MOMENT EQUATIONS FOR STOCHASTIC IMMISCIBLE FLOW

KENNETH D. JARMAN* AND THOMAS F. RUSSELL'

Abstract. We derive and analytically and numerically solve statistical moment differential
equations for immiscible flow in porous media in the limit of zero capillary pressure, with application
to secondary oil recovery. Closure is achieved by Taylor expansion of the fractional flow function and
a perturbation argument. We reduce the equations by exploiting a relationship between saturation
and velocity correlations that is unique to flow in one dimension. Mean and variance of (water)
saturation exhibit a bimodal character; two shocks replace the single shock front evident in the
classical Buckley-Leverett saturation profile. !
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1. Introduction. Subsurface geologic properties at field scales are uncertain,
and are often described statistically in practice. Flow profiles in such porous media are
uncertain, and statistical flow outcomes are appropriate. We are primarily interested
in mean behavior and a measure of the uncertainty about this mean.

A “zeroth-order” model of mean flow with averages of geologic properties ignores
correlations between flow variables. Monte Carlo simulations of many realizations of
geologic properties to estimate moments require much computation time and careful
sampling techniques [12,13,35]. Macrodispersion theory in contaminant transport
captures a first-order effect of fluctuations via covariance functions in PDEs for the
mean concentration [7,14]. This theory has a long history in subsurface contaminant
transport, and is closely related to eddy diffusion models of turbulence [16, p. 358 ff].

We derive second-order PDEs for the covariance functions and the mean flow, and
solve for these moments simultaneously. The fundamental problem of closure of the
system is addressed by a perturbation argument. The resulting moment differential
equations (MDESs) directly approximate the local mean and covariance functions, for
general boundary conditions and general stochastic geology [38].

1.1. Applications. A statistical description of subsurface flow is of particular
interest for secondary oil recovery. The principal difficulty is a non-convex nonlinear
flux function in an advection equation that leads to discontinuous solutions. Stan-
dard pressure—saturation equations for 2-D horizontal flow of two immiscible fluids in
porous media, in the limit of vanishing capillary pressure (p. = 0), are

pv(x) = —K(x) Vh(x), V-v(x) =0, (1.1)
Os(x,t) + V- [f(s(x,t))v(x)] = 0.

These are taken to be valid from laboratory (centimeters) to field scales of reservoir
depth (10-100 meters) and length (100-1000 meters). Hydraulic conductivity K may
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2 K. D. JARMAN AND T. F. RUSSELL

be an anisotropic tensor; here, for simplicity, it will be an isotropic scalar K. Assume
also that K depends weakly on (water) saturation s [1,3]. Apply (1.1)-(1.2) to the
flow of oil and water, for arbitrary fluid mobilities. Denote the total velocity, a scaled
total volumetric flux of both fluids, by v, hydraulic water head by h, and porosity
(assumed constant) by ¢. The fractional flow function f(s), for p. = 0, represents the
fraction of v due to water. It is typically S-shaped, and we use a form arising from
quadratic relative permeabilities for illustration (see [1]). However, our method does
not depend on any such specific choice of f(s).

Capillary pressure regularizes sharp fronts caused by the nonlinear advection
term. To obtain a linear approximation to this effect, add epV?2s(x,t) with ep > 0
to the right side of (1.2). Letting ep — 0 defines the vanishing-viscosity solution [33],
which is the one we seek.

As is standard in subsurface applications, let Y = In K be a random field with
prescribed mean and covariance functions; e.g., it is often claimed that Y is multi-
variate Gaussian, based on empirical observations [10] (our method does not depend
on this). Through (1.1)-(1.2), v and s are thus random fields. No other underlying
sources of uncertainty are considered in this study.

Under the assumptions stated above, with steady boundary conditions, and ne-
glecting the weak dependence of K on s, a steady v can be determined from (1.1).
We evolve s from the stochastic PDE (1.2), assuming known statistics of v. Moments
of v and h can be estimated from established theory ([36-38,41] use MDEs). We
combine analytical and numerical techniques to model the propagation of uncertainty
from an underlying random field Y (x), through v(x), to the solution s(x,t).

1.2. Previous work. Existing work on MDEs focuses mostly on advection equa-
tions with linear flux functions [15], and some nonlinear subsurface flow equations of
a form different from (1.2) [2, 34, 36, 37,41].

Langlo and Espedal [22, 23] presented a macrodispersion approach for the stochas-
tic version of (1.2). The flux function is expanded in a Taylor series, and high-
order terms are neglected; then standard techniques represent macrodispersivity as a
function of flow velocity covariance. Zhang, Tchelepi, and Li take advantage of the
steady velocity field, and transform 2-D flow to 1-D Lagrangian flow along stream-
lines [39,40]. They formulate integral equations for moments from ensemble averages
over the streamlines, rather than a system of MDEs. Variations on the streamline
approach are currently popular in subsurface transport [6,8,9,31,32].

An Eulerian MDE approach has been successful for single- and multiphase pres-
sure and velocity equations [36], and a natural next step is to extend the theory from
flux equations to transport equations. This framework differs from streamlines not
only in formulation, but also in that the MDEs need no velocity-distribution assump-
tion, and an extension to transient velocity fields is relatively straightforward. The
approach applies to any probability distribution of geologic properties and any corre-
lation function, and does not require stationarity. Other stochastic theories generally
require such restrictions.

Equations are derived in §2. In §3, we reduce the mean and variance equations
to a simple form. These are shown to be strictly hyperbolic for 1-D flow, and an
analytical solution is given in §4. The uniqueness of solutions to hyperbolic PDEs is
considered. Classification is briefly discussed for 2-D equations. We conclude with
an evaluation of our results and their practical implications, and a brief overview of
additional questions that warrant future investigation.
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2. Moment Equations. We compare two different approaches for statistical
MDEs of 1-D flow. In §2.1, we expand fields in the form v = (u) + du and the
resulting MDEs are closed by neglecting products of ‘4’ terms. Analogous equations
in §2.3 result from a full asymptotic expansion. We show in §4 that the latter yields
moments that violate physical constraints. In both cases, random fluctuations in
Y = In K are assumed small: oy < 1. We can immediately generalize to higher
dimensions via vector notation. Moments of h and v are assumed known from (1.1)
and moments of Y.

The 1-D saturation equation (1.2), with initial data s(z,0) = g(z), is

Os + 0x(f(s)v) =0, (2.1)

We assume that g is known with certainty. Solutions are defined in terms of vanishing
viscosity as in §1.1; henceforth, this is tacitly understood. Incidentally, (2.1) can be
solved exactly, and moments computed by integrating against a known probability
density. This is carried out in [39] and [40], for example. However, since we ulti-
mately develop Eulerian equations for moments in two and three space dimensions
with spatial dependence in the velocity, we apply the approach to the 1-D equation
first.

2.1. Two-term expansion. Moment equations may be derived in a number of
ways. For examples of commonly used methods applied to various models in sub-
surface flow and transport, see [7,11,14,15,30,36]. These methods originated in the
correlation equations of turbulence models. Here we apply a standard approach, sep-
arating mean fields from random fluctuations.

Let (-} denote the expectation operator, defined by

(W) = / (w) dP(w) (2.2)

for any integrable function % : Q2 — R on the sample space 2 with probability measure
P. We omit reference to w in what follows.

The random field Y is decomposed into deterministic mean plus random fluctu-
ation: Y = (Y') 4+ Y. Each field dependent on Y is represented similarly:

v(z) = (v) (2) + dv(x), (2.3)

Recall that we only need the decompositions of v and s here. Next, the fractional
flow function is expanded in a Taylor series around (s):

f(s) = f({s)) + f'({s))ds + %J”'((S))és2 o (2.4)

So far, we make no assumption regarding the size of ds relative to (s).
To obtain the mean-saturation equation, apply the operator (-) to (2.1):

0y (s) + Oa [f(<8)) (v) + f'({s)) (05 v) + %f"((S)) (v) (d5”) (2.5)

457" (8)) (35%80) + 5 £ ((s)) ) 55°) 4] = 0.

1
2
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The flux terms include a nonlinear advective mean, two covariances, and higher-order
moments. For the saturation-fluctuation equation, subtract (2.5) from (2.1):

9¢0s + Oy [f(<8))5v + f'((s))ds (v) + f'({s)) (95 6v — (95 6v))

+%f”((s)) (v) (6% — (65%)) + %f”((s)) (65%0v — (3s6v)) + -- ] =0. (2.6)

We derive equations for the unknown covariance functions (§sév) and (§s?), using the
following additional notation. The independent variables are x and ¢ except where
noted, and -|, denotes the replacement of z by some y different from . It is convenient
and useful to derive equations for the more general two-point covariances (6sdv|,) and
(0sds|y) rather than for one-point covariances.

To obtain an equation for the saturation-velocity covariance (dsév|,), multiply
(2.6) by dv(y) and apply (-). This results in:

0 (95501, + 0x [ £((s)) (v dul,) + F/({s)) (v} (85 801} + F/({s)) (3sbv 5ul,)

317 (@) (B5%B0ly) + L () (0%Buduly) -] =0. (2.7

Similarly, multiplying (2.6) by &s(y,t), and using the identity? 8;(dsds|,) =
05005y + ds|y0:ds, yields this equation for the two-point saturation covariance:

0y (050s]y) + On [f((s)) (0sly6v) + f'((s)) (v} (35 0sly) + f'((s)) (95 Sv Isly)
31" () () (55281, + 3 £ ((s)) (570 B} + -] (2.8)
+0y [f(<3|y>) (s 0vly) + f'((sly) (vly) (slyds) + ((sly)) (65 6v)]yd5)

+%f”((s|y)) (v]y) (65|, ds) + %f”((.ﬂy)) ((8s%6v)|,ds) + - - ] =0.

2.2. Closure by perturbation argument. If oy < 1 so that fluctuations and
their derivatives may be assumed small relative to the means, and if f is smooth, then
we can approximate (2.5)—(2.8) by a closed, coupled system. Defining cs, (x,y,t) =

(0860|y) , €5 = (080sy) , €y = (dVOV|y), {(8) |y = (8) (y, 1), and Csp (2, y,t) = c50(y, 2, 1),
the resulting system is

81 (5) + 0. [ () (o) + F/ (o + 57" (No? ] =0, (2.99)
Bucsn + 0u [ F({8))ew + F/({5)) (v) esu| =0, (2.9b)
Bucs + e | F() s+ F'(8) (0) o] + 8y [ (M eow + F'(5)y) () o] = 0. (2.90)

Initial data are (s) (z,0) = g(), csv(2,y,0) = ¢s(z,y,0) = 0; recall that (v) and
(0vév|y) are assumed known. Both (2.9b) and (2.9c) have advective flux terms, are
coupled to the mean equation (2.9a), and are first-order in o%.. This is consistent with
the approximation to (2.9a), which is second-order in oy .

2The identity is not valid in a strong sense for discontinuous solutions. Recall, however, that we
define solutions in terms of the (smooth) viscous solution, in the limit ep — 0.
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Another common closure argument, which may be called a Gaussian assumption,
might be applied here. For example, for the linear case (f(s) = s), (2.9) is exact if one
assumes that velocity and saturation are jointly multivariate normal [11]. This follows
without a perturbation argument. The linear case under this assumption is studied
in [15], with the inclusion of small-scale diffusion. Using simulations, we found that
the Gaussian assumption, even for transformations of saturation and velocity fields,
is inappropriate for this problem [18]. That result also prohibits the convenience of
modeling a transformation of f(s) as Gaussian rather than using a Taylor expansion
(a similar approach was used successfully for unsaturated flow in [2]).

Note that the mean equation (2.9a) contains the functions o, = ¢s(x, z,t) and
02 = cg(z,z,t) rather than ¢y (z,y,t) and ¢s(z,y,t). This mix of one-point and
two-point covariance functions prevents us from immediately treating the MDEs as
classically hyperbolic, even though they can be put in conservation-law form. Also,
independent variables z and y are permuted in (s) and ¢, in (2.9c). In general,
(s) |y # (s), and €,, # c5,. We address these issues in §3.

We refer to this problem as “1-D,” even though the covariance functions involve
two spatial variables, and the saturation covariance has fluxes in both directions. The
two variables represent two different points in the same 1-D domain. Similarly, the
“2-D” problem has four spatial coordinates.

To define the vanishing-viscosity solution, first formally add the term epd?s to
(2.1) and carry out the expansion and derivation above. This adds diffusion terms
ep023, ep02csy, €pO2cs to the right-hand sides of equations (2.9a), (2.9b), and (2.9c¢),
respectively. Then find solutions in the limit ep — 0. In practice we solve the system
(2.9) directly.

2.3. Infinite expansion. In this alternative derivation, flow variables head
h(z), velocity v(z) and saturation s(z,t) are represented by formal infinite perturba-
tion series expansions in powers of a parameter e:

h= Z "hp(z), v= Z e"vp(x), s= Z €"sp(z,1). (2.10)
n=0 n=0 n=0

The expansion parameter € = gy is shown to be appropriate within the context of
the velocity and head equations (1.1) [7, pp. 184-190], [38]. For example, for single
phase, stationary uniform mean flow in 1-D, o2 is approximated by €2 (v}) = vZo.

Moment equations analogous to (2.9) are derived in §A of the Appendix:

Brs0 + Oy [f(so)uo] =0, 8 (s1)+ s [vof'(so) (sl)] -0, (2.11a)
8y (82 + 8, [ F(s0) (02) + F'(50)Tsw + f'(50) (82) vo + % f"(so)azuo] -0, (2.11b)
6tcsu + 6m [f(SO)cv + fI(SO)Uocsv] = 07 (211C)

Bycs + Oy [ F(50)E50 + f'(so)vgcs] +9, [ F(s0ly)ese + f'(so|y)vg|ycs] —0. (2.11d)

At t =0, so(z,0) = g(z), and (s1) (2,0), (s2) (,0), csp(z,y,0) and cs(z,y,0) are all
zero. The second-order mean is sg + € {s1) + € (s2). Note that the argument of f and
its derivatives is sg, the zeroth-order mean. The system is in fact closed again using
a perturbation argument, but now this argument is contained in the assumption that
the formal power series in € converges. Thus, throughout §2, second-order equations
are closed by assuming that heterogeneity is weak (oy < 1).
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3. Classification of reduced equations. Classification is of interest for several
reasons. Notably, macrodispersion theories produce a parabolic equation for the mean.
In contrast, our approach produces hyperbolic equations for mean and variance. To
achieve this result, we exploit special structure in the equations in 1-D to simplify
(2.9) and (2.11). First, we need the following

DEFINITION 3.1. Letu(z,y,t) : RZxR, - R*, F:R® - R”, and G : R® — R".
A system of equations in conservation-law form is given by

Ou+ 9,F(u) + 8,G(u) =0, u(z,0) =ug(z). (3.1)

This system is hyperbolic if the eigenvalues of ¢y DF(u) + co DG(u) are real for all
¢1, 3 € R, where DF and DG are the Jacobian matrices of F and G [26].

We expect the equations to be nearly hyperbolic since the original deterministic
PDE (1.2) is hyperbolic, but the systems (2.9) or (2.11) as given cannot even be writ-
ten in conservation-law form due to the inconsistencies mentioned above. However, we
show that both sets of MDEs reduce to hyperbolic systems of conservation laws and
yield analytic solutions. The key discovery that allows this reduction is a relationship
between covariance functions in 1-D.

Observe that velocity v is constant in 1-D, so it is merely a random variable
rather than a random field. Thus, velocities at any two points in space are perfectly
correlated (they are the same random variable). Equivalently, the velocity correlation
length is infinite. This infinite correlation length characterizes the principal difference
between stochastic subsurface flow in one and two space dimensions [18].

3.1. Two-term expansion. The MDEs (2.9) reduce to a system of hyperbolic
PDEs. The first step to this end addresses the inconsistencies mentioned earlier.

Both expansion terms (v) and dv are constant: by applying the expectation op-
erator to 9,v = 0 we obtain 9, (v) = 0, so that

0=0,v =20, (v)+0,0v = Jyov=0. (3.2)

This implies that ¢, (z,y) is also constant, and that cs,(z,y,t) is independent of its
second argument. Consequently, ¢, is identical to the second-order approximation to
velocity variance 02, and ¢, (7,9, t) is identical to oy (7, 1).

This last identity removes the inconsistency of having oy, instead of cs,. We
still have o2 in (2.9a), instead of ¢y, and we have (s)|, and ¢, in (2.9c). A key
variance-covariance relationship, 0,5, = 0,0y, follows: in 1-D, the saturation profile
is completely determined by knowledge of the velocity, for any positive time. Thus,
saturation and velocity are perfectly correlated. A generalization of this result is
obtained directly from the MDEs in §3.3.

We divide (2.9b) by o, > 0, and retain only the first two equations in (2.9) in the
following. Replace ¢, by o2 and c,, by 0,05, to reduce the system to the following
new equations for mean and standard deviation of saturation:

(s) ) F((3)) + o0 f'((8))os + £ (W) F"({s))o? ) _
6t( 4 >+8$( 7o 1((s)) + (v) f'({s))os ) =0. (33

Dependence on the second space variable y has been eliminated. Thus, (3.3) is in
conservation-law form, with u(z,t) = ({(s),05), and flux function

_ o (W) FU(8)) + ouf'({s))os + 5 (v) F'({s))o?
r = ouf(5)) + (o) /()0 ). (3.4

S
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LEMMA 1. The MDEs (2.9) reduce to a hyperbolic system.
Proof. Tt remains to show that (3.3) is strictly hyperbolic. The Jacobian matrix

DF((s),os) = ( ﬁ; j:z ) has entries

i = @) f'({s)) + oo f"({s))os + % () fP((s))a3, (3.5)

Jiz =0uf'((s) + (W) f'((s))os, G2z = (v) £'({s))-

DF is symmetric; thus the eigenvalues of DF' are real and (3.3) is hyperbolic. In
fact, we show that (3.3) is strictly hyperbolic; i.e., DF has a complete set of linearly
independent eigenvectors [26]. Distinct eigenvalues must correspond to independent
eigenvectors. Thus, we need only consider the case where DF' has just one eigenvalue.
This occurs when the discriminant of the characteristic polynomial vanishes: (ji1 —
J22)% + 452, = 0. But this would imply that ji» = 0, hence DF is a multiple of the
identity, and again has a complete set of eigenvectors. The conclusion follows. d
In addition, the eigenvalues are distinct unless ({s),o5) € {(0,0), (1,0)} [18].

3.2. Infinite expansion. The evolution of moments in this case is given by the
system (2.11). If velocity is constant then v; is constant for each j, so long as the
perturbation series can be differentiated termwise. Thus, ¢,(z,y) is also constant,
and c¢gy(2,y,t) is independent of its second argument. Consequently, ¢, is identical
to the second-order approximation to velocity variance o2, and cg, (7, y,t) is identical
t0 osy(z,t). Finally, the relationship oy, = o, 05 holds as before. Keeping only the
first four equations in (2.11), replacing ¢, by o2 and ¢, by 0,05, we obtain these
equations analogous to (3.3):

S0 vo f(s0)
€(s1) vo f'(s0) € (s1)
O | €(s2) | +0:| € (v2) f(s0) + 00w f'(s0)0s + vo f'(50) € (s2)
+ 50 f"(s0)02

0. (3.6)

Os va(SO) + vo fI(SO)Us
We show that this system is (not strictly) hyperbolic. The Jacobian matrix
d 00 0
DF (s0, €(s1), €2 (s2), 05) = ;; gl 2 j(3)4 has entries
jsa 0 0 d

d = f'(s0), J21 = vo " (s0)€ (s1), Jaa = 0o f'(50) +vo " (s0)os,  (3.7)
ja1 = €2 (v2) f'(s0) + 00 f"(s0)0s + Vo f"(-‘)’o)e2 (s2) + %vo f(S)(SO)UE-

The spectrum of DF' consists of the single real eigenvalue d. Thus, the system (3.6)
is hyperbolic, but not strictly hyperbolic. Furthermore, DF’ in general does not have
a full set of linearly independent eigenvectors (this occurs only when all off-diagonal
elements are zero). This degeneracy of DF leads to secular terms in the solution,
which results in non-physical solutions. We show this explicitly in the next section.
Use of the second-order mean as the argument of f(¥) in §2.3 yields a modified infinite
expansion that does not have this drawback, and is a fourth-order correction to the
two-term expansion [18]. We will present a comparison of the modified expansion to
the infinite and two-term expansions, and further analysis, in [19].
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3.3. Uniqueness, and an additional analytical result. Because (2.9) and
(2.11) are nearly hyperbolic systems, one might expect to extend uniqueness methods
from the theory of such systems. The viscosity method is an appealing way to prove
uniqueness [33]. We briefly outline the method below, which uses the vanishing-
viscosity solution introduced in §1.1. Diffusive effects are generally present in the
physical problem that is modeled by (3.1). Sharp profiles that evolve due to nonlinear
advection are smoothed by diffusion, and solutions remain smooth for ¢ > 0. Let u®
be the solution to the viscous form of (3.1) with diffusion coefficient (or “viscosity”)
ep > 0. The viscous equation is

opu+ 0,F(u) + 8,G(u) = ep(02u + 6Zu). (3.8)

It is generally thought to be easier to prove uniqueness for solutions to (3.8) than to
(3.1) due to the regularizing effect of the diffusion operator ep (93 + 9;).

We seek the solution u® to (3.8) in the limit ep — 0. If this limit exists and is
unique in a suitable function space, we have the necessary result. Thus, we would like
to carry out the following program:

1. Prove that (3.8) has a unique solution u*.
2. Prove that u® has a unique limit in a suitably defined function space as
ep — 0. Define the solution to (3.1) to be this limit.

Applying this or similar approaches to the problem of uniqueness for conservation
law equations is found to be exceedingly difficult. It is usually applied only to Riemann

initial data:
{ul, z <0,
u =

u,, z>0.

The states u; and u, are usually assumed to be “close” in some norm. The Riemann
problem that consists of a hyperbolic PDE in conservation-law form with Riemann
initial data is the fundamental Cauchy problem for this class of equations [33].

Variations on the viscosity method have been used for 1-D conservation laws with
some success. The result for scalar equations was obtained by Oleinik (cited in [33]),
and was extended to some systems of two equations (see [5] for a recent result and ad-
ditional references). Uniqueness proofs for systems of equations are generally limited
to genuinely nonlinear or linearly degenerate equations [33]. Neither the deterministic
version of equation (2.1) nor the reduced systems above possess either of these prop-
erties. A review of the literature does not reveal a result general enough to guarantee
uniqueness for (2.9). Thus uniqueness remains an open question; however, physical
and mathematical arguments suggest that such results can eventually be obtained.
For now, we must be satisfied with

CONJECTURE 3.1 (uniqueness). Moment equations (2.9) or (2.11) have at most
one vanishing-viscosity solution for uniformly bounded, measurable initial data.

Now we obtain a more general form of the covariance relationship stated in §§3.1-
3.2 directly from the MDEs.

LEMMA 2. If there exists a unique solution to (2.9) with bounded, measurable
initial data, then

Cs Cy = Csp Csyp- (3.9

The same holds for (2.11).
Proof. We prove (3.9) for (2.9) in the sense of vanishing viscosity. The proof for
(2.11) is nearly identical. Adding a linear diffusion term —0,(epd,s) to the left-hand
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side of (2.1) with ep > 0 deterministic, we obtain the viscous form of the covariance
equations

6tcsv + 6z [f(<s>)cv + fl(<s>)vocsv - 6D6zcsv] = 0; (310)
Bucs + 0z [ F(())ewu + I'((8))v0cs — endac]
+ 0, [ £(s) ly)ew + 1'((5) y)volyes = endyes] = 0. (3.11)

Once the identity is proven for (3.10) and (3.11), we formally let ep — 0.

Multiply (3.10) by ¢,, and add to cs, times the corresponding equation for Cg,.
Apply the identity €,y OiCsy + Csp OiCsp = O¢(Csy €5y )- Note that ¢y, is independent of
z. We obtain

8t (Esv csv) + 6w [f(<s>)cv Esv + fl(<5))U0 (csv Esv) - eDaz (csv Esv)]
+6y [f((S) |y)cv Csy + fl(<s) |y)v0|y(csv /C\sv) - CDaz (Csv Esv)] =0. (312)

This equation is identical to (3.11), scaled by ¢,. Both ¢, ¢; and ¢4y Csy are initially
zero. The identity (3.9) follows by letting ep — 0 and recalling the uniqueness
hypothesis. O

Again oy, = 050, follows by letting y — z so that ¢; — 02, and Cs, — 05y It
is important to recognize that this covariance relationship follows from observation.
The fact that it is also a consequence of the MDEs (subject to uniqueness) shows that
the MDEs are consistent with this intuitive result.

4. Solution. We present results for the linear advection case first, then a solution
for nonlinear advection with the two-term expansion.

4.1. Linear advection. We solve (3.3) and (3.6) for f(s) = s with determin-
istic initial data s(z,0) = g(x) € C'. These easily obtained results exhibit bimodal
behavior similar to the nonlinear case. This linear flux case represents pure advection
of conservative solute transport in single-phase flow, with s as solute concentration.
We also show that moments given by the infinite expansion violate physical bounds.

4.1.1. Two-term expansion. With f(s) = s, (3.3) becomes

d(9)+ (8 a0

with initial data (s) (z,0) = g(x) and os(x,0) = 0. The eigenvalues of the Jacobian
matrix, representing wave speeds, are A\; = (v) — o, and Ay = (v) + 0,. The solution
is given by

(5)a,1) = S loe ~at)+gla—N], ou(et) = 2 lolr—Aat)—glz—Aut)]. (4.2

Each moment is a superposition of waves that move at distinct speeds A; < A2. Figure
4.1 shows mean saturation for a Gaussian initial profile. The peaks of the two modes
separate at a speed of A2 — Ay = 20, t. We used the following standard results for
uniform mean flow, z € [0, L], with stationary log hydraulic conductivity ((Y) and
oy do not depend on z) [7,14]:

o =5 (1-%), 2o (KT, 43)
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where K = exp({Y’)) and J is the negative mean head gradient. We used parameters
KgJ=0.5, ¢ =0.2, and oy = 0.5.

This is a non-physical result; we do not expect an initial localized solute pulse
to evolve into a bimodal mean profile. Adding a linear diffusion term to (4.1) will
not eliminate this bimodality; in this situation, separation between modes will not
be observed immediately, but will eventually appear due to a separation speed that
is linear in time. This is evident in the nonlinear case (§4.3), where numerical and
artificial diffusion are present in our numerical scheme, but the two-wave character is
clearly seen.

4.1.2. Infinite expansion. Moment equations (3.6) with f(s) = s are

S0 Vo 0 0 S0
O | €(sa) |+ €wa) wvo oy || €(s2) | =0. (4.4)
Og Oy 0 Vo Og

The equation for (s;) is not needed, since (s1) = 0. Each equation can be solved
separately, in the sequence sg, 05, €2 (s2) to obtain

so(z,t) = g(x —wot), 0s(x,t) = —outg'(z — vot), (4:5)
2
€ (s2) (1) = —¢* (va) tg'(& — vot) + ZLt2¢" (@ — vot).

The prime (') indicates a derivative with respect to the argument z = x — vt of
the function g(z). The second-order approximation to mean saturation is given by
(s) ~ &= 80+ € (s2).

The term 2—3t2 9" (z —vot) will dominate this approximation to (s) for large time, if
g" is not identically zero. Thus the magnitude of the approximation can grow without
bound. An example for a Gaussian initial profile is shown in figure 4.1. Here again,
we use a standard result for uniform mean flow with stationary log conductivity [38]
giving vo = Kg J/¢, € (v2) = —v90% /2, and 0, = vo oy, and parameters are the
same as in §4.1.1. The mean behavior is similar for two-term and infinite expansions;
the result in the latter is evidently worse because it violates physical bounds on
mean saturation (saturation must remain between 0 and 1). This renders the infinite
expansion inappropriate. It is clear from (4.2) that the mean always lies within
physical bounds for the two-term expansion. For the nonlinear flux case, we study
the two-term expansion only.

REMARK 4.1. Bimodal mean concentration (or saturation, in our case) was
noted in [21], [24] and [25]. All used methods to derive mean transport equations
that do not involve second-order corrections. In [21], Koch and Brady model the
concentration—velocity covariance using a spectral method, and show that the equa-
tion for mean concentration has a wave-like character with two wave speeds. They
point out that the bimodality is most pronounced as the velocity correlation length
tends to 0o, to which they refer as the “most anomalous case”. This is the case in
one dimension, as noted above.

In [24,25], Lenormand and Wang derive a mean transport equation representing
an ensemble of transport in streamlines. One version of their equation is derived from
a series expansion of a Fourier transform, truncated at second temporal moments. For
an example of layered material, this equation is shown to have the wave character as
in [21], and it is suggested that bimodality may be eliminated by incorporating higher-
order temporal moments. If this is indeed the case, it may suggest that incorporating
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FiG. 4.1. Mean saturation, linear flux with Gaussian initial profile for uniform mean flow.
Both two-term (solid) and infinite ezpansion (dotted) moments exhibit bimodal behavior. The latter
violates physical bounds on saturation.

higher-order statistical moments in our equations eliminates bimodality. However,
when higher moments are retained in the mean equation, equations for these moments
must also be generated. The system of equations expands very quickly as higher
moments are incorporated.

4.2. Nonlinear advection. Equation (3.3) is in the form (3.1) with G = 0.
For nonlinear F(u), a solution consists of a sequence of shock waves, constant states,
and rarefaction waves. We begin by briefly reviewing some of the theory of hyperbolic
systems of conservation laws. Several details are omitted and can be found in [29, 33].

4.2.1. Rarefactions. Rarefaction waves are self-similar solutions in C! that de-
pend on the similarity variable n = z/t only. Let u = u(n); then (3.1) implies that

—n— + DF(u) — =0, (4.6)

where D F'(u) is the Jacobian matrix of F(u). Let the eigenvalues of DF'(u) be ordered
A1(u) < Aa(u) and let rix(u) be the associated eigenvectors (k = 1,2). Then n must
be an eigenvalue Agx(u) and du/dn is proportional to the eigenvector ri(u). This
relationship is given explicitly as

‘jl—j; = (VAk(u) - e (w))

-1

ri(u) (4.7)

for each k, and is valid as long as the directional derivative V(1) - rf(u) does not
vanish. It follows that these waves are integral curves of the vector fields defined by
eigenvectors of DF' in the phase plane defined by u. The integral curves must have
eigenvalues increasing in 7; otherwise, characteristics cross and new shocks form.
The most general theory for hyperbolic systems requires that the system be either
genuinely nonlinear (V) - vy # 0) or linearly degenerate (VX - ry = 0) [4,29, 33].

4.2.2. Weak solutions, shocks, and entropy conditions. Shocks are al-
lowed if we consider the weak form of (3.1). Let the shock be defined in the (z,t)
plane by x = &(t); its speed is given by £ = d€/dt. Let u~ and u* be the solution val-
ues to the left and right (along the z-axis) of the shock. Then the Rankine—Hugoniot
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condition is given by
[ut —u”]ét) = [F(u) - F(u7)]. (4.8)

Entropy conditions are then imposed to capture the vanishing-viscosity solution
to (3.1). For scalar hyperbolic equations, this requirement is sufficient: the vanishing-
viscosity solution is identical to the weak solution that satisfies an entropy condition.
Since this issue is directly related to the question of uniqueness, such a statement
cannot yet be made for (3.1) in general. We apply the following well-known entropy
condition.

DEFINITION 4.1 (Lax condition). A shock connecting the states u~ and ut,
traveling with speed & is admissible if

Ae(uh) < €< Ag(u) (4.9)

for one of the characteristic speeds A\, k =1, 2.

In words, the characteristic curves defined by dz/dt = A (u) must run into the
shock, not out of it, as ¢ increases [33]. A solution in the phase plane is a connected
set of rarefaction and shock curves that satisfy the Lax condition. However, in our
case it is not enough to simply apply (4.6)—(4.9). As we present our solution, we
introduce an additional entropy condition due to Liu [27-29] to address the specific
structure of our equations.

4.3. Moment Equations. Now we present a solution to the MDEs (3.3) for
nonlinear f(s) that satisfies entropy conditions. For illustration we choose f(s) =
s2/(s? + m(1 — s)?) with viscosity ratio m = 1/2. We consider deterministic initial
saturation given by the Heaviside function s(z,0) = H[—z], so that o5 is initially
zero. This models an oil-saturated reservoir with water forced in at the origin (we
assume v > 0). To simplify notation of (3.3), set u; = (s), us = 05, and 7 = (v) t so
that 0; = (v) O,. Let € = o,/ (v) (this is consistent with the € previously used as an
expansion parameter). The scaled equations are

()0 () e

Note that the argument of f and its derivatives is always u;. Let u = (uy, uz). The
Jacobian matrix is

Iy ef! 1 r£(3),,2 ef! "
DF(u) = ( fr ef;,lfjf,,éf vy ef *},f U2 ) (4.11)

(From §3.1 we know that the eigenvalues of DF' are real and may be ordered A; < As
except at u € {(0,0), (1,0)}, where both are zero. The corresponding eigenvectors
are ri(u), k=1,2.

The true mean and standard deviation of saturation must be non-negative. The
mean cannot exceed unity, as it represents a fraction. Therefore, we only consider the
subdomain u € [0,1] x [0,00) of the phase plane. The endpoints of the solution to
(4.10) are u = (1,0) and u = (0, 0), which represent a boundary condition, and the
initial condition for positive x, respectively.

Vector fields ry(u(n)) are shown in figure 4.2, pointing in the direction of increas-
ing eigenvalue (VA -rr > 0). To obtain a rarefaction curve, one solves (4.7) for given
initial data for a single k value. Moving in the direction of increasing 7, a rarefaction
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continues so long as VA -, > 0. An inflection locus [17], consisting of points where
VA -1, = 0, can be inferred from figure 4.2 where vectors reverse direction. This lo-
cus of curves represents a barrier to rarefactions. The existence of the inflection locus
is evidence that the system is neither genuinely nonlinear nor linearly degenerate.

r (slow rarefactions) r (fast rarefactions)

N S EEZ TN
- A NP ——— ~r PV YN EEERENN
-y AN NS e AP PIIIIIES P

ALV AN

0.8 VA e s S I PIIIII I 0'8”7///”“”\\
= AN SN —— e S PPIIIIII e T
) [ N A PPIIIIII S e 1
© EEEEN, VYY) 2O VAN (e
L0.6p ) NN e 0.6 ~=c//sv00 vy
o} ANANNNNS s S AIIIIIIT ;///‘,////4‘1&\\\\\\\\\\\\\
k7] AAANANN. s PRSPPI PPN SRR
g04 ATATA N N O e Y 04/«/—///////‘le\\\\\\\\\\\\\
= NN NNSNSNS~==Z sy yviririiv . /‘////////JJA:::\\\\\\\\\\\
o NANANSNNNNSS=F vy yssrriiry TV AAARRRRRRRN
= NANANNANNSNS ST e s sl ///////////11\\\\\\\\\\\\\
(50.2\\\\\\\\\\\‘*,/////////// 02/”””’////;'\\\\\\\\\\\\
n AN NANNNSNSNS Sy SAL LIy PINANANANNY

N N N SISy vy gy VIV

AL S S .Y O 2772727277277
0 05 1 0 05
Mean saturation (ul) Mean saturation (ul)

Fic. 4.2. Slow and fast rarefaction vector fields.

The steps to a solution are similar to those in the deterministic case, which is
reviewed for comparison in §B. We first study the behavior near the boundary value
u = (1,0), and follow the solution forward in n = z/7. When € = 0, this is just
the scalar deterministic case, which has a rarefaction connecting to s = 1. Thus,
we expect a rarefaction to connect to (1,0). We find that only a slow rarefaction,
corresponding to A; and designated R;(n), may connect to (1,0) (see figure 4.3).
This curve is continued from (1,0) to a point u* just short of the inflection locus.

n (slow rarefactions)
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F1a. 4.3. Construction of the slow rarefaction Ry from (1,0).

Next, consider the solution near (0,0), the “end” value of u on the right (in z).
We find that a shock must connect to this point, as in the deterministic case. The
point (0,0) lies to the right (in z) of the shock, so let ut = (uf, ud) = (0,0). All
points u = (u1, uz) on a possible shock curve connecting to u™ are defined by (4.8)
as follows:
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(uf —uy) € = Fy(ut) — Fy(u) (4.12)
(uf —uz) € = Fy(ut) — Fy(u),

where
Fi(u) = flun) + ef (un)us + 5 £ ()i, (113)
Fy(u) = €f (u1) + f'(u1)uz

(from (4.10)). Eliminating ¢ in (4.12) gives an implicit definition of the curve on which
points u lie, and we may write this definition formally as ®(u; u™) = 0. This gives
a continuous set of possible u, speeds &, and eigenvalues A (u). We follow this curve
from the starting point ut as long as the Lax entropy condition (4.9) is satisfied,
which is tested by computing the speed & using (4.12), and the eigenvalues Ay at each
point u. The Lax condition in this case is

Me(ut) <€ < Me(n). (4.14)

The point u~ to the left (in z) of the shock is the endpoint of this curve in the phase
plane. In addition, the following criterion must be met [27,29].
DEFINITION 4.2 (Liu Criterion). Define the Hugoniot curves

Hip(uo) = {u: (u—ug)s =F(u) —F(ug)}, k=1,2

for some scalar ¢ = ¢(ug,u). The shock conditions (4.14) tell us that ut € Hy(u™)
and £ = ¢(u=,ut). A shock with speed £ = ¢(u=,u'") is admissible if it satisfies

é =¢(u",ut) <¢(u,u) (4.15)

for any u € Hy(u™) between u~ and u™.

In general, two curves may pass through each point u™ and satisfy ®(u; ut) = 0
[29, 33], but only one continues from (0, 0) into the first quadrant. This curve is shown
on the left in figure 4.4 along with R;. At each point on the curve, A; (u) < £ < Aa(u),
so it is a “2-shock”. We designate this curve Sy and its speed &;. Points along this
curve are admissible as long as (4.14) and (4.15) are satisfied for £ = 2. Notice that
this curve crosses the inflection locus for As.

Evidently, an intermediate solution between R; and Sy is necessary. A slow
rarefaction cannot continue on to meet Ss, and we find that a fast rarefaction curve
cannot connect the two curves. The connection must involve a shock; the simplest
possibility is a single slow shock. We follow a possible shock forward in 7 = z/7 from
points on R;. This leads to an admissible solution, if we account for the following.
We know that the intermediate shock, designated S; with speed &1, must satisfy the
entropy condition A\;(ut) < & < Aj(u), and the condition (4.15). _But since S
connects to a rarefaction on the left (in z), we must have A\ (u™) = & . Otherwise,
the value u~ to the left of the shock travels faster than the shock front, which is not
allowed. Thus, we find the point at which R; connects to S; by matching rarefaction
and shock speeds at the front.

An algorithm for the speed-matching step for the MDEs is provided in §C of the
Appendix. By following a shooting procedure outlined in that algorithm, we obtain
an approximation to a curve labelled S; which connects R; to Sz, shown on the right
in figure 4.4. The condition (4.15) is also satisfied for S; at the end of this process.

The solution in physical space is pieced together from the phase space solution
as follows. Fix 7 = (v)t. Along Ry, the location is computed by x = A;(u) 7, for
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F1G. 4.4. Construction of shocks connecting to rarefaction R1 and (0,0). First, a fast shock S2
connecting to (0,0) is constructed. Then a slow shock is introduced to connect Ry and Sz. “Fast”
and “slow” vector fields ro and r1 are illustrated in the left and right plots, respectively.

u between u~ and (1,0). R; and S; connect at u~, where W =& 7= M)
The solution is constant from z() to (¥ = & 7, where it then jumps to zero. This
solution is compared to the solution obtained from our numerical PDE scheme in
figure 4.5, for L =2, m =1/2, (v) = 5/2, 0, = 5/4 at a fixed time ¢t = 0.2.

We have a solution that satisfies entropy conditions, but uniqueness of the so-
lution is not resolved. Most results, again, require genuine nonlinearity or linear
degeneracy, and our system does not satisfy these conditions. Liu extended existence
and uniqueness results to more general systems [27, 28], but the restrictions he places
on flux functions are not met by F; and F5, and most results require “small data”
(that is, a small jump ||[u™ — u™||; see [5] for one extension to “large data”).

However, it is clear in figure 4.5 that this solution matches that obtained from a
numerical PDE scheme applied directly to (4.10). Our first-order upwind PDE scheme
includes numerical and artificial diffusion. The diffusion coefficient is roughly three
orders of magnitude smaller than the jumps in solution values. Thus the numerical
solution is near the vanishing-viscosity limit. The numerical result also shows that
the addition of linear diffusion terms does not eliminate bimodality in the solution.

The saturation variance is supported primarily on an uncertainty interval between
fronts. Physically, the solution represents two zones containing mixtures of the two
fluid phases (for example, water and oil), and a third containing only the oil phase.
In the first zone, we have a smoothly varying mixture from the injection boundary
(z = 0), where the mean oil content tends to zero, down to a constant mixture just
left of a shock. In the second zone, we have a constant mix of oil and water. The
solution does not represent physical reality. Rather than two shock waves, the true
mean saturation is more likely to have a smooth, diffuse profile. Taken with the profile
of o5, however, these second-order solutions provide some insight into the propagation
of uncertainty in two-phase flow.

In the limit oy — 0 the mean saturation tends to the classic Buckley—Leverett
profile in figure B.1. The analogous construction of a solution in the scalar deter-
ministic saturation case (§B) can now be stated succinctly. In that case, the initial
rarefaction is followed forward in z, up to the inflection point f"”(s*) =0. A shock
connects to the rarefaction from st =0 to s~ > s*, where the shock speed matches
the characteristic speed v f(s7)/s™ = v f'(s7).
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F1g. 4.5. Mean and standard deviation of saturation. The solid curve is obtained from semi-
analytical construction of shocks and rarefaction curves in phase space; dashed curve is obtained
from numerical PDE scheme applied directly to (4.10).

For our semi-analytical solution described above, the approximation to R; was
obtained with an explicit Runge-Kutta (4,5) formula (function ode45) in MATLAB®.
Shock curves were approximated by incrementing uq, and solving for us using the
roots function in MATLAB.

5. Conclusions. For spatial resolution of uncertainty, these bimodal results sug-
gest that second-order Eulerian MDEs may be inappropriate for 1-D immiscible flow.
Unlike 1-D, v has finite correlation length in 2-D, and macrodispersion models are
based on correlations in dv. In results for analogous MDEs for passive 2-D solute
transport with diffusion, bimodality was not observed [15]; one might expect macrodis-
persion to lead to a similar result for immiscible flow. Nevertheless, in a forthcoming
submission we show that somewhat mitigated bimodality does persist in 2-D, even
with diffusion terms [20]. More positively, for spatial averages such as oil-production
curves, good matches to Monte Carlo simulations are found.

6. Acknowledgments. Ken Jarman would like to thank Joseph Oliveira for
many helpful suggestions and invaluable guidance through extensive conversations.

Appendix A. Moment equations for infinite expansion.

We derive equations for moments of saturation and velocity using the asymptotic
series in (2.10). Moments of In K, h, and v are known. A note on terminology is
appropriate. The term “order” applies to the power of ¢, rather than the order of the
statistical moment. In special cases we may use the term “order” in the latter sense
and clearly differentiate from order in €. Thus, a “second moment” is a covariance,
but “second-order moment” is any moment that is approximated to order €2.
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Expand f(s) in a Taylor series around sq(z, t):

F() = Flso) + F/(s0)(s — 50) + 1" (s0) (s — 30)? + -
= f(s0) + F'(s0)(elor = (1)) + (52 = s2)) + s34 ) (AD)
+ 30" (60) (o1 = {5)) + (52 = (52)) + €5 )7 4
Applying this expansion to (2.1) obtains the zeroth- and first-order equations
Buso + . (so)un] = O, (A2)
By51 + Oy [ F(s0)v1 + f’(so)slvo] - 0. (A.3)

Observe that (sg) = s¢ since all terms in the equation for so are deterministic. From
the theory of MDEs of single phase flow we find that {(v;) = 0 [41], so that applying
the operator (-) to (A.3) gives

8 (s1) + s [vo (s0) (sl)] -0, (A4)

with initial data (s;) (z,0) = 0.
PROPOSITION 3. Where (A.2) and (A.4) admit solutions sg, (s1) in C, (s1) = 0.
Proof. Solutions in C! are self-similar, with similarity variable n = z/t. Substi-
tuting so(n) into (A.2) gives

vof'(so(n)) =1

Using this identity and substituting (s1) = (s1) () into (A.4) gives
0 =0 (s1) + 02 [n (s1)]

= 0, (s1) on + 0y [n (s1)] On

ot oz
1
= =20, (s1) + 20, (s1) + 5 (s1),
t t t
and the proposition follows. d

We conjecture that (s1) = 0 for discontinuous solutions as well. Applying {-) to
the second-order equation gives the following:

Or (82) + O [f(s()) (va) + f'(s0) (s101) + f'(s0) {52) vo + %f”(s()) (s1%) UO] =0. (A5)

Now we derive equations for second moments. Multiply the first-order equation (A.3)
by v1(y) and apply (-} to obtain the equation for the two-point saturation-velocity
covariance,

O (s1v1ly) + 0u [ £(s0) (wrvaly) + £/ (s0)vo (s10nly) | = 0. (A6

Similarly, multiply (A.3) by s1(y,t) and apply () to obtain the equation for the two-
point saturation covariance,

Be (s151ly) + 02 [ £(s0) (s1ly01) + £ (s0)vo (s1511,) |
+ 0y [f(50|y) (s101ly) + f'(s0ly)voly <51|y51>] =0. (A7)
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The system for this version consists of the moment equations (A.2) and (A.4)—(A.7).
Defining csy(2,y,t) = (s101]y), ¢ = (s151]y)s ¢ = (V1v1|y), and Cs(z,y,t) =
¢so(y,x, 1), the system is given by (2.11). If the conjecture that (s1) = 0 holds,
then it is not necessary to include (A.4).

Appendix B. Deterministic Buckley—Leverett. When oy — 0, (2.1) and
(3.3) reduce to a deterministic Buckley—Leverett model:

s + 0 (f(s)v) =0, (B.1)

with initial data s(z,0) = H[—z] as in §4.3. Recall f(s) = s2/(s?> + m(1 — 5)?); figure
B.2 shows this curve with wviscosity ratio m = 1/2. The well-known vanishing-viscosity
solution to (B.1) is given by

s(z,t) =w(n)H[f' (s")vt —x] with z>0,¢>0, (B.2)

where n = z/t, w(n) is the solution to vf'(w(n)) = 7, and s~ is defined below. The
(water) saturation profile at a positive time is shown in figure B.1. Any monotone
S-shaped function for f(s) will lead to a qualitatively similar solution.

Saturation

0 015 i 115 2
X
F1c. B.1. Buckley—Leverett saturation profile at t > 0.

We briefly review the solution of (B.2) within the context of §4.2. The rarefaction
part of the solution is obtained from (4.6), here given by

ds

+v f'(s(n)) an 0, (B.3)

s

n n

so that n = v f'(s(n)). This simply states that s(z,t) is constant along characteristics,

and leads to the definition of w(n) in (B.2). For ¢ > 0, rarefaction is allowed as long as

f'(s(n)) is increasing in n; otherwise a shock forms. The requirement Vg - v, # 0

for (4.7) reduces to v f"”(s) # 0, a convexity condition that is violated at a point s*

where f"”(s*) = 0. The rarefaction must connect to a shock at some value s= > s*.
The condition (4.8), here given by

[s* = s71E@) = v[f(s1) = F(s7)], (B4)

gives us information about the shock &.
It is evident from the shape of f' (figure B.2) that characteristics to the right of
the shock must run into it, so that s must be the initial value zero. Also, £ must
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Fic. B.2. The nonconvez fractional flow function and its first derivative.

match the characteristic speed n = v f'(s7) just to its left. Combining these facts, we
obtain —s~ f'(s™) = —f(s7), which can be solved uniquely for s~. It is the value of
s at which the secant of f that passes through the origin is identical to the tangent
of f. In our case, s~ > s*. These arguments are analogous to the application of the
Liu criterion in §4.3.

Physically, the profile in figure B.1 represents a smoothly varying mix of oil and
water from the inflow boundary with a sharp transition to an oil-saturated zone.

Appendix C. Algorithm for connecting R; to S, by a shock.
Define tol to be the error tolerance.
1. Choose u~ = u* on R;. Define n* by u* = R;(n*).
2. Solve ®(u;u~) = 0. Define ut = u at the point of intersection with Ss.
3. Compute & = [Fi(uf) — F (u)]/[ut —uy].
(i) If |& — A (u™)]| < tol, then stop.
(ii) Else if & < Ay (u™), then choose 7 < 7*.
(iii) Else choose n > n*.
4. Repeat at step 2.
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