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FICTITIOUS DOMAIN METHODS
FOR VISCOUS FLOW SIMULATION

Roland Glowinski!, Anthony J. Kearsley?,
Tsorng-Whay Pan?, Jacques Periaux?*

Abstract

We discuss the fictitious domain solution of the Navier—Stokes equations
modelling unsteady incompressible viscous flow. The method is based on
a Lagrange multiplier treatment of the boundary conditions to be satis-
fied and is particularly well suited to the treatment of no-slip boundary
conditions. This approach allows the use of structured meshes and fast
specialized solvers for problems on complicated geometries. Another inter-
esting feature of the fictitious domain approach is that it allows the solution
of optimal shape problems without regriding. The resulting methodology
is applied to the solution of flow problems including external viscous flow
past oscillating rigid body and vortex dynamics of two-dimensional flow
modelled by the incompressible Navier—Stokes equations and then to an
optimal shape problem for Stokes and Navier-Stokes flows.

1. INTRODUCTION

Fictitious domain methods for partial differential equations are showing interest-
ing possibilities for solving complicated problems motivated by applications from
science and engineering (see, for example, [1] and [2] for some impressive illustra-
tions of the above statement). The main reason for the popularity of fictitious
domain methods (sometimes called domain embedding methods; cf. [3]) is that
they allow the use of fairly structured meshes on a simple shape auxiliary domain
containing the actual one, therefore allowing the use of fast solvers.

In this article which follows [4-6], we consider the fictitious domain solution
of the Navier-Stokes equations modelling the unsteady incompressible Newtonian
viscous fluids and apply the resulting methodology to the solution of optimal shape
problems for Stokes and Navier-Stokes flows.

The principle of fictitious domain methods discussed here is to solve the problem
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in a large domain (containing the actual one) with a very simple shape, the fictitious
domain, and to impose the boundary condition by the introduction of a Lagrange
multiplier on the actual boundary. Its advantage is to allow the numerical treatment
on a fixed structured mesh, independent of the actual boundary of bodies which
might be moving. Thus the time—consuming construction of a boundary-fitted mesh
for each different position of moving bodies can be skipped.

The methods discussed here go far beyond the related work in [7] where only the
steady Stokes problem was considered (in the particular case where the boundary
of the actual domain is compatible with the finite element mesh used in the aux-
iliary domain). The methods described in the following sections do not require a
strong coupling between the actual boundary discretization and the grid used in the
auxiliary domain. It also relies on the splitting methods described in, e.g., [8]-[12];
with these methods one can decouple the numerical treatments of the incompress-
ibility and of the advection, and take advantage of this fact to use the embedding
approach in the (linear) incompressibility step only, the advection being treated in
the larger domain without concern —in some sense- for the actual boundary.

The content of this article is as follows: In Section 2 we discuss fictitious domain
methods for Dirichlet problems and its numerical solution by combination of do-
main decomposition and fictitious domain methods; then in Section 3 we consider
fictitious domain methods for incompressible Navier—Stokes equations. In Section
4 the simulation of external incompressible viscous flow past an oscillating rigid
body modelled by Navier—Stokes equations is discussed. In Section 5 we apply the
methods of the above sections to study the vortex dynamics of a two—dimensional
viscous flow taking place in a disk. In Section 6 we address the fictitious domain
solution of optimal shape problems for Stokes and Navier-Stokes flows. Finally, in

Section 7 we conclude the paper with some observations and comments on future
work.

2. FICTITIOUS DOMAIN METHODS FOR THE DIRICHLET
PROBLEM

2.1 A model problem

Fig. 1.



We consider the following Dirichlet problem:

au—vAu = fin Q\ o, (1)
u = go on v, (2)
u=gyon I, (3)

where Qis a “box” shaped domain in R*(d > 1), w is a bounded domain in R%(d > 1)
such that w is contained in Q (e.g., see Fig. 1), T (resp., ) is the boundary 8Q
(resp., dw), we suppose that v is smooth; a > 0 and v > 0; finally, f, go, and g¢;
are given functions defined over Q \ @, v and I, respectively. If f, go, and g; are
smooth enough, problem (1)—(3) has a unique solution.

A fictitious domain method was already proposed for problem (1)—(3) in [4]. For
simplicity, we shall assume that f € L2(2\ @). We imbed Q \ @ in  and define

Vy, = {vlv € H'(Q),v = g; on T'}. (4)

We then have equivalence between (1)—(3) and the following saddle-point problem:
Find {1, A} € V,, x L?(v) such that

/(a&v+uVﬁ~Vu) dmz/ fvda:—l—/)\vd'y, Vv € H} (), (5)
0 Q ¥

/ u(di — go) dy = 0, Y € L3 (), (6)

where f is a L?(Q)-extension of f and satisfies f~|Q\Q = f. It can be shown that
@]\ is the solution of problem (1)—(3) and @ = g on . In (5)~(6), more precisely
we have that the multiplier A is equal to v[0%/dn]|, (i.e., v times the jump of the
normal derivative of @ at ).

Problem (5)-(6) can be solved by the general conjugate gradient methodology
proposed in [4]. For the cases where w C R? with a smooth boundary v, we have
obtained by Fourier Analysis a quasi-optimal preconditioned conjugate gradient
algorithm for the solution of (5)—(6) (see [4]).

2.2 Domain decomposition/fictitious domain approach

Motivated by computation with nonmatching grids on MIMD machines, we con-
sider the numerical solution of Dirichlet problems by a combination of domain
decomposition and fictitious domain methods. We take advantage of the fact that
the Steklov—Poincaré operators associated with the subdomain interfaces and with
the fictitious domain treatment of internal boundaries have very similar properties.
We use these properties to derive fast solution methods of the conjugate gradient
type with good parallelization properties which simultaneously force the matching
at subdomain interfaces and the actual boundary conditions.
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Fig. 2.

We consider the case where w is a bounded domain, and a three subdomain
decomposition like the one in Fig. 2 where @ = Q; U Qy U Q3; we denote by
Y12 (resp., 723) the interface between Q; and Q (resp., 23 and 3), and by v
the boundary of w; and let I'; = T' N 9%; for 1 = 1,2,3. To obtain the equivalent
fictitious formulation of (1)—(3), we imbed Q\ @ in 2 and define the following spaces

Ve ={vlve H'(),v=g1on I}, V§={vlve H(%),v=0o0n I},
for i = 1,2,3 and let
V=V, xV2xV2 Vo=Vi xVExV§d, A=L*v)x L¥mz) x L*(723).
Problem (1)—(3) is equivalent to the following system

Find (u1,uz2,u3) € V, (X, A2, A23) € A such that

3 3
Z/ (ou;v; + vVu, - Vv;)dz = Z/ fu; dz +/ A2(vg —v1)ds  (7)
i=1 VY i=1 Y% Yi2

+/ A2s(vs — va) ds + / vy dry, V(v1,v2,v3) € Vo,
Y23 Y

[ wtu=g0) v =0, vu e 2(y) (8)
N
/ paz{uz — up) dy = 0, Vs € L2(712), (9)
Yi2
/ pos(us — ug) dy = 0, Yoz € L*(ve3), (10)

Y23



where f is a L?(9) extension of f. We have equivalence in the sense that if relations
(7)-(10) hold then u; = ulg,, for i = 1,2,3, where u is solution of (5)-(6), and
conversely.

Due to the combination of the two methods, there are two Lagrange multipliers
in (7)-(10). The function A which is a Lagrange multiplier associated with the
boundary condition u = go on v is essentially the jump of ¥(8u/dn) at v, and the
function A;o (resp., y23) which can be viewed as a Lagrange multiplier associated
with the interface boundary condition uy = uy (resp., uy = u3) on Y12 (resp., Yz3) is
nothing but the function v(8u/9n1)l,,, = —v(du/dn3)|,,, (resp., v(du/On2)|,; =
—v(0u/0n3)|y,,) where n; is the outward normal unit vector of §; at interfaces 12
and 93.

There are three different conjugate gradient algorithms which have different par-
allelization properties and can be parallelized on MIMD machines [13]. Here we
apply the one called the one shot method to solve the saddle-point system (7)—(10).
In [14], the numerical experiments of the one shot method to two-dimensional and
three—-dimensional test problems have been done on a KSR1 of MIMD type.

The one shot method is the following:

A% = (A% My, A%3) € A given; (11)
solve

Find (ul,u},ul) € V, such that

3 3
auqvi+1/VuQ~Vvi dz = / ~U,~dw+/ A, (v — vy) ds
> . (o tvude=3 [ ] [ M-y

+ )‘(2)3('03 —vg)ds + / )‘OUZ dr, V(Ul,vz,v:a) € W,
Y23 Y
set gO = (90’982’983) = ((ug - gO)I‘Y’ (ug - u?)l’hz’ (ug - ug)l’vza)’
and st w° = (% wiy, wl;) = (9° 972, 933)-
Forn >0, knowing A", g", w™, compute A", gntl wntl g5 follows:

solve

Find (a},al,u%) € Vo, such that

3
Z/ (@@lv; + vVal - V) dx = / wip(vy — vy) ds
i=1 v Y12 (13)
+/ wis(v3 — vg) ds + / w"vay dy, Y(vy1,v3,v3) €V,
Y23 v
and set 8" = (9" 912, 9%s) = (@3 |y, (@5 — A7) |ypy, (BF — G3) s),
We then compute
f'y g™ [* dv + f'nz |9%5(* ds + f—yz3 |955|* ds (14)

[grwrdy + [ ghwiyds + | Gywg,ds’



and set

AT = A" W™, (15)
ult =yl — p,al, fori=1,2,3, (16)
g"tt =g" — png". (17)

If llg™ /1% < e, take A = ATy = u’f"’l, Uy = u;‘“, and ug = ug“; if
not compute

v = g™ 1%/ llg™ 1%, (18)
and set  wntl =gntl 4y W,
Don=mn+1 and go to (13).

In algorithm (11)-(18), ||g||* = f7 |g|? dy + f'm |g12|%ds + fwa |g23|? ds for any
g = (g, 912, 923) € A. We have taken ¢ = 107 in the stopping test. When w C R?
with smooth boundary, a preconditioned one shot method has been discussed in
[13].

2.3 Numerical experiments

We consider the following test problem:

—Au=0in Q\®, (19)
u=0on v, (20)
u=—zcosf+ysinfon I, (21)

where Q = (—0.5,0.5) x (—0.5,0.5), w is a NACA0012 airfoil centered at (0, 0) with
zero degree of angle of attack whose chord length is 0.35, and 6 is an incident angle.
In numerical experiments, = Q1 U Qo U 23 where 7 = (—0.5,0.5) x (0.125,0.5),
0, = (—0.5,0.5) x (—0.125,0.125), Q3 = (—0.5,0.5) x (—0.5, —0.125).

The finite dimensional spaces Vgilh and Vg, which approximate V;l and V¢, re-
spectively, for 1 = 1,2, 3 are defined as follows:

Vi = {'Uh,1’l2h € CO(Qi)avh = ginh ON Fi,vth € Pl’ VT € m}’

[0

Voih = {'UhI'Uh € CO(Qi),U}L = 0 on I‘i,vth € Pl, vT € 7_;:},

where g1 is an approximation of g; given by (21), 73 is a triangulations (see Fig.
3) of Q; for : = 1,2,3 and P, is the space of the polynomials in z;,z; of degree
< 1. For the above finite dimensional spaces, we can use different mesh size in each
subdomain (see Fig. 3).



The spaces L*(v), L?(v12) and L?(;3) are approximated by the finite dimen-
sional space Ap, Ap12, and Apas, respectively, as follows:

Ay = {pnlpn € L2(7), ph is constant on the segment joining
2 consecutive mesh points on v},
Apiz = {prlpn € L™(y12), th is constant on the segment joining
2 consecutive mesh points on 12},
Apa2s = {pn|pn € L™ (723), tn 15 constant on the segment joining

2 consecutive mesh points on yz3}.

A particular choice of mesh points on v is visualized in Fig. 3. The mesh points
on 12 and 723 are the midpoints of the edges located on the interfaces of the finest
triaugulation [15] (e.g., see Fig. 4).

Fig. 3: Example of meshes on Q;, Q,, and Q3 with mesh sizes h = 1 /8,
h =1/32, and h = 1/8 respectively. Mesh points on v are marked by “*”.

Fig. 4: Example of mesh on interface between subdomain with nonmatch-
ing grids. Mesh points on interface are marked by “”



The solution of (19)-(21) is the stream function of the potential flow of incident
angle . In the numerical experiments, we have taken § = 45° and the mesh sizes
are hy = 1/128, hy = 1/512, and hs = 1/128 for the subdomains 2, Q3, and Q3
respectively. We applied the one shot method with nonmatching grids to (19)-(21)
and the corresponding numerical results are shown in Fig. 5. Those obtained by the
fictitious domain method with uniform grid of mesh size h = 1/512 are also shown
in Fig. 5. With the one shot method and nonmatching grids, we can successfully
use fine grid in the region close to the body and coarse grid in the region far from
the body. We observe the excellent agreement between these results.

Fig. 5: The left figure shows the streamlines obtained by the one shot
method with nonmatching grids and h; = 1/128, hy = 1/512, and h3 =
1/128 for the subdomains §;, 22, and Q3 shown in Fig. 3. The right
figure shows the streamlines obtained by the fictitious domain method with
uniform grid of mesh size h = 1/512.

3. FICTITIOUS DOMAIN METHODS FOR THE NAVIER-STOKES
EQUATIONS

3.1 The Navier—Stokes Equations

1

Y
T,
e ;

Fig. 6.



In [5, 6], we have considered external incompressible viscous flow modeled by
the Navier—Stokes equations with either Dirichlet boundary conditions or Neumann
boundary conditions downstream. Using the notation of Fig. 6, we consider the
following problem

%‘%—uAqu(u-V)quvp:finQ\w_({)", (22)
V.ou=0inQ\w), (23)
u(x,0) = up(x), x€Q\w(t),(with V-ug = 0), (24)
w=go(t) on T, vou — np = gy(t) on T, (25)
u = gs(t) on y(t). (26)

In (22)—(26), ©Q is bounded domains in R%(d > 2), w(t) could be a moving rigid
body in R%(d > 2) (see Fig. 6), I' (resp., v(t)) is the boundary of Q) (resp., w(t))
withT' =TouUTl;, T'yNTy; =0, and fl‘1 dl’ > 0, n is the outer normal unit vector
at Ty, u = {u;}!=¢ is the flow velocity, p is the pressure, f is a density of external

j=d Bw,-

forces, v(> 0) is a viscosity parameter, and (v - V)w = {22551 vja—}::‘f.
.

To obtain the equivalent fictitious domain formulation for the Navier—Stokes

equations, we embed € \ w(t) in © and define
Vg, = {v|lv e (H} Q)% v=goonTe}, Vo={vlve (H(Q)%v=0o0nT},

and A(t) = (L?(v(t)))?. We observe that if Uy is an extension of ug with V-Ug = 0
in 2, and if f is an extension of f, we have equivalence between (22)—(26) and the
following problem:

( Fort>0, find U(t) € Vg, P(t) € L*(Q), A(t) € A(t) such that

zt—JI‘vdx—f-z//VU~Vvdx
0

o Ot
) +/(U~V)U-vdx—/PV-vdx (27)
Q Q

:/f’-vdx+/ g1~vdF+/ A-vdy, Vv € Vg, ae. t >0,

\ Q I N ¥(t)
V-U(t)=01in 0, (28)
U(x,0) = Ug(x), x € Q, (with V-Uy = 0), (29)
U(t) = galt) on (t), (30)

in the sense that Ul| oo = W PIQ\U(T) = p. Above, we have used the notation
#(t) for the function x — ¢(x,t).

Concerning the multiplier A, its interpretation is simple since it is equal to the
jump of ¥(0U /0n) — nP at y(t). A closely related approach (limited to the steady



Stokes problem) is discussed in [7]. We observe that the effect of the actual geometry
is concentrated on fv(t) A - vdy in the right—-hand-side of (27), and on (30).

3.2 Time discretization by operator splitting

To solve (27)—(30), we shall consider a time discretization by an operator splitting
method, like the ones discussed in, e.g., [8]-[12]. With these methods we are able to
decouple the nonlinearity and the incompressibility in the Navier—Stokes/fictitious
domain problems (27)—(30). In the following, we apply the 6—scheme (cf. [12])
to (27)-(30) with time step At > 0. Let A®* = (L2(y(sAt)))? and denote by ¢°
either an approximation of or the function ¢(sAt). We obtain the following time
discretization scheme:

U° = Uy is given; (31)
forn >0, knowing U™, find U™ ¢ Vgg+e,Pn+9 € L2(Q), A\t € A"t such that

( Un+0 .
/—-—~vdx+a1//VU”+9~Vvdx—/P"+9V-vdx
o 04t Q Q

X :/f'"+9-vdx—/(U”-V)U"-vdx+/ A"y dy (32)
Q 0 ’Y"’+6

—,81// VU”~Vvdx—|—/ (ag;‘+9+ﬂg?)~vdf‘, Vv € Vg,
\ Q Fl

V.U =0in Q, (33)
Un+0 — g'g:+0 on ,yn+9; (34)

next, find UrT179 ¢ Vnri-o such that

( Un+1—9 _ Un+9
‘vdx + ,81// vUrti-? . Uvdx
o (1-=20)At Q
+ / (Urti-f.vyurti-f . vdx
{ ) ° (35)
:/f"+1_0~vdx+/ )\"+9~vd'y+/P"+0V-vdx
0 Nt Q
—au/ vU™t? . vvdx —l—/ (gl + Bgy™~?) - vdl, Vv € Vy;
\ Q Iy
finally, find U™t ¢ Virt1, P+l e L3(Q), An L € A™*L such that
( Un+1 . n+1—6 ’
/ U ~vdx+ow/VU"+1-Vvdx—/P"+1V~vdx
ﬁ = / il vdx — / (Urti=? . vyurtl=f . vdx + / AL v dy (36)
0 0 .Yn+1
by [ VU Tvdx+ [ (aglt 4 pert) vl We Vs,
0

I



V.U =0inQ, (37)
Un+1 — g72'1+1 on ,Y'n,+1’ (38)

where a + 3 =1,0< @, <1and 0 < § < 1/2. With the choice of § =1 — 1/\/5,
a=2-+2and 8 =+2—1, the time discretization seems to be unconditionally
stable (see [12]).

In Section 3.3 the conjugate gradient solution of the Stokes/fictitious domain
problems (32)-(34) and (36)—(38) will be discussed. Concerning problem (35) it is
worth noticing that we have been taking advantage of the time discretization by
operator splitting to treat the advection in the larger domain  without concern
—in some sense— for the constraint u = g at . Problem (35) can be solved by least—
squares methods [12] and is also well suited to solution methods based on higher

order upwinding on regular meshes, or on the backward method of characteristics
(see, e.g., [16]).

3.3 Iterative solution of the Stokes/fictitious domain problem

Problems (32)-(34) and (36)—(38) are particular cases of the following Stokes /fic-
titious domain problem:

Find U € Vg, P € L2(Q), A € A such that

a/U.vdquu/VU-Vvdx—/PV-vdx
Q Q Q (39)
:/f-vdx+//\-vd7+/ g1 -vdl, Vv € Vg,
Q ¥ |5
V.- U=01in9Q, (40)
U:gonZ’Y, (41)

where, in (39), a(> 0) is the reciprocal of a partial time step. In (39)-(41), P
(resp., A) appears to be a Lagrange multiplier associated with (40) (resp., (41)).
We can solve the above saddle—point system (39)-(41) by a conjugate gradient
algorithm (called the one shot method) driven by the pressure P and the multiplier
A, simultaneously. Let us consider a bilinear form b(-,-), symmetric and strongly

elliptic over A (we may choose b(A, u) = fy A-pdy, VA, p € A). The following
algorithm is the one shot method driven by the multipliers P and X:

{P% X%} € LE(Q) x A given; (42)
solve the following Dirichlet problem

Find UY ¢ Vg,, such that

a/UO-vdx+1//VU0-Vvdx:/f-vdx+
Q Q Ja (43)

//\O-vd7+/POV~vdx+/ g, -vdl, Vv € Vg,
Y Q r,



set v =V -U% 1= (U°-gy)|, and define g° = {g?, 85} as follows

g1 = ag® + vri,
with ¢° the solution of

—Ad)ozr? in Q,
8 0
d) =00onTg; ¢°=00nTy;
on

Find g € A such that

b(g3, ) = /rg-#d% Vi € A.
Y

We take wl = {w?,wg} = {g?a gg}.

(44)

(45)

(46)

Then for n > 0, assuming that {P™, A"}, U™, v, r%, w", g" are known, compute

{Pn+1’An+l}’ Un+1, ,,.11-4-1 r721+1, W"+1, gn+1 as follows:

solve _
Find U™ € Vg, such that

/U" de+V/VU" Vvdx

/w2 vd'y—l-/ wi'V - vdx, Vv € Vy;

set 77 =V-U" 17 =U", and define g" = {g¥, 85} as follows:

—n __ mn —1
g1 = ad” + vy,

with @™ the solution of

A" =77 in Q,
9" _ _ ,
=0onTy; ¢"=00nTy;
on

Find g5 € A such that

b(gs, n) = /f"z‘-ud% Vi€ A
Y

We then compute

pr = (Jyrighdx + [ v3 - g5 dy)/(Jo Fiwl dx + [, F5 - w} dv),

and set

Un+1 — Un _ pnﬁn’
Pl =Pt —pwl, A"HL =" — p w7,

n+l __ n =" n+l __ .n =n
T =71 = PnTyy, Ty = =Ty — Pply,

(48)

(49)

(50)



gttt =gt — pndl, 83T =g} — puBl. (55)

IF (i iar o+ [ et g2 dn) /(00 dx + [ xS g3 dv) < e, take P =
Pl U =0 and A = X"tL. If not, compute

Vo= (Jori T gr dx+ [ x3* - git dy)/(fyrietdx + [ xh-gRdy),  (56)
and set  wntl =gt 4 4w,

Don=n+1 and go back to (47).

4. FICTITIOUS DOMAIN METHOD FOR FLOW PAST A MOVING

RIGID BODY
To

To

To
Fig. 7.

In this section we consider an incompressible viscous flow modelled by the Navier—
Stokes equations past a moving rigid body, a NACA0012, by a fictitious domain
method. In the test problem, let = (-0.625,0.625) x (—0.5,0.5) (see Fig. 7)
and w be a NACA0012 airfoil centered at (0,0) (half-chord point) which is forced
to pitch about its center with the prescribed angular displacement defined by

6(t) = 6, — 8, cos t, (57)

where 6, = 6, = 10° and the chord length is 0.125. Thus the angle of attack is
between 0° to 20°. The boundary conditions are defined as follows:

1 du
u = <O) on Iy, V—é—;—np:()on r;. (58)

When constructing finite dimensional subspaces, we can skip the time-consuming
construction of a boundary-fitted mesh for each different position of the moving
body and use a fixed uniform structured mesh 7;, which is a triangulation of 0

(see, e.g., Fig. 8). For finite dimensional subspaces approximating Vg, (here let
go = (g,92) = (1,0)) and Vo, we choose

Vgﬂh = {Vh|Vh € Vhl X th}, Von = {Vh|Vh € H&h X H&h}’ (59)



where
Vi = {onlon € CUQ), ¢nlr € P, VT € Th, ¢ = gg, on Lo} for i =1,2,  (60)
H}, = {én|dn € CO), du|r € Pr, VT € Th,, én = 0 on To}. (61)

In (60) and (61) P is the space of the polynomials in z1, 2 of degree < 1, and g,
(resp., g3, ) is an approximation of g§ (resp., g3). A traditional way of approximating
the pressure is to take it in the space

Hjp, = {énlon € C°(Q), dnlr € Pr, VT € Tan},

where Ty, is a triangulation twice coarser than 7. Concerning the space Aj ap-
proximating A®, we define it by

A3 = {uplpn € (L°°(7*))?, up, is constant on the segment
joining 2 consecutivemesh points on v°}.

A particular choice for mesh points on v* for different angles of attack is visualized
on Fig. 8.

Fig. 8: Part of the triangulation of  with h = 1/128 and mesh points
marked by “¥” on NACA0012 with 10° (left) and 20° (right) degrees of
angle of attack.

Fig. 9: Vorticity distribution and stream lines of the initial velocity field.
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Fig. 10: Vorticity distribution and stream lines at time ¢ =5, 5.5, 6, 6.5, 7
(from top to bottom, angles of attack are 0°, 10°, 20°, 10°, and 0°) during
one period of the airfoil motion at Reynolds number=100.

Using the #-scheme, we solve at each time step two Stokes/fictitious domain
subproblems by the one shot method discussed in Section 3 and one advection—



diffusion subproblem by a least-squares/conjugate gradient algorithm [12]. In the
numerical simulation, the Reynolds number is 100 (taking the chord of airfoil as
characteristic length), the mesh size for the velocity field is h, = 1/128, the mesh
size for the pressure is b, = 1/64, the time step is At = 0.005, and € for the stopping
criterion in (42)—(56) is 10~1%. Fig. 9 shows the vorticity distribution and stream
lines of the initial condition for the simulation. It is a steady—-state flow obtained at
zero degree of angle of attack. Fig. 10 shows a sequence of frames for the vorticity
distribution and stream lines during one period of the airfoil motion. From top to
bottom, angles of attack are 0°, 10°, 20°, 10°, and 0°.

5. AN APPLICATION TO THE VORTEX DYNAMICS OF A
TWO-DIMENSIONAL FLOW

Motivated by [17, 18], we would like to study the long-time evolution of the
vortex dynamics of a two-dimensional incompressible viscous flow modelled by
the Navier-Stokes equations. In [19], selective decay and coherent vortices in
two-dimensional incompressible turbulence were studied in a square with periodic
boundary conditions. In this section we consider a two-dimensional incompressible
viscous flow in a disk.

In the test problem, let & = (—1.5,1.5) x (—1.5,1.5) and w be a disk of radius
1 centered at (0,0) (see Fig. 11). Here we imbed w in 2. This approach is slightly
different from the one discussed in Sections 3 and 4; but we can use the same
fictitious domain techniques. The Dirichlet boundary conditions on v and I" are
defined as follows:

u=0on I"'Uy. (62)

Fig. 11.

As finite dimensional subspaces of Vg, (here go = (g3, 92) = (0,0)) and Vy, we
choose

Vo = {Valvh € Vil x Vi2}, Vi = {vi|vi € Hgy, x Hgy} (63)
where



fo = {énldn € CO(Q),¢h|T € P, VT €Ty, = géh on T'},for 1 =1,2, (64)
Hyy, = {¢nlon € C°(Q), énlr € P, VT € T, ¢ = 0 on T} (65)

In (64) and (65), T}, is a triangulation of Q (see, e.g., Fig. 12), P; is the space of
the polynomials in z1,zs of degree < 1 and g¢, (resp., g2, ) is approximation of
g (resp., g2). A traditional way of approximating the pressure is to take it in the
space

Hjp, = {¢nlon € C°(Q), ¢u|r € P1, VT € Tan},

where Ty, is a triangulation twice coarser than 7p,.
Concerning the space Ap approximating A, we define it by

Ay = {pn|pn € (L°°())?, un is constant on the segment

joining 2 consecutivemesh points on }.

A particular choice for the mesh points of «y is visualized on Fig. 12.

In Fig. 13 we show the vorticity and stream lines of the initial velocity field
in the test problem (also obtained by the algorithm used for solving the test
prpblem). In computing the initial condition shown in Fig. 13, we have chosen
u} = (sin 7z cosmy, — cos x sin 7y) as initial velocity, the boundary conditions be-
ng

u = e %ul on TU4, (66)
where ¢ = 5000 in (66). The mesh size for the velocity field is h, = 1/120, the mesh
size for the pressure is h, = 1/60, and the time step is At = 0.001. The solution

obtained after 1000 time steps was retained the initial condition for the final test
problem.

Fig. 12: Example of the triangulation of Q2 with A = 1/8 and mesh points
marked by “x” on the boundary of disk.
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In the numerical simulation, the Reynolds number is 10011 (taking the diameter
of disk as characteristic length and the maximum speed of the initial velocity field
as characteristic speed), the mesh size for the velocity field is h, = 1/120, the mesh
size for the pressure is h, = 1/60, and the time step is At = 0.01. In Fig. 14 a
sequence of frames for the vorticity contours and stream lines at ¢t = 30, 170, and
557.5 are shown. From t = 0 to about ¢ = 120, vortices are stretched, collide and
merge. By about t = 120, all major vortex-concentrations have merged into two
strong counterrotating vortices; there are also two minor counterrotating vortices.
Then after a long period of time (¢ = 557.5), there are two counterrotating vortices
surviving. Let the flow kinetic energy be E = 2 [ (u1)?+(uz)? dx and the enstrophy
of flow in the disk W = 1 [ |duy/8z; — 8u,/dxs|? dx. The evolutions of E and
W are shown in Fig. 15. At t = 557.5, E has decreased by a factor of 6.16 x 107
from its initial value which was 0.34731 and W has decreased to 1.04 x 107¢ from
its initial value which was 49.588.

100.

0.0001

1. 10 0.1 1 10. 100. 1000.

Fig. 15: Time evolution of energy F (thin line) and enstropy W (thick
line).

6. Shape Optimization of the Boundary

Optimal shape design problems that are governed by partial differential equations
have become a fruitful source of challenging and interesting free boundary problems.
The study of particular classes of these problems has yielded solutions to fascinating
applications (see for example [20-22]). Recently researchers have tried to employ
the fictitious domain approach to problems of this type arising in various fields of
science and engineering (see for example [23-26]). In this section we discuss such
a strategy. A fictitious domain approach is employed to solve shape optimization
problems for both Stokes and Navier—Stokes equations in two space dimensions.

The shape of a symmetric airfoil is given by its boundary «. In our test problems
we fix the chord length of the airfoil hence keeping the location of both the head
and the tail of the airfoil fixed. We refer to [24] for more extensive numerical results
of our algorithm on test problems where the location of the head and the tail of the
airfoil are design or control variables, and also non-symmetric shapes were used to
generate target pressures. With head and tail fixed, we parameterize the shape of



the airfoil by 5 parameters, say «; where ¢ = 1,...5. Indulging in a slight abuse of
notation we can write the boundary, v, as an explicit function of these 5 parameters.
More precisely, we have v = «, (k) U~;(x) where the subscripts « and I denote upper
and lower portions of the symmetric wing shape, respectively (y;(k) is a reflection
of v4(k)). In this way these parameters define the upper (and lower by symmetry)
part of the airfoil by:

1
Yu(k) = {(z1,z2)|z2(21) = 5p(K12? + Koy + K322 + Kezd + K5z )}, (67)

where 1, 5 are the coordinates of the part of the boundary of the airfoil, that part
lying above the portion of the wing marked by the c in the figure below (see Fig. 16).
Here the parameter p is a thickness parameter (for the NACA0012 we take p = .12).
The airfoil is extended to be of length ¢’ (see Fig. 16) by a closed trailing edge (see
[24] for further details on this and other transformations, parameterizations and
representations of the boundary).

C
Fig. 16.

The NACAO0012 is described by the parameter values,
(68) Kk* = (0.2969, —0.126, —0.3516, 0.2843, —0.1015).

Given parameter values k, we can employ the ideas and methodology from the
preceding sections of this paper to simulate Stokes and Navier—Stokes flow over
the associated k—defined airfoil. This in turn yields a velocity field and a pressure
distribution. Let p* denote the pressure distribution associated with the NACA0012
values for k* in (68), hence p* is our target pressure value. Now let p(k) represent
the pressure distribution and u(x) represent the velocity field associated with an
arbitrary set of parameters . Similarly we can write the airfoil itself, w(k), as the
region defined by the shape associated with arbitrary parameters, k. We formulate
the inverse problem of choosing « to fit p* in, for example, the least squares sense,
subject to certain physical constraints. This inverse problem can be stated as a
general nonlinear programming problem (NLP), namely

min ||p — p*||z2(+), subject to K(x) < 0. (69)
The constraint function K (k) in (69) implements the following constraints:

First, we require that (e,, — 23],) < 0 for any z, not an endpoint of the airfoil.
Here €, is a positive minimum airfoil thickness parameter (for instance, we found



that €,, = 107° works well). This ensures that the upper and lower surface inter-
sect in no more than two places (specifically at the two endpoints of the airfoil).
Secondly, we require obvious physical upper and lower bounds on the volume of the
airfoil, w(k), the arclength, v, and the slopes, gf; and g—;.

In practice, the overall effect of these constraints is that they trim computational
work by keeping the minimization procedure away from obviously impossible airfoil
shapes that yield very small but non—optimal objective function values. The im-
portance of these constraints grows if a large number of design variables are used
in conjunction with an initial guess for the design variables that results in an initial
shape that is not close to the optimal shape. For the numerical results presented
here, the constraints resulted in fewer simulations and hence shorter run-times, but
otherwise did not drastically affect the minimization process. This was in part due
to the small number of design variables and the “semi-local” starting value for the
design variables (see Fig. 17 for a picture of the initial and optimal shapes). Fi-
nally, it is worth noting that for this particular test problem there were no binding
constraints at the solution (i.e. K(k*) < 0).

1 T T

0.8F

0.6

Starting Shape

-1 L s L
-05 0 05 1 15

Fig. 17: The starting and optimal shapes for our test problems

6.1 Optimization Technique

While it may be possible to calculate derivatives of the objective function in
(69) such a calculation would be extremely expensive and possibly inaccurate. An
additional difficulty with using derivatives in the solution of (69) is the highly non—
linear nature of the objective function. It can have many local minimizers and
inflection points. Our numerical tests employing derivative based algorithms for
the solution of (69) suggest that rapid convergence enjoyed by some gradient based
methods takes place only in an extremely small neighborhood of the solution, if at
all. Finally we would enjoy the luxury of using an algorithm that allowed us to
replace the smooth least squares objective function in (69) with a continuous but
non-differentiable one (for instance an L*° objective function).

Algorithms for unconstrained minimization that require no derivative informa-
tion (usually referred to as direct search or pattern search methods) are far from



new (see, for example, [27] and the references therein). In [28] an algorithm for
unconstrained optimization that requires no derivative information was suggested.
A parallel implementation of the algorithm has also been developed and tested (see
[29]). Recently, this algorithm and its implementation have been modified to han-
dle constraints (see [30]). The method samples points on the nodes of an evolving
pattern, moving to the node in the pattern with the value closest to optimality.
Depending on where in the pattern the point closest to optimality was located the
pattern then changes, either expanding or contracting. When the pattern expands
its overall size grows causing the algorithm to sample points farther from its cur-
rent location. When the pattern contracts the overall size of the pattern becomes
smaller; this procedure terminates when the lengths of the edges of the pattern fall
below a user prescribed tolerance.

Pattern search methods of this sort typically do not demonstrate rapid local
convergence, but they are extremely robust and far less susceptible than faster
higher-order methods to the difficulties introduced when functions are non-smooth
or the data is noisy. Pattern search methods are usually too slow to solve optimiza-
tion problems with large numbers of parameters. Our problem (69) is interesting
in that one can accurately describe the shape of an airfoil with a relatively small
number of parameters. The compatibility of constrained pattern search method
with our problem (69) is also interesting. After numerous numerical tests, we have
not failed to locate the global minimum of (69).

6.2 Numerical Example

[hy ] [ At [ Reynolds || £ of Attack || Function evaluations | Cost. Function |
1/64 1/128 || 2.5e-3 || 1000 0° 2.5E2 4.9E-1
1/64 1/128 2.5e-3 || 500 0° 2.5E2 1.1E-1
1/32 || 1/64 5.0e-3 || 1000 0° 1.8E2 5.7E-1
1/32 | 1/64 5.0e-3 || 500 0° 1.8E2 1.3E-1
1/64 (| 1/128 || 2.5¢-3 || 1000 5° 1.9E2 9.8E-2
1/64 [ 1/128 || 2.5¢-3 || 500 5 T9E2 9.4E-2
1/32 | 1/64 | 5.0e-3 || 1000 5 T5E2 T5E1
1/32 1/64 5.0e-3 || 500 5? 1.5E2 1.4E-1

Table 1: Coarse Minimization: 10 points per processor

l hy, || hy " At “ Reynolds “ / of Attack " Function evaluation [ Cost Function
1/64 || 1/128 || 2.5¢-3 || 1000 0° 2.1E2 1.8E-4
1/64 | 1/128 [l 2.5¢-3 || 500 0° 2.1E2 2.4E-4
1/32 || 1/64 | 5.0e-3 || 1000 0° 1.5E2 5.7E-4
1/32 | 1/64 [ 5.0e-3 |} 500 0° 1.5E2 1.3E-4
1/64 || 1/128 || 2.5¢-3 || 1000 5° 2.0E2 1.2E-4
1/64 |f 1/128 || 2.5e-3 |[ 500 3° 2.0E2 1.6E-4
1/32 || 1/64 | 5.0e-3 §i 1000 57 1.6E2 1.4F-4
1/32 || 1/64 || 5.0e-3 {| 500 5° 1.6E2 1.1E-4

Table 2: Fine Minimization: 25 points per processor



Our numerical example for shape optimization requires integrating equations of
the form (22)—(23) to evaluate the objective function. We consider a zero degree
and five degrees angles of attack for these test problems and we keep the same
boundary conditions defined by (25) and (26). Parameter values are provided in
the tables below (see Table 1 and Table 2). The cost function column displays, in
fact, |lpc — p*||z2()/|lP*||L2(y) Where p. is the computed pressure.

We used 16 processors of the Touchstone Delta machine to perform the minimiza-
tion in parallel. A two stage coarse/fine strategy was employed to solve the shape
optimization minimization; 10 points per processor were sampled with a very large
search strategy initially in order to locate a vague neighborhood of the solution and
then 25 points per processor were sampled with a smaller pattern search strategy

to polish the quality of the solution. For more details on constrained pattern search
methods see [30].

7. CONCLUSION

Compared to the previous results in [31] it is clear that the fictitious domain
methodology that we advocate has been substantially progressing and looks also
promising for the simulation of time dependent solution of viscous flow problems
around moving rigid bodies. This solution technique appears to be well suited
to the curved domains on which we prescribe Dirichlet boundary conditions that
arise from this class of shape optimization problems (see [32] for some theoretical
results). As always, there is still room for improvement. We mention particularly
the speed up of the various iterative methods used for the solution the subproblems
obtained from the time splitting. Parallelization is also an important and timely
issue currently addressed (see [13, 14]).

It appears that the fictitious domain method provides an effective way of evaluat-
ing the objective function for the Stokes and Navier—Stokes flow shape optimization
problem. In particular, the computational cost of regriding a mesh for every trial
airfoil shape could be a prohibitive cost. Current work includes extending these
ideas to more complicated objective functions and to the shape optimization prob-
lems associated with drag reduction.
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