BAY SHIPBUILDING CORP.

A SUBSIDIARY OF THE MANITOWOC COMPANY, INC. 605 N. 3RD AVENUE PHONE 414-743-5524 STURGEON BAY, WISCONSIN 54235

SUBMERGED ARC WELDING -

INVESTIGATION OF TUBULAR ELECTRODES

.

DESIGNED FOR SUBMERGED ARC WELDING

APPLICATIONS

FINAL REPORT

JULY, 1985

Under

P.O. Number: POM 69068-R

.

PROJECT MANAGER:

R.A. Whannell

,

•

PRINCIPAL INVESTIGATORS:

B.H. Halverson L.W. Sohns

	Report Docume		Form Approved OMB No. 0704-0188				
maintaining the data needed, and c including suggestions for reducing	ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an	o average 1 hour per response, inclu ion of information. Send comments arters Services, Directorate for Infor ay other provision of law, no person	regarding this burden estimate mation Operations and Reports	or any other aspect of th a, 1215 Jefferson Davis I	is collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE JUL 1985		2. REPORT TYPE N/A		3. DATES COVE	RED		
4. TITLE AND SUBTITLE				5a. CONTRACT 1	NUMBER		
e	8 8	n of Tubular Electr	odes Designed	5b. GRANT NUM	IBER		
for Submerged AR	C Welding Applica	tions		5c. PROGRAM E	LEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NU	MBER		
				5e. TASK NUMB	ER		
				5f. WORK UNIT	NUMBER		
Naval Surface Wai		DDRESS(ES) de 2230 - Design Int ur Blvd Bethesda, N	0	8. PERFORMING REPORT NUMBI	GORGANIZATION ER		
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	ND ADDRESS(ES)		10. SPONSOR/M	ONITOR'S ACRONYM(S)		
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT		
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited					
13. SUPPLEMENTARY NC	DTES						
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	ATION OF:		17. LIMITATION OF	18. NUMBER	19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	ABSTRACT SAR	OF PAGES 251	RESPONSIBLE PERSON			

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18

This report was prepared as an account of government-sponsored work. Neither the United States, nor the Maritime Administration, nor any person acting on behalf of the Maritime Administration (A) makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness or usefulness of the information contained in this report/manual, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or (B) assumes any liabilities with respect to the use of or for damages resulting from the use of any information, apparatus, method, or process disclosed in the report. As used in the above, "Persons acting on behalf of the Maritime Administration" includes any employee, contractor, or subcontractor to the contractor of the Maritime Administration to the extent that such employee, contractor, or subcontractor to the contractor prepares, handles, or distributes, or provides access to any information pursuant to his employment or contract or subcontract to the contractor with the Maritime Administration. ANY POSSIBLE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR PURPOSE ARE SPECIFICALLY DISCLAIMED.

SECTION 1

.

FOREWORD

FOREWORD


The purpose of this report is to describe the methods used to weld the test samples and to present the results of the physical and metallurgical tests performed in this research and development program. This report covers the investigation of the operating characteristics of tubular welding electrodes designed for Submerged Arc Welding applications. The effort of this program was directed toward comparing the relative merits of tubular submerged arc welding electrodes as opposed to solid submerged arc welding electrodes.

The Submerged Arc Welding Process (SAW) using conventional electrodes (solid wire) enjoys a prominent niche, as a welding process, due to high filler wire deposition rates and excellent quality of the deposited weld metal. The Submerged Arc Welding Process is limited to the flat position for butt welds and the horizontal position for fillet welds. These limitations have , not detracted from the popularity of the process as a fabricating tool. The process is normally used with mechanized welding equipment; however, it can be used as a manual process.

In recent years electrode manufacturers have developed tubular electrodes designed for submerged arc welding applications. This "new generation" of electrodes promises several areas of improvement over the solid electrodes that may have significant economic impact on welding costs. In addition, electrode chemistry may be altered to improve the physical properties of weld metal deposits to suit individual welding requirements. Foreword - Page 2

This project was initiated by the SP-7 Welding Panel of the Ship Production Committee; a committee of the Society of Naval Architects and Marine Engineers. A special thank you is due this group who served as technical advisors in the preparation of inquiries and evaluation of subcontract proposals. Their comments and criticisms helped to make this a more valuable project.

This effort was financed largely by government funds supplied jointly by the U.S. Maritime Administration and the U.S. Navy through a cost-sharing contract between Newport News Shipbuilding, Bay Shipbuilding and the Maritime Administration.

ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS :

Appreciation is expressed to the following for their clarification of contract requirements and administration of this project.

Mr. Robert W. Schaffran Manager, Shipbuilding Research Program Office of Advanced Ship Development Maritime Administration 400 Seventh St. SW, Room 7330 Washington, DC 20590

Mr. B. C. Howser, SP-7 Welding Panel Chairman Manager of Welding Engineering Newport News Shipbuilding 4101 WashingtonAvenue-Newport News, VA 23607

Mr. Mark I. Tanner, SPC Program Manager Newport News Shipbuilding 4101 Washington Avenue Newport News, VA 23607

Also, appreciation is expressed to the following people at Bay Shipbuilding Corp. for their continued support of our efforts on the SP-7 welding panel to reduce welding costs:

Mr. George K. Geiger - President Mr. Bruce C. Shaw - Director of Operations

In the performance of this project two outside agencies were employed for physical, metallurgical and corrosion testing of welds. Acknowledgment is due for their dedication and personal efforts:

 Northeast Wisconsin Technical Institute, Green Bay Campus 2740 West Mason St. Green Bay, WI 54303
 Dr. Gerald D. Prindiville, District Director
 Mr. Patrick P. Humphries, Asst. District Director
 Mr. John Pogorelc, Industrial Trades Coordinator
 Mr. John King, Welding Instructor
 Mr. Quinten Ruprecht, Science Instructor
 Northeast Wisconsin Technical Institute, Marinette Campus 1601 University Ave. Marinette, WI 54143
 Mr. Dale Lang, Welding Instructor
 Mr. Malcome Schreiner, Welding Instructor 2. Anderson Laboratories, Inc. 6330 Industrial Loop Greendale, WI 53129 Mr. Ralph B. Meyer, Manager Mr. Richard Krause, Metallurgist Mr. Alan J. Wos, Q.A. Consultant

· .

SPECIAL ACKNOWLEDGEMENTS:

The author wishes to express his appreciation to the following electrode manufacturers and their staffs for their participation in this project and for their technical support:

 L-Tee Welding and Cutting Systems (Formerly "Linde", Division of Union Carbide Corp.) 120 South Riverside Plaza Chicago, IL 60606

Mr. D. B. Peterson - Manager - Welding Processes - Industrial Gasses Department

Mr. W. T. (Tom) Bean - Sales Representative - Welding Products Department

Mr. Jack Gruselle - Green Bay Welding Supply

 Tri Mark Industries 8585 Industry Park Drive Piqua, OH 45356

Mr. Michael Merlo - Director of Research & Development

 Teledyne McKay 850 Grantly Road-P.O. Box 1509 York, PA 17405

Mr. John H. Bradbury - Project Manager - welding products Division

 Alloy Rods Inc. Wilson Ave. P.O. Box 517 Hanover, PA 17331

Mr. Joseph L. Scott - Manager, New Market Development

Ms. Shirly Bollinger - New Market Development

In addition to the above, a special thank you to Miss Kathy LeCloux and Julie Koch for their patience and excellent effort in typing this report and to Mr. James Lynch for his photographic support.

VOLUME 1

ж

TABLE OF CONTENTS

			Page
l.	Foreword		ii
2.	Acknowledgeme	nts	v
3.	Table of Cont	ents	0
4.	Introduction		1
5.	Process Descr	iption	3
б.	Submerged Arc	Welding Equipment	11
7.	Base Material	s Welded	15
8.	Electrode/Flu	24	
9.	Weld Joint De	sign and Procedure Limits	27
10.	Weld Tooling		32
11.	Procedure Tes	t Records	40
[′] 12.	Weld Test Res	ults	57
13.	Evaluation of	Test Results (Conclusion)	87
14.	Summary		137
15.	References	•	140
16.	Appendix A.	Tensile Test Forms	142
	в.	Charpy Test Forms	159
	c.	Hardness Test Forms	174
	D.	Spectrographic Forms	191

. .

.

, ·

SECTION 4

INTRODUCTION

.

_

۰.

INTRODUCTION

The primary objective of this project was to evaluate the operating characteristics of flux core and metal core electrodes designed for use with the Submerged Arc Welding Process. These electrodes have been described, in vendor literature, as the "new generation" of submerged arc welding electrodes that can be tailored to suit almost all base metal chemistries, thus capable of producing superior weld metal deposits. In view of the fact that shipbuilding and ship related steel fabrication utilizes the Submerged Arc Welding Process, it was determined that these electrodes were worthy of investigation. In the initial investigation of these electrodes, we discovered that availability of tubular flux core and/or metal core electrodes designed for submerged arc welding were not readily available. Several major electrode manufacturers do not make this type of electrode due to lack of demand by steel fabricators. In addition, electrode manufacturers have found that fabricated ' electrodes have a tendency to develop deposit inconsistencies due to the difficulty in maintaining the elements in the flux powder homogeneously and eliminating hydrogen in the powder These problems have been solved by some electrode deposit. manufacturers; however, not all manufacturers have opted to develop this technology into a new product line.

2

SECTION 5

PROCESS DESCRIPTION

•

٠.,

THE SUBMERGED-ARC PROCESS

Submerged-arc welding differs from other arc welding processes in that a blanket of fusible, granular material - commonly called flux - is used for shielding the arc and the molten metal. The arc is struck between the workpiece and the bare wire" electrode, the tip of which is submerged in the flux. Since the arc is completely covered by the flux, it is not visible and the weld is run without the flash, spatter, and sparks that characterize the open-arc processes. The nature of the flux is such that very-little smoke or visible fumes are developed.

THE MECHANICS OF FLUX SHIELDING

The process is either semiautomatic or full automatic, with electrode fed mechanically to the welding gun, head, or heads. In semiautomatic welding, the welder moves the gun, usually equipped with a flux-feeding device, along the joint. Flux feed may be by gravity flow through a nozzle concentric" with the electrode from a small hopper atop the gun, or it may be through a concentric nozzle tube-connected to an air-pressurized flux Flux may also be applied in advance of the welding operatank. tion or ahead of the arc from a hopper run along the joint. In fully automatic submerged-arc welding, flux is fed continuousl, to the joint ahead of or concentric to the arc, and full-automatic installations are commonly equipped with vacuum systems to pick up the unfused flux left by the welding head or heads for cleaning and reuse.

During welding, the heat of the arc melts some of the flux along with the tip of the electrode. The tip of the electrode and the welding zone are always surrounded and shielded by molten flux, surmounted by a layer of unfused flux. The electrode is held a short distance above the workpiece, and the arc is between the electrode and the workpiece. As the electrode progresses along the joint, the lighter molten flux rises above the molten 'metal in the form of a slag. The weld metal, having a higher melting (freezing) point, solidifies while the slag above it is still molten. The slag then freezes over the newly solidified weld metal, continuing to protect the metal from contamination while it is very hot and reactive with atmospheric oxygen and nitrogen. Upon cooling and removal of any unmelted flux for reuse, the slag is readily peeled from the weld.

There are two general types of submerged-arc fluxes, bonded and fused. In the bonded fluxes, the finely ground chemicals are mixed, treated with a bonding agent and manufactured into a granular aggregate. The deoxidizers are incorporated in the flux. The fused fluxes are a form of glass resulting from fusing the various chemicals and then grinding the glass to a granular form. Fluxes are available that add alloying elements to the weld metal, enabling alloy weld metal to be made with mild steel electrode. -

ADVANTAGES OF THE PROCESS

High currents can be used in submerged-arc welding and extremely high heat developed. Because the current is applied to the electrode a short distance above its tip, relatively high amperages can be used on small diameter electrodes. This results in extremely high current densities on relatively small cross sections of electrode. Currents as high as 600 amperes can be carried on electrodes as small as 5/64 in., giving a density in the order of 100,000 amperes per square inch - six to ten times that carried on stick electrodes.

Because of the high current density, the melt-off rate is much higher for a given electrode diameter than with stickelectrode welding. The melt-off rate is affected by the electrode material, the flux, type of current, polarity, and length of wire beyond the point of electrical contact in the . gun or head.

The insulating blanket of flux above the arc prevents rapid escape of heat and concentrates it in the welding zone. Not only are the electrode and base metal melted rapidly, but the fusion is deep into the base metal. The deep penetration allows the use of small welding grooves, thus minimizing the amount of filler metal per foot of joint and permitting fast . welding speeds. Fast welding, in turn, minimizes the total heat input into the assembly and, thus, tends to prevent problems of heat distortion. Even relatively thick joints can be welded in one pass by the submerged arc process.

Welds made under the protective layer of flux have good ductility, impact resistance and uniformity in bead appearance. Mechanical properties at least equal to those of the base metal are consistently obtained. In single-pass welds, the fused base material is large compared to the amount of filler metal used. Thus, in such welds the base metal may greatly influence the chemical and mechanical properties of the weld. For this reason, it is sometimes unnecessary to use electrodes of the same composition as the base metal for welding many of the low-

. .

-

- .

- - - -

- -

_

pass welds are less affected by the base metal and depend to a greater extent on the composition of the electrode, the activity of the flux, and the welding. conditions.

Through regulation of current, voltage, and travel speed, the operator can exercise close control over penetration to provide any depth ranging from deep and narrow with high-crown reinforcement, to wide, nearly flat beads with shallow penetration. Beads with deep penetration may contain on the order of" 70% melted base metal, while shallow beads may contain as little as 10% base metal. In some instances, the deep penetration properties of the submerged arc welding process can be used " to eliminate and reduce the expense of edge preparation.

Multiple electrodes may be used, two side by side or two or more in tandem, to cover a large surface area or to increase welding speed. If shallow penetration is desired with multiple electrodes, one electrode can be grounded through the other (instead of through the workpiece) so that the arc-does not penetrate deeply.

Deposition rates are high - up to ten times those of stick electrode welding.

Submerged-arc welding may be done with either DC or AC power. Direct current gives better control of bead shape, penetration, and welding speed, and arc starting is easier with. it. Bead shape is usually best with DC reverse polarity (electrode positive), which also provides maximum penetration. Highest deposition rates and minimum penetration are obtained with DC straight polarity. Alternating current minimizes arc blow and gives penetration between that of DCRP and DCSP.

APPLICATIONS AND ECONOMIES

With proper selection of equipment, submerged-arc is widely applicable to the welding requirements of industry. It can be used with all types of joints, and permits welding a full range of carbon and low-alloy steels, from 16-gage sheet to the thickest plate. It is also applicable to some high-alloy, heat-treated, and stainless steels, and is a favored process for rebuilding and hardsurfacing. Any degree of mechanization can be used from the hand-held semi-automatic gun to boom or track-carried and fixture-held multiple welding heads.

The high quality of submerged-arc welds, the high deposition rates, the deep penetration, the adaptability of the process to full mechanization, and the comfort characteristics (no glare, sparks, spatter, smoke, or excessive heat radiation) make it a perferred process in steel fabrication. It is used extensively in ship and barge building, railroad car building, pipe manufacture, and in fabricating structural beams, girders, and columns where long welds are required. Automatic submerged-arc installations are also key features of the welding areas of plants turning out mass-produced assemblies joined with repetitive short welds.

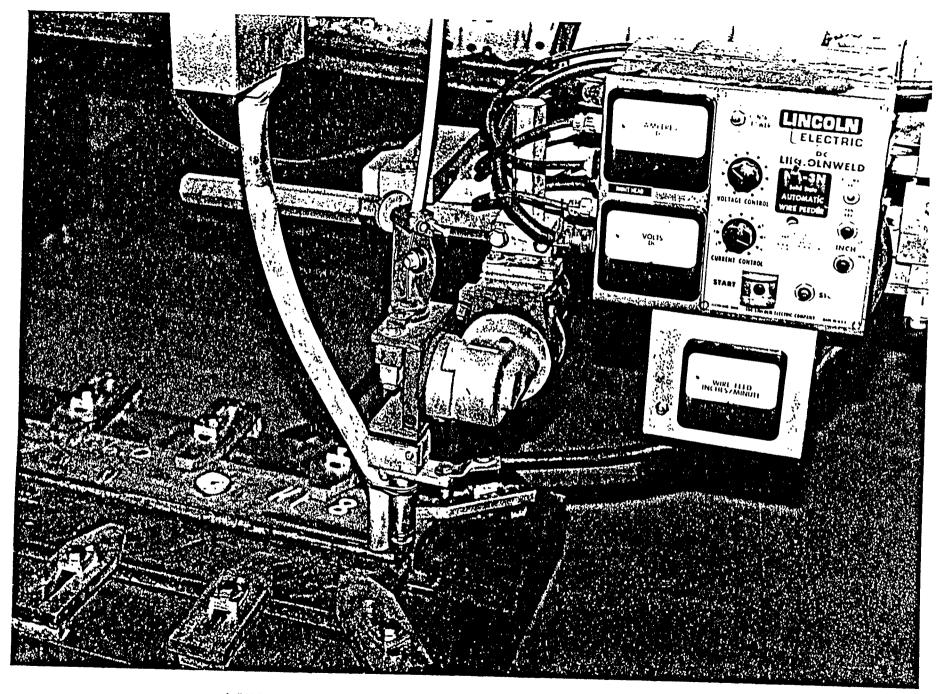
The high deposition rates attained with submerged-arc are chiefly responsible for the economies achieved with the process. The cost reductions when changing from the manual shielded metalarc process to submerged-arc are frequently dramatic. Thus, a hand-held submerged-arc gun with mechanized travel may reduce welding costs more than 50%; with fully automatic multiarc equipment, it is not unusual for the costs to be approximately 10 percent of those attained with. stick-electrode welding. Factors other than deposition rates enter into the reduction of welding costs. Continuous electrode feed from coils, ranging in weight from 60 to 1,000 pounds, contributes to a high operating factor. Where the deep-penetration characteristics of the process permit the elimination or reduction of joint preparation, expense is lessened. After the weld has been run, cleaning costs are minimized because of the elimination of spatter by the protective flux.

When submerged-arc equipment is operated properly, the weld beads are smooth and uniform, so that grinding or machining is rarely required. Since the rapid heat input of the process minimizes distortion, the costs for straightening finished assemblies are reduced, especially if a carefully. planned welding sequence has been followed. Submerged-arc welding, in fact, often allows the premachining of parts, further adding to fabrication cost savings.

A limitation of submerged-arc welding is-that imposed by the force of gravity. In most instances, the joint must be positioned flat or horizontal to hold the granular flux. To deal with this problem, weldment positioners are used to turn assemblies to present joints flat or horizontal - or the assemblies may be turned or rotated by a crane. Substantial capital investments in positioning and fixturing equipment in order to use submerged-arc welding to the fullest extent, and thus gain full advantage of the deposition rate, have proved their worth in numerous industries. Special fixturing and tooling have been developed for the retention of flux and molten metal in some applications, so that "three-o'clock" and even vertical-up welding is possible. Although they are not truly limitations, problems can arise in the use of submerged-arc resulting from improper joint preparation and improper procedures. Thus, "flash-through" of the arc, burn-through, and weld porosity result from such factors as improper procedures, poor fitup and joint contaminants.

SECTION 6

SUBMERGED ARC WELDING EQUIPMENT


SUBMERGED ARC WELDING EQUIPMENT

The power source used in this program was a Lincoln DC-1500 three phase rectifier type, set in the Constant Voltage control mode. This power source has input line voltage compensation which will maintain constant secondary **output up to a ±10% line fluctuation value.** It is also equipped with an SCR-type control circuit which provides precise control of voltage and amperage setting as well . as having excellent starting characteristics needed for submerged arc welding.

Control was provided by a Lincoln NA-3 solid state wire feeder-head equipped with an optional start control board, and full metering capabilities for Voltage, Amperage and Wire Feed Speed in inches per minute. The control head was set for reverse polarity operation (electrode +) in the constant voltage mode. The head was coupled to a Lincoln wire feed motor and gear box to which a mechanical wire straightener and Lincoln model K-148 torch were attached. This torch has a tang contact system which provides positive electrical contact at the nozzle of the assembly.

All meters were calibrated at the start of the program and were checked at 90 day intervals. The wire feed speed meter was also verified on each pass by the use of a Lincoln hand held digital wire feed speed meter. Submerged Arc Welding - Page 2

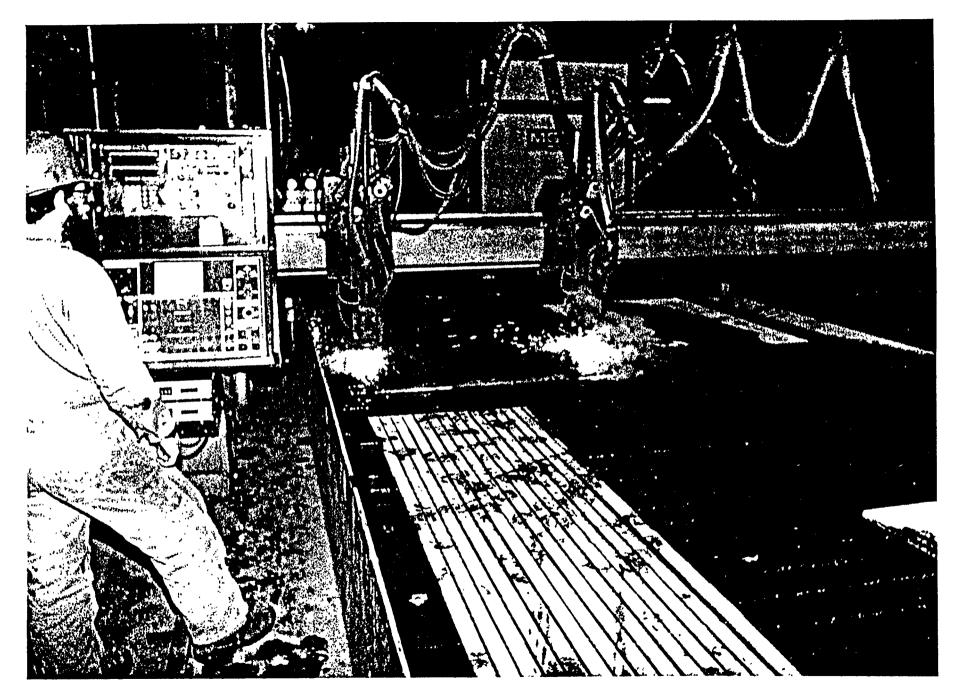
Only one correction was made during the length of the program. This was to the amperage meter to correct a 20 to 25 amp error on April 25, 1985. There were only three procedures run subsequent to this date: HY-8-AC1, HY-8-AC-HHI-1 and HY-O-AC-1. Because the program was dependent on all electrodes operating at the exact same amperage there may be a 4 to 5 percent difference due to meter drift on these procedures.

LINCOLN NA-3 HEAD AND K-148 TURCH MOUNTING

SECTION 7

BASE MATERIALS WELDED

BASE MATERIALS WELDED


The specific steels selected for this program cover the shipbuilding industry as a whole, both commercial and military. They were selected to reflect the current technological level in steels on the higher end of the spectrum in tensile strength and impact resistance or corrosion resistance requirements.

American Bureau of Shipping steel EH-36 was selected to represent typical steels used in commercial construction applications where higher strength or impact resistance is required.

A 316L stainless steel was selected to represent applications where corrosion resistance is a primary concern.

Two grades of steel were selected to represent military applications, HY-80 and HY-100 conforming to MIL-S-16216 J.

The physical test reports on these materials are included for comparison purposes and information.

PLASMA CUTTING OF TEST MATERIAL

I NO	R PLA	NT			REPORT	OF			VD AI		E S				1	-	
4-0076	5		•		9- 2	-81		JHR	v o	HION	IVE	R			p	AGE	Ξ.
T SEE		LOW EL CORP	-SHI	P DIN	-BEAUM	- דאס -]	F	SHIP	STEE DIV Mont	BEA		YD				
SERIAL							ZE AND]		<u> </u>	E10	ō
NUMBER	PAT. NO	HEAT NUMBER	Ю	PCS 1	THICKNESS	1			1		:		PCNN PCNN PS	TST#1	1511 51	21	1
LATES		BS GR E ESTS -						SP	JL.								-
MFST	L JONSFOR	LATTENE LATTENE IFT MAX F 25FTL DIRECT IN DIR HICKNES F EA EN 435-100 0-52 GH	D TO 15 A BS A ION I MIN I S TE D OF	STD TON-S T HIN PROPE RED C STINC EA F	TOL SIZES S NUS 40D ERTIES DF AREA S TO BE PLT AS	EP L EG F YSET 25%	ONGL MAX EN E THE	 4 4	ITH I OF THICI ENTEI	FCLLO SPECI KNESS R LOC	WIN FIE TH	iG :D เสบ					
ATES	HEA	T TREAT SPECTIO SONICALL' 803N766	ED W	ITH T AMER TED 10	EST SP	UREA IEETS 36	IENS U OF THE 36	= si REC		ED• ING ÆNTS 4	OF	ASTM A ¹ 1776	35 5720 5760 6390	0 844	00	2	
	ER T	HRU THICH				T-TEMP	ER TEMPEI	RATURE		•		N-NOR	AUTE TEMP	IRATURE			-
	ENTĘ T	R THRU TH		<u>.</u> 55		_,				СН	ARPY	IMPACT					
AL PAT. IÈR NO.		HEAT NUMBER	HARD	ND	THICKNESS INCHES	TYPE	SIZE	DIR	TEST	ENERGY F	T.	LBS	1	1		110	_
117	803	5N76631			1.000	v	FULL	. L	-40	94	<u>3</u> 96	98	-	2 3			-
HEAT				· · · · · · · · · · · · · · · · · · ·	· · ·		CHEM	ICAL	ANALYS	IS		·····		······		L	-
176631	-1 (m 3 1.42	-014	s •008	<u>9</u> 3 -269-0	cu 016	Ni •16	Cr • 1 9	<u>м</u> . 9 • 05:	v 3-034	Π	Ai .	8	<u>Cb</u>	<u> </u>		-

THAT THE ABOVE RESULTS ARE A TRUE AND CORRECT COPY FDS FREPARED AND MAINTAINED BY BEIMERIM IN COMMU ,

24 (Rev. 5 4.78)					METALLURG	ICAL DEPAR	KPUKALIUN Itment DANALYSIS	21	05	4 -	2	!/
NT SPACEOUS		SHIPMENT N		DATE SHIP	PED	CAR OR VE	HICLE NO.					
SPARROWS		T. 409- TO 5	- 05,	370 04	/30/82	CUST	CUSTOME	R			P	'G
		0 HILLSIDE LLSIDE NJ	072(95				SIDE NJ	AVE 07205	5		
SERIAL NUMBER	PAT.	HEAT	L		SIZE AN	D QUANTI	Ŷ		YIED	TENSILE	B	ONG.
		NUMBER	NO. PCS.	THICONESS	WIDTH OF	DIA.	LENGTH	WEIGHT	i KSI	STRENGTH	N	-
CO ‡ 7274						14000	3705 CD.	* 004 40C				

.

S0 ∓ 7274					16000705	GD⋕	001-192	ο.	9395	12	497
TZ & TEST	-S-226788 FCS Norm A Stlhsnj	GR D T 16	H36 CL U 50 DEG &	HELD 1	/2 HR PER	INCH	OF THIC	KNESS			
	DH36 NT 1 END B	LUE	WHITE/GRE	EN							
	41152511	1	i/ 4	96	360		2450	63.9			
								60.5	84.1 83.4	60	20 28
	431P4011	1	1/4	96	360		2450	62.2			
								02.2	85.5	8	15
,											
TEST	ED TH ACCOU	DAME			TELEVICETE	<u></u>					

TESTED IN ACCORDANCE WITH THE REQUIREMENTS OF ABS RULES.

SERIAL PA	<u>.</u>	HE	EAT	тніск	NECE	HARD	├ ──,						HARPY I	MPACT				
UMBER N	D.	NUA	ABER	inick.	~C33	8HN	TYPE	SIZE	DIR.	TEST L		NERGY (T. USS.)		DUC	TRITY (%)		Ū
										10.01		2	3	AVG.		2	3	1
								_				TR	PRESS	• 1	. APPR	OVED EAR STEE	LS IN	C.
											Date _ Sy		-70 +11	-99 (2554)	Neg -			
HEAT NUMBER									CHEM	ICAL ANAL	YSIS							
·		<u>c</u>	Мл	P	S	Si	1	Cu	Ni	Cr	Mo	V	Сь	N			1	
152511 114011		17	1.40 1.41 /			(. 25) (. 74) /			.07 .07 /				. 63 . 64		· .	2	-	
								ED	анБ	(Sworn		p	• (42 P	1	2		٢

	CONTRACT NO						P.O. D/	ATE	PURCHASE C	RDER NO	•					• 1		10	C FRM		ELT T
				يعن ـ	<u>, </u>		<u>`</u>		4234							۰ ۱۰	100 m		C B P C A	131 ° 75 E E E	ELI T REIN
14/			-				SHIPPE				LORDER	NO.	INVOIC	E NO.	{	1 T C	N .	1. L.J. T. A.K.	CRIC; TPP	ግግ ቢሞ መንግሞ	ED, A
ייז ער	DA VALLEY W	ORKS			•		755	31 (76/23/A	3 1	EA765	२ ५		-151	67	n-`	INCOT	nar z T	M 300	1671	NCE W
81	OMESTEAD, P.	A. 151	20	•			WHICH IDINITY	PA	AA30 4	3			<u> </u>	140		х 4 тр	2010	TRI	0 AUU	NI A J	D FUL
			112.	£ .	• •									<u> </u>		511	ומיי עיסו.	. 1 F 1 . 611 T	00000	219 A.V. 3002 T	N SUC
	Meredith Corp	·/PVN S	Steel	S				Morođ	ith Corp	/ተለ ክተ	Chaol	-				2.5	SECT3		U 21E	vi h	N 200
	460 Hillside	Avenue	1.	-				160 H	illside	•/PVIN	Steel	.5			S	e e	2 6010	`•	m	n	
	Hillside, NJ	07205	1		•		· .		ide, NJ						H		C UD A .	ED	• • •		
	/ • =·-		·· • *	`,••• •				117779		0720:	2				i	•	· 61 A -	· • 1) 11111	21		FICE
					•	•									•	•	•••	105	0.111	, Mi	F. Ç.
															o						
A B	LAW BON CON	HYBE M	IL-S	-16	216J	- 1	ESCAT	E. 17	CAT PA	INT	117.772	AJENT	//]	DATE_		1301	- 3		
	ST FOR SOU	NDNESS	ል G	AUG	E	-		-,		• IV 2	0.011	ARCAL	ч I		· · · ·						
					• ;	•									15.5	712		Ç	A. APER	NVED -	
	ATES		•													r., ,	ייי איזיין	i <i>k</i> i.	SEE NUCI	FAR STIF	IS INC.
- 21	MILL CER	PIFIED	T'/R	3 1	ጥ/አ ጥ	0 5	τ. η	AMPA	0 TAN7	٨				-		.2	30/20	L			
			- /		-/ 1		MD 10	01714	- DAIV/	n.				i	ne		1	J			.
						<i>.</i>								E	37			;			
M	1	MATER	RIAL DESC	CRIPTIC	<u></u>									· · · · · · · · · ·							
0.	THICKNESS OR SECTION	WIDTE	H. DIA. I. WI.	<u></u>		ENGTH		QUAN	WEIGHT	HE	AT NO.	TES	OR PIEC	:e	YIELD		TENSILE		ELONGA	TION %	% RED.
1	1.0000	96	<u></u>		460	INUIH			17050				DENTITY		531		PSI		IN 8"	IN 2"	OF AREA
					106				13068	0.43	454	1225	5. 1	<u>_</u>			1636			44.0	61.2
	1								1					ΥB			1248				63.5
	FULL SIZE T	DANC	17 100	mhm	0 11 4 15	17. TP	T 14 1 4 9 9		<u> </u>					-223			1091				
•	FULL SIZE 9	DANC -	Y NO: 17 NO!	1)C mhm	ONAR	ri DV	IMPACY	TEST				AT -1.	נת 20		F. 21		-266	. 2-	868.3	F.	IBS.
	FULL SIZE T	DANC -	V NOS		UPAR	21	IMPAC	η τεςη				Vu.	6 11	90. I	F. C.				100.0		TES.
	FULL SIZE	DANC	V NO:	TUN MUN	UHAR	PI D	IMPACS	TEST				¥ −1:	77 3	۲. J	· ·	- .	-26:			v ·	IT ::
	FULL SIZE T		V NO	ΓLΗ.	UHAR	PI	IMPACI	TEST	10X10			V:		··.	h. P				CE0.	70	TRS.
	FUIT, SIZE T	INANS	¥ NO1	LEH.	CHAR	PY	IMPACT	TEST	10 1.10			· - 1 :	20	` ? .!'	. (÷			1. 7.1		1-5.
	ULI SIZE	RANS	V N')'	ree.	CEAR	PY	IMPACI	TEST	10X1;	n Màr	1DF	d.	<u>ر</u> .	· • • 1	• • • •				205.0		LES.
	FULL SIZE 1	HANS	V NO'I	ссн	CHAR	PY	IMFACT	TEST	12816	34M M	ATE I	Nn 12		•	•				67.		'rs.
	UII SIZE T	RANS	V NOT	ECH-	CHAR	PY	IMPACT	TEST	10310	MM M	ADE J	1r		I	. v				au5.0		
	INAL PEAM	TREAT	:AUST	[1F	•60 D	EG 🛛	F 70	MIN	WTR CUI	ENCE -	ሞክክክ	1710						•• [···· • •	5.4.4	.20.
	1			1							•		•		•						1
				М	eredii	h C	horn /m	NT Choo	ls Ref 🕴			ł									
	FIELD STR.	0.2%	OFFS	str-	Ľ	say	Surbon	liding	PO# 1637	'19]	L Pc.	_1" :	x 96"	'x	L20"				
AT NO). TYPE C	MN	P	5	SI	CU	NI		0 5N /		- <u></u>										
1154		:27	204	212	:25	.94		155 4			V T		11	СВ	co			~			
¥24	54 CHK 116	29	006	313	29	06	299	152 4			101		· ? ·	:		•					CIFI
124	54 CPY 18	26	20F	12	27	06	.288	150 4	e l						:						19 CUI
				~		i		1.16	۲ I I					:							MAT.
											11					_ :					ኮ፲ልጥኑ
			1 1			•							:			Ι.	ι. · Ι(NPLC
	1 1:		1 - 1	1	11 1	1		: :				1	•		:		• • •	.,,2(1N' I	TESTI	NC.
				. I		•	1 1 1					1 I	, 1	1	• •						
<u></u>	, , , _ , _ , _ , _ , _ , _ , _ , 		<u>.</u>																		178 F V

, JOB, C	ONTRACT NO		/			P.O. DA1	ſĔ	PURCHA	LE ORDE	R NO.					141	S IS TO	CERTI	FY TH	IAT T
/						_		4346	07/							DUCT DES			
						SHIPPER				1	ORDER N		INVOIC	· · ·	MEĢ	D., SAMP	LED,	TEST	ED, J
	N VALLEY					7600		0/25	183	E	8083	5	163-		92 OR	INSPD. 1	IN ACC	ORDAN	ICE I
нU	MESTEAD,	74. 151	20			PANIN	15/	5694						160		SPECIES			
		.								•						S RFQUI	REMEN	ITS I	N SU
	Meredith Co	rp./PVN	Steels	5 .			Mered	ith Co	rp./	PVN S	teels	;			S RESI	PECTS		1.	10%
	460 Hillsid							illsid							H		-		12
	Hillside, N	J U/205	ı				Hills	ide, N	រេ 0.	7205						REPARED			
															T	اللثليا. • ٢ •	<u>untri</u>	- p H H	Ka
	•														0 DATE	10/26	183		
AR	MOR PLATE	HY80 M	IL-S-	16216.	I - DE	SCALE	8 1	COAT	PAI	NT			T						
														/av	62	Q. A. APP	ROVED		
				•										17.0074.00	PRESSU	IRE VESSEL-NU	CLEAR STE	ELS INC.	
	ATES			-	•				•						3/20/24				
. C1	MILL CE	TIFIED	T/R	3 T/R	TO SL	D TO	ATTN	BLA	NZA					ate		*****			
													þ	У	1,35				
M	r	MATE	IAL DESCI	RIPTION			<u>, </u>	-1				1	l.		YIELD PT	TENSILE STR.	LEIONG	TION %	% RED
т Э.	THICKNESS OR SECTION		I, DIA. I. WI.	1	LENGTH			WEI	GHT ,	HEA	T NO.		T OR PIE	CE	PSI	PSI	IN 8"	IN 2"	OF AREA
1	1/4	96	<u> </u>	39	·····		1	26	95	411	258	C366	212 '	<u>тт</u>		105300		26.0	
•				1		•	1			***		1000		τB		104000		24.0	
	EINAL HEA	TREAT	: AUST	1680	DEG F	: 18	MIN	WTR	QUE	ICH ·	TMPR	1310	DEG		4C MIN	1			
·			-			• -					•••••		5-13	<i>i</i> .		1			1
1	1/4	96		39	5		1	26	95	411	258	0366	34.5 (Ť T	8911 10	104200		28.C	· ·
							1							TF	30345	104200		24.0	1
	FINAL HEA	TREAT	3 AUST	1660	DEG F	28	MIN	MTR	QUE	ICH .	TMPR	1310	DEG	F	40 MIN				
•					•									~					
1	1/4	96		39	5		1	26	95 (441	258	0.366	3539	1		164900	ľ	22.0	
		-									• • • • •					106000		25.0	
	FINAL HEA	IRCAT	TAUSI	1000	DEC P	6	N MITH	MTR	ROFI	Сн	IMPR	1310	OFG	۴	40 MIN	1			
			•				ŀ.								* *	ND OF C		r	
	}				Meredi	th Corp	./PV N	i Stee	ls Re	f#	812]
	•				Dava Ola	· · · · · · · · · · · · · · · · · · ·						1 1 P	c. 1	/4"	к 96"х 24	11			
	TIELD STR	27	OFFS	ET	Bay Sh	ipourio	ing h	Q# 16:	3/13				~ •	/	50 X 24				
EAT NO		C MN	P	5 51	CU	NI,	CR	MO SI	A AL	N	V	B	TI	C8	co				
6W12			005	009 2	5 05	241	131	33			01		:003	x	UN	LESS OTI	IERWIS	SE SP	ECIF
51W	· · · · ·	4 27	006	008 20	6 05	239	132	32			000	5	123		RF	CORDS AI	RE AVI	ILAB	LEC
6412		5 27	004	007 20	6 05	238	131	32		ł	01		:()2	:	I FR	ING HEAT	F NUME	BER O	F MAI
	**END OF	ATA												:	us us	ED, PRO	CESSII	AC OF	PLAT
													:	÷	01	MENSION	AL COP	TROL	ENT.
	1 1	· · · · ·	1 1			1 1	11	1	11	1	11	1 .	·		LE LED	, ULTRA	3 T 40 2	TEST	ING.
	· · · · · - · · · · · · · · · · · · · ·				1. 1				1:		1:			•	11 11"	UGING A			

	4 000 0772 (REV. 7-78)				Report	
OB, CON	NTRACT NO	P.O. DATE	PURCHASE ORDE			THIS IS TO CERTIFY THAT
			4553 11/	23/83		PRODUCT DESCRIBED HEREIN
MAR		SHIPPERS NO.		MILL ORDER NO	INVOICE NO.	MEGD., SAMPLED, TESTED,
	VALLEY WORKS		01/31/84	EA94060	163-34763	OR INSPD. IN ACCORDANCE
nun	ESTEAD, PA. 15120	HENTIN 57	407	·	180	THE SPECIFICATION AND FU
M	Veredith Corp./PVN Steels	Mor	edith Corn	/PVN Steels		FILLS REQUIREMENTS IN SU
	60 Hillside Avenue		Hillside A		s	RESPECTS.
	lillside, NJ 07205		lside, NJ		Ĥ	
••			/		÷	PREPARED BY THE OFFICE C.E. CHURCHILL, MGR. (
					Ť	Cale CHURCHILLP HORe
					ò	DALE C2/01/84
ARM	OR PLATE HYTUU HIL-S-102163 -	DESCALE,	COAT PAI	NT, ULTRASC	NI	
CT	EST FOR SOUNDNESS & GAUGE					
Ð	Tra		Meredith Co	rp./PVN Steels	Ref # 812	
PLA 01	MILL CERTIFIED T/R	,	Bay Shinbui	lding PO# 1637		1" x 90" x 120"
	HALL OLATITIED ITR		Day Shippur	.101119 PO# 1037	19 1 FC.	I X 30 X 120
•	· · · ·		•			
	MATERIAL DESCRIPTION					ID PT TENSILE STR. ELONGATION % % RE
	OR SECTION OR FT, WI, LENGT	CUAN		HEAT NO	ST OF PIECE	
	1.0000 90 480		12252	200001 040		1500 172200 40.0 82
						0700 121700 38.0 58
						N (3000) KG
FUL	L SIZE TRANS V NOTCH CHARPY IMPACT	TEST 10x10 M	M MADE AT ~	120 DEG. F. 07	3,0-069,0-069.	O FT. LBS.
	L STZE TRANS V NOTCH CHARPY IMPACT					
	L SIZE TRANS V NOICH CHARPY IMPACT					
កលារ្	SIZE TRANS V NOTCH CHARPY IMPACT I	CEST 10X10 MM	MADE AT O	DEG. F. 096.0-0	091.0-096.0 FT	. GBS
i					(avn)	Q. A. APPROVED
Ē	INAL HEAT TREAT: AUST 1660 DEG	F 70 HT	UTP OILEN		NE CHERNEN	PELSURE VESSEL-NUCLEAR STEELS INC.
1					1 414	35 541
		• • • •			Date	
					Зу	
			1 1	1	·····	
	IELD STR. 8 .2% OFFSET					
T NO.	TYPE C MN P S SI CI		MO SN AL	NVB	TI C8 C0	
TUU	TYPE C MN P S SI CI 1 HEAT 15 27 010 011 24 10	7 263 147	MO SN AL	N V B		UNLESS OTHERWISE SPECT
AT NO.	TYPE C MN P S SI CI 1 HEAT 15 :27 010 011 :24 0 1 CHK 15 :28 010 010 :23 0	7 263 147 7 261 151	43 37	01	TI CB CO 101 : CO2 :	
AT NO.	TYPE C MN P S SI CO 1 HEAT 15 27 010 011 24 0 1 CHK 15 28 010 010 23 0	7 263 147 7 261 151	43 37	01	TI CB CO	UNLESS OTHERWISE SPECT RECORDS ARE AVAILABLE FRING HEAT NUMBER OF M
AT NO.	TYPE C MN P S SI CI 1 HEAT 15 :27 010 011 :24 0 1 CHK 15 :28 010 010 :23 0	7 263 147 7 261 151	43 37	01	TI C8 CO 01 C02 003	UNLESS OTHERWISE SPECT RECORDS ARE AVAILABLE FRING HEAT NUMBER OF M USED, PROCESSING OF PL
AT NO.	TYPE C MN P S SI CI 1 HEAT 15 :27 010 011 :24 0 1 CHK 15 :28 010 010 :23 0	7 263 147 7 261 151	43 37	01	TI CB CO 101 : CO2 :	UNLESS OTHERWISE SPECT RECORDS ARE AVAILABLE FRING HEAT NUMBER OF M USED, PROCESSING OF PL DIMENSIONAL CONTROL EM
АТ NO. ИСОО ИСОО ИСОО	TYPE C MN P S SI CI 1 HEAT 15 :27 010 011 :24 0 1 CHK 15 :28 010 010 :23 0	7 263 147 7 261 151	43 37	01	TI C8 CO 01 C02 003	UNLESS OTHERWISE SPECT RECORDS ARE AVAILABLE FRING HEAT NUMBER OF M USED, PROCESSING OF PL

ブ・-	ہو ور ب	72 (REV 7-78)	•					ar neboi	•		-	N.
D BOL C	ONTRACT NO.			PODA	-	PURCHASE (A
v				SHIPPER	IS NO	3269 05	MILL OPDER	NO INVO	ICE NO	WE HEREBY C		* ***
N HOP	MESTEAD WOR	KS		7360	11	2/14/81	EA393	15 163	-19168	CHENICAL AN		1 THE /8R
й нол	NESTEAD, PA	. 15120		IDENTIT	v C\$1	404			140	TEST RESULT		THIS
s o ō t o	Meredith Co 460 Hillsid Hillside, N		S		460 H	ith Corp illside i ide, NJ		S	SHIP To	REPORT ARE Contained 1 of the corp A.J. <u>Jos</u>	IN THE RECOI	-
IŜP. PLI	ATES	Y100 MIL-S					Meredith C			# 812 1 Pc. 1/4" x		
		MATERIAL DESCI	RIPTION		QUAN-	WEIGHT	HEAT NO	TEST ON I	HECE YIEL	D PT TENSILE STR	ELCNGATION &	N RED
	THICKNESS OR SECTION	WIDTH DIA OR FT WT	LENGT	н	<u> </u>					والمستقدينية واليوسط والمتحد وتخصصه المحاصلين	IN B IN 2	AREA
01	1/4 IINAL HEAT	90 TREAT: AUST	348 1680 DEG	F 18	T MIN	2221 NTR QU	738423 ENGH TNPR	0165290/ 1220_ DE(0C 11	2900 124400 7800 128400 PIH		
	VIELD STR.	21 OFF5						Date By	PRESSUR 3308	Q. A. APPROVED EE VLSSLI NJULLAR STE	EEIS INC.	
HEAT N			S 81 CU		CR	MO SN	AL N V	B Ti	Св СО	I	<u></u>	
7386 7386 7386	25 CHK 19	29 008	019 27 03 019 24 03 019 25 03	8 243		6 5 5	02 00 00	2 00	3	PECORDS A FRING MEA USED, PRO DIMENSION ED, ULTRA	NERWISE SPE RE AVAILAUL T HUNDER OF CESSING OF AL CONTROL SONIC TESTI	E CON MATA PLATI ENPL(NG,

SECTION 8

ELECTRODE/FLUX - DESIGNATION CODES

.

MARAD PROJECT 3205 - CORED S.A.W. ELECTRODES

MATERIAL

<u>EH-36</u>

•

.

;

Plate Code	Wire	Flux
EH-6-CS	Linde 36	Linde 20 (Solid Wire)
EH-6-FC	Speed Alloy 70-S	Linde 80

<u>316L Stainless</u>

.

.

<u>Plate Code</u>	Wire	Flux
SS-L-CS	Linde 316L	Linde 80 (Solid Wire)
SS-L-FC	In-Flux 316L G/S	Oerlikon OP-76

HY-80

Plate Code	Wire	Flux
HY-8-CS	Linde 95	Linde 709-5 (Solid Wire)
HY-8-FC	Speed Alloy 90-S	Linde 80
HY-8-MC	Metal Core 1005-2	Oerlikon OP 121 tt
HY-8-AC	Alloy.Cored 1005-1	Oerlikon OP 121tt
НҮ-8-АС-ННІ	High Heat Input - Alloy Cored 1005-1	
HY-8-AC-1	Reformulation - Alloy Cored 100S-1	
HY-8-AC-HHI-1	High Heat Input - Refo	rmulated A.C. 1005-1

HY-100

Plate Code	Wire	Flux
HY-0-CS	Linde 120	Linde 709-5 (Solid Wire)
HY-0-AC	Alloy Cored 120S-1	Oerlikon OP 121tt
HY-0-AC-1	Reformulation - Alloy (Cored 1205-1

8/22/85

TRADE NAMES BY MANUFACTURER

MARAD PROJECT 3205 - FLUX CORED S.A.W. R&D ELECTRODES

SOLID WIRES/CONTROL	FLUX	BASE MATERIAL	PLATE CODE
LINDE			
Linde 36	Linde 20	EH-36	EH-6-CS
Linde 95	Linde 709-5	HY-80	HY-8-CS
Linde 120	Linde 709-5	HY-100 -	HY-0-CS
Linde 316L	Linde 80	316L	SS-L-CS
- METAL CORE WIRES	יייייייייייייייייייייייייייייייייייייי	DACE MAMEDIALC	
	FLUX	BASE MATERIALS	PLATE CODE
TELEDYNE MCKAY			
Speed Alloy 70-S	Linde 80	EH-36	EH-6-FC
Speed Alloy 90-S	Linde 80	HY-80	HY-8-FC
Speed Alloy 110-S	Linde 80	HY-100	HY-0-FC
In-Flux 316L G/S	Oerlikon OP-7	6 316L	SS-L-FC
ALLOY RODS			
Alloy Cored 100S-1	Oerlikon OP l	21 tt* HY-80	HY-8-AC
Alloy Cored 1205-1	Oerlikon OP l	21 tt* HY-100	HY-0-AC
TRI-MARK			
Metal Core 1005-2	Oerlikon OP 1	21 tt* HY-80	HY-8-MC
*(German Made Flux)			

.

٠

SECTION 9

WELD JOINT DESIGN AND PROCEDURE LIMITS

BAY SHIPBUILDING CORP.

WELDING PROCEDURE SPECIFICATION

Department of Welding Engineering

ELECTRO STICKOU PULARIT MUDE PREHEAT INTERPA	BASE MATERIALABS_EH=36 ELECTRODE CLASSEH=14 STICKOUTi" PULARITYReverse MUDEConstant Voltage PREHEAT TEMP50°FMINIMUM INTERPASS TEMP400°F MAXIMUM TRAVEL SPEED18I.P.M.				T FIT UP T 45 	³⁰ ±5 ⁰ 	16"-7/32" oot gap
WELD LAYER(S)	PROCESS	CLASS	DIA.	CURF TYPE POLAR.	AMPERAGE	VOLTAGE	TRAVEL SPEED
OIL, GREAS	E AND EXCESS	SIVE SCALE O	R RUST.	Reverse CES TO BE W ING, AND FRE		EIGN MATERIA	AL SUCH AS

85

:

BHH 85

WELDING PROCEDURE SPECIFICATION

.

.

BAY SHIPBUILDING CORP.

٠

Department of Welding Engineering

•••	BASE MATERIAL <u>316L</u> ELECTRODE CLASS <u>316L</u> STICKOUT <u>1"</u> PULARITY <u>reverse</u> MUDE <u>constant Voltage</u> PREHEAT TEMP. <u>150°F</u> MINIMUM INTERPASS TEMP. <u>350°F</u> MAXIMUM TRAVEL SPEED <u>12</u> I.P.M.				1" [] 1/4"	FIT UP TO 45°	⁰ ±5 [°]	16"-7/32" oot gap
	WELD		FILLER ME	TAL	1	RENT -	VOLTAGE	TRAVEL
	LAYER(S)	PROCESS	CLASS	DIA.	TYPE POLAR.	AMPERAGE		SPEED .
	l⊣Face	S.A.W.	316L ·	3/32'	Reverse	350 	30	12
:	ING, MACH OIL, GREAS WELD LAYE	INING, GRINDI SE AND EXCES	NG OR THERN SIVE SCALE O POSIT APPEAF	IAL CUT R RUST RANCE	TING, AND FR — UNDERCUT	VELDED SHALL	EIGN MATERI	AL SUCH AS

.

HH 85

:

WELDING PROCEDURE SPECIFICATION

-

BAY SHIPBUILDING CORP.

.

Department of Welding Engineering

BASE MATERIAL <u>HY-80</u> ELECTRODE CLASS <u>100S-1</u> STICKOUT <u>1"</u> PULARITY <u>Reverse</u> MUDE <u>Constant Voltage</u> PREHEAT TEMP. <u>200°F</u> MINIMUM INTERPASS TEMP. <u>400°F</u> MAXIMUM TRAVEL SPEED <u>18</u> I.P.M.				1/4"	FIT UP TU 45 x 1 1/4" ng bar	° <u>+</u> 5°	16"-7/32" oot gap
WELD LAYER(S)	PROCESS	FILLER ME	TAL DIA.	CURF TYPE POLAR.	AMPERAGE	VOLTAGE	TRAVEL SPEED
1 4 5-Face	S.A.W. S.A.W.	1005-1. 1005-1	3/32" 3/32"	Reverse Reverse		30 32	18 18
OIL, GREAS	INING, GRINDI E AND EXCES R METAL DEI	NG OR THERM SIVE SCALE O	IAL CUT R RUST IANCE ·	TING, AND FR - UNDERCUT	VELDED SHALL	EIGN MATERI	AL SUCH AS

₃HH 85

BAY SHIPBUILDING CORP.

Department of

Welding Engineering

JOINT FIT UP TULERANCES BASE MATERIAL HY-100 ELECTRODE CLASS 1205-1 STICKOUT 1" PULARITY Reverse 45°+5° MUDE <u>Constant Voltage</u> PREHEAT TEMP. 200°F MINIMUM 1" INTERPASS TEMP. 400° MAXIMUM TRAVEL SPEED _____I.P.M. · - 3/16."-7/32" Root gap 1/4" x 1 1/4" Backing bar CURRENT . FILLER METAL TRAVEL VOLTAGE WELD PROCESS AMPERAGE SPEED TYPE LAYER(S) CLASS DIA. POLAR. 18 3/32" Reverse 350 30 120S-1 S.A.W. 1 - 4 500 32 18 $120S - 1 \quad 3/32''$ Reverse S.A.W. 5-Face BASE METAL PREPARATION - EDGES OF SURFACES TO BE WELDED SHALL BE PREPARED BY SHEAR-ING, MACHINING, GRINDING OR THERMAL CUTTING, AND FREE OF ALL FOREIGN MATERIAL SUCH AS : OIL, GREASE AND EXCESSIVE SCALE OR RUST. WELD LAYER METAL DEPOSIT APPEARANCE - UNDERCUTTING ON SIDE WALLS OF GROOVE OR ADJOINING BASE METAL SHALL NOT BE PERMITTED.

WELDING PROCEDURE SPECIFICATION

SECTION 10

•

.

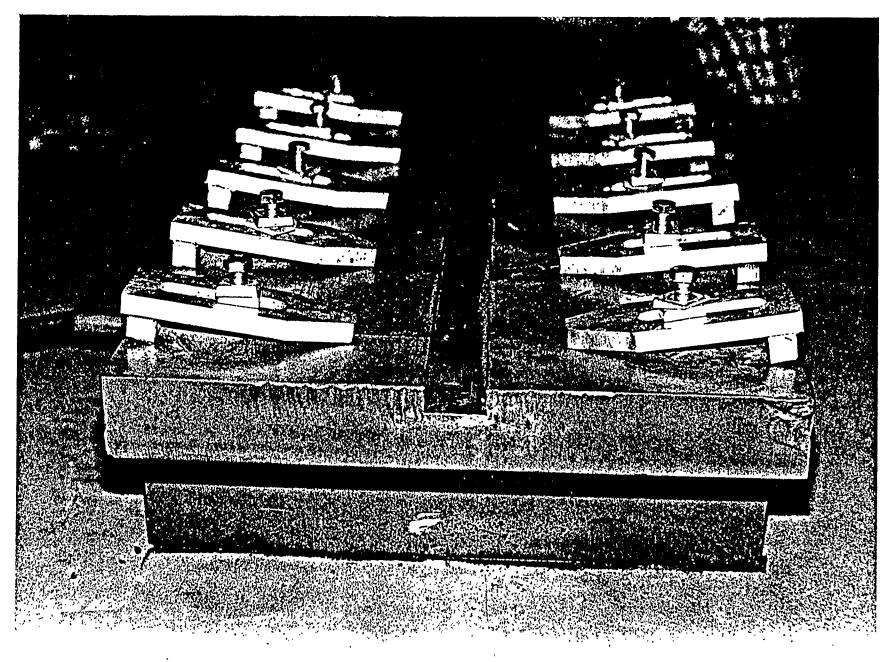
WELD TOOLING

•

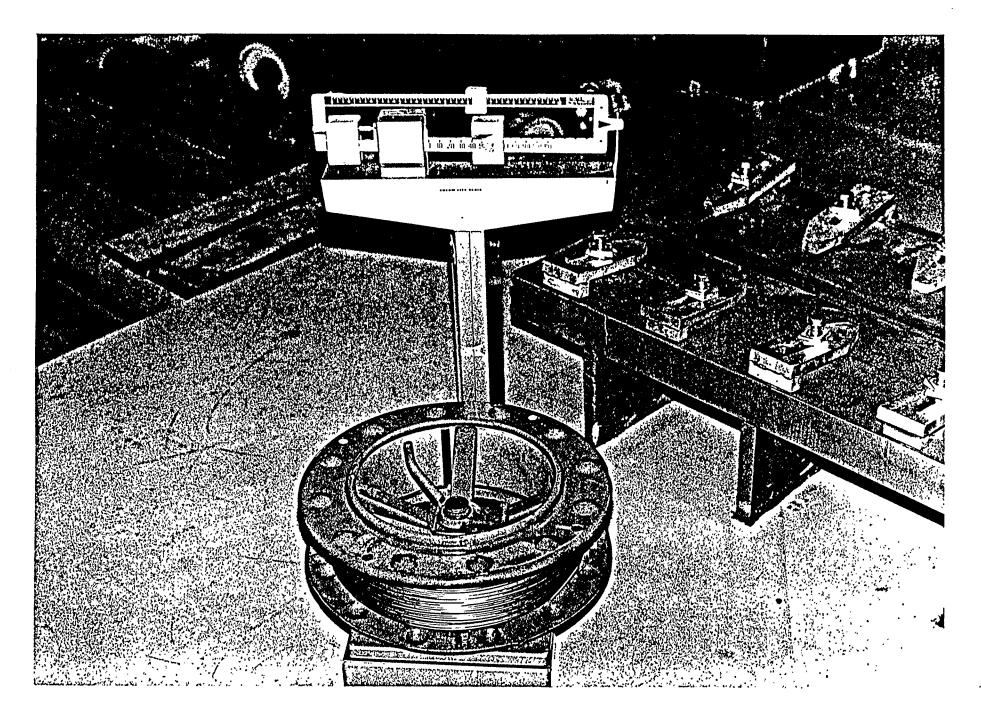
.

.

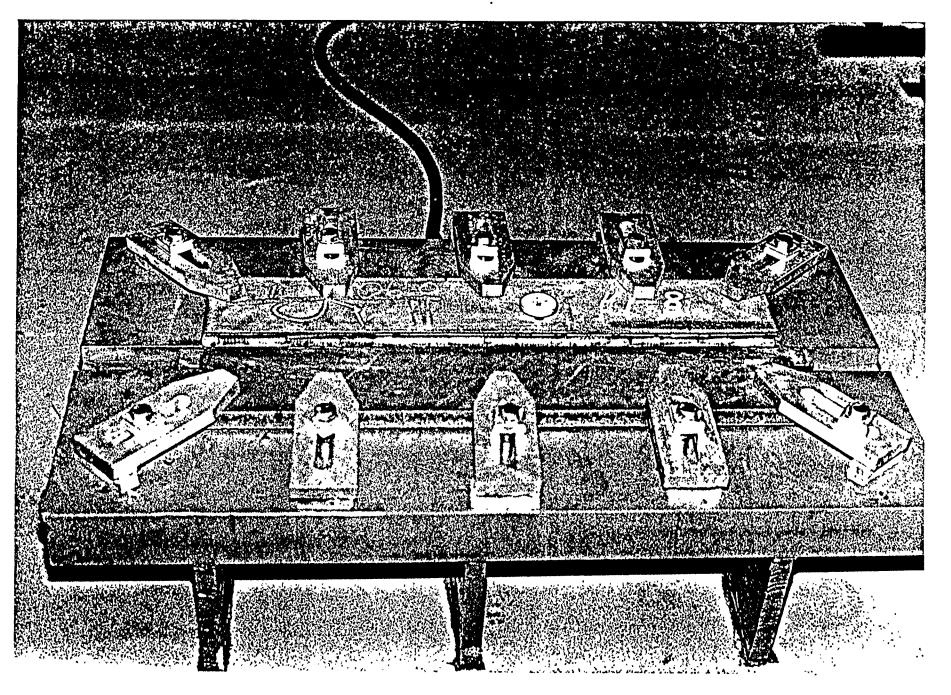
WELD TOOLING


The hold down fixture used in this program was fabricated from a piece of 3" x 24" x 42" ABS Grade A plate steel. A 1" x 2" slot was milled in the fixture to allow a relief for the backing bars on procedure test plates. Ten 3/4" high strength (H.S.) bolts with dogs were used to clamp the plate in place and prevent rotational distortion. Three 3/4" x 8" x 24" strong backs were welded to the underside of the fixture to provide a high level of restraint to simulate job site conditions common to shipbuilding fabrications.

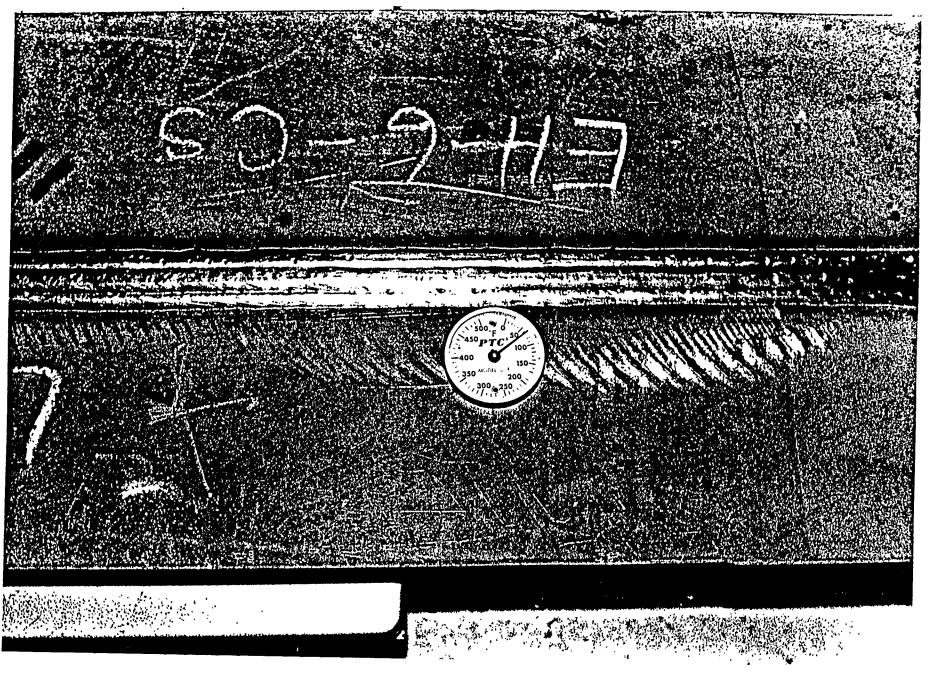
The side beam carriage was a Pandjiris model VSC-40-12 mounted on a Pandjiris model PBT-15/144 side beam. The travel mechanism was a Pandjiris tachometer control type which is solid state controlled to regulate travel speeds precisely regardless of differing resistance on the carriage guide rollers or cable rack.


The voltage and wire feed speed settings were frequently double checked using a Lincoln Voltage Indicator, No. M-12421, and a Lincoln Wire Speed Meter, No. M-13367.

The scale used for all weight measurements on test plates and wire spools was a Detecto Model 4570. It has a 130 lb. capacity with a ½ ounce accuracy.


Preheat and Interpass temperatures were verified by a Pacific Transducer Corporation surface thermometer, model PTC-313F.

HOLD DOWN FIXTURE (3" x 24" x 42")


ELECTRODE SPOOL BEING WEIGHED PRIOR TO WELD OPERATION

HY-80 MATERIAL READY FOR WELD SEQUENCE

DEPOSITING ROOT PASS

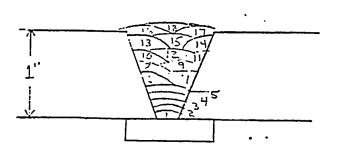
COMPLETED EH-6-CS PROCEDURE SHOWING P.T.C. SURFACE THERMOMETER

COMPLETED EH-6-CS PROCEDURE ON DETECTO SCALE

SECTION 11

PROCEDURE TEST RECORDS

TEST PLATE PROCEDURE MARAD 3205


INSTRUCTIONS TO OPERATOR

- 1. Weigh Test Plate after fit up and wire brushing.
- 2. Weigh Wire Spool Assy. (Keep all wire clippings).
- 3. Bolt plate down and preheat check with thermometer.
- 4. Weld at root pass settings specified.
- 5. Check Volts, Amps, wire feed speed (WFS), and Time.
- 6. Check Interpass Temperature and record.
- 7. Repeat 4,5,6 thru pass #4.
- 8. Reweigh Test Plate and Wire Spool and record.
- 9. Re-install in fixture and preheat.
- 10. Deposit fill passes as required.
- 11. Monitor Volts, Amperage and Wire Feed Speeds and record for all passes. (Verify W.F.S with hand meter.)
- 12. Record time in seconds for all passes.
- 13. Use sheetmetal template to set Electrical Stick Out (E.S.O.) for each pass.
- 14. Monitor Interpass temperatures. Do not exceed maximum specified temperatures.
- 15. Record any observations or comments that pertain to the wire-flux combination in use.
- 16. After plate cools to ambient temperature, remove for final weight and stamping operations prior to mechanical testing.
- 17. Clean spatter and remove backing bar by milling prior to releasing plate for radiographic testing.

Plate Code<u>EH-6-CS</u>

			•			<u>Halverson</u>
Pass No	Voltage	Amperage	Wire Feed Speed (Inches)	Travel Speed (Inches)	Elapsed Time (Seconds)	Heat Input K.J.P.I.
<u>R1</u>	30	350	66	18	103	35
<u>R2</u>	30	350	66	18	103	35
<u>R3</u>	30	350	66	18	103	35
<u>R4</u>	30	350	66	18	102	35
F5	32	500	105	18	103	53.3
<u>F6</u>	32	500	105	18	103	53.3
<u>F7</u>	32	500	105	18	104	53.3
<u>F8</u>	·- <u>32</u>	5.00	105	18	103	53.3
<u>F9</u>	32	500	105	18	103	53.3
<u>F10</u>	32	500	105	18	102	53.3
<u>F11</u>	32	500	105	18	102	53.3
<u>F12</u>	32	500	105	18	102	53.3
<u>F13</u>	32	500 .	105	18	102	53.3
<u>F14</u>	32	500	105	. 18	105	53.3
<u>F15</u>	32	500	105	18	102	53.3
<u>F16</u>	32	500	105	18	103	53.3
<u>F17</u>	32	500	105	18	102	53.3
F18	32 ◄	500	105	18	101	53.3

<u>Weights</u> <u>Test Plate Asssembly</u> Start<u>114-14Root115-9</u>End<u>120-7</u> Deposited Metal<u>11oz</u>-Root <u>89oz</u>-Fill <u>Electrode Spool</u> Start<u>75-3</u>Root<u>74-7</u>End<u>69-7</u> Expended Electrode <u>12oz</u>Root <u>92oz</u>Fill

Date 6-12-84

Operator<u>T. Madsen</u> Recorder<u>B. Halverson</u>

.

Plate Code <u>EH-6-FC</u>

Pass No	Voltage	Amperage	Wire Feed Speed (Inches)	Travel Speed (Inches)	Elapsed Time (Seconds)	Heat Input K.J.P.I.
<u>R1</u>	30	350	75	18	101	35
<u>R2</u>	30	350		18	102	35
<u>R3</u>	30	350	75	18	102	35
<u>R4</u>	30	350	75	18	101	35
<u>F5</u>	32	500	143	18	100	53.3
<u>F6</u>	32	500	142	·18	100	53.3
<u>F7</u>	32	500	142	18	99	53.3
<u>F8</u>	• - 32	500	142	18	98	53.3
<u>F9</u>	32	500	142	18	99	53.3
<u>F10</u>	32	500	142	18	100	53.3
<u>F11</u>	32	500	143	18	100	53.3
<u>F12</u>	32	500	142	18	99	53.3
<u>F13</u>	32	500	143	18	100	53.3
<u>F14</u>	32	500	143	18	100	53.3
<u>F15</u>	32	500	144	18	98 ⁻	53.3
<u>F16</u>						
<u>F17</u>						
F18	4					

<u>Weights</u> <u>Test Plate Asssembly</u> Start<u>114-12</u>Root<u>115-6</u>End<u>119-8</u> Deposited Metal<u>10oz</u>-Root <u>660z</u>-Fill <u>Electrode Spool</u> Start<u>75-10</u>Root<u>74-13</u>End<u>70-7</u> Expended Electrode<u>130z</u>Root

830z_Fill

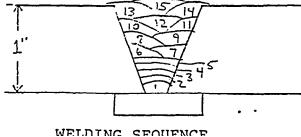
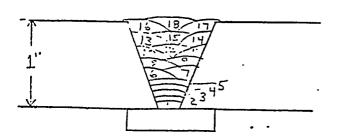



Plate Code<u>SS-L-CS</u>

	t .	7	1	•		
Pass No	Voltage	Amperage	Wire Feed Speed (Inches)	Travel Speed (Inches)	Elapsed Time (Seconds)	Heat Input K.J.P.I.
<u>R1</u>	30	350	88	12	108	52.5
<u>R2</u>	30	350	88	12	125	52.5
<u>R3</u>	30	350	88	12	123	52.5
<u>R4</u>	30	350	88	12	120	52.5
<u>F5</u>	30	350	88	12	125	52.5
<u>F6</u>	30	350	88	12	120	52.5
<u>F7</u>	30	350	88	12	121	52.5
<u>F8</u>	• - 30	350	88	12	122	52.5
F9	30	350	88	12	120	. 52.5
<u>F10</u>	30	350	88	12	122	52.5
<u>F11</u>	3.0	350	88	12	124	52.5
F12	30	350	88	12	120	52.5
<u>F13</u>	30	350	88	12	121	52.5
<u>F14</u>	30	350		12	120	52.5
<u>F15</u>	<u> </u>	350	88	12	120	52.5
F16	30	350	88	12	123	52.5
<u>F17</u>	30	350	88	12	120	52.5
F18	30-	350	88	12	120	52.5

<u>Weights</u> Test Plate Asssemb	ly	
Start <u>107-3</u> Root	Er	1d <u>113-0</u>
Deposited Metal	Roc	
.93	Fil	.1
Electrode Spool		
Start_57-14_Root	En	d <u>51-6</u>
Expended Electrode		_Root
	104	Fill

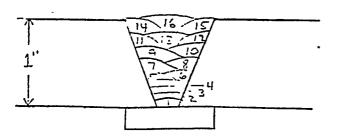

.....

Plate Code_<u>SS-L-FC</u>

Date 8-27-84 Operator T. Madsen Recorder <u>B. Halverson</u>

			•	, IC	corderB.	Halverson
Pass No.	Voltage	Amperage	Wire Feed Speed (Inches)	Travel Speed (Inches)	Elapsed Time (Seconds)	Heat Input K.J.P.I
<u>R1 / </u>	30	350	132	12	122	52.5
R2	30	350	132	12	123	52.5
<u>R3</u>	30	350	132	12	126	525
<u>R4</u>	30	350	132	12	120	
F5	30	350	132	12	119	- 52-5
F6	30	350	132	12	121	52.5
<u>F7</u>	30	350	132	12	121	52.5
F8	•- 30	350	132	12	123	52.5
F9	30	350 -	132	12	122	52.5
<u>F10</u>	30	350	132	12	122	52.5
<u>F11</u>	30	350	132	12	122	52.5
<u>F12</u>	30	350	. 132	12	120	52.5
<u>F13</u>	30	350	132	12	118	52.5
<u>F14</u>	30	350	132	12	118	52.5
F15	30	350	132	12	117	52.5
<u>F16</u>	30	350	132	12	118	52.5
<u>F17</u>						
<u>F18</u>						

Weights Test Plate Asssembly Start<u>107-0</u>Root____End<u>113-8</u> Deposited Metal____-Root <u>1040</u>zFill Electrode Spool Start <u>59-13</u>Root _____ End <u>53-3</u> Expended Electrode Root 104-- Fill

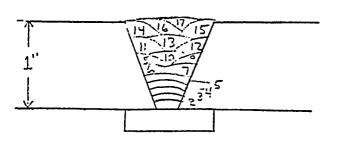
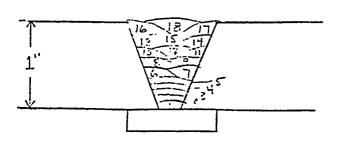

t

Plate Code <u>HY-8-CS</u>

Date 6-14	4-8-	4
Operator	т.	Madsen
Recorder	в.	Halverson

Pass No.	Voltage	Amperage	Wire Feed Speed (Inches)	Travel Speed (Inches)	Elapsed Time (Seconds)	Heat Input
Rl	30	350	74	18	88	K.J.P.I. 35.0
<u>R2</u>	30	350	- 74	18	88	35.0
<u>R3</u>	30	350	74	18	89	35.0
<u>R4</u>	30	350	74	18	90	35.0
F5	32	500 ~	116	18	90	
F6	32	500	117		89	<u>53.3</u> 53.3
F7.	32	500	117	18	90	
F8	· · 32	500	117	18	90	53.3
F9	32	500	117	18	90	53.3
F10	32	500	117	18	89	53.3
Fll	32	500	117	18	90	53.3
Fl2	32	500	· 117	18	88	53.3
F13	32	500	117	18		
Fl4	32	500	117	18		53.3
F15	32	500	117		87	
F16	32	500		0	86	53.3
F17	32	500	117	18	87	
F18				<u>_</u>	86	53.3

Weights Test Plate Asssembly Start<u>106-0</u> Root<u>106-12End110-15</u> Deposited Metal<u>12</u>-Root <u>67</u>-Fill Electrode Spool Start<u>45-11</u> Root<u>44-13</u> End<u>40-8</u> Expended Electrode<u>14</u> Root <u>69</u> Fill



1

•

Plate Code <u>HY-8 FC</u>

	Pass No.	Voltage	Amperage	Wire Feed Speed (Inches)	Travel Speed (Inches)	Elapsed Time (Seconds)	Heat Input K.J.P.I.
3	<u>Rl</u>	30	350	77	18	90	35.0
	<u>R2</u>	30	350	77	18	90	35.0
	<u>R3</u>	30	350	77	18	90	35.0
	<u>R4</u>	30	350	77	18	91	35.0
	<u>F5</u>	32	500	135	18	90	53.3
	F6	32	500	135	. 18	90	
	<u>F7</u>	32	500	135	18	89	53.3
	<u>F8</u>	•- 32	500	135	18	90	53.3
	F9	32	500	135	18	90	53.3
	<u>F10</u>	32		136	18	89	53.3
	<u>F11</u>	32	500	136	18	89	53.3
	<u>F12</u>	32	500	136	18	90	53.3
	<u>F13</u>	32	500	136	18	88	53.3
	<u>F14</u>	32	50.0	135	18		
•	<u>F15</u>	32	500	136	18	91	53.3
	<u>F16</u>	32	500	137	18	91	
	<u>F17</u>	32	500	136	18	90	
•	<u>F18</u>	32	5.0.0	137	18		

Wire Feed Speed

Plate Code_HY-8-MC___

Pass

	erator <u> </u>	<u>Madsen</u> Halverson	
Travel Speed (Inches)	Elapsed Time (Seconds)	Heat	

Date<u>6-14-84</u>

No.	Voltage	Amperage	(Inches)	(Inches)	(Seconds)	Heat Input
Rl	30	250				K.J.P.I.
		350	82	18	90	35.0
<u>R2</u>	30	350	81	18	90	35.0
<u>R3</u>	30	350	82	18	90	35.0
<u>R4</u>	30	350	82	18	90	35.0
<u>F5</u>	32	500	140	18	90	53.3
<u>F6</u>	32	500	140	18	90	53.3
<u>F7</u>	32	500	140	18	90	53.3
<u>F8</u>	• - 32	500	140	18	90	53.3
F9	32	500	140	18	90	53.3
<u>F10</u>	32	500	140	18	90	53.3
<u>F11</u>	32	500	140	18	90	53.3
<u>F12</u>	32	500	140	18	90	53.3
<u>F13</u>	32	50.0	140	18	90	53.3
<u>F14</u>	32	500	140 .	18	90	53.3
<u>F15</u>	32	500	140	18	90	53.3
<u>F16</u>	32	500	140	18	90	53.3
<u>F17</u>	32	500	140	18	90	53.3
<u>F18</u>						

Weights Test Plate Asssembly Start<u>107-15</u>Root<u>108-14</u>End <u>113-6</u> Deposited Metal<u>15</u> -Root <u>72</u> -Fill Electrode Spool Start<u>74-15</u>Root<u>73-13</u>End<u>69-2</u> Expended Electrode <u>18</u>Root <u>75</u>Fill

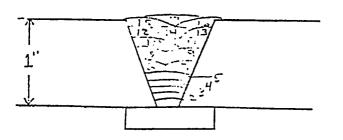
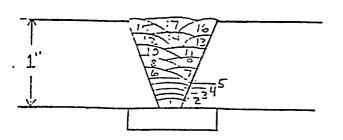



Plate Code_HY-8-AC_

· Date 7-26-84 Operator н. Phillips Recorder B. Halverson

		•	1		<u>D</u>	Halverson
Pass No.	Voltage	Amperage	Wire Feed Speed (Inches)	Travel Speed (Inches)	Elapsed Time (Seconds)	Heat Input K.J.P.I.
<u>Rl</u>	30	350	90	18	91	35.0
<u>R2</u>	30	350	90	18	91	35.0
<u>R3</u>	30	350	90	18	95	35.0
<u>R4</u>	30	350	90	18	96	35.0
<u>F5</u>	· 32	500	. 156	18	92	53.3
<u>F6</u>	32	500	157	- 18	91	53.3
<u>F7</u>	32	500	156	18	92	53.3
<u>F8</u>	• 32	500	156	18	91	53.3
F9	32	500	157 .	18	94	53.3
<u>F10</u>	32	500	157	18	91	53.3
<u>F11</u>	32	500	156	18	94	53.3
<u>F12</u>	32	500	. 157		94	53.3
<u>F13</u>	32	500	157	18	94	53.3
<u>F14</u>	32	500		18	94	53.3
<u>F15</u>	32	500	156		98	53.3
<u>F16</u>	32	500	- 156	18	94	53.3
<u>F17</u>	32	500	156	18	94	53.3
<u>F18</u>						

Weights Test Plate Asssembly Start<u>105-12</u>Root<u>106-11</u>End<u>112-1</u> Deposited Metal15 -Root 86__-Fill Electrode Spool Start 74-4 Root 73-4 End 67-11 Expended Electrode 16 Root Fill 00

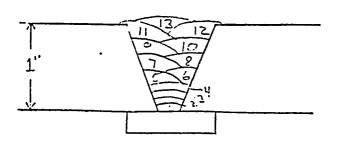


Plate Code <u>HY-8-AC-HHI</u>

• Date_7-27-84 Operator H. Phillips Recorder <u>B. Halverson</u>

			•		corder <u>B.</u>	Haiverson
Pass No.	Voltage	Amperage	Wire Feed Speed (Inches)	Travel Speed (Inches)	Elapsed Time (Seconds)	Heat Input K.J.P.I.
<u>R1</u>	30	350	84	18	90	35.0
<u>R2</u>		350		18	91	35.0
<u>R3</u>	30	350		18	91	35.0
<u>R4</u>	30	350	84	18	91	35.0
<u>F5</u>	32	500	149	10	129	96.0
<u>F6</u>	32	500	154	10	129	96.0
<u>F7</u>	32	500	154	10	129	96.0
<u>F8</u>	·- <u>32</u>	500	154	10	129	96.0
<u>F9</u>	32	5.0.0	154	10	132	96.0
<u>F10</u>	32		154	10	135	96.0
Fll	32	500	154	10	129	96.0
<u>F12</u>	32	500	154	10	130	96.0
<u>F13</u>	32	50.0	154	10	130	96.0
<u>F14</u>						
<u>F15</u>						
<u>F16</u>						
<u>F17</u>						
F18						

Weights Test Plate Asssembly Start<u>105-9</u>Root<u>106-6</u>End<u>111-11</u> Deposited Metal_13_-Root <u>85</u>-Fill Electrode Spool Start 67-7 Root 66-9 End 61-3 Expended Electrode_14 Root Fill ۵۵

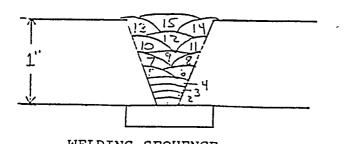


Plate Code<u>HY-8-AC-1</u>

Date<u>5-2-85</u> Operator<u>H.Phillips</u> Recorder<u>B.Halverson</u>

		-			CorderB	Halverson
Pass No.	Voltage	Amperage	Wire Feed Speed (Inches)	Travel Speed (Inches)	Elapsed Time (Seconds)	Heat Input K.J.P.I.
<u>Rl .</u>	30	350	90	18	97	35.0
<u>R2</u>	30	350	90	18	96	35.0
<u>R3</u>	30	350	90	18	98	35.0
<u>R4</u>	30	350	90	18	100	35.0
<u>F5</u>	32	500	156	18	100	53.3
<u>F6</u>	32	500	156	18	100	53.3
<u>F7</u>	32	500	156	18	100	53.3
<u>F8</u>	•- 32	500	156	18	103	53.3
<u>F9</u>	32	500	156	18	100 .	53.3
<u>F10</u>	32	500	156	18	101	53.3
<u>F11</u>	32	500	156	18	100	53.3
<u>F12</u>	32	500	156	18	94	53.3
<u>F13</u>	32	500	156	18	105	53.3
<u>F14</u>	32	500	156	18	97	53.3
<u>F15</u>	32	500	156	18	103	53.3
<u>F16</u>						
<u>F17</u>						
F18						

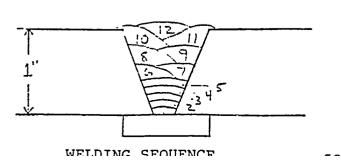

Weights
Test Plate Asssembly
Start <u>105-10Root106-8</u> End <u>111-12</u>
Deposited Metal <u>12</u> -Root
<u>84</u> -Fill
Electrode Spool .
Start 55-6 Root 54-9 End 49-3
Expended Electrode <u>13</u> Root
_86Fill

Plate Còde<u>Hy-8-AC-HHI</u>-1

Pass No.	Voltage	Amperage	Wire Feed Speed (Inches)	Travel Speed (Inches)	Elapsed Time (Seconds)	Heat Input K.J.P.I.
RL	30	350	90	18	95	35.0
<u>R2</u>	30	350	90	18	100	35.0
<u>R3</u>	30	350	90	18	95	35.0
<u>R4</u>	30	350	90	18	.91	35.0
<u>F5</u>	32	500_	156	10	170	96.0
F6	32	500	156		169	96.0
<u>F7</u>	32	500	156	10	169	96.0
<u>F8</u>	·- <u>32</u>	500	156	10	200	96.0
<u>F9</u>	32	500	156	10	211	96.0
<u>F10</u>		500	156	10	239	96.0
<u>F11</u>	32	500	156	10	255	96.0
F12	32	500	156	10	247	96.0
<u>F13</u>						
F14			• *			
<u>F15</u>						
<u>F16</u>						
<u>F17</u>						
<u>F18</u>						

Weights Test Plate Asssembly Start<u>106-6</u>Root<u>107-3</u>End<u>113-12</u> Deposited Metal<u>13</u>-Root <u>105</u>-Fill Electrode Spool Start<u>48-12</u>Root<u>47-14</u>End<u>41-4</u> Expended Electrode 14 Root Fill 106

...

۴

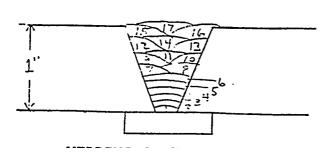

٠.

Plate Code<u>HY-0-CS</u>

Date 7-3	3-8-	4
Operator	J.	Dart
Recorder	в.	Halverson

			•	1/6	corder <u>B.</u>	Halverson	_
Pass No.	Voltage	Amperage	Wire Feed Speed (Inches)	Travel Speed (Inches)	Elapsed Time (Seconds)	Heat Input K.J.P.I.	
<u>R1</u>	30	350	66	18	90	35.0	
<u>R2</u>	30	350	67	18	90	35.0	ţ
<u>R3</u>	30	350	68	18	90	35.0	t
<u>R4</u>	30	350	68	18	90	35.0	İ
<u>F5</u>	32	500	112	18	90	53.3	ł
F6	32	500	112	18	90	53.3	İ
<u>F7</u>	32	500	112	18	90	53.3	İ
<u>F8</u>	•- 32	500	113	18	90	53.3	ł
F9	32	500	112	18	90 [.]	53.3	İ
<u>F10</u>	32	500	112	18	90	53.3	
<u>Fll</u>	32	500	113	18	88	53.3	
<u>F12</u>	32	500 ·	113	18	90	53.3	
<u>F13</u>	32	500	112	18	88	53.3	
<u>F14</u>	32	500	113	18	90	53.3	
<u>F15</u>	32	500	112	18	90	53.3	
<u>F16</u>	32	500	112	18	88	53.3	I
<u>F17</u>	32	500	112	18	89	53.3	
<u>F18</u>							

Weights Test Plate Asssembly Start<u>105-14</u>Root<u>106-10</u>End<u>110-14</u> Deposited Metal12_-Root <u>68</u>-Fill Electrode Spool Start <u>47-0</u> Root <u>46-3</u> End <u>41-15</u> Expended Electrode 13 Root Fill 68

. . . .

Plate Code <u>HY-0-FC</u>

Date 7-9-84	4
Operator J.	Dart
Recorder B.	Halverson

	•	-				diverson
Pass No.	Voltage	Amperage	Wire Feed Speed (Inches)	Travel Speed (Inches)	Elapsed Time (Seconds)	Heat Input K.J.P.I.
<u>R1</u>	30	350	75	18	90	35.0
<u>R2</u>	30	350	75	18	90	35.0
<u>R3</u>	30	350	75	18	90	35.0
<u>R4</u>	30	350	75	18	90	35.0
<u>F5</u>	32	500	134	18	90	53.3
<u>F6</u>	32	500	134	18	89	53.3
<u>F7</u>	32	500	133	18	89	53.3
<u>F8</u>	•- 32	500	133	18	90	53.3
<u>F9</u>	32	500	133	18	90	53.3
<u>F10</u>	32	500	133	18	90	53.3
<u>F11</u>	32	500	133	18	89	53.3
<u>F12</u>	32	500	· 133	18	90	53.3
<u>F13</u>	32	500	133	18	90	53.3
<u>F14</u>	32	500	133	18	89	53.3
<u>F15</u>	32	500	134	18	90	53.3
<u>F16</u>	32	500	134	18	90	53.3
<u>F17</u>	32	500	. 133	18	89	53.3
F18	32	500	133	18	89	53.3

<u>Weights</u> Test Plate Asssembly Start_105-4 Root_106-0 End_110-10 Deposited Metal_12_-Root <u>74</u> -Fill Electrode Spool Start <u>74-12</u>Root <u>73-15</u>End <u>69-2</u> Expended Electrode 13 ____Root Fill .7.7

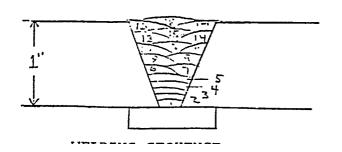
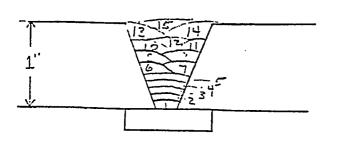



Plate Code <u>HY-0-AC</u>

Pass No.	Voltage	Amperage	Wire Feed Speed (Inches)	Travel Speed (Inches)	Elapsed Time (Seconds)	Heat Input K.J.P.I.
<u>R1</u>	30	350	72	18	93	35.0
<u>R2</u>	30	350		18	94	35.0
<u>R3</u>	30		.72	18	106	35.0
<u>R4</u>	30	350	72	18	107	35.0
<u>F5</u>	<u>· 32</u>	500	135	18	97	53.3
F6	32	500	135	- 18	94	53.3
<u>F7</u>	32	500 .	135	18	94	53.3
<u>F8</u>	•- 32	500	135	18	93	53.3
<u>F9</u>	32	500	135	18	110	53.3
<u>F10</u>	32	500	135	18	108	53.3
Fll	32	500	135	18	111	53.3
<u>F12</u>	32	500	135	18	95	53.3
<u>F13</u>	32	500	135	18	94	53.3
<u>F14</u>	32	500	 135	18	91	53.3
<u>F15</u>	32	500	135	18	101	53.3
F16						
F17						
F18						

<u>Weights</u> <u>Test Plate Asssembly</u> Start<u>104-12</u>Root<u>105-9</u> End<u>110-9</u> Deposited Metal<u>13</u> -Root <u>80</u> -Fill <u>Electrode Spool</u> Start<u>66-11</u> Root<u>65-13</u> End<u>60-11</u> Expended Electrode<u>14</u> Root <u>82</u> Fill

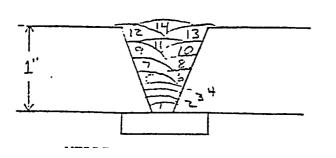

1

Plate Code_Hy-0-AC-1___

Date<u>4-29-85</u> Operator<u>H. Phillips</u> Recorder<u>B. Halverson</u>

Pass No.	Voltage	Amperage	Wire Feed Speed (Inches)	Travel Speed (Inches)	Elapsed Time (Seconds)	Heat Input K.J.P.I.
Rl	30	350	72	18	97	35
<u>R2</u>	30	350	72	18	103	35
<u>R3</u>	30	350	72	18	103	35
<u>R4</u>	30	350	73	18	102	35
F5	32	500	135	18	105	53.3
F6	32	500	135	- 18	107	53.3
<u>F7</u>	32	500	135	18	107	53.3·
<u>F8</u>	•- 32	500	135	18	105	53.3
F9	32	500	135	18	101	53.3
<u>F10</u>	32	500	135	18	113	53.3
<u>F11</u>	32	500	135	18	110	53.3
<u>F12</u>	32	500	135	18	107	53.3
<u>F13</u>	32	500	135	18	110	53.3
<u>F14</u>	32	500	<u> </u>	18	110	53.3
F15						
<u>F16</u>						
<u>F17</u>						
F18						

<u>Weights</u> <u>Test Plate Asssembly</u> Start<u>104-2</u>Root<u>105-0</u>End<u>110-13</u> Deposited Metal<u>14</u>-Root <u>93</u>-Fill <u>Electrode Spool</u> Start<u>72-4</u>Root<u>71-5</u>End<u>65-6</u> Expended Electrode<u>15</u>Root <u>95</u>Fill

SECTION 12

. •

ı.

.

•

,

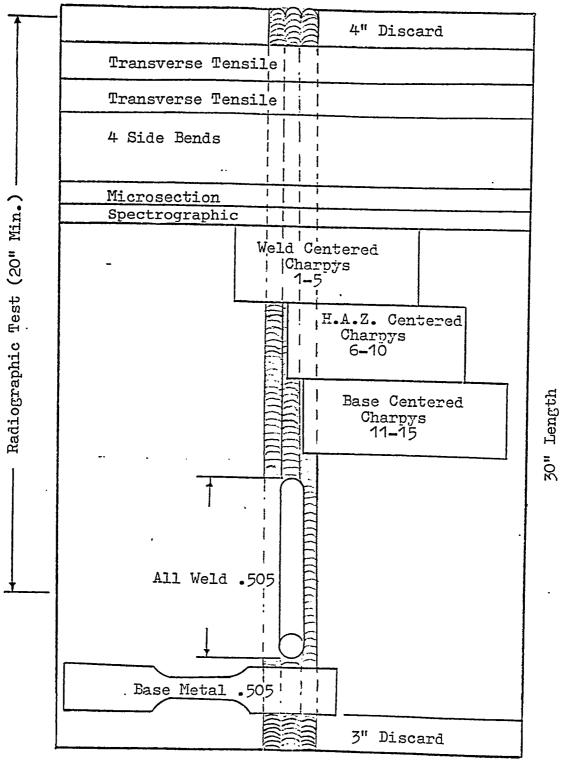
WELD TEST RESULTS

.

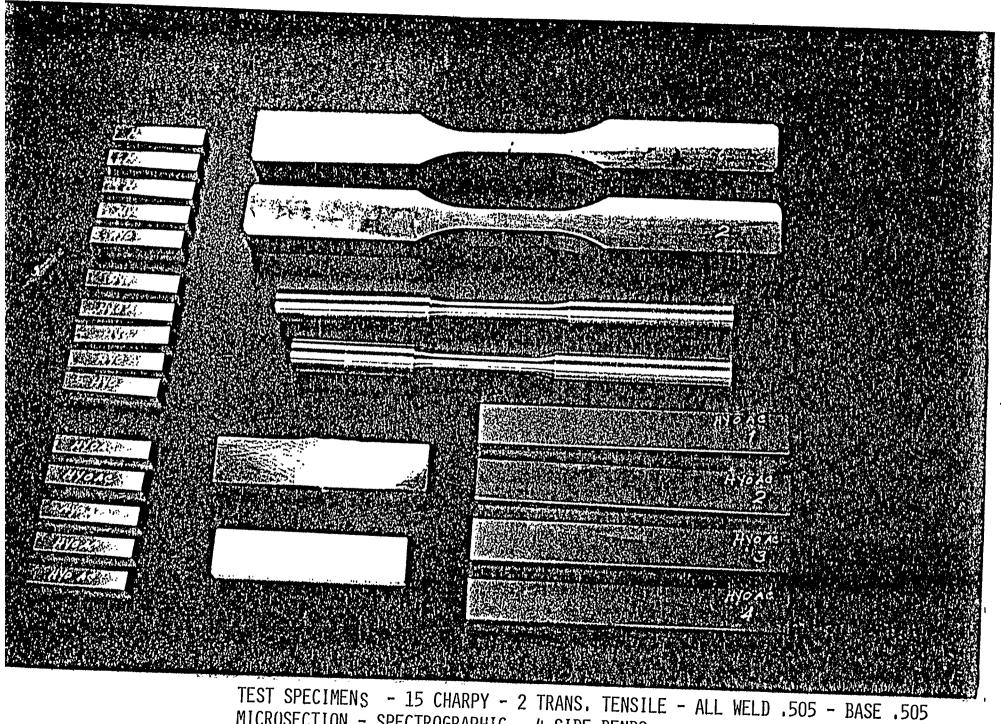
WELD TESTING

The finished procedure plates were visually inspected for deficiencies before they were released for testing. After the backing bars were milled off they were radiographically tested using either Iridium (IR) 192 or a 300KV x-ray tube.

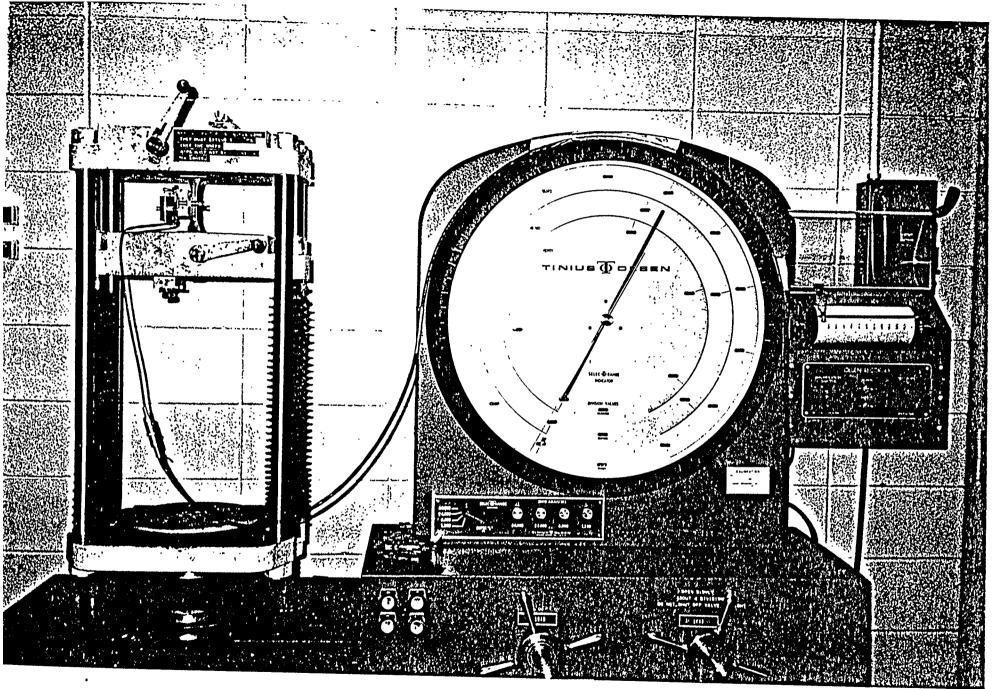
The first and second procedure plates run with solid 316L wire were rejected for cracking in the center of the weld. This cracking was eliminated on the third procedure plate by reducing the parameter settings to 30 volts and 350 amps at 12 I.P.M.. It should be noted that satisfactory plates were produced by the cored 316L wire at higher parameter settings.

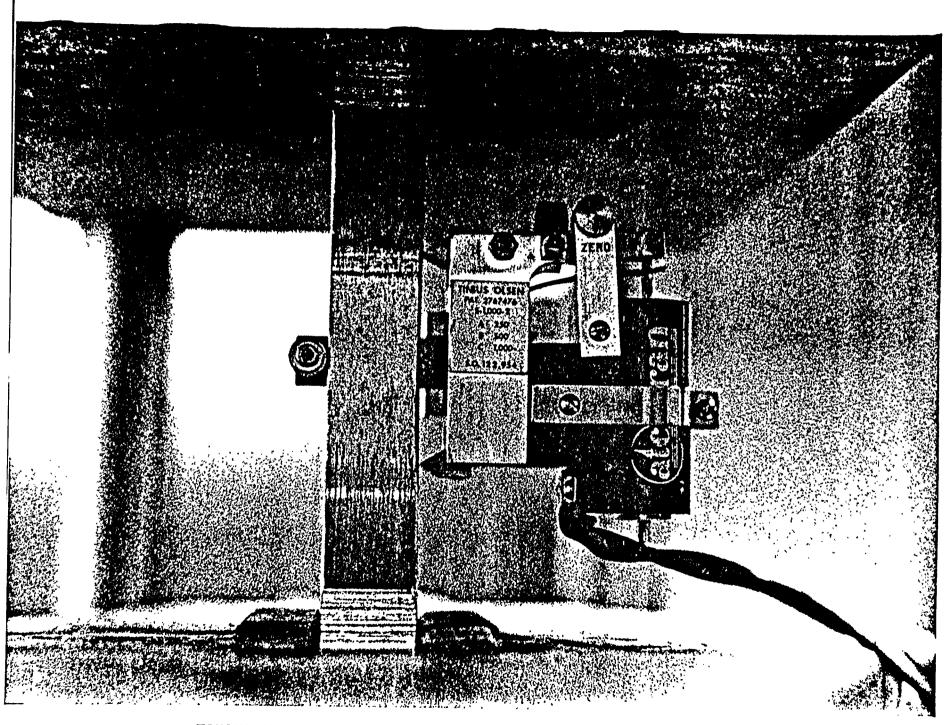

All other procedure plates were found to be satisfactory by radiographic testing.

Mechanical test specimens were then removed from the plates in the order depicted in Fig. 1. All removal was accomplished using a band saw to eliminate heat input effects associated with thermal cutting processes.

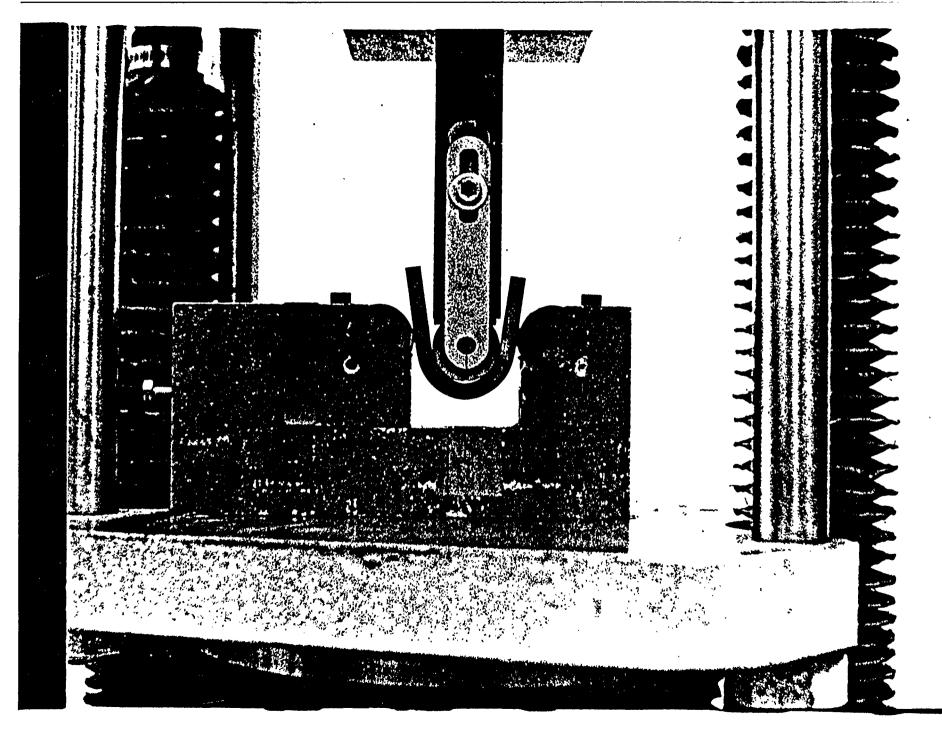

Mechanical tests on EH-36 and 316L stainless were prepared and tested in accordance with the ABS Rules for Building and Classing Steel Vessels 1984. Specifications used for testing HY-80 and HY-100 was MIL-STD-418C.

Charpy tests were run with a variation in that 5 samples were tested at each location. To eliminate scatter, the highest and lowest values were not included in the average ft. lbs. reported in this report. All actual values are included in Appendix B.

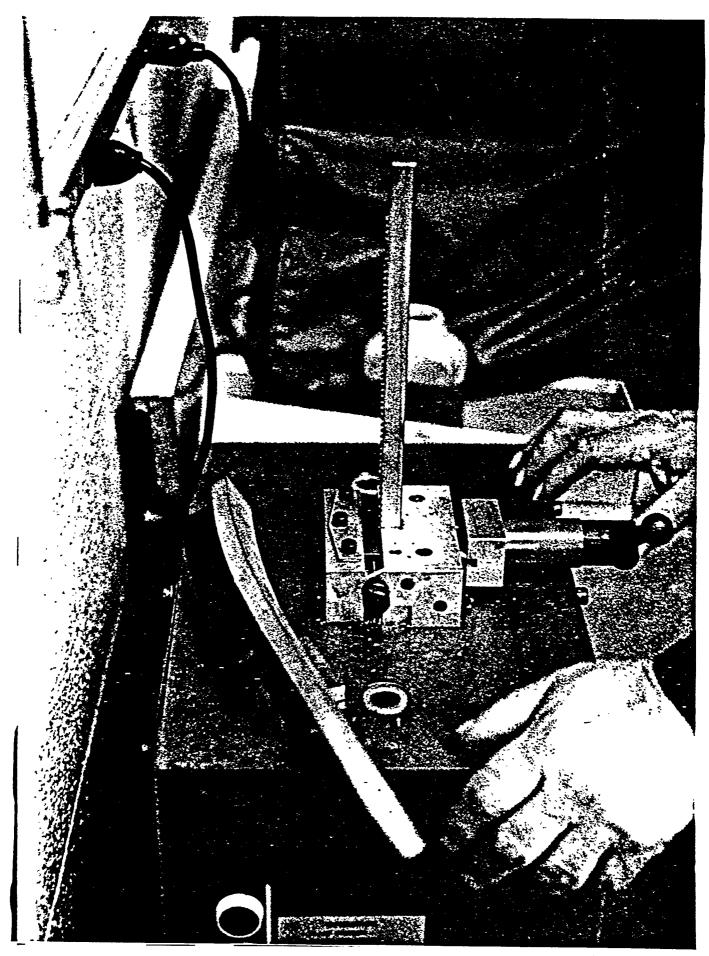

FIGURE 1


12.5" Width

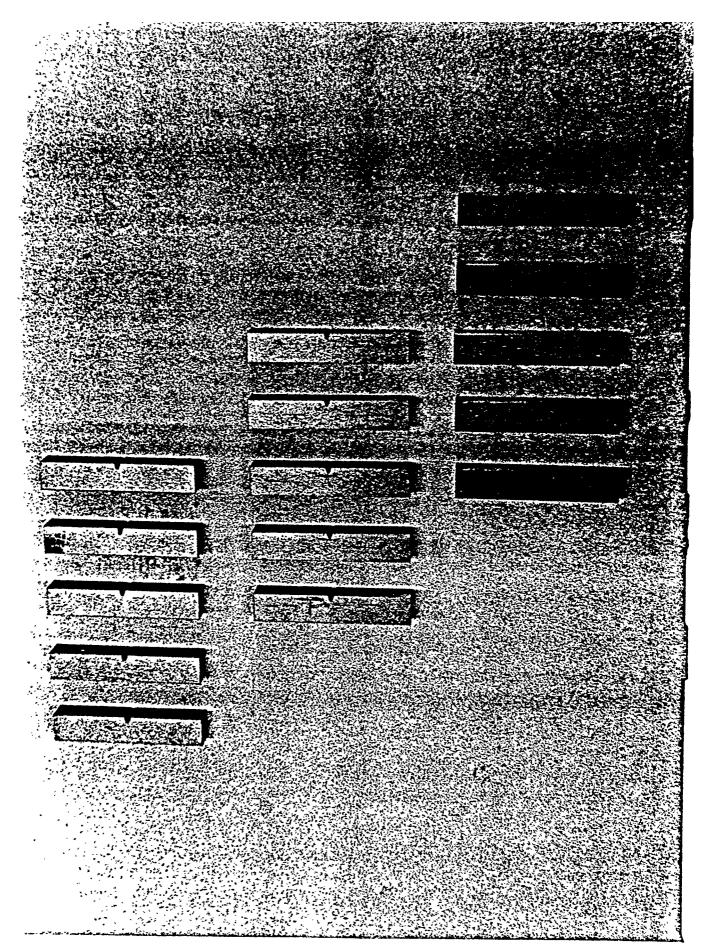
MICROSECTION - SPECTROGRAPHIC - 4 SIDE BENDS


TENSILE TEST IN PROGRESS

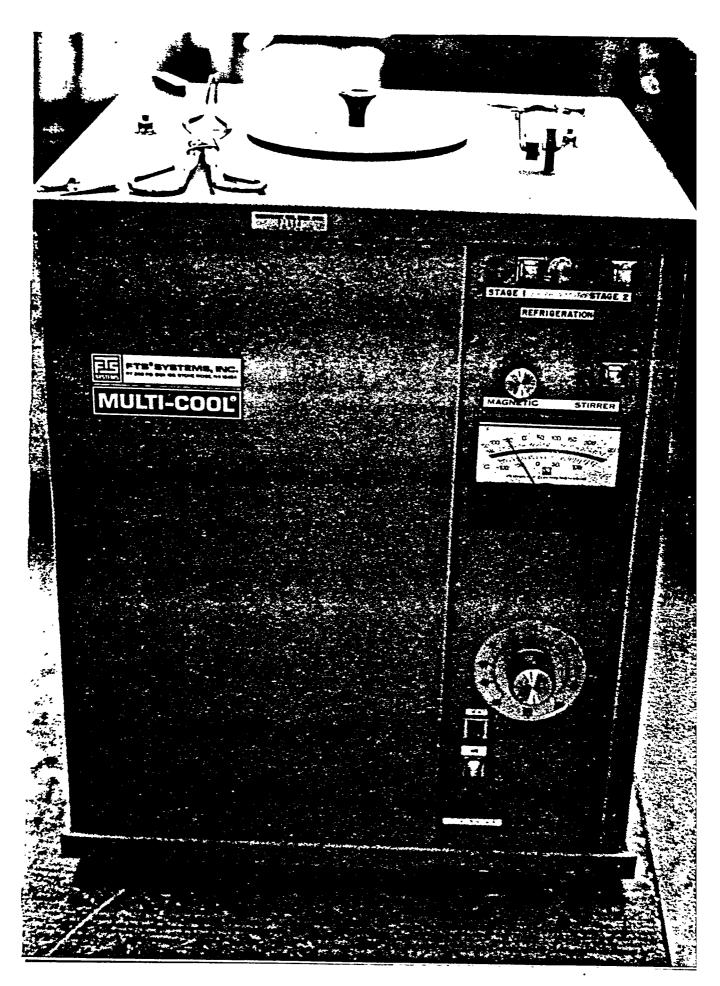
TINING (I CEN EVTENCOMETED IN HOF TO DETERMINE VIELD DOINT

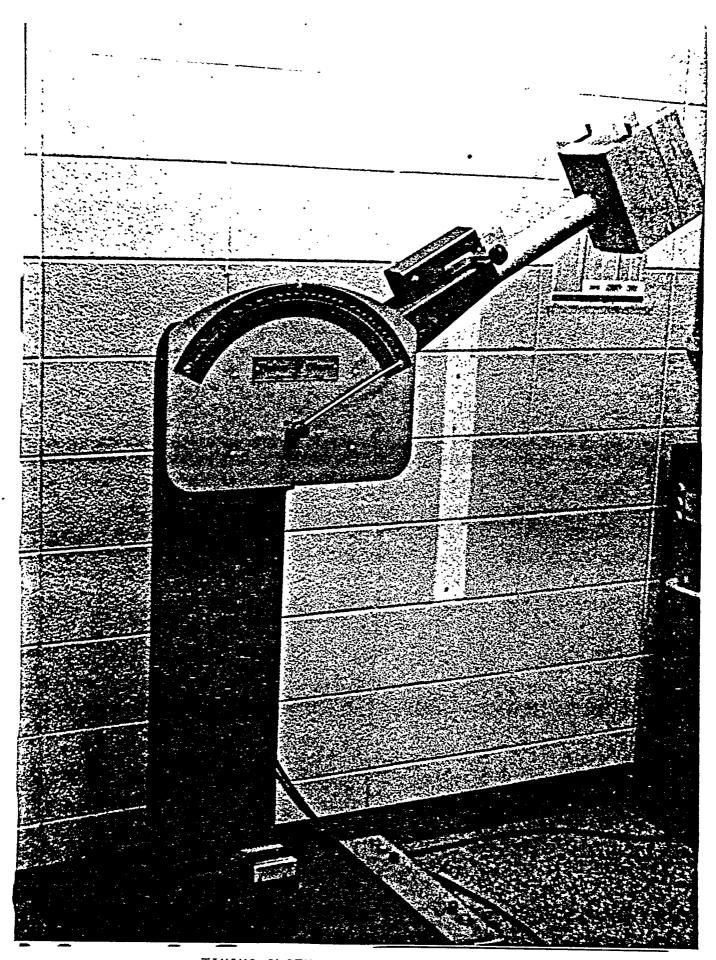


TRANSVERSE TENSILE SPECIMEN AT ULTIMATE LOAD

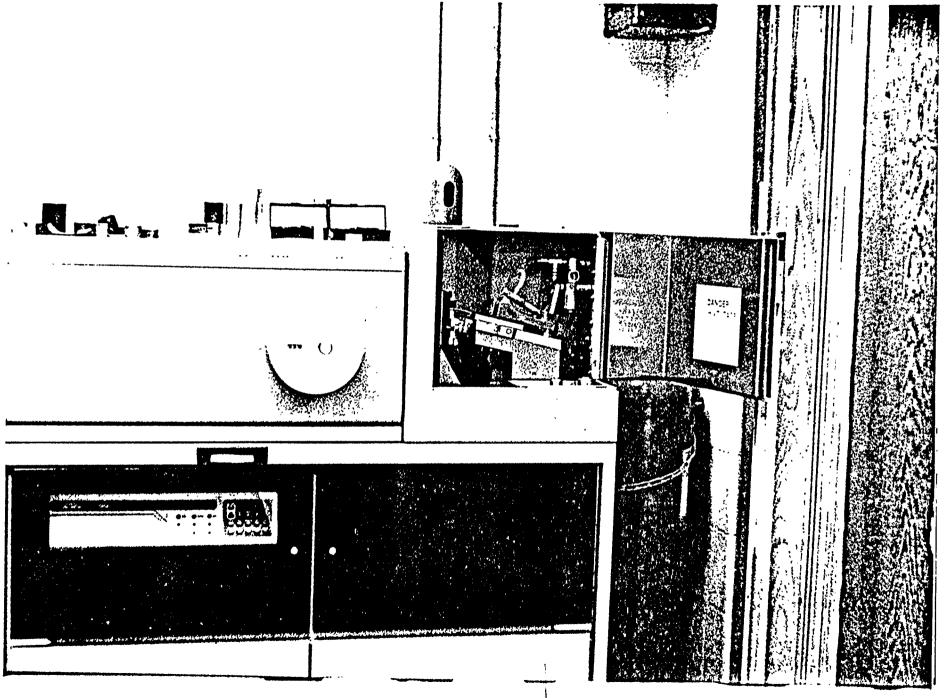


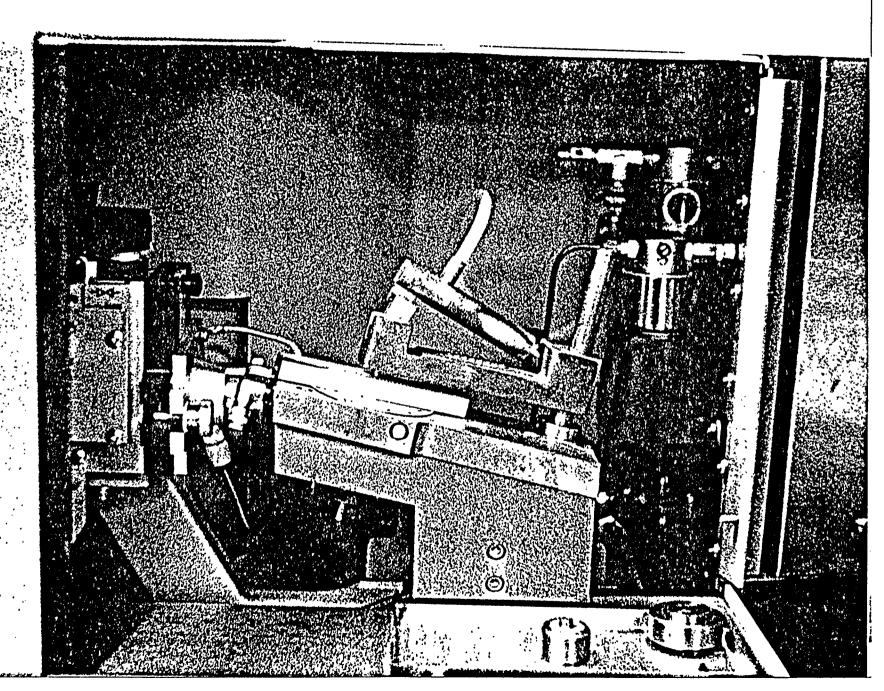
100° CINE DENN TECT IN DOCOECC


64


NOTCHING OF CHARPY TEST SPECIMEN


NOTCHED CHARPY TESTS


CHARPY SPECIMENS BEING CHILLED TO -60°F


TINIUS OLSEN CHARPY TESTER AFTER FREE SWING DROP

HARDNESS TEST IN PROGRESS

SPECTROGRAPHIC TEST - JARREL ASH MODEL

SPECTROGRAPHIC TFST CHAMBER

Code (EH-6-CS)

Electrode Linde 36

Flux Linde 20

.

1		
Physical	Test	Summary

<u>Tensile Test</u>	<u>No.</u>	<u>Yield PSI</u>	<u>Ult. Tensile</u>	e <u>%Elong</u>	Fracture Loc	cation
Transverse Weld	1	58,008	81,108	17	Base	
Transverse Weld	2	56,199	79,776	18	Base	
All Weld (.505)		55,500	83,500	32	Weld	
Base Plate (.505)		62,871	78,712	26	Base	
180° Bend Tests		<u>No.</u>	Result			
Trans. Side Bend		1	Passed			
Trans. Side Bend		2	Passed			
Trans. Side Bend		3	Passed			
Trans. Side Bend		4	Passed			
		······		<u></u>		
Charpy Impact Test	<u>:s</u>	Weld	H.A.Z.	Base		
Average at <u>-40</u> ° *Test temperature, <u>Lower temperatur</u>	/A.B.S. 1	rules should	have been -22			ations.
Hardness Survey		Weld	H.A.Z.	Base		
Average R30N		. 27.9	38.0	25.	7	
Spectrographic Dep	osit Ana	lysis				
<u>C</u> <u>MN</u>		<u>p</u> .	<u>S</u>	SI	NI	CR
<.108 .814		.010	.021	.767	.186	<.050
<u>MO</u> <u>V</u> .026 .007		<u>C0</u> <.015	<u>w</u> .015	<u>TI</u> <.016	<u>CU</u> .038	<u>AL</u> • <.016
					.000	· \.010

Code (EH 6 FC)

.

•

Electrode McKay Speed Alloy 70-S

.

Flux Linde 80

.

ı.

,

Physical Test Summary

-						
<u>Tensile Test</u>	NO.	Yield PSI	<u>Ult. Tensil</u>	Le %Elong	Fracture Loc	ation
Transverse Weld	1	57,453	86,749	28	Base	
Transverse Weld	2	56,352	85,655	28	Base	
All Weld (.505)		52,763	83,919	32	Weld	
Base Plate (.505)		77,114	92,039	27	Base	•
			<u> </u>	·····	<u> </u>	
180° Bend Tests	N	0.	. <u>Result</u>			
Trans. Side Bend	1		Passed			
Trans: Side Bend	2		Passed			
Trans. Side Bend	3		Passed			
Trans. Side Bend	4		Passed			
Charpy Impact Tests		Weld	<u>H.A.Z.</u>	Base		
Average at <u>-40</u> °F	(Ft.Lbs)	* 73·.0	106.3	125.3		
*ABS Rules Specify	-22°F. Te	st Tempera	ture for auto	omatic applic	ations, -40°	for manu applicat
Hardness Survey		Weld	<u>H.A.Z.</u>	Base		<u></u>
			•			
Average R30N		37.3	43.8	25.7		
Average R30N	it Analy		43.8	25.7		
			43.8 <u>5</u>	25.7 <u>SI</u>	<u>NI</u>	
<u>Spectrographic Depos</u>	1	<u>sis</u>			<u>NI</u> 303	<u>CR</u> 063
<u>Spectrographic Depos</u>	1	<u>sis</u> P	<u>s</u>	<u>SI</u>		

Code (SS L CS)

Electrode Linde 316L

Flux_____Linde 80

,

.

.

Physical Test Summary

<u>Tensile Test</u>	No.	Yield PSI	Ult. Ten:	sile <u>%Elor</u>	g <u>Fracture I</u>	ocation
Transverse Weld	1	54,602	83,368	22	C.L. Weld	
Transverse Weld	2	55,851	86,170	37	C.L. Weld	
All Weld (.505)		52,272	87,121	51	Weld	
Base Plate (.505)		58,823	85,294	32	Base	
		<u></u>	·····			
180° Bend Tests	1	No.	Resul	<u>t</u>		
Trans. Side Bend		ı	Passed	1		
Trans. Side Bend	:	2	Passe	1		
Trans. Side Bend	:	3	Passe	1		•
Trans. Side Bend		4	Passe	1		
			<u></u>			
Charpy Impact Tests		Weld	<u>H.A.</u>	Z. Bas	e	
Average at°F	(Ft.Lbs)	N/A			
·		······				
Hardness Survey		Weld	<u>H.A.</u>	Z. Bas	e	
Average R30N		35.	6 34	.5 26	.5	
·		•				<u> </u>
Spectrographic Depos	sit Analy	vsis				
<u>C MN</u>		<u>P</u> .	<u>s</u>	SI	NI	CR
<.039 1.58		.020	.020	.973	12.4	16.9
<u>MO V</u>		<u>co</u>	W	TI	CU	AL
2.32 N/A		N/A	N/A	N/A	0	N/A

Electrode <u>McKay Influx 316L</u>G/S

Flux_____Oerlikon_OP-76____

.

.)

Physical Test Summary

<u>Tensile Test</u>	No.	Yield PSI	Ult. Tensile	e <u>%Elong</u>	Fracture Loca	tion
Transverse Weld	1	56,113	86,131	42	C.L. Weld	
Transverse Weld	2	55,963	85,321	38	C.L. Weld	
All Weld (.505)		50,000	85,750	53	Weld	
Base Plate (.505)		58,750	80,500	41	Base	
		- <u></u>				
180° Bend Test	<u>s</u>	No.	Result			
Trans. Side Bend		1	Passed			
Trans. Side Bend		2	Passed			•
Trans. Side Bend		3	Passed			
Trans. Side Bend		4	Passed			
						<u>-</u>
Charpy Impact Tes		Weld	<u>H.A.Z.</u>	Base		
Average at	°F (Ft.Lb	s) `	N/A			
Hardness Survey		Weld	H.A.Z.	Base		
Average R30N		35	34.0	26.7		
			<u> </u>			
Spectrographic De	posit Ana	lysis				
<u>C</u> <u>MN</u>		<u>P</u>	<u>s</u>	<u>SI</u>	NI	CR
<.039 1.	93	.015	.018	.531	13.0	17.8
<u>MO</u> <u>V</u>		<u>co</u>	<u>w</u>	TI	CU	AL
2.57 N/	A	N/A	N/A	N/A	0	N/A
<u> </u>						

Code (HY8cs)

Electrode<u>Linde 95</u>

Flux Linde 709-5

Physical	Test	Summary
----------	------	---------

Tensile Test	No.	<u>Yield PSI</u>	<u>Ult. Tensile</u>	e %Elong	Fracture Location
Transverse Weld	1	89,843	111,718	20	Base
Transverse Weld	2	91,324	113,013	21	Base
All Weld (.505)		89,847	109,340	26	Weld
Base Plate (.505)		91,414	109,848	21	Base
180° Bend Tests		No.	Result		
Trans. Side Bend		1	Passed		
Trans. Side Bend		2	Passed		
Trans. Side Bend		3	Passed		
Trans. Side Bend		4	Passed		
<u>Charpy Impact Tests</u>		Weld	H.A.Z.	Base	
Average at - <u>60°</u> °F	(Ft.Lbs) 37.0	125.6	138.3	
Hardness Survey		Weld	<u>E.A.Z.</u>	Base	
Average R30N		43.1	57.75	41.0	
<u>Spectrographic Depo</u>	<u>sıt Anal</u>				
C MN <.108 1.06		P .012	S .009	SI .418	NI CR 2.13 .509
 MO <u>V</u>		co	<u></u>	TI	CU AL
.359 .007		.020	.019	<.016	.030 <.016

Code (HY8FC)

Electrode McKay Speed Alloy 90-S

Flux Linde 80

Physical Test Summary

Tensile Test	No.	Yield	PSI	<u>Ult. Tensil</u>	e %Elong	Fracture	Locatio
Iransverse Weld	1	91,37	9	113,448	24	Base	
Iransverse Weld	2	89,43	1	111,818	21	Base	
All Weld (.505)		88,19	0	107,035	26	Weld	
Base Plate (.505)		109,84	8	119,444	20	Base	
180° Bend Tests		No.		Result			
Irans. Side Bend		1		Passed			
Trans. Side Bend		2		Passed			
Trans. Side Bend		3		Passed			
Trans. Side Bend		4		Passed			
Charpy Impact Tests			Weld	<u>H.A.Z.</u>	Base		
Average at <u>.60°</u> F	(Ft.Lk) (20	48.3	141.0	135.0)	
Hardness Survey			Weld	<u>H.A.Z.</u>	Base		
Average R30N			47	52.5	41.8		
Spectrographic Depo	sit An	alysis_					
C MN 108 1:18		P .016		S .018	SI .382	NI 2.15	CR .273
 MO <u>V</u>		co		<u></u>	TI	CU	AL

Code (HY8MC)

Electrode ________ Mark MC 100_S-2____

Flux_____Oerlikon_OP121tt(G)___

.

1

Physical Test Summary

Tensile Test	No.	Yiel	d PSI	<u>Ult. Tensile</u>	%Elong	Fracture Lo	<u>cation</u>
Transverse Weld	1	84,6	00	106,800	25	Base	
Transverse Weld	2	86,2	. 62	107,777	26	Base	
All Weld (.505)		85,7	'86	105,837	29	Weld	
Base Plate (.505)		94,1	.91	106,060	25	Base	
				· ·			
180° Bend Tests	<u>5</u>	No.		Result			
Trans. Side Bend		1		Passed			
Trans. Side Bend		2		Passed			
Trans. Side Bend		3		Passed			
Trans. Side Bend		4		Passed			
Charpy Impact Test	<u>:s</u>		Weld	<u>H.A.Z.</u>	Base	··	
Average at <u>-60</u> °	'F (Ft.Lb	s)	54.6	141.6	149.3		
Hardness Survey			Weld	H.A.Z.	Base	,,,,,,,,	
Average R30N		•	43.3	56.25	41.7		
							····
Spectrographic Dep	oosit Ana	lysis					
<u>C</u> <u>MN</u>		<u>P</u>		<u>s</u>	SI	NI	CR
<.108 1.21	-	.016		.012	.352	2.16	.380
<u>MO</u> <u>V</u>		<u>co</u>		W	TI	CU	AL
.240 .016	5	.021	L	.018	<.016	<.027	<.016

Code (HY8AC)

Electrode<u>Alloy___ Rods 100S-1</u>

Flux <u>Oerlik</u>non <u>OP121tt (G)</u>

Physical Test Summary

Tensile Test	No.	Yield PSI	<u>Ult. Tensile</u>	%Elong	Fracture	<u>Locati</u> on
Transverse Weld	1	86,009	96,330	8	C.L. Weld	
Transverse Weld	2	80,156	95,179	8	C.L. Weld	
All Weld (.505)		88,383	108,585	26	Weld	
Base Plate (.505)		82,564	93,589	21	Base	
180° Bend Tests		No.	Result			
Trans. Side Bend		1	Fractured	along Fusi	on Line	
Trans. Side Bend		2	Fractured	along Fusi	on Line	
Trans. Side Bend		3	Fractured	along Fusi	on Line	
Trans. Side Bend		4	Fractured	l along Fus	ion Line	
Charpy Impact Tests	<u> </u>	Weld	H.A.Z.	Base		
Average at <u>-6f °</u> F	(Ft.Lbs	3) 17.6	118.3	145.0		
Hardness Survey		Weld	H.A.Z.	Base		
Average R30N		35.5	58.0	42.2		
Spectrographic Depo	osit Anal	lysis				
C MN		P	S	SI	NI	CR
<.108 .964		.015	.019	.105	>2.22	. 213
MO V		CO	W	TI	CU	AL
.379 .016		.021	.021	<.016	.029	<.016

.

Electrode__Alloy_Rods_1005-1_____

Flux Oerlikon OP121tt(G)

.

-

• •

1.

•

Physical Test Summary

<u>Tensile Test</u>	No.	<u>Yield PSI</u>	<u>Ult. Tensile</u>	%Elong	Fracture Lo	cation
Transverse Weld	1	80,393	96,270	9	C.L. Weld	
Transverse Weld	2	79,016	94,779	9	C.L. Weld	
All Weld (.505)		85,678	106,281	27	Weld	
Base Plate (.505)		84,079	95,024	19	Base	
			<u> </u>			
180° Bend Tests		No.	Result			
Trans. Side Bend		1	Fractured	l at Center	of Weld	
Trans. Side Bend		2	Fractured	l along Fus:	ion Line	•
Trans. Side Bend		3	Fractured	l at Center	of Weld	
Trans. Side Bend		4	Fractured	l at Center	and F.L.	
Charpy Impact Tests		Weld	H.A.Z.	Base		
Average at <u>-60</u> °F	(Ft.Lb	s) 15.6	50.3	150.0		
Hardness Survey		Weld	<u>H.A.Z.</u>	Base		<u> </u>
Average R30N		. 38.5	56.25	39.0		
Spectrographic Depo	sit Ana	lysis				<u> </u>
<u>C</u> <u>MN</u> <.108 .910		<u>P</u> .014	<u>s</u> .019	<u>SI</u> .106	<u>NI</u> > 2.22	<u>CR</u> .253
		.014			>2.22	.253
<u>Mo</u> <u>V</u> .379 .015		<u>C0</u> .022	<u>₩</u> .017	<u>TI</u> <.016	<u>CU</u> .031	<u>AL</u> <.016
<u></u>						

Code (HY 8 AC-1)

Electrode Alloy Rods 1008-1

٠.

-

Flux _____ Oerlikon OP 121tt(G) ____

Physical Test Summary

Tensile Test	No.	Yield PSI	<u>Ult. Tensile</u>	%Elong	Fracture Location
Transverse Weld	1	92,602	111,030	19.6	C.L. Weld
Transverse Weld	2	91,428	110,950	23.4	Base
All Weld (.505)		93,216	97,740	8.1	Weld
Base Plate (.505)		86,432	104,010	27.9	Base
<u></u>			• • • • • • • • • • • • • • • • • • •		
180° Bend Tests		No.	Result		
Trans. Side Bend		1	Passed	-	
Trans. Side Bend		2	Passed .		
Trans. Side Bend		3	Passed		
Trans. Side Bend		4	Passed		
Charpy Impact Tests		Weld	H.A.Z.	Base	
Average at <u>-60</u> °F	(Ft.Lb	s) 55:6	64.3	143.3	
Hardness Survey		Weld	<u>H.A.Z.</u>	Base	
Average R30N		45.7	- 56.5	40.0	
		· · · · · · · · · · · · · · · · · · ·			
Spectrographic Depo	sit Ana	lysis			
<u>C</u> <u>MN</u> <.108 1.65		<u>P</u> .013	<u>s</u> .011	<u>SI</u> .270	<u>NI</u> <u>CR</u> >2.22 .491
<.108 1.65		.013	.011	.270	>2.22 .491
<u>MO V</u> .432 .013		<u>co</u>	<u>₩</u> <.008	<u>TI</u> <.016	<u>CU</u> <u>AL</u> .029 .016
.432 .013		<.015	<₀008	<.016	.029 .016

Code (HY 8 AC HHI-1)

Electrode <u>Alloy Rods 100S-1</u>

Flux <u>Oerl</u>ikon <u>OP121 tt(G)</u>

Physical Test summary

Tensile Test						
	No.	yield PS	<u>Ult. Tensi</u>	<u>le</u> %El ong	Fracture I	ocation
Transverse Weld	1	85,075	107,970	23,4	C.L. Weld	
Transverse Weld	2	84,661	108,570	20.3	C-L. Weld	
All Weld (.505)		83,100	110,330	25.0	Weld	
Base Plate (.505)		89,800	108,160	28.0	Base	
180° Bend Tests		<u>No.</u>	Pogult			
Trans. Side Bend		1	Result			
Trans. Side Bend			Passed			
Trans. Side Bend		2	passed			
		3	Passed			
Trans. Side Bend		4	Passed			
Charpy Impact Tests		Weld	H.A.z.	Base		
Average at <u>-60°</u> F	(Ft.LDS)	32.6	141.0	85.3	i -	
Hardness Survey	(FT.LDS)	32.6 <u>Weld</u> 41.5	141.0 <u>H.A.z.</u> 55	85.3 <u>Base</u> 40.5		
<u>Hardness Survey</u> Average R30N		32.6 <u>Weld</u> 41.5	<u>H.A.z.</u>	Base		
Hardness Survey Average R30N	it Analy	32.6 <u>Weld</u> 41.5 sis	<u>H.A.z.</u>	Base	NI >2.22	CR . 397
Hardness Survey Average R30N Spectrographic Depos: C MN	it Analy	32.6 <u>Weld</u> 41.5 sis	<u>H.A.z.</u> 55	<u>Base</u> 40.5	NI	CR . 397 ———

Electrod<u>e Linde 120</u>

Flux Linde 709-5

Physical Test Summary

Transverse Weld 1 103,954 123,587 21 Base Transverse Weld 2 102,435 118,194 NA* C.L., Weld *Retest 3 104,225 123,802 17 Base All Weld (.505) 111,940 123,383 22 Weld Base Plate (.505) 1 105,000 126,000 18.5 Base 130° Bend Tests No. Result Trans. Side Bend 1 Passed Trans. Side Bend 1 Passed Trans. Side Bend 2 Passed Trans. Side Bend 3 Passed Trans. Side Bend 4 Passed Charpy Impact Tests Weld H.A.Z. Base Base Average at600F (Ft.Lbs) 38* 123.3 129 *Linde has developed a new flux (651-VP) to meet Charpy impact requirements of 45 ft. lbs 9 •_60°F to have it included on the U.S. Navy Quality Products List (QPL). Hardness Survey Weld H.A.Z. Base Average R30N 48.72 57.75 45.8 Spactrographic Deposit Analysis SI <	Tensile Test	No. <u>Y</u>	Tield PSI	<u>Ult. Tensile</u>	%Elong	Fracture	Location	
Retest 3 104,225 123,802 17 Base All Weld (.505) 111,940 123,383 22 Weld Base Plate (.505) 1 105,000 126,000 18.5 Base 180° Bend Tests No. Result Trans. Side Bend 1 Passed Trans. Side Bend 1 Passed Trans. Side Bend 2 Passed Trans. Side Bend 2 Passed Trans. Side Bend 3 Passed Trans. Side Bend 4 Passed Trans. Side Bend 4 Passed Charpy Impact Tests Weld H.A.Z. Base Average at609F (Ft.Lbs) 38 123.3 129 *Linde has developed a new flux (651-VF) to meet Charpy impact requirements of 45 ft. lbs	Transverse Weld	1 1	03,954	123,587	21	Base		
180° Bend Tests No. Result Trans. Side Bend 1 Passed Trans. Side Bend 2 Passed Trans. Side Bend 3 Passed Trans. Side Bend 3 Passed Trans. Side Bend 4 Passed Charpy Impact Tests Weld H.A.Z. Base Average at60_ °F (Ft.Lbs) 38* 123.3 129 *Linde has developed a new flux (651-VF) to meet Charpy impact requirements of 45 ft. lbs @ @60°F to have it included on the U.S. Navy Quality Products List (QPL). Hardness Survey Weld H.A.Z. Base Average R30N 48.72 57.75 45.8 Spactrographic Deposit Analysis CR	*Retest	3 1	04,225	123,802	17	Base		
Trans. Side Bend1PassedTrans. Side Bend2PassedTrans. Side Bend3PassedTrans. Side Bend4PassedCharpy Impact TestsWeldH.A.Z.BaseAverage at -60 °F (Ft.Lbs) 38^* 123.3129*Linde has developed a new flux (651-VF) to meet Charpy impact requirements of 45 ft. lbs Θ -60°F to have it included on the U.S. Navy Quality Products List (QPL).Hardness SurveyWeldH.A.Z.BaseAverage R30N48.7257.7545.8Spactrographic Deposit AnalysisCMNPSSISpactrographicDeposit Analysis.012.431>2.22.599MOVcoWTICUAL	Base Plate (.505)	1 1	05,000	126,000	18.5	Base		
Trans. Side Bend2PassedTrans. Side Bend3PassedTrans. Side Bend4PassedTrans. Side Bend4PassedCharpy Impact TestsNerage at -60° (Ft.Lbs) 38^{*} 123.3129*Linde has developed a new flux (651-VF) to meet Charpy impact requirements of 45 ft. lbs $@ -60^{\circ}$ F to have it included on the U.S. Navy Quality Products List (QPL).Hardness SurveyNeldH.A.Z.Average R30N48.72Spactrographic Deposit AnalysisCMNPSSINICMNPSSINICMNPSSINICMNPSSINICMNPSSINICMNPSSINICWINPSSINICMNPSSINICMNCMOVCOKTICUK	180° Bend Tests	No		Result				
Trans. Side Bend3PassedTrans. Side Bend4PassedCharpy Impact TestsWeldH.A.Z.BaseAverage at $_60$ °F (Ft.Lbs) 38* 123.3129*Linde has developed a new flux (651-VF) to meet Charpy impact requirements of 45 ft. lbs@ $_60^{\circ}F$ to have it included on the U.S. Navy Quality Products List (QPL).Hardness SurveyWeldH.A.Z.BaseAverage R30N48.7257.7545.8Spactrographic Deposit AnalysisCMNPSCMNPSSINICMNPSSINICMNPSSINICMNPSSINICMNPSSINICMNPSSI2.22MOVcoWTICUAL	Trans. Side Bend	1		Passed				
Trans. Side Bend 4 Passed Charpy Impact Tests Weld H.A.Z. Base Average at60°F (Ft.Lbs) 38* 123.3 129 *Linde has developed a new flux (651-VF) to meet Charpy impact requirements of 45 ft. lbs % @ -60°F to have it included on the U.S. Navy Quality Products List (QPL). Hardness Survey Weld H.A.Z. Base Average R30N 48.72 57.75 45.8 Spactrographic Deposit Analysis C MN P S C MN P S SI NI C MN P S SI NI MO V co W TI CU AL	Trans. Side Bend	2		Passed				
Charpy Impact Tests Weld H.A.Z. Base Average at60°F (Ft.Lbs) 38* 123.3 129 *Linde has developed a new flux (651-VF) to meet Charpy impact requirements of 45 ft. lbs @ -60°F to have it included on the U.S. Navy Quality Products List (QPL). Hardness Survey Weld H.A.Z. Base Average R30N 48.72 57.75 45.8 Spactrographic Deposit Analysis SI NI CR <.108	Trans. Side Bend	3		Passed				
Average at -60 °F (Ft.Lbs) 38* 123.3 129 *Linde has developed a new flux (651-VF) to meet Charpy impact requirements of 45 ft. lbs @ -60°F to have it included on the U.S. Navy Quality Products List (QPL). Hardness Survey Weld HARDNESS 57.75 Average R30N 48.72 Spactrographic Deposit Analysis C MN Y S Sile NI C MN P S Sile NI CR .108 1.16 .020 .012 .431 >2.22 .599 MO V CO W TI CU AL	Trans. Side Bend	4		Passed				
*Linde has developed a new flux (651-VF) to meet Charpy impact requirements of 45 ft. lbs @ -60°F to have it included on the U.S. Navy Quality Products List (QPL). Hardness Survey Weld H.A.Z. Base Average R30N 48.72 57.75 45.8 Spactrographic Deposit Analysis C MN P S SI NI CR <.108	Charpy Impact Tests		Weld	<u>H.A.Z.</u>	Base			
@ -60°F to have it included on the U.S. Navy Quality Products List (QPL). Hardness Survey Weld H.A.Z. Base Average R30N 48.72 57.75 45.8 Spactrographic Deposit Analysis C MN P S SI NI CR <.108	Average at <u>-60</u> °F	(Ft.Lbs)	38*	123.3	129			
Average R30N 48.72 57.75 45.8 Spactrographic Deposit AnalysisSSINICRCMNPSSINICR<.108								.bs
Spactrographic Deposit AnalysisCMNPSSINICR<.108	Hardness Survey		Weld	H.A.Z.	Base			
C MN P S SI NI CR <.108	Average R30N		48.72	57.75	45.8			
C MN P S SI NI CR <.108	Spactrographic Depo	sit Analys	sis					
<.108 1.16 .020 .012 .431 >2.22 .599 MO V co W TI CU AL				S	SI	NI	CR	
	MO V		со	W	TI	CU	AL	
	.440 .007		.063	.019	<.016			

Code (HY-0 FC)

Electrode <u>McKay Speed Alloy 11</u>0-s

Flux_____Linde 80_____

.

.

,

•

Physical Test Summary

Tensile Test	No.	Yield PS	<u>si</u>	<u>Ult. Tensil</u>	e <u>%Elong</u>	Fracture Lo	ocation
Transverse Weld	1	103,879		125.431	19	Base	
Transverse Weld	2	106,388		123,611	19	Base	
All Weld (.505)		113,451		124,365	24	Weld	
Base Plate (.505)		124,875		135,074	18	Base	
180° Bend Tests		No.		Result			
Trans. Side Bend		1		Passed			
Trans. Side Bend		2		Fracture	ed at Corner	N/A - Retes	t* ·
Trans. Side Bend		3		Passed			
Trans. Side Bend		4		Fracture	ed - L.O.F.	in Root - Re	test*
*4 Sidebends R	etested	- All Pas	sed				
Charpy Impact Tests	5	<u>Wel</u>	<u>a</u>	<u>H.A.Z.</u>	Base		
Average at <u>-60</u> °F	r (Ft.L)	os) 24	.6	121.6	129.6		
Hardness Survey	<u> </u>	Wel	. <u>d</u>	<u>H.A.Z.</u>	Base		
Average R30N		52.	5	56.0	46.3		
Spectrographic Depo	osit Ana	alysis					
<u>C MN</u>		P		<u>5</u>	SI	NI	CR
<.108 >1.65		.023		.020	.409	>2.22	.363
<u>MO</u> <u>V</u>		<u>co</u>		W	TI	CU	AL
.441 .022		.024		.019	<.016	.042	<.016
						·····	

Electrode Alloy Rods Mil-1205-1

Flux <u>Oerlikon OP121tr(G)</u>

.

ر : ۲

.

Physical Test Summary

-

Tensile Test	No.	<u>Yield PSI</u>	<u>Ult. 1</u>	ensile	%Elong	Fracture Loc	cation
Transverse Weld	1	102,702	123,	198	21	Base	
Transverse Weld	2	110,011	122,	022	23	Base	
All Weld (.505)		109,547	122,	864	22	Weld	
Base Plate (.505)		105,500	124,	000	21	Base	
				<u> </u>			······
180° Bend Tests	<u>1</u>	No.	Res	sult			
Trans. Side Bend	:	1	Pa	ssed			
Trans. Side Bend	:	2	Fr	actured	along Fusi	on Line	
Trans. Side Bend	:	3	Fr	actured	along Fusi	on Line	
Trans. Side Bend		4	Pa	ssed			
	<u></u>						. <u></u>
Charpy Impact Tests		Weld	<u>н</u>	.A.Z.	Base		
Average at <u>-60</u> °F	(Ft.Lbs) 37.0		106.0	137.6	5	
<u> </u>							
Hardness Survey		Weld	<u>н</u>	.A.Z.	Base		
Average R30N		47.	0	54.0	45.8		
					<u> </u>	<u></u>	····
Spectrographic Depo	sit Anal	ysis					
<u>C MN</u>		<u>P</u>	<u>s</u>		SI	NI	CR
<.108 >1.65		.021	.013	-	261	>2.22	.567
<u>MO V</u>		<u>co</u>	W		TI	CU	AL
.434 .016		.028	.032		<.016	.034	.019
<u></u>							

Electrode Alloy Rods 1205-1

Flux _____ Oerlikon OP 121tt(G)

.

.

, , ,

.

Physical Test Summary

<u>Tensile Test</u>	No.	Yield PSI	<u>Ult. Tensile</u>	%Elong	Fracture Location			
Transverse Weld	l	102,974	123,650	19.9	C.L. Weld			
Transverse Weld	2	104,166	122,930	20.9	C.L. Weld			
All Weld (.505)		105,223	122,840	21,5	Weld			
Base Plate (.505)		114,141	124,050	22.0	Base			
			-					
180° Bend Tests		No.	Result					
Trans. Side Bend		1.	Passed					
Trans. Side Bend		2	Passed					
Trans. Side Bend	·	3	Passed					
Trans. Side Bend		4	Passed					
Charpy Impact Tests	<u></u>	Weld	H.A.Z.	Base				
Average at <u>-60</u> °I	F (Ft.Lb	s) 55	57.6	130.6	(Ft.lbs)			
Hardness Survey	<u></u>	Weld	H.A.Z.	Base				
Average R30N		47.5	53.0	43.0				
Spectrographic Deposit Analysis								
<u>C</u> <u>MN</u>		<u>P</u>	<u>s</u>	SI	<u>NI</u> <u>CR</u>			
<.108 >1.6	5	.013	.011	.270	>2.22 .49]			
<u>MO V</u>		<u>co</u>	W	TI	<u>CU</u> <u>AL</u>			
432 .013		<.015	<.008	<.016	.029 .03			

SECTION 13

EVALUATION OF TEST RESULTS

* See Footnote

*FOOTNOTE

Due to the late arrival of the "AC" reformulated electrode and project schedule restraints, an equal number of photomicrographs were not produced for test samples HY-8-AC-1, HY-8-AC-HHI-1 and HY-0-AC-1. A limited number of photomicrographs were produced and evaluated in the Anderson Laboratories Reports on the above weld test samples.

July 31, 1985

Bay Shipbuilding Corp. B023 605 North 3rd Ave. Sturgeon Bay, WI 54235-2324 Attn: Mr. Bruce Halverson

Dear Mr. Halverson:

we have completed our evaluation of the weld samples identified as EH6CS and EH6FC submitted to us on your Job #3205-204. The objective of this investigation was to compare the inclusion level in the weld filler material, the heat affected zone (HAZ) and the level of segregation in the weld filler material of the two samples.

A metallographic examination was conducted on two transverse sections (with respect to the length of the weld seam) of approximately one square centimeter in area removed from each of the samples. One section contained filler metal, HAZ and base material from an area near the middle of the plate. The other section contained only filler metal.

An inclusion rating was then conducted on the sections of weld filler metal. The inclusion rating per ASTM E45 method A (worst field reported) was limited to the D category (globular oxides) of inclusion-because of the morphology of the inclusions found in the welds. The inclusion rating for sample EH6CS was D1 heavy and D4 thin (see Photograph #1) and the inclusion rating for sample EH6FC was D0 heavy and D2 thin (see photograph +2).

An examination of the etched sections of both samples revealed that the filler metal of the HY6CS sample (see photograph #3) exhibited less severe segregation than the filler metal of the EH6FC sample (see photograph #4). The HAZ of the welds were then examined and no significant metallurgical defects were found. The width of the HAZ of the welds was then estimated by taking ten readings along lines normal to the tangent of the base metal/filler metal interface. The results of these measurements are as follows:

Sample EH6CS-.06, .06, .06, .05, .06, .05, .06, .06, .06, .06 in. Average: .06 in. Sample EH6FC-

.06, .05, .06, .06, .06, .06, .06, .05, .05, .06 in. Average: .06 in.

CONCLUSION:

Neither of the samples exhibited any significant metallurgical defects in the HAZ's. Sample EH6CS had a higher level of inclusions than sample EH6FC. However, sample EH6CS exhibited less severe segregation in the weld filler metal than sample EH6FC. The width of the HAZ's of both samples were found to be similar.

Very truly yours,

ANDERSON LABORATORIES, INC.

Ralph B. Meyer, Manager

RBM/trs M5-562

July 31, 1985

Bay Shipbuilding Corp. B023 605 North 3rd Ave. Sturgeon Bay, WI 54235-2324 Attn: Mr. Bruce Halverson

Dear Mr. Halverson:

We have completed our evaluation of the weld samples identified as SSLCS and SSLFC submitted to us on your Job #3205-204. The objective of this report is to compare the inclusion level in the weld filler material, the heat affected zone (HAZ) and the level of segregation in the weld filler material of the two samples.

A metallographic examination was conducted on two transverse sections (with respect to the length of the weld seam), approximately one square centimeter in area, removed from each of the samples. One section contained filler metal, HAZ and base material from an area near the middle of the plate. The other section contained only filler metal.

An inclusion rating was then conducted on the sections of weld filler metal. The inclusion rating per ASTM E45 method A (worst field reported) was limited to the D category (globular oxides) of inclusion because of the morphology of the inclusions found in the welds. The inclusion rating for sample SSLCS was D2 heavy and D4 thin (see photograph #1) and the inclusion rating for sample SSLFC was D0 heavy and D1 thin (see photograph #2).

An examination of the etched sections of both samples revealed that the filler metal of the SSLCS sample (see photograph #3) exhibited large islands of segregated material while smaller islands of segregated material were observed in the filler metal of the SSLFC sample (see photograph #4). The HAZ of the welds were then examined and no significant metallurgical defects were found. The width of the HAZ of the welds was then estimated by taking ten readings along lines normal to the tangent of the base metal/filler metal interface. The results of these measurements are as follows:

SSLCS sample-.011, .012, .014, .024, .026, .019, .015, .009, .015, .014 in. Average: .016 in. SSLFC sample-.006, .011, .014, .005, .012, .008, .007, .015, .005, .006 in. Average: .009 in.

CONCLUSION:

Neither of the two samples exhibited any significant metallurgical defects in the heat affected zones. Sample SSLCS exhibited a significantly higher level of inclusions than sample SSLFC and also exhibited larger islands of segregation in the filler material. The width of the HAZ of sample SSLCS was considerably greater than that found in sample SSLFC.

₹.

Very truly yours,

ANDERSON LABORATORIES, INC.

Ralph B. Meyer, Manager

RBM/trs M5-562

July 30, 1985

Bay Shipbuilding Corp. B023 605 North 3rd Ave. Sturgeon Bay, WI 54235-2324 Attn Mr. Bruce Halverson

Dear Mr. Halverson:

We have completed our evaluation of the weld samples identified as HY8CS, HY8AC1, HY8MC, HY8AC, HY8FC, HY8HHI1 and HY8ACHHI recently submitted to us (Reference Job #3205-204). The objective of this investigation was to compare the inclusion level in the weld filler material, the heat affected zone (HAZ) and the level of segregation in the weld filler material of the samples.

A metallographic examination was conducted on two transverse sections (with respect to the length of the weld seam) of approximately one square centimeter in area removed from each of the samples. One section contained filler metal, HAZ and base material from an area near the middle of the plate. The other section contained only filler metal.

An inclusion rating was then conducted on the sections of weld filler metal. The inclusion rating per ASTM E45 method A (worst field reported) was limited to the D category (globular oxides) of inclusion because of the morphology of the inclusions found in the welds. All samples except HY8AC and HY8ACHHI exhibited levels of inclusions lower than or equal to 1 (see photographs #1, #2, #3, #6 and #7). The samples which exhibited low levels of inclusions did exhibit relatively uniformly distributed small inclusions which were resolvable at magnifications of 400 diameters or greater. Samples HY8AC1, HY8Mc, HY8Fc and HY8HHI1 exhibited marginally lower concentrations of small inclusions than sample HY8CS. The inclusion rating of sample HY8AC was D2 heavy and D2 thin (see photograph #4). The HY8AC sample also contained one large inclusion which was probably slag (see photograph #5). The inclusion rating of sample HY8ACHHI was D2 heavy and D3 thin (see photograph #8).

An examination of the etched sections revealed that the segregation in the filler metals of samples HY8AC, HY8HHI1 and HY8ACHHI was less severe than that found in sample HY8CS (see photographs #9, #10, #11 and #12). Samples HY8AC1, HY8BK2 and HY8FC exhibited segregation in the weld filler metal which was similar to that found in sample HY8CS. The HAZ of the welds were then examined and no significant metallurgical defects were found. The width of the HAZ of the welds was then estimated by taking ten readings along lines normal to the tangent of the base metal/filler metal interface. The results of these measurements are as follows:

- Sample HY8CS-.09, .09, .10, .09, .08, .07, .06, .08, .09, .10 in. Average: .09 in.
- Sample HY8ACl-.12, .10, .09, .09, .08, .08, .07, .07, .06, .06 in. Average: .08 in.
- Sample HY8MC-.13, .12, .12, .10, .10, .08, .07, .06, .06, .05 in. Average: .09 in.
- Sample HY8AC-.08, .07, .07, .07, .07, .10, .11, .11, .12, .12 in. Average: .09 in.
- Sample HY8FC-.08, .08, .07, .08, .07, .06, .06, .06, .09, .08 in. Average: .07 in.
- Sample HY8HHII-.16, .12, .12, .13, .13, .14, .15, .15, .14, .13 in. Average: .14 in.

Sample HY8ACHHI-.08, .09, .10, .10, .09, .08, .09, .08, .09, .11 in. Average: .09 in. <u>SUMMARY</u>: The following table is a comparison of the inclusion level, segregation and width of HAZ'S of samples HY8AC! HY*MC, HY*AC, HY*FC, HY*HHIL and HY8ACHHI to sample HY8CS.

Sample ID	Inclusion level	Segregation of weld	Width of HAZ
HY8CS			.09 in.
HY8AC1	Marginally cleaner	Equal	.08 in.
HY8MC	Marginally cleaner	Equal	.09 in.
HY8AC	Dirtier	Less	.09 in
HY8FC	Marginally cleaner	Equal	.07 in.
HY8HHI1	Marginally cleaner	Less	.14 in.
HY8ACHHI	Dirtier	Less	.09 in.

Conclusion:

None of the samples exhibited any significant metallurgical defects in the HAZ. Samples HY8AC and HY8ACHHI exhibited inclusion levels which were greater than sample HY8CS while the remainder of the samples exhibited inclusion levels which were marginally lower than that found in sample HY8CS. The severity of the segregation found in the filler material of samples HY8AC, HY8HHII an HY8ACHHI was less than the segregation found in sample HY8CS and the remainder of the samples exhibited segregation similar to that found in sample HY8CS. The widths of the HAZ'S of samples HY8ACL and HY8FC were smaller than sample HY8CS while the the width of the HAZ of sample HY8HHII was larger. The other samples had widths similar to sample HY8CS.

Very truly yours,

ANDERSON LABORATORIES, INC.

Ralph /B. Meyer, Manager

RBM/trs M5-562

July 31, 1985

Bay Shipbuilding Corp. B023 605 North 3rd Ave. Sturgeon Bay, WI 54235-2324 Attn: Mr. Bruce Halverson

Dear Mr. Halverson:

We have completed our evaluation of the weld samples identified as HYOCS, HYOAC, HYOAC1, and HYOFC submitted to us on your Job #3205-204. The objective of this investigation was to compare the inclusion level in the weld filler material, the heat affected zone (HAZ) and the level of segregation in the weld filler material of the samples.

A metallographic examination was conducted on two transverse sections (with respect to the length of the weld seam) approximately one square centimeter in area removed from each of the samples. One section contained filler metal, HAZ and base material from an area near the middle of the plate. The other section contained only filler metal.

An inclusion rating was then conducted on the sections of weld filler metal. The inclusion rating per ASTM E45 method A was limited to the D category (globular oxides) of inclusions because of the morphology of the inclusions found in the samples. All of the samples exhibited an inclusion level less than or equal to 1. All of the samples exhibited relatively uniform concentrations of small inclusions which were resolvable at a magnification of 400 diameters or greater (see photographs #1, #2, #3 and #4). Samples HYOAC and HYOAC1 exhibited a lower concentration of small inclusions than sample HYOCS while sample HYOFC exhibited a similar concentration of small inclusions when compared to sample HYOCS.

An examination of the etched sections of the samples revealed that the degree of segregation in the weld filler metal of all of the samples was similar. The HAZ'S of the welds were then examined and no significant metallurgical defects were found. The width of the HAZ'S of the welds was then estimated by taking ten readings along lines normal to the tangent of the base metal/filler metal interface. The results of these measurements are as follows:

HYOCS sample-.08, .06, .07, .07, .08, .07, .09, .07, .07, .09 in. Average: .08 in. HYOAC sample-.10, .10, .10, .07, .06, .06, .06, .07, .07, .08 in. Average: .08 in. HYOAC1 sample-.14, .15, .13, .13, .13, .12, .13, .13, .13, .13 in. Average: .13 in. HYOFC sample-.07, .08, .10, .11, .07, .06, .06, .06, .07, .08 in. Average: .08 in.

CONCLUSION:

All of the samples exhibited low inclusion levels when rated per ASTM E45. However, samples HYOAC and HYOAC1 exhibited marginally lower concentrations of small inclusions than sample HYOCS while sample HYOFC exhibited approximately the same concentration of small inclusions as sample HYOCS. The severity of segregation in the weld filler metals present in all of the samples was also found to be similar. No significant metallurgical defects were found in the HAZ of any of the samples and the width of the HAZ'S of all samples except HYOAC1 were found to be similar. The width of the HAZ of sample HYOAC1 was found to be greater than sample HYOCS.

Very truly yours,

ANDERSON LABORATORIES, INC.

Ralph B. Meyer, Manager

RBM/trs M5-562

CONCLUSIONS

The following is a comparison of operating characteristics between solid electrodes and the new family of flux core - metal core electrodes designed for submerged arc welding:

The flux core type electrodes investigated in this project demonstrated several areas of improvement related to ease of operation. Flux core electrode types were easier to cut to renew the electrode end prior to starting a weld. This was particularlY true in regard to the higher strength The high strength solid electrodes are a problem electrodes. to cut using bolt cutters and if proper care is not used in this operation, the electrode may be dislodged from the contact tine inside the submerged arc welding head. When the above condition exists, an attempt to restart the arc results in no contact, thus no arc start: or accidental contact inside of the head, destroying the tine. Destruction of the contact tine usually results in an erratic short arc initiation and the introduction of foreign material from the tine being introduced into the weld puddle, thus causing a serious weld defect. Failure of the arc to initiate on contact with the work piece can also result in mis-alignment of the electrode in relation to the desired arc path, thus resulting in poor weld bead placement. This can be particularly damaging to weld quality in multipass welds of long duration.

Another improvement noted in using the flux core electrode is arc initiation. Arc initiation is exceptionally smooth and consistent; during the life of this project the flux core type

1 ~ ~

electrode far out-performed the solid electrodes in this respect. Formultipass welds on heavy steel plate this ease of starting is extremely important. Again weld bead placement, due to the nature of the process, is obscured from the operator's view until the solidified flux can be removed from the weld deposit. If the arc initiation is poor or causes the welding head to be pushed off the joint, the operator will not be able to correct this misalignment until he has deposited 12" to 18" inches of weld. Poor arc starting is responsible for many submerged arc welding defects that can be extremely costly to repair.

The flux core type electrodes, because of their design, are much easier to straighten prior to entry into the weld pool. The cast and helix of solid spooled sub arc electrode influences the amount of pressure required to straighten the electrode prior to welding. The cast and helix of solid sub arc wires does change significantly between the top layers on a spool and the bottom layers. This change, particularly on higher strength solid electrodes will cause the electrode to change the location of the weld pool. This change can be significant in width in relation to the weld bead placement. The obvious advantage of the flux core type electrodes is the relative ease of straightening due to the lower columnar strength of the electrode sheath. In this investigation we found that repeatable control of the electrode location, in maintaining alignment on straight multipass welds, was excellent with the flux core type electrodes.

134

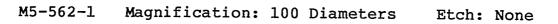
In regard to horizontal fillet welding with the flux core electrodes, our investigation showed better arc initiation and a more uniform fillet bead shape. The fillet welds were produced using a "Lincoln Electric Co." hand held submerged arc welding package. The fillet weld cross-sectional etched samples proved that the solid sub arc electrodes produce a much deeper penetration at the root of the weld faying surfaces. The flux core electrodes do not have the deep penetrating capability of the solid electrodes; however both types produce satisfactory root pene-The fillet weld break tests indicated that the flux tration. core electrodes produce fillet welds that exhibit less porosity in the root of the weld than the solid electrodes. Producing fillet welds over mill scale or primed plate (weld through primers) indicated that the flux core electrodes and the solid electrodes will not tolerate excessive mill scale or uncontrolled amounts of primer on the faying surfaces to be joined. Weld through primers cannot exceed a combined thickness of over 2 roils on faying surfaces without serious porosity developing in the root of the weld and also porosity that is visible on the surface of the fillet welds. Mill scale is not as devastating to weld quality in fillet welds as compared to excessive weld through primer when millage of the primer thickness is not scrupulously controlled.

135

MARAD 3205 PROGRAM - DEPOSITION/EFFICIENCY RESULTS

.

Plate Code	Dep/Eff @ 350 Amps	Dep/Eff @ 500 Amps
A.B.S EH-36		
EH-6-CS	6.02 lbs.hr/91.66%	12.21 lbs.hr/96.73%
EH-6-FC	5.54 lbs.hr/76.92%	13.58 lbs.hr/94.28%
316L STAINLESS		
SS-L-CS	9.63 lbs.hr/89.42%	
SS-L-FC	12.11 lbs.hr/100%	
<u>HY-80</u>		
HY-8-CS	7.60 lbs.hr/85.71%	13.12 lbs.hr/97.10%
HY-8-FC	6.85 lbs.hr/84.61%	14.70 lbs.hr/95.34%
HY-8-MC	9.37 lbs.hr/83.33%	13.84 lbs.hr/96.00%
HY-8-AC	9.04 lbs.hr/93.75%	15.95 lbs.hr/96.62%
*HY-8-AC-1	6.90 lbs.hr/92.30%	17.08 lbs.hr/97.67%
<u>HY-100</u>		
HY-0-CS	7.50 lbs.hr/92.30%	13.15 lbs.hr/100%
HY-0-FC	7.50 lbs.hr/92.30%	13.27 lbs.hr/96.10%
HY-0-AC	7.31 lbs.hr/92.85%	16.54 lbs.hr/97.56%
*HY-0-AC-1	7.77 lbs.hr/93.33%	19.46 lbs.hr/97.89%


* Reformulation

۲

.

,

Bay Shipbuilding Corp. Sample SSLCS Photograph #1

The photomicrograph shows the worst area of inclusions found in the weld filler metal of the sample. Bay Shipbuilding Corp. Sample SSLFC Photograph #2

÷

ķ

ŧ

.

1

M5-562-2 Magnification: 100 Diameters Etch: None

The photomicrograph shows the worst area of inclusions found in the weld filler metal of the sample.

-

•

Bay Shipbuilding Corp. Sample SSLCS Photograph #3



M5-562-1 Magnification: 12.5 Diameters Etch: 10% Oxalic electrolytic

The photomacrograph shows the typical structure found in the weld filler metal.

Bay Shipbuilding Corp. Sample SSLFC Photograph #4

ţ

M5-562-2 Magnification: 12.5 Diameters Etch: 10% Oxalic electrolytic

The photomacrograph shows the typical structure found in the weld filler metal.

Bay Shipbuilding Corp. Sample HYOCS Photograph #1

M5-562-3 Magnification: 400 Diameters Etch: None The photomicrograph shows the typical level of small inclusions found in the sample. Bay Shipbuilding Corp. Sample HYOAC Photograph #2

M5-562-4 Magnification: 400 Diameters Etch: None

The photomicrograph shows the typical level of small inclusions found in the sample.

٩

1 f . . .

Į

•

Bay Shipbuilding Corp. Sample HYOAC1 Photograph #3

Magnification: 400 Diameters Etch: None M5-562-5

The photomicrograph shows the typical level of small inclusions found in the sample.

Bay Shipbuilding Corp. Sample HYOFC Photograph #4

۲ ·

1.

E

Ľ

ļ

Ĺ

1.

ľ L

| [-]

i

.

÷ L

.

and the second

M5-562-6 Magnification: 400 Diameters Etch: None

٩,

The photomicrograph shows the typical level of small inclusions found in the sample.

Bay Shipbuilding Inc. Sample HY8CS Photograph #9

M5-562-7 Magnification: 10 Diameters Etch: 2% Nital

The photomicrograph shows the typical severity of segregation found in the weld filler metal of the sample.

Bay Shipbuilding Inc. Sample HY8CS Photograph #1

Ľ

Ē

[]

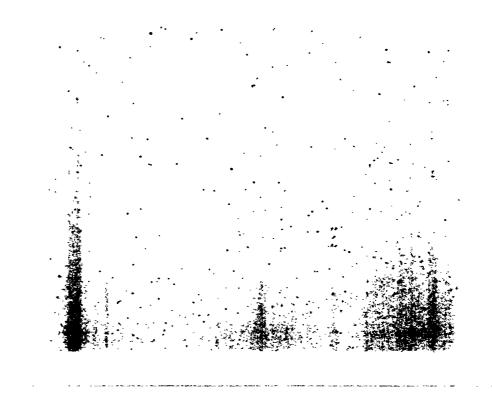
[]

Ð

[]

Γ

[]


E

Ľ

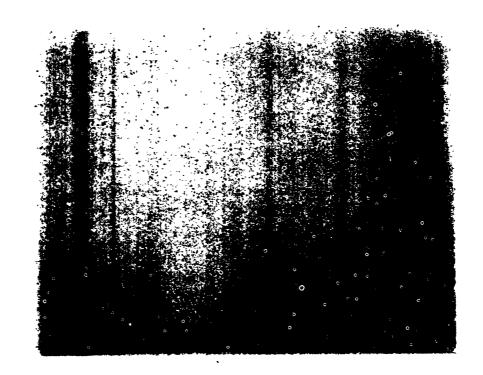
Ľ

E

 Γ

M5-562-7 Magnification: 400 Diameters Etch: None

The photomicrograph shows the typical level of inclusions found in the sample.


Bay Shipbuilding Inc. Sample HY8AC1 Photograph #2

M5-562-8 Magnification: 400 Diameters Etch: None

The photomicrograph shows the typical level of inclusions found in the sample.


Bay Shipbuilding Inc. Sample HY8MC Photograph #3

M5-562-9 Magnification: 400 Diameters Etch: None

The photomic sograph shows the typical level of inclusions found in the sample.

Bay Shipbuilding Inc. Sample HY8AC Photograph #5

M5-562-10 Magnification: 100 Diameters Etch: None

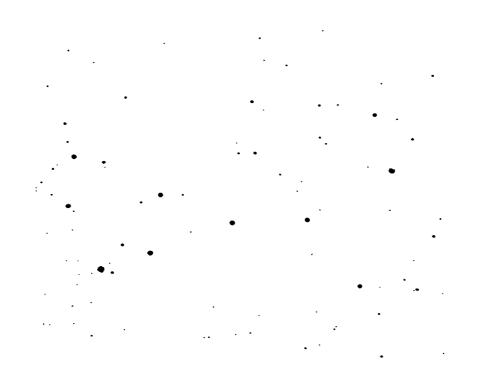
The photomicrograph shows the large inclusion found in the sample. The inclusion was .021 in. long and .008 in. wide.

Bay Shipbuilding Inc. Sample HY8AC Photograph **#4**

. -

;

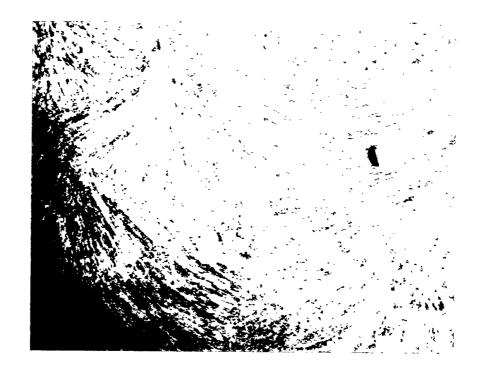
1


1.1

~

r

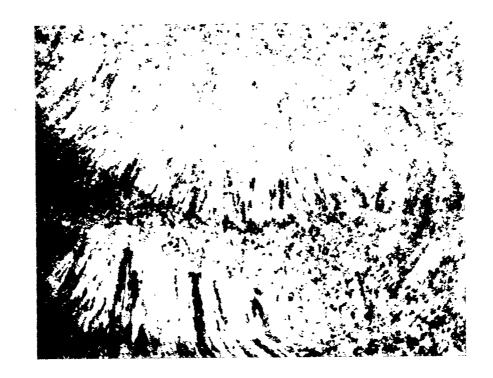
<u>,</u> -


ŗ -

M5-562-10 Magnification: 100 Diameters Etch: None

The photomicrograph shows the worst field of inclusions found in the sample.

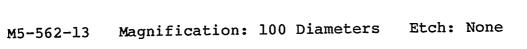
Bay Shipbuilding Inc. Sample HY8AC Photograph #10


M5-562-10 Magnification: 10 Diameters Etch: 2% Nital The photomicrograph shows the typical severity of segregation found in the weld filler metal of the sample. Bay Shipbuilding Inc. Sample HY8FC Photograph #6

M5-562-11 Magnification: 400 Diameters Etch: None

The photomicrograph shows the typical level of inclusions found in the sample.

Bay Shipbuilding Inc. Sample HY8HHI1 Photograph #7

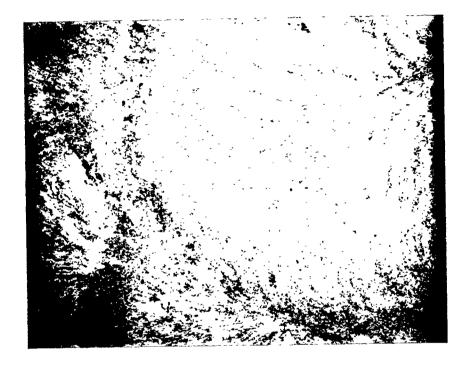

MS-562-12 Magnification: 400 Diameters Etch: None The photomicrograph shows the typical level of inclusions found in the sample. Bay Shipbuilding Inc. Sample HY8HHII Photograph #11

M5-562-12 Magnification: 10 Diameters Etch: 2% Nital

The photomicrograph shows the typical severity of segregation found in the weld filler metal of the sample.

Bay Shipbuilding Inc. Sample HY8ACHHI Photograph #8

The photomicrograph shows the worst field of inclusions found in the sample.


Bay Shipbuilding Inc. Sample HY8ACHHI Photograph #12

M5-562-13 Magnification: 10 Diameters Etch: 2% Nital

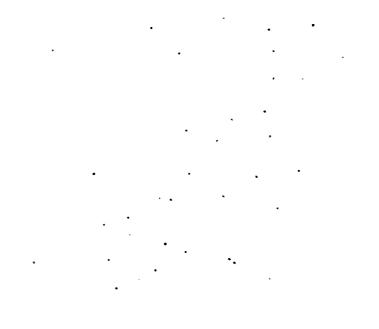
The photomicrograph shows the typical severity of segregation found in the weld filler metal of the sample.

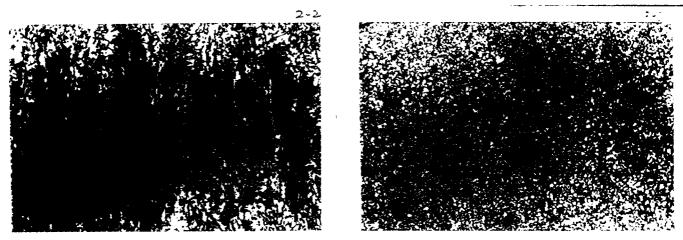
Bay Shipbuilding Corp. Sample EH6CS Photograph #3

M5-562-14 Magnification: 10 Diameters Etch: 2% Nital

The photomicrograph shows the typical severity of the segregation found in the filler metal of the sample.

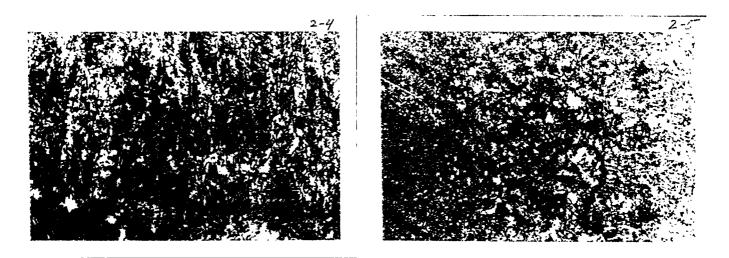
Bay Shipbuilding Corp. Sample EH6CS Photograph #1


M5-562-14 Magnification: 100 Diameters Etch: None The photomicrograph shows the worst field of inclusions found in the sample. Bay Shipbuilding Corp. Sample EH6FC Photograph #4

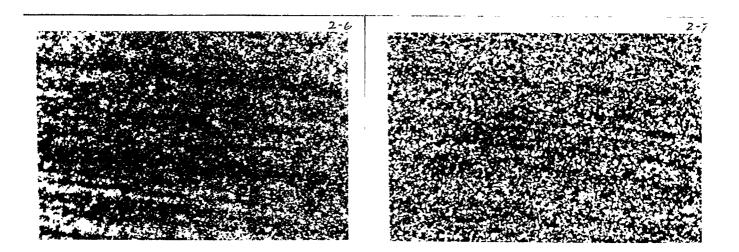

M5-562-15 Magnification: 10 Diameters Etch: 2% Nital

The photomicrograph shows the typical severity of the segregation found in the filler metal of the sample.

Bay Shipbuilding Corp. Sample EH6FC Photograph #2

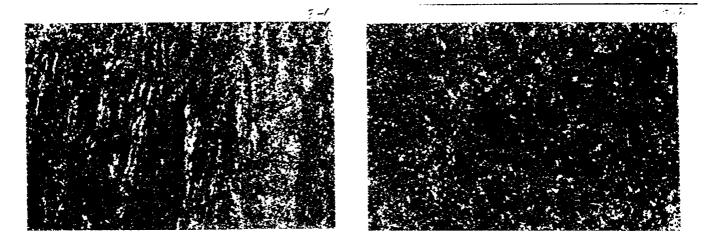


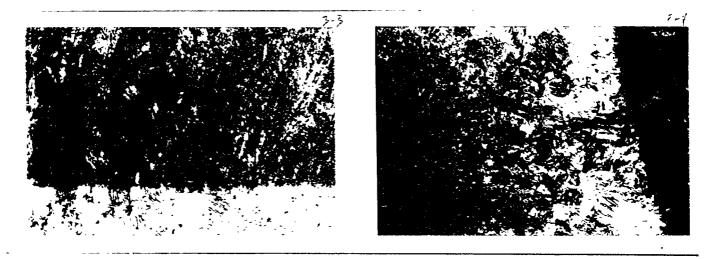
M5-562-15 Magnification: 100 Diameters Etch: None The photomicrograph shows the worst field of inclusions found in the sample.


WELD METAL - FINE GRAIN STRUCTURE

WELD METAL - LARGE GRAIN STRUCTURE

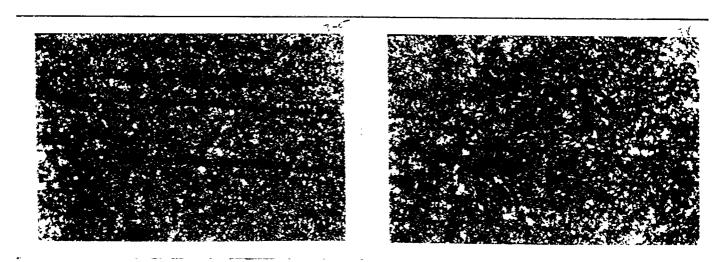
WELD METAL AT FUSION LINE

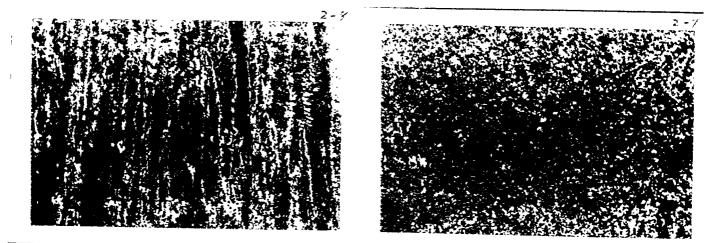

BASE METAL H.A.Z. - LARGE GRAIN


BASE METAL H.A.Z. - FINE GRAIN

BASE METAL AWAY FROM H.A.Z.

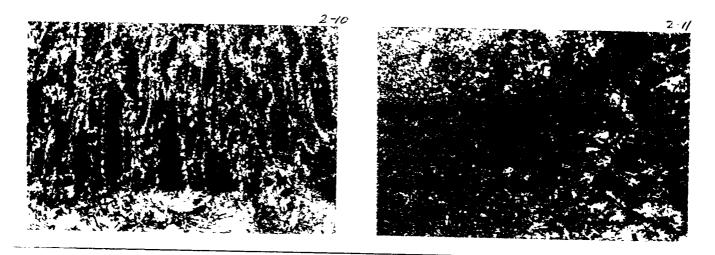
.

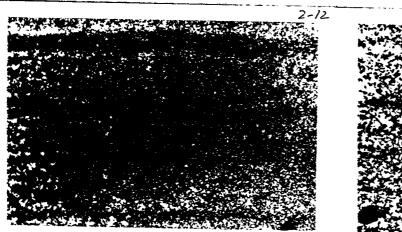

- WELD METAL LARGE GRAIN STRUCTURE
- WELD METAL FINE GRAIN STRUCTURE

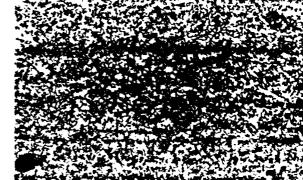


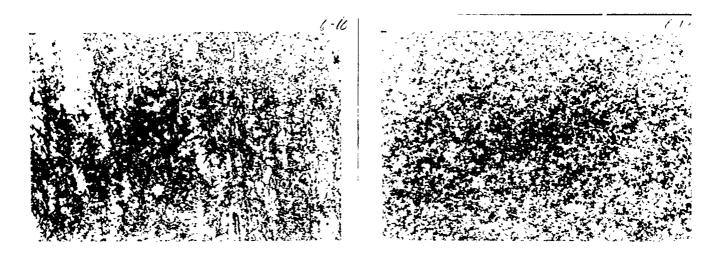
WELD METAL AT FUSION LINE

BASE METAL H.A.Z. - FINE GRAIN

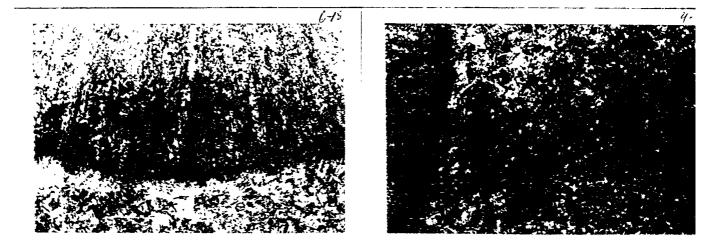

BASE METAL H.A.Z. - LARGE GRAIN


WELD METAL - LARGE GRAIN STRUCTURE

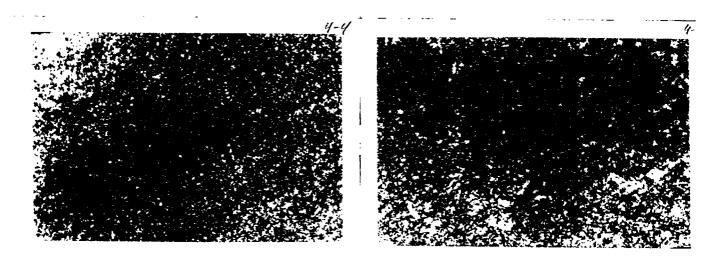

WELD METAL - FINE GRAIN STRUCTURE


WELD METAL AT FUSION LINE

BASE METAL H.A.Z. - LARGE GRAIN



BASE METAL H.A.Z. - FINE GRAIN

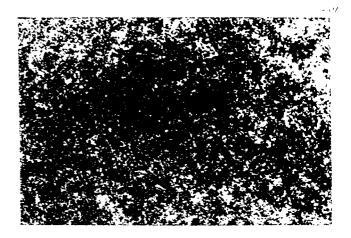


- WELD METAL LARGE GRAIN STRUCTURE
- WELD METAL FINE GRAIN STRUCTURE

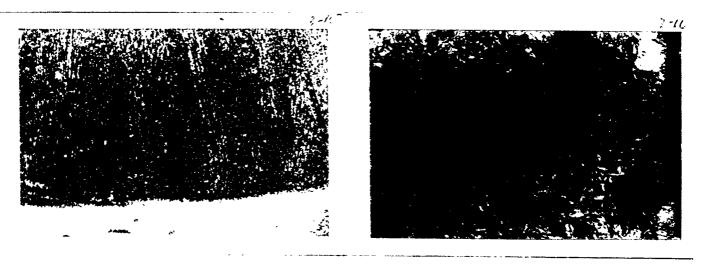


WELD METAL AT FUSION LINE

BASE METAL H.A.Z. - LARGE GRAIN

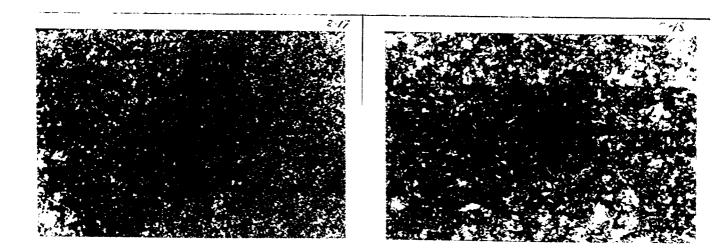


BASE METAL H.A.Z. - FINE GRAIN

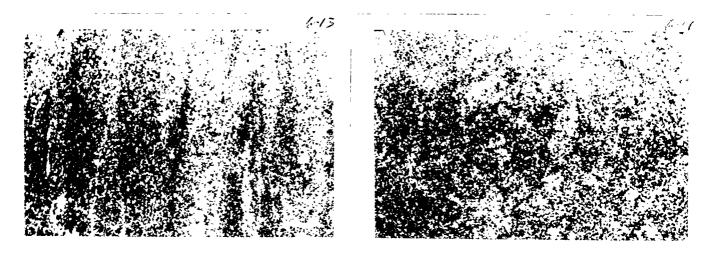


WELD METAL - LARGE GRAIN STRUCTURE

٢...

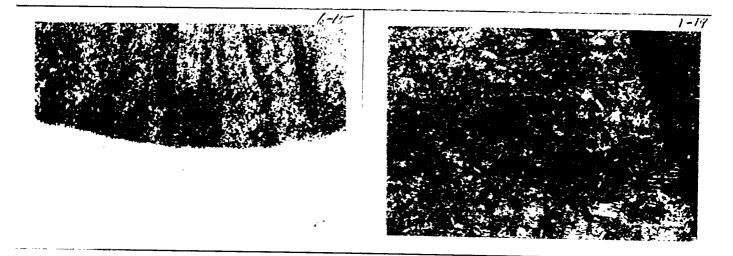


WELD METAL - FINE GRAIN STRUCTURE

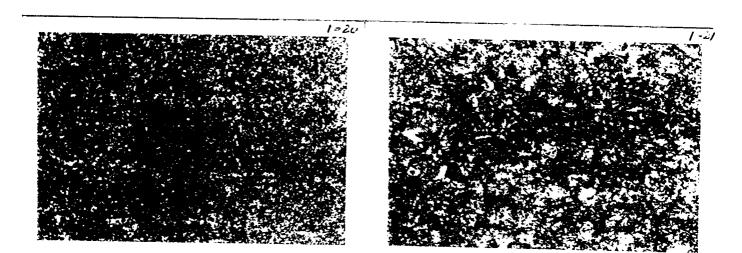


WELD METAL AT FUSION LINE

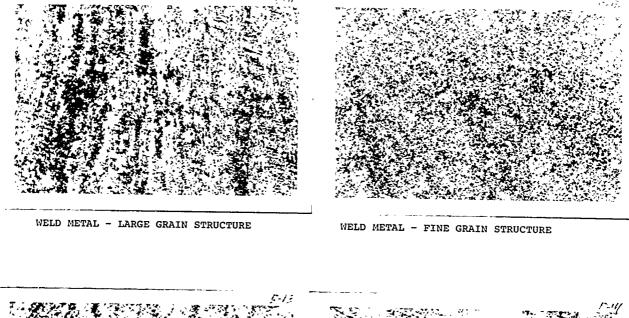
BASE METAL H.A.Z. - LARGE GRAIN



BASE METAL H.A.Z. - FINE GRAIN


WELD METAL - LARGE GRAIN STRUCTURE

WELD METAL - FINE GRAIN STRUCTURE

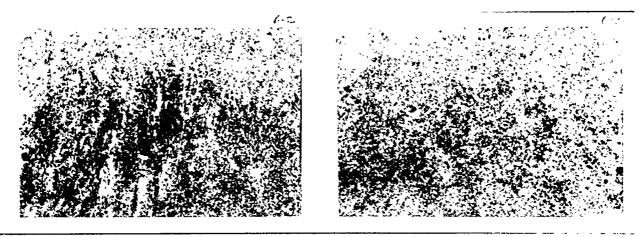


WELD METAL AT FUSION LINE

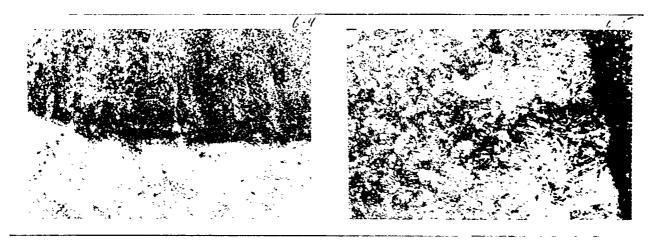
BASE METAL H.A.Z. - LARGE GRAIN

BASE METAL H.A.Z. - FINE GRAIN

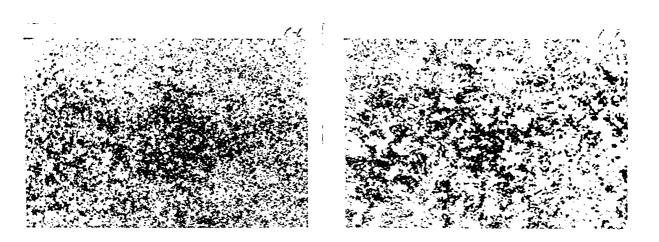
WELD METAL AT FUSION LINE


BASE METAL H.A.Z. - LARGE GRAIN

BASE METAL H.A.Z. - FINE GRAIN



BASE METAL AWAY FROM H.A.Z.

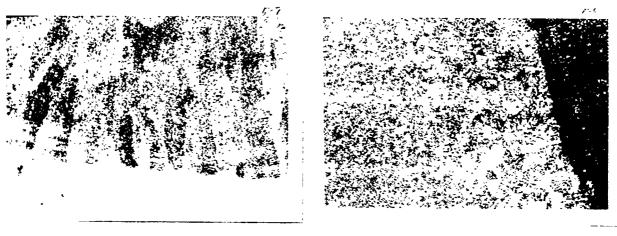

WELD METAL - LARGE GRAIN STRUCTURE

WELD METAL - FINE GRAIN STRUCTURE

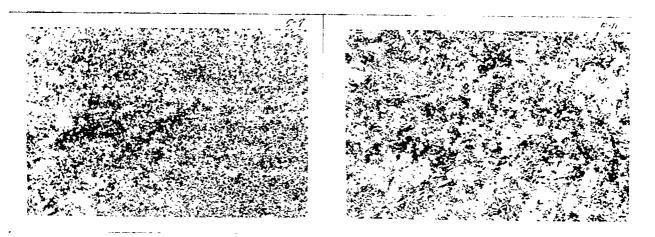


WELD METAL AT FUSION LINE

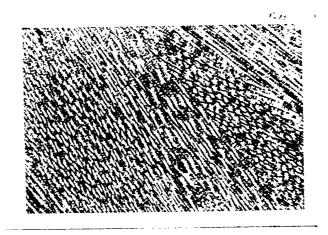
BASE METAL H.A.Z. - LARGE GRAIN



BASE METAL H.A.Z. - FINE GRAIN


WELD METAL - LARGE GRAIN STRUCTURE

WELD METAL - FINE GRAIN STRUCTURE


WELD METAL AT FUSION LINE

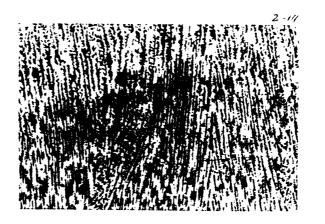
BASE METAL H.A.Z. - LARGE GRAIN

BASE METAL H.A.Z. - FINE GRAIN

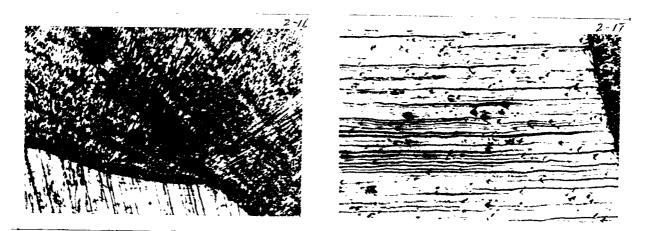
BASE METAL AWAY FROM H.A.Z.

WELD METAL - LARGE GRAIN STRUCTURE

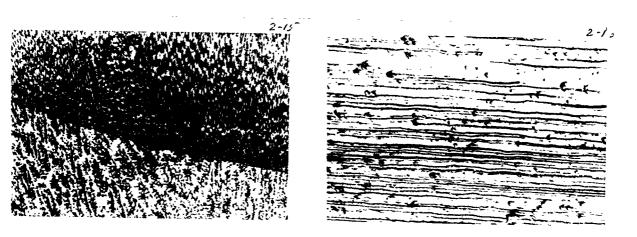
WELD METAL AT FUSION LINE

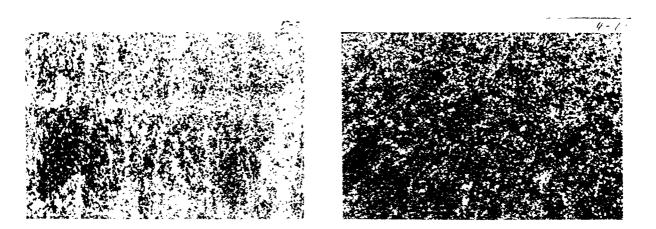


BASE METAL H.A.Z. LARGE GRAIN


BASE METAL H.A.Z.

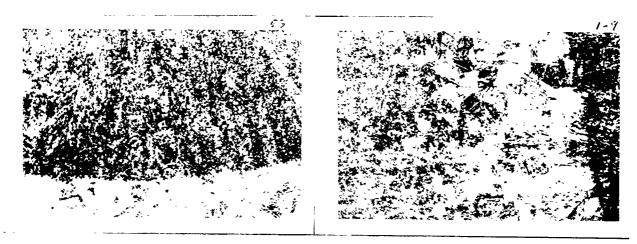
BASE METAL AWAY FROM H.A.Z.


WELD METAL - LARGE GRAIN STRUCTURE

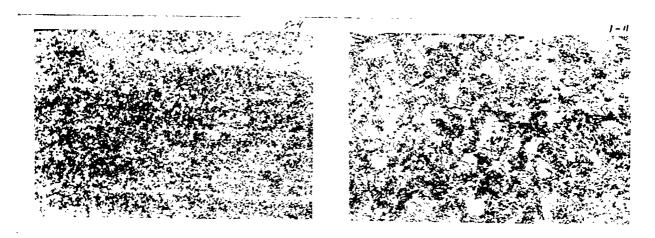

WELD METAL AT FUSION LINE

BASE METAL H.A.Z.

BASE METAL H.A.Z. LARGE GRAIN



BASE METAL AWAY FROM H.A.Z.


WELD METAL - LARGE GRAIN STRUCTURE

WELD METAL - FINE GRAIN STRUCTURE

WELD METAL AT FUSION LINE

BASE METAL H.A.Z. - LARGE GRAIN

BASE METAL H.A.Z. - FINE GRAIN

BASE METAL AWAY FROM H.A.Z.

SECTION 14

.

.

)

SUMMARY

~

••

.

••

SUMMARY

The most significant result in regard to the data gathered in this project was an improvement in the weld metal charpy impact results using fabricated electrodes on HY-80 and HY-100 steel test samples as opposed to the solid electrode Charpy impact values. It should be-noted that the solid electrode manufacturer (Linde) has developed a new flux (651 VF) to meet the new U.S.N.-Q.P.L. requirement for higher impact strength on HY type steel.

Another significant result-noted when comparing solid vs. flux core type electrodes is the improved deposition rates of the flux core electrodes as measured at the same amperage and voltage. In the lower amperage range, used for root passes against the backing bar (350 amps), the overall average of the deposition improvement was 3.5% of all samples tested. At the manufacturer's recommended welding amperage (500 amps), the average improvement in deposition rates was 19% of all samples tested. We feel that this is a significant improvement that demonstrates an economic advantage in favor of the flux core type electrodes.

Electrode cost comparison for the high strength type electrodes is also a very significant factor that impacts operating costs. Flux core - metal core fabricated electrodes for HY-80 and HY-100 submerged arc welding applications are as much as 50% lower in price/lb. than the solid electrodes designed for the same applications. In some cases, fabricated

138

electrodes are designed for gas shielded flux core welding as well as submerged arc welding applications. This latter item is, in itself, important by allowing a manufacturer to reduce electrode inventories.

In conclusion, we feel that this investigation has produced conclusive data that fabricated electrodes have several advantages in operating characteristics that improve weld quality and at the same time, reduce costs. There is one area, however, that must be addressed in this final conclusion. A point to consider is the difference in the penetrating capabilities of the two electrode types. If a weld joint design requires a deep penetrating arc, the solid electrode has a definite advantage over the fabricated electrodes. The type of joint design that requires a deep penetrating arc is a square butt joint, without edge preparation, welded from two sides. For this type weld joint design we recommend the solid electrodes be used. For all other submerged arc welding, we recommend strong consideration be given to the use of fabricated electrodes.

• •

SECTION 15

REFERENCES

REFERENCES

· · · ·

. .

.

.

I

_

- - - -

١

.

--

.

 12TH Edition - Procedure Handbook of Arc Welding, Lincoln Electric Company

SECTION 16

APPENDIX A - TENSILE TEST FORMS

•

Test Sam	EH_6 (ples prepar or X		274	10 West Mason	and Industry	ł	Yellow	-Company -NWTI -Perfor			
ITEM	DIAMETER OR THICKNESS	WIDTH	CSA	Y I ELD LOAD	ULTIMATE LOAD	YIELD STRENGTH	TENSILE STRENGTH	GAGE LENGTH	ELONG.	¥ ELONG.	
ENL 1	.863	.565	.487	28,250	39500	58,008	81,108	2"	.351	17	
EN. 7	.861	.572	.492	27,650	39 250	56,199	79,776	2"	.365	18	
BASE	.505		.200	11,100	16700	55,500	83,500	Z"	.648	32	
VELO	.507	\angle	.202	12,700	15900	62,871	78,712	2"	-534	26	
						•					
·											
											,
											•
										••••	
			1								
Test Perf	ormed by:	Only	. h/ ·	N.	·		Date	. 81	11/021		
Witnessed	~	Juce 7	fortin	Ep2	<u> </u>		Date		2/84	····	·

WORK NO. EH 6 FC

NORTHEAST WISCONSIN TECHNICAL INSTITUTE Trades and Industry Division 2740 West Mason Street, Green Bay, WI 54303

White-Company Yellow-NWTI Pink-Performer

.

.

Test Samples prepared by: Contractor_____ NWTI _____

TENSILE TEST WORKSHEET

ITEM		DIAMETER OR THICKNESS	WIDTH	CSA	YIELD LOAD	ULTIMATE LOAD	Y IELD STRENGTH	TENSILE Strengtii	GAGE LENGTH	ELONG.	% ELONG.	HARDNESS
TEN.	1	.856	.565	.483	27750	41900	57,453	86,749	ביי	.573	28	
TEN.	2	.863	.566	.488	27500	+1800	56,352	85,655	2"	.568	28	
					 	•						
Base		.504		.199	10500	16 700	52,763	83,419	2"	1645	32	
WELD		.507		.201	15,500	18500	77,114	92,039		.544	27	
							•					
						1						
												
<u></u>					· · · · · · · · · · · · · · · · · · ·							
			-			·						
Test	Perí	formed by:	John	W	R.	!	<u> </u>	Date		21/84	4	L
Witne	esseò	i by:	Lace ?	Jalua	ZZ	<u>کــــــــــــــــــــــــــــــــــــ</u>		Date	. 8/2	21/84		

144

i

WORK NO. SS L CS

Contractor_ NWTI X

Test Samples prepared by:

NORTHEAST WISCONSIN TECHNICAL INSTITUTE Trades and Industry Division 2740 West Mason Street, Green Bay, WI 54303

TENSILE TEST WORKSHEET

White-Company Yellow-NWTI Pink-Performer

1

DIAMETER OR HARDNESS YIELD ULTIMATE 8 YIELD TENSILE GAGE ITEM WIDTH CSA ELONG. THICKNESS LOVD ELONG. LOVD STRENGTH STRENGTH LENGTH 2" .575 TEN .832 .478 .443 26,100 39,850 54,602 83,368 22 .565 .832 .470 26,250 40,500 2" .740 .37 55,851 86,170 TEN 2 . .503 .198 10.350 17.250 52,272 87,121 2" 1.030 51 Base 2" -510 204 12,000 17,400 58,823 85,294 .659 32 Weld -Date: <u>9/29/84</u> Date: <u>9/29/84</u> Test Performed by: Witnessed by:

Work No. SSL FC

Test Samples prepared by:

Contractor____

NWTI X

NORTHEAST WISCONSIN TECHNICAL INSTITUTE Trades and Industry Division 2740 West Mason Street, Green Bay, WI 54303

TENSILE TEST WORKSHEET

White-Company Yellow-NWTI Pink-Performer

.

DIAMETER HARDNESS OR YIELD ULTIMATE YIELD TENSILE GAGE 8 ITEM WIDTH CSA ELONG. THICKNESS STRENGTH LENGTH ELONG. LOAD STRENGTH LOAD 2" .846 .873 .628 548 30,750 47,200 42 TEN 56,113 86,131 2" 545 30,500 46,500 55,963 85,32 38 .627 TEN .870 .766 2 2" 53 Base .505 .200 10,000 17,150 50,000 85,750 .067 .200 11,750 16,100 58,750 80,500 2" .835 41 Weld .505 -M 9/29 Test Performed by: Date: Witnessed by: Rauce to Date:

Work No. <u>HY 8 C.S</u> Test Samples prepared by: Contractor_____ NWTI X

•

NORTHEAST WISCONSIN TECHNICAL INSTITUTE Trades and Industry Division 2740 West Mason Street, Green Bay, WI 54303

TENSILE TEST WORKSHEET

White-Company Yellow-NWTI Pink-Performer ----

.

1.

ITEM	DIAMETER OR THICKNESS	WIDTH	CSA	YIELD LOAD	ULTIMATE LOAD	YIELD STRENGTH	TENSILE STRENGTH	GAGE LENGTH	ELONG.	% ELONG.	HARDNESS
TEN 1	.875	.513	.448	10250	50,050	89,843	111,718	2"	,418	20	
Ten - 2	.876	.500	-438	40,000	49,500	91, 324	113,013	5	.432	21	
BASE	.502		.197	17.700	21.540	89,847	109,340	え	-520	26	
WELD	.503		.198	18100	21,750	91,414	109,848	2"	-437	21	
								·			
]			
·				· · · · · · · · · · · · · · · · · · ·	·····						
<u></u>											
<u></u>									•		
Test Perf	ormed by:	John	M	Zin			Date	. 8/2	21/84		
Witnessed	by: B	here of	Schor	The	······································		Date	<u>8/2</u>	<u>/84</u>		

Work No. HY8FC Test Samples prepared by: Contractor NWTI X

NORTHEAST WISCONSIN TECHNICAL INSTITUTE Trades and Industry Division 2740 West Mason Street, Green Bay, WI 54303

TENSILE TEST WORKSHEET

White-Company Yellow-NWTI Pink-Performer

DIAMETER OR YIELD ULTIMATE YIELD TENSILE GAGE 8 ----ITEM WIDTH CSA ELONG. THICKNESS LOND STRENGTH FOVD STRENGTH LENGTH ELONG. .869 .435 39.750 2" -501 49350 TEN .483 91.779 113.448 24 Base .871 .506 49 200 89,431 2" TEN_ .440 39.350 っ .43 111,818 21 Buse 2" BASE 504 .199 17,550 21 300 88,190 107,035 .531 26 2" 21,750 23 650 109,848 119,444 WELD 198 .415 503 20 York Test Performed by: Date: Witnessed by:

Date

J . 3

Work No. 14 8 MC

Test Samples prepared by: Contractor____ NWTI χ

NORTHEAST WISCONSIN TECHNICAL INSTITUTE Trades and Industry Division 2740 West Mason Street, Green Bay, WI 54303

TENSILE TEST WORKSHEET

White-Company Yellow-NWTI Pink-Performer

\$

ITEM	DIAMETER OR THICKNESS	WIDTH	CSA	YIELD LOAD	ULTIMATE LOAD	Y IELD STRENGTH	TENSILE STRENGTH	GAGE LENGTH	ELONG.	¥ ELONG.	Fracture
TEN 1	.881	.568	.500	42 300	53400	84,600	106,800	2"	.519	25	Base
TEN 2	.870	.570	-495	42 700	53350	86,262	107,777	Z"	.532	26	Base
. <u> </u>											
BASE	.502		.197	16900	20850	85,786	105,837	2"	.582	29	Weld
WELD	.503		.198	18 650	21000	94,191	106,060	2"	.511	25	Base
						·					
				· · · ·							
•											
										`	
			l								
Test Perf	ormed by:	Och	M/K	ing			Date	. 8/2	2/84	······································	L
Witnessed	-	ruce	Zfee da	Sofar	>			: :8/z:	1.	··	

149

Work No. HY 8 AC Test Samples prepared by: Contractor_____ NWTI X____

•

NORTHEAST WISCONSIN TECHNICAL INSTITUTE Trades and Industry Division 2740 West Mason Street, Green Bay, WI 54303

TENSILE TEST WORKSHEET

White-Company Yellow-NWTI Pink-Performer

DIAMETER OR YIELD ULTIMATE YIELD TENSILE GAGE and the second second second second second second second second second second second second second second second ITEM 8 WIDTH CSA ELONG. THICKNESS LOAD LOAD STRENGTH STRENGTH LENGTH ELONG. -878 .497 37500 2" TEN. 1 .436 .169 42000 86,009 96,330 08 Weld .875 .510 ~446 2" TEN. 2 143 450 35750 80,156 45,179 08 .177 Weld . 2" BASE .198 17500 502 21500 88,383 108,585 26 .532 2" .195 .498 16100 18250 82,564 93,589 WELD .430 21 Test Performed by: John M Date: 8/21/84 Witnessed by: Truce 2/al . 015 Date:

Work No. HY8-ACHAI Test Samples prepared by: Contractor NWTI 🗡

NORTHEAST WISCONSIN TECHNICAL INSTITUTE Trades and Industry Division 2740 West Mason Street, Green Bay, WI 54303

White-Company Yellow-NWTI Pink-Performer

TENSILE TEST WORKSHEET

ITEM	DIAMETER OR THICKNESS	WIDTH	CSA	YIELD LOAD	ULTIMATE LOAD	Y IELD STRENGTH	TENSILE STRENGTH	GAGE LENGTH	ELONG.	% ELONG.	HARDNESS
TEN 1	.880	.564	-496	39,875	47750	80,393	96,270	2"	.185	09	
TEN 2	.885	-563	-498	39,350	47200	79,016	94,779	2"	.198	09	
					•						
BASE	.504		-199	17,050	21,150	85,678	106,281	<u> </u>	.549	27	
WELD	-506		.201	16,900	19,100	84,079	95,024	<u> </u>	-387	19	
						İ			 		
				······							
				· · • • • •							
•											
			1								
Test Perf	ormed by:	a	N T	1.		,,, J	Date	. 8/3	2/84		·
Witnessed	- /	-	2h K				Date	les 1-1	7 /201		
	$\neg \neg$		-lana				Date	<u>~01 C</u>	-1.07		·····

.

•

Hy-8-AC-1 Murad Prog. 3205-Work No.

Test Samples prepared by: Contractor NWTI

NORTHEAST WISCONSIN TECHNICAL INSTITUTE Trades and Industry Division 2740 West Mason Street, Green Bay, WI 54303

TENSILE TEST WORKSHEET

White-Company Yellow-NWTI Pink-Performer

DIAMETER OR YIELD ULTIMATE HARDNESS YIELD TENSILE GAGE 8 ITEM WIDTH CSA ELONG. THICKNESS LOAD LOAD STRENGTH ELONG STRENGTH LENGTH +#1 ,372 33,800 .983 2 . 392 19.6 3657 40,600 92,602 111,030 +#2 ,379 33.920 2 981 3718 41250 91,428 110,950 - 468 23,4 19,500 93,216 2 .162 .504 1995 18,550 97,740 8,1 505 Wele 1995 17,200 20,750 86,432 104,010 505 Par .504 557 27.9 2 -٠ Test Performed by: Chupent Muy 15-1983 Date: 5-15-85 Date:

Hy-8-HH+ -1 Marad Proj 3205 Work No.

Test Samples prepared by:

Contractor_____

NORTHEAST WISCONSIN TECHNICAL INSTITUTE Trades and Industry Division 2740 West Mason Street, Green Bay, WI 54303

TENSILE TEST WORKSHEET

White-Company Yellow-NWTI Pink-Performer

۹,

DIAMETER OR YIELD ULTIMATE YIELD TENSILE GAGE HARDNESS ITEM 8 WIDTH CSA ELONG. THICKNESS LOAD LOAD STRENGTH STRENGTH LENGTH ELONG +#1 ,972 .384 3732 31,750 40,300 85.075 2 ,468 107970 23.4 t#2 .965 ,377 ,3638 39 500 2 30.800 84.661 108 570 ,406 20,3 505 Wild . 505 12003 16,620 22,00 -83.100 110.330 2_ 500 25,0 505 Par ,2011 18,050 21,750 189,800 108,160 .506 _ 2 28.3 ,566 -Witnessed by: Right Calupter Date: <u>*Jung* 15-1985</u> Date: <u>5-15-85</u>

153

Nork No. HY-O CS

Contractor NWTI X

Test Samples prepared by:

NORTHEAST WISCONSIN TECHNICAL INSTITUTE Trades and Industry Division 2740 West Mason Street, Green Bay, WI 54303

TENSILE TEST WORKSHEET

White-Company Yellow-NWTI Pink-Performer

.

DIAMETER OR YIELD ULTIMATE YIELD HARDNESS TENSILE GAGE 8 ITEM WIDTH CSA ELONG. THICKNESS LOVD LOVD STRENGTH STRENGTH LENGTH ELONG. 43750 .875 .405 1 .354 36,900 2" TEN. -421 103,954 123,587 BASE 21 2" Retest .874 .400 * 177 = broke .349 35.750 41250 7 TFN 102.435 118,194 acar merk 22500 24800 2" .201 BASE 506 111,940 123,383 .444 27 WELD 505 25200 21000 105,000 126,000 2 200 370 18.5 Witnessed by: Buine Africa 8/21/84 Date: Date

Test Sam	HY_O_(ples prepar or	ed by:		Trades (0 West Mason	SCONSIN TECHN and Industry Street, Gree ILE TEST WORK	White-Company Yellow-NWTI Pink-Performer					
ITEM	DIAMETER OR THICKNESS	WIDTH	CSA	YIELD LOAD	ULTIMATE LOAD	Y I ELD STRENGTH	TENSILE STRENGTH	GAGE LENGTH	ELONG.	% ELONG.	HARDNESS
etrst TEN 3	.876	.406	.355	37,000	43,950	104,225	123,802	2"	.345	17	
						•					
				·····						, 	
Test Perf Witnessed	ormed by:	John .	Jor Jo	topos	<u> </u>		Date	:_9/2; :_9/2°	9 84 9 84		

.

			NORTHEAST WISCONSIN TECHNICAL INSTITUTE Trades and Industry Division 2740 West Mason Street, Green Bay, WI 54303 TENSILE TEST WORKSHEET					White-Company Yellow-NWTI Pink-Performer				
ITEM	DIAMETER , OR THICKNESS	WIDTH	CSA	YIELD LOAD	ULTIMATE LOAD	YIELD STRENGTH	TENSILE STRENGTH	gage Length	ELONG.	¥ ELONG.	Fracture	
TEN_L	.871	. 400	.348	36,150	43,650	103,879	125,431	2"	.387	19	Base	
TEN 2	.875	.412	.360	38,300	44,500	106,388	123,611	2"	.385	19	Base	
BASE	.501			22,350					.489	24	ω	
NELD	. 506		.201	25,100	27150	124,875	135,074	<u> </u>	-378	!8	B	
												
<u></u>		<u> </u>	<u> </u>									
<u></u>											,	
·												
•												
											•	
					,							
]		ļ		i				22/84		L	

156

L .

.

.

• • •

•

•

Test Samp Contracto	Work No. <u>HY_O_AC</u> Test Samples prepared by: Contractor NWTI _X			NORTHEAST WISCONSIN TECHNICAL INSTITUTE Trades and Industry Division 2740 West Mason Street, Green Bay, WI 54303 TENSILE TEST WORKSHEET						White-Company Yellow-NWTI Pink-Performer			
ITEM	DIAMETER OR THICKNESS	WIDTH	CSA	YIELD LOAD	ULTIMATE LOAD	YIELD Strength	TENSILE Strength	GAGE LENGTH	ELONG.	¥ Elońg.	HARDNESS		
TEN 1	.877	.507		45,600	54,700	102,702	123,198	_2"	.438	21			
TEN 2	. 891	-500	.445	44,950	54,300	101,011	122,022	2"	.470	23			
						•							
Base	.504	· · ·	.199	21,800	24,450	109,547	122,864	2"	.442	22			
Weld	.505	· · · · · ·	.200	21,100	24,800	105,500	124,000	2"	.431	21			
<u> </u>				 		•							
<u></u>				 									
			ļ										
. <u></u>													
									L				
													
	ļ												
	<u> </u>						<u> </u>						
Test Ferf	ormed by:		M Z				Date	. 9/2	9/84				

HY-O-AC-1 Marad Project 3205-NORK NO.

NORTHEAST WISCONSIN TECHNICAL INSTITUTE Trades and Industry Division 2740 West Mason Street, Green Bay, WI 54303 White-Company Yellow-NWTI Pink-Performer

1

Test Samples prepared by: Contractor

NWTI

TENSILE TEST WORKSHEET

ITEM	DIAMETER OR THICKNESS	WIDTH	CSA	YIELD Load	ULTIMATE LOAD	YIELD Strength	TENSILE STRENGTH	gage Length	ELONG.	€ ELONG.	HARDNESS
T#1	.941	,376	.3538	36,350	43750	102,474	123,650	2	,398	19.9	
<u> +#2</u>	. 941	. 370	. 3482	36,250	42,800	104,166	122,930	2	.418	20,9	
505 Weld	.507		.2019	21,150	24,800	105,223	122,840	2	.430	21.5	
					2// ()	 	1211.0000	2		22.0	
505 Par	.503			22,600	29,630	<u> 4, 4 </u> 	124,050		,441	22.0	
	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			<u> </u>				
<u></u>											
<u></u>											
									ļ	ļ	-
					. <u></u>						
										 	
<u></u>		00				L	<u></u>	L	l		<u> </u>
	formed by:		aght	·			Date	n May	15-1	985	
Witnessed	1 by:	ruck	Holu	entres	2		Date	a:	5-85		

APPENDIX B - CHARPY TEST FORMS

.

-

.

.

٠.

•

•

•

APPENDIX B - Charpy Tests

Note:

Equipment used to notch the specimens was a Blacks Equipment Limited notch cutter, Type CNB-14 -Serial NO. 82643B.

The chiller was manufactured by F.T.S., Multi-Cool, Stone Ridge, NY 12484.

Temperature verification was obtained with an Omega 450 AKT, Thermocouple Thermometer Type K, Serial NO. 456853 -Calibration Date: April 1, 1984.

ARMY MATERIALS AND MECHANICS RESEARCH CENTER

.'

Watertown, Massachusetts 02172

Date of Test: 2 November 1984

TABLE

COMPARISON TESTS ON CHARPY IMPACT MACHINES

Northeast Wisconsin Technical Institute Marinette, WI 54143

Facility_

ŧ

Make of Machine Tinius Olsen

_Serial No. 135330

	AMMRC			Variation				
	(ft-1b)	(ft-1b)	Ac	tual	Allowed			
High Energy	68	69.8	2.6	95	+5.0%			
Low Energy	11.3	10.8	5	ft-lb	<u>+</u> 1.0 ft-1b			

XMR Form 105 Rev 1 Apr 81

•.

TESTING AGENT: N.W.T.I.
DATE: Nov. 9, 1984
TESTED FOR: Bay Shipbuilding Corp.
MATERIAL TYPE: EH Z6
SPECIMEN ID#: EH 6 CS
TESTING TEMPERATURE: _ 40° F
MEDIUM: Methanol Anhydrous CH30H
TYPE OF NOICH: Charpy V Notch
ففيه ويجمعه ومسترك الشكرية والمستريب والمتحار المتشكر فينجي والمستكلة

WISCONSIN STATE WELD TESTING LAB #3 1601 University Drive Marinette, WI 54143

TESTING MACHINE MODEL #: <u>74 Univ.</u> Tinius Olsen SERIAL NUMBER: <u>135330</u>

SPECIMEN ID#		FTLE	. ENERGY
All Weld	1	16	H
	2	8	τ
	z	15	
	4	0,5	
" <u>-</u>	5	15	
H.A.Z.	6	15	
	7	10	L
• •	8	14.5	
	q	112	<u>ਪ</u>
•	10	72	
Base	11	168	
	12	173	<u>н</u>
	13	69	
	14	66	ī
	15	72	
		·	

AVERAGE SPECIMENS <u>1</u> TO <u>5</u> <u>17.1 Ft. Ibs.</u> AVERAGE SPECIMENS <u>6</u> TO <u>10</u> <u>77.8 Ft. Ibs.</u> AVERAGE SPECIMENS <u>11</u> TO <u>15</u> <u>107 Ft. Ibs.</u> AVERAGE SPECIMENS <u>TO</u> TESTING AGENT SIGNATURE: <u>11/2 T&44</u>

TESTING AGENT: <u>N.W.T.I.</u> DATE: <u>Nov.</u> 9, 1984
TESTED FOR: Bay Shippuilding Corp.
MATERIAL TYPE: FY ZG
SPECIMEN ID#: FH 6 FC
TESTING TEMPERATURE: _ 400 -
MEDIUM: Methanol Anhydrous CH30H
TYPE OF NOICH: Charpy V Notch

.

WISCONSIN STATE WELD TESTING LAB #3 1601 University Drive Marinette, WI 54143

.

.

TESTING MACHINE MODEL #: <u>74 Univ.</u> Tinius Olsen SERIAL NUMBER: <u>135330</u>

SPECIMEN ID#		F	rlb. Energy	
All Weld	1	64	Ľ	
	2	75		
	3	68		
	4	76		· · · · · · · · · · · · · · · · · · ·
<u>.</u>	5	77	H	
H.A.Z.	6	134	H	
	7	120		······,
	8	<u>१</u> 4		
	q	115		
、 <u>·</u>	10	57	L .	
Base	11	132		
	12	113	L	·····
	13	116		
	14	157	Ĩ H	
	15	128		

AVERAGE SPECIMENS 1	TO <u> </u>	73 Ft. Ibe.
AVERAGE SPECIMENS <u>6</u>	TO <u>10</u>	106.7 Ft. Ibs.
AVERAGE SPECIMENS 11	TO <u>15</u>	125.3 Ft. Lbs.
AVERAGE SPECIMENS	TO	
	TESTING AGEN	I SIGNATURE ACCOM ACCOUNTR

	•
	· TESTING AGENT: N.W.T.I.
	DATE: Nov. 9, 1984
, ,	TESTED FOR: Bay Shipbuilding Corp.
	MATERIAL TYPE: HY 100
	SPECIMEN ID#: O CS
	TESTING TEMPERATURE: _ 60° F
	MEDIUM: Methanol Anhydrous CH30H
	TYPE OF NOICH: Charpy V Notch

.

.

٠.

WISCONSIN STATE WELD TESTING LAB #3 1601 University Drive Marinette, WI 54143

.

TESTING MACHINE MODEL #: 74 Univ. Tinius Olsen SERIAL NUMBER: 135330

SPECIMEN ID#		FTLB. ENERGY
All Weld	1	
	2	28
	z,	ZZ T.
	4	<u>1111 H</u>
	5_	7.7
H.A.Z.	6	<u>118 I</u>
	7	123
	8	<u>126 H</u>
<u></u>	<u>a</u>	126
	10	121
Base	11	120
· .	12	120
	13	127 L
	14	128
	15	171 4

AVERAGE SPECIMENS <u>1</u> TO <u>5</u>	<u></u>
AVERAGE SPECIMENS _6 TO 10	123.7 Ft. Ibs.
AVERAGE SPECIMENS 11 TO 15	120 Ft. Lbs.
AVERAGE SPECIMENS TO	
TESTING A	AGENT SIGNATURE: Mar Marker DATE: 11. 9 184

TESTING AGENT: N.W.T.I. DATE: Nov. 9. 1984 TESTED FOR: Bay Shibbuilding Corp. MATERIAL TYPE: HY 100 SPECIMEN ID#: HY 0 AC TESTING TEMPERATURE: - 60° F. MEDIUM: Methanol Anhydrous CH3OH TYPE OF NOTCH: Charpy V Notch WISCONSIN STATE WELD TESTING LAB #3 1601 University Drive Marinette, WI 54143

TESTING MACHINE MODEL #: <u>74 Univ.</u> Tinius Olsen SERIAL NUMBER: <u>135330</u>

SPECIMEN ID#		F	LB. ENERGY	<u></u>
All Weld	1	57	<u>H</u>	
	2	7 <u>11</u>		
	z	33	L	
	4	42		
• -	5	35		
H.A.Z.	6	53	L	
	7	118	<u></u>	
		144	H	
	<u>0</u>	82		
•				
		118		
<u>Base</u>	11	150	<u><u> </u></u>	
 	12	139		
	13	140		
	14	174	<u></u>	
	15	125	L	

AVERAGE SPECIMENS <u>1</u> TO <u>5</u>	37 Ft. Ibs.
AVERAGE SPECIMENS 6 TO 10	106 Ft. Lbs.
AVERAGE SPECIMENS 11 TO 15	137.6 Ft. Lbs.
AVERAGE SPECIMENS TO	
_	

TESTING AGENT SIGNATURE: Maler Ma, Schuluper. DATE: 1/1/9/84

•	TESTING AGENT: N.V.T.I.
	DATE: Nov. 9, 1084
	TESTED FOR: Bay Shipbuilding Corp.
	MATERIAL TYPE: HY 100
	SPECIMEN ID#: HY O FC
	TESTING TEMPERATURE: _ 60° F
	MEDIUM: Methanol Anhydrous CH3OH
	TYPE OF NOICH: Charpy V Notch

,

.

,

WISCONSIN STATE WELD TESTING LAB #3 1601 University Drive Marinette, WI 54143

.

•..

TESTING MACHINE MODEL #: <u>74 Univ.</u> Tinius Olsen SERIAL NUMBER: <u>135330</u>

SPECIMEN ID#			FTLB. ENERGY
All Weld	1	25	
	2	26	
	3	25	
~	4.	24	
• <u>-</u>	. 5	<u>24</u>	I.
H.A.Z.	6	120	
		121	
	8	124	
	Q	124	H
· ·	10	118	L
Base	11	. 135	Ľ
	12	128	- <u>L</u>
	13	129	
	14	130	
······································	15	170	
		·	

AVERAGE	SPECIMENS	1	TO	5	24.6 Ft. Ibs.
AVERAGE	SPECIMENS	6	TO .	10	121.6 Ft. Lbs.
AVERAGE	SPECIMENS	<u> 11</u>	TO .	15	129.6 Ft. Ibs.
AVERAGE	SPECIMENS		TO .		
			TES	TING A	AGENT SIGNATURE: 11/9/54

TESTING AGENT: N.V.T.I.
DATE: Nov. 9, 1984
TESTED FOR: Bay Shipbuilding Corp.
MATERIAL TYPE: UY 20
SPECIMEN ID#: HY 2 CS
TESTING TEMPERATURE: _ 60° F.
MEDIUM: Methanol Anhydrous CH3OH
TYPE OF NOICH: Charpy V Notch

.

•

٠

۲

WISCONSIN STATE WELD TESTING LAB #3 1601 University Drive Marinette, WI 54143

• .

TESTING MACHINE MODEL #: <u>74 Univ.</u> Tinius Olsen SERIAL NUMBER: <u>135330</u>

SPECIMEN ID#		FTLB. ENERGY		
All Weld	1	<u>41 म्</u>		
	2	<u>40</u>		
	3	- 33 <u>I</u>		
	4	- 74		
	5	37		
H.A.Z.	6	128 H		
	7	121 L		
· · · · ·	8	124		
-	q	127		
·	10	126		
Base	11	·. 140		
	12	178		
	13	144 н		
	14	17/L T		
	15	177		

AVERAGE	SPECIMENS	<u>1</u> TO		37 Ft. Lbs.	
AVERAGE	SPECIMENS	<u>6</u> TO	10	125.6 Ft. Lbs.	
AVERAGE	SPECIMENS 1	<u>1</u> TO	15	178.3 Et. Lbs.	
AVERAGE	SPECIMENS	TO TE	•	AGENT SIGNATURE:	M Lebreiner

DATE:May 3, 1985
1985
TESTED FOR: Bay Shipbuilding Corp.
MATERIAL TYPE: HY 80
SPECIMEN ID#: HY8 AC-1
TESTING TEMPERATURE: -60F
MEDIUM: Methanol Anhydrous CH30H
TYPE OF NOICH: Charpy V Notch

•

WISCONSIN STATE WELD TESTING LAB #3 1601 University Drive Marinette, WI 54143

.

TESTING MACHINE MODEL #: <u>74 Univ.</u> Tinius Olsen SERIAL NUMBER: <u>135330</u>

SPECIMEN ID#	,	FTLB. ENERGY
All Weld 1	54	
2	50	
<u> </u>	67	Н
<u></u> <u>/1</u>	44	L
·	63	
<u> </u>	40	L
7	65	
8_	58	
<u> </u>	70	
	90	H
Base 11	. 142	
12	147	
1z	141	
14.	135	L
15	152	- <u>H</u>
		-
AVERAGE SPECIMENS <u>1</u> TO <u>5</u>		
AVERAGE SPECIMENS 6 TO 10	64.	3 Ft. lbs.
AVERAGE SPECIMENS 11 TO 15	143.	3 Ft. 1bs.
AVERAGE SPECIMENS TO		······································

TESTING AGENT SIGNATURE:

•	TESTING AGENT: N.W.T.I. DATE: Nov. 9, 1984 TESTED FOR: Bay Shipbuilding Corp. MATERIAL TYPE: FY 80 SPECIMEN ID#: FY 8 AC HHT
	TESTING TEMPERATURE: -60° F.
	MEDIUM: Methanol Anhydrous CH3OH
	TYPE OF NOICH: Charpy V Notch

-

.

.

WISCONSIN STATE WELD TESTING LAB #3 1601 University Drive Marinette, WI 54143

.

TESTING MACHINE MODEL #: <u>74 Univ.</u> Tinius Olsen SERIAL NUMBER: <u>135330</u>

SPECIMEN ID#		FT.	-LB. ENERGY	
All_Weld	1	10	म	
	2	15		
	3	15		
	<u>ل</u> ا	17		
<u> </u>	5	12.5	L	
H.A.Z.	6	47		
	7	47		
	8	3,2	<u> </u>	
	g	82	H	
·	10	57		
Base	11	152		
	12	138		
	13	166	H.	
	14	146		<u> </u>
			<u> </u>	
		152		<u> </u>

AVERAGE SPECIMENS 1	TO <u>5</u>	<u>15.6 Ft. Lbe.</u>	
AVERAGE SPECIMENS _6_	TO <u>10</u>	50.3 Ft. Lbs.	
AVERAGE SPECIMENS 11	TO <u>15</u>		-
AVERAGE SPECIMENS	TO	1	
	TESTING AC	SENT SIGNATURE: 12/10/14 DATE:	i Antorina

TESTING AGENT: <u>N.W.T.I.</u> DATE: <u>May 3, 1985</u> TESTED FOR: <u>Bay Shipbuilding Corp</u>. MATERIAL TYPE: <u>HY80</u> SPECIMEN ID#: <u>HY8 HHI-1</u> TESTING TEMPERATURE: <u>-60F</u> MEDIUM: <u>Methanol Anhydrous CH30H</u> TYPE OF NOTCH: <u>Charpy V Notch</u> WISCONSIN STATE WELD TESTING LAB #3 1601 University Drive Marinette, WI 54143

TESTING MACHINE MODEL #: <u>74 Univ.</u> Tinius Olsen SERIAL NUMBER: 135330

SPECIMEN ID#			FTI.B. ENERGY	
All Weld	1	30		
	2	28	L	_
	٦	37	Н	
	<u>/</u> _	35	·	
•	5	33		
H.A.Z.	Ŕ	138		
	7	136	L	
-	R	147	Н	
	Q	145		
	10	140		
Base	11	73	L	
	12	98	Н	
	13	77		
	14	94		· · · · · · · · · · · · · · · · · · ·
	15	85		
			-	
AVERAGE SPECIMENS 1 1	<u>0 5</u>	32.6	Ft. lbs.	
			0 74 14 -	

AVERAGE SPECIMENS 6 TO 10 1	41.0 Ft. 105.
-----------------------------	---------------

AVERAGE SPECIMENS 11 TO 15 85.3 Ft. 1bs.

AVERAGE SPECIMENS _____ TO _____

TESTING AGENT SIGNATURE:

TESTING AGENT: N.W.T.I.
DATE: Nov. 9, 1984
TESTED FOR: Bay Shippuilding Corp.
MATERIAL TYPE: HY 80
SPECIMEN ID#: HY 8 AC
TESTING TEMPERATURE: _ 60° F.
MEDIUM: Methanol Anhydrous CH3OH
TYPE OF NOICH: Charpy V Notch

•

•

• •1

WISCONSIN STATE WELD TESTING LAB #3 1601 University Drive Marinette, WI 54143

.

TESTING MACHINE MODEL #: <u>74 Univ.</u> Tinius Olsen SERIAL NUMBER: <u>135330</u>

SPECIMEN ID#		FTI.B. ENERGY
All Weld	1	21 H
	2	16
	3	12 L
	4	18
<u> </u>	5	10
H.A.Z.	6	105
	7	142
	8	co L
<u></u>	Q.	108
	10	<u>154 Н</u>
Base	11	1/10
	12	142
<u></u>	13	150 H
	14	144
	15	172 <u>I.</u>
AVERAGE SPECIMENS <u>1</u>	TO <u>5</u>	17.6 Ft. Ibs.
AVERAGE SPECIMENS _6_	TO <u>10</u>	118.3 Ft. Lbs.
AVERAGE SPECIMENS 11	TO <u>15</u>	<u>145 Ft. Ibs.</u>
AVERAGE SPECIMENS	•	AGENT SIGNATURE: ////////////////////////////////////

TESTING AGENT: N.W.T.I.
DATE: Nov. 9, 1084
TESTED FOR: Bay Shipbuilding Corp.
MATERIAL TYPE: 17V 80
SPECIMEN ID#: HV Q MC
TESTING TEMPERATURE: _ 60° 7
MEDIUM: Methanol Anhydrous CH3OH
TYPE OF NOICH: Charpy V Notch

.

.

-

WISCONSIN STATE WELD TESTING LAB #3 1601 University Drive Marinette, WI 54143

•

TESTING MACHINE MODEL #: <u>74 Univ.</u> Tinius Olsen SERIAL NUMBER: <u>135330</u>

SPECIMEN ID#		FTLB. ENERGY
All Weld	1	61 <u>4</u>
	2	ЩО
	R	<u> </u>
	4	上〇 -
· .	5	56
H.A.Z.	6	146 H
	7	14.1
· ·	8	145
	q	136 -
•	10	130
Base	11	· 151
<u></u>	12	134 I.
	13	148
	14	149
	15	<u>152 표</u>

AVERAGE	SPECIMENS	_1	TO <u>5</u>	54.6 Ft. Ibs.
AVERAGE	SPECIMENS	<u> </u>	TO <u>10</u>	141.6 Ft. Lbs.
AVERAGE	SPECIMENS	<u>11</u>	TO <u>15</u>	140.3 Ft. Lbs.
AVERAGE	SPECIMENS		TO	
			TESTING A	GENT SIGNATURE

TESTING AGENT: <u>N.W.T.I.</u> DATE: <u>May 3. 1985</u> TESTED FOR: <u>Bay Shipbuilding Corp</u>. MATERIAL TYPE: <u>HY 100</u> SPECIMEN ID#: <u>HY0 AC 1</u> TESTING TEMPERATURE: <u>-60F</u> MEDIUM: <u>Methanol Anhydrous CH3OH</u> TYPE OF NOICH: <u>Charpy V Motch</u>

WISCONSIN STATE WELD TESTING LAB #3 1601 University Drive Marinette, WI 54143

TESTING MACHINE MODEL #: <u>74 Univ.</u> Tinius Olsen SERIAL NUMBER: <u>135330</u>

SPECIMEN ID#			FTLB. ENERGY	
All Weld	1	55		
	2	50		
	ス	60	· · ·	
	<u>11</u>	63	Н	
	5	48	L	
H.A.Z.	6	<u>5</u> 5		
·····	7	58		
· · · · · · · · · · · · · · · · · · ·	8	60		
· · · · · · · · · · · · · · · · · · ·	0	77	Н	
1	0	54	L	
Base 1	1	<u>129</u>	L	
1;	2	135	Н	
1	z	131		
14	μ	131		······································
1	5	130		
AVERAGE SPECIMENS 1 TO	5	55.0	Ft. lbs.	
AVERAGE SPECIMENS 6 TO 1	.0	57.6	Ft. lbs.	
AVERAGE SPECIMENS 11 TO 1	.5	130.6	Ft. lbs	

TESTING AGENT SIGNATURE:

AVERAGE SPECIFIENS _____ TO _____

APPENDIX C - HARDNESS TEST FORMS

• •

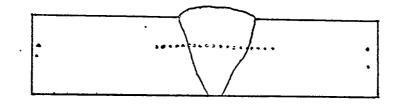
Hardness Data Explanation

I. Test Equipment

The tester used consists of a Wilson Rockwell Twin Testor, Model 3TY-a-Rb, serial #279. The machine was serviced 6-28-84 to ASTM-E 18 standards.

II. Data Sheet Explanation

The data sheets contain the following data:


Weld sample number, date of the test, Rockwell test block data, machine test data, weld sample base metal hardness, and a graph of the hardness data vs position of the test. All hardness data was run on the superficial scale R30N. This scale allows a smaller test dent so readings could be taken closer together.

111. Sample Test Procedure

- The weld test samples were etched with appropriate etch solution to relieve the welded area and the base metal-weld boundary.
- A series of three tests were run on the test.block .
 to determine the operational accuracy of the hardness tester.

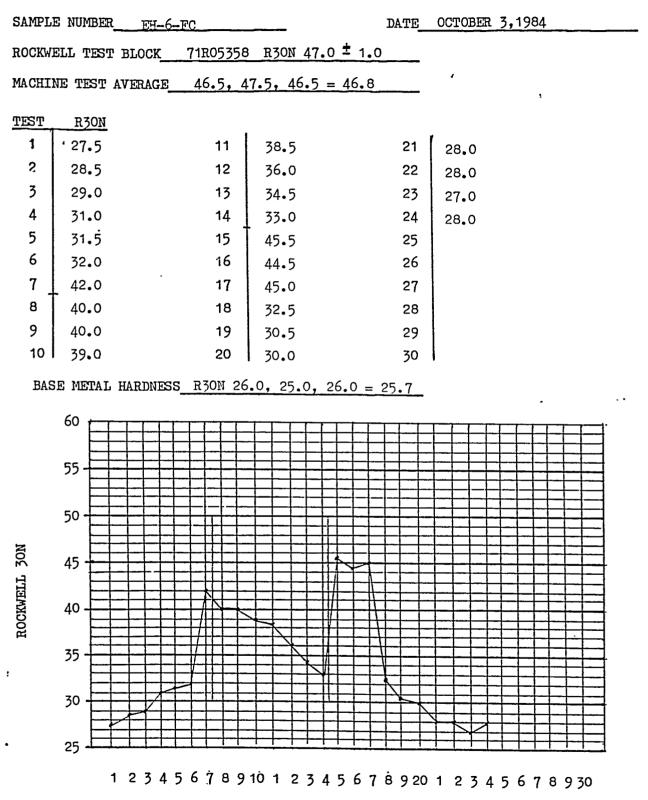
- To establish base metal hardness, hardness tests were taken on the ends of the sample away from the heat effected area. Three readings were taken and averaged.
- 4. A series of about 20 single tests were run across the weld to establish a hardness profile of the welded area. This series was started about 3/8" from the weld boundary and ended about 3/8" in the base metal on the opposite side. Tests were taken at about 1/16" increments. Since the exact placements could not be accomplished, the increment distances vary slightly.

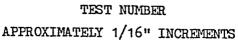
5. The test dents were counted to determine the division line between the base metal and the weld pool. These boundaries are marked on the hardness graph.

- 6. Any samples showing inconsistent data were retested.
- 7. After all samples were tested, the Rockwell test block was retested to determine machine accuracy.

Iv. Test Results and Explanation

The hardness value of the standard test block and the "machine test" show good correlation. The hardness of the test block recorded is R30N 47.0± 1.0 and the machine test averaged R30N 46.8. Tests run on the test block after weld sample testing again show good consistency with an average of R30N 46.7.

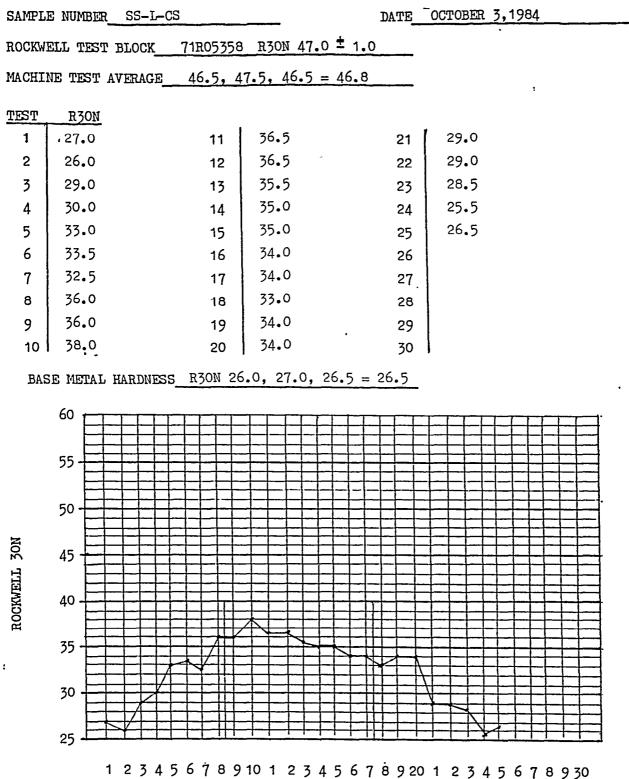

The first and last hardness tests on the "series" show good correlation with that of the base metal average. In all cases the HY and EH steel samples show that there are hardened areas in the heat affected zones next to the weld pool. The maximum hardness in these areas was probably not determined in all cases. However, the data does show substantial increase over the base metal hardness.

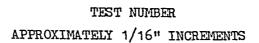

The-hardness of the "weld metals" of sample Hy-8-Ac shows a value slightly lower than that of the base metal. Samples Hy-O-CS, Hy-O-FC, Hy-8-FC, EH-6-FC, and EH-6-CS show a hardness that is slightly harder than the base metal average. Weld samples Hy-O-AC, Hy-8-MC, Hy-8-cs, and Hy-8-AC-HHI show a hardness about even with that of the base metal. Both stainless steel samples show a "weld metal" that is about 10 R30N points higher than that of the base metal.

Signed: Quentin Ruprecht Date: November 6, 1984

.

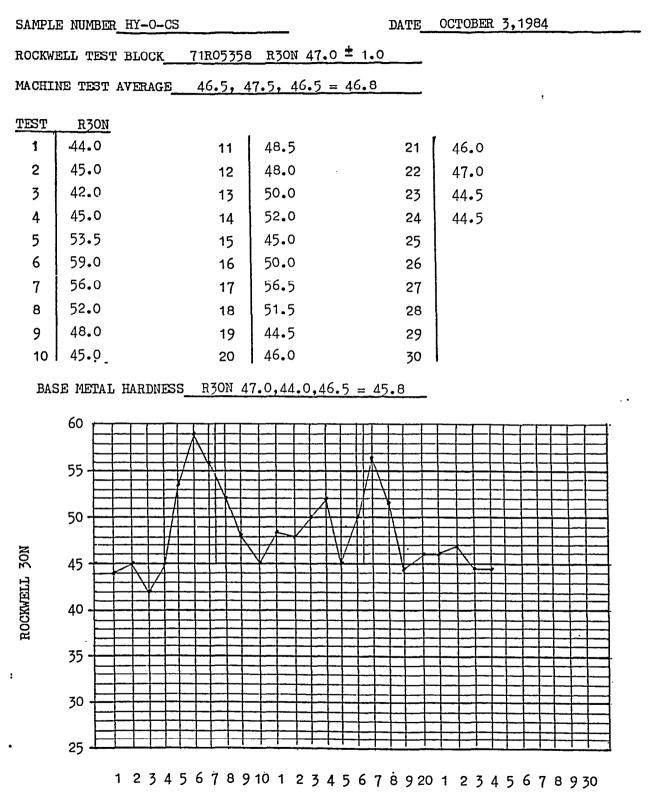
HARDNESS DATA



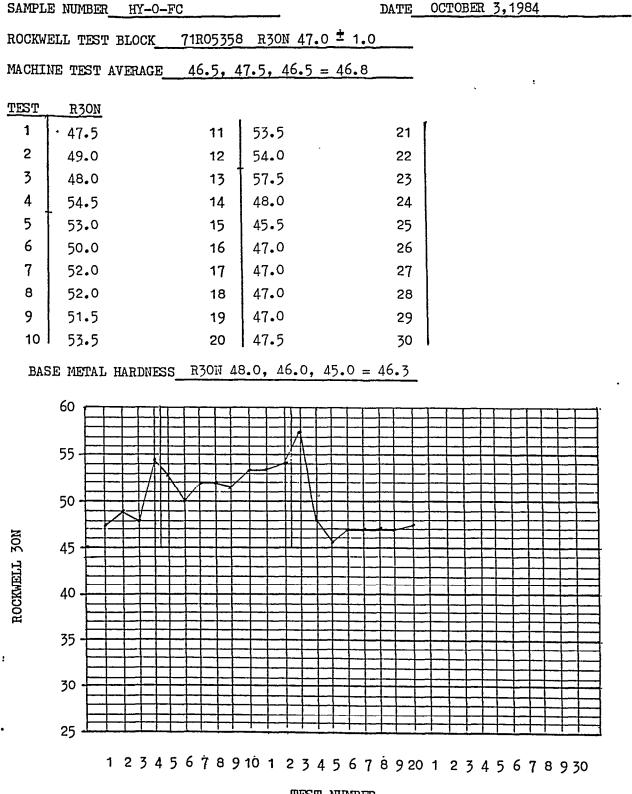

MARAD PROJECT 3205

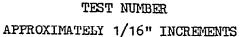
HARDNESS DATA

. . **.**


• •

MARAD PROJECT 3205 · ·


HARDNESS DATA



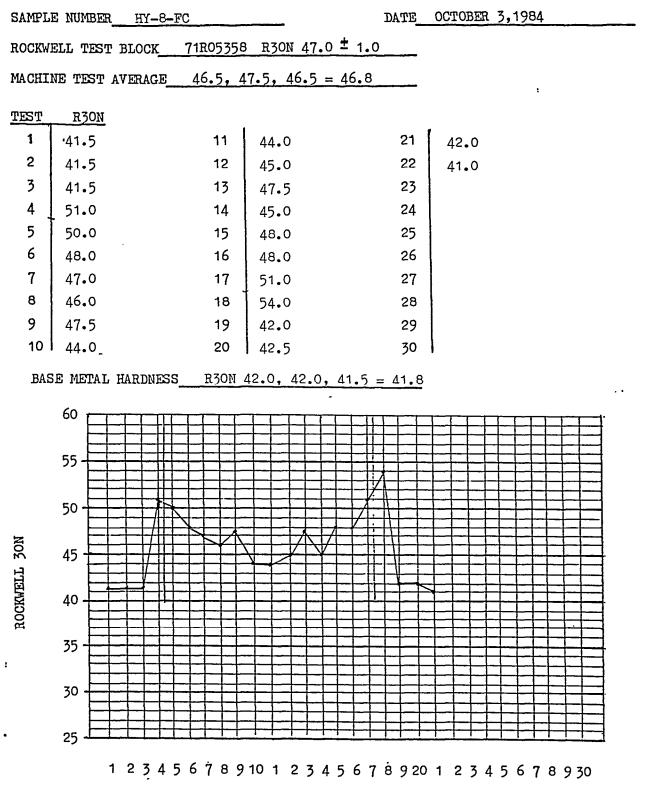
TEST NUMBER APPROXIMATELY 1/16" INCREMENTS

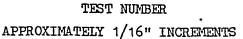
MARAD PROJECT 3205 · ·

HARDNESS DATA

MARAD PROJECT 3205 · ·

.


HARDNESS DATA


SAMPLE NUMBER HY-8-CS DATE OCTOBER 3,1984					
ROCKWI	ELL TEST BLOCK	71R05358	R30N 47.0	1.0	
MACHI	NE TEST AVERAGE	46.5, 4	7.5, 46.5 = 4	16.8	
TEST	R30N				·
1	. 42.0	11	41.5	21	41.5
2	43•5	12	43.0	22	41.0
3	43.0	13	39.0	23	41.5
4	42.0	14	41.0	24	
5	55.0	15	41.0	25	
6	58.0	16	45.5	26	
7	46.0	17	57•5	27	
8	45•5	18	50.0	28	
9	47.0	19	40.5	29	
10	41.5	20	41.5	30	
BAS	SE METAL HARDNESS	R30N 42	.0, 41.0, 40.	0 = 41.0	
	60				·
		╶╁┼┼╌┼╌┼╴	┼╾┥╾┥╼┥╌┥╸		
	55				
		╾ ╎╢╎╸╎╸╎ ╾┼╫╎ <mark>╶</mark> ┝╴╎╴	┼╌┼╍┼╍┼╼┼	┼╢╲┼╾┠╾	
	50				
		╤╢╢╌╞╼┾╴	╶┨╺╴┨╺╶┨╺╴┨╺╶┨ ╺ ┥╾┤╴┥╼┽╸┨╺╌┨╸	╶╢┼╌╽╌┝╴	╋ ╴┝╺┧╺┧╺╎╺╎╺╎╺╎╺╎╺┥╺ ┥
JON	45				
E		╧╫┼╌┝╼┾╵	++++	<u>┤</u> ╎ ╎- `\ <u> </u> -	╋ ╍╿╺╿╺╿╺╿╺╿╺╿╺╿╺ ┨
ROCKWELL	40				
ROC					
	35	╶┼┼╼┼┼	┽╍┾╍┾╍┾╍┾╸┾	╺┼╾┼╾┼╾	
:					
	30				┥╺╞╺╞╺╞╺╞╺╞╺╞╺╞
•	25			<u> </u>	
	1 2 3 4 5	56789	10 1 2 3 4 5	678920	1 2 3 4 5 6 7 8 9 30

TEST NUMBER - APPROXIMATELY 1/16" INCREMENTS

MARAD PROJECT 3205

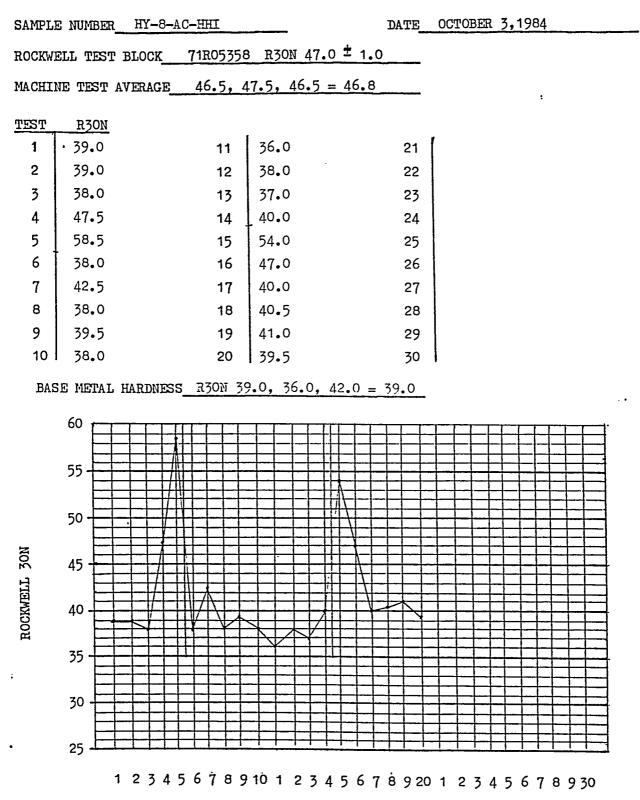
HARDNESS DATA

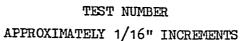
MARAD PROJECT 3205

HARDNESS DATA

.

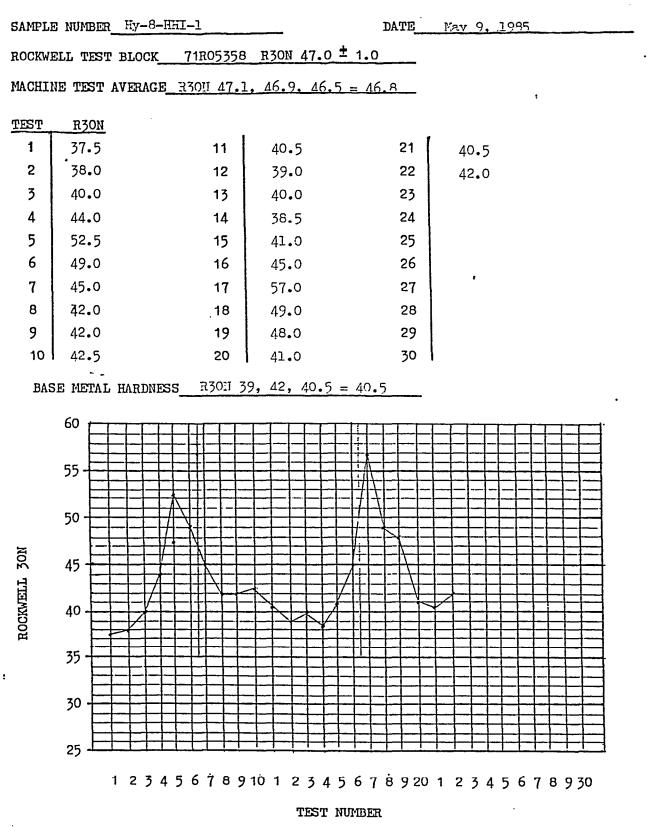
•


٠


.

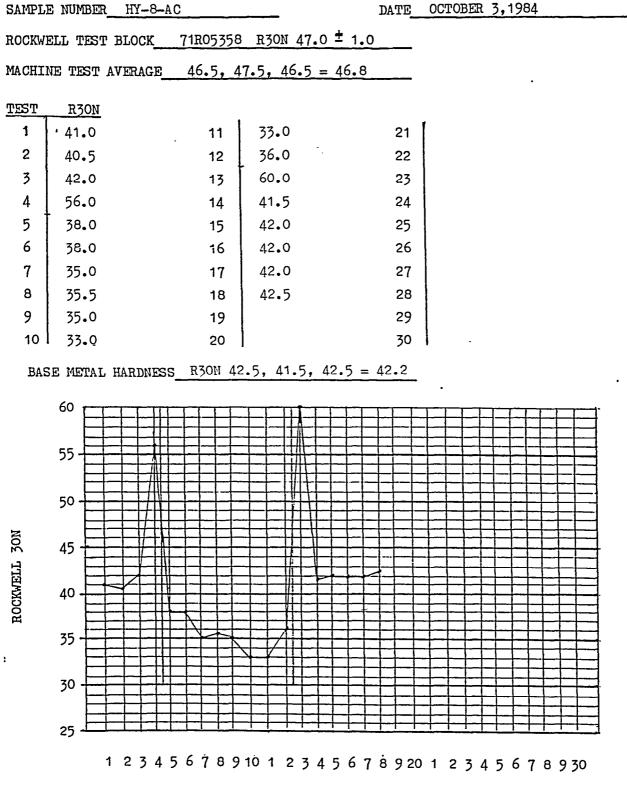
.

TEST NUMBER APPROXIMATELY 1/16" INCREMENTS


MARAD PROJECT 3205 · · · HARDNESS DATA

MANAD PROJECT 3205

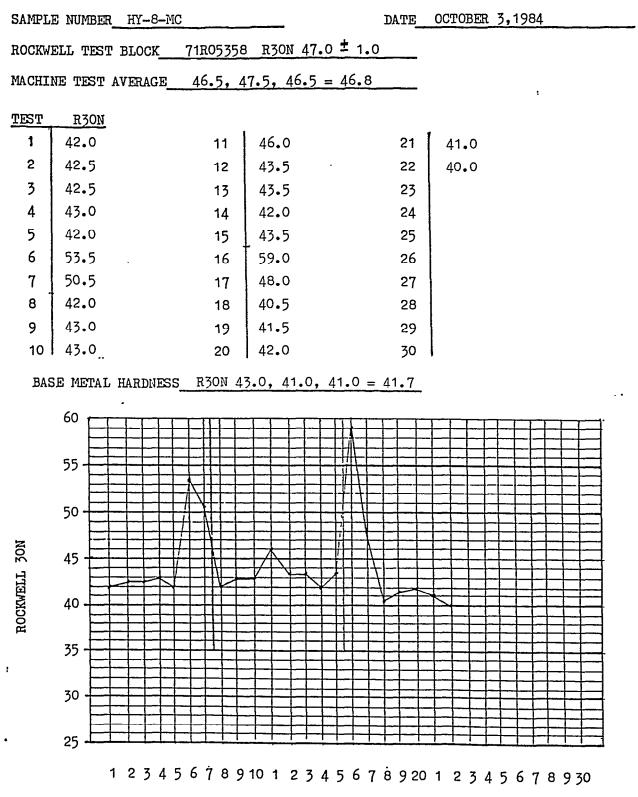
HARDNESS DATA



APPROXIMATELY 1/16" INCREMENTS

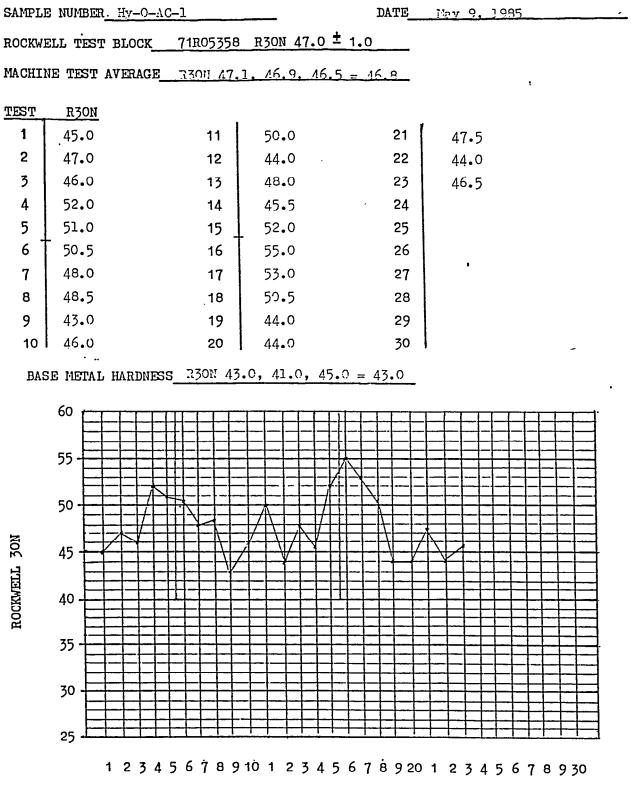
- - --MARAD PROJECT 3205

• • =


HARDNESS DATA

TEST NUMBER APPROXIMATELY 1/16" INCREMENTS

MARAD PROJECT 3205 ·


HARDNESS DATA

TEST NUMBER APPROXIMATELY 1/16" INCREMENTS

MARAD PROJECT 3205

HARDNESS. DATA

TEST NUMBER APPROXIMATELY 1/16" INCREMENTS

:

APPENDIX D - SPECTROGRAPHIC FORMS

•

.

•

MARAD PROJECT 3205

Spectrographic Data Explanation and Results

I. Spectrographic apparatus:

The spectrometer used for this data was a Jarrell-Ash Atomcomp Model 750 direct reading vacuum unit. The spark stand consists of an electronic controlled wave source. A Digital PDP 8-a computer analyzed the results. Argon gas of 99.96% purity was used in the spark chamber.

- II. Test procedure.
 - 1. The spark chamber was cleaned before testing.
 - The spectrometer electrical components were warmed up with at least 16 burns prior to standardization.
 - 3. The spectrometer was standardized by:
 - a. Setting the optical monitor to maximum peak value.
 - Working standards were burnt to standardize each element in the appropriate matrix.

192

- c. An analytical standard was burnt to determine the accuracy of the standardization.
- 4. Each sample was freshly ground before testing
- 5. Four burns were run on each sample. The results of each burn were averaged by the computer. The burns on the base metal were taken at each end and on both sides of the sample. The burns of the weld metal were taken in the center of the weld pool and on both sides of the sample.
- A set of three or four samples were run consecutively on a standardization.
- 7. A final test was run on the same analytical standard to verify the accuracy of the spectrometer operation.
- 111. Explanation of the data sheets.

This is the explanation of the major data lines, starting at the top of the data pages.

- Line one contains the project title, the sample name, and the placement of the burns.
- 2. There is a set of two or four burns listed with the burn number, time, and date of test. Next are two "IS" numbers that represent the intensity of the iron count and the operation of the electronics. Also, listed is a line of

193

element symbols and the "intensity ratio" value of that The symbols < or > in front of the element value element. represents the value as being "less than" or "greater than" that capable of being determined by the matrix. Ratio value between the different burns should not vary by large However, small variation is to be expected. amounts. The "average" line represents the average of the burn ratios printed out in percent concentration. These percent concentration numbers are then the approximate amount of element in the sample. Even though there are four burns averaged", these percentages can only represent a close approximation of the exact amounts.

IV. Observations of the weld sample test data.

The following observations are by sample sets.

- Samples Hy-8-CS, Hy-8-FC, Hy-8-AC-HHI, Hy-8-MC, dated
 9-15-84 and sample Hy-8-AC, dated 9-19-84.
 - a. The average percent values of the NBS standard 1261, before sample burning, show expected correlation with the accepted percentages.
 - b. The NBS analytical standard burns before and after show expected correlation. Most elements obtained a difference of only ± several hundredths of 1%. Tungsten, however, varies the most and does tend to drift on this machine.

- c. The base metal burns of all tested samples show good consistency and within expected variations.
- d. Carbon content of all weld metals is less than 0.108% concentration.
- e. The weld materials tested show concentration values with significant differences in the elements of MN, S1, CR, and MO. The remaining elements tested show minor percentage difference.
- 2. Weld samples Hy-O-CS, Hy-O-FC, and Hy-O-AC, dated 9-22-84.
 - a. The average percent values of the NBS analytical standard 1261, before sample testing, show expected correlation with the accepted values.
 - b. The NBS analytical standard burns, before and after, show expected correlation. Most elements obtained a difference of only ± several hundredths of 1%.
 - c. The base metal burns of all tested samples show good consistency and within expected variations.
 - All weld metals tested show a carbon content of less than 0.108% concentration.
 - e. The weld metals tested show significant differences in the elements MN, S1, CR, and minor differences in

195

the remaining elements.

- 3. Weld samples EH-6-CS, EH-6-FC, dated 9-19-84.
 - a. The average percent values of the NBS analytical standard burns, before sample testing, show expected correlation with the accepted values.
 - b. The NBS analytical standard burns before and after samples show expected correlation. Most elementsobtained a difference of only ± several hundredths of 1%.
 - c. The base metal burns of all tested samples show good consistency and within expected variances.
 - d. The carbon content of the weld metal of sample EH-6-CS has a value less than 0.108%, while sample EH-6-FS has a content slightly more than 0.108%.
 - e. The weld metals of the two samples have a significant difference in elements of MN, SI, NI, while remaining elements show minor variances.
- 4. Weld samples SS-L-CS and SS-L-FC, dated 9-20-84.
 - a. The MBH analytical standard 12851-G burns, before sample burning, show expected correlation with the accepted values. The element copper cannot be deter-

mined by this matrix as there is insufficient programming data.

- b. The MBH analytical standard burns before and after sample sample burning show expected correlation.
 Most elements obtained a difference of only + several hundredths of 1%. Chromium and molybdenum obtained difference in ± several tenths of 1%.
- c. The base metal burns show good consistency between the two samples.
- d. The weld metals of the two samples show carbon content as being less than 0.039%. Manganese in the "FC" weld metal is somewhat higher than that of the "CS" weld metal. Silicon, however, is less in the "FC" weld metal. The remaining elements tested show similar contents.
- e. The weld metals and base metals of the two samples are very similar in composition to each other with only minor differences in the major-alloying elements of MN, CR, NI, and MO.

Signed: Quentin Ruprecht Date: November 6, 1984.

197

MARAD PROJECT 3205

Spectrographic Data

- 5. Weld samples Hy-8-AC-1, HY-8-HH-1, and Hy-O-AC-1.
 - a. The average percent values of the NBS analytical standard burns, before sample testing, show expected correlation with the accepted values.
 - b. The NBS analytical standard burns before and after samples show expected correlation. Most elements obtained a difference of only ± several hundredths of 1%.
 - c. The base metal burns of all tested samples show good consistency and within expected variances.
 - d. The carbon content of the weld sample for Hy-O-AC-1, Hy-8-HHI-1, and Hy-8-AC-1 has a value less than 0.108% and is considerably less than the base metals.
 - e. The weld metal of all samples has a significant difference in elements MN, and CR, compared to the base metal.

Signed: Quentin Ruprecht Date: May 29, 1985.

U.S. Department-of Commerce Rogers C.J.S. Morton,

Secretary National Bureau of Standards Ernest Ambler, Acting Director

National Bureau of Standards Certificate of Analysis

Standard Reference Material 1261

AISI 4340 Steel

This standard is in the form of disks 31 mm (1 1/4 in) in diameter and 19 mm (3/4 in) thick, 'generally for use in optical emission and x-ray spectrometric analysis.^a

Element	Percent, by weight	Element	Percent, by weight
Carbon	0.38,	Aluminum (total)	0.021
Manganese	· .66 ²	Niobium	.022
Phosphorus	.015	Tantalum	.020'
Sulfur	.017	Boron	.0005
Silicon	.223	Lead	.000025
Copper	.042	Zirconium	.009
Nickel	1.99	Antimony	.0042
Chromium	0.69 ₀	Bismuth	.0004
Vanadium	.011	Silver	.0004
Molybdenum	.19	Calcium	.00002 ₈
Tungsten	.017 .	Magnesium	.00018
Cobalt	.030	Selenium	.004
Titanium	.020	Tellurium	.0006
Arsenic	.017	Cerium	.0014
Tin	.010	Lanthanum	.0004
		Neodymium	.0002 9

² This material also is available in the form of chips, SRM 361, for use in chemical methods of analysis; rods, SRM 1095, 6.4 mm (1/4 in) in diameter and 102 mm (4 in) long for the determination of gases in metals by vacuum fusion and neutron activation methods of analysis; and rods, SRM 661, 3.2 mm (1/8 in) in diameter and 51 mm (2 in) long for application in microchemical methods of analysis such as electron probe microanalysis, spark source mass spectrometric analysis, and laser probe analysis.

CERTIFICATION: The value listed for a certified element is the present best estimate of the "true" value based on the results of the analytical program. The value listed is not expected to deviate from the "true" value by more than ± 1 in the last significant figure reported; for a subscript figure, the deviation is not expected to be more than ± 5 . Based on the results of homogeneity testing, maximum variations within and among samples are estimated to be less than the uncertainty figures; given above.

The overall direction and coordination of the technical measurements at NBS leading to certification were performed under the direction of K. F. J. Heinrich, O. Menis, B. F. Scribner, J. I. Shultz, and J. L. Weber, Jr.

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by R. E. Michaelis.

Washington, D.C. 20234 January 8, 1976 (Originally issued July 26, 1970 with revisions August 16, 1972, and attachment February 24, 1975) J. Paul Cali, Chief Office of Standard Reference Materials

(over)

PLANNING, PREPARATION, TESTING, ANALYSIS: This standard is one of five replacements for the original eight 1100 series iron and steel SRM's. Material from the same melt is available in a variety of forms to serve in checking methods of analysis and in calibrating instrumental techniques.

The material for this standard was vacuum meIted and cast at the Carpenter Technology Corporation, Reading, Pennsylvania, under a contract with the National Bureau of Standards. The contract was made possible by a grant from the American Iron and Steel Institute.

The ingots were processed by Carpenter Technology Corporation to provide material of the highest possible homogeneity. Following acceptance of the composition based on NBS analyses, selected portions of the ingot material were extensively tested for homogeneity at NBS by J. R; Baldwin, D. M. Bouchette, S. D. Rasberry, and J. L. Weher, Jr. Only that material meeting a critical evaluation was processed to the final sizes.

Chemical analyses for certification were made on composite samples representative of the ac cepted lot of material.

Cooperative analyses for certification were performed in the analytical laboratories of BethIehem Steel Corporation, Sparrows Point Plant, Maryland, R. H. Rouse; Carpenter Technology Corporation, Research and Development Center, Reading, Pennsylvania, E. J. Cramer; The Timken Rollcr Bearing Company, Steel & Tube Division, Canton, Ohio, R. G. Cover; United States Steel Corporation, Applied Research Laboratory, Monroeville, Pennsylvania, L. Melnick; and Gary Steel Works, Gary, Indiana, E. H. Shipley.

Analyses were performed in the Analytical Chemistry Division of the National Bureau of Standards by the following: R. Alvarez, J. R. Baldwin, D. A. Becker, R. K. Bell, R. W. Burke, B. S. Carpenter, E. L. Garner, T. E. Gills, C. J. Lutz, L. A. Machlan, E. J. Maienthal, J. McKay, L. J. Moore, C. W. Mueller, T. J. Murphy, P. J. Paulsen, T. C. Rains, S. D. Rasberry, T. A. Rush, K. M. Sappenfield, B.A. Thompson, S. A. Wicks, and J. Wing.

ADDITIONAL INFORMATION ON THE COMPOSITION: Certification is made only for the elements indicated. The five replacements, however, contain a graded series for 40 elements and **nformation on the elements <u>not certified</u> may be of importance in the use of the material. Although these are not certified, values are presented in the following table for the remaining elements.**

Value from a single method of analysis:

Elcment	Percent. by weight	Element	Percent. by weight
Gold Zinc Praseoymium Hafnium Nitrogen	(<0.00005) (.0001) (.00014) (.0002) (.0037)	Oxygcn Hydrogcn Strontium Iron (by diffcrcncc)	(0.0009) (<.0005) (<.0005) (9 5 . 6)

'Dash indicates "'not detected ." Value in parenthesis following the dash is the conservative "upper limit" of detection.

Approxinmate value from heat analysis:

Germanium [0.006]

MBH ANALYTICAL LTD.

HOLLAND HOUSE · QUEENS ROAD · BARNET · HERTS EN5 4DJ · ENGLAND Tel: 01-441 2024

CERTIFICATE OF ANALYSIS

MATERIAL: 18/8 STAINLESS STEEL

	Standard Reference	С	Si	s		Р	۴۱n	Ni	Cr	Со	No	ΝЪ	Cu			
	13 W				-										 	
	12838 D	••••	1.05			•••	1.35	10.00	18.00	• • •	1.98	0.86				
	12839 G	•••	1.00				0,98	9.96	16.24	•••	3.39	0.40	• :•			
	15072 G	0.064	1.03	p.008		0.054	1.26	7.46	16.10	• • •	1.99	1.00	1.10			
	12851 F	0.14	1.08	p.028		0.031	1.22	10.08	18.38	0,038	3.63	0.26	0.08			
	12852 B	0.15	1.09	p.053		•••	1.29	10.04	18,46	0,12	2.00	1.11		i		
D2	12851 G	0.12	1.08	0.03		0.023	1.22	10.00	18.32	0.043	3.'50	0.24	0.055	. 1		
	12852 C	0.15	1.16	0.062		•••	1.24	10,00	18.42	0.098	2.00	1.17	•••	H-H		
								i .								
			61													
			- , -													
								•								

MANUFACTURED BY: WILLAN METALS LTD, ROTHERHAM

ANALYSED BY: WILLAN METALS LTD, ROTHERHAM

4

CERTIFIED REFERENCE IVI

. •

0/ MARAD PROJECT 3205 SAMPLE EH-6-CS WELD METAL 0 6-13 EGRGRGRGRAC Ε G - . . . IURN # 1 LOFE 5:43 9:19:84 R : 15 IS 11897 9343 C MN F' S SI NI CR MO υ CO W ΤĿ CU AL YY ·1304 ·1199 ·0544 ·0825 ·0823 ·1403 ·0772 ·0422 ·0709 ·0526 ·0386 ·0560 .0186 +4328 0 G DURN # 2 LOFE 5:44 9:19:84 -----IS IS 12064 9344 * C ΤI F S SI v CO MN NI CR MO u CU AL YY .1317 .1198 .0535 .0816 .0837 .1393 .0786 .0424 .0744 .0531 .0366 .0560 ,0187 .4607 0 G -------------. . - • • • BURN # 3 LOFE 5:45 9:19:84 R · IS IS 12142 9344 С нн F S.SI NI CR MO v CO ы ΤI CU AL. YY .0536 .0813 .0819 .1392 .0774 .0419 .0713 ,1292 ,1202 .0523 •0368 .0553 .0185 .4313 0 G ۰. DURN # 4 LOFE 5:45 9:19:84 R + IS IS . . . 12098 9341 С F MN S SI NI CR MO U CO W TI CU AL. ΥY .1469 .1259 ·0542 ·0776 ·0786 ·1433 ·0859 .0453 .0901 .0531 .0361 .0563 ,0180 ,5291 0 A AVERAGE LOFE 5;46.....9;19;84.... С IS IS 12050 9343 С MN P S NI CR CO TI SI MO v W CU AL < .108 .021 .015 < .016 .814 .010 .767 .186 < .050 ,026 .007 < .015 .038 < .016 *

0/ MARAD PROJECT 3205 SAMPLE EH-6-CS BASE METAL 6-12 0 EGRGRGRGRAC Ε G ---BURN # 1 LOFE 5:37 9:19:84 R 🛼 IS IS 12229 9350 С F v 0 G BURN # 2 LOFE 5:38 9:19:84 R' · IS IS 12261 9347 С v ω τι MN F S SI NI CR MÜ CO CU 'AL ΥY .2575 .0412 .0638 .0113 1.640 •1777 •0630 •0595 •0305 •1807 •1310 •0643 •1954 •0551 G BURN # 3 LOFE 5:39 9:19:84 R ... 15 IS 12439 9347 P S SI NI CR MO V CO W TI C MN CU YY AL ·2569 ·1812 ·0642 ·0622 ·0309 ·1819 ·1336 ·0648 ·1983 ·0545 ·0419 ·0645 ·0113 1.557 0 G -BURN # 4 LOFE 5:40 9:19:84 R .: ----IS IS 12477 9346 С S ММ F' SI NI CR MO v CO W TI CU AL YΥ ·2620 ·1827 ·0640 ·0579 ·0310 ·1815 ·1340 ·0648 ·1996 ·0543 ·0406 ·0643 ·0113 1.573 0 A AVERAGE LOFE 5:41 9:19:84 С IS IS 12351 9347 С MN S SI NI CR MO U CO ω TI CU AL. .029 * 🤢

0/ HARAD PROJECT 3205 SAMPLE EH-6-FC WELD METAL U 8-15 EGRGRGRGRGRAC ε G Ł BURN # 1 LOFE 5:52 9:19:84 R • • IS IS 12457 9343 С MN F S SI NI CR MO v CO W TI CU ' AL YΥ ·1686 ·1748 ·0623 ·0678 ·0494 ·1622 ·0<u>818 ·</u>0429 ·1480 ·0529 ·0410 ·0830 ·0108 ·6062 0 G BURN # 2 LOFE 5:53 9:19:84 R ¥ IS IS 12530 9343 S SI NI CR MO V С F TI CU AL . MN YY CO ω . 204 1828 ,1816 ,0622 ,0665 ,0503 ,1667 ,0877 ,0452 ,1557 ,0535 ,0421 ,0796 ,0113 ,6813 0 G . BURN # 3 LOFE 5:54 9:19:84 R 🗧 - - -IS IS 12730 9341 C MN F S SI NI CR MO v CO ω ΤI CU YY.____ AL .1675 .1746 .0614 .0680 .0492 .1605 .0800 .0426 .1476 .0540 .0405 .0826 .0108 .6138 6 DURN # 4 LOFE 5:55 9:19:84 . . . R IS IS 12626 9340 С MN F' S SI NI CR MO V. CO W CU ΤI YY AL ·1860 ·1795 ·0615 ·0653 ·0489 ·1663 ·0907 ... 0469 ·1570 ·0540 ·0407 ·0786 .0120 .7047 0 Â AVERAGE LUFE 5:55 9:19:84 С IS IS 12586 9342 С MN F S SI NI CR MO v CO W TI CU AL .115 1.34 .016 .016 .412 .303 .063 +029 .024 .015 .028 < .016 < .027 < .016 - ----. *

×.

0/ MARAD PROJECT 3205 SAMPLE EH-6-FC BASE METAL 0 B-14 EGRGRGRGRAC E G BURN # 1 LOFE 5:48 9:19:84 R -IS IS 12586 9349 .. . S NI С MN F SI CR MO V CO W ΤI CU AL YY .2566 .1819 .0630 .0601 .0310 .1807 .1292 .0645 .1986 .0555 .0406 .0644 .0114 1.554 0 G HURN # 2 LOFE____ 5:48 9:19:84 R + IS IS 12569 9341 . וא С MN F S SI CR MO v CO W ΤT CU ΥY AL .2618 .1815 .0639 .0599 .0309 .1815 .1313 .0645 .1979 .0550 .0415 .0637 .0113 1.582 0 G 5:49 9:19:84 BURN # 3 LOFE R IS IS 12566 9341 С MN F S SI NI CR MO v CO ω ТI CU AL YY .2644 .1817 .0654 .0579 .0310 .1843 .1336 .0651 .1985 .0547 .0448 .0645 .0114 1.618 0 G BURN # 4 LOFE 5:50 9:19:84 R · IS IS 12650 9341 С MN F S SI NI CR MO U CO ω ΊI CU AL ΥY .2598 .1833 .0665 .0664 .0311 .1849 .1341 .0654 .2002 .0546 .0446 .0645 .0114 1.617 0 A С IS · IS 12593 9343 С MN F' S NI SI CR MO v CO W ΤI CU AL .200 1.38 .018 .014 .243 .397 .191 .035 .062 .017 .034 < .016 < .027 .029 *

2.05

 $\widehat{}$

.

BURN # 1 STFE 5:59 9:20:84 R IS IS 7748 9333 C MN P S SI CR NI MD CU XX YY .0865 .2723 .1144 .0914 .1413 5.632 1.370 13.18 .0474 0 0 G BURN # 2 STFE 6:00 9:20:84 R IS IS 7766 9333 C MN P S SI CR NI MO CU XX YY .0828 .2721 .1131 .0908 .1411 5.643 1.360 13.02 .0483 0 0 G FURN # 3 STFE 6:02 9:20:84 R IS IS 7597 9333 C MN P S SI CR NI MO CU XX YY .1079 .2738 .1118 .0928 .1415 5.662 1.348 12.80 .0463 0 0 G	GRGRGRGRAC			. .		· · · · -	
7748 9333 C MN F S SI CR NI MD CU XX YY .0865 .2723 .1144 .0914 .1413 5.632 1.370 13.18 .0474 0 0 URN # 2 STFE 6:00 9:20:84		5157 9120184	r				
IS IS 7766 9333 C MN F S SI CR NI MO CU XX YY .0628 .2721 .1131 .0908 .1411 5.643 1.360 13.02 .0483 0 0 JRN # 3 STFE 6:02 9:20:84 IS IS 7597 9333 C MN F S SI CR NI MO CU XX YY .1079 .2738 .1118 .0928 .1415 5.662 1.348 12.80 .0463 0 0	7748 9333 C MN						
7766 9333 F S SI CR NI MO CU XX YY 0628 .2721 .1131 .0908 .1411 5.643 1.360 13.02 .0483 0 0 RN # 3 STFE 6:02 9:20:84	RN 🛊 2 STFE	6:00 9:20:84			n wann ra		
IS IS 7597 9333 C MN F S SI CR NI MO CU XX YY 1079 .2738 .1118 .0928 .1415 5.662 1.348 12.80 .0463 0 0 .	7766 9333 C MN				xx	YY 0	
7597 9333 C MN F S SI CR NI MO CU XX YY 1079 ,2738 ,1118 ,0928 ,1415 5,662 1,348 12,80 ,0463 0 0 .	N # 3 STFE	6:02 9:20:84					
	2597 9333 C MN		5.662 1.348	12.80 .0463		• •	
	N # 4 STFE	6:03 9:20:84		·····			
IS IS 7721 9334 C MN F S SI CR NI MO CU XX YY 0882 .2717 .1190 .0885 .1361 5.723 1.373 12.97 .0508 0 0	IS ¹¹ IS ¹¹ 7721 9334 C MN	F. S SI •1190 •0885 •1361	CR NI 5.723 1.373	1 MO CU 12.97 .0508	XX o	YY	

•

•

.

1

*

0/ MARAD PROJECT 3205 SAMFLE SS-L-CS BASE METAL	c-20 J
EGRGRGRGRAC E G	ر ا
RURN # 1 STFE 5:55 9:20:84	
R IS IS BOO4 9333 C MN F S SI CR NI MD CU XX YY .0828 .2472 .1332 .0508 .0701 5.503 1.304 12.83 .0640 0 0 G	
BURN # 2 STFE 5:56 9:20:84	· · · • • • • • • • • • • • • • • • • •
IS IS	
C MN P S SI CR NI MO CU XX YY •0822 •2499 •1357 •0503 •0709 5•567 1•305 12•62 •0639 0 0 G	ч
BURN # 3 STFE 5:57 9:20:84	
B116 9339 C MN F S SI CR NI MO CU XX YY .0839 .2488 .1358 .0515 .0700 5.629 1.314 12.38 .0643 0 0 G	
BURN # 4 STFE 5:58 9:20:84	نې
R	
C MN F S SI CR NI MO CU XX YY •0910 •2481 •1357 •0518 •0701 5•598 1•311 12•41 •0653 0 0 A	
AVERAGE STFE 5:59 9:20:84	
C IS IS 8066 9336	۲ <u>ـ</u>
C MN F S SI CR NI MO CU < .039 1.40), •••
*	-

•

×.

.

.

0/ MARAD FROJECT 3205 SAMFLE SS-L-FC WELD METAL C-23 0 EGRGRGRGRAC E G JURN # 1 STFE 6:09 9:20:84 R IS IS 7898 9333 C MN F S SI CR NI MO CU XX ΥY0929 .3178 .1039 .0804 .0770 5.943 1.406 14.14 .0394 0 0 G BURN # 2 STFE 6110 9120184 -----R IS IS • / • . . ----7372 9333 C MN F S SI CR NI CU MO XX YY .1077 .3218 .1062 .0865 .0836 6.063 1.425 14.13 .0399 0 0 G BURN # 3 STFE 6:11 9:20:84 R IS IS 7083 9334 P S SI C CR NI MO CU MN XX YY .1053 .3223 .1053 .0892 .0865 6.051 1.431 14.51 .0401 0 0 G BURN # 4 STFE 6:12 9:20:84 R ----. IS IS 8123 9333 С MN P S SI CR NI MO CU XX YY .0873 .3185 .1003 .0800 .0777 5.857 1.385 14.21 .0395 Ô 0 AVERAGE STFE 6:13 9:20:84 C IS IS . 7619 9333 С MN P S SI CR NI MO CU <.039 1.93 .015 .018 ..., 531 17.8 13.0 2.57 0 * •

0/ MARAD FROJECT 3205 SAMFLE SS-L-FC BASE METAL EGRGRGRGRAC E G BURN # 1 STFE 6:04 9:20:84 R IS "IS 8265 9331 YY . . . CU XX 0 C MN P' S SI CR NI MO0845 .2492 .1437 .0538 .0701 5.696 1.338 12.37 .0656 G BURN # 2 STFE 6:05 9:20:84 R IS IS 8273 9333 P CU XX YY С MN S SI CR NI MO .0832 .2472 .1415 .0538 .0699 5.586 1.332 12.67 .0664 G BURN # 3 STFE 6:06 9:20:84 8 IS IS 9332 MN F S SI CK NI MO CU 8291 XX ΥY С 0 0 .0852 .2498 .1439 .0539 .0703 5.527 1.341 12.93 .0660 G - ---------1 6:07 9:20:84 BURN # 4 STFE R IS IS 8284 9332 CR С MN P S SI NI MO CU XX YY .0824 .2469 .1421 .0538 .0700 5.531 1.321 12.99 +0651 0 0 A STFE 6:07 9:20:84 AVERAGE C IS IS 8278 9332 P S C SI CR NI MO CU MN <.039 1,40 .033 < .012 .449 16.7 12.0 2.27 0 *

C-24 REGRORAC 13 . *0/ MARAD PROJECT 3205 MBH ANALYTICAL STANDARD 12851 G . 0 EGRGRAC E G BURN # 1 STFE 6:15 9:20:84 . R IS IS 7881 9333 F S SI CR NI MO CU XX YY MN С .2053 .2238 .1453 .1858 .1511 5.963 1.284 19.44 .0425 0 0 0 -----BURN # 2 STFE 6:15 9:20:84 . R IS T IS 7965 9333 MN P S SI . YY C CR NI מא CU XX . . .2054 .2232 .1468 .1905 .1507 5.922 1.283 19.58 .0427 0 0 A AVERAGE STFE 6:16 9:20:84 С . . . IS IS 7923 9333 ••• ** * ММ С F S SI CR NI CU MO .094 1.22 .034 .036 1.05 17.7 11.4 3.65 0 * -- -. -

١

.

C-19 0/ MARAD PROJECT 3205 MBH ANALYTICAL STANDARD 12851 G 0 EGRGRAC Ε G . . . BURN # 1 STFE 5:51 9:20:84 ĸ IS IS 7592 9334 С MN F S SI CR NI MO CU YY XX ·2135 ·2248 ·1442 ·1939 ·1531 6·182 1·289 18.96 ·0428 0 ٥ G BURN # 2 STFE 5:52 9:20:84 ÷ -~ Ř IS IS . , · • . **...** , • . . -7413 9333 С F S SI CR MN NI MO CU XX ΥY ·2034 ·2254 ·1365 ·1878 ·1536 5.999 1.247 18.97 ·0410 0 0 A AVERAGE STFE 5:53 9:20:84 . .. С IS IS 9333 7502 S SI CRITNITIMO CU С MN P .096 1.23 .032 .037 1.07 18.2 11.2 3.54 Ö •. . . . * -----QEGRGRGRGRAC -----. .. . - -Q. * ----

.

.

. .

..

211

....

D-3 0/ MARAD PROJECT 3205 SAMPLE HY-8-CS WELD METAL n°' EGRGRGRGRGRAC Ε G . . BURN # 1 LOFE 12:09 9:15:84 R " IS IS 12089 9329 C MN P S SI NI CR мо U CO Ы CU TI AL YY .1322 .1513 .0566 .0487 .0509 .3943 .2223 .2398 .0737 .0606 .0360 .0888 .0158 .8231 . . . ٥ G BURN # 2 LOFE 12:10 9:15:84 R · /-IS IS 12095 9329 С MN F S SI NT CR. мо υ CO 1.1 TI CU AL. YY ·1483 ·1431 .0580 ·0504 ·0499 ·4134 ·2614 ·2471 ·0770 ·0628 ·0383 ·0871 ·0168 ·9143 0 6 BURN # 3 LOFE 12:11 9:15:84 R · . · IS IS 11930 9326 -- F S SI NI CR MO V C . ัพที่ . Т.Т. CO LJ . CH AL YY .1250 .1545 .0553 .0474 .0514 .3887 .2137 .2388 .0735 .0598 .0331 .0877 .0161 .8018 0 G • • • • · • ••• • • . . BURN # 4 LOFE 12:12 9:15:84 R v IS 11781 9326 C MN F S SI NI CR MO V CO W TI CU •1387 •1489 •0546 •0481 •0508 •3976 •2445 •2436 •0758 •0609 •0315 •0877 •0169 AL YΥ ٥ .8553 A AVERAGE LOFE 12:13 9:15:84 C IS IS 11974 9328 С MN F S SI \NI CR MO U W TI CO CU AL < .108 1.06 .012 .009 .418 2.13 .509 .359 .007 .020 .019 < .016 .030 < .016 *

•

Ν

0/ MARAD PROJECT 3205 SAMPLE HY-8-CS BASE METAL 0 EGRGRGRGRAC E G • • • • . FURN # 1 LOFE 12:05 9:15:84 R ··· IS IS 9333 11289 . ИІ C MN P S SI NI CR MO V CO W TI CU AL .2389 .0674 .0578 .0574 .0355 .4803 .6119 .2925 .1014 .0674 .0339 .0976 .0206 2.110 YΥ 0 G BURN # 2 LOFE 12:06 9:15:84 -----. 1 R 🗧 IS ... IS 11178 9332 U С MN P S SI NI CR мо CO ы ΤI CU AL ΥY G . BURN # 3 LOFE 12:06 9:15:84 R -IS IS 11511 9332 CR MO NI U С MN F 8 SI CO ผ TI CU AL ΥY ·2335 ·0670 .0583 .0568 .0350 .4801 .6022 .2855 .1002 .0678 .0355 .0956 .0208 2.151 0 G • • • • BURN # 4 LOFE 12:07 9:15:84 R IS 15 11595 9331 С MN F S SI NI CR .. MO v CO W TI CU AL ΥY .2353 .0680 .0592 .0602 .0359 .4830 .6028 .2936 .1013 .0688 .0363 .0982 .0220 0 2.160 Á AVERAGE LOFE 12:08 9:15:84 С IS IS 11393 9332 С MN F S SI NI CR MO U CO CU ш TI AL •174__.297__.014__.013__.280.<u>2.22.</u>1.45__.446__.013_.027__.020<.016__.052__.040 . * 1

.

_

213

D-2

D-5 0/ MARAD PROJECT 3205 SAMFLE HY-8-FC WELD METAL 0 . . --EGRGRGRGRAC Ε G . . . BURN # 1 LOFE 12:18 9:15:84 R 🦾 IS IS 9328 11940 CR CU С MN S SI NI MO υ CO ω TI AL YY ,1658 ,1671 ,0620 ,0726 ,0472 ,3956 ,1256 ,1752 ,1272 ,0612 ,0329 0 .0922 .0191 .8233 1 G i2:19 9:15:84 -----. . DURN # 2 LOFE R 🔆 IS IS . . . 11844 9327 C MN F S SI NI υ W TI CU CR MO CO AL ΥY .1715 .1608 .0610 .0705 .0455 .4055 .1673 .1873 .1257 .0610 .0320 .0943 .0190 Ο. .8941 G BURN # 3 LOFE 12:20 9:15:84 R ~ IS IS 11854 9329 CR S ŠI C.MN F NI CU YY MO v CO ω TI AL .1664 .1686 .0607 .0718 .0475 .3906 .1285 .1752 .1286 .0597 .0299 .0914 .0192 .8208 0 G BURN # 4 LOFE 12:21 9:15:84 R ---. . 15 IS 11860 9327 C MN P S SI . NI CR MO v CO ω ΤI CU AL YΥ .1755 .1548 .0605 .0710 .0465 .4106 .1937 .1964 .1234 .0623 .0320 .0943 .0223 .9326 0 A LOFE 12:22 9:15:84 / AVERAGE C IS IS 11875 9328 С MN S SI NI CŔ MD U CO ΤI CU AL < .108 1.18 .016 .018 .382 2.15 .273 .018 .018 .020 .008 < .016 .047 < .016 * .

0-4 0/ HARAD PROJECT 3205 SAMPLE HY-8-FC BASE METAL 0 EGRGRGRGRAC Ε G BURN # 1 LOFE 12:14 9:15:84 ĸ IS IS 11338 9327 CR:____ U CO . W CU С MN SI NI MD TI F S AL YY * • - ----,2336 .0677 .0580 .0586 .0355 .4822 .6064 .2930 .1014 .0684 .0335 .0980 .0208 2.143 ٥ G BURN # 2 LOFE 12:15 9:15:84 . R 🖓 👘 IS IS 11374 9330 С SI NI MO v CO W ΤI CU ΥY MN F S CR AL .2376 .0681 .0581 .0587 .0360 +4848 .5990 .2950 .1016 .0692 .0333 .0980 .0210 2.117 0 BURN # 3 LOFE _ 12:16 9:15:84 R 🕤 IS IS 11543 9330 < - h F S SI cu ʻ С MN NI CR U CO W TI ΥY MD AL .5957 .2896 .1009 .0688 .0339 .2329 .0675 .0580 .0586 .0353 .4784 •0969 .0207 2.187 0 G . • -----RURN # 4 LOFE 12:17 9:15:84 R 15 IS 11681 9327 ΥY V CU С MN F' S SI NI CR MO CO W TI AL. .2321 .0675 .0578 .0557 .0354 .4794 .5848 .2886 .1002 .0699 +0343 +0966 .0209 0 2,166 A AVERAGE LOFE 12:17 9:15:84 С IS IS 11484 9328 С MN υ CO NI CR W ΤI CU AL S SI MO .172 . 299 .014 .013 .281 > 2.22 > 1.45 .448 .013 •028 .016 < .016 .051 +040

17 ΰ

*

.

_ D-9 0/ MARAD PROJECT 3205 SAMPLE HY-8-MC WELD METAL 0 EGRGRGRGRAC E G BURN # 1 LOFE 12:37 9:15:84 R IS 15 IS 12025 9324 C MO CO ω TI CU AL YY MN P S SI NI CR V . . .1153 .1808 .0610 .0557 .0444 .3920 .1376 .1573 .1169 .0610 .0338 .0986 .0146 .9904 Ő G BURN # 2 LOFE 12:38 9:15:84 R 11 IS IS . . . 11914 9323 ΥY TI CU NI CR MO V CO ພ AL С MN F S SI .1368 .1570 .0605 .0555 .0431 .4080 .2258 .1858 .1131 .0629 .0342 .1013 .0158 1.167 0 G 12:39 9:15:84 BURN # 3 LOFE R 🕐 IS IS 11989 9323 C MN P S SI NI CR MO V CO W TI CU AL ΥY .1385 .1605 .0603 .0558 .0428 .4054 .2118 .1830 .1142 .0625 .0337 .1018 .0165 1.158 0 G DURN # 4 LOFE 12:40 9:15:84 R IS ĪS 12163 9321 MN , V CO W TI CU YY С F S SI NI CR MO AL 0 ,1288 ,1660 ,0621 ,0566 ,0435 ,4028 ,1885 ,1756 ,1144 ,0624 ,0364 ,0797 ,0155 1,078 A AVERAGE LOFE 12:41 9:15:84 С 15 IS 12023 9323 ω τι V . С P S SI NI CR MO CO CU MN AL < .108</p>
1.21
.016
.016
.016
.016
.016
.016
.016
.016
.016
.016 *

Ν

0/ NARAD PROJECT 3205 SAMPLE HY-8-MC BASE METAL D.8 0 EGRGRGRGRAC E G · · -BURN # 1 LOFE 12:33 9:15:84 ĸ IS IS 11319 9322 C MN P S SI NI CR MD V CD W TI CU AL .2111 .0660 .0570 .0522 .0339 .4672 .5942 .2793 .0990 .0676 .0350 .0937 .0201 2.152 ΥY Ö G BURN # 2 LOFE 12:34 9:15:84 R 🚽 IS IS •• . 11530 9323 С MN F S SI NI CR MO U CO ω ΤI CU AL YY +2168 +0662 +0591 +0542 +0342 +4753 +5875 +2840 +0992 +0689 +0381 +0950 +0205 2+145 0 G BURN # 3 LOFE 12:35 9:15:84 1 · · · R .. IS IS . 1 11546 9323 NI CR MO V CO С P MN S SI ω ΤI CU ΥY AL ·2169 ·0670 ·0590 ·0570 ·0347 ·4770 ·5932 ·2878 ·1001 ·0690 ·0372 ·0959 ·0207 2·148 o G . • ••• • • • • • • • BURN # 4 LOFE 12:35 9:15:84 R i IS IS 11816 9323 C F S MN SI , NI CR . MO υ CO ω TI CU AL YY •2257 •0659 •0603 •0553 •0340 •4793 •5770 •2806 •0981 •0697 •0406 •0945 •0209 2.127 0 A AVERAGE LOFE 12:36 9:15:84 C IS IS 11553 9323 С MN F S SI NI CR MO V CO W TI CU AL , 156 ____.028 ___.015 ___.012 ___.269 <u>___.2.22 >__1.45 ____.433 ___</u>.012 __.028 __.030 <_.016 __.049 __.040 *

٩.

۲.

5-

N j_

. .

0/ MARAD PROJECT 3205 SAMPLE HY-8-AC WELD METAL 0 8-17 EGRGRGRGRAC E G 6104 9119184 BURN # 1 LOFE R 2 IS IS 11902 9342 C MN P S NI υ SI CR MD CO W ΤI CU AL YY ·1071 ·1383 ·0404 ·0753 ·0157 ·14185 ·1222 ·2509 ·1164 ·0584 ·0385 ·0872 ·0158 ·7641 0 G HURN \$ 2 LOFE _____6:04 ___9:19:84 _____ R . IS IS 11850 9338 NI CR MO V CO . S С F MN SI w 'TI CU ΥY AL ·1143 ·1357 ·0602 ·0728 ·0160 ·4238 ·1571 ·2578 ·1159 ·0586 ·0381 ·0884 ·0161 ·7803 · 0 G BURN # 3 LOFE 6:05 9:19:84 R بيرد بالاستان المستحدة الالا . . IS IS 11893 9338 C MN F S SI NI CR MO V CO W TI CU AL 1123 .1397 .0603 .0753 .0159 .4165 .1214 .2517 .1161 .0584 .0384 .0869 .0161 .7557 C ____ MN YY 0 G ------. . 6:06 9:19:84 . BURN # 4 LOFE R IS IS 11948 9339 С MN S SI NI CR MO U CO TI CU YY ·1182 ·1357 ·0605 ·0735 ·0160 ·4254 ·1606 ·2553 ·1153 ·0597 ·0399 ·0853 ·0177 ·7705 . 0 A AVERAGE LOFE 6107 9119184 С IS IS 11898 9339 С MN S NI CR MD V F SI 03 W. TI CU AL < .108 .964 .015 .019 .105 > 2.22 .021 < .016 .213 .379 ,016 ,021 .029 < .016 • •-• • *

ب

•

21

ώ

0/ MARAD PROJECT 3205 SAMPLE HY-8-AC BASE METAL <u>n</u> . B-16 FGRGRGRGRAC Ε G - • 9:19:84 BURN # 1 LOFE 5:57 R IS IS 11818 9341 CU YΥ F SI NI W TI С MN S CR MO V CO AL .2369 .0666 .0635 .0579 .0348 .5000 .6597 .2901 .1015 .0658 .0443 .0949 .0212 2.060 Ö G BURN # 2 LOFE _____ 5:58 _9:19:84 R -IS IS 11811 9337 CR C MN S SI NT MO υ CO ม TI CU - F' AL_ YY .2319 .0663 .0627 .0571 .0345 .4944 .6526 .2871 .1009 .0660 .0439 .0942 .0210 2.024 0 G _ __ -----~ BURN # 3 LOFE 5:59 9:19:84 R. . : IS IS 11690 9340 С MN P CU S SI NI CR MO U CO W TI ΥY AL .2306 .0666 .0616 .0545 .0346 .4937 .6559 .2860 ,1013 ,0656 .0429 .0940 ,0217 2,055 0 G : BURN # 4 LOFE 6:00 9:19:84 R 👳 IS IS 11801 9337 С MN F S SI NI CR MO υ CO W ΤI CU AL ΥY .2333 .0667 .0625 .0566 .0349 .4966 .6612 .2902 .1015 .0657 .0430 .0947 .0214 2.069 0 A AVERAGE LOFE _____6:01 ___9:19:84_____ . · · · · Ĉ IS IS 11780 9339 С MN F S U SI NI CR MO CO W ΤI AL CU ,172 +297 .017 .012 .277 > 2.22 > 1.45 .442 .013 .028 +036 < +016 .051 .040 * 元

219

RGRGRGRAC ·						
	· ···· · ·	· • · -	•			
RN # 1 LOFE 12:28 9:15:84	4					
IS IS 1844 9325 C MN F S SI 1146 .1328 .0595 .0764 .0150	NI CR M0 ,4126 ,1264 ,2508	V CO ,1120 ,0621 .0	W TI CU 0355 .0948 .0161	AL YY - •7795 0	······································	48 a -
N # 2 LOFE 12:27 9:15:84						•
	·	· · · · · · · · · · · · · · · · · · ·			
772 9325 C MN P S SI 201 .1342 .0580 .0735 .0167	NI CR MO .418915702552	V CO •1147 •0628	W TI CU 0341_,0927,0164_	AL YY •8255 0	· · · · · ·	
: N # 3 LOFE 12:30 9:15:84)		- · ·			
, IS IS 719 9326						
C MN F S SI 102 .1320 .0586 .0753 .0143			W TI CU 341' 0838 0162	AL YY •7428 0	· · · · · · · · · · · · · · · · · · ·	
\ # 4 LOFE 12;31 9;15;84	· · ··· · ··· · ··· · · ··· ·	-	~ *	, n	· ·	
(S IS -	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		·			
C MN F S SI 222 .1350 .0572 .0718 .0185	NI CR MO .4203 .1763 .2546		W TI CU 327 .0958 .0173	AL YY •8721 0		
RAGE LOFE 12:32 9:15:84		· · · ·	-514 F & 64		· · · · · · ·	
1S IS						

•

-

0/ MARAD FROJECT 3205 SAMPLE HY-8-AC-HHI BASE METAL ວັ D-6 EGRGRGRGRAC Ε G . BURN # 1 LOFE 12:24 9:15:84 R : IS IS 11461 9326 С MN F S ដ SI NI CR MO v CO ΤI CU AL YY ·2164 ·0660 ·0582 ·0541 ·0339 ·4731 ·5813 ·2807 ·0986 ·0690 ·0362 ·0953 ·0205 2·196 0 G BURN # 2 LOFE 12:25 9:15:84 ----R ^{ti} • . IS IS 11354 9327 С MN E. S SI NI CR MO V 00 ω ΤI CU AL YY .2226 .0660 .0578 .0535 .0339 .4714 .6069 .2815 .0997 .0670 .0348 .0947 .0203 2.324 ٥ BURN # 3 LOFE 12:26 9:15:84 R · . × AN 35 IS IS 11427 9327 C P'S _YY MN SI NI CR MO v CO TI CU ω AL .2240 .0665 .0580 .0551 .0344 .4710 .6015 .2833 .1002 .0677 .0353 - - -+0955 .0210 2.277 0 G • . BURN # 4 LOFE 12:27 9:15:84 R 🗅 IS IS 11567 9325 С MN F S SI NI CR MO v CO ω ΤI CU AL YY ·2114 ·0659 ·0579 ·0528 ·0338 ·4698 ·5939 ·2781 ·0989 ·0679 ·0366 ·0939 ·0202 2·118 0 A AVERAGE LOFE 12:27 9:15:84 C IS IS 11452 9326 С MN F S SI NI CR MO V CO W TI CU AL .156 •284 .014 .011 .267 > 2.22 > 1.45 .429 .012 +027 .023 < .016 .049 .042 . ~ *

1

221

.

A-7 0/ MARAD PROJECT 3205 SAMPLE HY-8-AC-1 WELD METAL 0 EGRGRGRGRAC E G . . BURN # 1 LOFE 4:20 5:16:85 R IS IS 12204 9331 CU YY MO υ CO ш ΤI AL NI CR С MN P . S SI ·1277 ·1947 ·0563 ·0546 ·0364 ·4054 ·1605 ·2542 ·1142 ·0601 ·0274 ·0987 ·0175 1·028 0 G BURN # 2 LOFE 4:21 5:16:85 R ' IS IS . 11907 9331 ΥY P SI NI CR MO v 00 W . II CU Al. С MN S .1340 .1871 .0544 .0542 .0375 .4088 .1989 .2625 .1142 .0590 .0248 .1036 .0170 1.140 . 0 G . . 4:22 5:16:85 DURN # 3 LOFE R . IS 15 11714 9330 CU CO W TI AL. ΥY С MN F S SI NI CR MO U .1277 .1928 .0543 .0540 .0371 .3987 .1719 .2565 .1149 .0583 .0242 .1007 .0166 1.051 0. G 4:22 5:16:85 BURN # 4 LOFE R IS IS 11879 9331 ΥY S SI NI CR MO υ CO ω TI CU AL. F С MN .1352 .1866 .0547 .0556 .0373 .4080 .1943 .2646 .1137 .0594 .0255 **,1034** .0208 1.121 Δ A AVERAGE LÓFE 4:23 5:16:85 C IS IS 11926 9331 CU С MN F S SI NI CR мо U . CO ω TI AL. .385 .013 < .015 .012 < .016 .043 < .016 < .108 .337 1,29 .019 .013 .254 > 2.22 **.** - -- - -*

0/ MARAD PROJECT 3205 SAMPLE HY-8-AC-1 BASE METAL 0 EGRGRGRGRAC Ε G BURN # 1 LOFE 4:16 5:16:85 R IS IS 12089 9330 (CO Cυ YΥ S SI V W ΤI С MN F NI CR МО AL .2626 .0717 .0524 .0598 .0396 .4775 .6003 .3009 .0964 .0677 .0325 .0989 .0204 2.087 Ø G BURN # 2 LOFE 4:16 5:16:85 . . • • · R · IS IS 12049 9332 ° MO CU -YY [·] С MN P S SI NI CR v CO ω ΤÏ AL. ·2493 ·0710 ·0512 ·0544 ·0390 ·4715 ·5850 ·2935 ·0951 ·0681 ·0320 ·0968 ·0220 2·101 Ö Ci •••• -BURN # 3 LOFE 4:18 5:16:85 R IS IS 12233 9328 C F NI CR MN S SI MD v CO ω ΤI CU AL. ΥY ·2319 ·0708 ·0526 ·0583 ·0387 ·4720 ·5837 ·2953 ·0952 ·0685 .0342 .0977 .0203 2.149 0 G . • • . BURN # 4 LOFE 4:18 5:16:85 R IS IS 11777 . 9332 C MN F S SI NI CR мо V CO ω TI CU AL ΥY .2247 .0706 .0498 .0542 .0381 .4600 .5895 .2886 .0947 .0672 .0306 .0960 .0204 2.231 Ö A AVERAGE LOFE 4:19 5:16:85 С IS IS 12037 9330 С CO ИN P S SI NI CR MO V ω TI Cυ AL .175 .275 .016 .014 .269 > 2.22 > 1.45 .448 ,010 ,020 .042 < .016 .056 .039 ----.... *

.

RGRGRGRAC								8- X		-				-		• • • • • •
													•			1
RN # 1 L		4:11	5:16:85	,			×									
1940 93 C M 1260 .19	31	5 •049	SI 2 .0367	NI •3862	CR •1866	MO •2396	↓ •1173	CO • 0581	₩ •0237	TI •0998	CU •0173	AL 1.093	YY O			
RN # 2 L		4:12	5:14:85	· · - · -				× • • •• ••						• • • • •		• • • • • •
IS I 1831 93 C M 1400 •18	32 1 P	· S 51 .051	SI 8 •0368	NI •3998	CR • 2234	MD •2474	1133	C0 ₊0587	W +0236	TI .1016	CU .0170	AL 1.140	YY o	.		•
RN # 3 L	OFE	4:13	5:14:85													
IS I 2031 93 C M 1258 .19	31 J F	S 64 •048	5″.0362	NI •3865-	CR • • 1855 -	MD •2356	V •••••1174	CO •0581	W •0245	- TI .0999	CU .0170	∩L 1∙083	YY 0			· !
αN #1 4 L	OFE	4:14	5:16:85				•			• x	-	•				ł
IS I 365 93				/					. .,	·"			-	· -		۰ ۲
с ж	व ।	S 19 .054	SI 2 .0367	NI •4095	CR .2149	M0 +2477	v •1118	•0403	₩ •0284	TI .1013	CU •0184	AL 1.115	YY 0.			
RAGE L	OFE	4:15	5:14:85						n 18	·· ···		·····	x atta and hota r a	-	**	-
IS I 2042 93		S	SI	NI	CR	мо	V	CD < .015	W	TI < .016	CU	AL < .016				

•

ა ა

A-4 0/ MARAD PROJECT 3205 SAMPLE HY-8-HHI-1 BASE METAL n EGRGRGRGRAC Е G 1.1.0 BURN # 1 LOFE 4:07 5:16:85 R . . IS IS 11384 9327 С MN P S SI NI CR MD υ CO ω CU ΤI AL YY ·2344 ·0720 ·0453 ·0511 ·0399 ·4496 ·6102 ·2959 ·0967 ·0649 ·0220 ·0975 ·0191 2·196 ۵ G DURN # 2 LOFE 4:08 5:16:85 R 1 IS IS 11343 9331 ----. · • ω TI С MN F S SI NI CR мо U CO CU AL_ ΥY .2355 .0718 .0466 .0525 .0397 .4541 .6073 .2955 .0964 .0654 .0239 .0972 .0193 2.193 ٥ G BURN # 3 LOFE 4:08 5:16:85 • • • R IS IS 11188 9331 P S SI SI CR MO V С MN CO W CU - AL · · ΤI ΥY .2375 .0720 .0467 .0550 .0396 .4523 .6059 .2940 .0962 .0653 .0240 .0971 .0192 2.218 ٥ G -----BURN # 4 LOFE 4:09 5:16:85 R IS ···· IS 11243 9331 С MN F S SI 11 - L NI CR MO U CO ដ TI CU AL_ ΥY .2420 .0720 .0463 .0519 .039B .4516 .6147 .2967 .0969 .0649 .0230 .0976 .0191 2.176 ۵ A AVERAGE LOFE 4:10 5:16:85 С IS IS 11289 9330 . ν ο΄ ω τι С MN F S SI NI CR мо CU AL_ .170 .011 .012 .275 > 2.22 > 1.45 .450 .010 .017 < .008 < .016 .048 .041 ,283 * 1

EGRGRGRGRAC E G					I											
RURN # 1 LOF	E 5	150 9	: 122:84		-											
IS IS 11161 9350 C MN •1243 •1676 G	P	S •0559	SI •0523	NI •4586	CR •2632	M0 •2868	v •0766	CO •1012	W • 0400	TI •0861	CU •0146	AL •8269	YY			
BURN # 2 LOF	E	151 9	122184						··· ··							** ``
IS IS 11450 9348 C MN .1506 .1472 G	F	s •0558	SI •0484_	NI •4631	CR •3458	 MD 2808	V •0779	CD •0941	₩ •0456	TI •0879	CU +0203	AL •9641	YY 		. .	-
PURN # 3 LOF I	E , 9	:52 9	122184			- •										
IS IS 11387 9347 C MN .1264 .1670 G	Ë P	S •0575	SI •0518	NI •4648	CR •2649		•0768	0798	- ₩ •0464	T1 0869	CU •0150	AL • 8222	YY O		• ••• • • • •	. <u>,</u> .
HURN # 4 LOFE	E 9	:53 9	:22:84		•		•									
IS IS 11223 9347 C MN .1314 .1620 A	P •0672		SI •0511		CR •2937	. MD ∙2868	V •0781	C0	W •0437	TI •0885	CU •0163	 AL •8574	YY O	· • · · · ·	· - ·	
AVERAGE LOFE C		:54 7	22:84				******							ana	•, -	
L IS IS 11305 9348				s	• •											

`**.**..

8.26 0/ MARAD PROJECT 3205 SAMPLE HY-O-CS BASE METAL 0 EGRGRGRGRAC ε G DURN # 1 LOFE 9:46 9:22:84 ĸ IS IS 10762 9352 MN F S SI NI CR MO V CD W TI CU .0689 .0636 .0559 .0306 .4501 .6390 .2616 .0846 .0690 .0378 .0920 .0252 YY. С AL_ .2118 1.847 0 Θ BURN # 2 LOFE 9:47 9:22:84 R . 19 IS . 10659 9349 U ΥY С MN F S SI NI CR МО CO W TI CU AL. .0692...0638 .0552 .0311.....4526......6451 .2653 .0848 .0689 .0381 .0923 .0253 1.839 ្ល .2198 G 9:48 9:22:84 BURN # 3 LOFE R IS IS 10738 9348 NI CR MO v TI CU AL YY С MN Ρ SI CO W S .0688 .0643 .0539 .0307 .4515 .6416 .2614 .0845 .0690 .0394 .0918 .0265 1.804 .2190 0 G) BURN # 4 LOFE 9:48 9:22:84 R ... IS IS 11052 9348 С MN F S SI .. NI υ CD ω TI CU AL ΥY CR . MD +2268 .0689 .0664 .0540 .0308 .4600 .6472 .2646 .0693 .0920 1.789 0 .0844 +0440 .0262 A AVERAGE 9:49 9:22:84 LOFE . C IS 13 10803 9349 С MN P S SI NI CR MO TI CU AL v CO ω •156 •077 .035 * · .

1

0/ MARAD PROJECT 3205 SAMPLE HY-O-FC WELD METAL 2-29 n EGRGRGRGRAC Ε G 2 -BURN # 1 LOFE 9159 9122184 R ----. IS 11646 9347 C MN F S SI NI CR MO V CO W TI CU AL .1409 .2217 .0710 .0818 .0498 .4786 .1869 .2873 .1423 .0611 .0434 .1054 .0175 .9682 C YY Δ G BURN # 2 LOFE 9159 9122184 R IS IS - -11517 9347 C F S NI MO v ม ΥY MN SI CR CO ΤI CU AL ·1460 ·2189 ·0705 ·0796 ·0471 ·4784 ·2171 ·2877 ·1402 ·0614 ·0444 ·1071 ·0181 ·9994 0 G ω BURN # 3 LOFE 10:00 9:22:84 R IS ÍS 11646 9344 F S 51 NI CR MO V CO , С MN LJ. TI CU AL YY ·1416 ·2281 ·0703 ·0817 ·0493 ·4785 ·1848 ·2873 ·1435 ·0611 ·0430 ·1060 ·0179 ·9675 0 G • DURN # 4 LOFE 10:01 9:22:84 R **.** . IS IS 1 11632 9344 C MN P S SI NI CR мо v CO ы TI CU AL YY ·1478 ·2170 ·0702 ·0803 ·0478 ·4745 ·2204 ·2831 ·1396 ·0618 ·0439 ·1071 ·0200 ·9876 0 A AVERAGE LOFE 10:02 9:22:84 C IS 15 . 11610 9345 С MN S v F SI NI CR MO CO W TI CU AL < .108 > 1.65 ·023 ·020 ·409 > 2,22 ···· 363 ···· 441 ··· 022 ·024 ·019 < .016 ··042 < .016 *

N Ν

.

0/ MARAD PROJECT 3205 SAMPLE HY-D-FC BASE METAL 8-28 0 EGRGRGRGRAC Ε G ť BURN # 1 LOFE 9:54 9:22:84 R IS IS 11286 9349 C MN F S SI NI CR MO V CO TI ω CU AL. .2173 .0685 .0676 .0541 .0303 .4593 .6427 .2597 .0839 .0694 .0474 .0911 .0254 1.833 0 0 BURN # 2 LOFE 9:55 9:22:84 R · IS IS 11355 9351 С MN F S SI CR v CO ω ΤI CU NI MO AL YY ·2153 .0682 .0677 .0525 .0300 .4581 .6476 .2580 .0841 .0689 .0482 .0910 .0254 1.807 0 G BURN # 3 LOFE 9:56 9:22:84 . . R : IS IS 11308 9352 F' S SI NI CR MO C YY⁻ MN v CO ω TI Cυ AL .2206 .0687 .0688 .0551 .0305 .4637 .6560 .2637 .0847 .0688 .0496 ,0919 .0256 1,806 Ö G BURN # 4 LOFE 9:57 9:22:84 R ---IS. IS 11264 9348 С MN F' S SI v CO ω ΤI NI CR MO CU YY AL .2211 .0688 .0680 .0549 .0305 .4607 .6510 .2621 .0688 .0256 .0845 .0471 .0912 1.772 0 ٨ 9:58 9:22:84 AVERAGE LOFE С 15 IS 11303 9350 ເື MN F S SI NI CR ΤI MO V CO ω CU AL .306 .021 .011 .241 > 2.22 > 1.45 .395 .009 .032 ,155 .031 < .016 +075 .034 *

	GRAC					· • •			•			-					8	
URN #	1 LOFE	10	107 5	2122184														
IS 11530 C	IS 9340 MN •2194	F •0688	`S ₊0574	SI .0327	NI .5078	CR •2768	MO •2823	1181	C0 •0648	W •0499	TI .1076	CU .0165	AL 1.189	YY O			·	• •
	2 LOFE	10	:08 5	122184										·· ·· · · ·			•	
С	IS 9343 MN •2186	₽ ₽ ₽	S •0592	SI 0326	NI •5003	CR • 2731	MO • 2848	v _ <u>.</u> 1183	C0 •0647	W •0467	TI .1104	CU •0162	AL 1,175	YY 0		<u>-</u>		
1rn + :	3 LOFE	10	:09 9	122184														
Ċ	IS .9343 MN .2173	.0680	•0592	SI ₊0327	. 11 1060	CR •2788		- _V ,1175	CD •0649	₩ •0485	ŢI •1091	CU •0171	AL 1.193	YY O	•			
JRN 🛊 4	4 LOFE	10	:10 9	:22:84	-		• -	•			·		•					
IS 11447 C 1234	IS 9342 MN •2138	F •0679	S •0584	SI •0319	NI •5012	CR •2917		 .1176	CO • 0650	₩ •0480	TI •1077	CU •0174	AL 1,169	 YY 0			•	
ERAGE	LOFE	10	:11 9	:22:84			-			··· ··· ·	.	•••••			-ગ પ્લા			
IS 1486	IS 7342						• •											

.

230

0/ MARAD PROJECT 3205 SAMPLE HY-O-AC BASE METAL 6-30 0 EGRGRGRGRAC Ε G FURN # 1 LOFE 10:03 9:22:84 R IS IS 11254 9343 , CR ΤI CU С S MO V CO W AL ΥY MN F SI NТ . . Ö .2304 .0689 .0712 .0571 .0305 .4687 .6510 .2626 .0846 .0676 .0541 .0922 .0259 1.817 G BURN # 2 LOFE 10:04 9:22:84 RÍ IS IS × • -11105 9343 С MN F S SI NI CR MD v CO ω TI CU AL ΥY +2280 +0694 +0693 +0565 +0310 +4654 +6563 +2656 +0853 +0692 +0485 +0927 +0265 1+794 0 G, BURN # 3 LOFE 10:04 9:22:84 . .. R · · IS IS 11203 9343 P S SI NI CR MO V *** * W TI T C MN CO CU AL YY .2029 .0677 .0678 .0519 .0297 .4533 .6472 .2578 .0841 .0686 .0486 .0912 .0250 1.879 0 G • • BURN # 4 LOFE 10:05 9:22:84 R IS IS 11291 9341 С MN F S SI V CO NI CR MO ω TI CU AL ΥY . -.2089 .0906 .0256 1.805 •0680 .0690 .0532 .0298 •4604 •6533 •2578 •0841 ·0688 ·0522 Ô A 10:06 9:22:84 AVERAGE LOFE С • IS IS . . . 11213 9342 C MN F S SI NI CR MO U CO ω ΤI CU AL .154 .306 ·022 ·011 ·240 > 2.22 > 1.45 ·395 ·009 ·032 ·039 < ·016 ·076 •035 *

• ••

N ω Ē

A-3 0/ MARAD PROJECT 3205 SAMPLE HY-0-AC-1 WELD METAL 0 EGRGRGRGRAC Е G BURN # 1 LOFE 4:02 5:16:85 R IS IS 11998 9332 С MN P S SI NI CR MO U CO W TI CU AL YY .1266 .2555 .0491 .0517 .0393 ·2849 ·1149 ·0607 ·0227 ·1089 ···;0145 1;118 ···· 0 · · ···· G BURN 4 2 LOFE 4:03 5:16:85 R IS IS , x ۰. 11788 9332 ----С MN F S SI NI CR MO v CO ω TI CU AL ΥY .1335 .2420 .0486 .0511 .0389 .4441 .2419 .2888 .1115 .0612 .0220 .1101 .0148 1.186 0 G BURN # 3 LOFE 4:04 5:16:85 R . . IS IS 11834 9331 С MN F S SI NI CR MO U. CO **ω ΄ ΤΙ** CU AL YY .1110 .2561 .0485 .0500 .0397 .4390 .2230 .2830 .1156 .0601 .0217 .1082 .0154 1.091 ٥ G • •,-1 BURN # 4 LOFE 4:04 5:16:85 R IS IS . . **.** . . 11623 9327 С MN F١ YY ន SI NI CR MO V CO W ΤI CU AL_ .0480 .0501 .0383 .4377 .2618 .2862 .1092 .0624 .0219 .1056 .0157 1.168 - , I .1317 .2300 -----.... ٥ A AVERAGE LOFE 4:05 5:16:85 С IS IS . 11811 9330 С MN F S SI NI CR ΤI МО U CO W CU AL < .108 > 1.65 .013 .011 .270 > 2.22 .491 .432 .013 < .015 < .008 < .016 .029 .016 *

0/ HARAD FROJECT 3205 SAMPLE HY-0-AC-1 BASE METAL 0 EGRGRGRGRAC . . E G MURN # 1 LOFE 3:58 5:16:85 R IS IS 11609 9333 С MN F S NI CR SI MO Ų CO ų TI CU AL ΥY .2360 .0731 .0511 .0511 .0359 .4264 .5895 .2736 .0761 .0694 G 1 BURN # 2 LOFE 3:59 5:16:85 ĸ ŕ IS IS 11683 9332 ° C MN 1 F S SI NI CR MØ v CO ω ΤI CU AL_ YΥ .2211 .0723 .0509 .0467 .0352 .4236 .5987 .2705 .0759 .0684 .0235 .0731 .0243 1.878 B78 0 G N ငယ္ထ BURN # 3 LOFE 3:59 5:16:85 . . . R IS IS C 11752 9333 C MN F S SI NI CR MO v CO ω TI CU AL YY2223 .0731 .0511 .0496 .0354 1 .4220 .6094 .2711 .0763 .0680 .0227 .0931 .0247 1.891 0 G BURN # 4 LOFE 4:00 5:16:85 C R 15 IS 11632 9331 C С MN F S SI NI CR V мо CO ω ΤI CU AL YY .2280 .0736 .0518 .0503 .0358 .4267 .6162 .2740 .0768 .0678 C AVERAGE LOFE . 4:01 5:16:85 C IS IS 11669 9332 С MN F S SI NI CR MO U CO ω TI CU AL .160 .292 .015 .011 .242 > 2.22 > 1.45 +40B .006 .020 < .008 < .016 +076 .033 *

Ŋ-<u>1</u> 0/ MARAD PROJECT 3205 NBS SAMPLE 1261 -... n EGRGRAC E G BURN # 1 LOFE _ 12:01 9:15:84 R. IS IS 11532 9331 C MN F S SI MO V CO W TI CU AL YY NI CR .4357 .1074 .0632 .0745 .0290 .3823 .3048 .1455 .1108 .0845 .0383 .2987 .0190 1.505 0 G . و ب او با ما ما ما ما ما ما ما • • • • BURN # 2 LOFE 12:01 9:15:84 R ' IS '-'IS'' 11106 9335 C MN F S SI NI CR MO V CO W TI CU AL .4337 .1087 .0613 .0723 .0294 .3742 .3048 .1468 .1126 .0845 .0334 .3202 .0185 1.481 ΥY 0 A AVERAGE LOFE 12:02 9:15:84 · · · С IS IS . . • • • • • • 11319 9333 P С MN S SI NI CR U мо CO ω TI CU AL. .673 .017 .018 .224 1.94 .708 .193 .015 .044 .023 .025 .379 •041 .025 * 🗄 -REGRORGRORAC Q . . * . . .

`....

'N

QEGRGRA	AC	*** - ***	**** * * *			··· · · ····			•		n 14 1944 (¹16 166)			• • •			0-10
*07 MARA	AD FRO.I	ECT 320	5 NRG	SAMPI F	1261						· •••		<i>.</i> .				
0 EGRGRAC			0 1120														
E G				*****						· • · · · ·				4 • • • • • • • • • • • • • • • • • • •			
BURN 4 1 R IS	L LOFE	12	:42 ~ 9	115:84	Ma Kar	~# * * *	• • • • •		-	-	****	* ··			•••		
11736 C	ິ 9317 MN	F • 0648	S	SI •0289	NI •3839	CR • 3004	MD •1480	,1112	CO	W •0400	TI .•3136	CU •0192	AL 1,502	YY O	••••	• • •	
DURN # 2 R	LOFE	12	<u>42 9</u>	:15:84					· - •		*** * **** * ** ****		 . -	··			
IS 11819 C	IS 9321 MN •1073	F •0654	S •0765	SI •0288		CR •2968	MO ₊1471	V •1102	00 •0862	⊌ ∙0423	TI •3109	CU •0191	AL 1.499	YY	17		
		10						·· · · ·	-								
AVERAGE C IS	LOFE	12	:43 9		* ***	• • •					•						
11777 C	9319 MN •669	- ^P .020	- S .019	SI •220		CR • 691	MO 195	V •015	CD •045	- ⊌ •042	. TI •025	CU • 043	AL •025	· · ••			
¥						•·	•				••						
					مور مدم ود - د د			an m	ж. н. н. н. н.		·				n .		
					1									,			

· .

•

.

ر

 \sim

L

⁾ ز کر 235

-	···· ······												~					•
i IURN # 1	LOFE IS	` E	i 1 31 5	19184			maa n	•		·	** *							
11480 C 4269	MN	F. •0631	5 • 0733	SI •0287	NI •3854	CR •3219	MD •1455	,1102	CO •0813	W •0389	TI •2990	CU •0188	AL 1.461	YY •0001		*		
	LOFE		:33 9	19184				:·	,	unaa yadi kiki ir	····· · · ·		•••••	· •		• •	•	
ÍS 11540 C		F •0646		SI •0289			MO +1479			W •0400			AL 1.394	YY •0000				
VERAGE	LOFE			19:84					•									•
IS	IS	r			`	· ·	••	*					-		· · · ·			
	9349 673	F • 018	S •018`	- SI •223		CR •716	MO 194"	V •015	CO •044	. ₩ •023	TI •026	CU +040	AL •025	<u>.</u> , .	×		• •	
÷ .								· •- · •		•	• 							
•			***										• • • · · · · ·	*****				
				. ,	•		····					-				-		
UEGRGRG	RGRAC																	
													** **** * * ******	- * /*****			·	. .
				,														

			6-18
REGRGRAC			
0/ NUS SAMPLE 1261			
GRGRAC	·		••••••••••••••••••••••••••••••••••••••
URN # 1 LOFE 6:08 9:19:84			
IS IS IS IS 11814 9334 C MN F S SI •4388 •1078 •0675 •0778 •0288	NI CR MD V (CD W TI CU AL YY 319 •0464 •3155 •0192 1•446 0	· · · · ·
URN # 2 LOFE 6:09 9:19:84		· · · · · · · · · · · · · · · · · · ·	. .
11930 9333 C HN F S SI .4366 .1080 .0683 .0727 .0288		CO W TI CU AL YY 306 .0471 .3131 .0192 1.432 0	
VERAGE LOFE 6:10 9:19:84	, 		
	2.06 .732 .196 .015 .0	0 W TI CU AL	
4. · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·	· •• ••; · ••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·	
		Υ.	

.

•

8-32 QEGRGRAC *0/MARAD FROJECT 3205 NBS SAMFLE 1261. 0 EGRGRAC Е G BURN # 1 LOFE 10:12 9:22:84 R IS ... 'IS ¯ ----.... 11376 9343 C MN S P SI NI CR MO υ CO ы TI CU AL YY -4399 -1086 -0716 -0778 -0277 -3999 -3416 -1472 -1134 -0804 .0189 1.442 .0537 .3131 0 G 10:13 9:22:84 . . BURN # 2 LOFE R IS IS . • • • .. . 11202 9343 С MN F' S SI NI CR MO U CO ΤI ม CU ΥY AI_ .4377 .1084 .0720 .0777 .0278 .3987 .3389 .1470 .1131 .0811 .0567 .3128 .0188 1.435 Ő A • AVERAGE LOFE 10:13 9:22:84 . С IS IS 11289 9343 Ś. C MN F' SI זא CR мо υ CO ω ΤĨ CU · AL .381 .676 .024 .019 .217 2.09 .726 .196 .015 .045 .026 .051 +025 .044 *

. .

G								-			-	•						
BURN + : R		5	:43	7:22:84														
IS 11001 C .4246 G	9353	F •0649	•0737	SI •0279	NI •3851	CR •3286	MD •1439	,1130	.0820	.0425	TI •3108	CU •0185	AL 1,488	, YY ₀ .			•	
BURN # 2 R	2° LOFE		144 7 9	122184					an alar te ta san a V				•••••					• •
IS 10973 C •4300 A	9353 Mn	 F 0652	S •0739	SI +0282_	NI •3838	CR •3316_	MD •1457	V 1145	.0819	W •0414	TI 	CU 0187	AL _1_442	YY O	•	<u>.</u>	•••	
AVERAGE C IS 10987	LOFE IS 9353	, Ģ	:44 9	122184		• • • • ·	-				. .			,				
C	MN • 678	F •019	S •018	SI •220	NI 1,95	CR +699		V •015	C0 +046	W •014	TI 025	CU • 043	AL . •026			-		
•368	<u> </u>		• •		• •	<i>.</i>		•						-				
				,			······		-		• • • • •	•						
•368																		
•368	RGRAC				/).	,												

t second s

239

 $\overline{}$

~

~

•

0/ MARAD FROJECT 3205 NBS SOMPLE 1261 0 EGRGRGRGRAC E G BURN # 1 LOFE 4:24 5:16:85 R IS IS IS 11769 9327 С MN F S SI NI CR **`ı** ı MO v CO ω ΤI CU AL ΥY .4480 .1176 .0553 .0750 .0324 .3632 .3154 .1479 .1097 .0840 .030B .3400 .0177 1.505 ۵ G BURN # 2 LOFE 4:25 5:16:85 R IS IS 11552 9330 ~ .-. .. С MN F S SI NI CR MO U CO ω ΤI CU AL ΥY .4429 .1171 .0552 .0723 .0322 .3619 .3129 .1474 .1097 .0847 .0306 .3334 .0177 1.498 n G DURN # 3 LOFE 4:26 5:16:85 R • • IS IS 11676 9329 MN "P'S S SI NI CR --- W С CO W ΤI CU · AL ΥY .4396 .1169 .0547 .0706 .0321 .3601 .3099 .1462 .1094 .0855 ·0303 /3284 .0176 1.506 0 G BURN # 4 LOFE 4:27 5:16:85 R . • • IS IS 11661 9331 С MN F S SI NI CR MO U ω CO TI CU AL YY ·4445 ·1184 ·0553 ·0736 ·0328 .3624 .3130 .1472 .1102 .0854 .0310 .3368 .0177 1.527 ٥ A AVERAGE LOFE 4:28 5:16:85 С IS IS 11664 9329 C MN F S SI NI CR MO V CO ω TI CU AL .378 .670 ,019 .020 .217 2.05 .705 .192 .013 .035 .035 .024 .041 .025 *

			• •	· •	•					••••					
URN # 1 LOFE	3:	53 5:	16:85	, 								* 5	∙г за царанна к	 ¥* •••• (
IS IS 11912 9331 C MN .4368 .1166	F • 0529	S •0647		NI •3590		.1456		CD +0844	ω •0277	TI •3295			YY O		
URN # 2 LOFE	3:	54 51	16;85	• •	•										
IS IS 11899 9331 C MN 4507 .1177	F • 0546	S • 0704	SI •0324 -	NI • 3628 -	CR •3143 -	MD 1481	v	CD •0846	₩ •0292 -	TI •••3403 •	cu	AL. 1,451	. YY . 0.		
VERAGE LOFE IS IS	3:		16:85		····		 .						. .		
		~	ст	NI	CR	мо	V	co	ω	: TI	EU .	AL			
1905 - 9331 C MN •378 •667	F •018	•018 _.	SI •217			.191	.012	.035	.025	.024	.042	+024			
1905 9331 C MN	٩					•191	.012	.035	.025	• 0,24	•042	•024	•		
1905 9331 C MN	٩					.191	.012	•035	•025	•024	•042	•024	•		
1905 9331 C MN	٩					.191	.012	•035	•025	•024	.042	•024	•		
1905 9331 C MN	٩						.012	•035	•025	•024	•042	•024	• • ••••	·	

mana and and and and

LVC