
 
Abstract — This paper presents an alternative approach to 

pulse compression that is based upon iterative Minimum Mean-
Square Error (MMSE) estimation.  It is similar to the well-
known least squares (LS) approach but does not suffer from the 
adverse effects caused by scatterers closer than some nominal 
range.  This results in a more robust estimate of the radar 
returns while maintaining nearly the same sidelobe level. 
Furthermore, the proposed pulse compression scheme is highly 
parallelizable in range and therefore can be computed 
efficiently.   

I. INTRODUCTION

Pulse compression allows a radar to obtain the range 

resolution of a short pulse without the need for very high 

peak transmit power.  This is accomplished by transmitting a 

long pulse that is phase or frequency modulated to generate 

a wideband signal.  The wideband signal is reflected back to 

the radar by scatterers in the beam of the radar which can be 

viewed as the convolution of the wideband signal with a 

channel that is representative of the range profile illuminated 

by the radar.  The purpose of pulse compression is then to 

estimate the radar channel based on the known transmitted 

signal and the received radar return signal. 

The classical approach to pulse compression is known 

as matched filtering [1] which has been shown to maximize 

the received signal-to-noise ratio (SNR) and is accomplished 

by convolving the transmitted signal with the received radar 

return signal.  One can represent matched filtering in the 

digital domain as the filtering operation 

( ) ( )ys ~ˆ H
MFx = ,                              (1) 

where ( )MFx̂ , for 1,,0 −= L , is the estimate of the th

delayed sample (range gate index), [ ]T
Nsss 21=s  is the 

length-N sampled version of the wideband transmitted 

waveform, ( ) ( ) ( ) ( )[ ]TNyyy 11~ −++=y  is the 

length-N vector of received radar return samples, and ( )H•
and ( )T•  are the complex conjugate (or Hermitian) and 

transpose operations, respectively.  Each individual radar 
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sample can be expressed as  

( ) )(~)( vy T += sx ,                        (2) 

( ) [ ]TNxxx )1()1()(~ +−−=x  consists of 

s of the true radar channel and )(v  is additive noise.  

tched filter output can therefore be written as 

( ) ( )[ ] ( )vssAs HTH
MFx +=ˆ ,                     (3) 
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ollection of sample-shifted snapshots of the radar 

l. 

om (4), it is obvious that estimation via matched 

g will suffer from range sidelobes due to the influence 

eighboring radar channel coefficients (i.e. the off-

al elements of ( )[ ]A ).  To alleviate this well-known 

least-squares (LS) solutions have been proposed [2]-

t decouple neighboring channel coefficients which 

een smeared by the transmitted waveform.  The LS 

n models the length-(L+N-1) received radar return as  

[ ] vxSy += ,                                   (5) 

( ) ( ) ( )[ ]TLxxx 110 −=x are the L true radar 

l coefficients, ( ) ( ) ( )[ ]TNLvvv 210 −+=v  are 

e noise samples, and the convolution of the 

itted waveform with the radar channel is 

imated as the matrix multiplication 
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The general form of the LS solution is  

( ) ySSSx HH
LS

1
ˆ

−
= .                              (7) 

 For the received signal model of (5), it can be shown 

that the LS solution of (7) is optimal in the mean-square  

error (MSE) sense when the additive noise is white.  

However, upon further inspection one finds that the LS 

received signal model does not completely characterize the 

received radar returns because it does not account for 

convolutional components involving samples of ( )x  prior 

to 0= .  These samples fold over into the desired window 

of ranges due to the temporal (and hence spatial) extent of 

the transmitted waveform.  The result is that the presence of 

a significant scatter within N-1 range gate samples prior to 

( )0x  can have a significant deleterious effect on the 

estimation of a large portion of the range window. 

 To compensate for this shortcoming of the LS estimator 

we first revisit the matched filter and note that when 0=  in 

(4), the matched filter does account for the samples just prior 

to the beginning of the range window.  It is therefore 

necessary to obtain a middle ground between the matched 

filter and the LS estimate.  The remainder of this paper 

develops the Minimum Mean-Square Error (MMSE) 

estimator [7] for pulse compression that provides a robust 

estimate of the radar channel while maintaining range 

sidelobes at or very near the level attained by the LS 

estimator. 

II. MMSE PULSE COMPRESSION

Minimum Mean-Square Error estimation is a Bayesian 

estimation approach that employs prior information in order 

to improve estimation accuracy.  The exact form that the 

prior information will take for pulse compression will be 

addressed shortly.  First, however, the signal model must be 

constructed.  From (3), we see that the collection of N

samples of the received radar return can be expressed as  

( ) ( )[ ] ( )vsAy += T~ .                          (8) 

This is the same received signal model used by the matched 

filter and takes into account all the necessary radar channel 

components for a given received return sample.  To develop 
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is inva
SE filter, the matched filter Hs  in (3) is replaced 

e MMSE filter, denoted ( )Hw , in which the exact 

f the MMSE filter is dependent upon the swath of 

under consideration.  Thereafter, the MMSE cost 

n 

( ) [ ]2
)(~)()( yw HxEJ −=                          (9) 

ed for each range gate 1,,0 −= L , where [ ]•E

s expectation.  This is done by differentiating with 

 to ( )Hw  and then setting the result to zero.  The 

 filter is found to take the form 

( ) [ ]( ) ( )[ ]*1 )(~)(~)(~ xEE H yyyw −= ,            (10) 

( )∗•  is the complex conjugate operation.  After 

uting for )(~y  from (8) and assuming that the radar 

l range gates are, in general, uncorrelated with one 

r and are also uncorrelated with the noise, one obtains 

( ) ( ) [ ] [ ]( ) sRCw 1)( −+= ρ ,                 (11) 

( ) ]|)(|[ 2xE=ρ  is the expected power of )(x , and 

)]()([ Hvv  is the noise covariance matrix.  On 

ng neighboring range cells are uncorrelated, the 

 element of the matrix [ ])(C  is 

] ( ) ( ) ( )+−−+−=
=

U

Ln

ji jinsnsinE
κ

κ

ρ *
, 1)(     (12) 

h { }jiL −= ,0maxκ  is the summation lower bound 

{ }jiNN −+−−= 1,1min  is the upper bound.  Also, 

or information regarding the noise can be employed 

 noise covariance matrix [ ]R .  For instance, for a 

oise assumption, [ ]R  is diagonal. 

bviously, in its current state the MMSE pulse 

ssion filter is a function of the powers of the radar 

 in surrounding range gates, which in practice are 

lable.  This lack of prior knowledge can be taken into 

t by setting all the initial radar channel estimates 

 Therefore, the initial MMSE pulse compression filter 

s to the form 

[ ] sCw 1~~ −≅                               (13) 

the noise term is assumed negligible and 

[ ] ( ) ( )+−=
=

U

Ln
ji jinsns

κ

κ

*
,

~
C                  (14) 

riant to the range gate delay .  The initial MMSE 



pulse compression filter can be pre-computed and then 

implemented in the same way as the traditional matched 

filter.  The inclusion of the matrix [ ]C
~

 serves to provide a 

“local” LS initial guess. 

Figure 1 illustrates the MMSE pulse compression 

algorithm for three iterations.  In general, the reiterative 

MMSE filter operates as follows: 

1) Collect the received samples ( ) ,,)1)(1( −−− NMy    

( ))1( −+ NMLy , which comprise the length-L radar 

channel window along with the (M – 1)(N – 1) samples 

prior to the window and the M(N – 1) samples after the 

window. 

2)  Apply the initial MMSE pulse compression filter 

from (13) to obtain the initial radar channel estimates 

( ) ( ))1)(1(ˆ,,)1)(2(ˆ 11 −−+−−− NMLxNMx .

3)  Compute the initial power estimates ( ) 2
11 )(ˆˆ x=ρ

for )1)(1(,),1)(2( −−+−−−= NMLNM  which 

are used to compute the range-dependent filters ( )1w
as in (11), and then apply to ( )y  to obtain ( )2x̂ .

4)  Repeat 2) and 3), changing the indices where 

appropriate, until the desired length-L range window is 

reached. 

Fig. 1.  Operation of reiterative MMSE pulse compression filter 

The initial guess of the radar channel found by applying 

the MMSE filter can be used as a priori information to 

reiterate the MMSE filter and improve performance.  This is 

done by employing the MMSE filter formulation from (11) 

in which the respective powers of the radar returns are taken 

from the current estimate.  It has been found that two or 

three reiteration steps allow the MMSE pulse compression 

filter to exclude the effects of scatterers prior to the range 

window, as well as to suppress the range sidelobes very 
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o the level of the noise floor.  The MMSE filter does 

lly well when the radar channel is somewhat sparsely 

terized (i.e. highly spiky), as is the case with high 

esolution radar.   

te that each reiteration step will reduce the number of 

gate estimates by ( )12 −N .  To counteract this, it is 

ary to increase the size of the range window by 

)1−  samples, where M  is the number of reiteration 

Typically, however, NL >>  so that this reduction in 

indow size is negligible. 

III. IMPLEMENTATION

e may immediately notice that in order to reiterate 

SE pulse compression filter it is necessary to invert 

N  matrix for every range gate which requires on the 

f N 3 operations for each inverse.  This can cause a 

tational burden whenever either N or L is large.  

er, the inversion of the roughly L matrices can be 

 into small groups and computed in parallel.  For this 

, the computational complexity of the MMSE filter 

with the number of parallel processors and hence can 

putationally feasible given enough processors. 

other important factor regarding practical 

entation is the non-singularity of the N × N matrix

] [ ])R+ .  This can be addressed by instituting a 

l level for which the estimated returns are not 

d to go below.  An alternative to this would be to re-

te only those range gates that are above some 

ld since the small-valued range gates most likely do 

tain a target and are therefore of little interest. 

IV. SIMULATION RESULTS

 demonstrate the performance of the MMSE pulse 

ssion filter we examine two cases.  The first case is 

 of the scenario often addressed for LS estimation 

ues and consists of a radar channel with a single large 

return in noise.  The other case we address is when 

 a second large target that resides in a range just prior 

range window.  In this case it is expected that the LS 

tor will substantially degrade since this important 

is not accounted for in the received signal model.  

aveform selected is the length N = 30 polyphase 

ted Lewis-Kretschmer P3 code [8], which on receive 

own-conversion to baseband) is defined as  

=
N

nj
ns

2

exp)(
π

,           1,,1,0 −= Nn .        (15) 

ise and clutter are modeled as zero-mean Gaussian 

owers set to -50 dB and -30 dB, respectively.  For 



both cases we perform two iterations of the MMSE filter and 

then compare the MMSE-estimated radar channel with the 

true radar channel, as well as with the results obtained from 

using LS and the matched filter.   

The radar channel for the first case is depicted in Fig. 2 

for a single target present in the range window which 

consists of 200 range gates.  Figure 3 illustrates the results 

from the different estimation techniques in which the 

matched filter experiences significant range sidelobes while 

both LS and MMSE have suppressed the range sidelobes so 

that the true target location is evident. 

    Fig. 2.  Radar channel with single target in the range window 

  Fig. 3.  Performance of MMSE, LS, & matched filter 
  for single-target channel 

For the scenario just described, the LS and MMSE 

estimators perform almost identically.  However, when there 

is a significant scatterer present just prior to the range 

window, as depicted in Fig. 4, the LS estimator is expected 

to degrade substantially.  From Fig. 5, the LS estimator truly 

does suffer from severe mis-estimation when a significant 

scatterer cannot be expressed in the model.  However, the 
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he previous case where only a single target was 

t.  This is obviously due to the fact that the MMSE 

tor takes all necessary range regions into account 

stimating the radar channel. 

ig. 4.  Radar channel with one target in range window and 
ne target just before range window 

    Fig. 5.  Performance of MMSE, LS, & matched filter 
    for target before range window 

ble 1 presents the Mean Squared-Error (MSE) for 

adar channels discussed using LS, MMSE, and 

ized matched filtering.  The MSE is averaged for all 

nge gates and over 100 runs using the same target(s), 

e clutter and noise distributed according to a zero-

aussian distribution for each run independently. 

Table 1.  MSE performance comparison 
Norm. MF LS MMSE 

annel 1 -12.3 dB -40.9 dB -35.8 dB 
annel 2 -11.2 dB -11.3 dB -34.7 dB 



For channel 1 (single target), the normalized matched 

filter has a large MSE due to range sidelobes, while LS and 

MMSE perform nearly the same with LS just marginally 

better.  However, for channel 2 (target just prior to the range 

window), the MSE attained by LS degrades to nearly that of 

the normalized matched filter, while the MMSE maintains 

roughly the same MSE as in the previous case. 

V. CONCLUSION

Least-Squares pulse-compression estimation of the radar 

channel is a well-known approach that has been shown to be 

an optimal estimator for the assumed radar channel model.  

However, scatterers may exist prior to the range window of 

interest which would inherently invalidate the LS radar 

channel model.  To alleviate this problem, the MMSE 

estimator is proposed that reiteratively finds a “local” least-

squares solution and in so doing takes all necessary radar 

channel information into account.  The result is an estimator 

that substantially reduces range sidelobes compared to 

matched filtering, as well as provides robustness to scatterers 

that may lie outside the range window of interest.  

Furthermore, reiterative MMSE estimation is not limited to 

pulse compression alone.  It may also find use in range 

profiling, image recognition for SAR and ISAR, or any other 

application requiring robust deconvolution of a known 

waveform with an unknown impulse response. 
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