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Abstract. We solve statistical moment differential equations (MDEs) for immiscible flow in
porous media in the limit of zero capillary pressure, with application to secondary oil recovery.
Closure is achieved by Taylor expansion of the fractional flow function and a perturbation argument.
Previous results in 1-D are extended to 2-D, in which a bimodal profile is less evident.

Mean and variance of (water) saturation exhibit a bimodal character; two shocks replace the
single shock front evident in the classical Buckley–Leverett saturation profile. Comparison to Monte
Carlo simulations (MCS) shows that the MDE approach gives a good approximation to total oil
production. For such integrated or averaged quantities, or where a rough approximation of the
location and magnitude of uncertainty is sufficient, MDEs may be substantially more efficient than
MCS.
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1. Introduction. Stochastic representations of subsurface geologic properties
have become commonplace due to the difficulty in complete and certain characteriza-
tion of these properties. This leads to uncertainty in flow profiles in such porous media,
so that statistical description of outcomes is appropriate. Additionally, from the per-
spective of practical macroscopic field-scale models, microscopic heterogeneities and
flows can be viewed as random processes to be upscaled. In two-phase flow on a field
scale, we are primarily interested in mean behavior and a measure of uncertainty in
the saturation of each phase, which can be a measure of “macrodispersion” in certain
upscaling contexts.

A “zeroth-order” model of mean flow with averages of geologic properties ignores
correlations between flow variables. Monte Carlo simulations (MCS) of many real-
izations of geologic properties to estimate moments require much computation time
and careful sampling techniques [10, 11, 29]. Macrodispersion theory in contaminant
transport captures an approximate effect of fluctuations by modeling covariance func-
tions in an equation for the mean concentration [5, 12]. This theory has a long history
in subsurface contaminant transport and is closely related to eddy diffusion models
of turbulence [15, p. 358 ff].

Rather than approximate covariance functions as macrodispersive terms, which
requires neglecting fluctuations in second moments, we solve PDEs for the covari-
ance functions and the mean of saturation, extending previous results to 2-D. These
moment differential equations (MDEs) are derived using a modified perturbation ex-
pansion as described in [17]. The MDEs allow direct approximation of the local mean
and covariance functions for general boundary conditions and general, nonstationary
stochastic geology [33].
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2 K. D. JARMAN AND T. F. RUSSELL

1.1. Applications. A statistical description of subsurface flow is of particular
interest for secondary oil recovery. In the advection equation, the principal difficulty is
a non-convex nonlinear flux function that leads to discontinuous solutions. Standard
pressure-saturation equations for 2-D horizontal flow of two incompressible immiscible
fluids in porous media in the limit of vanishing capillary pressure (pc = 0) are

φv(x) = −K(x) ∇h(x), ∇ · v(x) = 0, (1.1)
∂ts(x, t) + ∇ · [f(s(x, t))v(x)] = 0. (1.2)

These are considered valid from laboratory (centimeters) to field scales of reservoir
depth (10–100 meters) and length (100–10,000 meters). Hydraulic conductivity K
may be an anisotropic tensor; here, for simplicity, it will be an isotropic scalar K.
Assume also that K depends weakly on (water) saturation s [1, 3]. Apply (1.1)–(1.2)
to the flow of oil and water, for arbitrary fluid mobilities. Denote the total velocity,
a scaled total volumetric flux of both fluids, by v, hydraulic water head by h, and
porosity (assumed constant) by φ. The fractional flow function f(s), for pc = 0,
represents the fraction of v due to water. It is typically S-shaped as shown in Fig.
1.1; in §4.1 we use a form arising from quadratic relative permeabilities (see [1]).
However, our method does not depend on any such specific choice of f(s).

0 1
0

1

Saturation (s)

f(
s)

Fig. 1.1. The nonconvex fractional flow function.

Capillary pressure regularizes sharp fronts caused by the nonlinear advection
term. To obtain a linear approximation to this effect, add εD∇2s(x, t) with εD > 0
to the right side of (1.2). Letting εD → 0 defines the vanishing-viscosity solution [27],
which is the one we seek.

As is standard in subsurface applications, let Y = ln K be a random field with
prescribed mean and covariance functions; e.g., it is often claimed that Y is multivari-
ate Gaussian, based on empirical observations [8] (again our method does not depend
on such a limiting assumption). Through (1.1)–(1.2), v and s are thus random fields.
No other underlying sources of uncertainty are considered in this study.

Under the assumptions stated above, with steady boundary conditions, and ne-
glecting the weak dependence of K on s, a steady v can be determined from (1.1).
We evolve s from the stochastic PDE (1.2), assuming known statistics of v. Moments
of v and h can be estimated from established theory ([31–33, 36] use MDEs). We
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combine analytical and numerical techniques to model the propagation of uncertainty
from an underlying random field Y (x), through v(x) to the solution s(x, t).

1.2. Previous work. Existing work on MDEs focuses mostly on advection equa-
tions with linear flux functions [13] and some nonlinear subsurface flow equations of
a form different from (1.2) [2, 28, 31, 32, 36].

Langlo and Espedal [19, 20] present a macrodispersion approach for the stochastic
version of (1.2). The flux function is expanded in a Taylor series, and high-order terms
are neglected; then standard techniques represent macrodispersivity as a function of
flow velocity covariance. Zhang, Tchelepi, and Li take advantage of the steady velocity
field, and transform 2-D flow to 1-D Lagrangian flow along streamlines [34, 35]. They
formulate integral equations for moments from ensemble averages over the streamlines
rather than a system of MDEs. Variations on the streamline approach are currently
popular in stochastic subsurface hydrology [4, 6, 7, 25, 26].

An Eulerian MDE approach has been successful for single- and multiphase pres-
sure and velocity equations [31], and a natural next step is to extend the theory from
flux equations to transport equations (as in [13]) and (1.2). The Eulerian framework
differs from streamlines not only in formulation but also in that the MDEs need no
velocity-distribution assumption and extension to transient velocity fields is relatively
straightforward. The appeal of MDEs relative to macrodispersion approaches is that
covariances are computed directly, so that it is not necessary to approximate them
by solving an approximate fluctuation equation that neglects second-moment fluctu-
ations. In [17] and [18], we derived and solved second-order MDEs for (1.2) in 1-D,
using three different perturbation approaches. One of these approaches, a modified
expansion described in [17], is applied here in 2-D.

Equations are presented in §2. In §3, we discuss classification of MDEs and the
fundamental difference between 2-D and 1-D MDEs. Numerical solutions are given
in §4 and are compared to Monte Carlo simulations.

2. Moment Equations. We use a modified perturbation expansion, described
in detail in [17], to derive statistical MDEs. Closure implicitly depends upon the
assumption that random fluctuations in Y = lnK are small (σY � 1). Moments of h
and v are assumed known from (1.1) and moments of Y .

The saturation equation (1.2), with initial data s(x, 0) = g(x), is

∂ts + ∂xi
(f(s)vi) = 0 (2.1)

(Einstein summation convention assumed). We assume that g is known with certainty.
Solutions are defined in terms of vanishing viscosity as in §1.1; henceforth, this is
tacitly understood.

For examples of commonly used methods for deriving moment equations with
applications to subsurface flow and transport, see [5, 9, 12, 13, 23, 31]. These meth-
ods originated in the correlation equations of turbulence models. Here we apply a
modification to a standard asymptotic expansion.

Let 〈·〉 denote the expectation operator, defined by

〈ψ〉 ≡
∫

Ω

ψ(ω) dP (ω) (2.2)

for any integrable function ψ : Ω → R on the sample space Ω with probability measure
P . We omit reference to ω in what follows.
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The random field Y is decomposed into deterministic mean plus random fluctu-
ation: Y = 〈Y 〉 + δY . Each field dependent on Y is represented by a formal power
expansion in an as-yet unknown parameter ε:

h =
∞∑

n=0

εnhn(x), v =
∞∑

n=0

εnvn(x), s =
∞∑

n=0

εnsn(x, t). (2.3)

The expansion parameter ε = σY is shown to be appropriate within the context of
the velocity and head equations (1.1) [5, pp. 184–190], [33]. For example, for single-
phase, stationary uniform mean flow on an infinite domain in 1-D, v0 is a deterministic
scalar and σ2

v is shown to be approximated by ε2
〈
v2
1

〉
= v2

0σ2
Y . In 2-D, we denote the

components of vn by (vi)n for i = 1, 2.
In the following, the term “order” applies to the power of ε rather than the order

of the statistical moment. In special cases, we may use the term “order” in the
latter sense and clearly differentiate from order in ε. Thus, a “second moment” is a
covariance, but “second-order moment” is any moment that is approximated to order
ε2. Recall that we only need the decompositions of v and s here. The fractional flow
function is expanded in a Taylor series around s̃ = s0 + ε 〈s1〉+ ε2 〈s2〉 (a second-order
approximation to the mean saturation; we see below that 〈s0〉 = s0):

f(s) = f(s̃) + f ′(s̃)(s − s̃) +
1
2
f ′′(s̃)(s − s̃)2 + · · · , (2.4)

where

s − s̃ = δs0 + εδs1 + ε2δs2 +
∞∑

n=3

εnsn(x, t).

The expansion center s̃ is our approximation to the mean saturation, so we retain s̃
as the argument of f in the following modification to the standard equations of order
0, 1, and 2. The modified equations for s0 and s1, obtained by substituting (2.3) and
(2.4) into (2.1) and collecting the powers ε0 and ε1, are given by

∂ts0 + ∂xi
[f(s̃)(vi)0] = 0, (2.5)

and

∂ts1 + ∂xi

[
f(s̃)(vi)1 + f ′(s̃)δs1(vi)0

]
= 0. (2.6)

Note that 〈s0〉 = s0, because all other terms in the equation for s0 are deterministic.
We show that 〈s1〉 = 0. By definition, 〈δs1〉 = 0. Also, 〈v1〉 = 0 by a standard
result from the theory for moment equations of multidimensional single-phase flow
[36]. Applying the expectation operator 〈·〉 to the first-order equation (2.6) gives

0 = ∂t 〈s1〉 + ∂xi

[
f(s̃) 〈(vi)1〉 + f ′(s̃) 〈δs1〉 (vi)0

]
= ∂t 〈s1〉 . (2.7)

The initial data are deterministic; therefore, 〈s1〉 is initially zero, and (2.7) implies
that 〈s1〉 remains zero for all time. The mean approximation is then s̃ = s0 + ε2 〈s2〉.
The correction term s2 satisfies

∂ts2 + ∂xi

[
f(s̃)(vi)2 + f ′(s̃)δs1(vi)1 + f ′(s̃)δs2(vi)0 +

1
2
f ′′(s̃)δs1

2(vi)0
]

= 0.
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Apply the expectation operator and note that
〈
δs1

2
〉

= 〈s1s1〉 − 〈s1〉 〈s1〉 =
〈
s1

2
〉
,

〈δs2〉 = 0, and v1 = δv1 implies 〈δs1(vi)1〉 = 〈δs1(δvi)1〉 = 〈s1(vi)1〉 − 〈s1〉 〈(vi)1〉 =
〈s1(vi)1〉, to obtain the following correction to (2.5):

∂t 〈s2〉 + ∂xi

[
f(s̃) 〈(vi)2〉 + f ′(s̃) 〈s1(vi)1〉 +

1
2
f ′′(s̃)

〈
s1

2
〉
(vi)0

]
= 0. (2.8)

Define ṽ = v0 + ε2 〈v2〉, which is consistent with the second-order theory for single-
phase flow. Adding the zeroth-order equation (2.5) to ε2×(2.8) gives an equation for
the mean saturation:

∂ts̃ + ∂xi

[
f(s̃)ṽi + ε2f ′(s̃) 〈s1(vi)1〉 +

ε2

2
f ′′(s̃)

〈
s1

2
〉
(vi)0

]
= 0. (2.9)

We derive equations for the unknown covariance functions 〈s1(vi)1〉 and
〈
s2
1

〉
using the following additional notation. The independent variables are x and t except
where noted, and ·|y denotes the replacement of x by some y different from x. It is
convenient and useful to derive equations for the more general two-point covariances
〈s1(vi)1|y〉 and 〈s1s1|y〉 rather than for one-point covariances.

To obtain an equation for 〈s1(vi)1|y〉, multiply (2.6) by (vi)1(y), and apply 〈·〉.
This results in

∂t 〈s1(vi)1|y〉 + ∂xi

[
f(s̃) 〈(vi)1(vi)1|y〉 + f ′(s̃)(vi)0 〈s1(vi)1|y〉

]
= 0. (2.10)

Similarly, multiply (2.6) by s1(y, t) and use the identity1 s1|y∂ts1 = ∂t(s1s1|y)−
s1∂ts1|y, then use (2.6) with y in place of x, yielding this equation for the two-point
saturation covariance:

∂t 〈s1s1|y〉 + ∂xi

[
f(s̃) 〈s1|y(vi)1〉 + f ′(s̃)(vi)0 〈s1s1|y〉

]
+∂yi

[
f(s̃|y) 〈s1(vi)1|y〉 + f ′(s̃|y)(vi)0|y 〈s1|ys1〉

]
= 0. (2.11)

Define csvi
(x,y, t) = ε2 〈s1(vi)1|y〉 , cs = ε2 〈s1s1|y〉 , cvivj

= ε2 〈(vi)1(vj)1|y〉,
〈s〉 |y = 〈s〉 (y, t), σsvi

(x, t) = csvi
(x,x, t), and σ2

s(x, t) = cs(x,x, t). Let a caret over
a variable denote the mapping ψ̂(x,y, t) = ψ(y,x, t) for any function ψ. The resulting
system is

∂ts̃ + ∂xi

[
f(s̃)ṽi + f ′(s̃)σsvi

+
1
2
f ′′(s̃)(vi)0 σ2

s

]
= 0, (2.12a)

∂tcsvj
+ ∂xi

[
f(s̃)cvivj

+ f ′(s̃)(vi)0 csvj

]
= 0, (2.12b)

∂tcs + ∂xi

[
f(s̃)ĉsvi

+ f ′(s̃)(vi)0cs

]
+ ∂yi

[
f
( ̂̃s )

csvi
+ f ′( ̂̃s )

(vi)0|ycs

]
= 0; (2.12c)

i, j = 1, 2.

Recall that velocity moments (vi)0, ṽi, and cvivj
are assumed known. The flux in

(2.12a) consists of a nonlinear advective mean flux term and two covariance terms.
In turbulence applications, terms such as csvj

often are referred to as transport by
fluctuations [22]. Both (2.12b) and (2.12c) have advective flux terms, are coupled to

1The identity is not valid in a strong sense for discontinuous solutions. Recall, however, that we
define solutions in terms of the (smooth) viscous solution, in the limit εD → 0.
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the mean equation (2.12a), and are first-order in ε2 = σ2
Y . This is consistent with the

approximation s̃, which is second-order in σY . However, due to the choice of s̃, higher-
order effects are included in (2.12). We demonstrate this fact for the case f(s) = s,
where the mean advective flux term in (2.12a) is ∂xi

[s̃ṽi], or ∂xi
[(s0 + ε2 〈s2〉)((vi)0 +

ε2 〈(vi)2〉)]. The term ε4∂xi
[〈s2〉 〈(vi)2〉] in this expression is a partial fourth-order

correction.
We refer to this problem as 2-D although the covariance functions involve four

spatial variables and the saturation covariance has fluxes in all directions. The four
variables represent two different points in the same 2-D domain.

To formally define the vanishing-viscosity solution, first add the deterministic
term εD∂2

xi
s to (2.1) and carry out the expansion and derivation above. This adds

diffusion terms εD∂2
xi

s̃, εD∂2
xi

csvj
, and εD∂2

xi
cs to the right-hand sides of (2.12a),

(2.12b), and (2.12c), respectively. Then find solutions in the limit εD → 0. In practice
we solve the system (2.12) directly.

3. Classification. Classification is of interest for several reasons. Macrodisper-
sion theory produces a parabolic equation for the mean, with a macrodispersivity that
depends on cvivj

and 〈s〉. In contrast, we have shown that 1-D MDEs are hyperbolic
[18]. To achieve this result, we exploited special structure to reduce the equations.
Namely, 1-D velocity has an infinite correlation length because it is a spatially constant
random variable. This led to the covariance relationship cs cv = csv ĉsv. Velocity
correlations have a finite length scale in 2-D. We argue that this fact prohibits classifi-
cation and suggests a transition to parabolic behavior as described by macrodispersion
theory.

We expect the equations to be nearly hyperbolic since the original deterministic
PDE (1.2) is hyperbolic. However, σsvi

and σ2
s , rather than csvi

and cs, appear
in the mean equation. This mix of one-point and two-point covariance functions
prevents us from immediately treating the MDEs as classically hyperbolic. Also,
independent variables x and y are permuted in s̃ and csvj

in (2.12c). In general,
s̃|y = s̃(y, t) �= s̃(x, t), and ĉsvj

�= csvj
. The system (2.12) cannot even be written

in conservation-law form. The inconsistency in independent variables is dealt with
directly by writing a redundant set of equations for the functions ̂̃s and ĉsvj

.
Transposing x and y in (2.12a) and (2.12b) results in the expanded system

∂ts̃ + ∂xi

[
f(s̃)ṽi + f ′(s̃)σsvi

+
1
2
f ′′(s̃)(vi)0σ2

s

]
= 0,

∂tcsvj
+ ∂xi

[
f(s̃)cvivj

+ f ′(s̃)(vi)0csvj

]
= 0,

∂tcs + ∂xi

[
f(s̃)ĉsvi

+ f ′(s̃)(vi)0cs

]
+ ∂yi

[
f
( ̂̃s )

csvi
+ f ′( ̂̃s )

(vi)0|ycs

]
= 0, (3.1)

∂tĉsvj
+ ∂yi

[
f
( ̂̃s )

cvjvi
+ f ′( ̂̃s )

(vi)0|yĉsvj

]
= 0,

∂t
̂̃s + ∂yi

[
f
( ̂̃s )

ṽi|y + f ′( ̂̃s )
σ̂svi

+
1
2
f ′′( ̂̃s )

(vi)0|yσ̂2
s

]
= 0;

with i, j = 1, 2, where σ̂svi
(y, t) = csvi

(y,y, t), σ̂2
s(y, t) = cs(y,y, t). The system is

symmetric under the permutation ψ̂(x,y, t) = ψ(y,x, t). To be consistent with the
original system (2.12a)–(2.12c), the initial conditions and the numerical method must
obey this symmetry.

4. Solution. We numerically solve (3.1) with a first-order upwind scheme within
the framework of CLAWPACK [21]. However, we do not take full advantage of the
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functionality of CLAWPACK due to the difficulty in defining a Riemann solver for
the MDEs. The solutions are shown to be bimodal as in 1-D (see Fig. 4.1, and see
[18] for 1-D details). Solutions are also compared to MCS moment estimates.
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Fig. 4.1. Mean and standard deviation of saturation (1-D). The solid curve is a semi-analytical
solution described in [18]; dashed curve is obtained from fine-grid numerical PDE scheme.

4.1. MDEs. Our example problem is on a rectangular domain R = [0, L1] ×
[0, L2] = [0, 2] × [0, 1], x = (x1, x2) ∈ R, with ∂x2h(x) = 0 on x2 = 0 and x2 = 1
and constant h(x) at x1 = 0 and x1 = 2. The entire domain R is initially oil-
saturated (s = 0), with water (s = 1) pumped in along x1 = 0. We choose a form
of the fractional flow function f(s) that arises from quadratic relative permeabilities:
f(s) = s2/(s2 + m(1 − s)2). We set the viscosity ratio m to 0.5 and porosity φ to
0.2. Statistical parameters for MDEs are 〈Y 〉 = 0 and σ2

Y = 0.25, and we use the
exponential covariance function given by

C(r) = σ2
Y exp

[
−|r1|

λ1
− |r2|

λ2

]
, (4.1)

where r = (r1, r2). We set correlation lengths λ1 = λ2 = 0.2. This gives 5 correlation
lengths in the x2 direction and 10 correlation lengths in the x1 direction. Hydraulic
head and velocity moments were computed using the semi-analytical flow approach of
Zhang and Winter [30, 36]. The authors derived MDEs using perturbation expansions
in a manner similar to ours. Due to the mathematical complexity caused by the
presence of boundaries and nonstationarity, these MDEs are solved numerically. Finite
velocity correlation length is evident in examples of velocity covariance shown in Fig.
4.2.

We use a very coarse grid (40 by 20) due to the fact that two-point covariance
functions make the 2-D MDEs essentially 4-D. The 2-D solutions for the mean s̃ and
variance σ2

s of saturation are shown at an early and late time in Fig. 4.3. These
indicate a pair of saturation fronts moving at distinct speeds. Saturation-velocity
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Fig. 4.2. Velocity covariance cv1v1 , showing finite correlation length. The solid line shows
covariance between v1 at the center of the domain and at all points on x2 = L2/2. The dotted line
shows covariance between v1 at the center and at all points along x1 = L1/2.

one-point covariances σsvi
, i = 1, 2 are shown in Fig. 4.4. The σsv1 surface is similar

to that of σ2
s , and is very close to the 1-D profile.

The results also are shown for s̃, σsv1 , and σs along a slice at x2 = L2/4 on the
longitudinal axis in Fig. 4.5. In each case, a bimodal solution is evident. On the left,
a rarefaction zone trails a slow front. Physically this represents a smoothly varying
mixture of two phases. The uncertainty as measured by σ2

s is relatively small in this
region. Beyond the slow front, in the interval of uncertainty, there is a nearly constant
ratio of phases. Finally, at the fast front, mean saturation and covariances drop to
zero; beyond the front, only one phase (oil) is present.

A crude test now can be performed to see whether a covariance relationship holds
similar to that in 1-D. The flow is nearly 1-D; transverse velocities are much smaller
than longitudinal velocities, and σsv2 is much smaller than σsv1 . So it is reasonable
to expect that the products σ2

sσv1v1 and σ2
sv1

are similar, because they are identical
in 1-D. However, observe the dip in σsv1 between two peaks (Fig. 4.5), on the interval
of uncertainty. The saturation variance does not have such a profile, and neither does
σv1v1 (see Appendix A). Thus there is a difference in shape between the two products
σ2

sσv1v1 and σ2
sv1

, so that the 1-D identity σ2
sσv1v1 = σ2

sv1
cannot hold.

The 2-D solutions are comparable to solutions in the limit of 1-D flow. This
limiting solution is obtained by letting the longitudinal velocity components ṽ1, (v1)0
be constant and setting transverse velocities to zero. The limiting solution matches
a 1-D solution computed on the coarse grid. The result along a longitudinal slice
is shown in Fig. 4.6. (The 1-D result is diffused compared to Fig. 4.1 because of
the coarse grid.) The nearly uniform 2-D flow scenario chosen gives results nearly
identical to those in 1-D in spite of the localized velocity correlation structure in 2-D.

The addition of small linear diffusion terms, which are employed in the numerical
scheme to stabilize the solution, does not eliminate bimodality. The fact that we solve
on a coarse grid, introducing large numerical diffusion, makes it even more striking
that bimodal solutions are clearly evident in the solution. Grid refinement and more
accurate numerical methods can be expected to emphasize the wave separation even
more.
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Fig. 4.3. Saturation mean and variance contours at (a,b) early and (c,d) late times. Lighter
shades indicate a higher mean water saturation or higher variance.

The separation between wave fronts increases with time. In many specific appli-
cations the relevant time scale may be such that a separation is not evident; however,
even when diffusion dominates initially, bimodality will appear over sufficiently long
times. This property of the solution must be accounted for in any use of MDEs for
advection and diffusion, for both single-phase and multiphase applications.

4.2. Comparison to MCS. Monte Carlo simulations are frequently used in ap-
plications to subsurface flow and transport and for reservoir modeling. The primary
drawback is that MCS is computationally costly. Separate and very important issues
include the problem of fair sampling of the true sample space and the standard prob-
lem of autocorrelation in random number generators. However, it is a well-established
method and serves as a standard for comparison.

For a bound on the error |s̄(x, t)− 〈s〉 (x, t)| of just 10−2, we estimate that about
4000 simulations are needed. This is a significant burden on time and space resources,
so we present results of only 350 simulations. This gives an estimated absolute error
bound of about 0.032, which is sufficient for a rough comparison (recall that mean
saturation values are restricted to [0, 1]).

Local correlation structure is again evident in MCS velocity moments in Fig. 4.7
(compare to Fig. 4.2). Sample mean and an envelope of one standard deviation along
the midline x2 = L2/2 are shown in Fig. 4.8. Contours of sample moments are shown
in Fig. 4.9. The roughness of the contours highlights the fact that a greater number
of simulations is required to obtain high accuracy. The mean front is near x1 = 1.3,
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Fig. 4.4. Saturation-velocity moments at (a,b) early and (c,d) late times.
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Fig. 4.5. Saturation moment profiles at (a) early and (b) late times.
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Fig. 4.6. Comparison of 2-D and 1-D flow.
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Fig. 4.7. Sample velocity covariance cv1v1 , showing finite correlation length. The solid line
shows covariance between v1 at the center of the domain and at all points along x2 = L2/2. The
dotted line shows covariance between v1 at the center and at all points along x1 = L1/2.

where the variance is greatest.
To make the comparison between MCS and MDE as consistent as possible, the

MDE solution is computed here using the sample velocity moments. This comparison
isolates the difference between the two methods at the level of computing saturation
moments (kindly suggested by Neuman and Guadagnini [24]). Contours of MDE
solutions using MCS velocity moments are shown in Fig. 4.9, where they are compared
to MCS saturation moments. A clearer comparison is seen in profiles of saturation
moments in Fig. 4.10, which shows solutions at a late time along x2 = L2/2. Of
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Fig. 4.9. MCS saturation (a) mean and (b) variance and MDE (c) mean and (d) variance
using MCS velocity moments.

course, MCS and our MDE cannot match; there is no physical reason to expect that a
bimodal solution can be obtained from simulations in our model. However, the MDE
mean is centered near the simulation mean, and variances computed by both methods
are similar. The MDE solution is ahead of the MCS solution, which is likely due to
the effects of numerical and artificial diffusion. The first of these effects is much larger
for MDE due to the coarse grid on which it is computed.

The comparison shows, not surprisingly, that the MDE moments are not an ac-
curate representation of the details of MCS moments. They provide a useful first
approximation, particularly if a rough estimate of the location and magnitude of un-
certainty is sufficient in an application. The comparison is favorable in the rarefaction
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Fig. 4.10. Comparison of MDE and MCS saturation moments.

zone, but we are more concerned with behavior near the (true) mean saturation front.
In 1-D, [18] explains the observed bimodality in terms of the eigenvalues and eigen-
vectors of the hyperbolic system of MDEs. This finite-dimensionality results from the
truncation of the expansions in (2.3) and (2.4). We speculate that if more terms were
retained, the number of modes would increase, but their magnitude would decrease,
forming a closer representation of MCS moments.

For integrated or averaged quantities, the MDE estimates are better. For example,
the solution does provide a good estimate of the total production, which is a key
measure in the oil industry. The total oil produced is computed as the mass quantity
that has exited the right boundary at time t. The volume of oil this represents is the
same as the volume of water injected in this case, which is given by

P (t) ≡
∫∫

A

φ s(x, t)dA, (4.2)

(assuming unit domain length in the vertical and unit density of oil) in each simulation.
Sample mean and variance of P (t) are computed and compared to an estimate of mean
production from MDE. The latter is obtained by replacing s in the integral with s̃.
The results are shown in Fig. 4.11 (here only 200 simulations were used).

The curves are fairly closely matched; the MDE curve lies within one sample
standard deviation σ̄s of the MCS curve, except near t = 0. The MDE curve has
two sharp changes in slope, which are due to the passing of the two saturation fronts
through the right boundary. In each of the first two segments, the curve is nearly
linear, which it should be for an intransient velocity field. Until water reaches the
boundary (breakthrough), a constant flux of oil leaves the domain. The flux is again
nearly constant between the saturation fronts, providing the second linear segment.
Finally, after the second front passes the boundary, production decays smoothly as
the rarefaction part of the mean saturation crosses.
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Fig. 4.11. Total Production. Solid curve is obtained by MDE, dashed curve is MCS mean. One
standard deviation is shown by dotted curves (200 samples).

MCS provides solutions with high resolution; this is also a requirement, as the
velocity field in each simulation may change significantly over short spatial scales.
Averaging provides relatively smooth velocity and saturation moments. The MDE
approach takes advantage of the smoothness of these moments before they are com-
puted. Thus, we do not need a fine grid to capture detail. Grid refinement will
certainly improve the solution to MDE, but refinement is not necessary to capture
small-scale features.

We computed rough estimates of computational costs and found that on an SGI
300MHz MIPS12K processor with 256M memory, a set of 200 simulations on 200
by 100 grid nodes takes about 8 hours. To achieve an error tolerance of 10−2 (to
within 97.5% confidence), we estimate that 4000 simulations are necessary, which
would take about 160 hours on the same computer. This is much longer than the
5 hours it takes to obtain the solutions presented here using the MDE code. These
are crude estimates; a careful comparison of costs for the two methods must allow for
some attention to improving efficiency in both codes and should account for several
differences between the methods, including the significantly higher storage cost for
MDE. Additional details on the MCS approach we used can be found in Appendix B
and in [16].

5. Conclusions. Bimodal moments are obtained for saturation in 2-D as in
earlier results for 1-D, in spite of the finite length scale for velocity correlations in
2-D. The fact that velocity correlations lead to a macrodispersion term in lower-order
approximations to moments would suggest a partial transition from hyperbolic to
parabolic character as we move from 1-D to 2-D. However, in the example herein
we limit the domain to ten correlation lengths (far from the ergodic regime) so that
macrodispersion effects may be very limited.

The two-phase Eulerian MDEs presented here complement the traditional MCS
approach. MDEs provide a first approximation to moments relatively quickly. Rather
than compute several hundred sample saturation fields on fine grids and post-process
to obtain moments, a single solution of MDEs is computed on a coarse grid. In spite of
a non-physical bimodality in MDE moments, we obtain a good match between MDE
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and MCS in the total oil production curve. For high accuracy, MCS is appropriate
and, in real applications, it may be of most benefit to combine the two methods. It
may also be possible to improve the accuracy of MDEs by retaining more terms in
the perturbation expansions.

The Eulerian MDE approach applies to any probability distribution of geologic
properties with any correlation function. It depends solely on moments rather than
a particular probability distribution and does not require stationarity, thus removing
restrictions that are common to stochastic subsurface theories.

6. Acknowledgments. We are grateful to Joseph Oliveira for many conversa-
tions on this topic.

Appendix A. Velocity moments from MDE.
Additional velocity moment profiles are shown in Fig. A.1 and Fig. A.2. These

were obtained using the MDE flux code of Zhang and Winter [36]. The dominant
component is longitudinal. Transverse flow is inward near the inflow (left) boundary,
and outward near the outflow (right) boundary. Longitudinal flow is significantly
greater along the sides, where transverse flux is zero.
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Fig. A.1. Mean velocity estimates (v0)1 and ṽ1 at (a) x2 = L2/2 and (b) x1 = L1/2; velocity
variances σvivi at (c) x2 = L2/2 and (d) x1 = L1/2.
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Appendix B. MCS and convergence.
Monte Carlo simulations were performed by numerically solving the total velocity

and saturation equations (1.1) and (1.2) over replicates of log hydraulic conductiv-
ity with correlation function (4.1). Replicates were generated with a Fast Fourier
Transform algorithm developed by Gutjahr and colleagues [14]. Velocity equations
were solved with a conjugate gradient algorithm. Saturation profiles were obtained
using a first-order upwind approach just as for MDEs, also within the framework of
CLAWPACK.

We performed simple tests for convergence of the mean and variance of saturation.
A tolerance of approximately 0.032 to within 97.5% confidence is estimated for results
of the 350 simulations presented here. Cumulative average saturation from the first
150 simulations at representative grid points is shown in Fig. B.1. Although it is well-
known that convergence of such estimates may appear imminent when in fact they
are not, this is still a useful tool. We may be reasonably confident in the simulation
moments for comparison to MDE; however, it is clear from the figures in §4.2 that
a larger number of simulations would be needed to obtain the smooth profiles we
expect.
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Fig. B.1. Convergence of sample mean saturation at (a) x2 = 0.4 and (b) x2 = 0.4; in both,
x1 = 1.2 (solid), x1 = 0.95 (dashed), and x1 = 0.7 (dotted).
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