Open-File Report 92-648 # Hydrologic and Hydraulic Analyses at Akin Branch and Cayce Valley Branch, Columbia, Tennessee Prepared by the U.S. GEOLOGICAL SURVEY in cooperation with the CITY OF COLUMBIA | maintaining the data needed, and c
including suggestions for reducing | election of information is estimated to
completing and reviewing the collect
this burden, to Washington Headquuld be aware that notwithstanding aromb control number. | ion of information. Send comments arters Services, Directorate for Info | regarding this burden estimate
rmation Operations and Reports | or any other aspect of the 1215 Jefferson Davis | nis collection of information,
Highway, Suite 1204, Arlington | |--|---|---|--|---|--| | 1. REPORT DATE
1993 | | 2. REPORT TYPE N/A | | 3. DATES COVE | RED | | 4. TITLE AND SUBTITLE | | | | 5a. CONTRACT | NUMBER | | | draulic Analyses at | Akin Branch and (| Cayce Valley | 5b. GRANT NUM | /IBER | | Branch, Columbia | , Tennessee | | | 5c. PROGRAM E | LEMENT NUMBER | | 6. AUTHOR(S) | | | | 5d. PROJECT NU | JMBER | | | | | | 5e. TASK NUMB | ER | | | | | | 5f. WORK UNIT | NUMBER | | | ZATION NAME(S) AND AE f the Interior 1849 (| ` ' | ngton, DC | 8. PERFORMING
REPORT NUMB | G ORGANIZATION
ER | | 9. SPONSORING/MONITO | RING AGENCY NAME(S) A | AND ADDRESS(ES) | | 10. SPONSOR/M | ONITOR'S ACRONYM(S) | | | | | | 11. SPONSOR/M
NUMBER(S) | ONITOR'S REPORT | | 12. DISTRIBUTION/AVAILAPPROVED for publ | LABILITY STATEMENT
ic release, distributi | on unlimited | | | | | 13. SUPPLEMENTARY NO | OTES | | | | | | 14. ABSTRACT | | | | | | | 15. SUBJECT TERMS | | | | | | | 16. SECURITY CLASSIFIC | CATION OF: | | 17. LIMITATION OF
ABSTRACT | 18. NUMBER
OF PAGES | 19a. NAME OF
RESPONSIBLE PERSON | | a. REPORT
unclassified | b. ABSTRACT unclassified | c. THIS PAGE
unclassified | SAR | 61 | RESPONSIBLE PERSON | **Report Documentation Page** Form Approved OMB No. 0704-0188 ### Hydrologic and Hydraulic Analyses at Akin Branch and Cayce Valley Branch, Columbia, Tennessee By GEORGE S. OUTLAW U.S. GEOLOGICAL SURVEY Open-File Report 92-648 Prepared in cooperation with the CITY OF COLUMBIA Nashville, Tennessee 1993 ## U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information write to: District Chief U.S. Geological Survey 810 Broadway, Suite 500 Nashville, Tennessee 37203 Copies of this report can be purchased from: U.S. Geological Survey Books and Open-File Reports Section Federal Center Box 25425 Denver, Colorado 80225 ### **CONTENTS** | Abstract 1 Introduction 1 Purpose and scope 2 Approach 3 Hydrologic and hydraulic analysis 3 Akin Branch 4 Flood discharges 4 Flood profiles 6 | | |---|------------| | Simulation of effects of alternative drainage structures 8 Cayce Valley Branch 24 Flood discharges 24 | | | Flood profiles 35 Simulation of effects of alternative drainage structures 47 Summary 47 Selected references 56 | | | ILLUSTRATIONS | | | Map showing location of the Akin Branch and the Cayce Valley Branch watersheds, Columbia, Tennessee 2 Map showing location of drainage structures in the Akin Branch study reach 3. Akin Branch flood discharges for selected recurrence intervals 7 Graphs showing: Computed flood profiles, existing conditions, with February 3, 1990, high-water marks for Akin Branch 9 Computed flood profiles for Akin Branch, simulation 1 23 Computed flood profiles for Akin Branch, simulation 2 23 Computed flood profiles for Akin Branch, simulation 3 24 Map showing location of drainage structures in the Cayce Valley Branch study reach 9. Cayce Valley Branch flood discharges for selected recurrence intervals 36 Graphs showing: Computed flood profiles, existing conditions, for Cayce Valley Branch 11. Computed flood profiles for Cayce Valley Branch, simulation 1 48 Computed flood profiles for Cayce Valley Branch, simulation 2 48 | 34 | | TABLES | | | 1. Akin Branch culvert and bridge inventory 2. Akin Branch high-water mark elevations for the February 3, 1990 flood 3. Selected data from hydraulic analysis of Akin Branch, existing conditions 4. Selected data from hydraulic analysis of Akin Branch, simulation 1 25 5. Selected data from hydraulic analysis of Akin Branch, simulation 2 28 6. Selected data from hydraulic analysis of Akin Branch, simulation 3 31 7. Cayce Valley Branch culvert and bridge inventory 35 8. Selected data from hydraulic analysis of Cayco Velley Branch, existing conditions | 39 | | Selected data from hydraulic analysis of Cayce Valley Branch, existing conditions Selected data from hydraulic analysis of Cayce Valley Branch, simulation 1 Selected data from hydraulic analysis of Cayce Valley Branch, simulation 2 53 | J y | #### CONVERSION FACTORS AND VERTICAL DATUM | Multiply | Ву | To obtain | |--|---------|------------------------| | inch (in.) | 2.540 | centimeter | | foot (ft) | 0.3048 | meter | | mile (mi) | 1.609 | kilometer | | square foot (ft ²) | 0.0929 | square meter | | square mile (mi ²) | 2.590 | square kilometer | | cubic foot per second (ft ³ /s) | 0.02832 | cubic meter per second | | foot per second (ft/s) | 0.3048 | meter per second | Sea level: In this report "sea level" refers to the National Geodetic Vertical Datum of 1929-a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929. ## HYDROLOGIC AND HYDRAULIC ANALYSES AT AKIN BRANCH AND CAYCE VALLEY BRANCH, COLUMBIA, TENNESSEE By George S. Outlaw #### **Abstract** The U.S. Geological Survey, in cooperation with the City of Columbia, Tennessee, conducted hydrologic and hydraulic analyses at Akin Branch and Cayce Valley Branch in the Little Bigby Creek watershed, Columbia, Tennessee, from 1990 through 1991. Results of the analyses can be used by city planners in the development of plans to replace several deteriorating and inadequate drainage structures. Akin Branch and Cayce Valley Branch drain small watersheds of 1.69 and 1.04 square miles, respectively. Flood discharges for 5-, 10-, and 25-year recurrence-interval storm events were calculated at the stream mouths using flood-frequency relations developed for use at small urban streams in Tennessee. For each stream, flood discharges at locations upstream from the mouth were calculated by subdividing the watershed and assigning a percentage of the discharge at the mouth, based on drainage area, to each subarea. Flood profiles for the selected recurrence-interval flood discharges were simulated for Akin Branch and Cayce Valley Branch for existing conditions and conditions that might exist if drainage improvements such as larger culverts and bridges and channel improvements are constructed. The results of the simulations were used to predict changes in flood elevations that might result from such drainage improvements. Analyses indicate that reductions in existing flood elevations of as much as 2.1 feet for the 5-year flood at some sites on Akin Branch and as much as 3.8 feet for the 5-year flood at some sites on Cayce Valley Branch might be expected with the drainage improvements. #### INTRODUCTION Local flooding due to poor drainage conditions affects many communities in Tennessee. Frequently, local flooding is caused and enhanced by the encroachment of buildings and other structures into natural flood channels, and the constriction of channels at culverts and bridges. Such conditions are present within the Little Bigby Creek watershed of Maury County, Tennessee (fig. 1), and particularly in the urban reaches of two tributaries, Akin Branch and Cayce Valley Branch, in the City of Columbia. The U.S. Geological Survey (USGS), in cooperation with the City of Columbia, conducted a hydrologic and hydraulic study of Akin Branch and Cayce Valley Branch to determine existing conditions which lead to local flooding, and to evaluate hydrologic and hydraulic conditions that might exist with possible drainage improvements. Objectives of the study were to estimate flood discharges and flood profiles along these two streams for storms with recurrence intervals of 5, 10, and 25 years under present
Figure 1. Location of the Akin Branch and the Cayce Valley Branch watersheds, Columbia, Tennessee. and possible future conditions that include larger culverts and bridges and other channel improvements. The study is one of several urban hydrology investigations being conducted by the USGS in Tennessee and in other states. #### Purpose and Scope This report presents data on the hydraulic characteristics of Akin Branch and Cayce Valley Branch and estimates of flood discharge at numerous points along the streams. The report describes model-simulated flood profiles for 5-, 10-, and 25-year storms, and includes an analysis of changes in flood profiles resulting from possible drainage improvements. #### Approach The following approach was used to meet the objectives of the investigation: - 1. The watershed boundary and amount of impervious area within Akin Branch and Cayce Valley Branch watersheds were determined from USGS topographic maps and validated with field data. - 2. Hydraulic characteristics of segments of the channels of Akin Branch and Cayce Valley Branch were determined from field surveys. These characteristics included cross-sectional areas, bed profiles, roughness coefficients, and location and dimensions of bridges and culverts. - 3. Flood discharges for 5-, 10-, and 25-year recurrence interval storm events were computed for Akin Branch and Cayce Valley Branch using equations developed by Robbins (1984). - 4. The USGS Water-Surface Profile (WSPRO) computation model (Shearman and others, 1986; Shearman, 1990) was used to compute flood profiles for 5-, 10-, and 25-year recurrence interval storm events for existing conditions at Akin Branch and Cayce Valley Branch. - 5. WSPRO was used to study the effects of drainage improvements at Akin Branch and Cayce Valley Branch. #### HYDROLOGIC AND HYDRAULIC ANALYSIS Flood discharges with 5-, 10-, and 25-year recurrence intervals were estimated at the mouths of Akin Branch and Cayce Valley Branch using regional equations and techniques described by Robbins (1984). For each stream, flood discharges at locations upstream from the mouth were calculated by subdividing the watershed and assigning a percentage of the discharge at the mouth, based on drainage area, to each subarea. Robbins' equations were developed to estimate flood discharges along urban streams in Tennessee with drainage areas from 0.21 to 24.3 mi². Using the flood discharges, flood profiles were computed with the WSPRO model. Critical depth was used as the starting elevation for the profile computations. The effects of culverts, bridges, and other obstructions in the channel were included in the computation of the profiles for each flood discharge. The following equations developed by Robbins (1984) were used to estimate flood discharges. $$Q_5 = 5.55(A)^{0.75}(IA)^{0.44}(P_{2_24})^{2.53}$$ $$Q_{10} = 11.8(A)^{0.75}(IA)^{0.43}(P_{2_24})^{2.12}$$ $$Q_{25} = 21.9(A)^{0.75}(IA)^{0.39}(P_{2_24})^{1.89}$$ where - Q_n is the estimated flood discharge, in cubic feet per second, for the indicated recurrence interval; n, in years; - A is the area of the watershed, in square miles; IA is the percentage of the drainage area that is impervious to infiltration of rainfall; and $P_{2,24}$ is the 2-year 24-hour rainfall, in inches. Values for watershed area and percentage of impervious area of the watershed were determined using topographic maps, aerial photographs, and field data. The rainfall for the 2-year 24-hour recurrence interval was estimated as 3.6 inches using maps developed for Tennessee by the U.S. Department of Commerce and published by Robbins (1984). Flood profiles were calculated using the WSPRO model. The model can be used to analyze onedimensional, gradually varied, steady flow in open channels. WSPRO also can be used to analyze flow through bridges and culverts, and to simulate road overflow. WSPRO data requirements include: discharge, channel cross sections and distances, bridge and culvert geometry, road surface elevations, and channel-roughness coefficients. Discharges were estimated using equations developed by Robbins (1984). Channel cross sections and distances, bridge and culvert geometry, road surface elevations, and channel-roughness coefficients were obtained from field surveys. Once the model is calibrated using observed storm data, the hydraulic model can be used to study the effects caused by changes in channel characteristics on the flood profile for a particular flood discharge. For example, changes in the size and aperture of bridges and culverts can be simulated to determine the effects on the flood profiles. #### **Akin Branch** Akin Branch drains a small urban watershed with a contributing drainage area of 1.7 mi². At present, residential and commercial development account for about 10 percent of the basin. However, the potential for continued development could result in 20 percent of the contributing drainage area becoming impervious to infiltration of rainfall in the future. This value of imperviousness was used to estimate flood discharges for future developed conditions. The study reach (fig. 2) begins at a point approximately 59 feet downstream from the culvert at James Campbell Boulevard (structure 1), and extends upstream approximately 7,300 feet (measured along the centerline of the stream) to a point just upstream from the culvert under the lumberyard at the corner of Highland Avenue and Nicholas Long Drive (structure 13) (table 1). The study reach contains a total of 13 culverts and bridges. #### Flood Discharges Flood discharges for Akin Branch were computed by assigning a percentage of the total basin flood discharge to each basin subarea based on the percentage of the watershed occupied by the subarea (fig. 3). The watershed was subdivided on the basis of topography and the location of tributaries and culverts draining into the creek. Flood discharges for the 5-, 10-, and 25-year recurrence intervals for each basin Figure 2. Location of drainage structures in the Akin Branch study reach. Table 1. Akin Branch culvert and bridge inventory [Stream stationing is given in hundreds of feet plus feet from a point 59 feet downstream from James Campbell Boulevard] | Structure number | Structure name | Stream stationing | Structure description | |------------------|-----------------------------------|-------------------|--| | 1 | James Campbell Boulevard culvert. | 0+59 - 2+00 | Two-barrel concrete box culvert. Average barrel inlet, 8 feet x 6 feet. Length, 141 feet. | | 2 | Store entrance culvert | 9+10 - 9+50 | Two-barrel concrete box culvert. Average barrel inlet, 8 feet x 6.6 feet. Length, 40 feet. | | 3 | Bank entrance culvert | 13+37 - 13+63 | Three-barrel concrete box culvert. Average barrel inlet, 8.5 feet x 5.5 feet. Length, 26 feet. | | 4 | Wedgewood Drive bridge | 15+85 - 16+07 | Single span concrete bridge. Inlet, 15.5 feet x 4 feet. Length, 22 feet. | | 5 | Alpine Drive bridge | 20+00 - 20+22 | Single span concrete bridge. Inlet, 15 feet x 5 feet. Length, 22 feet. | | 6 | Store entrance culvert | 22+50 - 22+84 | Two-barrel concrete box culvert. Barrel inlet, 8 feet x 8.2 feet. Length, 34 feet. | | 7 | Shady Brook Lane culvert | 25+50 - 26+21 | One-barrel concrete box culvert. Barrel inlet, 14 feet x 5 feet. Length, 71 feet. | | 8 | Mall entrance culvert | 30+23 - 32+18 | One-barrel concrete box culvert. Barrel inlet, 14 feet x 4.4 feet. Length, 195 feet. | | 9 | Mall parking lot culvert | 35+80 - 42+20 | One-barrel concrete box culvert. Barrel inlet, 14 feet x 5.1 feet. Length, 640 feet. | | 10 | Brookmeade Road culvert | 43+37 - 44+22 | One-barrel concrete box culvert. Barrel inlet, 10 feet x 5.9 feet. Length, 85 feet. | | 11 | Denise Drive culvert | 55+10 - 55+44 | One-barrel concrete box culvert. Barrel inlet, 12 feet x 6.8 feet. Length, 34 feet. | | 12 | Highland Avenue culvert | 69+44 - 69+84 | One-barrel corrugated metal pipe. Average pipe diameter, 3.5 feet. Length, 40 feet. | | 13 | Lumberyard culvert | 69+90 - 71+70 | One-barrel corrugated metal pipe. Average pipe diameter, 4.5 feet. Length, 180 feet. | subarea were calculated using the equations developed by Robbins (1984). These values were input to the WSPRO model for the calculation of the water-surface profiles. #### Flood Profiles 6 The hydraulic model was calibrated for existing conditions based on high-water marks that were obtained shortly after the flood of February 3, 1990 (table 2). The recurrence interval of this flood was approximately 5 years (fig. 4). Highwater marks shown for the February 3, 1990 flood in the vicinity of Denise Drive (stream station 55+00) are higher than the completed profiles because a new culvert was constructed at that location between February 3, 1990, and the time the profiles were computed. Discharge, in cubic #### AKIN BRANCH WATERSHED 1,000 2,000 3,000 4,000 5,000 FEET 200 400 600 800 1,000 METERS #### **EXPLANATION** - (1) NODE AND NUMBER - **B** BASIN SUBAREA DESIGNATION URBAN RUNOFF EQUATIONS (Robbins, 1984) $\begin{array}{ll} Q_5 & = 5.55 \ (\text{A})^{0.75} \ (\text{IA})^{0.44} \ (\text{P2_24})^{2.53} \\ Q_{10} & = 11.8 \ (\text{A})^{0.75} \ (\text{IA})^{0.43} \ (\text{P2_24})^{2.12} \end{array}$ $Q_{25} = 21.9 \text{ (A)}^{0.75} \text{ (IA)}^{0.39} \text{ (P2_24)}^{1.89}$ $P2_24 = 3.6$ inches #### Where Qn is the estimated flood discharge, in cubic feet per second, for the indicated recurrence interval, in years: A is the area of the watershed, in square miles; IA is the percentage of the drainage area that is impervious to infiltration of rainfall; and P2_24 is the 2-year 24-hour rainfall amount, in inches. Average basin impervious area is 20 percent Total basin area is 1.69 square miles #### Total basin flows $Q_5 = 5.55 \times 1.483 \times 3.74 \times 25.6 = 790$ cubic feet per second $Q_{10} = 11.8 \text{ x } 1.483 \text{ x } 3.63 \text{ x } 15.1 = 960
\text{ cubic feet per second}$ $Q_{25} = 21.9 \text{ x } 1.483 \text{ x } 3.22 \text{ x } 11.3 = 1,180 \text{ cubic feet per second}$ #### feet per second, for Percent indicated recur-Basin Area, in subarea of total rence interval, square miles flow in vears Q₂₅ Q₅ Qto A 0.305 18.1 140 175 210 В .292 17.3 140 165 205 C 95 .207 12.2 115 145 D .050 3.0 25 30 35 15 Ε .034 2.0 20 25 F 25 .058 3.4 35 40 G .084 5.0 40 50 60 .280 130 160 195 Н 16.6 I .020 1.2 10 10 15 9.5 75 90 110 T .161 K .074 4.4 35 40 50 L .006 .4 5 5 5 M .119 7.0 55 65 85 #### **BASIN FLOOD DISCHARGES** | Node
number | Stream
stationing | feet pe
indica | BF 88C0 | n cubic
ond, for
currence
years | |----------------|----------------------|-------------------|-----------------|--| | | | Q ₅ | Q ₁₀ | Q ₂₅ | | 0 - 1 | 72+75 - 63+58 | 140 | 175 | 210 | | 1 - 2 | 63+58 - 54+90 | 280 | 340 | 415 | | 2 - 3 | 54+90 - 43+00 | 400 | 485 | 595 | | 3 - 4 | 43+00 - 35+12 | 400 | 485 | 595 | | 4 - 5 | 35+12 - 29+82 | 415 | 505 | 620 | | 5 - 6 | 29+82 - 24+74 | 440 | 5 40 | 660 | | 6 - 7 | 24+74 - 22+22 | 580 | 710 | 870 | | 7 - 8 | 22+22 - 18+58 | 620 | 760 | 930 | | 8 - 9 | 18+58 - 15+56 | 655 | 800 | 980 | | 9 - 10 | 15+56 - 4+55 | 655 | 800 | 980 | | 10 - 11 | 4+55 - 0+00 | 735 | 895 | 1,100 | Figure 3. Akin Branch flood discharges for selected recurrence intervals. Using the calibrated model for the February 3 flood discharge, flood profiles were computed for existing channel conditions for 5-, 10-, and 25-year recurrence intervals (fig. 4a-4g). Selected output from the hydraulic model has been tabulated to aid in interpretation of results (table 3). The computed flood profiles indicate road overtopping of as much as 2.5 feet at Wedgewood Drive and as much as 1.5 feet at Alpine Drive for the 25-year flood. The profiles also indicate that backwater (hydraulic head buildup) of about 1.4 feet occurs at the upstream side of Alpine Drive. These adverse hydraulic conditions are attributed to undersized structures and flood-plain development. #### Simulation of Effects of Alternative Drainage Structures The calibrated hydraulic model was used to simulate the flood profiles at Akin Branch that would result from possible alternative designs for selected drainage structures. Data on existing structure sizes are listed in table 1, and the alternative drainage improvement designs evaluated using the model are described below for model simulations 1 through 3. Simulation 1: A three-barrel concrete box culvert with a total barrel width of 24 feet, barrel height of 7 feet, and culvert length of 30 feet was simulated at Wedgewood and Alpine Drives. Table 2. Akin Branch high-water mark elevations for the February 3, 1990 flood [High-water mark elevations, in feet. Add 564.29 to convert elevation to sea level. Stream stationing is given in hundreds of feet plus feet from a point 59 feet downstream from James Campbell Boulevard] | Stream
stationing | High-
water mark
elevation | Stream
stationing | High-
water mark
elevation | Stream
stationing | High-
water mark
elevation | |----------------------|----------------------------------|----------------------|----------------------------------|----------------------|----------------------------------| | 0+35 | 43.9 | 18+58 | 59.9 | 43+30 | 80.9 | | 2+45 | 46.3 | 20+00 | 60.4 | 44+50 | 83.6 | | 3+06 | 47.6 | 20+75 | 61.9 | 44+90 | 83.6 | | 4+40 | 51.2 | 22+30 | 63.0 | 52+80 | 91.3 | | 5+00 | 52.6 | 23+28 | 64.7 | 55+10 | 92.0 | | 5+70 | 53.0 | 23 + 75 | 65.1 | 56+30 | 94.1 | | 6+50 | 53.8 | 24+74 | 65.2 | 58+35 | 94.4 | | 7+10 | 54.5 | 25+50 | 64.7 | 60+50 | 94.5 | | 7+25 | 54.7 | 26+36 | 66.5 | 65+60 | 98.6 | | 9+10 | 56.7 | 30+23 | 71.8 | 67+00 | 100.5 | | 11+00 | 57.2 | 32+38 | 73.5 | 67+40 | 101.3 | | 13+37 | 58.7 | 33+25 | 73.7 | 71+80 | 107.9 | | 14+60 | 59.1 | 34+10 | 73.7 | 72+75 | 108.7 | | 15+85 | 59.1 | 35+27 | 73.9 | 73+20 | 108.8 | | 16+20 | 59.7 | 42+55 | 81.3 | | | Figure 4a. Computed flood profiles, existing conditions, with February 3, 1990, high-water marks for Akin Branch. Figure 4b. Computed flood profiles, existing conditions, with February 3, 1990, high-water marks for Akin Branch--Continued. Figure 4c. Computed flood profiles, existing conditions, with February 3, 1990, high-water marks for Akin Branch--Continued. Figure 4d. Computed flood profiles, existing conditions, with February 3, 1990, high-water marks for Akin Branch--Continued. Figure 4e. Computed flood profiles, existing conditions, with February 3, 1990, high-water marks for Akin Branch--Continued. Figure 4f. Computed flood profiles, existing conditions, with February 3, 1990, high-water marks for Akin Branch--Continued. Figure 4g. Computed flood profiles, existing conditions, with February 3, 1990, high-water marks for Akin Branch--Continued. Simulation 2: A three-barrel concrete box culvert with a total barrel width of 21 feet, barrel height of 6.5 feet, and length of 30 feet was simulated at Wedgewood Drive. A three-barrel concrete box culvert with a total barrel width of 22.5 feet, barrel height of 6.5 feet, and length of 30 feet was simulated at Alpine Drive. Simulation 3: A three-barrel concrete box culvert with a total barrel width of 24 feet, barrel height of 6 feet, and culvert length of 30 feet was simulated at Wedgewood Drive with maximum channel excavation of 0.8 foot between stations 14+25 and 16+48. A three-barrel concrete box culvert with a total barrel width 24 feet, barrel height of 6 feet, and culvert length of 30 feet was simulated at Alpine Drive. The simulated flood profiles for the three conditions (fig. 5, 6, and 7) indicate that during the 25-year flood: Drainage improvements modeled in simulation 1 would result in an increase of 0.3 foot in the water-surface elevation upstream from Wedgewood Drive and a decrease of 0.7 foot in the water-surface elevation upstream from Alpine Drive (table 4, fig. 5). No culvert overtopping would occur. Drainage improvements modeled in simulation 2 would result in an increase of 0.6 foot in the water-surface elevation upstream from Wedgewood Drive and a decrease of 0.2 foot in the water-surface elevation upstream from Alpine Drive (table 5, fig. 6). About one-half foot of culvert overtopping would occur at Wedgewood Drive. Drainage improvements modeled in simulation 3 would result in a decrease of 0.2 foot in the water-surface elevation upstream from Wedgewood Drive and a decrease of 0.9 foot in the water-surface elevation upstream from Wedgewood Drive and a decrease of 0.9 foot in the water-surface elevation upstream from Alpine Drive (table 6, fig. 7). Two feet of culvert overtopping would occur at Wedgewood Drive. For existing conditions, culvert overtopping of approximately 2.5 feet at Wedgewood Drive and 1.5 feet at Alpine Drive can be expected during the 25-year flood. These analyses indicate that culvert overtopping at Wedgewood Drive is necessary to reduce upstream water-surface elevations for existing downstream conditions. Table 3. Selected data from hydraulic analysis of Akin Branch, existing conditions [Add 564.29 to convert elevations to sea level; yr, year; -, no data; stream stationing is given in hundreds of feet plus feet from a point 59 feet downstream from James Campbell Boulevard] | 43.6 10 y 26 y 10 y 26 y 10 y 26 y 6 y 10 y 26 y 10 y 26 y 10 y 26 y 10 y 26 y 10 y 114 44.3 44.3 735 895 950 8.5 8.2 8.4 87 109 114 110 123 138 114 44.5 44.5 45.0 735 895 950 10.9 11.2 11.7 67 80 81 128 11.8 11.2 11.7 67 80 81 82 | Stream
station- | Water | Water-surface elevation
(feet) | elevation | F | Flow (cubic feet per second) | eet per
]) | N
(fe | Mean velocity
(feet per second) | ity
nd) | Cross. | Cross-sectional area of
flow (square feet) | area of
feet) | Channet | Bank full
elevation | Low steel
elevation | Deck
eleva- | | |---|--------------------|-------|-----------------------------------|-----------|------|------------------------------|---------------|----------|------------------------------------|------------|--------|---|------------------|---------------------|------------------------|------------------------|----------------|--| | 43.6 44.1 44.3 735 895 950 8.5 8.2 8.4 87 109 114 39.0 41.5 - | <u>פ</u> | 5 4 | 10 yr | 25 yr | 5 yr | | 25 yr | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | elevation
(feet) | (feet) |
(feet) | tion
(feet) | Remarks | | 44.5 44.9 45.0 735 895 950 6.7 7.3 7.4 110 123 128 39.2 42.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 00+0 | 43.6 | 4.1 | 44.3 | 735 | 895 | 950 | 8.5 | 8.2 | 4.8 | 87 | 109 | 114 | 39.0 | 41.5 | 1 | 1 | | | 44.5 44.9 45.0 735 895 950 10.9 11.2 11.7 67 80 81 39.4 - 45.7 48.0 1 1 46.0 46.9 46.9 735 895 950 9.0 9.2 9.8 82 97 97 40.1 - 46.9 49.0 1 1 46.9 49.4 735 895 1100 8.3 8.5 6.1 89 106 180 40.5 46.5 735 895 1100 8.4 5.6 4.6 135 160 242 40.8 47.0 - 44.9 49.9 50.3 735 895 1100 8.4 6.3 88 94 6.3 88 96 176 45.5 51.0 - 7 8 9 104 49.9 50.3 735 895 1100 8.3 9.8 10.4 79 91 106 45.5 51.0 - 7 8 9 102 10.1 66 79 97 47.1 52.0 - 7 8 9 102 10.1 66 79 97 47.1 52.0 - 7 8 9 104 105 10.1 66 79 97 47.1 52.0 - 7 9 1 105 10.1 66 79 97 47.1 52.0 - 7 9 1 105 10.1 66 79 97 47.1 52.0 - 7 9 1 105 10.1 66 79 97 47.1 52.0 - 7 9 1 105 10.1 66 79 97 47.1 52.0 - 7 9 1 105 10.1 66 79 97 47.1 52.0 - 7 9 7 97 97 97 97 97 97 97 97 97 97 97 | 0+43 | 44.5 | 44.9 | 45.0 | 735 | 895 | 950 | 6.7 | 7.3 | 7.4 | 110 | 123 | 128 | 39.2 | 42.0 | 1 | 1 | James | | 44.5 44.9 45.0 735 895 950 10.9 11.2 11.7 67 80 81 39.4 - 45.7 48.0 1 46.0 46.9 46.9 735 895 950 9.0 9.2 9.8 82 97 97 40.1 - 46.9 49.0 9.0 9.2 9.8 82 97 97 40.1 - 46.9 49.0 9.0 9.2 9.8 82 97 97 40.1 - 46.9 49.0 9.2 9.8 82 97 97 40.1 - 46.9 49.0 9.0 9.2 9.8 8.2 97 40.1 - - 49.0 | | | | | | | | | | | | | | | | | | Campbell
Blvd
culvert
tailwater. | | 46.0 46.9 46.9 735 895 950 9.0 9.2 9.8 82 97 97 40.1 - 46.9 49.0 J - 46.1 46.9 49.4 735 895 1100 8.3 8.5 6.1 89 106 180 40.5 40.8 47.0 - 40.8 47.0 40.4 49.9 50.3 735 895 1100 8.8 9.4 6.3 89. 104 735 895 1100 8.8 9.4 6.3 89. 104 735 895 1100 8.8 9.4 6.3 89. 104 735 89. 105 980 9.9 10.2 10.1 66 79 97 47.1 52.0 | 0+59 | 44.5 | 6.9 | 45.0 | 735 | 895 | 950 | 10.9 | 11.2 | 11.7 | 29 | 08 | 81 | 39.4 | ı | 45.7 | 0.8 | James
Campbell
Blvd
culvert | | 46.6 47.2 49.7 735 895 1100 8.3 8.5 6.1 89 106 180 40.5 46.5 - - 49.0 1 - 49.0 1 - - 49.0 1 - - 49.0 - - 49.0 - - 49.0 - - 49.0 - - 49.0 - - 40.0 - - 49.0 - - - 49.0 - - 49.0 - - - 49.0 - - - 49.0 - - - 49.0 - | 2+00 | 46.0 | 46.9 | 46.9 | 735 | 895 | 950 | 9.0 | 9.2 | 8.6 | 83 | 97 | 76 | 40.1 | t | 46.9 | 49.0 | James
Campbell
Blvd
culvert
inlet. | | 46.1 46.9 49.4 735 895 1100 8.3 8.5 6.1 89 106 180 40.5 46.5 - | 2+00 | 1 | 1 | 49.4 | 1 | 1 | 150 | i | 1 | & | ŀ | ı | 17 | 1 | I | 1 | 49.0 | James
Campbell
Blvd road
deck. | | 46.647.249.573589511005.45.64.613516024240.847.0-47.247.649.773589511008.89.46.3839617643.848.0-49.449.950.373589511009.39.810.4799110645.551.0-51.752.352.86558009809.910.210.166799747.152.0- | 2+16 | 46.1 | 46.9 | 49.4 | 735 | | 1100 | &
& | 8.
2. | 6.1 | | 106 | 180 | 40.5 | 46.5 | 1 | ı | James
Campbell
Blvd
culvert
headwater. | | 47.2 47.6 49.7 735 895 1100 8.8 9.4 6.3 83 96 176 43.8 48.0 - 49.4 49.9 50.3 735 895 1100 9.3 9.8 10.4 79 91 106 45.5 51.0 - 51.7 52.3 52.8 655 800 980 9.9 10.2 10.1 66 79 97 47.1 52.0 - | :+52 | 46.6 | 47.2 | 49.5 | 735 | 895 | 1100 | 5.4 | 5.6 | 4.6 | | 160 | 242 | 40.8 | 47.0 | ŀ | 1 | | | 49.4 49.9 50.3 735 895 1100 9.3 9.8 10.4 79 91 106 45.5 51.0 - 51.7 52.3 52.8 655 800 980 9.9 10.2 10.1 66 79 97 47.1 52.0 - | 96+3 | 47.2 | 47.6 | 49.7 | 735 | | 1100 | 8.8 | 9.4 | 6.3 | 83 | 96 | 176 | 43.8 | 48.0 | 1 | ı | | | 51.7 52.3 52.8 655 800 980 9.9 10.2 10.1 66 79 97 47.1 52.0 - | 9+4 | 49.4 | 49.9 | 50.3 | 735 | | 1100 | 9.3 | 8.6 | 10.4 | 79 | 91 | 106 | 45.5 | 51.0 | ! | 1 | | | | 1+55 | 51.7 | 52.3 | 52.8 | 655 | 800 | 086 | 6.6 | 10.2 | 10.1 | 99 | 62 | 26 | 47.1 | 52.0 | 1 | ı | | Table 3. Selected data from hydraulic analysis of Akin Branch, existing conditions--Continued Add 564.29 to convert elevations to sea level; yr, year; --, no data; stream stationing is given in hundreds of feet plus feet from a point 59 feet downstream from James Campbell Boulevard | , | Remarks | | Store culvert tailwater. | Store culvert outlet. | Store culvert inlet. | Store culvert road deck. | Store culvert
headwater. | | | Bank culvert
tailwater. | Bank culvert
outlet. | Bank culvert inlet. | Bank culvert road deck. | Bank culvert
headwater. | | |---|---------------------|----------|--------------------------|-----------------------|----------------------|--------------------------|-----------------------------|------|-------|----------------------------|-------------------------|---------------------|-------------------------|----------------------------|-------| | Deck
eleva- | tion
(feet) | | ı | 60.2 | 60.2 | 60.2 | t | 1 | : | ŀ | 60.5 | 60.5 | 60.5 | 1 | 1 . | | Low steel
elevation | (feet) | : | i | 56.9 | 56.9 | I | I | I | 1 | 1 | 58.8 | 58.8 | l | i | I | | Bank full elevation | (feet) | 58.0 | 58.0 | I | ŀ | ı | 59.0 | 59.0 | 0.09 | 0.09 | ! | ! | : | 56.0 | 56.0 | | Channel
bed | elevation
(feet) | 50.3 | 50.3 | 50.3 | 50.3 | 1 | 50.8 | 6.05 | 51.5 | 51.6 | 51.6 | 51.2 | i | 51.5 | 51.5 | | Cross-sectional area of
flow (square feet) | 25 yr | 121 | 116 | 107 | 107 | I | 183 | 173 | 165 | 226 | 147 | 140 | 64 | 364 | 363 | | oss-sectional area
flow (square feet) | 10 yr | 110 | 105 | 107 | 107 | 1 | 143 | 137 | 137 | 177 | 147 | 140 | ł | 284 | 288 | | Cross-
flow | 5 yr | 86 | 94 | 104 | 104 | ŀ | 105 | 101 | 114 | 143 | 140 | 135 | 1 | 187 | 191 | | ity
ond) | 25 yr | 8.1 | 8.4 | 9.2 | 9.2 | ł | 4.2 | 5.7 | 0.9 | 4.3 | 5.5 | 5.8 | 3.5 | 2.7 | 2.7 | | Mean velocity
(feet per second) | 10 yr | 7.3 | 7.6 | 75 | 7.5 | 1 | 5.6 | 5.8 | 5.8 | 4.5 | 5.4 | 5.7 | ı | 2.8 | 2.8 | | M
(fee | 5 yr | 6.7 | 7.0 | 6.3 | 6.3 | 1 | 6.2 | 6.5 | 5.8 | 4.6 | 4.7 | 6.4 | 1 | 3.5 | 3.4 | | set per | 25 yr | 086 | 086 | 086 | 086 | 1 | 086 | 086 | 086 | 086 | 810 | 810 | 170 | 086 | 086 | | Flow (cubic feet per
second) | 10 yr | 800 | 800 | 800 | 800 | 1 | 800 | 800 | 800 | 800 | 800 | 800 | 1 | 800 | 800 | | Flow | 5 yr | 655 | 655 | 655 | 929 | 1 | 655 | 655 | 655 | 655 | 655 | 655 | I | 655 | 929 | | levation | 25 yr | 57.1 | 57.2 | 56.9 | 56.9 | 1 | 59.4 | 59.4 | 60.2 | 60.5 | 58.8 | 58.8 | 61.3 | 61.3 | 61.3 | | Water-surface elevation
(feet) | 10 yr | 56.6 | 56.8 | 56.9 | 56.9 | 1 | 58.1 | 58.1 | 59.1 | 59.4 | 58.8 | 58.8 | ; | 60.2 | 60.2 | | Water | 5 yr | 56.1 | 56.3 | 56.4 | 56.5 | 1 | 56.6 | 56.6 | 58.1 | 58.4 | 58.4 | 58.6 | ł | 58.6 | 58.7 | | Stream
station- | Bu | 8+65 | 8+93 | 9+10 | 05+6 | 0+6 | 6+67 | 6+85 | 12+50 | 13+00 | 13+37 | 13+63 | 13+63 | 13+90 | 14+25 | Table 3. Selected data from hydraulic analysis of Akin Branch, existing conditions--Continued [Add 564.29 to convert elevations to sea level; yr, year; -, no data; stream stationing is given in hundreds of feet plus feet from a point 59 feet downstream from James Campbell Boulevard] | | Remarks | Wedgewood
Drive
bridge
tailwater. | Wedgewood
Drive
bridge
outlet. | Wedgewood
Drive
bridge
inlet. | Wedgewood
Drive
road deck. | Wedgewood
Drive
bridge
headwater. | | House on
right
bank. | | House on
right
bank. | |-------------------------|----------------------------|--|---|--|----------------------------------|--|-------|----------------------------|--------|----------------------------| | Deck | tion
(feet) | 1 | 59.0 V | 59.0 V | 59.0 W | 1 | ; | Floor H
61.6 | 1 | Floor E | | Low steel | elevation
(feet) | 1 | 56.9 | 56.9 | I | I | ŀ | Ground F
59.5 | ŀ | Ground F
59.3 | | Bank full | elevation
(feet) | 56.0 | 1 | 1 | I | 56.0 | 9.99 | t | 57.0 | 1 | | Channel | bed
elevation
(feet) | 52.7 | 52.8 | 52.8 | 1 | 53.0 | 53.1 | f | 53.1 | ı | | area of | 25 yr | 305 | 65 | 9 | 108 | 292 | 297 | 1 | 224 | ı | | Cross-sectional area of | riow (square reet) | 252 | 65 | 59 | 67 | 257 | 292 | ŧ | 190 | ı | | Cross | TIOW
5 yr | 178 | 8 | 89 | 43 | 214 | 219 | 1 | 151 | 1 | | ity | 25 yr | 3.2 | 4.
%. | 4.
∞. | 6.2 | 4.6 | 3.3 | 1 | 4.2 | 1 | | Mean velocity | 110 yr 25 | 3.2 | 5.9 | 5.9 | 5.3 | 3.1 | 3.1 | t | 4.0 | ı | | 2 | 5 yr | 3.7 | 7.5 | 7.5 | 4.1 | 3.1 | 3.0 | I | 4.1 | I | | et per | 25 yr | 086 | 310 | 310 | 029 | 086 | 086 | I | 930 | ı | | Flow (cubic feet per | 10 yr | 008 | 380 | 380 | 420 | 008 | 800 | t | 760 | ı | | Flow | 5 yr | 655 | 480 | 480 | 175 | 655 | 655 | ı | , 029 | ı | | evation | 25 yr | 61.4 | 56.9 | 56.9 | 61.5 | 61.7 | 8.19 | 1 | 62.1 | t | | Water-surface elevation | 10 yr | 60.3 | 56.9 | 56.9 | 6.09 | 61.0 | 61.1 | 1 | 61.3 | ı | | Water- | 5 yr | 58.9 | 56.9 | 56.9 | 60.1 | 60.1 | 60.2 | ı | 60.5 | 1 | | Stream | Bui | 15+56 | 15+85 | 16+07 | 16+07 | 16+23 | 16+48 | 16+60 | 18+58 | 18+60 | | | • | | | | | Hydrole | ogic | and Hydra | ulic / | Analysis | Table 3. Selected data from hydraulic analysis of Akin Branch, existing conditions--Continued [Add 564.29 to convert elevations to sea level; yr, year; --, no data; stream stationing is given in hundreds of feet plus feet from a point 59 feet downstream from James Campbell Boulevard] | Water-surface elevation Flow (cubic feet per (feet) second) 5 yr 10 yr 25 yr 5 yr 10 yr 25 y | 5 | 5 | (cubic
secon | 우유 | et per
25 yr | (fee | Mean velocity
(feet per second)
10 yr 25 | ty
and)
25 yr | Cross-4
flow
5 yr | Cross-sectional area of
flow (square feet)
5 yr 10 yr 25 yr | feet) | Channel
bed
elevation
(feet) | Bank full
elevation
(feet) | Low steel
elevation
(feet) |
Deck
eleva-
tion | Remarks | |---|-----------------------|--------------|-----------------|------|-----------------|------|--|---------------------|-------------------------|---|-------|---------------------------------------|----------------------------------|----------------------------------|------------------------|---| | 760 930 | 62.2 620 760 930 4.8 | 760 930 4.8 | 930 4.8 | 8.4 | | 4.6 | | 8.4 | 128 | 164 | 195 | 55.0 | 58.0 | 1 | | Alpine
Drive
bridge
tailwater. | | 60.3 60.3 580 590 590 7.7 7.8 | 60.3 580 590 590 7.7 | 590 590 7.7 | 7.7 | 7.7 | | 7.8 | | 7.8 | 75 | 75 | 75 | 55.3 | i | 60.3 | 62.0 | Alpine
Drive
bridge
outlet. | | 60.3 60.3 580 590 590 7.7 7.8 | 60.3 580 590 590 7.7 | 590 590 7.7 | 7.7 069 | 7.7 | | 7.8 | | 7.8 | 75 | 75 | 75 | 55.3 | 1 | 60.3 | 62.0 | Alpine
Drive
bridge
inlet. | | 62.1 62.9 63.5 40 170 340 5.3 4.2 | 63.5 40 170 340 5.3 | 170 340 5.3 | 340 5.3 | 5.3 | | 4.2 | | 6.4 | ∞ | 40 | 69 | 1 | ı | I | 62.0 | Alpine
Drive
road deck. | | 62.1 62.9 63.5 620 760 930 3.9 3.9 | 63.5 620 760 930 3.9 | 760 930 3.9 | 930 3.9 | 3.9 | | 3.9 | | 2.4 | 160 | 195 | 223 | 55.5 | 60.5 | I | 1 | Alpine
Drive
bridge
headwater. | | 62.1 62.9 63.6 620 760 930 3.9 4.0 | 63.6 620 760 930 3.9 | 760 930 3.9 | 930 3.9 | 3.9 | | 4.0 | | 4.2 | 157 | 192 | 220 | 55.6 | 60.5 | ı | 1 | | | | ; | 1 | i i | I | | 1 | | 1 | 1 | 1 | 1 | I | ł | Ground
63.4 | Floor
67.1 | House on
right
bank. | | 62.5 63.2 63.9 580 710 870 4.5 4.3 | 63.9 580 710 870 4.5 | 710 870 4.5 | 870 4.5 | 2. | | 4.3 | | 4.5 | 130 | 164 | 194 | 58.0 | 63.0 | ł | 1 | Store
culvert
tailwater. | | 63.0 63.5 64.1 580 710 870 10.5 11.3 | 64.1 580 710 870 10.5 | 710 870 10.5 | 870 10.5 | 10.5 | | 11.3 | | 12.0 | 55 | 63 | 72 | 59.6 | ı | 67.8 | 0.69 | Store
culvert
outlet. | Table 3. Selected data from hydraulic analysis of Akin Branch, existing conditions-Continued [Add 564.29 to convert elevations to sea level; yr, year; -, no data; stream stationing is given in hundreds of feet plus feet from a point 59 feet downstream from James Campbell Boulevard] | Stream
station- | ı | Water-surface elevation
(feet) | levation | Flow | Flow (cubic feet per
second) | set per | M (fee | Mean velocity
(feet per second) | y)
hd) | Cross-4 | Cross-sectional area of flow (square feet) | area of
feet) | Channel
bed | Bank full elevation | Low steel
elevation | Deck
eleva- | | |--------------------|------|-----------------------------------|----------|------|---------------------------------|---------|--------|------------------------------------|-----------|---------|--|------------------|---------------------|---------------------|------------------------|----------------|--| | ğ | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | elevation
(feet) | (feet) | (feat) | tion
(feet) | Remarks | | 22 + 84 | 64.6 | 65.3 | 66.1 | 580 | 710 | 870 | 7.3 | 7.8 | 4.8 | 8 | 91 | 101 | 59.6 | 1 | 67.8 | 0.69 | Store
culvert
inlet. | | 22+84 | 1 | 1 | ı | I | ı | ł | ŀ | ı | 1 | 1 | l | 1 | 1 | ı | 1 | 0.69 | Store
culvert road
deck. | | 23+00 | 64.7 | 65.4 | 66.2 | 580 | 710 | 870 | 4.2 | 2.4 | 4.2 | 139 | 168 | 205 | 59.2 | 65.0 | ı | ı | Store culvert headwater. | | 23+28 | 64.7 | 65.4 | 66.3 | | 710 | 870 | 4.0 | 4.1 | 4.1 | 146 | 175 | 212 | 58.8 | 65.0 | i | ì | | | 24+74 | 65.1 | 65.7 | 66.5 | 440 | 540 | 099 | 5.6 | 5.3 | 8. | 82 | 102 | 137 | 8.09 | 65.0 | i | ı | | | 25+36 | 65.4 | 0.99 | 66.7 | 440 | 540 | 099 | 5.5 | 5.4 | 5.1 | 81 | 100 | 130 | 61.4 | 65.0 | 1 | 1 | Shady Brook
Lane
culvert
tailwater. | | 25+50 | 65.4 | 0.09 | 9.99 | 440 | 540 | 099 | 8.3 | 8.7 | 4. | 53 | 62 | 20 | 61.6 | I | 9.99 | 8.8 | Shady Brook
Lane
culvert
outlet. | | 26+21 | 66.3 | 67.2 | 67.2 | 044 | 540 | 099 | 7.7 | 7.7 | 4. | 57 | 07 | 70 | 62.2 | 1 | 67.2 | 8.8 | Shady Brook
Lane
culvert
inlet. | | 26+21 | ì | ı | ŧ | 1 | ı | i | 1 | ı | 1 | I | 1 | i | ı | I | ı | 8.8 | Shady Brook
Lane road
deck. | Table 3. Selected data from hydraulic analysis of Akin Branch, existing conditions--Continued [Add 564.29 to convert elevations to sea level; yr, year; --, no data; stream stationing is given in hundreds of feet plus feet from a point 59 feet downstream from James Campbell Boulevard] | | ubic feet per
econd) | Flow (cubic feet second) | |------------------|-------------------------|--------------------------| | 5 yr 10 yr 25 yr | 25 yr 5 yr 10 yr | 5 yr 10 yr | | 4.7 3.3 | 660 4.7 | 4.7 | | 9.5 9.9 | 620 9.5 | 9.5 | | 4.6 4.9 | 620 4.6 | 9.4 | | 6.7 8.1 | 620 6.7 | 6.7 | | 6.7 8.1 | 620 6.7 | 6.7 | | : | 1 | I | | 3.0 2.9 | 620 3.0 | 3.0 | | 3.0 2.9 | 620 3.0 | 3.0 | | 4.1 3.8 | 595 4.1 | 4.1 | | 6.0 5.4 | 595 6.0 | 6.0 | Table 3. Selected data from hydraulic analysis of Akin Branch, existing conditions--Continued [Add 564.29 to convert elevations to sea level; yr, year; -, no data; stream stationing is given in hundreds of feet plus feet from a point 59 feet downstream from James Campbell Boulevard] | w (cubic feet per
second)
10 yr 25 yr 5 yr | N 9 | | ž <u>š</u> | Mean velocity
(feet per second)
10 yr 25 | 5 | Cross-s
flow
5 yr | Cross-sectional area of flow (square feet) 5 yr 10 yr 25 yr | ires of
eet)
25 yr | Channel bed elevation (feet) | Bank full
elevation
(feet) | Low steel elevation (feet) | Deck
eleva-
tion
(feet) | Remarks Mall parking | |--|------------|-----|------------|--|----------|-------------------------|--|--------------------------|------------------------------|----------------------------------|----------------------------|----------------------------------|---| | 400 | 485 | 595 | 8.
8. | 9.2 | ∞
4. | 4 | 53 | 17 | 71 .1 | : | 7.9/ | 1.8/ | Main parking
lot culvert
outlet. | | 400 485 | | 295 | 6.5 | 6.9 | 4. | 62 | 02 | 11 | 77.0 | 1 | 82.1 | 84.0 | Mall parking
lot culvert
inlet. | | 1 | | I | 1 | 1 | 1 | ı | ı | 1 | i | I | 1 | 84.0 | Mall parking
lot culvert
road deck. | | 400 485 | | 595 | 3.1 | 3.1 | 2.5 | 131 | 155 | 240 | 76.5 | 84.0 | ı | ı | Mall parking
lot culvert
headwater. | | 400 485 ; | ٠. | 595 | 3.0 | 3.1 | 2.6 | 133 | 155 | 231 | 75.7 | 84.0 | ı | ı | | | 400 485 5 | ٧n | 595 | 4.5 | 4.6 | 3.5 | 68 | 106 | 170 | 76.7 | 84.0 | ł | ı | | | 400 485 5 | Ň | 595 | 7.1 | 6.9 | 5.0 | 26 | 0/ | 120 | 6.77 | 84.0 | ı | ı | Brookmeade
Road
culvert
tailwater. | | 400 485 5 | ٧ñ | 260 | 11.8 | 12.1 | 11.0 | 46 | 40 | 51 | 78.1 | I | 83.2 | 86.5 | Brookmeade
Road
culvert
outlet. | | 400 485 5 | δ 1 | 260 | 7.1 | 8.2 | 9.5 | 26 | 29 | 59 | 78.1 | I | 84.0 | 86.5 | Brookmeade
Road
culvert
inlet. | | 1 | | 35 | 1 | t | 5.0 | ŀ | t | 7 | t | 1 | I | 86.5 | Brookmead
Road
road deck. | Table 3. Selected data from hydraulic analysis of Akin Branch, existing conditions--Continued [Add 564.29 to convert elevations to sea level; yr, year; --, no data; stream stationing is given in hundreds of feet plus feet from a point 59 feet downstream from James Campbell Boulevard] | | Remarks | Brookmeade
Road
culvert
headwater. | | | | | Denise
Drive
culvert
tailwater. | Denise
Drive
culvert
outlet. | Denise
Drive
culvert
inlet. | Denise
Drive
road deck. | Denise
Drive
culvert
headwater. | | |---|---------------------|---|-------|-------|-------|-------|--|---------------------------------------|--------------------------------------|-------------------------------|--|-------| | Deck
eleva- | tion
(feet) | | 1 | ł | ı | 1 | 1 | 96.4 | 96.4 | 96.4 | 1 | 1 | | Low steel
elevation | (feet) | 1 | i | 1 | I | ŀ | 1 | 94.4 | 94.4 | i | ı | ı | | Bank full
elevation | (feet) | 85.0 | 85.0 | 86.0 | 86.0 | 89.0 | 90.0 | I | I | 1 | 0.09 | 90.0 | | Channel | elevation
(feet) | 78.1 | 78.1 | 9.62 | 81.8 | 85.5 | 87.0 | 87.6 | 87.6 | i | 87.0 | 87.5 | | area of
feet) | 25 yr | 165 | 161 | 96 | 85 | 66 | 115 | 83 | 88 | ! | 06 | 100 | | Cross-sectional area of
flow (square feet) | 10 yr | 135 | 131 | 72 | 70 | 85 | 100 | 47 | 20 | 1 | 89 | 82 | | Cross | 5 yr | 68 | 87 | 49 | 62 | 71 | 88 | 42 | 4 | ı | 20 | 89 | | ty
ind) | 25 yr | 3.6 | 3.7 | 6.2 | 7.0 | 6.0 | 3.6 | 7.8 | 7.2 | 1 | 9.4 | 4.2 | | Mean velocity
(feet per second) | 10 yr | 3.6 | 3.7 | 6.7 | 6.9 | 5.7 | 3.4 | 7.2 | 8. | 1 | 5.0 | 4.2 | | M
(fee | 5 yr | 4.5 | 4.6 | 8.1 | 6.4 | 5.7 | 3.2 | 6.7 | 4.9 | 1 | 5.6 | 4.1 | | et per | 25 yr | 595 | 595 | 595 | 595 | 595 | 415 | 415 | 415 | ı | 415 | 415 | | Flow (cubic feet per second) | 10 yr | 485 | 485 | 485 | 485 | 485 | 340 | 340 | 340 | ı | 340 | 340 | | Flow | 5 yr | 400 | 400 | 400 | 400 | 400 | 280 | 280 | 280 | 1 | 280 | 280 | | evation | 25 yr | 9.98 | 2.98 | 6.98 | 88.1 | 7.06 | 92.0 | 92.0 | 92.4 | 1 | 92.4 | 92.7 | | Water-surface elevation (feet) | 10 yr | 85.5 | 9.58 | 85.9 | 87 | 90.3 | 91.5 | 91.5 | 91.8 | 1 | 91.8 | 92.2 | | Water-1 | 5 yr | 83.7 | 83.8 | 84.5 | 87.1 | 6.68 | 91.1 | 91.1 | 91.3 | 1 | 91.3 | 91.8 | | S ts | 50
. <u>C</u> | rdraulic Analys | 44+80 | 46+60 | 48+73 | 52+45 | 54+90 | 55+10 | 55+44 | 55+44 | 55+56 | 56+05 | Table 3. Selected data from hydraulic analysis
of Akin Branch, existing conditions--Continued [Add 564.29 to convert elevations to sea level; yr, year; -, no data; stream stationing is given in hundreds of feet plus feet from a point 59 feet downstream from James Campbell Boulevard] | Deck
eleva- | t) tion Remarks
(feet) | | 1 | 1 | - Highland Avenue culvert tailwater. | 4.8 107.0 Highland Avenue culvert outlet. | 5.4 107.0 Highland Avenue culvert inlet. | - 107.0 Highland
Avenue
road deck. | - Highland Avenue culvert headwater. | Lumber yard culvert tailwater. | 5.2 107.6 Lumber yard | |---|---------------------------|-------|-------|-------|--------------------------------------|---|--|--|--------------------------------------|--------------------------------|-----------------------| | == | (feet) (feet) | 92.0 | 94.0 | 100.0 | 102.5 | - 104.8 | - 105.4 | 1 | 1 | 1 | - 106.2 | | Channel | elevation
(feet) | 90.0 | 92.1 | 97.9 | 100.0 | 101.0 | 101.6 | I | 101.5 | 101.5 | 101.4 | | l area of
feet) | 25 yr | 82 | 73 | 34 | 47 | 16 | 17 | 16 | 79 | 67 | 5 6 | | Cross-sectional area of
flow (square feet) | 10 yr | 72 | 63 | 53 | 42 | 15 | 17 | 10 | £7 | 23 | 56 | | Cross | 5 yr | 63 | 54 | 25 | 36 | 13 | 17 | 4 | 8 | 8 | 56 | | ity
ond) | 25 yr | 5.0 | 2.9 | 6.1 | 4.5 | 9.4 | ∞ | %.
% | 2.7 | 2.7 | 7.5 | | Mean velocity
(feet per second) | 10 yr | 4.7 | 2.8 | 0.9 | 4.2 | 10.0 | 8.5 | 3.1 | 2.4 | 2.4 | 6.7 | | N (fe. | 5 yr | 4.4 | 5.6 | 5.7 | 3.9 | 10.0 | 7.6 | 2.5 | 2.1 | 2.1 | 5.4 | | et per | 25 yr | 415 | 210 | 210 | 210 | 150 | 150 | 8 | 210 | 210 | 195 | | Flow (cubic feet per
second) | 10 yr | 340 | 175 | 175 | 175 | 145 | 145 | 30 | 175 | 175 | 175 | | Flow | 5 yr | 280 | 140 | 140 | 140 | 130 | 130 | 10 | 140 | 140 | 140 | | levation | 25 yr | 94.8 | 6.96 | 102.1 | 104.1 | 104.4 | 105.4 | 107.9 | 107.9 | 107.9 | 106.2 | | Water-surface elevation
(feet) | 10 yr | 94.6 | 96.5 | 101.9 | 103.8 | 104.0 | 105.4 | 107.6 | 107.6 | 107.6 | 106.2 | | Water | 5 yr | 94.2 | 96.2 | 9'101 | 103.5 | 103.7 | 105.4 | 107.2 | 107.2 | 107.2 | 106.2 | | Stream
station- | 8 | 29+90 | 63+58 | 67+40 | 69+18 | 69+44 | 69 + 84 | 69 +84 | 28+
69
Ogic and Hydr | 69+87 | 06+69 | Table 3. Selected data from hydraulic analysis of Akin Branch, existing conditions--Continued [Add 564.29 to convert elevations to sea level; yr, year; -, no data; stream stationing is given in hundreds of feet plus feet from a point 59 feet downstream from James Campbell Boulevard] | iy | | | | | | | | | | | | | | | | | İ | | |---------|--------------------|-------------|-----------------------------------|----------|------|---------------------------------|--------|-----------|------------------------------------|-------------|--------|---|------------------|---------------------|------------------------|------------------------|----------------|----------------------------------| | 1 | Stream
station- | Water- | Water-surface elevation
(feet) | levation | Flow | Flow (cubic feet per
second) | et per | N
(fee | Mean velocity
(feet per second) | ity
ind) | Cross- | Cross-sectional area of
flow (square feet) | area of
feet) | Channel
bed | Bank full
elevation | Low steel
elevation | Deck
eleva- | | | c and ! | .i. | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | elevation
(feet) | (feet) | (feet) | tion
(feet) | Remarks | | │ | 02+1 | 71+70 108.0 | 108.0 | 108.0 | 140 | 175 | 195 | 5.4 | 6.7 | 7.5 26 | 26 | 26 | 26 | 103.2 | l | 108.0 | 109.2 | Lumber yard
culvert
inlet. | | | 71+70 | I | ŀ | 109.5 | t | ı | 15 | ŀ | ŀ | 3.1 | ŧ | ı | 5 | 1 | 1 | 1 | 109.2 | Lumber yard road deck. | | | 1+76 | 71+76 108.6 | 109.0 | 109.5 | 140 | 175 | 210 | 2.4 | 2.6 | 2.8 | 59 | <i>L</i> 9 | 27 | 103.3 | 106.0 | i | ı | Lumber yard culvert headwater. | | | 71+90 | 108.6 | 109.1 | 109.5 | 140 | 175 | 210 | 2.4 | 2.6 | 5.8 | 28 | <i>L</i> 9 | 74 | 103.3 | 106.0 | 1 | ı | | | | 72+75 | 108.7 | 109.2 | 109.6 | 140 | 175 | 210 | 2.6 | 2.8 | 2.9 | 55 | 2 | 71 | 103.3 | 107.0 | t | 1 | | Figure 5. Computed flood profiles for Akin Branch, simulation 1. Figure 6. Computed flood profiles for Akin Branch, simulation 2. Figure 7. Computed flood profiles for Akin Branch, simulation 3. #### Cayce Valley Branch Cayce Valley Branch drains a small urban watershed with a contributing drainage area of 1.04 mi². At present, residential and commercial development account for about 5 percent of the basin. However, the potential for continued development could result in 10 percent of the contributing drainage area becoming impervious to infiltration of rainfall in the future. This value of imperviousness was used to estimate flood discharges for future developed conditions. The study reach (fig. 8) begins at a point approximately 100 feet downstream from Whitney Drive (structure 1), and extends upstream approximately 5,000 feet (measured along the centerline of the stream) to a point just upstream of the culvert under Jewell Drive (structure 11) (table 7). The study reach contains a total of 11 culverts and bridges. #### Flood Discharges Flood discharges for Cayce Valley Branch were computed by assigning a percentage of the total basin flood discharge to each basin subarea based on the percentage of the watershed occupied by the subarea (fig. 9). The watershed was subdivided on the basis of topography and the location of tributaries draining into the creek. Flood discharges for the 5-, 10-, and 25-year recurrence intervals for each basin subarea were calculated using the equations developed by Robbins (1984). These values were input to the WSPRO model for the calculation of water-surface profiles. [Add 564.29 to convert elevations to sea level; -, no data; stream stationing is given in hundreds of feet plus feet from a point 59 feet downstream from James Campbell Boulevard] Table 4. Selected data from hydraulic analysis of Akin Branch, simulation 1 | | Remarks | | Wedgewood
Drive
culvert
tailwater. | Wedgewood
Drive
culvert
outlet. | Wedgewood
Drive
culvert
inlet. | Wedgewood
Drive
road deck. | Wedgewood
Drive
culvert
headwater. | | House on
right
bank. | | House on
right | |---|---------------------|-------|---|--|---|----------------------------------|---|-------|----------------------------|-------|-------------------| | Deck
eleva- | tion
(feet) | 1 | 1 | 62.3 | 62.3 | 62.3 | ! | 1 | Floor
61.6 | ı | Floor
65.7 | | Low steel | (feet) |
 | I | 59.8 | 59.8 | ı | ı | ı | Ground
59.5 | ı | Ground
59.3 | | Bank full
elevation | (feet) | 56.0 | 56.0 | 1 | ı | 1 | 56.0 | 56.0 | I | 57.0 | 1 | | Channel | elevation
(feet) | 51.5 | 52.7 | 52.8 | 52.8 | ı | 53.0 | 53.1 | ı | 53.1 | ı | | area of
feet) | 25 yr | 360 | 346 | 168 | 168 | ı | 362 | 362 | 1 | 225 | i | | Cross-sectional area of
flow (square feet) | 10 yr | 288 | 288 | 168 | 168 | ı | 295 | 295 | ı | 161 | ţ | | Cross | 5 yr | 189 | 220 | 146 | 149 | I | 214 | 215 | ı | 8 | ı | | ity
ond) | 25 yr | 2.7 | %
% | &
% | 2.
8. | ; | 2.7 | 2.7 | | 4.1 | ; | | Mean velocity
(feet per second) | 10 yr | 2.8 | 2.8 | 4 .
8. | 8 . | ł | 2.7 | 2.7 | ı | 4.7 | ı | | (fee | 5 yr | 3.5 | 3.0 | 5.5 | 4.
4. | ł | 3.1 | 3.1 | ŀ | 6.9 | ı | | st per | 25 yr | 086 | 086 | 086 | 086 | ı | 086 | 086 | ı | 930 | 1 | | Flow (cubic feet per
second) | 10 yr | 800 | 800 | 800 | 008 | 1 | 008 | 800 | 1 | 992 | l | | Flow | 5 yr | 655 | 655 | 655 | 655 | ŀ | \$ 655 | 8 559 | ŀ | 620 | 1 | | evation | 25 yr | 61.3 | 61.3 | 59.8 | 59.8 | ı | 62.0 | 62.0 | ı | 62.1 | ı | | Water-surface elevation
(feet) | 10 yr | 60.2 | 60.2 | 59.8 | 59.8 | 1 | 9.09 | 9.09 | 1 | 60.7 | 1 | | Water-6 | 5 γτ | 58.7 | 58.9 | 58.9 | 59.0 | 1 | 59.0 | 59.0 | 1 | 59.1 | 1 | | Stream
station- | 3 | 14+25 | 15+56 | 15+85 | 16+07 | 16+07 | 16+23 | 16+48 | 16+60 | 18+58 | 18+60 | | | Remarks | Alpine Drive culvert tailwater. | Alpine Drive culvert outlet. | Alpine Drive culvert inlet. | Alpine Drive road deck. | Alpine Drive culvert headwater. | | House on
right
bank. | Store
culvert
tailwater. | Store
culvert
outlet. | Store culvert | |---|---------------------|---------------------------------|------------------------------|-----------------------------|-------------------------|---------------------------------|-------|----------------------------|--------------------------------|-----------------------------|---------------| | Deck
eleva- | tion
(feet) | 1 | 64.5 | 64.5 | 64.5 | I | 1 | Floor
67.1 | 1 | 0.69 | 0.69 | | Low steel
elevation | (feet) | ! | 62.3 | 62.3 | ı | 1 | ŀ | Ground
63.4 | 1 | 67.8 | 67.8 | | Bank full
elevation | (feet) | 58.0 | ! | 1 | ; | 60.5 | 60.5 | ì | 63.0 | 1 | 1 | | Channel
bed | elevation
(feet) | 55.0 | | 55.3 | ı | 55.5 | 55.6 | ł | 58.0 | 59.6 | 59.6 | | l area of
feet) | 25 yr | 255 | 168 | 168 | ŀ | 238 | 216 | i | 152 | 72 | 104 | | Cross-sectional area of
flow (square feet) | 10 yr | 199 | 137 | 140 | ı | 164 | 152 | ı | 91 | . 63 | 91 | | Cros | 5 yr | 154 | 110 | 113 | ı | 126 | 118 | 1 | 02 | 55 | 08 | | ty
ond) | 25 yr | 3.6 | 5.5 | 5.5 | ı | 3.9 | 4.3 | I | 5.7 | 12.1 | 8.4 | | Mean velocity
(feet per second) | 10 yr | 3.8 | 5.5 | 5.4 | I | 4.6 | 5.0 | 1 | 7.8 | 11.3 | 7.8 | | M.
(fee | 5 yr | 4.0 | 5.6 | 5.5 | I | 4.9 | 5.3 | ł | 8.3 | 10.5 | 7.3 | | et per | 25 yr | 930 | 930 | 930 | I | 930 | 930 |
ł | 870 | 870 | 870 | | Flow (cubic feet per
second) | 10 yr | 760 | 760 | 09/ | ı | 760 | 09/ | ı | 710 | 710 | 710 | | Flow | 5 yr | 620 | 620 | 970 | 1 | 620 | 620 | 1 | 580 | 580 | 580 | | vation | 25 yr | 62.3 | 62.3 | 62.3 | 1 | 62.8 | 62.8 | ı | 63.0 | 64.1 | 66.1 | | Water-surface elevation
(feet) | 10 yr | 61.0 | 61.0 | 61.1 | ! | 61.1 | 61.1 | 1 | 61.5 | 63.5 | 65.3 | | Water-€ | 5 yr | 59.9 | 6'65 | 0.09 | ŀ | 0.09 | 0.09 | ŀ | 6.09 | 63.0 | 64.6 | | Stream
station- | B
u | 19+70 | 20+00 | 20+22 | 20+22 | 20+37 | 20+50 | 20+60 | 22+22 | 22+50 | 22 +84 | [Add 564.29 to convert elevations to sea level; --, no data; stream stationing is given in hundreds of feet plus feet from a point 59 feet downstream from James Campbell Boulevard] Table 4. Selected data from hydraulic analysis of Akin Branch, simulation 1--Continued | | Remarks | Store
culvert road
deck. | Store
culvert
headwater. | |--|-----------------------------------|--------------------------------|--------------------------------| | Deck
eleva- | tion
(feet) | 0.69 | ı | | Low steel
elevation | (feet) | 1 | I | | Bank full
elevation | (feet) | 1 | 65.0 | | Channel | elevation
(feet) | | 59.2 | | Cross-sectional area of flow (square feet) | 5 yr 10 yr 25 yr 5 yr 10 yr 25 yr | * 1 | 205 | | ross-sectional area of flow (square feet) | 10 yr | | 168 | | Cross | 5 yr |

 | 139 | | ity
ond) | 25 yr | ! | 4.2 139 | | Mean velocity
(feet per second) | 10 yr | 1 | 4.2 | | M.
(fee | 5 yr | l l | 4.2 | | et per | 25 yr | I | 870 | | Flow (cubic feet per
second) | 10 yr | ı | 710 | | Flow | 5 yr | 1 | 580 | | evation | 25 yr | | 66.2 | | Water-surface elevation
(feet) | 5 yr 10 yr 25 yr 5 yr 10 yr 25 yr | 1 | 64.7 65.4 66.2 | | Water-4 | 5 yr | 1 | 64.7 | | Stream
station- | gui | 22 + 84 | 23+00 | & Table 5. Selected data from hydraulic analysis of Akin Branch, simulation 2 [Add 564.29 to convert elevations to sea level; --, no data; stream stationing is given in hundreds of feet plus feet from a point 59 feet downstream from James Campbell Boulevard] | | Remarks | | Wedgewood
Drive
culvert
tailwater. | Wedgewood
Drive
culvert
outlet. | Wedgewood
Drive
culvert
inlet. | Wedgewood
Drive
culvert
road deck. | Wedgewood
Drive
culvert
headwater. | | House on
right
bank. | | House on right bank. | |--|---------------------|----------------|---|--|---|---|---|-------|----------------------------|-------|----------------------| | Deck
eleva- | tion
(feet) | T South year / | ı | 61.8 | 61.8 | 61.8 | ŀ | i | Floor
61.6 | ; | Floor
65.7 | | Low steel
elevation | (feet) | 1 | I | 59.3 | 59.3 | ſ | i | 1 | Ground
59.5 | 1 | Ground
59.3 | | Bank full
elevation | (feet) | 56.0 | 56.0 | 1 | 1 | ı | 56.0 | 26.0 | 1 | 57.0 | 1 | | Channel | elevation
(feet) | 51.5 | 52.7 | 52.8 | 52.8 | t | 53.0 | 53.1 | ī | 53.1 | 1 | | l area of
feet) | 25 yr | 360 | 346 | 136 | 136 | 83 | 374 | 374 | ı | 237 | 1 | | Cross-sectional area of flow (square feet) | 10 yr | 288 | 288 | 136 | 136 | ì | 308 | 308 | 1 | 174 | 1 | | Cross | 5 yr | 189 | 220 | 128 | 130 | i | 217 | 218 | ı | 25 | 1 | | sity
sond) | 25 yr | 2.7 | 8 | 6.7 | 6.7 | 3,0 | 5.6 | 2.6 | 1 | 3.9 | 1 | | Mean velocity
(feet per second) | 10 yr | 2.8 | 86 | 6.5 | 5.9 | ı | 2.6 | 5.6 | 1 | 4.4 | 1 | | ≥ <u>0</u> | 5 4 | 3.5 | 3.0 | 5.1 | 5.0 | ı | 3.0 | 3.0 | I | 8.9 | i | | et per | 25 yr | 086 | 086 | 910 | 910 | 70 | 086 | 086 | ł | 930 | ı | | Flow (cubic feet per
second) | 10 yr | 800 | 008 | 800 | 008 | ı | 800 | 800 | ı | 092 | 1 | | Flow | 15.
15. | 655 | 925 | 655 | 655 | ı | 655 | 655 | 1 | 970 | 1 | | vation | 25 yr | 61.3 | 61.3 | 59.3 | 59.3 | 62.3 | 62.3 | 62.3 | ı | 62.3 | t | | Water-surface elevation (feet) | 10 yr | 60.2 | 60.2 | 59.3 | 59.3 | 1 | 6.09 | 6.09 | : | 61.0 | ŀ | | Water-6 | 5 yr | 58.7 | 58.9 | 58.9 | 59.0 | 1 | 59.0 | 59.0 | ! | 59.2 | ı | | Stream station- | i
Bi | . 14+25 | 15+56 | SS + ST Akin Branc | 16+07 | 16+07 | 16+23 | 16+48 | 16+60 | 18+58 | 18+60 | [Add 564.29 to convert elevations to sea level; --, no data; stream stationing is given in hundreds of feet plus feet from a point 59 feet downstream from James Campbell Boulevard] Table 5. Selected data from hydraulic analysis of Akin Branch, simulation 2.-Continued | Stream
station- | Water- | Water-surface elevation
(feet) | levation | Flo | Flow (cubic feet per
second) | eet per | M
(fee | Mean velocity
(feet per second) | ity
and) | Cross- | Cross-sectional area of
flow (square feet) | area of
feet) | Channel | Bank full
elevation | Low steel
elevation | Deck
eleva- | | |--------------------|--------|-----------------------------------|----------|------|---------------------------------|---------|-----------|------------------------------------|-------------|--------|---|------------------|---------------------|------------------------|------------------------|----------------|--| | B | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | elevation
(feet) | (feet) | (feet) | tion
(feet) | Remarks | | 19+70 | 0.09 | 61.3 | 62.5 | 620 | 760 | 930 | 4.0 | 3.7 | 3.5 | 155 | 208 | 265 | 55.0 | 58.0 | 1 | 1 | Alpine
Drive
culvert
tailwater. | | 20+00 | 0.09 | 61.3 | 61.8 | 620 | 092 | 930 | 5.8 | 5.6 | 4.9 | 106 | 135 | 146 | 55.3 | i | 61.8 | 64.0 | Alpine
Drive
culvert
outlet. | | 20+22 | 0.09 | 61.3 | 61.8 | 620 | 092 | 930 | 5.8 | 5.6 | 4.9 | 106 | 135 | 146 | 55.3 | 1 | 61.8 | 64.0 | Alpine
Drive
culvert
inlet. | | 20+22 | 1 | ı | ŀ | 1 | : | ı | 1 | 1 | ı | 1 | I | ŀ | 1 | 1 | 1 | 64.0 | Alpine
Drive
road deck. | | 20+37 | 0.09 | 61.3 | 63.3 | 620 | 760 | 930 | 4.9 | 4. | 3.6 | 128 | 173 | 261 | 55.5 | 60.5 | ı | ŀ | Alpine
Drive
culvert
headwater. | | 20+50 | 0.09 | 61.3 | 63.3 | 620 | 760 | 930 | 5.2 | 8. | 3.9 | 120 | 160 | 240 | 55.6 | 60.5 | : | ; | | | 20+60 | 1 | ı | ı | ł | ŧ | ı | ı | f | 1 | 1 | 1 | t | i | i | Ground 3.4 | Floor
67.1 | House on
right
bank. | | 22 + 22 | 6.09 | 61.7 | 63.5 | 280 | 710 | 870 | 8.3 | 7.3 | 5.0 | 70 | 86 | 174 | 58.0 | 63.0 | ł | i | Store culvert tailwater. | | 22+50 | 63.0 | 63.5 | 64.1 | 280 | 710 | 870 | 10.5 | 11.3 | 12.1 | 55 | ಜ | 72 | 59.6 | 1 | 8.79 | 0.69 | Store
culvert | outlet. 8 Table 5. Selected data from hydraulic analysis of Akin Branch, simulation 2-Continued | Stream
station- | Water | Water-surface elevation
(feet) | levation | Flo | Flow (cubic feet per second) | eet per | (fec | Mean velocity
(feet per second) | ity
Sud) | Cross-flow | Cross-sectional area of flow (square feet) | area of
feet) | Channel | Bank full
elevation | Low steel
elevation | Deck
eleva- | | |--------------------------|-------|-----------------------------------|----------|------|------------------------------|---------|------|------------------------------------|-------------|------------|--|------------------|---------------------|------------------------|------------------------|----------------|----------------------------| | gui | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr 25 yr 5 yr 10 yr 25 yr | 25 yr | 5 yr | 5 yr 10 yr 25 yr 5 yr 10 yr 25 yr | 25 yr | 5 yr | 10 yr | 25 yr | elevation
(feet) | (feet) | (feet) | tion
(feet) | Remarks | | 22+84 64.6 65.3 66.1 580 | 64.6 | 65.3 | 66.1 | 580 | 710 | 870 | 7.3 | 7.8 | 4.8 | 08 | 16 | 104 | 59.6 | ı | 67.8 | 0.69 | Store
culvert
inlet. | | 22 +84 | i | 1 | 1 | ı | I | I | ı | 1 | 1 | ı | ı | ţ | ı | ŀ | ı | 0.69 | Store culvert road deck. | | 23+00 64.7 65.4 66.2 580 | 64.7 | 65.4 | 66.2 | 280 | 710 | 870 | 4.2 | 4.2 | 4.2 139 | | 168 | 20.5 | 59.2 | 65.0 | i | ı | Store culvert headwater. | Table 6. Selected data from hydraulic analysis of Akin Branch, simulation 3 [Add 564.29 to convert elevations to sea level; --, no data; stream stationing is given in hundreds of feet plus feet from a point 59 feet downstream from James Campbell Boulevard] | 1.84 | face e | Water-surface elevation | | Flow (cubic feet per | set per | ¥ | Mean velocity | _ ≥ | Cross- | Cross-sectional area of | area of | Channel | Bank full | Low steel | Deck | | |--------|--------|-------------------------|------|----------------------|---------|------|-------------------|----------|--------|-------------------------|---------|------------------|---------------------|--------------------|---------------|---| | (feet) | | | | second) | - 1 | (fee | (feet per second) | g g | | flow (square feet) | (eet) | bed
elevation | elevation
(feet) | elevation | eleva- | Remarks | | 10 yr | | 25 yr | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | (feet) | | | (feet) | Maille | | 60.2 | | 61.3 | 655 | 800 | 086 | 3.5 | 2.8 | 2.7 | 189 | 288 | 360 | 51.5 | 56.0 | | 1 | | | 60.2 | | 61.3 | 655 | 800 | 086 | 2.7 | 2.6 | 2.7 | 239 | 307 | 364 | 52.0 | 56.0 | 1 | ı | Wedgewood
Drive
culvert
tailwater. | | 58.0 | | 58.0 | 655 | 580 | 490 | 5.4 | 0.4 | 4. | 144 | 44 | 144 | 52.0 | i | 58.0 | 59.3 | Wedgewood
Drive
culvert
outlet. | | 58.0 | | 58.0 | 655 | 580 | 490 | 5.4 | 4.0 | 4.6 | 144 | 144 | 144 | 52.0 | I | 58.0 | 59.3 | Wedgewood
Drive
culvert
inlet. | | 60.4 | | 61.3 | ı | 220 | 490 | 1 | 4.2 | 5.3 | 1 | 52 | 92 | 1 | 1 | I | 59.3 | Wedgewood
Drive
culvert
road deck. | | 60.5 | | 61.5 | 655 | 800 | 086 | 2.7 | 2.7 | 6,
80 | 243 | 302 | 349 | 52.5 |
56.0 | i | 1 | Wedgewood
Drive
culvert
headwater. | | 60.5 | | 61.5 | 655 | 800 | 086 | 2.9 | 2.8 | 2.9 | 228 | 788 | 335 | 53.1 | 56.0 | ŀ | 1 | • | | I | | I | 1 | ł | ı | ; | t | | ı | 1 | 1 | ļ | i | Ground Fl
59.5 | Floor
61.6 | House on
right
bank. | | 9.09 | | 61.5 | 970 | 092 | 930 6 | 602 | 4.7 | 4.7 | 100 | 155 | 199 | 53.1 | 57.0 | I | 1 | | | 1 | | 1 | ı | ı | ı | ı | ı | ŀ | 1 | i | i | ı | 1 | Ground Flo
59.3 | Floor
65.7 | House on
right
bank. | α Table 6. Selected data from hydraulic analysis of Akin Branch, simulation 3--Continued [Add 564.29 to convert elevations to sea level; --, no data; stream stationing is given in hundreds of feet plus feet from a point 59 feet downstream from James Campbell Boulevard] | Stream
station- | Water₁ | Water-surface elevation
(feet) | evation | Flow | Flow (cubic feet per
second) | et per | Me
(feet | Mean velocity
(feet per second) | (pu | Cross-6 | Cross-sectional area of
flow (square feet) | area of
'eet) | Channel | Bank full
elevation | Low steel
elevation | Deck
eleva- | | |--------------------|--------|-----------------------------------|---------|------|---------------------------------|--------|-------------|------------------------------------|-------|---------|---|------------------|---------------------|------------------------|------------------------|----------------|--| | B | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | 5 74 | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | elevation
(feet) | (feet) | (feet) | tion
(feet) | Remarks | | 19+70 | 0.09 | 61.0 | 61.8 | 620 | 760 | 930 | 3.9 | 3.9 | 0.4 | 158 | 195 | 234 | 55.0 | 58.0 | ı | ı | Alpine
Drive
culvert
tailwater. | | 20+00 | 0.09 | 61.0 | 61.3 | 620 | 760 | 930 | 5.5 | 5.5 | 6.5 | 113 | 137 | 144 | 55.3 | ı | 61.3 | 62.6 | Alpine
Drive
culvert
outlet. | | 20+22 | 60.1 | 61.0 | 61.3 | 620 | 092 | 930 | 4.2 | 5.5 | 6.5 | 115 | 137 | 144 | 55.3 | İ | 61.3 | 62.6 | Alpine
Drive
culvert
inlet. | | 20+22 | 1 | t | : | i | t | ı | ı | i | ı | 1 | 1 | I | t | i | 1 | 62.6 | Alpine
Drive
culvert
road deck. | | 20+37 | 60.1 | 61.0 | 62.6 | 620 | 760 | 930 | 8 . | 4.7 | 4.1 | 129 | 160 | 228 | 55.5 | 60.5 | I | ŧ | Alpine
Drive
culvert
headwater. | | 20+50 | 60.1 | 61.0 | 62.6 | 620 | 760 | 930 | 5.1 | 5.1 | 4.4 | 121 | 150 | 210 | 55.6 | 60.5 | 1 | ı | | | 20+60 | 1 | 1 | 1 | ŧ | 1 | 1 | ı | | ı | 1 | ŧ | 1 | i | ı | Ground F
63.4 | Floor
67.1 | House on
right
bank. | | 22+22 | 6.09 | 61.4 | 62.8 | 280 | 710 | 870 | &
6. | 8.0 | 6.1 | 6 | 68 | 143 | 280 | 63.0 | ł | ı | Store
culvert
tailwater. | [Add 564.29 to convert elevations to sea level; -, no data; stream stationing is given in hundreds of feet plus feet from a point 59 feet downstream from James Campbell Boulevard] Table 6. Selected data from hydraulic analysis of Akin Branch, simulation 3--Continued | Water-surface elevation Flow (cubic feet per
(feet) | | | Flow (ct. | 8 CCL | cubic fe
second) | et per | M(fee | Mean velocity
(feet per second) | ity
ond) | Cross | Cross-sectional area of flow (square feet) | area of
feet) | Channel
bed
elevation | Bank full
elevation
(feet) | Low steel
elevation
(feet) | Deck
eleva-
tion | Remarks | |--|-----------------------|------------------|------------|-------|---------------------|--------|-------|------------------------------------|-------------|-------|--|------------------|-----------------------------|----------------------------------|----------------------------------|------------------------|--------------------------------| | 5 yr 10 yr 25 yr 5 yr 10 yr 25 yr | 5 yr 10 yr | 5 yr 10 yr | 5 yr 10 yr | | 25 yr | | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | (feet) | | | (feet) | | | 63.0 63.5 64.1 580 710 870 | 64.1 580 710 | 210 | 210 | | 870 | | 10.5 | 11.3 | 12.1 55 | 55 | 83 | 72 | 59.6 | ţ | 8.7.8 | 0.69 | Store
culvert
outlet. | | 64.6 65.3 66.1 580 710 870 | 65.3 66.1 580 710 | 66.1 580 710 | 710 | | 870 | | 7.3 | 7.8 | 8.4 | 80 | 91 | 104 | 59.6 | 1 | 67.8 | 0.69 | Store
culvert
inlet. | | 1 | 1 1 | 1 | 1 | f | | | 1 | ı | 1 | 1 | t | t | I | 1 | ı | 0.69 | Store
culvert
road deck. | | 64.7 65.4 66.2 580 710 870 | 65.4 66.2 580 710 870 | 66.2 580 710 870 | 710 870 | 870 | | | 4.2 | 2.4 | 4.2 139 | 139 | 168 | 205 | 59.2 | 65.0 | 1 | 1 | Store
culvert
headwater. | Figure 8. Location of drainage structures in the Cayce Valley Branch study reach. Table 7. Cayce Valley Branch culvert and bridge inventory [Stream stationing is given in hundreds of feet plus feet from a point 412 feet downstream from Whitney Drive] | Structure number | Structure name | Stream
stationing | Structure description | |------------------|---------------------------------|----------------------|--| | 1 . | Whitney Drive culvert. | 4+12 - 4+46 | Two-barrel concrete pipe culvert. Barrel diameter, 4 feet. Length, 34 feet. | | 2 | Mariner Drive culvert. | 8+47 - 8+86 | Three-barrel corrugated metal pipe culvert. Average barrel diameter, 4 feet. Length, 39 feet | | 3 | Foot bridge | 12+06 - 12+22 | Two-barrel smooth metal pipe culvert. Barrel diameter, 2 feet. Length, 16 feet. | | 4 | Private
driveway
culvert. | 13+06 - 13+22 | Two-barrel concrete box culvert. Average barrel inlet, 5.4 feet x 4.1 feet. Length, 16 feet. | | 5 | Private
driveway
culvert. | 18+58 - 18+75 | Two-barrel concrete box culvert. Average barrel inlet, 5.8 feet x 4.2 feet. Length, 17 feet. | | 6 | Manor Road culvert. | 21+16 - 21+36 | One-barrel concrete box culvert. Barrel inlet, 13.6 feet x 4.1 feet. Length, 20 feet. | | 7 | Cayce Valley Drive culvert. | 24+36 - 24+68 | One-barrel concrete box culvert. Barrel inlet, 12 feet x 3.2 feet. Length, 32 feet. | | 8 | Windemere
Drive
culvert. | 28+40 - 28+66 | One-barrel concrete box culvert. Barrel inlet, 12 feet x 3.7 feet. Length, 26 feet. | | 9 | Timberwood Drive culvert. | 33+40 - 33+64 | One-barrel concrete box culvert. Barrel inlet, 12 feet x 4.2 feet. Length, 24 feet. | | 10 | Farm
driveway culvert. | 47+09 - 47+22 | One-barrel timber deck culvert. Inlet, 9.2 feet x 4.7 feet. Length, 13 feet. | | 11 | Jewell Drive culvert. | 49+64 - 49+77 | Two-barrel, corrugated metal pipe culvert. Barrel cross-sectional area, 11.5 ft ² . Length, 13 feet. | ### Flood Profiles Flood profiles were computed for existing channel conditions for 5-, 10-, and 25-year recurrence interval floods at Cayce Valley Branch (fig. 10a-10d). No observed flood data are available for Cayce Valley Branch to use in calibrating the WSPRO model. The computed profiles indicate road overtopping of as much as 0.9 foot at Whitney Drive and 0.9 foot at Mariner Drive for the 25-year flood. The flood profiles also indicate the occurrence of backwater of as much as 5.3 feet at the upstream side of Whitney Drive and as much as 2.5 feet at Mariner Drive for the 25-year flood discharge. Hydraulic problems at these locations are attributed to undersized structures at both streets and a clogged channel downstream from Whitney Drive. Selected output from the hydraulic model has been tabulated to aid in interpretation of results (table 8). ## CAYCE VALLEY BRANCH WATERSHED 0 1,000 2,000 3,000 4,000 5,000 FEET 0 200 400 600 800 1,000 METERS EXPLANATION (1) NODE AND NUMBER **B** BASIN SUBAREA DESIGNATION **URBAN RUNOFF EQUATIONS (Robbins, 1984)** $Q_5 = 5.55 (A)^{0.75} (IA)^{0.44} (P2_24)^{2.53}$ $Q_{10} = 11.8 (A)^{0.75} (IA)^{0.43} (P2_24)^{2.12}$ $Q_{25} = 21.9 (A)^{0.75} (IA)^{0.39} (P2_24)^{1.89}$ $P2_24 = 3.6$ inches Where On is the estimated flood discharge, in cubic feet per second, for the indicated recurrence interval, in years; A is the area of the watershed, in square miles; IA is the percentage of the drainage area that is impervious to infiltration of rainfall; and P2_24 is the 2-year 24-hour rainfall amount, in inches. Average basin impervious area is 10 percent Total basin area is 1.04 square miles Total basin flows $Q_5 = 5.55 \text{ x } 1.028 \text{ x } 2.75 \text{ x } 25.6 = 400 \text{ cubic feet per second}$ $Q_{10} = 11.8 \text{ x } 1.028 \text{ x } 2.69 \text{ x } 15.1 = 495 \text{ cubic feet per second}$ $Q_{25} = 21.9 \text{ x } 1.028 \text{ x } 2.45 \text{ x } 11.3 = 625 \text{ cubic feet per second}$ ### BASIN SUBAREA FLOOD DISCHARGES | Basin
subarea | Area, in
square
miles | Percent
of total
flow | feet pe
indic
rend | rge, in
r secon
ated re
e inten
n years | d, for
cur- | |------------------|-----------------------------|-----------------------------|--------------------------|---|-----------------| | | | | Q ₅ | Q ₁₀ | Q ₂₅ | | Α | 0.345 | 33.2 | 135 | 165 | 210 | | В | .256 | 24.7 | 100 | 120 | 155 | | С | .072 | 6.9 | 25 | 35 | 40 | | D | .206 | 19.8 | 80 | 100 | 125 | | E | .090 | 8.7 | 35 | 45 | 55 | | F | .032 | 3.0 | 10 | 15 | 20 | | G | .039 | 3.7 | 15 | 20 | 25 | #### **BASIN FLOOD DISCHARGES** | Node
number | Stream
stationing | feet p
indica | arge, in
er seco
ted rec
val, in y | nd, for
urrence | |----------------|----------------------|------------------|---|--------------------| | | | Q ₅ | Q ₁₀ | Q ₂₅ | | 0 - 1 | 49+93 - 48+36 | 135 | 165 | 210 | | 1 - 2 | 48+36 - 33+22 | 260 | 320 | 405 | | 2 - 3 | 33+22 - 11+96 | 295 | 365 | 460 | | 3 - 4 | 11+96 - 4+00 | 385 | 480 | 605 | Figure 9. Cayce Valley Branch flood discharge for selected recurrence intervals. Figure 10a. Computed flood profiles, existing conditions, for Cayce Valley Branch. Figure 10b.
Computed flood profiles, existing conditions, for Cayce Valley Branch--Continued. Figure 10c. Computed flood profiles, existing conditions, for Cayce Valley Branch--Continued. Figure 10d. Computed flood profiles, existing conditions, for Cayce Valley Branch--Continued. [Add 590.22 feet to convert elevations to sea level; -, no data; stream stationing is given in hundreds of feet plus feet from a point 412 feet downstream from Whitney Drive] Table 8. Selected data from hydraulic analysis of Cayce Valley Branch, existing conditions | Stream
station- | Water | Water-surface elevation
(feet) | evation | Flow | Flow (cubic feet per
second) | set per | M _e | Mean velocity
(feet per second) | ty
nd) | Cross | Cross-sectional area of
flow (square feet) | area of
leet) | Channel | Bank full
elevation | Low steel
elevation | Deck
eleva- | | |--------------------|-------|-----------------------------------|---------|------|---------------------------------|---------|----------------|------------------------------------|-----------|-------|---|------------------|---------------------|------------------------|------------------------|----------------|--| | ğu | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | elevation
(feet) | (feet) | (feet) | tion
(feet) | Remarks | | 3+00 | 15.8 | 16.7 | 17.0 | 385 | 480 | \$09 | 8.9 | 7.1 | 7.4 | 43 | 89 | 82 | 12.6 | 16.2 | 1 | ı | | | 3+00 | ı | ŀ | 1 | I | 1 | 1 | t | ŧ | 1 | 1 | 1 | 1 | 1 | ı | ۇ
ا | Ground
17.4 | House 250 feet left of channel. | | 3+25 | ı | i | 1 | I | ı | 1 | 1 | t | 1 | 1 | 1 | 1 | 1 | 1 | i
I | Ground
17.6 | House 130 feet
right of
channel. | | 4+00 | 16.1 | 16.9 | 17.3 | 385 | 480 | 909 | 8.9 | 7.1 | 7.4 | 43 | 19 | 82 | 12.9 | 16.5 | 1 | ı | Whitney Drive culvert tailwater. | | 4+12 | 18.0 | 18.0 | 18.0 | 260 | 265 | 275 | 10.4 | 10.6 | 11.0 | 25 | 25 | 25 | 14.0 | ı | 18.0 | 22.3 | Whitney Drive culvert outlet. | | 4+46 | 18.4 | 18.4 | 18.4 | 260 | 265 | 275 | 10.4 | 10.6 | 11.0 | 25 | 25 | 25 | 14.4 | ŀ | 18.4 | 22.3 | Whitney Drive culvert inlet. | | 4+46 | 22.8 | 23.0 | 23.2 | 125 | 215 | 330 | 2.7 | 3.3 | 3.7 | 46 | \$9 | 68 | 1 | I | 1 | 22.3 | Whitney Drive culvert road deck. | | 4 + 66 | 22.8 | 23.1 | 23.3 | 385 | 480 | 909 | 1.1 | 1.3 | 1.5 | 354 | 378 | 401 | 14.7 | 18.5 | 1 | 1 | Whitney Drive culvert headwater. | | 05+5
and Hydrau | 1 | ı | ı | 1 | 1 | t | ı | 1 | t | 1 | 1 | ! | ŀ | 1 | G | Ground
20.9 | House 120 feet
right of
channel. | | 6+26 | 22.9 | 23.1 | 23.3 | 385 | 480 | 605 | 1.9 | 2.1 | 5.6 | 199 | 217 | 234 | 17.8 | 21.0 | ı | ı | | | 7+87 | 1 | ı | 1 | ı | 1 | 1 | 1 | 1 | ı | 1 | 1 | 1 | 1 | 1 | - Gr | Ground
24.3 | House 30 feet
left of
channel. | A Table 8. Selected data from hydraulic analysis of Cayce Valley Branch, existing conditions--Continued | Stream
station- | Water⊣ | Water-surface elevation
(feet) | levation | Flow | Flow (cubic feet per
second) | eet per | M _{(fee} | Mean velocity
(feet per second) | ity
and) | Cross- | Cross-sectional area of
flow (square feet) | area of
feet) | Channel | Bank full
elevation | Low steel | Deck
eleva- | | |--------------------|--------|-----------------------------------|----------|------|---------------------------------|---------|-------------------|------------------------------------|-------------|--------|---|------------------|---------------------|------------------------|-----------|----------------|---------------------------------------| | B | 5 yr | 10 yr | 25 yr | 5 14 | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | 5 γι | 10 yr | 25 yr | elevation
(feet) | (feet) | (feet) | tion
(feet) | Remarks | | 7+87 | : | . 1 | | ; | : | I | i | ı | ;
} | ł | ŀ | i | ı | ı | . | Ground
24.6 | House 30 feet
right of
channel. | | 8+32 | 23.0 | 23.2 | 23.5 | 385 | 480 | 909 | 1.1 | 4.6 | 5.3 | 94 | 104 | 114 | 18.4 | 21.0 | 1 | 1 | Mariner Drive culvert tailwater. | | 8+47 | 23.1 | 23.3 | 23.3 | 300 | 310 | 320 | 6.8 | 8.4 | 8.6 | 35 | 37 | 37 | 19.1 | I | 23.3 | 25.0 | Mariner Drive culvert outlet. | | 98+8 | 23.7 | 23.7 | 23.7 | 300 | 310 | 320 | 8.1 | 8 .4 | 8.6 | 37 | 37 | 37 | 19.5 | ı | 23.7 | 25.0 | Mariner Drive culvert inlet. | | 8+86 | 25.4 | 25.6 | 25.9 | 88 | 170 | 285 | 2.3 | 3.0 | 3.8
8 | 37 | 57 | 27 | t | f | ı | 25.0 | Mariner Drive culvert road deck. | | 9+01 | 25.4 | 25.7 | 26.0 | 385 | 480 | 909 | 1.6 | 1.8 | 2.2 | 234 | 261 | 280 | 19.2 | 21.0 | i | I | Mariner Drive culvert headwater. | | 99+6 | ŀ | i | 1 | i | ı | 1 | ı | 1 | ŀ | t | ı | 1 | 1 | 1 | | Ground
25.9 | House 30 feet
left of
channel. | | 11+36 | 1 | i | ı | i | i | t | i | I | I | ı | ŀ | : | 1 | ı | រ | Ground
28.5 | House 150 feet
left of
channel. | | 11+76 | 25.5 | 25.8 | 26.1 | 385 | 480 | 605 | 4.7 | 5.2 | 6.1 | 82 | 93 | 100 | 21.7 | 24.0 | 1 | 1 | 10 feet below
tributary. | | 11+96 | 25.7 | 26.0 | 26.3 | 295 | 365 | 460 | 3.5 | 3.7 | 4.3 | 98 | 76 | 108 | 21.7 | 24.0 | ı | ŀ | Footbridge
tailwater. | House 50 feet right of channel. -- Ground 28.5 ŧ 1 ŀ i ł i ŧ 12+06 Table 8. Selected data from hydraulic analysis of Cayce Valley Branch, existing conditions--Continued [Add 590.22 feet to convert elevations to sea level; -, no data; stream stationing is given in hundreds of feet plus feet from a point 412 feet downstream from Whitney Drive] | Low steel Deck
elevation eleva- | (feet) tion Remarks
(feet) | 22.5 24.1 Footbridge culvert outlet. | 22.7 24.1 Footbridge culvert inlet. | - 24.1 Footbridge culver deck. | Footbridge culvert headwater. | Private driveway | culvert
tailwater. | culvert tailwater. 26.8 28.1 Private driveway culvert outlet. | 28.1 F | 28.1 H
28.1 H
28.1 H | |--|-------------------------------|--------------------------------------|-------------------------------------|--------------------------------|-------------------------------|------------------|-----------------------|---|-------------|----------------------------| | ∞ ⊕ | elevation (feet)
(feet) | 20.3 | 20.5 | i | 20.3 24.0 | 21.4 25.0 | | 22.7 | | | | Cross-sectional area of flow (square feet) | r 10 yr 25 yr | 7 7 | 7 7 | 76 87 | 134 145 | 99 95 | | 39 41 | | | | ļ | yr 25 yr 5 yr | 1 2.1 7 | 1 2.1 7 | 5 5.1 64 | 7 3.2 122 | 5 6.8 46 | | 8.5 35 | 8. 8.5 | 8.5 | | r Mean velocity
(feet per second) | yr 5 yr 10 yr | 2.1 2.1 | 2.1 2.1 | 4.4 4.6 | 2.4 2.7 | 6.4 6.5 | | 8.4 8.5 | 4. 8.
8. | 8. | | Flow (cubic feet per
second) | 5 yr 10 yr 25 | 15 15 15 | 15 15 15 | 280 350 445 | 295 365 460 | 295 365 460 | | 295 330 350 | 330 | 330
35
35 | | Water-surface elevation
(feet) | 10 yr 25 yr E | 22.5 22.5 | 22.7 22.7 | 26.0 26.3 | 26.2 26.4 | 26.2 26.4 2 | | 26.3 26.5 2 | 26.5 | 26.5 26.8 28.7 | |
E | 5 yr | 12+06 22.5 | 12+22 22.7 | 12+22 25.7 | 12+32 25.9 | 12+91 25.9 | | 13+06 26.0 | 13 + 06 | | [Add 590.22 feet to convert elevations to sea level; --, no data; stream stationing is given in hundreds of feet plus feet from a point 412 feet downstream from Whitney Drive] Table 8. Selected data from hydraulic analysis of Cayce Valley Branch, existing conditions--Continued | | Remarks | | Private
driveway
culvert
tailwater. | Private
driveway
culvert
outlet. | Private
driveway
culvert
inlet. | Private
driveway
culvert
road deck. | Private
driveway
culvert
headwater. | Manor Road culvert tailwater. | Manor Road culvert outlet. | Manor Road culvert inlet. | |---|---------------------|-------|--|---|--|--|--|-------------------------------|----------------------------|---------------------------| | Deck
eleva- | tion
(feet) | 1 | I | 29.9 | 29.9 | 29.9 | ı | 1 | 32.7 | 32.7 | | Low steel
elevation | (feet) | 1 | I | 28.7 | 28.7 | ŧ | 1 | 1 | 30.5 | 30.8 | | Bank full
elevation | (feet) | 27.0 | 27.0 | 1 | ; | 1 | 27.0 | 28.5 | i | 1 | | Channel | elevation
(feet) | 23.5 | 23.8 | 24.5 | 24.5 | ı | 23.8 | 25.4 | 26.4 | 26.7 | | area of
feet) | 25 yr | 117 | 111 | 64 | 49 | 35 | 178 | 85 | 26 | 99 | | Cross-sectional area of
flow (square feet) | 10 yr | 101 | 96 | 49 | 49 | 13 | 153 | 71 | 53 | 52 | | Cross | 5 yr | 88 | 82 | 49 | 49 | Į. | 118 | 99 | 48 | 45 | | ity
and) | 25 yr | 3.9 | 4.1 | 7.1 | 7.1 | 3.1 | 2.6 | 5.4 | 8.2 | 8.2 | | Mean velocity
(feet per second) | 10 yr | 3.6 | 6.
8. | 8.9 | 8.9 | 2.3 | 2.4 | 5.2 | 6.9 | 7.0 | | (fee | 5 yr | 3.4 | 3.6 | 6.1 | 6.1 | 1 | 2.5 | 5.3 | 6.1 | 9.9 | | at per | 25 yr | 460 | 460 | 350 | 350 | 110 | 460 | 460 | 460 | 460 | | Flow (cubic feet per second) | 10 yr | 365 | 365 | 335 | 335 | 30 | 365 | 365 | 365 | 365 | | Flow | 5 yr | 295 | 295 | 295 | 295 | 1 | 295 | 295 | 295 | 295 | | vation | 25 yr | 29.0 | 29.3 | 28.7 | 28.7 | 30.5 | 30.5 | 30.7 | 30.5 | 30.8 | | Water-surface elevation (feet) | 10 yr | 28.6 | 29.0 | 28.7 | 28.7 | 30.1 | 30.1 | 30.3 | 30.3 | 30.5 | | Water-s | 5 yr | 28.3 | 28.6 | 28.7 | 28.7 | 1 | 29.5 | 29.8 | 29.9 | 30.0 | | l o te | B
. <u></u> | 15+90 | 18 + 47 | 65 +
81
es at Akin Br | 18+75 | 18+75 | 18+90 | 21 +01 | 21+16 | 21+36 | [Add 590.22 feet to convert elevations to sea level; --, no data; stream stationing is given in hundreds of feet plus feet from a point 412 feet downstream from Whitney Drive] Table 8. Selected data from hydraulic analysis of Cayce Valley Branch, existing conditions--Continued | Stream
station- | Water- | Water-surface
elevation
(feet) | levation | FIO | Flow (cubic feet per
second) | eet per | M (fee | Mean velocity
(feet per second) | ity
and) | Cross- | Cross-sectional area of
flow (square feet) | area of
leet) | Channel | Bank full
elevation | Low steel | Deck
eleva- | | |-----------------------|--------|-----------------------------------|----------|------|---------------------------------|---------|-----------|------------------------------------|-------------|--------|---|------------------|---------------------|------------------------|-----------|----------------|---| | ם
ב | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | elevation
(feet) | (feet) | (feet) | tion
(feet) | Remarks | | 21+36 | ŀ | 1 | 1 | : | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ł | 1 | 32.7 | Manor Road
culvert road
deck. | | 21+60 | 30.1 | 30.5 | 32.2 | 295 | 365 | 460 | 5.9 | 6.3 | 4.6 | 50 | 28 | 101 | 25.8 | 30.0 | ı | 1 | Manor Road
culvert
headwater. | | 22+98 | 31.4 | 32.1 | 32.7 | 295 | 365 | 460 | 6.3 | 5.3 | 8. | 47 | 69 | 95 | 27.0 | 31.0 | ŧ | ı | Flow over
bridge
tailwater. | | 23+18 | 32.3 | 32.4 | 32.7 | 295 | 365 | 460 | 6.3 | 6.9 | 7.1 | 47 | 53 | 99 | 30.7 | l | ı | 1 | Flow over
bridge. | | 23 + 33 | 32.8 | 33.0 | 33.3 | 295 | 365 | 460 | 3.8
8. | 4.2 | 9.4 | 79 | 88 | 100 | 28.8 | ł | i | 1 | Flow over
bridge
headwater. | | 24+26 | 33.0 | 33.3 | 33.6 | 295 | 365 | 460 | 4.6 | 5.0 | 5.4 | 2 | 22 | 82 | 29.4 | 31.0 | 1 | 1 | Cayce Valley
Drive culvert
tailwater. | | 24+36 | 32.2 | 32.2 | 32.2 | 230 | 230 | 225 | 0.9 | 6.0 | 5.9 | 38 | 38 | 38 | 29.0 | I | 32.2 | 33.6 | Cayce Valley Drive culvert outlet. | | 24+68 | 32.2 | 32.2 | 32.2 | 230 | 230 | 225 | 0.9 | 0.9 | 5.9 | 38 | 38 | 38 | 29.0 | 1 | 32.2 | 33.6 | Cayce Valley
Drive culvert
inlet. | | 15 Analysis
+ + 68 | 33.9 | 34.2 | 34.4 | 65 | 135 | 235 | 2.3 | 3.0 | 3.6 | 28 | 45 | 65 | 1 | 1 | ı | 33.6 | Cayce Valley
Drive culvert
road deck. | | 24 + 83 | 33.9 | 34.2 | 34.5 | 295 | 365 | 460 | 2.1 | 2.2 | 2.5 | 142 | 164 | 187 | 29.6 | 31.5 | I | 1 | Cayce Valley
Drive culvert | headwater. [Add 590.22 feet to convert elevations to sea level; --, no data; stream stationing is given in hundreds of feet plus feet from a point 412 feet downstream from Whitney Drive] Table 8. Selected data from hydraulic analysis of Cayce Valley Branch, existing conditions--Continued | Stream
station- | Water | Water-surface elevation
(feet) | levation | Flox | Flow (cubic feet per
second) | et per | Me. | Mean velocity
(feet per second) |)
(pu | Cross-s
flow | Cross-sectional area of
flow (square feet) | area of
eet) | Channel
bed | Bank full
elevation | Low steel
elevation | Deck
eleva- | | |--------------------|-------|-----------------------------------|----------|------|---------------------------------|--------|------|------------------------------------|----------|-----------------|---|-----------------|---------------------|------------------------|------------------------|----------------|---| | • | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | elevation
(feet) | (feet) | (feet) | tion
(feet) | Remarks | | 26+56 | 34.7 | 34.9 | 35.1 | 295 | 365 | 460 | 6.0 | 6.3 | 6.9 | 49 | 58 | 19 | 31.8 | 33.0 | 1 | | | | 28+28 | 36.0 | 36.2 | 36.5 | 295 | 365 | 460 | 5.4 | 5.8 | 6.3 | 55 | 63 | 73 | 31.8 | 34.5 | 1 | I | Windemere
Drive culvert
headwater. | | 28+40 | 36.1 | 36.3 | 36.5 | 295 | 335 | 395 | 7.6 | 8.0 | 9.0 | 39 | 42 | 44 | 32.8 | ı | 36.5 | 38.0 | Windemere
Drive culvert
outlet. | | 28+66 | 36.8 | 36.8 | 36.8 | 295 | 335 | 395 | 6.7 | 7.6 | 9.0 | 44 | 4 | 44 | 33.1 | ı | 36.8 | 38.0 | Windemere
Drive culvert
inlet. | | 28+66 | i | 38.3 | 38.6 | ı | 30 | 9 | 1 | 2.4 | 3.1 | I | 13 | 21 | 1 | ı | ı | 38.0 | Windemere
Drive culvert
road deck. | | 28+91 | 37.7 | 38.3 | 38.6 | 295 | 365 | 460 | 2.5 | 2.5 | 3.0 1 | 118 | 144 | 154 | 32.4 | 35.0 | ı | I | Windemere
Drive culvert
headwater. | | 31+07 | 37.8 | 38.4 | 38.7 | 295 | 365 | 460 | 3.6 | 3.4 | 3.9 | 83 | 108 | 119 | 33.3 | 35.5 | ı | ì | | | 33+22 | 38.2 | 38.7 | 39.1 | 260 | 320 | 405 | 4.7 | 4.6 | 5.0 | 55 | 07 | 08 | 34.1 | 37.0 | ŧ | ı | Timberwood
Drive culvert
tailwater. | | 33 + 40 | 38.4 | 38.8 | 39.3 | 260 | 320 | 390 | 0.6 | 9.5 | 10.0 | 53 | 34 | 39 | 36.0 | i | 40.2 | 41.5 | Timberwood
Drive culvert
outlet. | | 33+64 | 40.7 | 41.4 | 41.6 | 260 | 320 | 390 | 6.7 | 6.8 | 7.8 | 39 | 47 | 20 | 37.4 | ı | 41.6 | 43.1 | Timberwood
Drive culvert
inlet. | | 33+64 | I | 1 | 43.2 | ! | I | 15 | I | 1 | 3.1 | t | t | ۶. | 1 | ı | ŀ | 43.1 | Timberwood
Drive culvert
road deck. | Table 8. Selected data from hydraulic analysis of Cayce Valley Branch, existing conditions--Continued [Add 590.22 feet to convert elevations to sea level; -, no data; stream stationing is given in hundreds of feet plus feet from a point 412 feet downstream from Whitney Drive] | ~ | ter-surface
(feet) | Water-surface elevation (feet) | 5 | Flow | Flow (cubic feet per second) | et per | Me | Mean velocity
(feet per second) | ty
(bu | Cross- | Cross-sectional area of flow (square feet) | area of
feet) | Channel | Bank full
elevation | Low steel | Deck
eleve- | | |---------------|-----------------------|--------------------------------|---|-------|------------------------------|--------|------|------------------------------------|-----------|--------|--|------------------|---------------------|------------------------|-----------|----------------|---| | 5 yr 10 | | 10 yr 25 yr | | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | elevation
(feet) | (feet) | (feet) | tion
(feet) | Remarks | | 40.8 4 | I 🛶 | 41.4 43.2 | 1 | 260 3 | 320 | 405 | 4.3 | 3.9 | 2.7 | 61 | 82 | 153 | 37.0 | 40.0 | | 1 | Timberwood
Drive culvert
headwater. | | 43.2 4: | ω, | 43.5 43.8 | | 260 3 | 320 | 405 | 5.5 | 5.8 | 6.1 | 47 | 55 | 99 | 39.3 | 42.0 | 1 | ŀ | | | 45.0 4 | 45.3 | 3 45.6 | | 260 3 | 320 | 405 | 4.4 | 4.7 | 5.0 | 59 | 69 | 81 | 41.6 | 43.0 | 1 | ŀ | | | 47.0 4 | 47.2 | 2 47.5 | | 260 3 | 320 | 405 | 5.8 | 5.8 | 0.9 | 45 | 55 | <i>L</i> 9 | 43.9 | 45.5 | I | ŀ | | | 49.2 4 | 49.5 | 5 49.7 | | 260 3 | 320 | 405 | 8. | 5.0 | 5.4 | 55 | 2 | 75 | 46.2 | 47.5 | I | ı | | | 51.6 | 51.9 | 9 52.2 | | 260 3 | 320 | 405 | 5.6 | 5.9 | 6.1 | 94 | 54 | 99 | 48.5 | 50.5 | i | f | Farm
driveway
culvert
tailwater. | | 51.6 | 52.0 | 0 52.3 | | 260 2 | 285 | 315 | 9.0 | 6.8 | 0.6 | 29 | 32 | 35 | 48.5 | ŀ | 53.2 | 53.8 | Farm
driveway
culvert outlet. | | 52.8 | 53.2 | 2 53.2 | | 260 2 | 285 | 315 | 6.5 | 9.9 | 7.3 | 40 | 43 | 43 | 48.5 | 1 | 53.2 | 53.8 | Farm
driveway
culvert inlet. | | | 54.2 | 2 54.5 | | I | 35 | 06 | 1 | 2.6 | 3.3 | i | 13 | 27 | ı | I | I | 53.8 | Farm
driveway
culvert road
deck. | | \$2. 8 | 54.2 | 2 54.5 | | 260 3 | 320 | 405 | 2.9 | 2.2 | 2.6 | 06 | 143 | 156 | 48.5 | 50.5 | I | ı | Farm
driveway
culvert
headwater. | | 53.1 | 54.3 | 3 54.7 | | 135 1 | 165 | 210 | 1.7 | 1.3 | 1.5 | 80 | 127 | 142 | 49.3 | 52.0 | : | i | | Table 8. Selected data from hydraulic analysis of Cayce Valley Branch, existing conditions--Continued [Add 590.22 feet to convert elevations to sea level; --, no data; stream stationing is given in hundreds of feet plus feet from a point 412 feet downstream from Whitney Drive] | Stream
station- | Water- | Water-surface elevation (feet) | evation | FIO. | Flow (cubic feet per
second) | set per | (fee | Mean velocity
(feet per second) | ity
and) | Cross
flo | Cross-sectional area of flow (square feet) | area of
feet) | Channel
bed | | Low steel elevation | Deck
eleva- | | |--------------------|--------|--------------------------------|---------|------|---------------------------------|---------|------|------------------------------------|-------------|--------------|--|------------------|---------------------|--------|---------------------|----------------|---------------------------------------| | ing | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | elevation
(feet) | (feet) | (feet) | tion
(feet) | Remarks | | 49 + 44 | 53.2 | 54.3 | 54.7 | 135 | 165 | 210 | 2.0 | 1.6 | 1:8 | 19 | 104 | 119 | 49.8 | 53.0 | l | 1 | Jewell Drive
culvert
tailwater. | | 49+64 | 53.0 | 53.0 | 53.0 | 135 | 115 | 110 | 5.9 | 5.0 | 4.8 | 23 | 23 | 23 | 50.4 | ł | 53.0 | 54.4 | Jewell Drive
culvert outlet. | | 49+77 | 53.0 | 53.0 | 53.0 | 135 | 115 | 110 | 5.9 | 5.0 | 4 .8 | 23 | 23 | 23 | 50.4 | l | 53.0 | 54.4 | Jewell Drive
culvert inlet. | | 49+77 | l | 54.9 | 55.1 | I | 20 | 100 | ı | 2.7 | 3.4 | ı | 19 | 29 | 1 | 1 | 1 | 54.4 | Jewell Drive
culvert road
deck. | | 49+93 | 54.1 | 54.9 | 55.2 | 135 | 165 | 210 | 4.1 | 1.3 | 1.5 | 95 | 130 | 143 | 50.3 | 53.0 | I | 1 | Jewell Drive culvert headwater. | ## Simulation of Effects of Alternative Drainage Structures The hydraulic model was used to simulate the flood profiles at Cayce Valley Branch resulting from possible alternative designs for selected drainage structures. Data on existing structure sizes are listed in table 7, and the alternative drainage improvement designs evaluated using the model are described below for model simulations 1 and 2. Simulation 1: A concrete box culvert with a barrel width of 10 feet, barrel height of 5 feet, and culvert length of 30 feet was simulated at Whitney Drive. A concrete box culvert with a barrel width of 10 feet, barrel height of 4.5 feet,
and culvert length of 30 feet was simulated at Mariner Drive. Simulation 2: A concrete box culvert with a barrel width of 10 feet, barrel height of 6 feet, and length of 30 feet was simulated at Whitney Drive. A concrete box culvert with a barrel width of 12 feet, barrel height of 4.5 feet, and length of 30 feet was simulated at Mariner Drive. The simulated flood profiles for the two conditions (figs. 11 and 12) indicate that during a 25-year flood: Drainage improvements modeled in simulation 1 would result in a decrease of 0.6 foot in water-surface elevation upstream from Whitney Drive and a decrease of 0.3 foot in the water-surface elevation upstream from Mariner Drive (table 9, fig. 11). Drainage improvements modeled in simulation 2 would result in a decrease of 0.8 foot in water-surface elevation upstream from Whitney Drive and a decrease of 0.4 foot in water-surface elevation upstream from Mariner Drive (table 10, fig. 12). # **SUMMARY** A flood study was conducted at Akin Branch and Cayce Valley Branch in the Little Bigby Creek watershed during 1990 and 1991. Major elements of the study included: estimation of flood discharges at points along Akin Branch and Cayce Valley Branch for selected recurrence intervals, simulation of flood profiles corresponding to estimated flood discharges for existing conditions at Akin Branch and Cayce Valley Branch, analysis of changes to flood profiles likely to result from possible drainage improvements such as enlarged box culverts at selected sites on Akin Branch and Cayce Valley Branch. Flood discharges at the mouths of Akin Branch and Cayce Valley Branch were computed for 5-, 10-, and 25-year recurrence intervals using flood-frequency relations applicable to small urban streams in Tennessee. Flood discharges at points upstream from the mouth were estimated by subdividing the watershed and assigning a percentage of the discharge at the mouth, based on drainage area, to each subarea. Flood profiles corresponding to the computed flood discharges were simulated for existing conditions at Akin Branch and Cayce Valley Branch using WSPRO, a computer model for water-surface profile computations. Computed flood profiles for existing conditions indicate excessive backwater problems at Wedgewood Drive and Alpine Drive on Akin Branch and at Whitney Drive and Mariner Drive on Cayce Valley Branch. On Akin Branch, these problems include road overtopping of as much as 2.5 feet at Wedgewood Drive and as much as 1.5 feet at Alpine Drive for the 25-year flood. The profiles also indicate backwater of about 1.4 feet at Alpine Drive. On Cayce Valley Branch, these problems include road overtopping of as much as 0.9 foot at Whitney Drive and Mariner Drive. Simulated backwater during a 25-year flood totaled as much as 5.3 feet at Whitney Drive and as much as 2.5 feet at Mariner Drive. Figure 11. Computed flood profiles for Cayce Valley Branch, simulation 1. Figure 12. Computed flood profiles, for Cayce Valley Branch, simulation 2. [Add 590.22 feet to convert elevations to sea level; -, no data; stream stationing is given in hundreds of feet plus feet from a point 412 feet downstream from Whitney Drive] Table 9. Selected data from hydraulic analysis of Cayce Valley Branch, simulation 1 | Stream
station- | Water | Water-surface elevation
(feet) | evation | Flov | Flow (cubic feet per
second) | et per | Mee (fee | Mean velocity
(feet per second) | ty
ind) | Cross- | Cross-sectional area of
flow (square feet) | area of
ieet) | Channel
bed | Bank full
elevation | Low steel
elevation | Deck
eleva- | | |-------------------------|-------|-----------------------------------|---------|------|---------------------------------|--------|----------|------------------------------------|------------|--------|---|------------------|---------------------|------------------------|------------------------|----------------|--| | B | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | elevation
(feet) | (feet) | (feet) | tion
(feet) | Remarks | | 3+00 | 15.8 | 16.7 | 17.0 | 385 | 480 | 909 | 8.9 | 7.1 | 7.4 | 43 | 89 | 82 | 12.6 | 16.2 | 1 | | | | 3+00 | ı | 1 | 1 | 1 | 1 | 1 | 1 | ı | ı | 1 | I | 1 | 1 | ı | - G | Ground
17.4 | House 250 feet left of channel. | | 3+25 | i | 1 | 1 | ı | I | I | 1 | 1 | I | 1 | l | ı | ı | ı | - G | Ground
17.6 | House 130
feet right
of channel. | | 4+00 | 16.1 | 16.9 | 17.3 | 385 | 480 | 909 | 8.9 | 7.1 | 7.4 | 43 | 29 | 83 | 12.9 | 16.5 | 1 | ł | Whitney Drive culvert tailwater. | | 4+12 | 17.6 | 18.2 | 18.4 | 385 | 480 | 505 | 10.7 | 11.4 | 11.5 | 36 | 42 | 4 | 14.0 | i | 19.0 | 22.3 | Whitney Drive culvert outlet. | | 4+46 | 0.61 | 19.0 | 19.0 | 385 | 480 | 505 | 7.7 | 9.6 | 10.1 | 50 | 50 | 20 | 14.1 | 1 | 19.1 | 22.3 | Whitney Drive culvert inlet. | | 4+46 | 1 | 1 | 22.7 | 1 | ! | 100 | : | 1 | 2.5 | 1 | 1 | 40 | ı | 1 | i | 22.3 | Whitney Drive culvert road deck. | | Summary
+
+
99 | 0.61 | 22.1 | 22.7 | 385 | 480 | 909 | 7.0 | 1.7 | 1.8 | 55 | 279 | 343 | 14.7 | 18.5 | 1 | 1 | Whitney
Drive
culvert | headwater. g Table 9. Selected data from hydraulic analysis of Cayce Valley Branch, simulation 1--Continued [Add 590.22 feet to convert elevations to sea level; --, no data; stream stationing is given in hundreds of feet plus feet from a point 412 feet downstream from Whitney Drive] | Stream
station- | Water-t | Water-surface elevation
(feet) | evation | Flos | Flow (cubic feet per
second) | eet per | M (fee | Mean velocity
(feet per second) | ty
nd) | Cross | Cross-sectional area of
flow (square feet) | erea of
eet) | Channel | Bank full
elevation | Low steel
elevation | Deck
eleva- | | |--------------------|---------|-----------------------------------|---------|------|---------------------------------|---------|--------|------------------------------------|-----------|-------|---|-----------------|---------------------|------------------------|------------------------|----------------|---| | | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | elevation
(feet) | (feet) | (feet) | tion
(feet) | Remarks | | ì | ı | 1 | 1 | 1 | 1 | ı | 1 | ı | | ı | ı | 1 | 1 | ! | :
: | Ground
20.9 | House 120
feet right
of channel. | | | 21.2 | 22.1 | 22.8 | 385 | 480 | 605 | 5.0 | 3.3 | 3.1 | 11 | 147 | 194 | 17.8 | 21.0 | : | i | | | | 1 | ŧ | : | ı | ı | ı | ŀ | ı | 1 | 1 | 1 | ı | t | I | ب
ا | Ground
24.3 | House 30 feet left of channel. | | | : | i | t | I | i | 1 | ı | ı | ı | ı | I | ı | 1 | ŧ | ن
ا | Ground
24.6 | House 30 feet right of channel. | | | 22.4 | 22.6 | 23.0 | 385 | 480 | 605 | 5.2 | 0.9 | 6.2 | 74 | 80 | 76 | 18.4 | 21.0 | i | 1 | Mariner
Drive
culvert
tailwater. | | | 22.5 | 22.7 | 23.1 | 345 | 360 | 380 | 10.1 | 10.0 | 9.5 | 34 | 36 | 04 | 19.1 | I | 23.6 | 25.0 | Mariner
Drive
culvert
outlet. | | | 23.7 | 23.7 | 23.7 | 345 | 360 | 380 | 7.7 | 8.0 | 8.
4. | 45 | 45 | 45 | 19.2 | ţ | 23.7 | 25.0 | Mariner
Drive
culvert
inlet. | | | 25.2 | 25.4 | 25.7 | 04 | 120 | 225 | 1.9 | 2.6 | 3.3 | 21 | 46 | 89 | 1 | ı | 1 | 25.0 | Mariner
Drive
culvert road
deck. | | | 25.2 | 25.5 | 25.7 | 385 | 480 | 909 | 1.8 | 2.0 | 2.3 | 217 | 243 | 269 | 19.2 | 21.0 | I | I | Mariner
Drive
culvert
headwater. | [Add 590.22 feet to convert elevations to sea level; -, no data; stream stationing is given in hundreds of feet plus feet from a point 412 feet downstream from Whitney Drive] Table 9. Selected data from hydraulic analysis of Cayce Valley Branch, simulation 1--Continued | | Remarks | House 30 feet left of channel. | House 150 feet left of channel. | 10 feet
below
tributary. | Footbridge culvert tailwater. | House 50 feet right of channel. | Footbridge culvert outlet. | Footbridge
culvert
inlet. | Footbridge culvert deck. | Footbridge culvert headwater. | |---|---------------------|--------------------------------|---------------------------------|--------------------------------|-------------------------------|---------------------------------|----------------------------|---------------------------------|--------------------------|-------------------------------| | Deck
eleva- | tion
(feet) | Ground
25.9 | Ground
28.5 | 1 | 1 | Ground
28.5 | 24.1 | 24.1 | 24.1 | i | | Low steel
elevation | (feet) | Ğ | l G | 1 | i | - Gr | 22.5 | 22.7 | ı | 1 | | Bank full
elevation | (feet) | 1 | 1 | 24.0 | 24.0 | i | ı | ı | I | 24.0 | | Channel
bed | elevation
(feet) | 1 | I | 21.7 | 21.7 | 1 | 203 | 205 | I | 20.3 | | area of
feet) | 25 yr | ŀ | ı | 86 | 108 | 1 | 7 | 7 | 88 | 147 | | Cross-sectional area of
flow (square feet) | 10 yr | 1 | ; | 87 | 94 | ı | 7 | 7 | 73 | 128 | | Cross | 5 yr | | : | 11 | 82 | 1 | 7 | 7 | 99 | 116 | | ity
ond) | 25 yr | | ı | 6.2 | 4.3 | ł | 2.1 | 2.1 | 5.1 | 3.1 | | Mean velocity
(feet per second) | 10 yr | 1 | I | 5.5 | 3.9 | 1 | 2.1 | 2.1 | 8.4 | 2.9 | | M
(fee | 5 yr | 1 | ŀ | 5.0 | 3.6 | ŀ | 2.1 | 2.1 | 7.4 | 2.5 | | et per | 25 yr | | ı | 909 | 460 | i | 15 | 15 | 445 | 460 | | Flow (cubic feet per second) | 10 yr | 1 | t | 480 | 365 | 1 | 15 | 15 | 350 | 365 | | Flow | 5 yr | | I | 385 | 295 | ŀ | 15 | 15 | 280 | 295 | | vation | 25 yr | ı | i | 25.9 | 26.3 | 1 | 22.5 | 22.7 | 26.3 | 26.5 | | Water-surface elevation
(feet) | 10 yr | ı | I | 25.6 | 25.9 | ı | 22.5 | 22.7 | 25.9 | 26.1 | | Water-s | 5 yr | ŀ | ı | 25.4 | 25.6 | ı | 22.5 | 22.7 | 25.6 | 25.8 | | Stream
station- | B
L | 99+6 | 11+36 | 11+76 | 11+96 | 12+06 | 12+06 | 12+22 | 12+22 | 12+32 | ଅ Table 9. Selected data from hydraulic analysis of Cayce Valley Branch,
simulation 1--Continued [Add 590.22 feet to convert elevations to sea level; --, no data; stream stationing is given in hundreds of feet plus feet from a point 412 feet downstream from Whitney Drive] | | Remarks | Cayce Valley Drive driveway culvert tailwater. | |---|-----------------------------------|--| | | tion
(feet) | ŀ | | | (feet) | ı | | Bank full
elevation | (feet) | 25.0 | | Channel
bed | elevation
(feet) | 21.4 | | area of
feet) | 25 yr | 72 | | Cross-sectional area of
flow (square feet) | 5 yr 10 yr 25 yr 5 yr 10 yr 25 yr | 54 | | Cross | 5 yr | | | sity
ond} | 25 yr | 6.4 | | Mean velocity
(feet per second) | 10 yr | 6.6 6.7 6.4 45 | | N
(fe | 5 yr | 6.6 | | set per | 25 yr | 460 | | Flow (cubic feet per
second) | 5 yr 10 yr 25 yr 5 yr 10 yr 25 | 365 | | Flow | 5 yr | 295 | | levation | 25 yr | 26.5 | | Water-surface elevation
(feet) | 10 yr | 26.1 | | | 5 yr | 25.8 | |
Stream
station- | . <u>.</u> | 12+91 25.8 26.1 26.5 295 365 | Table 10. Selected data from hydraulic analysis of Cayce Valley Branch, simulation 2 [Add 590.22 feet to convert elevations to sea level; --, no data; stream stationing is given in hundreds of feet plus feet from a point 412 feet downstream from Whitney Drive] | ≥ | ater-£ | Water-surface elevation
(feet) | evation | Flov | Flow (cubic feet per
second) | eet per | (fee | Mean velocity
(feet per second) | rt
ud) | Cross-s
flow | Cross-sectional area of
flow (square feet) | area of
leet) | Channel
bed | Bank full
elevation | Low steel | Deck
eleva- | ē | |------|--------|-----------------------------------|---------|------|---------------------------------|---------|------|------------------------------------|-----------|-----------------|---|------------------|---------------------|------------------------|-----------|----------------|--| | 5 yr | | 10 yr | 25 yr | 5 4 | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | elevation
(feet) | (feet) | (feet) | tion
(feet) | Remarks | | 15.8 | | 16.7 | 17.0 | 385 | 480 | 605 | 8.9 | 7.1 | 7.4 | 43 | 89 | 82 | 12.6 | 16.2 | - | 1 | | | ŀ | | I | ı | I | I | 1 | 1 | 1 | ı | • | I | ı | ł | 1 | - Gr | Ground
17.4 | House 250 feet left of channel. | | 1 | | 1 | ı | ŀ | ; | 1 | 1 | ı | 1 | i | 1 | ı | I | I | 1 | Ground
17.6 | House 130 feet right of channel. | | 16.1 | | 16.9 | 17.3 | 385 | 480 | 605 | 6.8 | 7.1 | 4.7 | 43 | <i>L</i> 9 | 82 | 12.9 | 16.5 | I | I | Whitney Drive culvert tailwater. | | 17.6 | 10 | 18.2 | 18.8 | 385 | 480 | 995 | 10.7 | 11.4 | 11.7 | 36 | 5 | 84 | 14.0 | ı | 20.0 | 22.3 | Whitney Drive culvert outlet. | | 19.0 | 0 | 20.1 | 20.1 | 385 | 480 | 999 | 4.9 | 8.0 | 9.3 | 50 | 09 | 09 | 14.1 | ı | 20.1 | 22.3 | Whitney Drive culvert inlet. | | 1 | | 1 | 22.5 | 1 | 1 | 45 | 1 | 1 | 1.9 | I | 1 | 24 | ı | ı | i | 22.3 | Whitney Drive culvert deck road. | | 19.0 | 0 | 20.1 | 22.5 | 385 | 480 | 905 | 7.0 | 4
4. | 1.9 | 55 | 108 | 320 | 14.7 | 18.5 | t | I | Whitney Drive culvert headwater. | | 1 | | 1 | 1 | 1 | 1 | I | ł | ı | : | f | 1 | ŧ | 1 | 1 | - G | Ground
20.9 | House 120
feet right
of channel. | Table 10. Selected data from hydraulic analysis of Cayce Valley Branch, simulation 2--Continued | _ | |------------| | Drive | | ~ | | Whitney | | ₹ | | fron | | am | | stre | | OWI | | et d | | 2 fe | | 1 41 | | poir | | na | | fror | | feet | | lus | | et p | | of fe | | spa | | ndre | | n hu | | en ii | | giv | | tioning is | | oninc | | stati | | am | | stre | | ita; | | no da | | -, no | | evel; - | | ı lev | | sea | | ns tc | | atio | | elev | | 'ert | | 000℃ | | 0 | | eet | | .22 | | 590 | | Add | | _ | | Stream
station- | Water | Water-surface elevation
(feet) | levation | Flow | Flow (cubic feet per
second) | set per | M.
(fee | Mean velocity
(feet per second) | ty
nd) | Cross-f
flow | Cross-sectional area of
flow (square feet) | area of
feet) | Channel | Bank full
elevation | Low steel
elevation | Deck
eleva- | | |--------------------|-------|-----------------------------------|----------|------|---------------------------------|---------|------------|------------------------------------|-----------------|-----------------|---|------------------|---------------------|------------------------|------------------------|----------------|---| | ğui | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | elevation
(feet) | (feet) | (feet) | tion
(feet) | Remarks | | 6+26 | 21.2 | 21.4 | 22.6 | 385 | 480 | 605 | 5.0 | 5.4 | 3.4 | 77 | 68 | 177 | 17.8 | 21.0 | : | 1 | | | 7+87 | ı | ı | ı | ŀ | ı | 1 | : | I | I | : | 1 | 1 | ı | ŧ | | Ground
24.3 | House 30 feet left of channel. | | 7+87 | 1 | ŀ | ŧ | ŀ | ı | 1 | 1 | ı | I | 1 | 1 | ł | I | I | ! | Ground
24.6 | House 30 feet right of channel. | | 8+32 | 22.4 | 22.7 | 22.9 | 385 | 480 | 909 | 5.2 | 5.8 | 6.5 | 47 | 83 | 93 | 18.4 | 21.0 | ŧ | 1 | Mariner
Drive
culvert
tailwater. | | 8+47 | 22.5 | 22.8 | 23.0 | 385 | 420 | 440 | 4. | 5.6 | 4.6 | 41 | 4 | 47 | 19.1 | ŧ | 23.6 | 25.0 | Mariner
Drive
culvert
outlet. | | 98+8 | 23.7 | 23.7 | 23.7 | 385 | 420 | 440 | 7.1 | 7.8 | 8
2.2 | 54 | 54 | 54 | 19.2 | ı | 23.7 | 25.0 | Mariner
Drive
culvert
inlet. | | 8+86 | 1 | 25.3 | 25.6 | 1 | 99 | 165 | • | 2:2 | 3.0 | ŧ | 27 | 55 | ı | 1 | i | 25.0 | Mariner
Drive
culvert
road deck. | | 9+01 | 24.9 | 25.3 | 25.6 | 385 | 480 | 605 | 2.1 | 2.1 | 2.4 | 188 | 225 | 254 | 19.2 | 21.0 | ī | ; | Mariner
Drive
culvert
headwater. | | 99+6 | ı | ł | ł | ŀ | 1 | i | l | 1 | ı | 1 | 1 | 1 | ı | 1 | ق
ا | Ground
25.9 | House 30 feet left | [Add 590.22 feet to convert elevations to sea level; --, no data; stream stationing is given in hundreds of feet plus feet from a point 412 feet downstream from Whitney Drive] Table 10. Selected data from hydraulic analysis of Cayce Valley Branch, simulation 2--Continued | Stream
station- | Water- | Water-surface elevation
(feet) | evation | Flov | Flow (cubic feet per
second) | set per | M | Mean velocity
(feet per second) | ty
ind) | Cross-4 | Cross-sectional area of
flow (square feet) | area of
feet) | Channel
bed | Bank full
elevation | Low steel
elevation | Deck
eleva- | | |--------------------|--------|-----------------------------------|---------|------|---------------------------------|---------|------|------------------------------------|------------|---------|---|------------------|---------------------|------------------------|------------------------|----------------|---| | B
L | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | 5 yr | 10 yr | 25 yr | elevation
(feet) | (feet) | (feet) | tion
(feet) | Remarks | | 11+36 | I | 1 | 1 | ı | I | 1 | i. | ı | 1 | 1 | ı | ı | l | 1 | l
Ā | Ground
28.5 | House 150
feet left
of channel. | | 11+76 | 25.2 | 25.5 | 25.8 | 385 | 480 | 605 | 5.5 | 8.8 | 6.5 | 70 | 82 | 93 | 21.7 | 24.0 | 1 | ı | 10 feet
below
tributary. | | 11+96 | 25.5 | 25.9 | 26.2 | 295 | 365 | 460 | 3.7 | 4.0 | 4.3 | 79 | 91 | 106 | 21.7 | 24.0 | 1 | ı | Footbridge culvert tailwater. | | 2+06 | 1 | 1 | ı | 1 | i | 1 | 1 | I | I | 1 | 1 | 1 | : | ; | - Gr | Ground
28.5 | House 50 feet right of channel. | | 12+06 | 22.5 | 22.5 | 22.5 | 15 | 15 | 15 | 2.1 | 2.1 | 2.1 | 7 | 7 | 7 | 20.3 | 1 | 22.5 | 24.1 | Footbridge culvert outlet. | | 12+22 | 22.7 | 22.7 | 22.7 | 15 | 15 | 15 | 2.1 | 2.1 | 2.1 | 7 | 7 | 7 | 20.5 | ; | 22.7 | 24.1 | Footbridge
culvert
inlet. | | 12+22 | 25.6 | 25.9 | 26.3 | 280 | 350 | 445 | 8. | 6.4 | 5.2 | 28 | 1.1 | 98 | ! | : | ; | 24.1 | Footbridge
culvert
deck. | | 12+32 | 25.8 | 26.1 | 26.4 | 295 | 365 | 460 | 2.5 | 2.8 | 3.2 | 118 | 130 | 145 | 20.3 | 24.0 | I | ı | Footbridge culvert headwater. | | 12+91 | 25.8 | 26.1 | 26.4 | 295 | 365 | 460 | 6.5 | 6.7 | 7.0 | 45 | 54 | 99 | 21.4 | 25.0 | : | 1 | Cayce
Valley
Drive
driveway
culvert
tailwater. | The USGS Water-Surface Profile (WSPRO) computation model was used to simulate the effects on existing flood profiles that might be expected if the culverts and bridges at these locations were enlarged. For the alternative designs studied, simulation 3 for Akin Branch indicated that the water-surface elevations during a 25-year flood would probably decrease by 0.2 foot upstream of Wedgewood Drive and would decrease by 0.9 foot upstream of Alpine Drive. For Cayce Valley Branch, simulation 2 indicated that the water-surface elevations during a 25-year flood would probably decrease by 0.8 foot upstream of Whitney Drive and decrease by 0.4 foot upstream of Mariner Drive. Reduced backwater was indicated at all locations. ## **SELECTED REFERENCES** - Federal Emergency Management Agency, 1984, Flood insurance study, City of Columbia, Maury County, Tennessee: Federal Emergency Management Agency, 12 p. - 1989, Flood insurance study, Maury County, unincorporated areas, Tennessee: Federal Emergency Management Agency, 21 p. - Randolph, W.J., and Gamble, C.R., 1976, Technique for estimating magnitude and frequency of floods in Tennessee: Tennessee Department of Transportation, 52 p. - Robbins, C.H., 1984, Synthesized flood frequency for small urban streams in Tennessee: U.S. Geological Survey Water-Resources Investigations Report 84-4182, 24 p. - Shearman, J.O., 1990, User's manual for WSPRO--A computer model for water surface profile computations: U.S. Geological Survey and the Federal Highway Administration, Office of Implementation, FHWA/IP-89-027, 177 p. -
Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model-research report: U.S. Geological Survey and the Federal Highway Administration, Office of Research and Development, FHWA/RD-86-108, 126 p.