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Abstract

This paper describes results on open- and closed-loop controll ed growth of epitaxial GaP /

Gay_yInyP heterostructures on Si(001) substrates. The layers are grown in a low pressure
pulsed chemicd beam epitaxy (PCBE) reador utilizing red time opticd p-polarized
refledance (PRS) probing. The results of the implemented closed loop controlled growth

favorably compare to the films grown using pre-designed source injedion profiles based on

an experimental data base.
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INTRODUCTION

The development of surfacesensitive opticd charaderizaion techniques of thin film
growth opened upthe posshiliti es to oltain detailed information in red time that is highly
relevant to the growth kinetics. The significance of these techniques for growth monitoringis
that they move the observation pant close to the surfaceof the film where the growth occurs.
These developments make it feasible to improve thin film deposition applying closed loop
control tedhniques. Areas of interest include fabricaion d advanced nanostructure devices,
improved densiti es of integrated eledronic devices.

In this work we describe our monitoring and control method for thicknesgcomposition
control of Si(001)/GaP/Gay_yIn,P growth in low pressure PCBE system. The films grown
with ou control agorithm have been analyzed by ex-situ methods sich as x-ray diffradion
(XRD) and Semndary lon Mass Spedroscopy (SIMS). The test results show the superiority
of the dosed loop controlled growth over open loop control designed using ou data base,
which was built up from acawmulated growth data. In ou experiment we use p-Polarized
Refledance Spedroscopy (PRS) as the primary probing method d our thin film growth
process PRSis based onthe dhangesin refledivity R of the p-pdarized laser light shone on
adynamicdly changing stadk of dieledric media and its nsitivity for the growth kineticsis
based on choasing the incident angle to be the pseudoBrewster angle (to S and GaP
substratesin ou case).

In ealier papersl-3 we have reported on ouw approach of modeling the surfacekinetics of
epitaxial GaP and Gay_,InP growth onS. For both the GaP and Gay_,In,P growth stages
we introduced reduced order surface kinetics (ROSK) models to represent the essential
chemicd processs in the surfacereadion layer (SRL). In this paper we utili ze our modd to
monitor and control the growth rate and compasition d the growing film as follows. First,
for the modeling d the PRS refledance measurement we use Fresnel's equation and a virtual
interfacemethod, introduced by D.E Aspnes#S, for the multi-layer stadk of GalnP where the
change of compasition and thickness of the growing layer is determined by ou model
dynamics and the flow rates are entered as inpu variables. We formulate the control of thin
film growth as an optimal control problem. Semnd, we use anorinea filtering algorithmé
to estimate growth rate and composition d growing Gaj.,InP film and besed on these
estimates then determine optimal flow rates of our source vapors to achieve the desired
compasition and gowth per cyclein red time.

Due to the limited spacefor a detailed description d the experimental setup we refer to
previous pulications’9,
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DATA BASE ANALYSIS/'OPEN LOOP CONTROL DESIGN

In the PCBE growth of GalnP film layers, the quality of the grown film strongy depends
on ambient presaure, temperature, the flow rate and the pulse timing d the threesource gases.
We ajusted appropriately those by seleding ogimal badkground pesaire, temperature and
theinjedionrate of TBP, aswell as pulsing profil e over the various growth condtions. Thus
the @ntrol authority we used are the flow rates of TEG and TMI source gases. A series of
test runs was condwcted to oltain data base on the dfed of the danges in the TMI/TEG
injedionratio onthe growth of Ga,In,_,P film. To identify the dfeds on the growth rate and
composition we have grown GalnP films using set flows for TEG and TMI, i.e., urp / Uteg
was <t to a mnstant value that varied from 0 to 1.2 (with fixed nanina flow urgg = 0.545
scam) ontop d an initial GaP film. We analyze the @rrespondng the PRS data and XRD
measurements to establish the functional relationships x = ®(y), gr = Y(y), where y
denotes TMI/TEG flow ratio, x compasition and gr the Gag_,InP film's growth rate &
depicted in Figure 3.

We utili ze this data base to perform the open-loop control synthesis. That is, given a
discretizaion z, with the thickness $ep size Az and a wrrespondng average desired
compoasiti on sequence x,, we seled the flow ratioto be y, =®™(x,) and the mrrespondng
durationt, = Az/W*(y,). Thuswe can design predetermined flow rates of TMI and TEG to
adhieve the desired compasitior/growth profil e.
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REAL-TIME MONITORING/CONTROL

In this dion we describe our approacd to uili ze the red time opticd observations and
apply feadbadk control methoddogy for controlling GalnP film growth. Consider the four
layer stadk composed of ambient / surfacereadion layer / film / substrate. We a&s3ume an
effedive media with the homogeneous dieledric function €; in the surfacereadion layer.
Let us dencote the four media by the indices labeled from the ambient to substrate. The
refledion coefficient rn_1 n from the (n-1) —st layer to nth mediais given by

€n \/ €h1- & sin2¢ - €na \/ €nh- €0 sin2¢
-2 -2
€n \/ €n1- g sSin“d  + 5n-1\/5n' € Sin“¢ (1)

MNpan =

where €, is the dieledric constant of the n-th media The phase fador ®, for the n-th
mediais given by
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where dy, is the thicknessof the n-th media.

For the cae of multi-later stadk of films by applying the theory of the virtual interface
method byAspnestOl1l therefledance anplituder of the p-polarized light isthen gven by
2idq 2P,

2i1P, -
1+r12rke 192 (3)
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The virtual refledionindex ry is updeted by

2id,
k-1 — Tk-1€ : i
e=—ekl KL= with 1 =A%,
k 210 k
1+ 2
lkk-1Tk-1 € (4)

at the end d cycle, where 6, defines the phase fador. Based onthe phase fador we estimate
the thickness of the grown layers. For ead hamogeneous layer we have the estimate of the
thicknessd, by



A
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where the Beng , Upegin IS the phase fador at the end and keginning d the layer. Similarly the
growth gr per eat cyclekisgiven by

A
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ory =
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We use the norlinea filtering algorithm® for estimating the state wnsisting d the virtual
refledion index r, = €17 '*2, the film dieledric constant &, = x5+ i X4, and gowth per
cyclexg inred time. In turn the thicknessof the spedfic compoundis estimated by (5). The
growth ratio of GaP and InP for ead cycle determined by (6) provides a @mmpasition
estimate. Lety, denote the PRS signd at the end d the k-th cycle. Then the filtering problem
is to estimate the signal processxK defined by

Oq Br(X9d
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based on the observation pocess y, = h(x") +V. Here we asumed that |4 is
sufficiently small and wsed r, = r,_; €' ™2 for upceting the virtual index ry. If we let Tr, be
the growth ratio of GaP or InP to eady naninal flow rate, then the functions f, f, and h are
defined by

(7)

f1+if2:Xl+iX2+2i¢2; h:roz—-l-rv
1+ rgH (8)
where d, = Tp Xs. We assume that noise processes wy, Vi are independent (identicdly
distributed) Gaussan randam variables with mean zero and covariance Q and R, respedively.
The growth of GaP and InP is determined in terms of nggp and nj,p Which are given by

d Ngap
dt

= k4np NGa - - k5np Min

(9)

where np, Ngg, andny, denote the oncentration d surface ative phaspharous, gallium and
indium, respedively. We mnsider the model for the cncentration change of adive Gain the
SRL by

NGa = Urec Seap - NeaP (10)

where Sgp is a pre-determined constant. Integrating the first equationin (9) we obtain

Ngap (v 1) = ¢ (nGaP(tk) - Seap UTEG) + Sgap UteG (12)



Lk +1

where ty is the starting time of the k-th cycle and C = k4It
k

varies and we etimate it in red time. We use our filtering agorithm to estimate the

np(t). The rate onstant ky

concentration ny of Ngap and the acamulated rate wnstant C for the k-th GaP cycle based

on

[ _ k-1 *+ Geq (Ures - ne-1)0
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with measurement gr, = Vgap N + V; . Here gr is the growth rate of k-th GaP cycle,
determined by Equation 6. The growth of the InP is modeled analogously.
We determine the inpu flow rates u'T‘EG and u'T‘,vII by performing

(12)
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Gap = © Gap = eap UTec )t Seap Utes
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N = €5 (nICnP - Sip Ut )"’ Sre Ui , (14)
respedively. Creg and Chy, arethe arrent estimates of C for GaP and InP cycle, and z is
the desired compaosition at the k cycle. That is, we ntrol the growth rate by utgg and then

by uty the composition for ead cycle.



FINDINGS: OPEN LOOP AND CLOSED LOOP RESULTS

We ndwted a number of tests to compare open loop and closed loop control
performance in the GalnP growth. We present the test results for spedfied thickness
compasition profiles, depicted in Figures 5 and 6, for single - and for multiple parabadlic
graded Ga_ In P heterostructures.

The spedficaions include mnstant, linealy and parabdlicdly graded compasition
segments in terms of the film thickness We varied the thicknessof the parabadlicdly graded
quantum wells between the 200 — 1000A range. Dired andysis of film thickness and
compasition d the films was condwcted using SIMS measurements. The cdibration d the
SIMS data has been made using constant compasition samples with compositions measured
by XRD, aswell as using alinea estimate for the sputtering rate throughou the cmpasition
range. In trading the prescribed composition profil e the feedbad control clealy proved to

be superior.
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Figure 6:
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