead of choosing between a finite set of models, Nazareth uses a

model Hessian which is a convex combination of two other mudel Hessians, say
B, =0, B+ (1-0y)BS2 (3.3)

for some oy, € [ 0, 1 ]. For the nonlinear least squares problem, if one model is the
Gauss-Newton model and the other is a structured secant method, this is equivalent to
choosing a scalar multiple of our secant approximation to the second order term
S(x;) (see Example 1.2). Although the algorithm draws from an infinite set of
possible models rather than a finite set, only one model is chosen at each iteration so

that the algorithm is no different in principle from other model selection algorithms.
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The balance between the two original models is initially set to 0.5 and is adjusted by

the following procedure.

Procedure A.3.4 : Nazareth’s Method for Choosing o .
a) Compute p_;(P,_1) and pi_;Dg_y).
b) If pl;(py_y) is closer than P2 1(Pr-p) to 1,

then bias toward model one :
If Oyt =O, set o = .05.
If Oy 1€ (0,‘%‘], set Oy =20tk_1.
If Oy € (—;',95), set oy =( 1+ Otk_l)/2.
If Op_1€ [95,1], set O = 1.
Else bias toward model two :
If Oy 1= 1, set Oy =.95.
If o€ [3-,1), set o, =2 0t _—1.
If Oy_1€ (05,%), set o =0tk_1/2.
If o, _; € [0,.05], set o, =0.

¢) Proceed

Note that rather than using the p test on the model actually used, this method applies
it to the two ‘‘base’’ models B, and B/ and then generates the model B, to be used.
More complicated procedures are obviously possible, but since only one model is

finally chosen at each iteration, any such technique would still be a model selection

algorithm.
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A third useful test is similar to the p test in that it compares predicted reduction

to actual reduction for specific test steps. As in the p test, p is typically p,_; or pi.
Given a test step p, an e - test computes the observed error :

ef(p) = ared,(p) - pred{(p) | . (3.4)

Values close to zero denote a ‘‘good”” model. This test is used in NL2SOL and

is the preferred test in the model switching algorithms of Chapter 5. Its primary

difference from the p test is that it lacks a ‘‘pred’’ term in the denominator. Leaving

out this term eliminates certain sensitivity problems associated with small predicted

reductions.

3.3.1.3. Some Properties of these Tests

As previously stated, the really interesting question about these tests is whether any

can distinguish between a sequence of model Hessians which is uniformly bounded

and a sequence which is unbounded. We now demonstrate that none of the methods

of initially choosing a model discussed in the literature are capable of always

rejecting an arbitrarily bad model.

Proposition 3.1 : There exist two sequences of model Hessians, denoted {Bkl} and
(B2} , with | B < By for some By > 0, and with {|| B2\ } unbounded for
which the variational test can select a model from the second group at every

iterate.

Proof : We prove this proposition by construction. Al-Baali, Fletcher [1985]

give the following representation for V,(B) :
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2 1
tB—l t 9
v@)=| | k| _o B 4y (3.5)

YiPr PiBp;

where the weight matrix U satisfies the secant equation

Upr=wn (3.6)

for some nonzero y, € R" 2 Suppose that n >3, and define a set of vectors {w,; } in

IR" satisfying

wip, =0
o 3.7)
Wiy =0
and
Hw Il =1. (3.8)
Consider two sequences of model Hessians defined by
Bl=1 (3.9)
and
B2 =1 +k!wwj . (3.10)

Now, by the Sherman-Morrison-Woodbury? formula, (Bk2 y! exists and has value

_ k!
(BAYl=1 - o wewt . (3.11)

2 The standard definition for y; is ge.1—g, 50 that U interpolates the observed change in g, but
other variations are typically used for NLS to take advantage of problem structure.

3 See, for example, Dennis and Schnabel {1983], Lemma 8.3.1.
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Then
- k! 2
VEBEY vk = vilye = 77 [ W/ﬁ)’k]
’ (3.12)
= Y4 (Bk1 )_1)’k
Moreover,
PiBIpy = pilp + k\(piw;)?
ol (3.13)
=piBe D -
Therefore combining (3.5), (3.12), and (3.13) gives
Vi B = VB . (3.14)

Thus the variational test cannot distinguish between the models, which allows model

two to be selected. [ ]

Proposition 3.2 : There exist two sequences of model Hessians, denoted {B,l} and
(B2}, with IBM| < By for some B; >0 and with (! B2} unbounded for

which both the p test and the e -test can generate a sequence of models with

lim sup Il By Il =oo .
k —eo

Proof : We prove this proposition by construction. Let f (x)= %x’ x. Assume

first that the model to be used in step k +1 is chosen after the models have been

updated. Consider two sequences of model Hessians defined by

Bl =2 (3.15)
and

Pk-lP/ﬁ—l

Bﬁ:ku—(m—1), .
Pr-1Pk-1

(3.16)

Then
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1
pred(py_1) = —gkPx1— = Pi-1 @Dy

2 1 (3.17)
=aredk(pk—1)_EHPk—1”22 ;
but
t
pred(py_y) = = gkPk-1~ %P/ﬁ—l kU = (k!=1) %I%H‘ Pr-1
o (3.18)
= aredy (P-1) -

Therefore both the p and e-tests would choose model Hessian B =B? over B}! even

though B,? is arbitrarily bad in every subspace perpendicular to p;_;.

If the choice is made before the models have been updated, then consider the

two sequences of model Hessians

Bl =2I
(3.19)
B2 = (1+(=DX)kU +1
Then
ared, (D) k odd
pred (o) = (3.20)

ared, (p )+ k! Ip 113k even

As before, both the p test and the e-test would select model two at the end of each
odd numbered iteration, and thus the algorithm would use By =Bk2=2k "U+1
throughout each even numbered iteration. [ ]

Proposition 3.3 : There exist two sequences of model Hessians, denoted {B/} and

(B2}, with B < By for some By >0, and with {1 B2} unbounded for
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which the p test combined with interpolation between models as used in

Nazareth can generate a sequence of models {B, } as in equation (3.3) with

lim sup Il B, Il =0 . (3.21)

k —eo

Proof : We prove this proposition by construction. Let

f(x)=%x’x . (3.22)

Consider two sequences of model Hessians defined by

Bd =1 (2+(-1)F) (3.23)

and

BA=I(1+(1-(-)*)k!) . (3.24)

Now, at any iteration where £ is odd, we have

1 lpli?
PiP)=1+ o —F— (3.25)
—8«P —P'D
and
pi@)=1 , (3.26)

so that o ,; is biased toward the second model. At any iteration where k is even, we

have

pip)=1 (3.27)

lipll?
2p)=1+(k! -~ P ,
Pp)=1+(k!=— )[ eip _k!”pllz} (3.28)

so that o, is biased toward the first model. Thus, since o is initialized to 5 e

have that o alternates between % and %, and



51

%1 k odd
B = | (3.29)
(k!+—2-)1 k even

Thus,

lim supll B Il =0 .
k—eo
After considering these examples, it seems doubtful that any model selection
algorithm that selects a model solely on its performance at the last step can have the
properties we want. Since we are not allowed to switch models after the start of an
iteration, the scheme used to initially choose this model must select the correct one.
We have seen how easy it is to produce pathological special cases to fool the existing
tests.* However, model switching algorithms can be constructed which do not share
these (potential) shortcomings. With this in mind, model switching algorithms are to

be recommended over model selection algorithms.

3.3.2. Model Switching Algorithms

Chapters 4 to 7 deal with this type of algorithm in detail. Since switching models is

allowed after the current iteration has been started, we would expect that the harsh

4 It could be argued, with some justification, that since the counterexamples in Propositions 3.1,
3.2, and 3.3 are for a set of ‘‘arbitrarily bad”> models rather than a set of ‘‘arbitrarily bad models gen-
erated by some method of interest,”” model selection logic might still link with the model generation
scheme in a manner guaranteeing global convergence anyway. A counterexample to this possibility
cannot be given for the simple reason that, for methods of interest such as the BFGS, boundedness of
the Hessian approximations is still an open question. In lieu of more knowledge, we must assume that
if there is the possibility of one of the secant methods generating a sequence Hessians of unbounded
norm, then there is the possibility that these sequences may have the same structure as our counterex-
amples.
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requirements on correctness of the initial trial model can be relaxed. This does prove
to be the case. We show that when properly constructed, the model switching portion
of these algorithms does play a nontrivial role in assuring global convergence. A
wide range of methods for model switching and trust region modification are allowed.
Furthermore, three major versions of the basic algorithm are presented which explore
the tradeoffs between restrictions on the models and restrictions on the details of the
algorithm. Type one algorithms require all models to be quadratic with uniformly
bounded curvature but have essentially no restrictions on the details of the switching
system. Type two algorithms require at least one model to be quadratic with
uniformly bounded curvature. Each other model is required to generate trial steps
satisfying a ‘‘uniform predicted decrease’’ condition. The switching system is
slightly more restricted, in that it must limit the circumstances under which the trust
radius can be reduced. Several schemes are defined which do this. Type three

algorithms only require one model to be quadratic with uniformly bounded curvature.

3.3.3. Concurrent Model Algorithms

This category of algorithms is a ‘‘catch all’’ for methods that are more complicated
than selection or switching procedures. At present, the extra complications involved
in most of these algorithms appear unjustified, and too many disparate formulations
exist to allow a general framework. However, the following examples are included

for completeness. The first one is trivial but the second is quite intriguing.



53
Many -- or even most -- implementations of optimization algorithms contain
logic which is implicitly or explicitly equivalent to using a concurrent scheme.
Example 3.1 : Any algorithm which makes some decision based on whether the
norm of some model Hessian B is greater than a constant f§; is equivalent to an
algorithm making the same decision based on whether the norm of B is greater than
the norm of B where B = B, /. Even the Armijo-Goldstein condition used for line
searches can be considered a concurrent model algorithm, where the ‘‘alternate’

model Hessian (used only for testing trial steps and not computing them) is B =0.

Concurrent model algorithms can also be fundamentally different from anything
previously considered.
Example 3.2 : Rather than choosing one model or the other to compute a trial step,
this step can be computed by reconciling the models. The first model can be used to
define a region Q' = { p :p satisfies (2.22) for By = Bkl }. A step p; can then be
computed to maximize the predicted reduction of the second model over the
intersection of Q! and the trust region. To further complicate the algorithm, one
could also allow the option of computing a step to maximize the predicted reduction
of the first model over the intersection of Q% and the trust region (where Q? is
defined in the obvious fashion). Although this is a fascinating idea, global
convergence can be guaranteed by the simpler model switching algorithms.
Furthermore, an example in Chapter 7 casts doubt on the local convergence properties
of this algorithm, and the existing techniques for solving the modified subproblem are

not as numerically efficient as the more mature methods in existence for solving
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problem TRS. Although some versions of multi-model algorithms of this type may
yet prove workable, our current belief is that none will prove competitive with the
other algorithms presented for unconstrained optimization. More about using the
modified subproblem above in constrained optimization can be found in Celis,
Dennis, and Tapia [1984] . This approach is also similar to ideas from multi-
objective optimization (see, for example, Woods [1985], Chankong and Haimes

[1983], or Ignizio [1982]).

3.4. Further Useful Concepts

Additional concepts -- which are useful in actually writing an implementation or
helpful in attaining a complete understanding of multi-model methods, but which are

of small importance to the theory presented in later sectiors -- are presented in

Appendix B.



CHAPTER 4

Safe Algorithms using Maximal Restrictions on the Models

4.1, Introduction

This chapter analyses the global convergence properties of model switching
algorithms when all of the models are quadratic and when we are free to assume as
many restrictions on the models involved as we need. We show that if there exists a
uniform upper bound on the norm of each model Hessian available to the system,
then essentially any switching system gives first order stationary point convergence.

This generalizes the first order results of SSB [1985] to the multiple model case.

4.2. Preliminary Definitions and Results

The notation in this chapter is largely an extension of that described in Chapter 2 for
single model trust region algorithms. Superscripts are included to distinguish among
models. For definiteness, we now present (or review) all of the notation necessary
for this chapter. The reader is again encouraged to make use of the glossary in

Appendix A.

55
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4.2.1. Local Models

Assume that at any iteration we have a finite set of symmetric matrices {B,ﬁ} s
i=l1,...,N, representing approximations to the Hessian of f at x;,. This gives us Ny

quadratic models in standard form

. 1 .
predi(p) = —gip — EY p'Bip (4.1)

for use in approximating the function in local coordinates.

For quadratics, most algorithms guarantee that any step p,ﬁ computed as an
approximate solution to problem TRS satisfies one of the following two conditions.

Let ¢{>0 and c,>0 be two constants which are independent of k. Steps that satisfy

pred(p}) = ¢, max predf(og;)
2 4.2)

S/t“(!gk I < Ak

are called FCD (Fraction of Cauchy Decrease) steps. Steps of this type are generated
by dogleg and double dogleg procedures, generalized doglegs, and restricted subspace

methods as defined in Chapter 2. Steps that satisfy

predi(p}) = c, max predi(p)
P 4.3)
st llpll <,

are generated by OLC (Optimal Locally Constrained) procedures. Such steps can be

computed, for example, as in Moré and Sorensen [1983].1 The matrix B,i need not be

nonsingular or even positive definite. An OLC step also satisfies (4.2).

U If g, is zero at any iteration, some of the published techniques may fail to guarantee (4.3).
However, as we are only concerned with FOSPC, we consider g, =0 at any iteration to constitute suc-
cessful completion of the algorithm.
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The following lemma is well known.
Lemma 4.1 : [f p,ﬁ is an FCD step with constant ¢ >0 or an OLC step with constant
c,>0 for a quadratic model in standard form with model Hessian B}, then

there exists ¢z € (0,1) independent of k such that

o g, Il
predi (pf) = 5 g |l min{ A&, , —% . 44)
1 B I

More specifically, every C3S%Cl satisfies (4.4) for an FCD step, and every

c3< % c, satisfies (4.4) for an OLC step.

Proof of this lemma can be found, for example, in Powell [1975]. This is also a

special case of Theorem 6.4.

If 1l B] ! is bounded as k —»oo, the sequence of models is said to have
uniformly bounded curvature. By Lemma 4.1, if each p,ﬁ is an FCD or OLC step

and || B} Il <B,, then

S g,
pred; (pi)=2c3 |l g, Ml mm{ Ay, f;k } : (4.5)
2

For a given positive definite model Hessian B,i and a sufficiently large trust

region, most implementations generate a step to the global minimizer of the model. A

quasi-Newton step is a step p/ that satisfies

Bipi=-g . (4.6a)
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For large sparse systems, implementations often do not require exact computation of
this step but instead impose the following condition on how accurately the next
iterate should be calculated. A step p,ﬁ is said to satisfy the inexact quasi-Newton

condition if
| Bipi +g, Il <C gl (4.6b)
where 0 <{, <1 and lim {; =0. More about this condition can be found in
k —eo

Steihaug [1980]. Any quasi-Newton step automatically satisfies the inexact quasi-

Newton condition.

Most versions of trust region algorithms enforce one of the following sets of
conditions relating the size of a computed step to A,. When a restricted subspace or
a dogleg type scheme is used to approximately solve the trust region subproblem, a

step satisfies either

Hpill = A, (4.7a)

or
( (4.6a) or (4.6b) )and lIpill <A, . (4.7b)
That is, each step is either on the boundary of the trust region, or it is a quasi-

Newton (or inexact quasi-Newton) step. An OLC step satisfies either

(1-0)A <lpill <(1+0;) A (4.8a)

or
( (4.6a) or (4.6b) ) and lIp{ll < (1 -0;) A . (4.8b)
In either event, and for all other reasonable implementations, a trust region

algorithm enforces
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Hpill <(1+07) A 4.9)
for some constant 6y € [ 0, 1).

Each of our models and associated procedures for computing steps may differ
considerably in the conditions they guarantee. In order to avoid overspecifying our
algorithm at this point we introduce the following notation.

Definition 4.1 : We use the notational shorthand p,ﬁ € A(i,A;) to denote any
approximation to the solution of the trust region subproblem that is acceptable
with respect to the model with index i and the trust radius A;. If the index of

the model is clear from context, we may also use the notation p, € A(A).

The precise meaning of ‘‘acceptable’” will be specified separately for each class of

algorithms.

4.2.2. The Standard Assumptions on the Function

The results and definitions of the previous section applied strictly to the models being
used. Other than the occasional use of g, no reference has been made to the actual
function being approximated. In this section we present notation related to the
function itself. The expression

aredy(p) = f () = f (% +p) (4.10)
again denotes the reduction in f caused by a step p. For the i th model, the ratio of

actual reduction to predicted reduction is defined as
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. ared, (D)
prp) = —— . (4.11)
pred;(p)
Next, recall that L (f ,x;) denotes of the level set of f at x;.
Definition 4.2 : For given x;€ IR* and f :IR” = R!, the following conditions are

referred to as the standard assumptions on the function.

(SAl) f is twice continuously differentiable on an open convex set containing

L(f x;) . This open set is denoted L f xp-
(SA2) f is bounded below on L (f x{) .

(SA3) 3 B;>0 such that for all xef,(f X4), the Hessian of f satisfies

L H @)l <By .

4.2.3. Some Useful Results

The next lemma is invaluable in establishing the existence of acceptable steps in
specific stages of an algorithm. Let ¢;,c; be defined so that 6, [0,1), c3€ (0,1),
and consider the following conditions.

(a) “p ”S(l+01)Ak

Il g, I
I B I

(b) predi(p)=c;ll g, !l min{A,,

Lemma 4.2 : For a given x;€ R", let f:R” — R! satisfy the standard assumptions
and suppose that for some k, the vector x, satisfies x; € L(f x;) and

g(x, )#0 .
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Then there exists 8,?>0 such that A, € (0, 8,9] and condition (a) imply
x,+peL(fxy) . (4.12)

Furthermore, let B,ﬁ be the model Hessian of a quadratic model in standard

form. For any ne (0,1), let

T (o2 (By+ 11 Bi ) 4.13)
IfA, €(0,8;1and x,+p € L(f x,) , then (a) and (b) imply
2-n2pi{@P)2n . (4.14)

Proof : From the hypotheses and the definition of (SA1), x, is in the open set
L(f x;), which immediately implies the existence of a positive 39 for which A, <8)

and (a) imply (4.12).

Next, from Lemma 2.6 and assumptions (SA1), (SA3), (4.12), (a), and (b) we have



L 1-pi(p)] =

IN

ared,(p) — pred,ﬁ(p)

predi(p)

1
[ (Bi-H +E&))p) (1-8)dE
0

Mgyl
cy Hg !l min< A, , -
38 { B

I p 12C1 B 1 +B,)

IN

From (a) we then have

I 1-pi()]

FARE
2cs gl min{Ak, S }

Bl

(B +By) (1+0y)?A?

gl
25 gl min{Ak, ”B"i”}
k

<

Since c3< 1 and A, <8}, (4.13) implies

Il g, Il
T B

Ay

From (4.13), (4.16) and (4.17) we obtain

(1B +By) (1+67)XA, )?

=Pl < TRITANN
I B I 2
S( ¢ 1+B1) (1+0y) 5
2¢5 gl
<(1-m)

which establishes (4.14). []
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(4.15)

(4.16)

4.17)

(4.18)
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Consider a sequence {x; } € R”. For every m >0, define €2, to be the set

g I
2B,

Q, ={xllx=x,ll < andxeL(fx)} . (4.19)

Lemma 4.3 : If f satisfies the standard assumptions, then for any x € Q,,,

—3—||gm Il 21g ool 2—;—||gm|| . (4.20)

Proof : If x,, ¢L(f x;), then Q, is empty, so that (4.20) is immediately
established. Consider any m with x,, € L(f x;). For any x € L(f ,x{), the standard
assumptions and Lemma 2.5 imply !l g(x)—g, Il <Bllx—x, Il . By the

triangle inequality,

\

Hg, 1+lge)—g,ll gl =g, II-llgx)-g,ll (4.21)

so if lx—x, Il <ll g, 1l /2B, , then

v

3 1
1l g, Iz llg il 2 - 1lg, | 4.22)

which establishes the result. []

Next, consider a sequence of positive numbers {A;}, and let p;, be defined by

Pr =Xy 41 —X;. Furthermore, consider the following conditions.

(i) There exists Ny, c3€ (0,1) and B, > 0 such that each p, satisfies the uniform

decrease condition :

g, Il
ared,(p,) =M c3 1 g Il min{ A, %" } . (4.23)
2
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(ii) There exists oy € [0,1) such that each p; satisties | p, || < ( 1407 )A .

The next theorem establishes FOSPC for {x;} satisfying (i) and (it), provided the
sequence {x,} does not remain within a certain ball about any given iterate x,,.
Proof of this result can essentially be found in SSB [1985], although the theorem was

not directly stated therein.

Theorem 4.4 : Let [ satisfy the standard assumptions, and assume that (i) and (ii)
are true. If for every m >0, either
(a) g,, =0, or

g, Il
2B,

(b) Am >m such that | x_—x, Il >

then g, —0 (FOSPC).

Proof : First notice that (i) implies ared; (p;)=0, so that {x,} satisfies the
descent condition. Hence x; € L(f ,x{) for all £ >0 and f (x; 1) <f (x;) for all £ >0.
Now, consider any m with Il g, ||# 0. By assumption, 7 >m such that x_¢Q,,.

Let /+1 denote the first such index after m with x;,; not in €,,. Then

g Il
2B,

l
<lxpy—x, 11 € 3 lpdl
l k=m (4.24)
< (1+0'1) Z Ak s

k=m

so that Lemma 4.3 implies
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l

F ) = f ) = X (£ ) - f )

k=m
! . gl
> Z uMl c3||gk|| min Ak s (4.25)
k=m [32
L Hg,,l
>y L llg Il min< A, , —m—o

Now, if A, <l g, [I712B, form <k <1, (4.24) and (4.25) imply

1
f ) = F ) = 3 My 3 gy ll T A

k=m
4.26
>in callg 1l _”gL”_ (420
=M EmT 58 (1+0,)
Otherwise,
g, II2
&) —fGe) 2 Ny cs3 4.27)
48,
We can then write
MNic3 . 1 1
Xp) = () 2 e 11?2 min{ ———mmMm—, — } . 4.

Now, since f is bounded below and {f (x;)} is nonincreasing, {f (x;)} converges to
some limit, say f (x;)—>f *. Thus for any m, either 8n=0or
-1

2 Ny 3 . 1 1 g+
g, 7| — “““{_—Bl(lml)’ﬁz} (F)=f") . 429

Therefore g, — 0 , which completes the proof. []
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4.3. Introductory Examples

Before considering a general definition of the algorithm, let us write two simple
examples. We follow the ‘‘minimal version” trust region Algorithm A.2.1, but
construct it for Example 1.2 of Chapter 1. Recall that in this example we sketched a
method (Algorithm A.1.5) that makes use of a constant matrix for the model Hessian

when computation of the exact Hessian is too expensive to be done frequently.

Algorithm A.4.1 : Constant Matrix versus an Exact Hessian
0) Let x, e R",A;>0 and a symmetric B € R"” be given.

1) Repeat until convergence :
2) Set Bk =B.
3) Compute p, € A(Ap).
4) If arEdk (pk)<0, then set Bk =H(xk ).
5) If pr(pp)< T(I)F’ then

If 0<llp,ll <A, then set A, =1lp;ll/4,
Else set Ay =A. /4.
Return to 3).
6) Set x4y =X +Pi » D1 =0y
7) If p(pe) > % then set Ay, =24, .

8) End.

Model switching is done in step 4) by the simple expedient of evaluating H (x; )
whenever a test step generated by the constant model yields a function increase. This
represents just one possible way of deciding whether to compute the full Hessian. In

the next algorithm, an addition is made to this test so that it is only performed when
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the trust radius is less than a fixed tolerance. A slightly different version of A.1.5 is

used, so that the most recently computed Hessian is always used for By.

Algorithm A.4.2 : Exact Hessian evaluated intermittently
0) Let x; € R",A;>0 and a symmetric B, e R"™" be given.

1) Repeat until convergence :
2) Compute p, € A(Ag).
3) If A, <107° and ared, (p;) <0, then set B, = H (x;).
4) If pp(pr) < %0—, then
If 0<!lp,ll <A, then set A, =Ilp, 1l /4,
Else set Ay =A. /4.
Return to 2).
5) Set xpp =X +Pg » Dpr1 =y
6) If pp(pi) 2 % then set Ag, =2 Ay -
7) End.

This implementation refreshes the constant matrix whenever the trust radius
drops beneath an arbitrary lower bound and a computed step does not decrease the
function value. Any other way of model switching or selection could also be
implemented without affecting the theory of this chapter, such as refreshing every mt
iteration, refreshing when H (x;) is positive definite, or refreshing when I gl is

smaller than a certain value.

These two sample algorithms are probably only useful for unusual classes of

problems involving special structure or extremely expensive Hessian or gradient
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evaluations. In actual implementation, the precise application and any knowledge
about the relative computational costs should suggest a particular technique for
choosing a model. If not, we suggest refreshing B, whenever one of the following

holds.

(1) The trust radius drops to less than a fraction of the largest trust radius used since

the last instance of refreshing By.

(2) An iterate x; seems to be near enough to the solution so that Newton’s method

is quadratically convergent without step size control.

One should also include a more sophisticated trust region update strategy. Such

a strategy should include the capability of rapidly increasing A, after refreshing By .

4.4. The Basic Algorithm Framework

We first define a general framework for a model switching algorithm. Most details
are initially unspecified to emphasize the points at which choices can be made in
designing an implementation. We document exactly what choices are allowed in

Algorithms AS.4.4 and AS.4.6.
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Algorithm A.4.3 : General Model Switching

0) Let k=1, x; € R" , a trial trust radius A>0, a set of models indexed by
i=1,2,..,Nq, and an initial trial model with index i all be given.

1) Repeat until convergence :

2) Compute an acceptable step p, as follows :

Either
2.1) Find a trust radius A, > A, a model with index i, and a step p;
for which p, = p} € A(i.Ay),
Or )
2.2) Compute a trial step p; € A(i,A;). Then either
(a) Accept p; = pi, Ay = A, and go to 3) , or
(b) Proceed to 2.3) for trust radius reduction , or
(c) Choose a different trial model and repeat 2.2).

2.3) Find a trust radius A, < A,, a model with index i, and a step p;
for which p, =p; € A ,Ap).

3) Choose a trial radius A, for the next iteration.

4) Perform any calculations required to make the models
{ pred],, }, j=1,2,....Ny, available at the next iteration.
Select an initial trial model with index i for the next iteration.
Set Xy =X D > fre1 =Fk k1 = 8Wps) s k =k + 1.

5) End.

In this most basic form of the algorithm, we have not specified several things.
(1) How to choose among the options in step 2).

(2) How to implement whichever one we choose.
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(3) How to choose a trial radius for the next iteration.

The allowable methods for doing these steps differ depending on what is known
about the models. For standard quadratic models with uniformly bounded curvature,
Section 4.5 shows the choices allowed in the logic for deciding which option to

execute in step 2), and Section 4.6 presents the allowable logic for step 3).

Typical values for the parameters used throughout the rest of this thesis can be

found in Appendix A.

4.5. Computation of an Acceptable Step

Step 2) in A.4.3 is usually referred to as the ‘‘Internal Loop’ section of the
algorithm. The bulk of model switching (as opposed to model selection) logic must
lie in this section. Our theory does not put any restrictions on the initial choice of a
model, nor does it require 2.2) to be tried before 2.1). The following specifications

are sufficient to define the range of allowable options in step 2).



Algorithm Specification AS.4.4 : Permissible Choices in Step 2) at the ki
Iteration

Let 0<m,<n,<1, a trial trust radius A, >0, and a set of N, models be given.

2.1) We are allowed to choose A, >4, and find p; for some model with index i
satisfying both p, = pi € A(i,A¢) and p{(p;) 2n, whenever such a A, , model
, and corresponding step can be found.

2.2) We are allowed to accept A, = A, and find p{ for some model with index i
satisfying both p, = pi € A(i,A,) and pi(pi) =M, whenever such a A, , model
, and corresponding step can be found.

If at least one model with index j and associated trial step p/e A (j,Ax) computed
in phase 2.2) for the trial trust radius A, satisfies p/(p{) <n,, then we are
allowed to execute step 2.3).

2.3) Find some A, e (0.A;), model with index i, and p; = pi € A(i.A,) satisfying
pi(pi) 2 M.

We now consider this algorithm in more detail.

4.5.1. Step 2.1 : Internal Doubling

71

No requirements are made on model switching at this stage. The initial model can be

retained or any new model can be chosen, as long as the final choice of model, step,

and trust radius satisfy both p, = p} € A(i,A;) and p{(p{) 2 M, .

Step 2.1) is usually referred to as ‘‘internal doubling’’ because a typical

implementation successively doubles A, as long as pi(pi)=n; for some M3 € (M, 1).

Another option this step allows is that of always trying a full quasi-Newton step

before computing a constrained step.
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Many implementations do not include steps of this type, and most of the
algorithms we present here specify that such ‘‘internal doubling’’ steps are optional.
However, this step makes many line search procedures admissible to our theory.

Furthermore, inclusion of such logic is particularly appropriate for many model

switching applications. Consider a secant algorithm? that recomputes the exact
Hessian whenever the secant approximation leads to a suspiciously small trust radius.
If refreshing the secant model with the exact Hessian does indeed improve the model
significantly, we would expect that a much larger trust racis can be successfully

used. Internal doubling allows the trust radius to increase immediately by a sequence

of minor iterations® thus avoiding the extra gradient evaluations associated with a

sequence of major iterations.

4.5.2. Step 2.2 : Acceptance of trial trust radius

If step 2.1) is not executed, step 2.2) must be tried before 2.3). Again there are no
restrictions on how many or how few of the models we use to compute trial steps. A
step is first computed using the initial trial model and trust radius. If this step
satisfies p,ﬁ (p,ﬁ) > 1, then it can be accepted and the algorithm can proceed to step
3). Other options are allowable, however. The algorithm can try switching models to
see whether others perform better. It can revert to step 2.1) if a sufficiently good

model can be found.

2 Such as the MINPACK algorithm HYBRID of Moré, Garbow, and Hillstrom [1980].
* Each minor iteration involves only linear algebra and a function evaluation.
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4.5.3. Step 2.3 : Internal decrease of trust radius

The only real restriction on the logic of AS.4.4 deals with the cases for which step
2.3) can and cannot be executed. It can be tried if in the course of step 2.2) any
model is found for which pi(p) <M. It cannot be tried if, so far, every p{ tried in
step 2.2) satisfies pi(f) = M,. The only circumstance where it must be tried is when
every available model has been used to compute a step p,ﬁ in step 2.2) and for each
one pi(p) <My

These conditions are the most general ones allowed by our theory and are much
more relaxed than most implementations allow. In practice an algorithm should try to
avoid executing 2.3) whenever possible, since smaller trust regions slow convergence.
On the other hand, excessive switching of models in step 2.2) leads to extra overhead
and function evaluations. Any given implementation is a tradeoff between these two
considerations. Typically, the trust radius is not reduced if the initial trial model and

step satisfies pi(pt) = My, and no alternative model is tried if P =z M,

If step 2.3) is executed, it must contain a procedure for actually calculating a
reduced trust radius and step. The following is a version of the backtracking
procedure typically used in single model trust region algorithms. This procedure is

what gives Algorithm AS.4.4 the name ‘‘internal loop.™
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Procedure A.4.5 : Internal Decrease of Trust Radius

Let 0<y;<1,n;€ (0,1), a trial trust radius A,, and a set of N, models all be
given.

Initialize A, € (0,4 1.

23.1)Sette (0,71

2.3.2) Set A, =TA,.

2.3.3) Choose a model with index i and compute p,i e A(i,Ay).
If p/(p}) =M, then accept pi as p, and proceed to step 3).

If not, either repeat this step for another model (one that has not yet been
used for this A, ), or return to step 2.3.1).

Some very important points should be made about this procedure. First, AS.4.3
allows this procedure to start with at A, =1l p} 1l if llp{ll € (0,A;]. Such an
initialization is often done in practice when the step computed in phase 2.2) is a full

quasi-Newton step in the interior of the trust region.

Second, let us consider the possibility of switching model preference during
Procedure A.4.5. This is an important practical point. It was found in the
development of NL2SOL (DGW ([1981]) that performing model switching during
internal reduction significantly degraded performance, in that it added excessive
overhead. It is thus important that our theory cover algorithms that do not perform
switching at this time. On the other hand, a reasonable implementation might be to

try such switching if a large number of internal reductions are done in a row (as is
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done in Dennis,Sheng,Vu [1985]). Our theory must cover this case also. Therefore
Algorithm AS.4.4 neither requires nor prohibits switching of models within the loop

to decrease A;.

Third, for a set of quadratic models in standard form, this procedure terminates
in a finite number of iterations. Consider the following conditions defining an

““acceptable’’ step with respect to a model with Hessian Bj.

(A) p,ﬁ e A(,A) implies  that, for some c3€ (0,1), p,i satisfies

4 () = ¢ g1 mind A 551
re 2C mi ) ; .
preay Dy 3 1 8k AT B I

(B) pie A(i,A;) implies Hpill <(1+0y) A for some 6y € [0, 1) independent of
k.
We then have the following.
Theorem 4.5 : For a given x,e R", let f:IR" > R! satisfy the standard
assumptions. For a given k21, let x; satisfy x.€ L(f.xy), and let

{B,ﬁ },i=1.2, ... N, be the set of Hessians of Ny quadratic models in standard

form.

If conditions (A) and (B) above hold, then Procedure A4.5 terminates in a

finite number of steps.

Proof : From Lemma 4.2, there exists a 8>0 such that A, <8 and p; € A (i ,Ay)
imply pi(f) 2m, for i =12, .., N,. Now, if 8 2 A, at the start of the procedure,

p,ﬁ(p,ﬁ)an for every i. If not, then at most log(%)/log(yl) applications of 2.3.1) are
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needed to imply pj(pf)=n; for every i, and at most N, executions of 2.3.3) can be
performed per application of 2.3.1). Since y; <1, this implies our result. (1

This result cannot be taken for granted in algorithms that allow for more general
models. Any alternative to Procedure A.4.5 is acceptable as long as it obtains a final
result that satisfies 0 < A, < A, p, = pi € A(i,A) and pi(p}) 2 m, for some model

with index i.

4.6. ‘“‘External’’ Modification of the Trust Radius

We now define the allowable logic for step 3) of A.4.3.

Algorithm Specification AS.4.6 : Permissible Choices in Step 3) at the kit
Iteration

Lety; 21,0<m,; <1 be given.

3) Choose a new trial trust radius for the next iteration :
3.1) Do one of the following :

3.1.1) Choose an increase factor T € [1,y3],

3.1.2) Or, if phase 2.1) was not executed , and if for some model and
associated step p,{ eA( ,Zk) from phase 2.2) or pk" € A(j,Ay) from
phase 2.3) we have p/(pf) <My, then we are allowed to choose a
decrease factor T € (0,1].

3.2) Do one of the following : :

3.2.1) Set the new trial radius, Ay, to TA;

3.2.2 ) If, and only if, p,ﬁ satisfies the inexact quasi-Newton condition
for its associated model with Hessian B}, then we are allowed to
set A,y to tlipiil.

Proceed.
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Step 3) also allows a very broad range of actions. We are always allowed to set

the new trial trust radius to be larger (up to a constant factor) than the current radius.
There are two instances when it can be chosen smaller than the current value. If
pl(pf) <> for some step p{ computed in 2.2), then the next trial radius can be set to
any value greater than 0. Also, if the step finally chosen satisfies the inexact quasi-
Newton condition (4.6b), then we can set the new trial trust radius so that
Apor€ [ pe 1 y3llpe 1], This could be less than the current radius A, since

Il pp Il may be less than A.

Finally, the new trial radius can be set to any value greater than zero if any step
we calculated using some model with index ;j at any stage of step 2.2) or 2.3) gave

pi(p{) < M, unless the actual step p,ﬁ accepted came from 2.1).

4.7. Global Convergence Theory

We now state the main theorem of this chapter. The proof of this theorem is similar
to a SSB [1985] result for single model algorithms. However, provisions are made to
allow inexact quasi-Newton steps as well as exact ones to be used for trust radius
modification. Also, our proof does not impose any conditions on how the algorithm
executes an internal or external trust radius reduction, so long as this reduction is
allowed. This, combined with the fact that it applies to multiple models, makes it a

significant generalization of existing theory.

Consider the following conditions.



(A)

(B)

(&)

(D)
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Every model is a quadratic in standard form.

pie A(i.A,) implies that, for some cy€ (0.1) independent of &, p} satisfies

4 o3 e llg il & 5t
re L) = ¢ mi , - .
pred; (P 3 8k T BL I

pie A(i.A) implies llpill < ( 1+ 0y) A for some 6, & [0, 1) independent of

k.

There exists P,>0 independent of & such that || B/ 11 <B, for k=1,2,... and

[=1.2,.... N/( .

We then have the following.

Theorem 4.6 : Let x € R” and f satisfy the standard assumptions. Suppose that an

algorithm implemented consistently with A4.3, AS4.4, and AS4.6 is applied
to f starting from x,, and that the conditions (A), (B), and (C) hold. Let
x,€e R* and f satisfy the standard assumptions. Then the algorithm

generates a sequence {x; } which has the descent property.

Furthermore, if (D) holds, then {g,} converges to zero.

Proof : This proof is in three parts. In (1) we establish the existence of {x; }

and the descent of {f (x;)}. In (2) we assume that {x, } remains in Q,, (defined in

(4.19)) for all kK >2m and show that this leads to a contradiction. In (3) we prove the

main result by appealing to Theorem 4.4.
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(1) We first show that a sequence {p;} satisfying the conditions of the algorithm
exists and has the descent property. Since N, <o the algorithm will eventually either
find a satisfactory step p, with A, >A,, or proceed to step 2.3) for trust radius
reduction. In the latter case, consider any £ 2 1 for which x, € L(f .x). Since every
model is a standard quadratic, Lemma 4.2 establishes that there exists a >0 for
which A, <8 and p} € A (i A;) imply pi(@{)>n,. Thus for A, sufficiently small, the

algorithm generates a satisfactory step py.

Furthermore, any step py =pi accepted by the algorithm must satisfy the
condition pf(p}) = N, which with (B) implies ared;(p;)>0. But x;€ L(f.xy), so

that, by induction, {x, } exists and satisfies the descent condition.

(2) Let Q,, be defined as in (4.19) and consider any m 21 with llg,!l#0. We want
to show that some later iterate is not in Q,,. First, we will establish some properties

for any x, € Q,,.

Lemma 4.3 implies

PRI —;—Hgmll , (4.30)

so that from (B) and (D), we have

o gl
predi(pi)= c3 g ll ming A, 5
2

o Lo g N mind a,  8n! (4.31)
—2 3 gm k 232 . .

From (4.31), (A), and Lemma 2.6 we have
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ared, (p,ﬁ) - pred,ﬁ (p,ﬁ)
predi (pi)

I 1=-pi (pi)!

. | o (4.32)
[@iy (Bi = Hxe +80) o) (1-8)dE
0

i . g, ll
EC}HgmH mln{Ak, 2[32

Including (C), (D), and (SA3) in (4.32) yields

IN

(1+0)° A (B +B2)

I 1-pi(pi)] < :
PetPk T Tl 4.33)
c3 ligmil m % > 2B,

Let the scalars §,, and 0, be defined as

”gmH C3( 1—1’]2)
dv;(1+0,)  Bi+h

Oy, (4.39)

and

(*Z]
+
Il

m—(1+01)736m
cyllg, Il 1-m, (4.35)
4(1+0,)? Bi+By

Il g, Il 433)
, so (4.
2B,

Consider any A, <8;. Since c3<|, from (4.35) we have A, <
implies

(L+0)2 4 (B +B2)
C3 ”gmll
(1+0,)?

<m‘(31+52)8m :

l1-pi(pi)] <
(4.36)
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Hence from (4.34), for any A, <3, and x;, € Q,,,

-pipp)l < T (1-my<1-m (4.37)

and
2-Ny>pi(p)>N, . (4.38)

Now, suppose that for some m, g, |l #0 and x, € Q,, for all k2m . We

establish that this assumption leads to a contradiction.

(2a) By supposition, |l g, Il #0 and x, € Q,, for all k 2m . Suppose further that 1i/£n
—> o0

supA, <8,,. Let £ be the smallest integer for which A, <3, for all k >k. Let §
be defined as in (4.6b). Assume without loss of generality that k>m and that if
option 3.2.2) is being used in AS.4.6, then k is sufficiently large to ensure {, <—é— for

all k 2k.

For any A, <9,,, AS.4.6 and (C) imply

Ay sy max { Ay Upel VS (1 +07) Ay (4.39)
<Y(l+0)8, < o.
Hence for every & >k, (4.38) implies that any pie A(i A;) computed in phase 2.2)
satisfies p/(p{) > N, . so that phase 2.3) cannot be executed. Therefore A, 2A, for
every k >k.
Now consider the computation of A,,; as specified by AS.4.6. We will show

that if x, € Q,,, k >£, then A, 2A,. Since A, S8, (4.38) and the definition of the
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algorithm imply T>1. If the trial trust radius for the next iteration is computed by

phase 3.2.1) of AS.4.6, then
Mg  =TA 24 . (4.40)

If p{ is a quasi-Newton step or an inexact quasi-Newton step for some model, we

have from (4.6b)

W BE W pi 11 21l Bipi Il =11 g, — (Blpi + g Il
>l g, It =Y Bipi+g Il (4.41)
2 (10 ) 1 g I

and

(1= ligll _Ngdl g,

I pill = _ > >
Pk 1Bl 2B, © 4B,

(4.42)

> 5m > Ak
If the trial trust radius for the next iteration is computed by phase 3.2.2) of AS.4.6,
(4.42) implies
Aoy =tllpill 24, (4.43)

so that in either event A,,, = A, for every k >k.

Let 3, EK;H. Since A, 2A, and A, 2 A, _, for all & >k,

lim infA, 2 3,>0 . (4.44)

k =00

Hence, if our supposition is true, either
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8, 2 limsupd, = liminfd, 2 8, > 0 (4.45)
or
lim supA, 2 5, > O. (4.46)
k — o0

In either event, lim supd, > 0.
k —oo

(2b) By supposition, Il g, Il #0 and x, € Q,, for all K 2m . Conditions (B), (D) and

(4.31) imply

fi = fre1 = aredi(p}) 2 My predi(p})

> 1 e Il mim A, 8! A
——2'71103 Em k’_—zw .

By the standard assumptions, f is bounded below so that the descent condition

implies lim (f; —fi+1)=0. Therefore klim A, =0, which cowitadicts (2a).
k —oo —y oo

Hence, for every m with Il g, |l #0, there exists /i >m for which x_ ¢Q,,.

(3) Part (1) showed that {x,} remains inside L (f x,), and Part (2) implied that for
every m with Il g, Il £0, there exists 7 >m for which x_ €€, . Hence, eventually

some x_ must satisfy

g Il
264

Xy =X 112 (4.48)

Therefore, Theorem 4.4 implies that {g, } converges to zero. [ ]

Corollary 4.7 : Let x,€ R” and f satisfy the standard assumptions. If conditions
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(A), (B), and (C) hold, then the sequences {x,} generated by A4.l and A4.2

starting from x| exist and are FOSPC.

Proof : The standard assumptions on f and the definitions of A.4.1 and A.4.2
imply that each model satisfies conditions (A) and (D). Existence and FOSPC of

{x,} then follow directly from application of Theorem 4.5 and Theorem 4.6 to A.4.1

and A.4.2. []

4.8. Other Allowable Options

We also present a variation of AS.4.6 that has one more allowable option at the cost
of one more restriction. Both of these different details are commonly found in trust

region implementations.



Algorithm Specification AS.4.7 : Permissible Choices in Step 3) at the kt

Iteration
1

1"01

LetO<n,<my<n3<l,o,e [01)and 1< <Y <Vs

3) Choose a new trial trust radius for the next iteration :
3.1) If pi(p}) > n; for the p; selected in step 2.2) then we are required to
choose T € [Y2. %3],
Else
3.1.1) Either choose an increase factor T € [1,73],
3.1.2) Or, if phase 2.1) was not executed , and if for some model and
associated step p/ € A U Ak) from phase 2.2) or pj € A (j,A;) from
phase 2.3) we have p/(pl) < My then we are allowed to choose a
decrease factor T € (0,1}].
3.2) Set the new trial radius to either tA, or tllp/ll.

Proceed.
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The logic in 3.1) forces the use of an increase factor t under certain conditions.

Because of this, the new trial trust radius can be based on either the length of the last

step or the size of the last trust radius. In AS.4.6, care must be taken if the norm of

the current step is used to calculate the next trial radius because if p, lies on the

interior of the trust region, the trust region may be reduced even if no decrease factor

was applied.

Consider the following conditions. Only the condition (C) differs from the

assumptions of the previous theory.

(A) Every model is a quadratic in standard form.
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(B) pieA(i.A,) implies that, for some c;e€ o1, pi satisfies

Ng,ll
predi (pf) 2oy g Il mi Ag s - .
Il B; |l

(C) pleA(i.A,) implies condition (4.7 a or b) or (4.8 a or b) for some 6;€ [0, 1)

independent of k.

(D) There exists B,>0 independent of k such that II Bl <B, for k=12, ..

=12, ,Nk.

Theorem 4.8 : Let x &€ R” and f satisfy the standard assumptions. Suppose that an
algorithm implemented consistently with A4.3, AS4.4, and AS4.7 is applied
to f starting from x|, and that the conditions (A), (B), and (C) hold. Then
the algorithm generates a sequence {x,} which has the descent property.

Furthermore, if (D) holds, then {g, } converges to zero.

Proof : The proof is almost the same as that for Theorem 4.6. AS.4.7 differs
from AS.4.6 only in the trust radius modification logic, and hence only section (2) of

the proof need be modified. We need only make the following changes.
(1) Substitute 15 for 1, throughout the proof.

(2) In the third paragraph of (2a), notice that since A, <9,,, (4.38) implies that

pi(ph)=ms. Therefore, AS.4.7 requires the selection of a T satisfying

2y,2(l-0))7t . (4.49)
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Now, AS.4.7 always allows A,,,, to be defined by t!l p{ Il as in (4.43), but (O)
implies that p} either satisfies the inexact quasi-Newton condition, or

Hpill2(l-04, . (4.50)
[n either event, (4.42), (4.49), and (4.50) imply

M = tllpill 29 (1-01) 4,
2A;
for every & >k: hence (4.43) through (4.46) are true for AS.4.7 as well as AS.4.6.

(4.51)

This establishes the result. []

4.9. Summary : Type One Algorithms

Definition 4.3 : We refer to any algorithm of the form A.4.3 implemented

consistently AS.4.4 and AS.4.6 or AS.4.7 as a type one algorithm.

This class of algorithms puts no limitations on how model switching or selection
can be done, and puts few limitations on the permissible range of trust region logic.

However, each of the models must be quadratic with

lim sup Bl < oo .
k — oo

It should be noted that the number of models available at any given iteration is
not required to be constant. In fact, any finite number of models could be used. For
example, consider the model generation scheme of Nazareth [1980,1983] that selects
a particular convex combination of two model Hessians. A modification could be
made to Nazareth’s algorithm so that it would consider more than one possible

convex combination. Our theory allows the algorithm to draw any number of model
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Hessians from the infinite set of possible models as long as the sampling procedure is

finite. If there exists a uniform upper bound on the curvature of each of these

models. then the algorithms of this chapter are FOSPC.



CHAPTER §

Safe Algorithms using fewer restrictions on the various models

5.1. Introduction

In this chapter, we assume that at least one model is a quadratic in standard form
with uniformly bounded curvature. The other models and associated trial steps are
only assumed to obey a ‘‘uniform predicted decrease’’ condition. We present model
switching algorithms that are FOSPC under these assumptions. These algorithms are
computationally efficient, even if implemented with a large number of models.
Furthermore, no unnecessary assumptions are made about the alternative models.
Specifically, these models need not be quadratic, and they are not even required to
generate steps which are in descent directions. These algorithms and the theory

describing them thus represent a significant advance in the understanding of this area.

5.2. Preliminary Definitions

We use much of the same nomenclature as in Chapter 4. Standard quadratic models
are defined as in (4.1). Now, however, pred,ﬁ(p) may refer to a general model which
need not be quadratic. The actual function reduction is defined by (4.10), and plp)is

defined as in (4.11).

89
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Definition 5.1 : A set of models {pred}}. k=1.2...., i=12,.. . N, and associated set

of steps {pi} is said to satisfy the uniform predicted decrease condition
(UPD) if there exist c;€ (0,1) and B3 € [0,%0) such that

pred} (pi) 2 c; g !l ming A, 3 . (5.1
3

The UPD condition is a statement about a sequence of models and the associated
procedures for computing trial steps. It is not a requirement on the function, or on

how well the model matches the function.

In Chapter 4, all models were assumed to be standard quadratics with uniformly
bounded curvature. These assumptions were used in two different ways in our
proofs. First, they were sufficient to ensure that FCD and DLC steps satisfied the
UPD condition given by equation (4.5). They were also sufficient to ensure that
FOSPC is not prevented by spurious reduction of the trust radius. The algorithms of
this chapter still require all trial steps to satisfy the UPD condition, now denoted by
(5.1). However, by linking the trust radius reduction logic with the model switching
logic, we show that the inclusion of a single standard quadratic model with uniformly

bounded curvature is a sufficient condition to prevent spurious trust radius reduction.

For standard quadratic models and algorithms which use FCD or OLC
procedures to compute steps, conditions weaker than uniformly bounded curvature are
sufficient to imply the UPD condition. In Chapter 6, we will present some of these

conditions.
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An interesting point is that no requirement is made that pi be a descent
direction. as long as the UPD condition is satisfied. For example, some of the local
minimizers of problem TRS in the indefinite case may be in a direction which
initially increases the function, yet which still result in a sufficient amount of function

reduction.

We will make use of the following definitons. First, recall the e—test from

Chapter 3. The observed error for a given model and test step is defined as
ef(p) =1 ared,(p) - predi(p) | . (5.2)
The set of indices to models available at a given iteration k is defined as

{i:lSISNk} . (5.3)

Any arbitrary partition of /, will be represented by two sets of indices denoted I, and

P

I ¢ which satisfy

ik W) ik =[k (54)
and
ik M i/( =empty . (55)

5.3. Introductory Examples

Under the assumption that using a constant model Hessian is sufficiently less
expensive to compensate for its slower convergence, Algorithm A.4.1 of the last
chapter used a constant matrix as the primary model and the exact Hessian as a

backup. In addition to being inexpensive to work with, constant Hessian
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approximations are natural candidates for safeguarding other models.

Let model one be some arbitrary model of interest which is assumed to generate
steps satisfying the UPD condition. For a constant symmetric matrix B, let model

two be

, 1
pred(p ) ==gip —gp’Bp : (5.6)

The following algorithm always tries model one first, but may change to the constant
mode! ‘© model one exhibits poor performance. The matrix B can be something as

simple as the identity matrix.
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Algorithm A.5.1 : Safeguarding with a Constant Model
0) Let x; € R* ,A;>0. and two models be given.
1) Repeat until convergence :

2) Compute p;’ € A (1.Ay).

3) If pd (pl)<0.01, then
Compute ple AQAY.
If pZ (p)<0.01, then
Set Ay =A; /4 and retumn to 2),

Else set p, =p;’. Ps =p2(pd).
Else

Set py =pi. Px =Pk (D).
End if.

4) Set A=A,
If p/( >0.5 set Ak+1=2Ak.

5) Set x,,; =X, +p, and define model 1 for the next iteration.

6) End

Rather than defining the constant model to be the primary model, this algorithm
always uses it as the backup. The backup model is now assigned the function of
making the algorithm safe rather than accelerating it. This is an example of the
capability of multi-model algorithms to safeguard unproven methods. Notice that this
algorithm will only reject model one if it is performing poorly already and model two
looks better. A badly scaled choice of the ‘‘safe’” model (such as the identity matrix)

will not cause the performance degradation seen in Algorithm A.3.2. Notice also that
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no requirement is made concerning whether or not a failure of the primary model

results in it being ‘‘reset’’ to the value of the backup.

Algorithm A.5.1 has to perform two function evaluations before any trust radius
reduction can be done. Since such reductions are not uncommon, we now give a less

expensive algorithm.

Algorithm A.5.2 : Safeguarding a method with a Constant Model

0) Let x, € R” |A{>0, and two models be given.
1) Repeat until convergence :

2) Compute p,l € A (L,A,).

3 1f pl (pl)<0.01 and ¢ (pl) = Sel (pg). then
Compute ple ARA).
If pZ(p?)<0.01, then
Set A, =A; /4 and return to 2),

Else Set py =py’, px =P¢ (PE).
Else,

Set p =pi, P =P4 (1),
End if.
4) Set Ak+l=Ak'
If Pk 20.5 set Ak+1=2Ak'

5) Set x, . =x, +p, and define model 1 for the next iteration.

6) End

This algorithm is identical to A.5.1 except for the added requirement in step 3).

However, it can often avoid extra function evaluations. Specifically, even if the
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primary model is performing poorly, we need not compute and test a step from the
alternative model unless it does a significantly better job of prediction for the current
trial step than the primary model. Thus this algorithm is highly biased against the
use of the secondary model, even beyond the fact that the primary model is always

tied first.

Because of the its low additional overhead, its high bias toward using the
primary model, and its insensitivity to the possibility of a poorly scaled secondary
model, this algorithm is exceedingly well suited to safeguarding new or unproven
methods. Again, no requirements are made on the primary model other than the UPD

condition. A less simplified version of this algorithm is suggested for general use.

A version of A.5.2 could also be used as a method of deciding when to

“refresh’” a secant model with an  exact Hessian by  using

pred(p ) =—=gip — %p‘ H,p. To avoid evaluating H unnecessarily when performing

the e —test . pred,2(p,') should be approximated by finite differences.

5.4. The Basic Algorithm Framework

We now present algorithms for model switching when at least one model is a
standard quadratic with uniformly bounded curvature and all of the models satisfy the

UPD condition. Algorithm A.4.3 is still used for the basic framework.
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5.5. Computation of an Acceptable Step

The following specifications are sufficient to define the range of allowable options in
step 2) of A.4.3. They differ from those given for type one algorithms only in their

criteria for allowing trust radius reduction.

Algorithm Specification AS.5.3 : Permissible Choices in Step 2 of A.4.3 at
the k! Iteration

Letn>0.0<n, <N, <1, awial trust radius A;> 0 , and a set of N; models
be given.

2.1) We are allowed to accept A, > A, and p, =p; for some model with index i
whenever such a radius, model, and step satisfying both p, =p; € A (i ,4¢)
and pj(p;) 2 M; can be found.

2.2) We are allowed to accept A = A, and py =p} for some model with index i
whenever both p; € A (i ,A;) and p;(p;) 2 My

We are allowed to go to step 2.3) for trust radius reduction only if one of the fol-
lowing holds for the trial steps computed in 2.2) :

Reduction_Test_0 : Every model with index i € [, and associated trial step
pr€ A Ak) for the trial trust radius A, satisfied pi(ph) <My, orif

Reduction_Test 1 : piphy<m, for i e [k . and for every j e [, 3 at
least one i € [, such that wel(pl) > el (o))

2.3) Find some A € (0,A), model with index i, and p; =p! = A(i A,) satisfying
PrPp) 2Ny

In Reduction Test 0, [, is the set of all models. In an implementation of
Reduction_Test_1, I, refers to models for which we have already computed pi and

ared, (p}), while I, is the set of models for which we have not done this
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computation. These two tests are often easier to apply if stated to specify when trust
radius reduction is not permissible. In Reduction_Test_0. reduction is rot allowed if
there exists a step | € [, which satisfies pi(pi)=n,. In Reduction_Test_1. reduction
is not allowed if either of the following hold.

(i) There exists a step | € [, which satisfies piphyzn,, or

(i) If pi(pi)<m, for all i € . and there exists j € [, with

el (pi) s ﬁeé (pi) (5.7)

foralli e fk.

We now consider this algorithm in more detail.

5.5.1. Step 2.1: Internal Doubling

This step is specified identically with type one algorithms.

5.5.2. Step 2.2 : Acceptance of Trial Trust Radius

The conditions for acceptance of a potential step p} are the same as for type one
algorithms. Any step found which satisfies pie A A,) and pi (p,ﬁ)Zm can be
accepted. Even if such a step has been found, the algorithm is still allowed to
compute the test steps from other models. However, the conditions under which we
can reduce the trust _'radius by going to step (2.3) are more restrictive. Two

alternative conditions are shown in AS.5.3 : Reduction_Test_0 and Reduction_Test_1.
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Reduction_Test 0 prohibits reducing the trust radius if any of the available
models generates a step which satisfies p/(p{)2n,. Thus, in a three model system,
even if pl(p,H<n, and pZ(p,S)<n,. p must still be computed and tested before any
reduction is allowed. Reduction is only required if steps have been computed for all
of the models and pj(pj)<n, for each. If n;=n,, notice that the reduction is required

if and only if it is allowed.

Algorithm A.5.1 is an example of logic based on this criteria. Even for this case
where only two models are used. we see that Reduction_Test_0 criteria can lead to

excessive switching.

Reduction_Test_| is much more efficient. Say that we have computed p} and
found pk‘(pkl)<n1. Then we are allowed to reduce the trust radius unless one of the
other models does a significantly better job of predicting the actual function value.
The parameter @ can be adjusted to control the relative frequency between model

switching and trust radius reduction in the algorithm’s search for an acceptable step.

Algorithm A.5.2 is an example of logic based on Reduction_Test_1. Model

switching is suppressed by setting [ to the relatively large value of 5.

Further discussion of condition Reduction_Test_1 is given in Section 5.7.
Reduction_Test 0 is included here only as an elementary example of

Reduction_Test 1, and is not recommended for actual use.
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5.5.3. Step 2.3 : Internal Decrease of the Trust Radius

If the logic in step 2.2) allows an internal decrease, then we can use any procedure to
do so. as long as the final step chosen satisfies p; =pie A(i ,A) for some model with
index i and A, e (0.A,), and ps (pi)2M;. No requirement is made on how the
radius is reduced or whether or not the same model is retained. Therefore both the
NL2SOL (DGW [1981]) tactic of retaining the same model throughout this phase and
the Dennis, Sheng, Vu [1985] tactic of automatically switching after 5 unsuccessful

decreases are admissible.

For quadratics (and most other reasonable models), Procedure A.4.5 is assured
of finding an acceptable step in a finite number of minor iterations. This is not
automatically true for all models. A trivial example is
lgip |

Ny
which satisfies the UPD condition for any p yet does not satisfy p,ﬁ(p)an as

pred,i(p )= (5.8)
lipll 0. Models of this sort are unlikely, but if they are included in the algorithm,
Procedure A.4.5 will still find an acceptable step in a finite number of minor
iterations if it switches models every time that a fixed number of internal decrease

steps have been unsuccessful.

We give the following procedure for a two model algorithm with ¢ the index of
the current model and-a the index of the alternate. A new parameter is introduced:

the integer j. € [1,20) . The function mod (j.j.) is the standard ‘‘modulus’’ operator

that has value O if and only if j=j,. The portions of the procedure involving j. are
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included to guarantee successful termination of the inner reduction loop for general
models and are are not essential if both models are quadratics. A suggested value for

Jo 185,

Procedure A.5.4 : Internal Decrease of the Trust Radius

Let v, (0,1). ny€ (0,11 and j. € [1,°) be given.
For j=1,2,...do :
Set Ak € (O’YI Ak ].
Compute pg € A(c.A).
If pS(pf)zmy. then set X, =X, +p; and exit.
If mod(j,j.)=0, then

Switch model preference by switching the indices a and c.
End if.

End for.

Again, this procedure is not required if both models are quadratics in standard form.

5.6. External Modification of the Trust Radius

The following specifications are sufficient to define the range of allowable options in

step 3).
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Algorithm Specification AS.5.5 : Permissible Choices in Step 3) of A.4.3 at
the ki Iteration

Let y;2 1 be given.
3) Choose a new trial trust radius for the next iteration as follows :

3.1) Do one of the following :
3.1.1) Choose an increase factor T € [1.%3],
3.1.2) Or, if test Reduction_Test_0 or Reduction_Test_1 was satisfied at the
last point of phase 2.2),
then we are allowed to choose a decrease factor T € (0,1].

3.2) Set the new trial radius to T4, .

As in type one algorithms, a trust radius increase by up to a constant factor is
always allowed. If a trust radius decrease is allowed, it can be done in any fashion
desired. However, the test allowing reduction is more stringent, in that plphHEm,
for the step selected may not be a sufficient condition to allow decrease if , for

example, p/(p{) =1, for an alternative model.

5.7. Algorithm Efficiency and the Parameter o

As stated previously, a multi-model algorithm must not require significantly more
work per iteration than a single model algorithm. The parameter U in
Reduction_Test | allows us to control the amount of model switching in a very
natural manner. As W — oo, the algorithm becomes indistinguishable from a model

selection algorithm. As p—0, the algorithm becomes indistinguishable from one



102

which always tests all models before allowing a trust region reduction.

NL2SOL uses p=1.5, which was experimentally found to be sufficiently large to
prevent excessive switching, but small enough to keep the trust radius commensurate
with the **best’’ model.! No preference is given to either model a priori (other than
the hereditary preference), but W can also be used to bias toward a model with a

lower overhead.

Suppressing switching by choosing [ to be large is natural precisely because of
the conditions under which it allows switching. A value of 100 will make model
switching extremely rare, yet switch if the performance of the alternative model is

undeniably superior.

The use of more than three possible models is somewhat speculative, but could
occur in, say, an expert system code for optimization. Even for a large number of
models, this type of algorithm is efficient. Consider N,=16 and pu=2. If the initial

trial model yields pl(pi') <My, then the alternatives are scanned for those which are at
least twice as good at predicting the actual reduction: eliph g -é— eld). Say,

pessimistically, that models 2, 3, ..., 8 all satisfy this condition. Then models 9, 10,
... 16 can be dropped from consideration, and we choose the remaining model with

the smallest value of ¢j(p,}) to compute the next trial iterate. Now we scan models

3,4, ... 8 to find any which are twice as good as model two at predicting the actual

.

| This value offers support to stochastic arguments based on the central limit theorem which sug-
gest a value of uzyw; when N, models are available to the system. However, there are no computation-
al results in existence for N,>2, so this suggestion should be treated as speculative.
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reduction. Again being pessimistic, models 3, 4 and 5 might be accepted, and

assuming ¢ (p A <ef(pd), ed(pl). we compute the potential iterate p.. Being

. . . 1
pessimistic a final time, suppose e,f(p,f) < ?e,}(p,g).

Now, it is unlikely that this point would have been reached, but suppose it has
been. Then model 4 has predicted ared, (pl) twice as well as model one, has
predicted ared, (pg) twice as well as model two (which itself was the best predictor
for ared, (p,!) ), and now predicts ared, (p?) twice as well as model three (which
itself predicted ared, (pkz) very well). Under such conditions an algorithm would be

unreasonable if it did not investigate model 4 before reducing the trust radius.

Thus, even for relatively large N, and small p, the algorithm should spend only

as much effort in switching as is justified.

These arguments are somewhat hypothetical, but if logic is included in the
switching algorithm to increase i to a large value after two models have

unsuccessfully computed steps, then it should be clear that excessive model switching

during an iteration is not a valid concern.

It should not be assumed from this discussion that p should always be chosen to
be a large value. Such an approach is conservative with respect to making the most
use of the different models. For any given application an appropriate i should be

found to ensure a reasonable tradeoff between alternatives.
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5.8. Global Convergence Theory

Consider the following conditions.

(A) At every iteration k and for every i€/, pie A(i,A,) implies that
predf (pi) 2 cy Il g !l min{ A, , 1l g, II/B3} for some c3e (0,1) and B3>0
independent of k.

(B) At every iteration k& and for every i€/, pie A .A,) implies

llpill <(1+0,) A for some o, € [0, 1) independent of k.

(C) At every iteration k. ¢ € [, such that pred{ is a quadratic in standard form

and Il BJ 1l <B, for some B,>0 independent of k.
We then have the following.

Theorem 5.1 : Let x, € R” and f satisfy the standard assumptions. Suppose that an
algorithm implemented consistently with A4.3, AS.5.3, and AS.5.5 is applied
to f starting from x,, and let conditions (A), (B), and (C) hold. Then the
algorithm generates a sequence {x,} which has the descent property.

Furthermore, g, — 0.

Proof : This proof is in three parts. In (1) we establish the existence of {x}
and the descent of {f Q’rk)}. In (2) we assume that {x; } remains in Q,, for all k 2m
and show that this leads to a contradiction. In (3) we prove the main result by

appealing to Theorem 4.4.
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(1) We first show that a sequence {x,} satisfying the conditions of the algorithm
exists and has the descent property. Since Ny <o the algorithm will eventually either
find a satisfactory step p, with A, >A,., or proceed to step 2.3) for trust radius
reduction. In the latter case, consider any & 21 for which x, € L(f ,x;). Since at
least one model at every iteration is a standard quadratic, Lemma 4.2 establishes that
there exists a >0 and index i for which A, <8 and pj; € A (i ,Ay) imply ps(p{)>n,.

Thus for A, sufficiently small, the algorithm can find? a satisfactory step pj.

Furthermore, any step py =p. accepted by the algorithm must satisfy the

condition pj(p}) = 1, which with (A) implies

Bs

aredk(pk)Z N3 “gk“ mln{ Ak s >0 . (59)

But x, € L(f x) so that, by induction, {x; } exists and satisfies the descent condition.
(2) Let Q,, be defined as in (4.19), i.e.

Heg, Il
Qms{x:llx—xm||<—&— andxeL(fx)}.
2B,

Consider any m 21 with Il g, |l 0. We want to show that some later iterate x; is

not in Q,,.

First, we will establish some properties for any x; € Q,,. Lemma 4.3 implies

had

? Recall that we did not specify how the algorithm would find p, and i, but merely stated in step
2.3) that they are to be found. In this theorem we show that permissible values exist, and hence by
the statement of the algorithm, they will be found. In practice, one would use an procedure similar to
A.5.4, just as one would use Procedure A.4.5 with the algorithms of Chapter 4.
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g, I Z—;—Hgmll (5.10)

so that (A) implies

o g Ml
predi(pt) = c3 gl mind A, 5
3

(5.1D)
' g,
cy g, Il min< A, , 25, :

2

| —

Let ¢ be the index of a standard quadratic models satisfying condition (C). From

Lemma 2.6, (B), (C), and (SA3)
ef (pi)=1ared, (ph) - predi(p)) |

1

< | o) (BE = Hx +Ep) )pi) (1-§) dE
0 (5.12)
< %(1+01)ZA,3([31+[32) :
Let the scalars 8, and §,; be defined as
cy Il gy 1! (1-my)
8y = - 3g : (5.13)
273 (1+06)° (By+Py+P3) maxip, 1}
and
3t =(l+0)1 9,
cyll g, Il (1-1m,) (5.14)

2 (1+0,)% (By+B,+PBs) max{p, 1}

While still assuming that x;, € Q,,, let us further establish some results for any

A, <8}, Since c3<1, (5.14) implies 4, < , 50 (5.11) reduces to

| g
2B,
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o |
P’edé(Pi)Z—i% gl Ay . (5.15)
Hence
y el (pi)
| 1 - 1( l)! = . :
Pe 1Pk | pred; (p;) |
- (5.16)
2ep(pi)
- C3 HgmH Ak

Therefore for any A, <3, and x, € Q,,.

(1+0)°
I 1-pd(pd)| < ( By +B2) A
Cy HgmH
(1+0)*
———(B; +B,) 3, (5.17)
C3 ”gm”

<L-np<i-n
2
and
2-n>pf@H>N2 - (5.18)
Now that we have established these results for any A, <93, and x, € Q,, we can
proceed with our contradiction.

Consider any [l g, || #0 and suppose x, € Q,, for all k 2m .

(2a) By supposition, 1l g, Il #0 and x;, € Q,, for all k 2m . Suppose further that lim
k oo

supA, <8,,. Let k be the smallest integer for which k>m and A, <3, for all k 2k.
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For any A <9,,, AS.5.3 and (C) imply

Ay syvimax { A pe b Y Sy (L+0)) A (5.19)

< yv(l+o)d, < 9.
Hence (5.18) implies that for every & >k, any pfe A(g A,) computed in phase 2.2)
satisties
péd) >, . (5.20)
Thus, if g fk, no reduction of the trust radius is allowed. Furthermore, if ¢ € [, and
pl(pi)sm, for some i € fk,
el (pi)

| predi (p) |
and hence by (5.14). (5.15) and (5.19)

=l 1-pi(pi)] 21-m, (5.21)

el (pl)=(1-m,) | predi(p}) | z%(l—vm ey gl A
=(By+Po+P3) (1+0, ) max{p. 1} 8 A, (5.22)

>(By+By+B5) (1+0,) max {p, 1} A}

so that (5.12) implies
et (pi)>2max (. 1}Yef (pi) 2 nef (pi) - (5.23)
Therefore phase 2.3) cannot be executed, and hence A, > A, for every k >k.

We next show that if x, € Q, for all k >m, then A,,;=A,. Consider the
computation of A, as specified by AS.5.5. Since A, £3,,, (5.20) and (5.23) and the

definition of the algorithm imply T2 1. Therefore
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Apsr = T 284 (5.24)

for every k >k. Let 8 =A;,,. Since A, 24, and A, 20, forall k >k,

linl,TfA" > 9,>0 . (5.25)
Hence, either
5, > limsupA, 2 liminfA, 2 5, > 0 (5.26)
k —> oo k — oo ’
or
lim supd, 2 6, > O. (5.27)
k — oo

In either event, lim sup4, > O.
k> e

(2b) By supposition, g, Il #0 and x, € Q,, for all k2m . Conditions (5.9) and

(5.10) imply
fi = feo1 = aredy(pf) (5.28a)
> 1, predi(p}) (5.28b)
1 ol g, Il
> —
23 Ny c3 gy, !l ming A . 25, . (5.28¢)

By the standard assumptions, f is bounded below so that the descent condition

implies klim (fix =fr+1)=0. Therefore klim A, =0, which contradicts (2a).
- o0 —) 00

Hence, for every m with Il g,, Il #0, there exists  >m for which x_ €Q,,.
m

(3) Part (1) of this proof showed that {x,} remains inside L(f x,), and part (2)

showed that for every m with Il g, Il #0, there exists @ >m for which x_ ¢Q,,.
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Hence, eventually some x_ must satisfy

g, Il
2B,

Wx_—x, Il 2 (5.29)

Therefore, Theorem 4.4 implies that {g, } converges to zero. [ ]

5.9. Other Allowable Options

It is instructive to consider several slight variations to the previous algorithms. Two

which will prove useful are as follows.

Algorithm Specification AS.5.6 : Permissible Modification to AS.5.3 and
AS.S.5

Let 8,>0 be given.

(a) Regardless of any of the previously specified logic, we are allowed to reduce
the trust radius via step 2.3) or 3) at iteration k whenever A, >8;. If
A, 3, the previously specified logic must still be applied.

(b) Regardless of any of the previously specified logic, we are allowed to reduce
the trust radius via step 2.3) or 3) at iteration k wheneve: A, > !l g1l for
some [ <k , g, #0. If A, <§;11g,!l . the previously specified logic must
still be applied.

Theorem 5.2 : Let x, € R” and f satisfy the standard assumptions. Suppose that an
algorithm implemented consistently with A43, ASS53, ASSS5, and
modification AS; .6 is applied to f starting from x|, and let conditions (A),
(B), and (C) hold. Then the algorithm generates a sequence {x,} which has

the descent property. Furthermore, g, —0.



111
Proof : The proof of Theorem 5.1 need only be modified slightly to obtain
these results. AS.5.6 differs from AS.5.3 and AS.5.5 only in the trust radius

moditication logic, and hence only section (2) of the proof is affected.

To establish the result given modification (a), we need merely define 3, by

. 8o cy il gy, |l (1-n3)
6m = min - , 3 (5.30)
1+061)  2y3(1+0;)° (By+Pp+B;) max{p. 1}

rather than by (5.13). With (5.13) replaced by (5.30), the hypotheses in section (2a)
of the proof imply that A, €8, Hence, throughout section (2a), the trust radius

modification logic of AS.5.3 and AS.5.5 must be used.

To establish the result given modification (b), define
(5.31)
By hypothesis, for any k 2m, x; € Q,,, so for any / <k, either

(i) [ <m and Il g, Il 28%, or

(i) [ >m and Il g, Il >-;— I g, Il 28%, so that &Il g, Il >3,8%>0. We then replace

(5.13) by

5,5/ g, I -
5, = min{ ——"—, ¢ 8 (I-m) | (5.32)
B(1+0) " 2y (1+0,)° (By+By+B3) max{u, 1}
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With (5.13) replaced by (5.32), the hypotheses in section (2a) of the proof imply that
A, <8, g, Il. Hence, throughout section (2a), the trust radius modification logic of

AS.5.3 and AS.5.5 must be used. []

AS.5.6 is useful in the case where evaluating ¢/(p;) for the model with index j
is expensive. For example, in deciding between continuing with a secant model or
resetting the model Hessian to the exact Hessian, performing an e —test for a trial step
p involves either calculating the exact Hessian immediately or approximating the
second directional derivative of f in the direction §. Option (i) in AS.5.6 allows us
to specify that the e—test is not to be done if the trust radius is greater than a
specified minimum. Furthermore, consider any iteration / at which a restart is
performed. Examination of (SA3), Lemma 4.2 and the inequality (4.42) applied to
B, =H, shows that if an internal doubling procedure is executed after each reset, the
step selected must have norm greater than 31l g1l for some >0 independent of k.
Hence, option (ii) in AS.5.6 shows that an acceptable method for deciding when a
reset is needed is to save the norm of the step taken at the last reset and execute a

reset when the current trust radius drops beneath a fixed fraction of this norm.
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Algorithm Specification AS.5.7 : Permissible modification to AS.5.3 and
AS.5.5

In addition to the logic previously specified for step 2.2) of iteration k., we are al-
lowed to accept A, =4, and p, <(1+06)A; if there exists a model with in-

dex i and step pi e A (i A,) for which p,ﬁ(p,ﬁ)an and ared, (p, ) 2 ared, i)

Theorem 5.3 : Let x, € R” and f satisfy the standard assumptions. Suppose that an
algorithm implemented consistently with A4.3, ASS5.3, ASS5S5, and
modification AS.5.7 is applied to f starting from x|, and let conditions (A),
(B), and (C) hold. Then the algorithm generates a sequence {x,} which has

the descent property. Furthermore, g, —0.

Proof : To establish the result for modification (b), we need only change

(5.28a) to

fi ~fro=aredy(p,) Zzaredy(p;) . (5.33)

The remainder of the proof is unchanged. []

AS.5.7 is motivated by the switching logic in NL2SOL. Let us denote the
currently preferred model by ‘‘c’’ and the alternative by ‘‘a.”’ The switching logic of

NL2SOL is admissible under AS.5.3, AS.5.5 and AS.5.7 except in one instance, when
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we have

PE(H<M,. and e (pg)>Hel(pi) (5.34)

and
ppd) 2N, , and ared, (pg)>ared, (DP). (5.35)

Now, since NL2SOL selects its new model based on the largest actual reduction in
this case, the current model pred; is retained. Furthermore, NL2SOL bases its
decision about trust radius reduction on pS(pf) even though pf(pf)=n, (which would

prohibit trust radius reduction in our framework).

If n,>pi(pf)=n,, then the logic of NL2SOL will reduce the trial radius before
the next iteration, but will also try the alternate model first at the next iteration since
s> el (pg). It can be shown that this switch and the ‘‘internal doubling’’ logic
of NL2SOL are sufficient to negate the effects of the trust radius reduction when A,
is sufficiently small. However, if p{(p{)<n, an internal reduction cycle is executed
which terminates with no assurance of a model switch. We therefore prefer the

following.

For the instance where 1, >pf (pg) =1, we consider the decision not to reduce
the trust radius to be the superior strategy (particularly if the alternative model is to
be tried first next step anyway). The decision to select p; is also superior and is

allowed by AS.5.3 and, AS.5.5.

If pf(pg)<n,, AS.5.7 allows p¢ to be selected also as long as no reduction is

subsequently done. We support our arguments against decreasing the trust radius by
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pointing out that model a’ did a significantly better job of prediction than model
¢ by two different criteria, while model **c”’ picked a good direction but predicted
the reduction poorly. The possibility that model “‘c”’ selected the better step by
serendipity is strong enough to support not reducing A,.

The following algorithm is an example of a two model system with no a priori
preference between models. It is quite similar to NL2SOL, but with the changes
noted above. The index ‘‘¢’" again denotes the currently preferred model, while “‘a’’

denotes the alternative.
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Algorithm  A.5.8 : Nonpreferential Model Switching

0) Let u>0, 0<n <N, EN3<l, 0<y <1y, €73, A >0 and x; € R” be given.
Set t=1 and select a trial model c.

1) Repeat until convergence :
2) Compute pg € A (c.Ay).

3) If pi(pg) <M. then
If ef(pd) < —::e,f(p,f), then
Compute pfe A(a.Ay).
If max { pi(s), pLwE) } <N, then go to 5).
If pipdy<n, then set Te (0,7, ].
If ared, (pg) 2 ared; (py), then
Set Xy =X, +Pk-
Goto 7).
Else
Set X =X +Dk-
Switch @ and c.
Go to 7).
End if.
Else
If p{(pg) <M, then go to 5).
Set x; 1 =Xg +Pk-
Sette (0,7 ]
Go to 7).
End if.
End if.

4) Set ka =X +pkL
If p{(pf) 25, then set T€ [v2,73].
Goto 7).
5) Do internal reduction via Procedure A.5.4.

6) Set x; . =X, +Df-

7) Set A/(+l =tAk.



117

8) Set t=1, update the models, and
select a trial model for initial use in the next iteration.

9) End.

If both models are quadratic, Procedure A.5.4 in step 5) can be replaced by A.4.5.

Corollary 5.4 : Given the assumptions of Theorem 5.3, Algorithm AS5.8is FOSPC.

Proof : Follows immediately from Theorem 5.3, Lemma 4.2, and examination

of the algorithm. []

Another possible option for these algorithms is to include logic which explicitly
uses knowledge about which models are quadratic with uniformly bounded curvature,
and which models are only known to satisfy the UPD condition. For example, we can
show that it is admissible to decrease the trust radius whenever pd(pf)<m,, or if
0l <M, and pef (pf)>ef(p{). where the model with index g is known to be
quadratic with uniformly bounded curvature. However, the only use these changes
might have would be to increase the efficiency of a system with several models by
allowing A, reduction without having to do as much testing between models. Since
this task can be done better by simply increasing the value of u, we find nothing to

recommend such preferential logic.

5.10. Summary : Type Two Algorithms
Definition 5.2 : The .general Algorithm A.4.3, when applied consistently with the
specifications in AS.5.3, AS.5.5, AS.5.6, and AS.5.7, is called a type two

algorithm.
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This class of algorithms admits a very broad range of implementations of model
switching and trust region logic. In particular, the major features of NL2SOL
switching logic are admissible. There is no restriction on the number of models
allowed. or on the method of choosing an initial trial model, and the algorithm is not
required to use a priori information specifying which model has uniformly bounded
curvature. There is no requirement forcing continuation of the switching logic tests
once a trust radius reduction phase has started, and no requirement on how the trust
radius is decreased as long as such decrease is allowed and as long as a satisfactory

step is eventually found.

Furthermore, the class of algorithms based on Reduction_Test_1 can be
implemented with high efticiency, even for a large number of models. These
algorithms can be written to bias toward the use of a particular model if it is known
to be inexpensive or suspected of being faster than the alternative, or they can treat

the models solely on the basis of their performance as in NL2SOL.

Finally, only two requirements are imposed on the models. At least one model
must be a quadratic in standard form with uniformly bounded curvature, and each of
the models and associated procedure for computing a trial step must satisfy the UPD

condition.



CHAPTER 6

Safe Algorithms using Minimal Restrictions on the Models

6.1. Introduction

[n this chapter, we only assume that one model is a standard quadratic with uniformly
bounded curvature. It is implicit in the definition of the previous algorithms that the
number of models need not be constant from iteration to iteration. Thus any type two
algorithm that deletes all models not known to satisfy the uniform predicted decrease
condition is still first order stationary point convergent. Alternately, if all such
models are modified so that the condition is assured, then any type two algorithm
using these models is first order stationary point convergent. A type two algorithm
that deletes or modifies models not known to satisfy the uniform predicted decrease

condition is said to be a type three algorithm.

6.2. Enforcing the UPD condition by Direct Methods

One technique for ensuring that (5.1) holds for each pi considered is to directly

enforce such a condition. The expression

Il g, Il
minred, (A )=cqll g ll min{ Ay, zk } (6.1)
k
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can be used to decide whether to delete a model and its associated trial step from
consideration at the current iteration. The parameter c( is set to a value in (0,0.5).
The variable £, >0 is an overestimate of the maximum curvature of f. It can be set
to a constant value, such as 10, We then define

false if pred} (pi ) < minred (Ay)

UPD Test} (Ay)= (6.2)
true  if pred) (pi )= minred, (Ay)

6.2.1. A Globally Convergent Modification of NL2SOL

The following algorithm is a modificaion of Algorithm A.5.8 that is globally
convergent under even milder assumptions on the models. Specifically, one of the
two models used is assumed to be a quadratic in standard form, but no assumptions
whatsoever are made concerning the alternate model. The model switching scheme is
a very slight variation of that used by NL2SOL. The algorithm itself can be applied
to NLS or general unconstrained optimization. For simplicity we have left out the
internal doubling option. As in Algorithm A.5.8, the current model is denoted by the
index ¢ and the alternate is denoted by the index a. One of the models, denoted by

the index ¢, is a quadratic in standard form.

Algorithm A.6.1 : A Globally Convergent Model Switching Algorithm

0) Let >0, coe (0,0.5), 0<n smpsns<l, 0<y<1SVSY3, Jje € [L,=), 4;>0 and
x; e R all be given.
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Select a trial model with index c.
1) Repeat until convergence :
2) Compute an overestimate &, to the curvature of the problem.
3) Compute p; € A(c.Ap).

4) If ¢ #q and UPD_Testf (A,) = false, then
Switch model preference by switching the indices a and c.
Compute p; e A(c.Ap).
If pé(pf)r<m, then go to 8).
End if.

5) If pf(p¢) 2Ny, then
Set X, =% +Pk-
If pi(pf) 25 then set Te [v2.13l.
Go to 9).
End if.

6) If ef(pi) < i"ﬂ"“’ then

Compute pie A(a Ay).
If a #q and UPD _Test{ (A,)= false, then
If pi(pg)<m, then go to 3).

Set te (0.v, ).
Set xp. =X +pk-
Go to 9).

End if.

Set p, =max (pg (pg).pé (PO}
If p, <m, then go to 8).
If py <ny then set te (0,v, ]
If ared, (pf)2ared, (p?), then
Set xg. =X +pk-
Go to 9).
Else,
Set Xes1 =X +p/?.
Switch a and ¢.
Go to 9).
End if.
End if.

7) If pi(pe)2n,, then
Set Xp+e1 =Xk +p/f
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Set te (0.74].
Go to 9).
End if.

8) For j=1.2.... do:

Set A, € (0,74 1

Compute p; e A(c.A).

If c #g and UPD _Testi (A,)= false, then
Switch model preference by switching the indices a and c.
Compute p; e A(c.Ag).

End if.

If pS(ps)=ny, then set x,, =x, +p; and go to 9).

If c #q and mod (j.j.)=0, then
Switch model preference by switching the indices @ and c.

End if.

End for.

9) If t< 1 then set Agy =TIl X =2 1,
Else set A, =TA;.

10) Set t=1, update the models, and select a trial model for the next iteration.

11) End.

Several features of this algorithm deserve comment. First,. the parameter j, is
the integer introduced in Procedure A.5.4, and the function mod(j.j.) is the standard
““modulus’” operator that has value O if and only if j=j.. The portions of the
algorithm involving j, are included to guarantee successful termination of the inner
reduction loop 8) for general models and are are not essential if both models are

quadratics. A suggested value for j. is 3.

Second, this algotithm is much less complicated than superficial appearances
might indicate. Denote the alternative to model g with the index d. A.6.1 differs

from A.5.8 only in that it deletes model d and step p,f if predf ( p,f ) is not as large as
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Third. no restrictions are placed on how the new trial model is selected at the
end of each iteration. This decision could be made by any of the tests for model
selection discussed in Chapter 3. Another possibility is to continue to use the model
which was successful at the current iteration. Yet another would be to initially try

the same model at every iteration.

Using the theory presented in Chapter 5, we can establish conditions under

which this algorithm is globally convergent. Consider the following specifications.

(A) One of the models, denoted by the index ¢. is a quadratic in standard form for

which lim sup |l BF Il <eo .
k — oo

(B) If pfe A(q.Ay), then p{ is either an FCD step or an OLC step.
(C) For every i, pj € A(i.A,) implies |l p{ Il <(1+07)A, for some oy¢& [0,1).

We then have the following result.

Theorem 6.1 : For a given x € R", assume that f satisfies the standard
assumptions and that (A), (B), and (C) hold. If A.6.] is applied to [ starting
from x| and {E, ) is bounded, then the algorithm generates a sequence {x, }

which is FOSPC.

Proof : Any step p, accepted by the algorithm satisfies ared, Pe)>0, so {x;}
remains within L (f ,xlj. Inspection of A.6.1 shows the existence of p; unless step 3)

is unable to find a step satisfying ple A(i,A) and p,ﬁ(p,ﬁ)an. But after j. <oo
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executions of this loop, the model preference is switched to ¢. Condition (A) states
that this model is a quadratic in standard form; and Lemma 4.2 establishes the
existence at each iteration of a positive scalar & for which pfe A(q.4;) and A, <3
implies pf(pf)=n,. Since y; <1, the algorithm must eventually either accept a step
with A, >8 or set A, <d. Hence A.6.1 successfully generates a step p, at every

iteration.

Next, conditions (A), (B), and Lemma 4.1 imply that the model with index g
generates steps p{ satisfying the UPD condition. [f the model with index d generates
a step not satisfying pred@(pf) 2 minred, (A;), it is deleted from consideration. Since
{€x } is bounded, each step pi considered satisfies the UPD condition. Therefore this

algorithm is an admissible variation of AS.5.7 and thus is FOSPC by Theorem 5.3.

U

6.2.2. Some Remarks on Direct Methods

Direct tests, such as used in the last example, are conceptually different from other
tests we have presented. Notice that A.6.1 deletes models and associated steps before
evaluating the actual function reduction. Direct tests should therefore be thought of
as a way of limiting which models to include in I, at a given iteration and should not

be considered part of the model switching logic per se.

Moreover, great care should be taken in implementing these tests as they can be
scale dependent. Suppose, for example, that a NLS algorithm using a secant model

and a Gauss-Newton model sets c,=0.5 and defines the sequence (€} by
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=1 ) Ty . If S(x) is positive definite, || H (x) Il may typically be much
larger than !l J(x)"J(x) !l so the secant model may be deleted even if it does a
much better job of predicting the actual function reduction than the Gauss-Newton
model. Even more striking is the case of using the identity matrix for B¢ and using a
secant method to generate the other model Hessian. A naive implementation might set
co=0.5 and &, =Il 7 Il =1. Again, the secant model may be frequently rejected in
favor of the model using Bf =/ even if it does a much better job of predicting the

actual function reduction.

To avoid spuriously deleting valid models, ¢, should be set to a very small
value. We suggest ¢=0.001. As previously stated, the sequence {&;} should be an

overestimate to the curvature of the problem.

On the other hand, direct tests have several advantages. They are simple and
inexpensive to implement. They can be applied to any models whether quadratic or
not. Also, use of minred, to delete models is much better than, say, deleting models

which violate Il Bi Il >E,.
6.2.3. Estimating an Upper Bound for the Curvature of a Function

Direct tests are less sensitive to the scale of the problem if the curvature estimates
used to define &, are determined from the behavior of the function, rather than from

the curvature of one of the models. Such estimates can be produced as follows.

Consider a secant method for ‘‘updating’’ a model Hessian B,. Such a method

generates a new model Hessian B, satisfying the secant equation
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Bie1 Dk =i (6.3)
1

for some y, € R". Define ﬁkHEIH(xk +Ap,)dA and recall that Lemma 2.4
0

established

1
[H (e +Ap D dh=gpn -8 (6.4)
0

Thus, if y, is defined to be g,.; — g, a matrix B, satisfying the secant equation has
roughly the same curvature as H,,, in the direction pi- For nonzero p,, this suggests

the curvature estimate

4
Pk Biv1 Dk
Eke1=maxy &_y, -
PiPi
(6.5)
| pi i |
= maxd &y, ———
PiPr
This estimator is bounded if there exist 3,>0 such that
L piye | <Bglt pp 112 (6.6)

For the standard definition of y,, this is easily established.
Lemma 6.2 : For a given x € IR", assume that f satisfies the standard assumptions.

For any x, ., and x; in L(f x), let y, be defined as

Ye =8k+1 8k - (6.7)

Then
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Lyipe | <P pel® (6.8)

Proof : From the Cauchy-Schwartz inequality, | y¢p, | < Hp ! 1y Il Lemma
2.5 and (SA3) imply Il g.; —gi Il <By Il pi!l. which leads immediately to the result.
[

Other formula are sometimes used to define y,. Alternate definitions of y, have

been created! for NLS problems in order to take advantage of the problem structure.

For most of these alternate definitions, mild conditions on r are sufficient to establish

bylipe |
t Tli)—kﬁ; is bounded. For example, DGW [1981] make the definition
P ”

tha
Ve =S irest =JEres ¥ e Jer1 Pe - (6.9)

Consider the following conditions.

(1) The sequence {x, } satisfies the descent property with respect 1o
Flr =~ lreol 3
2

(i1) There exists B, <o such that for any x € L (f .x ), o)l <By.
(1ii) J(x) is Lipschitz continuous over L(f x;) so that for every x ,y € L{fxy)
we have Il J(x)=J () 11 By, I x =y Il

Lemma 6.3 : Let y, be defined by (6.9) and suppose that (i), (ii) and (iii) above are

true. Then there exists Py <o such that

! See, for example. DGW [1981], Dennis, Sheng, Vu [1985], Betts [1976], Dennis (1973], and
Al-Baali, Fletcher [1985].
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| yipe | <Ballp 12 . (6.10)
Proof : First, we have

Vipe =Pk by =T rest +Pid et k4 1Px

(6.11)
=11 oo |12+ pi [j(xk +pe ) =T (x )’] Tk+l

From the Cauchy-Schwartz inequality
oyl 171 p 2 1 [ S Geptppt =7 et | e

so that applying (i), (ii) and (iii) gives

| piye | S[BJ 24+ Bup I gy Ml } 112
S[BJ 2v+B1ip \fo(xk) ] ”pkH2 (612)

S[B12+Blip N2f(xy) ] llp, 112

Therefore defining B4=B, *+B;;, V2 f (x}) completes the proof. 1

We make use of the following procedure to compute &, .






129

Procedure A.6.2 : Computing a bounded overestimate £, for the curvature
of a function

If k=1 then set & =108
If k>1and Il p_; 1l #0, then

t
Set &k = maX{ &k—l’ IOOX&:}}p—-k——I- }.

Dk-1Pk-1

End if.

Implementation of this procedure under the assumptions of Lemma 6.2 or
Lemma 6.3 generates a bounded sequence {£,} which can be used in A.6.1 or other

algorithms using direct tests to enforce UPD. An alternative is to use a fixed

curvature estimator, such as &, = 10°.

6.3. The UPD Condition and Quadratic Models

In Chapter 4, we considered quadratics in standard form and assumed that steps were

computed using FCD or OLC procedures. Lemma 4.1 established that

lim sup Il B} Il <oo
! _)wP k (6.13)
is sufficient to imply the UPD condition for the model with index i. However, much
weaker assumptions can be used to establish the UPD condition. These weaker

conditions differ not only for different categories of models but also for different step

generation procedures.
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Before proving our theorem, we review the following results concerning

quadratics in one variable and their extrema. Consider a nonzero vector w € R". For

a quadratic model in standard form at iteration k¢ with model Hessian B} we have

pred} (ow)=—0gfw ——12—a2w‘ Biw

Now, if w' B,ﬁ w >0, we have that

maximize pred,i (oow)
[0

fw

is solved by o =— L—- with
w! By w

1 (giw)
red ((1* w)ys— ——.
Preck 2 w'Biw

Furthermore, for ae [0, a’]

—%g,ﬂ w <pred, (dw )<—0giw

If w'Biw <0, we have that

pred, (Ow)=—0giw.

for all . We then have 3 possible cases in solving
maximize pred} (o.w)
o

sitllawll A,

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

(1) If w'Bjw>0 and Il o"w Il <A, then (6.19) is solved by o as before, with

maximum
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) 1 (gfw)?
red, (0. w)=— . 6.20
predy 2 wiBiw (6.20)
() Ifw'Bjw>0and lla*wll >A,, then (6.19) is solved by
o =—sign (giw) A/ 1Twll (6.21)
with maximum
: g w 1 ., w'Biw
di (o w) = si [w) ———A, — —A}? 6.22
predi (0. w) = sign (g w) Twil % = 22002 (6.22)
Furthermore
lgfwl . lgiwl
Lp B2 < predi (o w) < Ay —E (6.23)
2 Hw il Hwll

(3) If w’B,ﬁw <0, then (6.19) may have either one or two local solutions

Ay

corresponding to o =% T If g{w =0, two maxima exist with
w
2
. 1 Ak .
pred,ﬁ ((1*** W)=—E [m] WtB;zW . (6.24)

If not, the global maximizer is unique so that

o =—sign (g} w)i— (6.25)
T ‘
and
2
P ! Ak 1 Ak (b
predf (o w)=lgiw| ———-— w!Blw . (6.26)
Hwil 2 [ Hwll

In either event, the maximum is given by (6.26). Furthermore,

lgfwl .
Ay —I%—W—Spred,g (o™ w) . (6.27)
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The following theorem applies to quadratic models that use FCD or OLC

procedures to generate trial steps.

Theorem 6.4 : Consider a quadratic model in standard form with model Hessian B,ﬁ

and an associated step p,ﬁ.

(a) If p,ﬁ is an FCD step with constant ¢ >0 and

8i B g <PBsgig: (6.28)

for some B3>0, then

o il g ll
predj (p,é)Z—;—cngk ||min{Ak, ‘;" } . (6.29)
3

(b) Let p} be an OLC step with constant ¢,>0 and let w, € R" be a nonzero

vector satisfying

wi B wy <Bgwiw, (6.30)

and
| giw, | 24 lgell 1wl (6.31)

for some B4>0, €4>0. Then

o g ll g, |l
pred} (p,é)?.%cze‘tll g ! min{ Ay %} . (6.32)

Proof :

(a) Let p} be an FCD step so that
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pred} (pi)=cmaxpred; (g )
o

(6.33)

sit gl <A,

Now let w be replaced by g, in (6.19), (6.20), (6.23) and (6.27) so that (6.28)
implies
P Mgl 1 sig

pred,ﬁ(p,ﬁ)chmin _—— A T

(6.34)
1 Il g, !
>—cyllg,ll mn{ Ay, ———¢
> €118k mm{ k B
which establishes the part (a) of the theorem.
(b) Let p} satisfy OLC condition so that
pred,i (p,ﬁ )2Cy maxpred,f »)
p
sillpll <A,
(6.35)

Zczmaxpred,i (owy ).
04

sit low Il <A,

From (6.19),(6.20), (6.23), (6.27), (6.30) and (6.31) we obtain
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o | gfw, |2 | giw
pred} (pi)2c,min —1-———gk k 1 KTk

2 W/iBliwk 2 k ”Wk”

| 2

T27? wiBiw, ok W, I
(6.36)
= Hg !l ming A,

wiBiwy

CHE €
> 2% j1 gl mind Ay, — I g Il
2 Bs

which establishes the part (b) of the theorem. [ |

6.3.2. Directionally Bounded Curvature

Consider a sequence of nonzero vectors {v;} in IR”. A sequence of quadratic

models in standard form is said to be directionally bounded in curvature with respect
to {v, } if there exists B3 > 0 such that
viBiv, < B3 vivg (6.37)

for all k. If there exist €4 > 0 and B4 > O such that for any k there exists a nonzero

w, € IR” satisfying

wiBiw, < By wiw, (6.38)
and

| viwe | 2 eq vl NIl (6.39)

then the sequence of models is said to be quasi-directionally bounded in curvature
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with respect to {v; }.

Corollary 6.5 : Consider a sequence of quadratic models in standard form with an

associated procedure for computing steps.

(a) If the procedure computes FCD steps and the sequence of models is of
directionally bounded curvature with respect to {g; }, then the UPD condition

holds.

(b) If the procedure computes OLC steps and the sequence of models is of
quasi-directionally bounded curvature with respect to {g;}, then the UPD

condition holds.

Proof : To establish (a), let the constant ¢4 in (5.1) be defined as c35%c1.

Then (a) follows immediately from Theorem 6.4. To establish (b), let the constants

in (5.1) be defined as C3E%C284 and [33=‘gi~ Then (b) follows immediately from
4

Theorem 6.4. [ ]

6.3.3. Relation Between Directionally Bounded Curvature and Uniformly

Bounded Curvature

Consider a sequence of models which is directionally bounded in curvature with

respect to {g; } so that
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giBigr < Ps 88k (6.40)

for some P;. We immediately see that (6.40) is weaker than (6.13); and hence

Lemma 4.1 is a special case of Theorem 6.4.
6.3.4. Quasi-directionally Bounded Curvature and Secant Methods

A sequence of models is quasi-directionally bounded in curvature with respect to

{g; } only if there exist €4 > 0 and P4 > 0 for which

w,iB,ﬁwk < By wiwy (6.41)

and
L giw, | 2 g4 g dl 1wl (6.42)
for some nonzero w, € R" at every iteration. We immediately see that (6.41) and
(6.42) are a strict relaxation of (6.40).
Next, consider a secant method producing model Hessians which satisfy

B} Pi—1=Ye—1- Substituting p;_; for wy in (6.41) and (6.42) gives the expressions

Pi_1Bipi—1 < Ba Pi_1Pi1 (6.43)
and

| g/ipk—l | 2 84 ”gk“ Hpk—l” . (6.44)

As noted earlier, most definitions of y, ensure (under mild assumptions) that

lpi)’k |

; is bounded. If so, there exists B4<ee for which
Pk Dk
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B4Di-1Pk-1 2 Pk-1Vk-1

; (6.45)
= plé—lkak—l .

pi vi |

I .
Hence by Theorem 6.4, if (a) - is bounded by B4, (b) B} satisfies the secant
P Pr

equation B} pi—1=Yr_q and (c) p,ﬁ is computed by an OLC procedure, then (6.44) is a

sufficient condition to imply the UPD condition.

6.3.5. Alternatives to UPD Test

One possible use of Theorem 6.4 is to provide alternatives to the use of minred, for
enforcing the UPD condition. Rather than using (6.2) to identify questionable
models, we can define
false  if 8£Bigk > Eellgell?
UPD Test FCD/} = (6.46)
true if giBig; < Ellgll?

Unlike UPD Test, this test need only be performed at the start of an iteration rather
than every time a step is computed. Furthermore, it is less expensive since it can be
applied before computation of a step. For secant methods using OLC procedures to

compute trial steps, we can also use the test

r

case 1T 8EBEgk > Gillg 12
and | gip,_y ! <gollgell eyl
UPD Test OLC} =3 (6.47)
true if g{Big, <& llgll?
L or | glpe_y | 2 egllgell p_ Nl

for some gy > 0. A suggested value is g; = 1076
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6.3.6. Modifying Quadratics to be Directionally Bounded

Theorem 6.4 shows that the UPD condition is satisfied as long as the curvature of the
standard quadratic model is bounded in the gradient direction. This suggests an
alternative to simply deleting models not satisfying UPD_Test,i =true. These models
can instead be modified in a subspace containing g, so that the curvature in the

gradient direction is corrected.

Several procedures are available to force the curvature in a given direction to
take on a specific value. One of the simplest is as follows. Let
UBp,y): R"xR"XR” - R"™  represent a secant update satisfying

UBp,y)p=y.
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Procedure A.6.3 : Simple Procedure for Correcting a Model Hessian

If UPD_Test_FCDj =false, then

Set ﬁ = &k’
Set pt =g;.
Set y* =B g.

Compute B =U (B}, pt,y®).
Set B/ =B.

End if.

This procedure only modifies B} if giBlg,>&, gig:. After modification, B} will
satisfy Bfp®=y® and g{Bjg; =t gig. For a typical secant update, the model is
only changed in a two dimensional subspace. If desired, au update can be used
which also forces B} to continue to satisfy the secant equation from the last iteration:
B,ipk_lzyk_l . (6.48)

The procedure can be improved by setting B to a finite difference approximation

8k H(xy ) gk
of ——8 ——

t . One such approximation is
8k8k

B=

_2_f(xk+8gk)—f(xk)—e||gk|12
2

6.49
. A (6.49)

Techniques for determining an appropriate value for € can be found in Section 5.4 of
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Dennis and Schnabel [1983]. A central difference approximation could also be used,

but would require an extra function evaluation.

Procedure A.6.4 : Another Procedure for Correcting a Model Hessian

If UPD Test FCD} =false, then

Set B = é‘ A +8gk)|1£k(ﬁk2)—5” gell® for an appropriately selected
€.
Set p& = g;.
Set y© =B g.
Compute B =U (B}, pt,y®).
Set B/ =B.
End if.
After modification, B} will satisfy B} pt=y* and hence

giBlg = f;(f(xﬁegk Y= f () —ell g, 112).

Notice that £, is only used in determining whether modification of the matrix is
deemed necessary. The modification itself does not depend on any arbitrary

constants. Hence, even if £, is fixed at an arbitrary value, Procedure A.6.4 is
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essentially scale invariant.

Although A.6.4 is a large improvement to AS.6.3, it still has one undesirable
feature. Specifically, the algorithm alway modifies B} so that g, is an eigenvector.

The following procedure does not share this feature.

Procedure A.6.5 : The Recommended Procedure for Correcting a Model
Hessian

If UPD _Test FCD} =false, then
For an appropriately selected €,
Set p& = eg;.
Set y* =g (x +p°)— &
Compute B =U (B},p%,y%).
Set B, =B.

End if.

After modification, B,ﬁ will satisfy
; 1
By g = = (g(x +e8, )-8 ) - (6.50)

Lemma 6.6 : Let f satisfy the standard assumptions and let x; be in L(fx). Lete

be any nonzero scalar satisfying x;, +€g; € L{f xy.
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If (6.50) is satisfied, then g} Bl g, <By 1 g 112

Proof : Application of Lemma 2.5 and the standard assumptions on f yield

I B g Il < % g0 +ege)—gg |l
1 (6.51)
< Byl ege Il =By Il gy I

By the Cauchy-Schwartz inequality

glBj g <llg Il Il Big 1l <, llg N2 (6.52)

which completes the proof. [ ]

If OLC steps are being computed for a given secant model, UPD_Test_FCD can

| piy, |
be replaced by UPD _Test OLC in any of last three procedures provided SELLLREEN

Plﬁ Dk

bounded.

6.4. Summary : Type Three Algorithms

The methods of this chapter make it possible to use any model in an algorithm and
retain FOSPC under the standard assumptions on the function. These methods are
computationally efficient and can be implemented in a relatively scale independent
way.

Three tests are presented for identification of questionable models. UPD Test
can be used with any model, while UPD Test FCD and UPD _Test OLC apply to

quadratics in standard form with associated FCD or OLC procedures for computing
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trial steps. These tests are performed directly on the models and thus do not involve

any comparison of the model with the function.

Once a questionable model is identified, it can either be deleted from the set of
models under consideration or be modified to satisfy the UPD condition. Deletion is
the simplest procedure, but should be avoided if possible. For quadratic models, we

strongly recommend modification by Procedure A.6.5.

Chapters 5 and 6 provide several theoretically justified ways of deciding when to
“‘refresh’” or reset a secant update to the true Hessian. First, a reset should be done if
one of the tests in this chapter fail for the secant Hessian (e.g., if g{Bigx =& 8£&k )-
Furthermore, a reset should be done if a step computed with the secant model yields

pl )<, (so that a trust region decrease is called for) unless the Newton model

1
pred(p)=-gip - > P Hep (6.53)

yields pe2(pd) el (pl). Notice that it is not necessary to evaluate H (x;) to obtain
predkz(pkl). We can instead determine an approximation to predk2(pk1) using finite
differences. A simple way to do this is to use
pred¥(pd) = - gipi' - ‘;—(Pkl)t H, (@)
(6.54)
= - gkpi' — é'(Pkl)' 73

where

1
Vi = ;:‘(8 O +epg) —8k)
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and € is a small positive number selected as in Section 5.4 of Dennis and Schnabel
[1983]. A second order finite difference equation which only requires one extra

function evaluation could also be used.

A simpler alternative to this finite difference procedure is to use the techniques
presented in Chapter 5 associated with AS.5.6. A test to guarantee the UPD condition

(such as : “‘Refresh if g{B; g, 2E&; gig:’’) is still required.



CHAPTER 7

Concluding Remarks

7.1. Some Results Which Are Not Applicable To These Algorithms

We include the following examples to show properties that are not necessarily true

for the algorithms we have presented.

7.1.1.  An Example Concerning Local Convergence Rates.

The algorithms of Chapters 5 through 6 rely on the comparison of predicted function
reduction with actual function reduction to distinguish between models. It might be
speculated that such methods have local convergence rates of the same order as
would be obtained by a single model algorithm that selects the ‘‘best’” model at each
iteration. However, consider the following problem. Let the function f ‘R2> R be

defined so that

f(x)=-%—x’x . gx)=x ,and Hx)=1 . (7.1)

Thus f has minimizer x* =0 with f (x*)=0.

For all £ >0, define two possible model Hessians by

Bl=1I and B = [31’ }] . (7.2)

145
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Notice that B,! is exact and that B} is positive definite with B! =% [_11 _31']

Suppose that we use these two models to implement an algorithm such as A.6.1
and suppose that the currently preferred model is always selected as the initial trial
model for the next iteration unless the alternate model does a better job of predicting

the actual function reduction. Further suppose that the algorithm is started with

Xq= [{] , A, =2 and with B as the initial trial model. It follows that

pt=-Bf)'g= [_(ﬂ : (7.3)
1 1
predf pf) =-gipt -0 BI 0D =75 (7.4)
and
2 _ 1
aredl(p1)=5 s (75)

so that pf(pf)=1. Thus the trial step is accepted, and the next iterate is

=i

With no reason to change models the algorithm retains model two as the initial
trial model in the next iteration. Furthermore, no change in trust radius is required.

It follows that the next iteration generates

1
2

pi=| 1| PiH)=1. (7.6)
2

As with the previous iteration, the trial step is acceptable, so that the third iterate is
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X3 = 1.7

Again, no trust radius reduction or model switch is required before the next iteration.

Clearly, the iterates generated by this algorithm satisfy x; = %xk_z for k >2, and

V2 . .
for every k=1 we have llx. . —x"1I =-2—I|xk —x"Il. Despite this, we have

pkz (pkz) =1 and thus ared, ( pk2)= predkz( pkz) at every iteration.

We see that tests based on comparing actual reduction to predicted reduction are
capable of retaining a model that yields slow linear convergence even though an
alternate model would converge in one iteration. Furthermore, this example does not
depend on any particular trust region or line search method since each step is a full
quasi-Newton step with the trust region constraint inactive. The example can thus be
applied to most formulations of each of the basic types of algorithms discussed in
Chapter 3 since most are essentially equivalent whenever the trust region constraint is

not binding.
7.1.2. An Example Concerning Convergence to a Saddle Point.

The single model trust region algorithms of SSB [1985] and Moré, Sorensen [1982,
1983] make use of negative curvature in solving the trust region subproblem (TRS) in

such a way that convergence to saddle points is inhibited. Specifically, these
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algorithms have the property of second order stationary point convergence! when

implemented with the exact Hessian.

Suppose that a type two or type three algorithm using two quadratic models is
implemented with the exact Hessian as one of the model Hessians. It might be
speculated that such an algorithm also shares the property of second order stationary

point convergence.

&1
However, consider the following problem for x =| £;i . We define the function
&s
f R3>SR as
1
fo== [ (&1>2+<éz)2—<&3>2] (78)
so that the gradient and Hessian are expressed by
£, 1 0 0
g)=| &| , HO={0 1 0 (1.9)
—&3 0 0 -1
This function is indefinite with a saddle point at x* =0.
Define two possible model Hessians by
1 0 0
Bl=H(x)=|{0 1 0 (7.10)
0 0 -1

L An algorithm is second order stationary point convergent if (a) it generates iterates {x } that are
FOSPC, and (b) the matrix H(x*) is positive semidefinite at any point x* for which x, —x".
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and

(7.11)

=~]
o
]
S = W
—_— o O

1
1
0
Suppose that the algorithm described in Section 7.1.1 (which retains the

currently preferred model unless the alternate is significantly better) is applied to this

: 1
problem. It is easily verified that if the algorithm is started with x;= [ 1} and model
0

two as the initial trial model, then the third component of x; is identically zero for all
k >1. Furthermore, pX(p)=1 for all k21 as in the last example. Consequently,

model one (the exact Hessian) is never selected as a trial model and the iterates

converge to the saddle point x =0.

7.2. Work in Progress

We conclude this thesis with a brief discussion of two of the more promising areas

currently being investigated.

7.2.1. Secant Methods and Directional Boundedness

In Chapter 6, we showed that quadratic models that are uniformly directionally
bounded will satisfy the UPD condition. We speculate that UPD need not be directly
enforced for secant methods. Currently, attempts are being made both to (a) relax the
requirement of UPD in our theory in such a way as to admit secant updates, and (b)

show that existing secant updates are uniformly directionally bounded. Several



150

encouraging results? have been established, but at this time the question remains

open.

7.2.2. Achieving Nearly Optimal Local Convergence Rates

If the convergence rate associated with each model is known in advance, achieving
the optimal rate for a multi-model algorithm is simply a matter of, at each iteration,
initially selecting the model associated with the highest rate. For example, most of
the algorithms of Al-Baali and Fletcher [1985] are biased toward selecting the secant
approximation. This is consistent with the assumption that the secant model is

associated with faster convergence than the Gauss-Newton model.

Unfortunately, one of the greatest potential uses of a multi-model algorithm is to
efficiently solve problems of many different categories with one algorithm. Consider
the NLS problem. As previously mentioned, a secant model can be associated with
either faster or slower convergence rates than the Gauss-Newton model depending on
whether the problem is zero residual, small residual, or large residual. Other examples
are easily found where a priori knowledge is not available about ‘‘which model is
right.”” The lack of a nonpreferential multi-model algorithm that guarantees fast local

convergence is thus unacceptable.

The most promising approach for designing such a method seems to be as

follows. Consider an algorithm such as A.3.1 . We refer to an iteration that

2 For example, it can be shown that if a subsequence of the models satisfy the UPD condition,
versions of type one and type two algorithms exist that are WFOSPC.
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computes a trial step for every model as a greedy step. Such an iteration is usually3
capable of selecting between trial steps computed using an exact Hessian and trial
steps computed using a constant Hessian approximation. The ability to make this
distinction is crucial to achieving fast local convergence rates and to extending the
Moré and Sorensen [1982, 1983] second order stationary point convergence results to
multi-model algorithms. Algorithm A.3.1 performs a greedy step at each iteration
and selects the model yielding the largest function reduction. Although this algorithm
is too expensive to be useful for general problems, a similar method that only
requires a greedy step at infrequent intervals should not be prohibitively expensive.
Current research is centered on finding inexpensive algorithms that are seldom
required to execute a greedy step yet are assured of converging with a nearly optimal

rate.

3 For the cases in which the values of ared, at different trial steps are ‘‘indistinguishable,”’ it can

be shown that any of the trial steps can be selected without significantly effecting the convergence
rates.
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APPENDIX A

GLOSSARY

The following is a brief glossary of terminology used in this thesis. Selected section

references are also presented.

1. Abbreviations and Acronyms

BFGS

DFP

DGW [1981]
FCD step

FOSPC
NLS
NL2SOL

OLC step
SSB [1985]
TRS

UPD
WFOSPC

The most widely used secant method. See Section 1.1.1.
Another widely used secant method. See Section 1.1.1.
Dennis, Gay, Welsch {1981 a,b]. See Section 1.1.1.

A step for which the model predicts a decrease of at least a
fraction of the decrease predicted for the Cauchy point. See
Section 4.2.1.

First order stationary point convergence. See Section 2.2.2.
The nonlinear least squares problem. See Section 1.1.1.

The model switching algorithm presented in DGW [1981] for the
solution of NLS problems. See Section 1.1.1.

An optimal locally constrained step. See Sections 2.3.1, 4.2.1.
Schultz, Schnabel, Byrd {1985]. See Section 2.4.

The trust region subproblem. See Section 2.3.

Uniformly predicted decrease. See Section 5.2.

Weak first order stationary point convergence. See Section 2.2.2.

159



160
2. Basic Notation

See also : Special symbols and parameters, Section 3 of this Appendix.

aredy (p) The actual function reduction f(x.)-f(x.+p). See equations
(2.1¢), (4.10).

AN The set of ‘‘acceptable’’ steps at iteration k¢ for model i with
trust radius A,. See Section 4.2.1.

A(A) The set of ‘‘acceptable’” steps at iteration & with trust radius A,

where the model is understood from context. See Section 4.2.1.

B, ,Bie R™" An approximation to H(x;). Superscripts are used to distinguish
between different model Hessians at the same iteration k. See
equations (2.2b), (4.1).

Ay The trust radius at iteration k. See equation (TRS), Section 2.3.
Ay The trial trust radius at iteration k. See Algorithm A.4.3.
e (p).ei(p) The observed error for a step p : ei(p) = aredi(p) — predi(p) !

Superscripts are used to distinguish between different models at
the same iteration k. See equations (3.4), (5.2).

f:R* >R The function to be optimized. See equation (1.1).

g:R* > R" The gradient of f.

g€ R" Denotes g (x;).

H:R" >R The Hessian of f.

H, e R Denotes H (x;).

i The initial trial model at a given iteration. See Algorithm A.4.3.

I A set of indices of models under consideration at iteration k.
See equation (5.3).

I, A set of indices of models at iteration k. Typically, 7, is the set
of models for which steps have been computed. See equations
(5.4), (5.5).

I A set of indices of models at iteration k. Typically, /, is the set

of models for which trial steps have not been computed. See
equations (5.4), (5.5).

J R 5 RY™ The Jacobian of r.

Jye R Denotes J (x;).

L(f x)) The level set of f at x;,. See Definition 2.6.

L(f x)) The convex hull of the level set of f at x;. See Definition 2.6.
L(fx) An open convex set containing L(f x)). See Section 4.2.2, or

Section 4 of this Appendix.
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The number of models in the index set /,. See equations (4.1),
(5.3).

The intersection between L(f x,) and a certain ball about x,,. See
equation (4.19).

A step away from x,. The superscript denotes that p; is
associated with the model having index i.

An ‘‘acceptable’’ step at iteration k¥ for model i with trust radius
A.. See Section 4.2.1.

An ‘‘acceptable’’ step at iteration ¢ with trust radius A,, where
the model is understood from context. See Section 4.2.1.

A model of f with index i at iteration k. See equations (2.1a),
(2.2a).

Predicted function reduction
equation (2.1b).

predi(p) = f (xe) - 9i(xe+p).  See
For standard quadratics, this becomes
predi(p) = —gip — % p'Bip. See (2.1b), (@.1).

Superscripts are used to distinguish between different models at
the same iteration k.

equations

Ratio of actual reduction to predicted reduction

. ared . .. .

pep) = —f—(p)— Superscripts are used to distinguish between
predi(p)

different models at the same iteration k. See equations (3.2),
4.11).

The residual function of the nonlinear least squares problem.
See equation (1.2).

Denotes r(x;).

The term in the Hessian of the nonlinear least squares problem
involving second order derivatives of the components of r. See
equation (1.5).

The trust radius increase or decrease factor. At the end of an
iteration, A,,, is set to either 1A, or tll p, I depending on the
algorithm used. See Algorithms AS.4.6, AS.5.5.

A vector in R".

Depending on context, a local minimizer of f or a first order
stationary point.

The iterate at step .

An overestimate for the maximum curvature of the function f.
See equations (6.1), (6.5), (6.46), (6.47) and Procedure A.6.2.

A vector used with secant methods. Typically, y, =g, -8 See
equations (6.3), (6.7) and (6.9).
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A sequence of numbers associated with the inexact quasi-Newton
condition. They satisfy 0<{ <1 and klim L =0. See equation
— o0

(4.6b).

3. Special Symbols and Parameters!

3.1.

ny
y)

N3

Yo, M1

Y2573

O

Parameters Relating to Trust Regions

2

Minimum acceptable ratio of predicted reduction to actual reduction.

If the ratio of predicted reduction to actual reduction exceeds n,, no trust
radius decrease is allowed.

Ratio of predicted reduction to actual reduction used to trigger an
increase in trust radius.

Limiters for the trust radius reduction factor 1. A typical algorithm will
select 1€ [v,y,] when a trust radius reduction is called for. However,
most of our algorithms allow te (0,y,1.

Limiters for the trust radius increase factor t. A typical algorithm will
select e [v,,7;] when a trust radius increase is called for.

This constant determines the maximum step length as a function of the
trust radius. All trust region algorithms enforce Il p, Il S(1+0)A;.

! A parameter is a number used to define or limit an algorithm or procedure. For example, if an

iterative procedure is considered to have failed after performing &, iterations without convergence,
the number k,,,, is said to be a parameter. The precise value of a parameter is typically defined only
when an algorithm is implemented.

2 The descriptions given here are very general and are intended only to aid readers unfamiliar

with trust region methods. The precise use of these parameters sometimes changes for different algo-
rithms, so the specifications and descriptions in the text of this thesis should be considered definitive.
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PARAMETERS FOR TRUST REGION METHODS
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Symbol Typical Typical Sample
Values Legal Section
Values References
m 0.001 (0,1) 24,45.1,45.2,45.3
M2 0.1 (M, 1) 24,452,453
ul 0.5 (n,.1) 2.4,45.1
Yo 0.1 (0,1) 24
Y 0.5 [¥.1) 24,453
Y2 2 [1,00) 24 48
Y3 4 [¥2.0) 2.4 ,4.6
o) 0.1 (0,1) 2.3.1,4.2.1

3.2. Parameters Relating to Model Switching

Ni1.MN2

A parameter used to control the relative frequency of model

switching. NL2SOL uses n=1.5.

Algorithm AS.5.3.

These parameters are primarily ‘‘trust region parameters,”’ but
can also play a role in model switching. Typically, if the ratio of
actual reduction to predicted reduction is less than n, the
algorithm will consider switching models. If the ratio is less
than n,, the algorithm must either switch models or reduce the
trust radius. See Section 3.5, Algorithm AS.5.3.

See Sections 5.5, 5.7 and
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By

B2

Bs
B

€4

34.

¢

C2

C3

Co

3.5.
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&
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Constants® Associated with the Curvature of the Problem
Under the standard assumptions, we assume an upper bound on IlH(x)!l, say

HH )l <B,. See Section 4.2.2.

At every iteration, one model is typically assumed to be a standard quadratic
with 11 B, Il <B,. See Section 4.2.1.

The constant typically used with the UPD condition. See Sections 5.2 and 6.3.

A constant typically used with the UPD condition and secant methods. See
Section 6.3.

A constant typically associated with B,. See Sections 6.3.2 and 6.3.4.

Parameters Relating to the Solution of the Trust Region Subproblem
Parameter associated with an FCD step. See equations (2.14), (4.2).
Parameter associated with an OLC step. See equations (2.12), (4.3).
Parameter associated with a UPD step. See equations (4.4), (5.1).

Parameter used to enforce the UPD condition. See equation (6.1).

Miscellaneous Parameters

Integer parameter used in A.5.4 and A.6.1 to assure finite termination of the
internal reduction loop. See Section 5.5.3.

Parameter used in AS.5.6.

Parameter used in UPD_Test_OLC for enforcing the UPD condition. See equation
(6.47).

> A number is said to be a constant if it depends only on a specific set of parameters and a

specific problem.
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4. Standard Assumptions on the Function

For given x,e R* and f:R”—R!, the following conditions are referred to as the
standard assumptions on the function :

(SA1) f(x) is twice continuously differentiable on an open convex set containing
L(f x,). This set is denoted L (f x,).

(SA2) f(x) is bounded below on L(f x)).

(SA3) = B,>0 such that for all x € L(f ,x,), the Hessian of f satisfies || H(x)!l <,.



APPENDIX B

Of Things Not Treated

1. Further Useful Concepts

We now present several concepts of small importance to the theory of multi-model

algorithms, but which are of use in actually writing an implementation.

A distinction can be made between algorithms which treat all models more or
less equally, and those which know from the start which one is ‘“‘best’” in some
context. For example, consider an algorithm using a constant matrix for the first
model, and a sequence of matrices for the second. Suppose {lI B2} is not known to
be bounded. The algorithm can be designed to treat them equally, or to ‘‘fall back
on’’ the constant model under certain conditions. Logic which distinguishes between
models based on a priori information is called preferential logic and logic which

makes no such distinctions nonpreferential logic.

The program NL2SOL described in DGW [1981] uses nonpreferential logic for
several reasons, among them the fact that it is generally not known in advance
whether a NLS problem is small residual or large. Al-Baali, Fletcher [1985] present
algorithms which treat the Gauss-Newton and secant models in a fundamentally

different way. For example, some of their algorithms will permanently switch to the
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use of the secant model after a given number of iterations.

Another way to initially select a model is to use past performance as a guide.
Hereditary switching is a switching system which gives preference to different
models based on the results of tests that occurred in the previous iteration.
Nonhereditary switching is a switching system which has no memory of

performance of each model at the last iteration.

In NL2SOL the model used to test the step in the most recent iteration is tried
first and given preference unless the final ¢ - test in the most recent iteration rated the
alternate as significantly better. NL2SOL uses this hereditary system with the
Justification that if a model is performing satisfactorily, one should stick to it unless
there is good reason not to, particularly since such things as previous trust region
updates have been determined via this model. Original test results as reported in

DGW [1981] support this philosophy.

The following scheme for classifying models should clarify the different ways
model generation is treated. The models are organized by how they relate to the

multi-model algorithm which generates them.

Independent model generation is a system where models are generated or
updated totally independently. In nonlinear least squares, such a system might take

Ji 'Jr as one model and a BFGS secant approximation as an alternate.

Semi-independent model generation is a system where models may depend on
others computed at this iteration, but not on any of the switching logic used in the

last iteration. Some examples are as follows.
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(@ In NLS problems, such a system might take B, =J, ‘Jy as one model with
alternate B, =J, ‘J, +5,. Here S, is one of the structured secant approximations
to S(x).
(b) In NLS problems, another example of such a system is a BFGS algorithm which

resets to J, ‘J, after a fixed number of iterations.

Dependent model generation is a system where models may depend on others
computed at this iteration, and on switching logic used in the previous iteration. This
allows such things as ‘‘restarts.”” Some examples of this type of system are as

follows.

(a) Al-Baali, Fletcher [1985] algorithms which reset S, to zero whenever the Gauss-
Newton Hessian is selected.
(b) The algorithm of Nazareth [1980,1983] which chooses a parameter o to

interpolate between a secant update and the Gauss-Newton model based on

performance of each model at the last step.

(c) MINPACK (Moré, Garbow, Hillstrom [1980]) routines which ‘‘refresh’’ a secant

approximation by setting it to # (x;) when it appears to be behaving poorly.

2. General Definition for Models

More generality can be obtained by defining a model in terms of the processes which
can be associated with it. Such a definition allows us to conceptually separate each

different way a model can be used.
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When referred to in context as an abstract concept, a model having indices i and

k is something having one or more of the following processes associated with it.

(a) Evaluating for some given x the single valued function ¢;(x) : Q:—R, with Qi a

nonempty subset of R, or
(b) Providing a trial step p; € R", or

(c) Setting up information necessary for the execution of a process associated with a

model having indices j and k+1.

Considering a model defined in this fashion delineates between “‘testing a trial
step’” as in (a), ‘‘computing a trial step’” as in (b), and “‘updating’’ as in (¢). Thus a
model could be defined which only evaluates trial steps generated by other models
without having the capability of generating such trial steps, or vice versa. Also, a

model need not be called upon to do either at any given step, as long as it stores

enough information to generate itself when needed.!

Commonly, any p{ provided by a model is associated with a function ¢;(x)
which can be evaluated for various x, and ¢j(x,+pi) is automatically provided
whenever p; is provided. However, we will not rule out models that can only invoke
processes to evaluate ¢ or only to provide a step pi, or only to define a new model for

the next step.

! For example, with the Newton model we need not actually evaluate the exact Hessian at each
iteration unless it is actually needed. A more complex example is a model which at each iteration
“remembers’’ the last m iterates and ‘‘updates” the identity matrix to produce a quadratic which in-
terpolates this data as well as possible. Our ‘‘model” would be the background process of
“remembering”” roughly m vectors until needed.








