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Abstract This paper provides a survey of space-time
adaptive processing for radar target detection.
Specifically, early work on adaptive array processing
from the point of view of maximum signal-to-noise-ratio
and minimum mean squared error perspectives are
briefly reviewed for motivation. The sample matrix
inversion method of Reed, Mallet and Brennan is
discussed with attention devoted to its convergence
properties. Variants of this approach such as the Kelly
GLRT, adaptive matched filter and ACE tests are
considered. Extensions to handle the case of non-
Gaussian clutter statistics are presented. Current
challenges of limited training data support,
computational cost, and severely heterogeneous clutter
backgrounds are outlined. Implementation and
performance issues pertaining to reduced rank and
model-based parametric approaches are presented.

I. INTRODUCTION

Signal detection using an array of sensors has offered
significant benefits in a variety of applications such as radar,
sonar, satellite communications, and seismic systems.
Employing an array of sensors overcomes the directivity and
beamwidth limitations of a single sensor. Additional gain
afforded by an array of sensors leads to improvement in the
Signal-to-Noise-ratio, resulting in an ability to place deep
nulls in the direction of interfering signals. Finally, a system
using an array of sensors affords enhanced reliability
compared to a single sensor system. For example, sensor
failure in a single sensor system leads to severe degradation
in performance whereas sensor failure in an array results in
graceful performance degradation.

A problem of considerable importance in this context is
the adaptive radar detection of desired targets against a
background of interference consisting of clutter, one or more
jammers and background noise. The radar receiver front end
consists of an array of antenna elements. The received signal
is an electromagnetic plane wave impinging on the array
manifold. The electromagnetic plane wave induces a voltage
at each element of the array, which constitutes the measured
data. Several snapshots of measured data are available in
practice. Using the snapshots of data, the problem at hand is
to detect desired targets in the presence of interfering signals.
An important requirement is that of a constant probability of
false alarm. In practice, the interference statistics, the
interference spectral characteristics, and the target complex
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ude are unknown. Thus, the problem of adaptive radar
detection in interference is equivalent to the problem

tistical hypothesis testing in the presence of nuisance
eters. Present day computing power permits the use of
nown tools from statistical detection and estimation
in the radar problem. The Doppler-Wavenumber or

Doppler spectrum provides a unique representation of a
in a three dimensional plane. Hence, the problem of
time adaptive processing (STAP) may also be viewed
ectrum estimation problem where the two-dimensional
r transform of spatio-temporal data affords separation

desired target from interference. This scenario is
bed in Figure 1.

II. STAP OUTLINE

ypically, a radar transmits a burst of N pulses in a
nt processing interval. The data measured at the array
onsists of a JNx1 complex valued vector, where J is
mber of elements in the array. This corresponds to N
ots obtained from the J element array. Furthermore,

most radars employ a high pulse repetition frequency
, there is a temporal correlation between successive
at a given element of the array. Furthermore, the array
try introduces an element-to-element spatial

ation as shown in Figure 2. Thus in the context of
, the unknown interference spectral characteristics
pond to the unknown spatio-temporal correlation or
ance matrix of the JNx1 complex-vector under the
ion that the data consists of interference alone.
onally, interference statistics can be either Gaussian or
aussian. In the latter case, all STAP methods would
ed on a suitable model for the interference statistics.

resence of unknown parameters in the problem
des the use of a uniformly most powerful test for the
ve target detection problem. This is due to the fact that
aximization of a likelihood ratio over the domain of

wn parameters is extremely difficult. Hence, ad hoc
ches have been proposed to overcome this problem.
f the work in the area of STAP is based on the

ian model for the interference. STAP for non-Gaussian
rence has received increased attention in recent times.

nctly stated, most classical STAP algorithms consist of
lowing steps depicted in Figure 3.
imate nuisance parameters (interference covariance
and target complex amplitude)
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(ii) Form a weight vector based on the inverse covariance
matrix
(iii) Calculate the inner product of the weight vector and the
data vector from a cell under test
(iv)Compare the squared magnitude of the inner product in
step (iii) with a threshold determined according to a specified
false alarm probability.

Several interesting theoretical interpretations have been
offered for the STAP algorithms in the literature. However,
from a practical standpoint the key issues include:

(I) Sufficient target-free training data support to form an
estimated interference covariance matrix.
(II) Non-singular estimated covariance matrix to form the
weight vector.
(III) Computational complexity in forming the weight vector.
(IV) The ability to maintain a constant false alarm rate
(CFAR) and robust detection performance.

III. IMPLEMENTATION ISSUES

Early work in the 1960s by Widrow [1] (least squares
method), Applebaum [2] (maximum signal-to-noise-ratio
criterion) and Howells [3] (sidelobe canceller) suggested the
use of feedback loops with an appropriate error criterion to
control the convergence of iterative methods for calculating
the weight vector in adaptive arrays. However, these methods
were slow to converge to the steady-state solution.
Fundamental work by Reed, Mallet and Brennan [4] (RMB
beamformer) in 1974 showed that the sample matrix inverse
method offered considerably better convergence properties
compared to the work of Widrow et. al. Key requirements of
the RMB beamformer are the availability of at least JN
training data vectors for forming the sample covariance
matrix and the availability of 2JN training data vectors to
achieve performance within 3 dB of the optimal SNR.
Computational complexity of the RMB method is O(M3)
where M=JN. A drawback of the RMB approach is the lack
of CFAR. Modifications and extensions of this approach to
obtain CFAR was the focus of a number of efforts in the
1980s and early 1990s. These resulted in a number of
algorithms such as the Kelly-GLRT[5], the adaptive matched
filter [6,7], and the adaptive coherence estimator [8-13].
However, training data requirements and computational
complexity of the algorithms remain unchanged from that of
the RMB beamformer. Performance of all sample
covariance based STAP methods degrade in heterogeneous
[14-17] and non-Gaussian interference scenarios [18-20]. In
the latter case, this is due to the fact that the sample
covariance matrix suffers from significant estimation errors
[21-23]. Consequently, a much larger training data support
(compared to the Gaussian case) is needed.

On the other hand, collecting sufficient training data
depends on system considerations such as bandwidth,
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ions such as the non-homogeneity and non-stationarity
scanned areas. These factors preclude the collection of
mounts of training data. The problem can become
with increasing dimensionality. For example, 10
ots of data collected from a 32 element antenna array

rise to the problem of estimating a 320x320 covariance
. Using the rule of the RMB beamformer, this
itates the use of 640 target-free training data vectors to
te the covariance matrix. Assuming an instantaneous
ndwidth of 200 KHz, the representative training data
ption calls for wide sense stationarity to prevail over a
of 960 Km. Wide sense stationarity of the clutter

prevails over such a large region.

fore, there is a need to investigate methods, which
he potential for reducing the computational complexity
e training data requirements for STAP in Gaussian and
aussian interference scenarios. The work of
swamy and Michels [18-20,24,25] provides a useful
-based parametric STAP method, which offers the
ial for considerable reduction in training data support
mputational complexity. In this method, the data
ses are whitened through the use of multi-channel
tion error filters whose coefficients are chosen so as to
the inverse spectral characteristics of the interference.
portant feature of this method is the lack of a need to
nd invert the interference covariance matrix.
quently, the limitation of O(M3) does not apply here.
rmore, the use of a low model order filter enables
cant reduction in training data support. The low model
approximation has been found to work well in a variety
ulated and real data scenarios. Figure 4 provides a
verview of the model based parametric method using
tion error filters. The model based parametric method
es excellent performance in both Gaussian [25-27] and
aussian interference scenarios [18-20 and references
]. Other methods such as the cross spectral metric

) [28], auxiliary vector method (AVM) [29], reduced
sion STAP [30], and multistage Wiener filter (MWF)
ave been proposed for reducing the computational
exity and training data support requirements. A block
m of these methods is shown in Figure 4. Additional
d dimension STAP methods include element-space,
space pre-Doppler and post-Doppler techniques[32]
e principal components inverse (PCI) [33] and
anceller [34, 35] approaches. An important
ement of these methods is that the reduced-dimension
t vector span the clutter subspace and the signal
ce. A block diagram of reduced-rank STAP methods

wn in Figure 5.

of these methods are able to reduce only the
tational complexity requirement since they still require
e estimated covariance matrix have full rank.
rmore, the performance of the low rank methods



severely degrades in non-Gaussian interference scenarios.
Another point of note is that most reduced rank STAP
methods fail to maintain CFAR in both Gaussian and non-
Gaussian interference scenarios. CFAR of reduced
dimension methods is a subject of ongoing investigation.

IV CURRENT CHALLENGES AND OPEN PROBLEMS

Advances in system hardware permit the development of
large arrays processing a large number of pulses in a CPI.
Furthermore, operational scenarios get increasingly complex
due to their highly composite nature leading to severe spatio-
temporal clutter non-stationarity. Systems considerations
such as bandwidth, frequency agility, internal clutter motion,
aircraft crabbing, conformal arrays, spaceborne platforms,
and bistatic geometry further exacerbate the clutter
nonstationarity. Signal contamination of STAP training data
leads to target cancellation. These effects call for efficient
STAP methods to handle the following:
(i) Operation in non-stationary, heterogeneous clutter
backgrounds (see [36] for details).
(ii) Reduced training data support for estimation of
interference statistics and spectral characteristics (see [25-
31,33] for possible approaches).
(iii) Performance analysis including operational effects-
platform velocity, aircraft crab angle, channel mismatch,
mutual coupling between the elements of the antenna array.
(iv)Computational cost reduction.
(v) CFAR in Gaussian and non-Gaussian interference
scenarios using reduced dimension STAP.
(v) Robust STAP receiver design.
(vi) Dense target environments (see [15, 36, 37] for details).
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Figure 3: Classical STAP Processing

Figure 4: Parametric STAP
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Figure 5: Reduced Rank STAP
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