

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited.

AN IMPLEMENTATION OF REMOTE APPLICATION
SUPPORT IN A MULTILEVEL ENVIRONMENT

by

Melissa K. Egan

March 2006

 Thesis Advisor: Cynthia E. Irvine
 Thesis Co-Advisor: Thuy D. Nguyen

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
An Implementation of Remote Application Support in a Multilevel Environment
6. AUTHOR(S) Melissa K. Egan

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
There is a growing need for high-assurance architectures that support mandatory confidentiality and integrity policies. One
such architecture currently under development is the Monterey Security Architecture (MYSEA), a distributed multilevel secure
(MLS) computing environment that integrates untrusted commercial off-the-shelf components with specialized high-assurance
elements.
To ensure that information is purged from untrusted client PCs between sessions at different security levels, MYSEA clients
are diskless. Therefore, it is desirable for thin MYSEA clients to be able to remotely execute server-resident applications,
which may in turn request access to data residing elsewhere on the MLS Local Area Network (LAN). This functionality must
be implemented in such a way that the access control policies of the multilevel environment are maintained. Working from a
detailed design for remote application support, this thesis involved the implementation and testing of the remote application
support functionality. Beyond the implementation of remote application support itself, this thesis involved the porting of a
Trivial File Transfer Protocol (TFTP) client and the development of a simple web client as proof-of-concept remote
applications, as well as the creation of a Common Gateway Interface (CGI) mechanism for invoking those remote applications
from a client web browser. This research is relevant to the DoD Global Information Grid’s vision of assured information
sharing.

15. NUMBER OF
PAGES

148

14. SUBJECT TERMS
Multilevel Security (MLS), Information Assurance (IA), Monterey Security Architecture (MYSEA),
Remote Application, Trusted Remote Session Management

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited.

AN IMPLEMENTATION OF REMOTE APPLICATION SUPPORT IN A
MULTILEVEL ENVIRONMENT

Melissa K. Egan

Civilian, Naval Postgraduate School
B.A., Pomona College, 2003

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2006

Author: Melissa K. Egan

Approved by: Cynthia E. Irvine, Ph.D.

Thesis Advisor

Thuy D. Nguyen
Co-Advisor

Peter J. Denning, Ph.D.
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

There is a growing need for high-assurance architectures that support mandatory

confidentiality and integrity policies. One such architecture currently under development

is the Monterey Security Architecture (MYSEA), a distributed multilevel secure (MLS)

computing environment that integrates untrusted commercial off-the-shelf components

with specialized high-assurance elements.

To ensure that information is purged from untrusted client PCs between sessions

at different security levels, MYSEA clients are diskless. Therefore, it is desirable for thin

MYSEA clients to be able to remotely execute server-resident applications, which may in

turn request access to data residing elsewhere on the MLS Local Area Network (LAN).

This functionality must be implemented in such a way that the access control policies of

the multilevel environment are maintained. Working from a detailed design for remote

application support, this thesis involved the implementation and testing of the remote

application support functionality. Beyond the implementation of remote application

support itself, this thesis involved the porting of a Trivial File Transfer Protocol (TFTP)

client and the development of a simple web client as proof-of-concept remote

applications, as well as the creation of a Common Gateway Interface (CGI) mechanism

for invoking those remote applications from a client web browser. This research is

relevant to the DoD Global Information Grid’s vision of assured information sharing.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION OF STUDY ...1
B. PURPOSE OF STUDY..2
C. ORGANIZATION OF THESIS ...2

II. BACKGROUND ..5
A. MONTEREY SECURITY ARCHITECTURE (MYSEA)...........................5
B. XTS-400 ARCHITECTURE...6

1. Overview ...6
2. TCP/IP Privileged Ports ..8
3. Trusted and Untrusted Processes ...8
4. System Calls..8

C. OVERVIEW OF REMOTE APPLICATION SUPPORT...........................9
D. SUMMARY ..10

III. REQUIREMENTS AND DESIGN...11
A. INTRODUCTION..11
B. TOP-LEVEL REQUIREMENTS...11
C. HIGH-LEVEL DESIGN ...12

1. Overview ...12
2. Processes ...14

a. Trusted Path Server (TPS) Parent..14
b. Trusted Path Server (TPS) Child..14
c. Secure Session Daemon (SSD)...15
d. Secure Session Server (SSS) Parent.......................................15
e. Secure Session Server (SSS) Child...16
f. Application Protocol Server (APS)...17
g. CGI Remote Application Invocation Process17
h. Trusted Remote Session Server (TRSS) Parent18
i. Trusted Remote Session Server (TRSS) Child18
j. Remote Application (RA) ..19

3. Databases ..21
a. Allowed Protocols Database ...21
b. Allowed TPE Database ...22
c. User Database ...22
d. Remote Connection Database...22
e. Remote Application MYSEA Socket Map (RAMSKT

Map) Database ..23
f. Application Protocol Server MYSEA Socket Map

(APSMSKT Map) Database..23
g. MYSEA Socket (MSKT) Database ...23
h. Peer Level Database..25
i. Source Address Binding Database ...25

 viii

j. Cleanup Database ...26
4. Other Modules..28

a. Semaphore...28
b. User Identification and Authentication28
c. Privileges ...29
d. Shared Memory...29
e. Utility ...29
f. MYSEA Synchronization..30
g. Socket Handler..30

D. PRE-IMPLEMENTATION MODIFICATIONS TO DESIGN30
1. MYSEA Sockets (MSKTs) ..30
2. Inter-Process Signaling..31

E. OVERVIEW OF IMPLEMENTATION REQUIREMENTS32
1. Newly Implemented Components...32

a. Processes..32
b. Databases...33
c. Modules ...33

2. Modifications to Existing Components ..33
F. SUMMARY ..34

IV. IMPLEMENTATION ...35
A. OVERVIEW...35
B. DEVELOPMENT ENVIRONMENT ..35
C. IMPLEMENTATION DETAILS...36

1. TPS Child Process..36
2. TRSS Parent and Child Processes..38
3. Remote Applications..40

a. Trivial File Transfer Protocol (TFTP) Client........................40
b. Web Client ...42

4. CGI Remote Application Invocation Processes43
a. Command Menu..44
b. Web Shell...46

D. PROBLEMS ENCOUNTERED...49
1. TRSS Access to Single-Level Network Interfaces...........................49
2. Trusted Parent Exemption..50
3. Multiple Binds ..51

E. SUMMARY ..52

V. TESTING..53
A. OVERVIEW...53
B. DEVELOPMENTAL TESTING..53

1. Trusted Remote Session Server (TRSS) ..54
2. CGI Invocation of Remote Applications..57

a. Web Shell Functional Testing ..58
b. Web Shell Exception Testing..59
c. Command Menu Functional Testing.....................................61
d. Command Menu Exception Testing.......................................63

 ix

3. Remote Applications..65
a. TFTP Client Functional Testing..66
b. Web Client Functional Testing ..67
c. Web Client Exception Testing ..67

C. DEVELOPMENTAL TESTING RESULTS...68
D. ACCEPTANCE TESTING...69

1. Communication between an RA and an External Server71
a. Acceptance Test Case 1 Functional Testing72
b. Acceptance Test Case 1 Exception Testing............................73

2. Communication between an RA and a Local APS75
a. Acceptance Test Case 2 Functional Testing76
b. Acceptance Test Case 2 Exception Testing............................78

E. ACCEPTANCE TESTING RESULTS..78
F. SUMMARY ..78

VI. CONCLUSION ..79
A. SUMMARY ..79
B. ANALYSIS OF THESIS QUESTIONS...79
C. FUTURE WORK...82

1. Federated Server Environment ..82
2. Stress Testing..83
3. Cleanup ...83
4. Unauthorized Channels ...84
5. Interactive Remote Application Support...85

D. CONCLUSION ..85

APPENDIX A: SOURCE CODE LISTING...87

APPENDIX B: INSTALLATION PROCEDURES ..89
A. CONFIGURE MYSEA DAEMONS ..89
B. BUILD MYSEA BINARIES ...91
C. CONFIGURE TRSS AS A TRUSTED PROGRAM92
D. SET UP CGI SCRIPTS ...94
E. ENABLE DEBUGGING ...94

APPENDIX C: TEST PROCEDURES...97
A. TRSS TESTING...101
B. WEB SHELL FUNCTIONAL TESTING ...104
C. WEB SHELL EXCEPTION TESTING ..104
D. COMMAND MENU FUNCTIONAL TESTING105
E. COMMAND MENU EXCEPTION TESTING...107
F. TFTP CLIENT FUNCTIONAL TESTING ..109
G. WEB CLIENT FUNCTIONAL TESTING ...110
H. WEB CLIENT EXCEPTION TESTING ..111
I. ACCEPTANCE TEST CASE 1 FUNCTIONAL TESTING112
J. ACCEPTANCE TEST CASE 1 EXCEPTION TESTING112
K. ACCEPTANCE TEST CASE 2 FUNCTIONAL TESTING114
L. ACCEPTANCE TEST CASE 2 EXCEPTION TESTING116

 x

APPENDIX D: TRSS DEVELOPMENTAL TESTING RESULTS......................117

LIST OF REFERENCES..123

INITIAL DISTRIBUTION LIST ...125

 xi

LIST OF FIGURES

Figure 1. Process Overview (after [3]) ..12
Figure 2. TPS Child in the Context of Remote Application Support..............................36
Figure 3. TRSS Processes in the Context of Remote Application Support38
Figure 4. TFTP Client and Swget in the Context of Remote Application Support.........40
Figure 5. CGI RA Invocation Processes in the Context of Remote Application

Support...43
Figure 6. Command Menu...44
Figure 7. Web Shell...47
Figure 8. Test Network Topology ...53
Figure 9. TRSS Processes in the Context of Remote Application Support54
Figure 10. CGI RA Invocation Processes in the Context of Remote Application

Support...57
Figure 11. TFTP Client and Swget in the Context of Remote Application Support.........65
Figure 12. RA Request to External Server ..71
Figure 13. Network Components Involved in Acceptance Test Case 1............................72
Figure 14. RA Request to Local APS via SSS..75
Figure 15. Network Components Involved in Acceptance Test Case 2............................76

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Process Attributes ..20
Table 2. Privilege Requirements of Trusted Processes..21
Table 3. Database Initialization Summary (after [3]) ..27
Table 4. Process-Database Relations ...28
Table 5. TRSS Testing ...57
Table 6. Web Shell Functional Testing..58
Table 7. Web Shell Exception Testing...61
Table 8. Command Menu Functional Testing ...63
Table 9. Command Menu Exception Testing ..65
Table 10. TFTP Client Functional Testing ..66
Table 11. Web Client Functional Testing ..67
Table 12. Web Client Exception Testing ...68
Table 13. Acceptance Test Case 1 Functional Testing ..73
Table 14. Acceptance Test Case 1 Exception Testing ...74
Table 15. Acceptance Test Case 2 Functional Testing ..77
Table 16. Acceptance Test Case 2 Exception Testing ...78

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ABBREVIATIONS AND ACRONYMS

CGI Common Gateway Interface

DAC Discretionary Access Control

COTS Commercial Off-The-Shelf

I&A Identification and Authentication

LAN Local Area Network

MAC Mandatory Access Control

MLS Multilevel Secure

MYSEA Monterey Security Architecture

OS Operating System

RA Remote Application

SAK Secure Attention Key

SSD Secure Session Daemon

SSS Secure Session Server

STOP Secure Trusted Operating Program

TCM Trusted Channel Module

TFTP Trivial File Transfer Protocol

TPE Trusted Path Extension

TPS Trusted Path Server

TRSS Trusted Remote Session Server

URL Uniform Resource Locator

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

I would like to thank my advisors, Dr. Cynthia Irvine and Prof. Thuy Nguyen, for

the time, effort, and guidance they have provided throughout this project. I would also

like to thank Jean Khosalim and David Shifflett for their technical expertise and

assistance.

This material is based upon work supported by the National Science Foundation

under grant No. DUE-0114018. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author and do not necessarily

reflect the views of the National Science Foundation.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. MOTIVATION OF STUDY
Government, military, and business organizations that currently maintain multiple

networks to host data at differing security levels stand to benefit by replacing them with a

single high-assurance multilevel secure (MLS) network, due to the increased efficiency

and reduced costs associated with the management of a single network as opposed to

many. There is a growing need for high-assurance architectures that implement multi-

domain information protection mechanisms.

The Global Information Grid (GIG) envisioned by the United States Department

of Defense provides “a seamless, secure, and interconnected information environment,

meeting real-time and near real-time needs of both the warfighter and the business user”

[1]. This environment will likely contain data residing at various security levels, and

could therefore benefit from the use of cross-domain solutions that would enable multiple

levels of data to be accessed from a single node. One such solution currently under

development is the Monterey Security Architecture (MYSEA), a distributed multilevel

secure computing environment that integrates untrusted commercial off-the-shelf

components with specialized high-assurance elements [2].

In the MYSEA architecture, multilevel servers provide isolation between security

domains and thin clients access the data within each domain as permitted by the servers.

To ensure that information is purged from untrusted client PCs between sessions at

different security levels, MYSEA clients are diskless. Therefore, it is desirable for thin

MYSEA clients to be able to remotely execute server-resident applications, which may in

turn request access to data residing elsewhere on the MLS Local Area Network (LAN) or

on a connected single-level network. This functionality must be implemented in such a

way that the access control policies of the multilevel environment are maintained. Prior

to the completion of this thesis, the design for remote application support had been

written [3], but not yet implemented.

2

B. PURPOSE OF STUDY
The objective of this thesis was to implement remote application support in the

MYSEA environment. Implementation was to be based on the pre-existing design,

refined as necessary during the course of implementation and testing. This thesis was

meant to provide concrete answers to the questions:

1. What modifications to the existing design are necessary to successfully

implement remote application support on the MYSEA server?

2. What additional functionality, if any, is required to support the remote

execution of specific desired applications?

Beyond the implementation of the trusted server processes that enable remote

application support, this project involved the porting of two simple network-enabled

remote applications onto the MYSEA server, and the creation of a Common Gateway

Interface (CGI) mechanism for invoking those remote applications from a client web

browser. This project further involved the development and execution of a test plan to

verify the functionality of each of the newly implemented remote application support

components and of the integrated remote application support system.

C. ORGANIZATION OF THESIS
This thesis is organized as follows:

• Chapter I has provided an introduction to the motivation and purpose of this

thesis, including a brief introduction to the Monterey Security Architecture

(MYSEA) and the anticipated role of remote application support in the

multilevel MYSEA environment.

• Chapter II provides a more in-depth look at the MYSEA architecture and the

multilevel XTS-400 system that hosts the MYSEA server software, focusing

on those aspects of its architecture that have most influenced the design for

remote application support. This chapter also describes the envisioned

functionality and benefits brought about by the implementation of remote

application support in the MYSEA environment.

3

• Chapter III provides a high-level description of the requirements and design

for remote application support, as described in a previous thesis [3]. This

chapter also discusses changes made to the design between the publication of

[3] and the beginning of this project, and specifies which of the remote

application support components laid out in [3] were modified or implemented

for this project.

• Chapter IV describes the development environment, implementation

requirements for each module developed as part of this project, and

unforeseen issues that arose during the course of implementation.

• Chapter V describes the developmental and acceptance testing performed on

each of the components implemented for this project.

• Chapter VI concludes with a project summary and suggestions for future

work.

4

THIS PAGE INTENTIONALLY LEFT BLANK

5

II. BACKGROUND

A. MONTEREY SECURITY ARCHITECTURE (MYSEA)
The Monterey Security Architecture (MYSEA), under development at the Naval

Postgraduate School, was designed to serve as a trusted, distributed, multilevel secure

(MLS) environment that integrates a small number of high-assurance components with a

greater number of untrusted commercial off-the-shelf (COTS) components. The

motivation behind this architecture was the realization that “unless a secure system offers

users comfortable and familiar interfaces for handling routine information, it will fail due

to lack of user acceptability” [2]. The MYSEA architecture consists of three types of

physical components: high-assurance MLS servers; commercial off-the-shelf client PCs;

and pre-existing single-level networks.

The MYSEA server runs on a DigitalNet XTS-400, a high-assurance multilevel

secure platform that includes a Trusted Computing Base (TCB) operating in conjunction

with untrusted, constrained Application Protocol Servers. The MYSEA server consists of

the following additional components: a Secure Session Services (SSS) component that is

used to launch instances of the untrusted application protocol servers at the current

session levels of the users requesting their services; a Trusted Path Services (TPS)

component, which extends the native XTS-400 trusted path support for local terminals to

remote MYSEA clients; and a Dynamic Security Services (DSS) Manager1, which

governs security and performance factors of the various MYSEA components.

A MYSEA client consists of two physical components: an untrusted personal

computer (PC) and a Trusted Path Extension (TPE). The PC is a COTS product, either a

thin client that accesses remote applications or a typical PC hosting a commercial

operating system and application suite. The TPE, which currently has a hand-held form

factor, is responsible for providing a secure, unforgeable connection between the user and

the security functions of the MYSEA server by way of a trusted path. The trusted path is

invoked when the user presses the Secure Attention Key (SAK) on the client.

1 This component is currently under development.

6

To ensure that session information is purged from untrusted client PCs between

sessions at different security levels, MYSEA clients are stateless. On startup, they boot

their operating system (for example, a Linux or Windows variant) from a non-writable

source into RAM. The use of popular commercial operating systems on the client

systems ensures that users may continue to use their favorite applications with an

interface they are familiar with. It also makes the acquisition of end-user applications

much easier in terms of cost and availability.

MYSEA servers and clients are co-located on a MLS local area network (LAN),

and the network interface on the server connecting it to the MYSEA clients is configured

at the level of the MLS LAN. This means that any process running on the server that

requires access to the network interface, including the SSS and TPS processes, must also

run at the level of the MLS LAN. This requirement will be revisited later in this chapter.

One or more single-level networks, each operating at its own security level, may

be connected to the MYSEA server by way of a Trusted Channel Module (TCM). The

function of the TCM is to authenticate the single-level network to the MYSEA server and

provide high-assurance labeling of the information entering the server from the network.

B. XTS-400 ARCHITECTURE

1. Overview
DigitalNet’s XTS-400 system, the platform on which the MYSEA server is based,

combines an Intel x86 hardware base with the high-assurance multilevel secure STOP 6

operating system. STOP provides a Linux-like user and programming interface, allowing

for many existing Linux applications to be run on the XTS without modification. It

provides not only traditional discretionary access control (DAC), but also mandatory

access control (MAC), which is implemented in accordance with the Bell-LaPadula

model for confidentiality [4] and the Biba policy for integrity [5].

The Bell-LaPadula security model [4] formalizes a policy to prevent unauthorized

access to confidential data. It does this by enforcing two policies: the simple security

policy and the security-* (or confinement) property. The simple security policy states

that a subject may read an object if and only if the security level of the subject dominates

7

(is greater than or equal to) the security level of the object. This would allow, for

example, a user logged in at the Secret level to read Secret, Confidential, and

Unclassified documents, but not Top Secret documents. The * property states that a

subject may write to an object if and only if the security level of the subject is dominated

by the security level of the object. This would allow a user logged in at the Secret level

to write to Secret and Top Secret documents, but not to Confidential or Unclassified

documents. The STOP implementation of the Bell-LaPadula model actually enforces a

stricter version of this rule: it allows a subject to write to an object only when the subject

and object are at the same security level. This prevents lower-level subjects from writing

higher-level objects they cannot later access [6].

The Biba integrity model [5] was designed to prevent the unauthorized

modification of data. It does this by enforcing two analogous policies for integrity: the

simple integrity policy and the integrity-* property. The simple integrity policy states

that a user may read an object if and only if the integrity level of the object dominates the

integrity level of the subject. The integrity-* property states that a subject may write to

an object if and only if the integrity level of the subject dominates the integrity level of

the object. (Once again, STOP implements a variant of this policy that allows writes by

subjects only to objects at the same integrity level.) Note that these policies are

equivalent to the Bell-LaPadula security policies with the dominance relations reversed.

The STOP system’s mandatory integrity policy allows for the establishment of highly

protected execution domains in which executables may read files they need, while those

files remain protected from modification by unauthorized logic or malicious code [6].

The STOP operating system distinguishes between applications that are trusted

and those that are untrusted. System administrators may grant applications certain

privileges, including the ability to bypass mandatory and/or discretionary controls. Any

application granted such privileges or assigned a high integrity level is considered a

trusted application. All other applications, including (by default) the user commands and

tools familiar to Linux/UNIX users, are considered untrusted and are subject to the MAC

and DAC policies described above [6].

8

The XTS-400 has been evaluated at the Common Criteria [7] EAL-5+ level [8].

Its access control mechanisms, high level of assurance, and support for Linux

applications make it a suitable platform for the MYSEA server, and several of its unique

features have helped shape the design for remote application support. These features, and

their influence on the design, are described in [3] and summarized in the following

sections.

2. TCP/IP Privileged Ports
The XTS prohibits normal user programs from using TCP/IP privileged ports;

only processes running as the network user can use these ports. Furthermore, only trusted

programs may be given the privilege to change their user identifier.

Remote applications and application protocol servers need to make use of

privileged ports, but are designed to run at the level of the user invoking them. To

designate them as trusted applications would be undesirable, as it would increase the

amount of trusted code necessary on the system. The restriction on privileged port access

therefore necessitates the introduction of trusted programs to service these ports on behalf

of untrusted remote applications and application protocol servers.

3. Trusted and Untrusted Processes
The processes implementing remote application support require MAC/DAC

exemption in order to communicate with both the network interface (which runs at the

level of the MLS LAN) and the untrusted remote application (which runs at the level of

the user who invoked it). Certain processes also require the ability to set their user ID to

that of the network user, as discussed in the previous section. In order to be granted these

privileges, the programs must be designated trusted applications. Privilege requirements

specific to each process are discussed in more detail in Chapter III.

4. System Calls
Many of the standard Linux system calls are available on the XTS-400 and are

accessible to user applications. However, some system calls are specific to the XTS-400

9

and may only be used by trusted applications. Others have increased functionality when

called by trusted applications. For example, a read call may provide the capability to

read an object at any of various levels when invoked by a trusted process [3].

Processes implementing remote application support make use of XTS-specific

system calls in order to enable and disable any special privilege sets that they require. A

Privileges Module, discussed further in Chapter III, has been implemented to encapsulate

these system calls in an intuitive interface. Per-process privilege requirements are also

discussed in Chapter III.

C. OVERVIEW OF REMOTE APPLICATION SUPPORT
With the implementation of remote application support, a user logged in to the

MYSEA server remotely has the ability to launch server-resident applications from his or

her client using only a web browser. This is a useful capability, considering that MYSEA

clients are diskless and must therefore work around the following limitations:

1. The amount of RAM available to run applications on the client may be

limited.

2. Data created or retrieved by the client will be purged at the end of each user

session.

3. Typical system maintenance tasks involving the installation or upgrade of

client software will be complicated by the client’s lack of non-volatile storage.

Installing or upgrading a single application could require re-burning the entire

non-writeable medium on which the client’s operating system and complete

application suite are stored.

In a remote-application-enabled environment, a user logged in to a MYSEA

server from a remote client may use a simple web interface to request a list of remote

applications supported by the server or to specify a particular remote application to be

executed. The requested remote application is invoked on the server, and its output is

displayed back to the user via the web interface. Because the processing is performed on

the server, the user need not worry whether sufficient resources are available on the

10

client, and data retrieved or created by the user may be saved in persistent storage on the

server. Furthermore, the centralized server-resident applications may be easily

configured and updated, and are accessible to users logged in from MYSEA clients of

any platform.

D. SUMMARY
This chapter has provided an introduction to the MYSEA architecture, including

the security policies enforced within the multilevel MYSEA environment and specific

characteristics of the XTS-400 system on which the MYSEA server software is installed.

It has introduced the concept of remote application support, and discussed the envisioned

benefits that remote application support will bring to the MYSEA environment.

Chapter III more formally describes the functional requirements for remote

application support, and summarizes the detailed design specifications [3] that paved the

way for the implementation of remote application support on the MYSEA server.

11

III. REQUIREMENTS AND DESIGN

A. INTRODUCTION
The remote application functionality described in the previous chapter must be

implemented in such a way that the access control policies of the multilevel environment

are maintained. This means, for one, ensuring that remote applications are launched at

the session level of the user invoking them. It also means ensuring that applications

launched remotely are able to establish outbound connections only with those

destinations authorized to communicate at the application’s current session level. These

policies must be enforced while operating within the constraints imposed by the STOP

operating system regarding trusted and untrusted processes, privileged ports, and

privileged systems calls, while minimizing the amount of trusted code that must be

introduced onto the system.

This chapter describes, at a high level, the design for MYSEA remote application

support that was developed and presented in a previous thesis [3]. Section B of this

chapter lists the functional requirements that shaped this design. Section C describes

each of the processes, databases, and modules contributing to the functionality of the

remote application support mechanism, including those that were implemented both prior

to and during the course of this project. Section D describes changes made to the design

subsequent to its original specification in [3] but prior to its implementation. Finally,

Section E identifies those components of the remote application functionality that needed

to be implemented or modified specifically for this project.

B. TOP-LEVEL REQUIREMENTS

The design for remote application (RA) support was derived from the following

top-level user requirements [3]:

• The RA shall be able to communicate with the local MLS server, a remote

MLS server and a RA server.

12

• The remote application shall be appropriately bound to the authenticated

user’s session. Specifically, the remote application process shall run with the

user ID and at the current session level of the authenticated user.

• The user shall be able to launch the RA from the client.

• The MLS server shall be able to support both Unix/Linux and Microsoft

Windows clients.

• The design shall only require a minimal number of changes to the RA.

C. HIGH-LEVEL DESIGN

1. Overview
Figure 1 presents an overview of the processes playing a part in remote

application support on the MYSEA server. Shaded boxes represent processes that were

implemented specifically for this project.

Figure 1. Process Overview (after [3])

13

The Secure System Daemon (SSD) and Trusted Path Server (TPS) Parent

processes are system daemons launched at system startup. The SSD launches a Secure

Session Server (SSS) Parent for each application protocol supported by the server,

including HTTP. The TPS Parent accepts login requests from remote clients, and

delegates the handling of trusted path communications from each client to a dedicated

TPS Child process. If the user successfully logs in, the TPS Child creates a Trusted

Remote Session Server (TRSS) Parent to handle remote application requests from that

user. The SSD, SSS, TPS, and TRSS processes are each considered trusted, and are

allowed access to the MLS network interface.

After successfully logging in from a Trusted Path Extension (TPE), a user may

open up a web browser and request a web page with links to launch supported remote

applications. The SSS Parent designated to handle HTTP requests receives the user’s

request and passes it to an SSS Child designated to handle HTTP requests specifically

from that user. The SSS Child in turn launches httpd, the HTTP daemon, which handles

the user’s web page request. Because httpd is an untrusted application and cannot access

the MLS network interface directly, nor bind to privileged ports, all of its socket

communications must go through the trusted SSS Child process that launched it.

The user selects a remote application from the list, and httpd executes a Common

Gateway Interface (CGI) script which launches the application at the session level of the

requesting user. This application is also untrusted and cannot access the MLS network

interface directly. If the application requires the use of sockets, it signals the TRSS

Parent, which launches a trusted, dedicated TRSS Child process to handle socket

communications on behalf of the untrusted application. These may include

communications with peers residing elsewhere on the network, or with an Application

Protocol Server (APS) residing on the local server. In the latter case, the resulting APS

connection request must be validated by the SSS Parent, which launches an SSS Child to

handle requests specifically from the requesting remote application to the target APS.

14

The aforementioned processes are described in more detail in the following

sections.

2. Processes

a. Trusted Path Server (TPS) Parent
The Trusted Path Server Parent process is a system daemon that runs at

the startup of the MYSEA server. It is responsible for accepting and validating trusted

path session requests received from TPEs. When it receives a request for a trusted path

session, it checks for the TPE identifier in the Allowed TPE Database. If the TPE

identifier is found, the TPS Parent forks a TPS Child process to handle the trusted path

connection with the TPE. Otherwise, it drops the connection. It then continues to accept

and validate subsequent TPS requests.

The TPS Parent runs at the level of the MLS LAN. Because it must also

write to system-low databases, it is designated a trusted process.

b. Trusted Path Server (TPS) Child
Once a TPE request has been validated by the TPS Parent, the TPS Child

is responsible for handling further trusted path session communications from that TPE.

This includes requests to log in, set the session level, run the session, and log out. When

the TPS Child receives data from the client, it first checks that it begins with a Secure

Attention Request Packet (SARP). It then reads and processes the client’s command,

transmits the output to the client, and waits for the next command.

The TPS Child process is also responsible for launching a TRSS Parent

process to handle connection requests by remote applications launched from the client.

The TPS Child runs at the level of the MLS LAN. Because it also requires

access to system-low databases, as well as the system’s user identification and

authentication information, it is designated a trusted process.

15

c. Secure Session Daemon (SSD)
The Secure Session Daemon is a system daemon that runs at startup. It

first checks the Allowed Protocols Database to see which protocols the server supports

(e.g., HTTP, IMAP, SMTP, etc.). For each protocol entry in the database, it then forks an

SSS Parent process to handle service requests for that protocol.

Before forking, it obtains the handles to the User Database and Remote

Connection Database so that each of its forked child processes will not have to.

The SSD process terminates when either, all of its forked children have

terminated, or it is interrupted by a local Secure Attention Key (SAK). In the latter case,

it is responsible for also signaling each of its forked SSS Parent processes to terminate.

Because these processes require access to privileged ports and must therefore run as the

network user, the SSD process must also be able to run as the network user in order to

fork and terminate them. The SSD is therefore designated a trusted process.

d. Secure Session Server (SSS) Parent
Each Secure Session Server Parent process is responsible for accepting

and validating application protocol service requests for a particular TCP/IP protocol.

After accepting a request, the process verifies that a trusted session has been established

for the requesting TPE by checking to see whether it has an entry in the User Database.

If no such entry is found, it checks for a valid remote application connection in the

Remote Connections Database. If the TPE is found to be associated with either a valid

user session or a valid remote application connection, an SSS Child process is spawned to

service the connection; otherwise, the connection is dropped. The SSS Parent process

then continues to accept and validate new application protocol service requests.

The SSS Parent runs at the level of the MLS LAN. Because it must be

able to switch to the user ID of the network user in order to access privileged ports, and

because it must also be able to fork child processes with MAC/DAC exemption and the

ability to change user IDs, it is designated a trusted process.

16

e. Secure Session Server (SSS) Child
The SSS Child process is responsible for launching an Application

Protocol Server (APS) process to service each application protocol service request from a

given TPE or remote application. The APS process runs at the session level negotiated

by the user via the TPE, or at the session level of the remote application requesting

service. Because the APS process is untrusted, it does not have access to the MLS

interface and must therefore rely on the SSS Child process to perform socket operations

on its behalf. The two processes communicate via a MYSEA socket (MSKT) allocated

by the TPS Child process. Any time the APS needs to make a socket call, it enters its

request into the MSKT Database and signals the SSS Child process. The SSS Child

process then retrieves the requested call type and corresponding parameters from the

MSKT Database and makes the appropriate socket library function call on behalf of the

APS. Once the function call has completed, the SSS Child sets the return value of the

call and any data received into the appropriate fields in the database entry, and signals the

APS process. The APS is then able to retrieve the results of its socket call from the

database.

When an APS process requests access to a peer (via the connect, sendto,

accept, or recvfrom socket calls), the SSS Child process is responsible for checking

whether the connection is allowed before proceeding with the call. It does this by

consulting the Peer Level and User Databases to retrieve the current session level of the

peer. By comparing the session level of the peer with the session level of the APS, it is

able to determine whether the access is allowable. If so, the SSS Child must consult the

Source Address Binding Database to determine the source address configured for use

with the supplied destination address before binding the socket to a source port/address

pair.

For each new connection established on behalf of the APS process, the

SSS Child updates the Remote Connections Database with the new connection and its

current session level. Upon the closing of each connection, the SSS Child removes the

connection from the database.

17

The SSS Child runs at the level of the MLS LAN; however, it must also

communicate with the APS running at the session level of the remote user. Furthermore,

it must switch to the user ID of the remote user before initializing the MSKT Database

and launching the APS process, so that the APS process runs with the correct user ID and

has read/write access to the MSKT database. For these reasons, the SSS Child is

designated a trusted process.

f. Application Protocol Server (APS)
The Application Protocol Server handles the server side of a client/server

protocol. APS processes are untrusted, and run at the level of the user or remote

application that invoked them. APS processes requiring access to the MLS LAN or to

privileged ports must request socket operations by way of an MSKT managed by an SSS

Child process. If an APS is ported from another platform, its socket calls for these

special operations must therefore be modified to use the MSKT interface. A number of

APSs have already been ported to the MYSEA server in previous works. These include

an Internet Message Access Protocol (IMAP) mail server [9, 10], a Simple Mail Transfer

Protocol (SMTP) mail server, viz., Sendmail [11], and a Hypertext Transfer Protocol

(HTTP) web server [12].

g. CGI Remote Application Invocation Process
The CGI RA invocation process is spawned by the web APS in response

to a user’s request to invoke an RA via the web interface. Its primary responsibilities are

to process the user’s RA request, launch the appropriate RA, and package the output of

the RA into a web page to be returned to the user by the web APS.

The RA invocation process is untrusted, and runs with the user ID and at

the session level of the invoking APS (and therefore, of the user requesting the RA

invocation).

18

h. Trusted Remote Session Server (TRSS) Parent
The TRSS Parent process is launched by the TPS Child process, and is

responsible for spawning a TRSS Child process for each remote application that requests

the use of MYSEA sockets.

Upon being launched, the TRSS Parent process first attaches to the

databases required for its own operations and for those of its children. It then waits until

it is signaled by a remote application requesting a socket call for the first time. Once

signaled, it searches the MSKT Database for an entry whose call type is set to new socket

call. It then forks a TRSS Child process to handle the new socket request and all future

socket calls from this remote application, and sets the trusted PID field of the MSKT

Database entry to the process ID of child it has just forked. It then waits until signaled by

the next remote application requesting a socket call.

Although the TRSS Parent does not access the MLS LAN, its child

processes do. Hence, the TRSS Parent must run at the level of the MLS LAN. However,

it must also be able to receive signals from remote applications running at the level of the

user who invoked them. Furthermore, it must be able to switch to the user ID of the user

who requested the remote application invocation before it initializes the MSKT Database,

so that the remote application has read/write access to the database. For these reasons,

the TRSS Parent is designated a trusted process.

i. Trusted Remote Session Server (TRSS) Child
The TRSS Child process is responsible for handling socket calls on behalf

of its assigned remote application. The two processes communicate via a MYSEA socket

(MSKT) allocated by the TPS Child process. Any time the RA requires access to the

MLS interface, it enters its socket request into the MSKT Database and (for all but the

first call) signals the TRSS Child process. The TRSS Child process then retrieves the

requested call type and corresponding parameters from the MSKT Database and makes

the appropriate socket call on behalf of the RA. Once the function call has completed,

19

the TRSS Child sets the return value of the call and any data received into the appropriate

fields in the database entry, and signals the RA process. The RA is then able to retrieve

the results of its socket call from the database.

When an RA process requests access to a peer (via the connect, sendto,

accept, or recvfrom socket calls), the TRSS Child process is responsible for checking

whether the connection is allowed before proceeding with the call. It does this by

consulting the Peer Level Database and the User Database to retrieve the current level of

the peer. By comparing the session level of the peer with the session level of the RA, it is

able to determine whether the access is allowable. If so, the TRSS Child must consult the

Source Address Binding Database to determine the source address configured for use

with the supplied destination address before binding the socket to a source port/address

pair.

For each new connection established on behalf of the RA process, the

TRSS Child updates the Remote Connections Database with the new connection and its

current session level. Upon the closing of each connection, the TRSS Child removes the

connection from the database.

The TRSS Child runs at the level of the MLS LAN. Because it requires

access to privileged ports, and because it must also communicate with the RA running at

the session level of the user who invoked it, the TRSS Child is designated a trusted

process.

j. Remote Application (RA)
The remote application process is an application process executing on the

server at the request of a remote client. The RA process is untrusted, and runs at the

session level of the user who invoked it. The RA may only request socket operations on

the MLS LAN by way of an MSKT managed by a TRSS Child process, as described

above. If an RA is ported from another platform, its socket calls must therefore be

modified to use the MSKT interface.

20

Table 1 presents a summary of the processes involved in the execution of remote

applications.

Process Trusted? Session Level Launched By Instances

 TPS Parent Yes MLS LAN (System Daemon) One/System

 TPS Child Yes MLS LAN TPS Parent One/TPE

 SSD Yes MLS LAN (System Daemon) One/System

 SSS Parent Yes MLS LAN SSD One/Allowed Protocol

 SSS Child Yes MLS LAN SSS Parent One/APS-Client Connection

 APS (httpd) No Remote User
or RA

SSS Child One/SSS Child

CGI RA
Invocation
process

No Remote User APS (httpd) One/RA Invocation Interface
Request

 TRSS Parent Yes MLS LAN TPS Child One/User-Session-Level

 TRSS Child Yes MLS LAN TRSS Parent One/Remote App.

 Remote App. No Remote User CGI RA
Invocation process

One/RA Invocation Request

Table 1. Process Attributes

Table 2 summarizes the privileges required by each trusted process.

Trusted Process Privileges Required

 TPS Parent • Ability to access the MLS LAN as well as system-low databases.

 TPS Child • Ability to access the MLS LAN as well as system-low databases.

• Ability to access user identification and authentication
information.

 SSD • Ability to fork and terminate child processes that run as the
network user.

21

Trusted Process Privileges Required

 SSS Parent • Ability to run as the network user in order to access privileged
ports.

• Ability to fork children that can access the MLS LAN and also
communicate with user-level APS processes.

• Ability to fork children that can switch user IDs.

 SSS Child • Ability to access the MLS LAN and also communicate with user-
level APS processes.

• Ability to switch to the user ID of the remote user before
initializing the MSKT Database and launching the APS process.

 TRSS Parent • Ability to switch to the user ID of the remote user before
initializing the MSKT Database.

• Ability to fork child processes with access to the MLS LAN and
also communicate with user-level RA processes.

• Ability to fork and terminate child processes that run as the
network user.

• Ability to be launched by low-integrity processes. (See Chapter IV
for a discussion of the Trusted Parent Exempt privilege.)

 TRSS Child • Ability to access the MLS LAN and also communicate with user-
level RA processes.

• Ability to run as the network user in order to access privileged
ports.

Table 2. Privilege Requirements of Trusted Processes

3. Databases

a. Allowed Protocols Database
The Allowed Protocols Database is a static, per-system database that lists

the application protocols provided by the MYSEA server. Each entry, corresponding to a

single allowed protocol, consists of a descriptive identifier of the protocol (e.g.,

“HTTP”), a path to the executable that will provide the protocol service, and the port

number on which it will listen for requests.

The SSD process uses the Allowed Protocols Database to start an SSS

Parent process for each allowed protocol.

22

b. Allowed TPE Database
The Allowed TPE (Trusted Path Extension) Database is a static, per-

system database that lists the TPEs authorized to log in to the MYSEA server. Each

entry consists of the IP address of an allowed TPE.

The TPS Parent process uses the Allowed TPE Database to restrict login

access to authorized clients.

c. User Database
The User Database is a per-system database that is used to associate

communications from a particular TPE with a specific user and session level. There is

one entry in the database for each active TPE.

The database is maintained by the TPS Parent and Child processes, which

update it every time a user logs in, changes his/her session level, or logs out. The SSS

Parent and Child processes use the database to determine the proper session level to

associate with APS processes launched to handle requests from TPEs. The SSS Child

and TRSS Child processes also make use of the database when an APS or RA requests a

connection with a peer, and that peer is not contained in the Peer Level Database. In this

case, it is assumed that the APS or RA process is attempting to communicate with a TPE;

hence, the SSS or TRSS Child process must check to see that this TPE is logged in at a

session level acceptable for communication with the requesting APS or RA.

d. Remote Connection Database
The Remote Connection Database is a per-system database that is used to

bind connections initiated by RAs and APSs to specific users and session levels. It is

initialized by the TPS Parent, and updated by the TRSS Child or SSS Child each time the

RA or APS requests the establishment or termination of a remote connection. Each

remote connection entry consists of a source port, a source IP address, a destination port,

and a destination IP address.

The SSS Parent uses the database to check whether incoming traffic is the

result of a connection request by an RA or APS; it does this only if it fails to find a record

23

of the TPE in the User Database. If the SSS Parent locates the remote connection in the

database, the incoming data is passed on to the appropriate SSS Child process; otherwise,

the connection is dropped.

e. Remote Application MYSEA Socket Map (RAMSKT Map)
Database

The RAMSKT Map Database is a per-system database that is used to map

a particular user and session level to the MYSEA Socket (MSKT) Database and TRSS

Parent process assigned to provide remote application support for that user/session-level

pair. The TPS Parent initializes the memory block that contains the database, and the

TPS Child allocates an entry for each authenticated user. The database is read by the

TRSS Parent and Child processes and by the RA to look up the MSKT Database handle

to be used for socket communications between them.

f. Application Protocol Server MYSEA Socket Map (APSMSKT
Map) Database

The APSMSKT Map Database is a per-system database that is used to

map a particular user and session level to the MYSEA Socket (MSKT) Database assigned

to provide APS support for that user/session-level pair. The TPS Parent initializes the

memory block that contains the database, and the TPS Child allocates an entry for each

authenticated user. The database is read by the SSS Child and APS processes to look up

the MSKT Database handle to be used for socket communications between them.

g. MYSEA Socket (MSKT) Database
The MSKT Database is a structure used to pass data between TRSS and

remote application processes, and between SSS Child and application protocol server

processes. Two instances of the database are initialized for each active user/session-level

combination: one instance for RA support, and the other for APS support. Because the

untrusted RA and APS processes require read and write access to their respective

24

databases, each database must be initialized at the security level of the untrusted process

(i.e., at the session level of the remote user or remote application that requested the RA or

APS invocation).

Each entry in the MSKT Database contains the following fields:

• Call Type: This field is used to indicate to the TRSS Parent or Child

process what type of socket call is being requested by the remote

application, or to indicate to the SSS Child process the type of socket

call being requested by the application protocol server. The supported

socket calls are listed later in this section.

• Data Buffer: This field is used to pass data between the TRSS Child

and the RA, or between the SSS Child and the APS. It is used for the

read, recv, recvfrom, write, send, sendto, getsockopt, and setsockopt

functions.

• Function Return Value: This field is used by the TRSS Child process

to pass the return value of the function call to the RA, or by the SSS

Child process to pass the return value of the function call to the APS.

• MSKT FD: This field contains the socket file descriptor associated

with the MSKT.

• Untrusted PID: This field contains the process ID of the untrusted

process (i.e., the RA or APS) accessing the MSKT.

• Trusted PID: This field contains the process ID of the trusted process

(i.e., the TRSS or SSS Child) accessing the MSKT.

• Other fields include an ‘In Use’ flag, an Errno field, a Parameter

Buffer (only used by certain functions), and a Variable Buffer Flag

that indicates whether the Data Buffer or Variable Shared Memory

Buffer is being used to pass data.

25

The MSKT Module currently supports the following socket library

function calls: accept, bind, close, connect, fcntl (to a limited extent), fork, getpeername,

getsockname, getsockopt, ioctl (to a limited extent), listen, read, recv, recvfrom, select (to

a limited extent), setsockopt, send, sendto, shutdown, socket, and write.

For more detail on the implementation and current limitations of these

function calls, see [3].

h. Peer Level Database
The Peer Level Database is a static, per-system database that is used to

indicate whether a peer is multilevel, and if not, to associate the peer IP address with a

specific security level.

The database is used by TRSS Child and SSS Child processes to

determine whether a connection requested by a RA or APS with a specific remote peer is

allowable.

i. Source Address Binding Database
The Source Address Binding Database is a static, per-system database that

is used to associate one or more destination IP addresses with a source IP address. The

need for this database arises from the fact that a remote connection must be registered in

the Remote Connection Database in order for the SSS Parent to recognize it and handle

incoming traffic for the connection appropriately. In order to register a connection in the

database, there must be known values for each of the following fields: source port, source

IP address, destination port, and destination IP address. This is problematic for certain

socket calls, such as connect, that do not necessarily bind to a source IP address before

attempting to establish a remote connection.

To account for this, the TRSS Child process making the call on behalf of a

remote application may consult the Source Address Binding Database to determine the

appropriate source address to be used with the given destination address. The database

consists of pre-configured source IP addresses and their corresponding network masks

and destination IP addresses. The Source Address Binding Module provides an interface

26

for determining the correct source address for a given destination address. This function

iterates through each entry in its database, performing a bit-wise AND of the input

destination address with the current entry’s network mask, and comparing the result with

the masked destination address for that entry. If there is a match, the function returns the

source address associated with the entry.

j. Cleanup Database2
The Cleanup Database is a per-system database that maintains a list of the

SSS Child processes that need to be terminated when a user changes session levels or

logs out. Each database entry contains two fields: an SSS Child process ID, and the

associated TPE ID. The database is initialized by the TPS Parent process; SSS Child

processes enter themselves into the database as they are launched and remove themselves

before they terminate. Because they are trusted, inadvertent corruption of the database by

SSS Child processes is not a concern.

The TPS Child process refers to the Cleanup Database whenever a user

logs out or changes session level. It uses the TPE identifier to retrieve the process ID of

each active SSS Child process associated with that TPE, and terminates those processes.

Table 3 summarizes the initialization properties of each database.

Database
Initializing
Process Frequency

Security
Level

Statically
Configured

Shared
Memory

 Allowed Protocols SSD Per-system MLS LAN Yes No

 Allowed TPE TPS Parent Per-system MLS LAN Yes No

 User TPS Parent Per-system MLS LAN No Yes

 Remote Connection TPS Parent Per-system MLS LAN No Yes

 RAMSKT Map TPS Parent Per-system System-low No Yes

 APSMSKT Map TPS Parent Per-system System-low No Yes

2 The Cleanup Database is currently undergoing re-design, and is not fully implemented at this time.
Cleanup-related issues are discussed further in the “Future Work” section of Chapter VI.

27

Database
Initializing
Process Frequency

Security
Level

Statically
Configured

Shared
Memory

 MSKT SSS Child
and TRSS
Parent

Two per TPE
user/session-
level (one for
APSs and one
for RAs)

Session
level of
requesting
user or RA

No Yes

 Peer Level TPS Parent Per-system MLS LAN Yes Yes

 Source Addr. Binding TPS Parent Per-system MLS LAN Yes Yes

 Cleanup TPS Parent Per-system MLS LAN No Yes

Table 3. Database Initialization Summary (after [3])

Table 4 summarizes the database access privileges required by each

process. An ‘R’ signifies that a process requires read access to the database; a ‘W’

signifies that the process requires write access to the database. An asterisk indicates that

the process is untrusted.

Process

D
at

ab
as

e

A
llo

w
ed

 P
ro

to
co

ls

A
llo

w
ed

 T
PE

U
se

r

R
em

ot
e

C
on

ne
ct

io
n

R
A

M
SK

T
M

ap

A
PS

M
SK

T
M

ap

M
SK

T

Pe
er

 L
ev

el

So
ur

ce
 A

dd
r.

B
in

di
ng

C
le

an
up

 TPS Parent R W R W R W R W R W R W R W R W

 TPS Child R W R W R W R

 SSD R W

 SSS Parent R R

 SSS Child R RW R R R W

 APS* R RW

28

Process
D

at
ab

as
e

A
llo

w
ed

 P
ro

to
co

ls

A
llo

w
ed

 T
PE

U
se

r

R
em

ot
e

C
on

ne
ct

io
n

R
A

M
SK

T
M

ap

A
PS

M
SK

T
M

ap

M
SK

T

Pe
er

 L
ev

el

So
ur

ce
 A

dd
r.

B
in

di
ng

C
le

an
up

 TRSS Parent R RW

 TRSS Child R R W RW R R

 Remote App.* R RW

Table 4. Process-Database Relations

4. Other Modules

a. Semaphore
The Semaphore Module provides an interface for locking access to

databases. Databases are locked whenever necessary to prevent the occurrence of race

conditions, i.e., the reading of a database by one process while a second process is busy

writing to that database, which can lead to inconsistencies in the data presented to the

reading process. The MSKT, RAMSKT Map, APSMSKT Map, Remote Connection, and

Cleanup Databases depend on this module.

b. User Identification and Authentication
The User Identification and Authentication (I&A) Module manages access

to the XTS’s trusted services for user identification and authentication. It is used by the

TPS Child to check the validity of username/password and username/session-level

combinations provided by remote users attempting to log in or set their session levels.

29

c. Privileges
The Privileges Module manages access to the XTS’s trusted services for

granting and revoking privileges. These privileges can enable the invoking process to do

one or more of the following:

• Bypass MAC and/or DAC controls.

• Perform Identification & Authentication (I&A) checking.

• Change the owner or group attributes of the current process.

• Change the access class of an object.

• Upgrade the mandatory access level of an object.

• Read objects with a lower integrity.

The module also provides the means to restore the invoking process’s

previous set of privileges. Only trusted applications that have been authorized for

specific privileges in advance may take advantage of the functions offered by this

module. The SSD, SSS Parent and Child, TPS Parent and Child, and TRSS Parent and

Child processes all make use of the module.

d. Shared Memory
The Shared Memory Module provides an intuitive interface for accessing

shared memory on the XTS-400 system. This module is used to facilitate the sharing of

databases between processes.

e. Utility
The Utility Module provides an intuitive interface for several of the utility

functions provided by the STOP OS, including the means to display and compare session

levels, and various debugging functions.

30

f. MYSEA Synchronization
The MYSEA Synchronization Module implements an intuitive interface

for synchronization functions provided by the STOP OS. Specifically, it provides the

means for processes to signal each other and pause until signaled using the IPC message-

passing mechanism. These functions are utilized in communications between the SSS

and APS processes, and between the TRSS and RA processes.

g. Socket Handler
The Socket Handler Module presents the interfaces for the socket handler

functions used by the TRSS and SSS Child processes to perform actual socket calls. The

results of the socket calls are passed back to the APS or RA by way of the MSKT

Database.

D. PRE-IMPLEMENTATION MODIFICATIONS TO DESIGN
The design concepts discussed in this chapter were developed in a previous thesis

[3], with a couple of exceptions. Subsequent to the publication of the thesis, certain

inefficiencies were identified in the use of the pseudo-socket layer and in the named-pipe

method for inter-process communication. These inefficiencies, and the design changes

that resulted, are described in the following sections.

1. MYSEA Sockets (MSKTs)
The original design for remote application support called for the creation of a

Remote Application Pseudo-Socket (RAPSKT) Database to be used by the TRSS and RA

processes. This database was to be distinct from the Pseudo-Socket (PSKT) Database

already in use by the SSS and APS processes for the purpose of handling application

protocol requests. During the course of testing, it was noted that the performance of the

application protocol servers degraded severely as the number of concurrent application

protocol requests increased. Rather than try to debug the pre-existing PSKT code, it was

decided to use the RAPSKT interface to handle socket operations for both the application

protocol servers and the remote applications. This was possible because the two types of

31

databases served similar purposes: to pass socket requests and data between untrusted

processes requiring access to the MLS LAN and the trusted processes authorized to make

socket library calls on their behalf. The database referred to throughout this document as

the MSKT (MYSEA Socket) Database is equivalent to the RAPSKT Database described

in [3], revised slightly to accommodate the requirements of the application protocol

servers in addition to those of remote applications.

2. Inter-Process Signaling
The method for inter-process signaling between the RA and TRSS processes has

also been revised since the publication of [3]. The TRSS processes can signal the RA

process using the standard signaling mechanism, since the TRSS Parent and Child are

trusted processes with the privilege to communicate with processes running at different

levels. However, the untrusted RA process cannot signal back to any process running at

a different level than itself, requiring the introduction of an alternative signaling

mechanism.

The original design called for the RA process to signal the TRSS Parent and Child

processes by way of named pipes. This involved the creation of a named pipe by the

TRSS process with a file name ending in its own process ID. The TRSS process would

wait for a signal by the RA by calling select on the file descriptor of the named pipe and

waiting for the RA to write to the file. When the RA first needed to communicate with

the TRSS Parent or Child process, it would look up the TRSS process ID in the RAPSKT

Database and write to the corresponding named pipe. The TRSS process would then read

the data from the file descriptor, respond to the RA using the standard signaling

mechanism, and again call select on the file descriptor to wait for the RA’s next signal.

The advantage of this method was that it seemed well-suited for the “lock-step” style of

communication between the RA and TRSS processes: the RA is required to signal the

TRSS Parent when it requires a new socket connection, and pause for the parent to

respond with the results of the call; once the TRSS parent responds, the RA resumes

processing and eventually signals the TRSS Child to handle the next socket operation,

pausing for its response; the TRSS Child returns a value, and pauses for the RA’s next

32

signal; and the cycle repeats for each socket operation required by the RA thereafter. The

named-pipe method is well-suited to handle this type of communication pattern, but it

does have disadvantages:

• It cannot be generalized to handle more complex communication models,

possibly involving more than two processes or more than two states (currently

sleep and awake);

• It carries with it the inconvenience of having to create the named pipe and a

deflection directory [13] in which to store it.

For these reasons, it was decided to instead make use of the XTS-400 proprietary

IPC (Inter-Process Communication) mechanism, or TCB messaging, packaged in an

intuitive interface within the MYSEA Synchronization Module. This method provides all

the functionality of the named-pipe method, with the advantage that it is directly

supported by the operating system and doesn’t require the special creation of named

pipes or deflection directories.

This change also applies to inter-process signaling between the SSS Child and

APS.

E. OVERVIEW OF IMPLEMENTATION REQUIREMENTS

1. Newly Implemented Components

a. Processes
The following processes were implemented specifically for the purpose of

remote application support:

• TRSS Parent Process

• TRSS Child Process

• Remote Applications (tftp [14] and swget clients)

• CGI Remote Application Invocation Scripts

These processes were implemented as part of this thesis.

33

b. Databases
Additionally, the following databases were implemented specifically for

the purpose of remote application support:

• Remote Connection Database

• RAMSKT Map Database

• MSKT Database

• Peer Level Database

• Source Address Binding Database

• Cleanup Database

These six databases and their interfaces were implemented prior to the

start of this thesis.

c. Modules
Finally, the following modules were implemented for the purpose of

remote application support prior to the start of this thesis:

• MYSEA Synchronization Module

• Socket Handler Module

2. Modifications to Existing Components
Many of the components that are affected by the implementation of remote

application support were previously designed and implemented [15], and existed for their

own purposes outside the scope of remote application support. These included the SSD,

SSS, and TPS processes, as well as the Allowed Protocols, Allowed TPE, and User

Databases. The majority of the modules described in Section C4 (all but the MYSEA

Synchronization and Socket Handler Modules), also existed prior to this project.

However, several of these pre-existing components underwent revision during the course

of the project. This included the adaptation of the SSS and APS processes to make use of

the MSKT Database, as well as other minor revisions to the SSD, SSS Parent and Child,

34

and TPS Parent and Child processes, and to the User Database. These revisions were

largely aimed at improving cleanup processing, and are described in greater detail in [3].

F. SUMMARY
The design specifications summarized in this chapter provide a complete

framework for remote application support within the MYSEA environment. An

implementation based upon these requirements was completed for this project. The

implementation process, including module-specific implementation requirements and

unforeseen issues encountered during development, are described in Chapter IV.

35

IV. IMPLEMENTATION

A. OVERVIEW
This chapter describes the implementation and modification of the remote

application support components developed as part of this thesis. These include

modifications to the TPS Child process, the implementation of the TRSS Parent and

Child processes, the development of two proof-of-concept remote applications (a TFTP

client ported from publicly available source code, and a simple web client), and the

implementation of two remote application invocation mechanisms in the form of CGI

scripts. This chapter also describes unforeseen issues that arose during the course of

implementation, and other deviations from the specifications in [3].

Within each of the following sections, a reproduction of the Process Overview

figure (Figure 1) is presented as a reminder of the context in which the current RA

component of interest was designed to function. Lightly shaded boxes represent

processes implemented during this project; darkly shaded boxes designate the

components currently under discussion.

Appendix A provides a listing of the MYSEA source code files that were created

or modified for this project.

B. DEVELOPMENT ENVIRONMENT
The MYSEA remote application support code was developed on an XTS-400

system running the STOP 6 operating system. The MYSEA software, including the TPS

and TRSS processes, was implemented in C and compiled using gcc 3.2, as were the

proof-of-concept remote applications. The CGI scripts were written in Perl and executed

using Version 5.8.0 of the Perl interpreter. Both the C compiler and Perl interpreter were

the standard versions shipped with the XTS-400 system. Remote application support was

integrated into Version 1.1x of the MYSEA server software.

36

C. IMPLEMENTATION DETAILS

1. TPS Child Process

Figure 2. TPS Child in the Context of Remote Application Support

The TPS Child process was implemented long before this project, but required the

addition of new functionality in order to set the stage for remote application support for

the particular TPE for which it was invoked. Specifically, it was modified to take the

following actions upon the successful establishment of a user session:

1. Create a TRSS Parent process to handle socket requests from remote

applications launched during the session;

2. Allocate shared memory to be used for the MSKT Database for the session,

and store the handle to the MSKT Database in the RAMSKT Map Database

entry associated with the session; and

3. Set the process ID of the newly created TRSS Parent process in the RAMSKT

Map Database entry associated with the session.

During the course of implementation, it was clarified that the successful

establishment of a user session meant the invocation of the “run” command by the user

37

after having successfully logged in and negotiated a session level. The specifications in

[3] called for the execution of the above steps immediately following a successful user

login; however, at this point, the user is still operating in the context of the Trusted Path

and may elect to change his or her session level before running an untrusted session.

Because the steps listed above depend on the previous determination of the user/session-

level pair for which the remote application support structures and processes should be

initialized, they should be executed after the session level negotiations have been

completed and the user exits the Trusted Path session. Furthermore, the user may wish to

re-invoke a Trusted Path session and re-negotiate the session level at a later point within

the same login session. In this case, the remote application support mechanism will only

be functional for the re-negotiated session if it is re-initialized each time the user issues

the “run” command after changing session levels, rather than being initialized only once

after the user’s initial login.

Before writing to the RAMSKT Map Database in Steps 2 and 3, the TPS Child

must enable its MAC/DAC exemption privilege. This is necessary because the TPS

Child runs at the level of the MLS LAN, whereas the RAMSKT Map Database is a

system-low database. (The TPS Parent must similarly enable its MAC/DAC exemption

privilege before initializing the RAMSKT Map Database.) These requirements were

identified subsequent to the publication of [3].

38

2. TRSS Parent and Child Processes

Figure 3. TRSS Processes in the Context of Remote Application Support

The TRSS Parent and Child processes, highlighted in Figure 3, were implemented

specifically for the purpose of this project, per the specifications in [3]. In the interest of

efficiency, a few deviations were made from the specifications:

1. The TRSS Parent process does not loop while waiting for its MSKT Database

handle to be successfully retrieved from the RAMSKT Map Database;

instead, it sleeps until signaled by the TPS Child process that invoked it,

indicating that the handle is ready to be retrieved.

2. The TRSS Child process does not retrieve the process ID of the remote

application to be serviced by performing an MSKT Database lookup; instead,

it inherits the process ID from the TRSS Parent that forked it. (The TRSS

Parent is signaled by the remote application requiring service and records the

process ID of the signaling process before it forks the TRSS Child.)

3. The TRSS Child process does not retrieve the handle for the MSKT Database

entry to be attended by doing a linear search for its own process ID in the

MSKT Database; instead, it inherits the handle from the TRSS Parent that

39

forked it. (The TRSS Parent locates the database entry containing a new

socket call prior to forking the TRSS Child.)

Furthermore, the following deviation from specifications was required for the

proper functioning of remote applications:

• The TRSS Parent, which normally runs as the network user, must switch to

the user ID of the remotely authenticated user before initializing the MSKT

Database. This is because the MSKT Database is configured to be readable

and writable only by its owner (i.e., by processes running with the same user

ID as the process that initialized it), and untrusted remote applications running

with the user ID of the remote user who invoked them must be able to access

the database.

The TRSS binary must be designated a trusted program with the specific

privileges necessary for it to perform its duties. This requires using the trusted tp_edit

program provided by the STOP 6 operating system to designate the TRSS program as

trusted, and to grant it the privileges it requires. These include MAC/DAC exemption

and the ability to set its user ID, as documented in Table 2. Installation procedures for

the TRSS program are provided in Appendix B.

40

3. Remote Applications

Figure 4. TFTP Client and Swget in the Context of Remote Application Support

To demonstrate the functionality of the newly implemented remote application

support mechanism, two remote applications were installed on the MYSEA server: a

Trivial File Transfer Protocol (TFTP) client ported from publicly available source code,

and a simple web client (swget) developed specifically for use as a remote application on

the MYSEA server. The remote application component is illustrated in Figure 4.

a. Trivial File Transfer Protocol (TFTP) Client

As one means of demonstrating the functionality of remote network-

enabled applications, a TFTP client was ported onto the MYSEA server and adapted to

make use of the MYSEA socket (MSKT) mechanism. This was accomplished by making

the remote application modifications deemed necessary in [3]. Specifically, the TFTP

client source code was modified to do the following:

• Locate and attach to the MSKT Database that the client would be

using for socket requests. This required that the client take the

following sequence of steps:

1. Initialize access to the RAMSKT Map Database;

41

2. Retrieve the MSKT Database handle to be used by the remote

application from the RAMSKT Map Database; and

3. Initialize access to the MSKT Database.

These steps had to be taken before any socket operations were

attempted.

• Use MSKT socket calls instead of their conventional equivalents (e.g.,

mskt_socket instead of socket, mskt_recvfrom instead of recvfrom).

Successful execution of the TFTP GET command required use of the

mskt_socket, mskt_bind, mskt_sendto, and mskt_recvfrom functions.

• Detach from the RAMSKT Map and MSKT Databases when signaled

by the TRSS Child process to terminate.

This required the initialization of a sigaction structure and the

definition of a signal handler function that detached from the

RAMSKT Map and MSKT Databases before exiting. The sigaction

system call was used to specify that the process should respond to a

SIGTERM (a signal to terminate) by calling its customized signal

handler function.

In order to integrate the TFTP client with the CGI invocation interface,

additional client modifications were required. Traditionally, TFTP has operated only in

interactive mode; i.e., the user must enter separate commands to invoke the client (tftp),

transfer files (get <remote_file_name> <local_file_name>), and terminate the client

(quit). For MYSEA RA testing purposes, it was necessary for the entire TFTP client

invocation, file transfer, and client termination to be automated so that the transfer could

be requested, and the results captured, by the execution of a single external command by

a CGI script. Using the tftp-0.41-hpa client (an enhanced version of the original BSD

TFTP client) source code [14] as a baseline, only a few lines of code needed to be added

42

to main.c in order to implement a single new command (getq) that would retrieve a file

and terminate the client process in sequence. The getq command and its arguments

could then be piped to the TFTP client application on the command line as shown:

echo getq <remote_file_name> <local_file_name> | tftp <server_name>

where the remote file name, local file name, and server name were all provided as user

inputs to the CGI script. The CGI script only needed to issue this single command to

launch the TFTP client, download the file requested by the user, and place it in the

directory requested by the user, meanwhile capturing the report of the transfer to be

presented back to the user. A successful invocation of the tftp getq command specified

above results in output of the form:

tftp> Received X bytes in Y seconds [Z bit/s]

b. Web Client
To demonstrate the functionality of remote applications interacting with a

local web (APS) server, a simple web client was implemented for use on the MYSEA

server. The client was modeled after the text-based wget client widely used on Linux and

UNIX platforms, but was designed to make use of MSKT socket calls. Because it is

much simpler than the popular wget client, the client implemented for the purpose of this

project was named Simple wget, or swget.

The swget client takes, as its single command-line argument, the URL of

the web page to be retrieved, and parses the URL to determine the name of the server to

be contacted and the name of the file to be retrieved from the server. It then issues an

“HTTP GET” command to port 80 of the requested server for the desired file name,

stores the response from the web server, and filters the HTTP header information from

the data received before printing it to STDOUT. The result displayed to the user is the

HTML markup content of the requested web page.

43

The swget client was developed for use as a proof-of-concept remote

application. Its practical use is limited, as it issues only a single HTTP request for the file

specifically requested by the user. Should that file include links to embedded

components, such as images or sounds, those components will not be retrieved. A port

of a fully fledged web client such as wget is left for potential future work.

4. CGI Remote Application Invocation Processes

Figure 5. CGI RA Invocation Processes in the Context of Remote Application Support

Two distinct CGI interfaces were developed during this project as a means for

invoking remote applications. Each was designed to be platform-neutral, and may be

accessed via a web browser on the MYSEA client. The first interface takes the form of a

command menu, from which the user may select the desired command (i.e., remote

application) to be executed on the MYSEA server. The second takes the form of a web

shell, through which the user may enter UNIX-style commands to be executed on the

server. In each case, the output of the requested command is embedded in a web page

served back to the user. The CGI component is highlighted in Figure 5.

44

a. Command Menu
The command menu includes the options to perform simple tasks such as

moving and copying files, changing directories, listing directory contents, and displaying

the contents of text files. It also includes the option to launch the TFTP or web client on

the MYSEA server in order to request the transfer of a file onto the server. A screen shot

of the command menu is presented in Figure 6.

Figure 6. Command Menu

User commands entered via the command menu are interpreted, and the

corresponding UNIX commands executed on the MYSEA server, by a CGI script

running on the server. For example, a user may request a listing of files in the directory

45

test_dir by selecting the “List contents of directory” option from the command menu and

typing the directory name test_dir in the corresponding text field. The CGI script will

then run the ls test_dir command on the server and report the results back to the user.

The command menu interface has been implemented as a Perl script. The

major functions of the script are to:

• Generate the initial command menu as an HTML form document;

• Parse the command selections and arguments entered and submitted by

the user via HTTP POST;

• Perform sanitization and error-checking of user input;

• Transform the user input into valid UNIX commands (ls, mv, cp,

cd, tftp, or swget) with the appropriate command-line

arguments;

• Execute those commands on the server;

• Capture any output generated by the commands on STDOUT or

STDERR; and

• Upon completion of each command, embed the captured output into an

HTML page and present it back to the user. In the case of a web page

request, the requested page will replace the original command menu.

In all other cases, the resulting web page will contain the original

command menu followed by a report of the results of the user’s most

recently executed command.

The “Change Directory” command required special handling. Because the

corresponding UNIX command, cd, is not an actual binary to be executed but rather a

built-in function of popular command-line shells (e.g., bash and csh) designed to

influence the subsequent behavior of the shell, its functionality had to be implemented

within the CGI script. This was accomplished by calling Perl’s internal chdir function

with the user-specified directory as an argument. This allows the user to subsequently

refer to files and directories by their relative paths from the current working directory

rather than their absolute paths. However, because the CGI scripts are inherently

stateless (i.e., an entirely new CGI process is invoked for each command request

46

submitted by the user), the proper implementation of the cd command required the

introduction of some mechanism to transfer the record of a previously requested current

working directory across multiple invocations of the script. To this end, a hidden form

field containing the name of the current working directory was embedded within the

command menu presented to the user after the completion of each command request.

Whenever the script changes its current working directory, it also updates the value of

this hidden form field. When the user next submits the form, the CGI script retrieves the

name of the user’s current working directory from the hidden field and calls chdir with

the retrieved value as an argument before handling the user’s request. If the user has not

yet requested a cd operation, the current working directory is set to the user’s home

directory, as specified in the “/etc/passwd” file on the MYSEA server. If the user has

been assigned no home directory, the current working directory defaults to the parent

directory of the CGI script (“/home/http/cgi-bin/”).

b. Web Shell
The web shell was implemented based upon similar principles, but rather

than requiring the user to select between pre-determined command options, it allows the

user to enter arbitrary UNIX-style commands into a text field whose contents are

interpreted as commands to be executed on the MYSEA server. The output from the

command execution is embedded into an emulated terminal window presented back to

the user.

Original plans called for the port of a pre-existing web shell such as the

one made publicly available by the Gamma Group [16]. However, because the standard

STOP 6 development environment lacked certain Perl modules required by the Gamma

shell (namely, the Perl CGI Module, which automates certain CGI tasks), it was decided

to implement a simple web shell from scratch. The MYSEA web shell was implemented

almost identically to the command menu, with the exception that user-requested

commands are not checked against a list of valid commands, but are instead executed

directly on the MYSEA server without intermediate interpretation.

A screen shot of the web shell is presented in Figure 7.

47

Figure 7. Web Shell

Although the web shell provides basic remote command-line functionality,

it has significant limitations. Most notably, any command entered by the user must

terminate before the web shell will display its output. This precludes the execution of

interactive applications that prompt the user for input before displaying output or

terminating. (In some cases, a user may work around this restriction by making use of

pipes, as in the TFTP client invocation method presented earlier in this chapter.) The

48

reason for the limitation lies in the method used by the web shell to interact with remote

applications. The web shell CGI script makes use of Perl’s “backtick” method of

spawning external programs and capturing their output; using this method, the CGI

process must wait for its spawned child process to terminate before continuing its own

processing. For example, a Perl script containing the following line would execute ‘ls’ as

a child process, wait for it to terminate, and copy its output from STDOUT to its own

local $output variable:

$output = `ls`;

In practice, the command menu and web shell redirect STDERR to

STDOUT and capture the combined output from both streams by appending “2>&1” to

the user-supplied command, as in the following example:

$output = `ls 2>&1`;

The exit code from the child process is automatically stored in the $?

variable. This allows the CGI script to determine whether the remote application has

executed successfully, and to display an error message to the user if not. However, if the

child process fails to terminate, so will the CGI script, and the user will receive no

feedback.

A second limitation of the web shell is its lack of support for environment

variable management. As previously discussed, the CGI script is inherently stateless, and

any environment variable set manually by the user via the web shell will be forgotten

with the next invocation of the script. Memory of the current working directory across

script invocations has been implemented as a special case; memory of the entire process

environment is left for potential future work.

49

D. PROBLEMS ENCOUNTERED
This section describes problems that were not specific to the implementation of

any single remote application support module, but rather that emerged as unforeseen

properties of the remote application support system as a whole.

1. TRSS Access to Single-Level Network Interfaces
MYSEA servers are intended to interface not only with an MLS LAN, but also

with various external single-level networks; remote applications making use of the

MSKT interface are intended to have access to any of the external networks that

correspond to their current session level, as well as to the MLS LAN. When connecting a

MYSEA server to a single-level LAN, the security level of the network must be entered

in the configuration data for the corresponding network interface on the server. (When

connecting the MYSEA server to the MLS LAN, the corresponding interface is

configured to accommodate the highest level of data permitted to pass through the MLS

LAN.) Access to each network interface is monitored by a daemon running at the

configured session level of the interface.

In order for the TRSS Child process to access the MLS LAN interface, it must run

at the level of the MLS LAN. However, in order to support RA access to single-level

networks, the TRSS Child must also be able to access network interfaces configured at

lower levels. Even with MAC/DAC exemption enabled, this capability is not supported

by the STOP 6 operating system.

Consequently, each interface on the MYSEA server must be configured at the

level of the MLS LAN, regardless of the actual level of the connecting network. The

enforcement of session level restrictions in communication between hosts is thereby

transferred from the domain of the STOP 6 operating system to that of the MYSEA

software. Specifically, the Peer Level Database must be correctly configured with the

security levels of connected peers, and dutifully consulted by the TRSS Child before

outgoing connections to single-level peers are permitted. This issue was not discussed in

[3].

50

2. Trusted Parent Exemption
According to the specifications in [3], the TPS Child process is to launch the

TRSS Parent process by means of the xts_load_process function provided by the STOP 6

operating system. However, it was discovered during the course of implementation that

trusted programs with privileges cannot be loaded in this manner unless the loading

process has operator-level integrity. Because the TRSS is a trusted program with

privileges, and the TPS operates at the integrity level of the MLS LAN rather than

operator integrity, the TPS failed to create the TRSS using the xts_load_process call..

Three potential solutions were considered:

1. Elevate the integrity level of the TPS process to operator integrity. This was

an undesirable option because it violated the principle of least privilege; the

TPS had no need for such a high level of integrity.

2. Implement the TRSS logic as a child process forked by the TPS Child, rather

than as an external process loaded via xts_load_process. This was undesirable

for two reasons:

a. The resulting program would need to be assigned the union of the

privilege sets required by the TPS and the TRSS, also in violation of

the principle of least privilege.

b. The TPS Child and TRSS Parent access different databases and have

very different duties. The security engineering principles of data

hiding and modularity therefore dictate that they be implemented

separately.

3. Grant the TRSS the Trusted Parent Exempt privilege. This privilege allows it

to be loaded by processes with less than operator-level integrity. The

disadvantage of this approach is that the TRSS process may now be launched

by any untrusted program.

After weighing each of the three options, it was decided that the third option was

the most favorable. The risk of unauthorized execution of the TRSS Parent process was

mitigated by setting the DAC controls on the TRSS executable such that it was accessible

51

only by the admin user. (The existence of rogue admin processes that might attempt to

launch unauthorized TRSS processes was deemed acceptably improbable.) Because the

TPS Child process runs as admin, it is able to launch the TRSS process as desired, while

non-admin processes are denied access.

3. Multiple Binds
As discussed in Chapter III, any external connection established by a remote

application must be registered in the Remote Connection Database in order for the SSS

Parent to recognize it and handle incoming traffic for the connection appropriately. In

order to register a connection in the database, it must have a known source port, source IP

address, destination port, and destination IP address. This is problematic for certain

socket calls, such as connect and sendto, that may be called on a socket that has not yet

been bound to a source port and IP address.

To account for this, the TRSS Child process determines the appropriate source

address to be used for a given destination address by consulting the Source Address

Binding Database. It then makes the bind call on behalf of the remote application each

time it requests an mskt_connect or mskt_sendto call.

This solution is imperfect, because when a bind call is requested for a socket that

has been previously bound, subsequent bind calls for that socket fail. The specifications

in [3] call for the mskt_connect and mskt_sendto functions to short-circuit their

processing and return an error if their internal bind call fails, even if the failure is due to

the fact that the socket was previously bound. This prevents remote applications making

use of more than one instance of any of the mskt_bind, mskt_connect, or mskt_sendto

functions from successfully completing their requested socket operations.

As a temporary solution, bind call failures with an errno of EINVAL (the error

code returned when a socket has been previously bound) are ignored within the

mskt_connect and mskt_sendto functions. This allows the functions to continue their

processing and the RA socket operations to succeed.

52

For future work, a record should be maintained as to whether each socket entered

in the MSKT Database has yet been bound. If a socket has already been bound, then

subsequent bind calls on that socket should not be attempted.

E. SUMMARY
With the implementation of the components discussed in this chapter, remote

application support in the multilevel MYSEA environment was enabled. Chapter V

describes the developmental tests performed on each remote application support

component implemented for this project, as well as the acceptance tests performed to

ensure that the integrated remote application support system fulfilled its top-level user

requirements. Chapter VI concludes with potential future work.

53

V. TESTING

A. OVERVIEW
This chapter describes the developmental and acceptance test plans designed to

verify the proper functioning of the newly implemented RA support components. Three

systems are utilized during testing: a remote-application-enabled MYSEA server, a Red

Hat Linux system hosting a TFTP server, and a Windows XP client equipped with a Java

TPE and web browser. Figure 8 depicts the setup of the test network. The MYSEA

server has two network interfaces: one configured to connect to the MLS LAN on which

the Windows client is located, and the other configured to connect to a single-level LAN

housing the TFTP server. The single-level network is meant to simulate an external LAN

that might operate at any one of various session levels; this level must be specified in the

Peer Level Database on the MYSEA server. The network interfaces themselves are both

configured at the level of the MLS LAN (at the maximum security level and integrity

level 3, denoted max:il3), for the reasons discussed in the previous chapter.

Figure 8. Test Network Topology

The developmental and acceptance test plans and results are discussed at a general

level in this chapter; specific test procedures are documented in Appendix C.

B. DEVELOPMENTAL TESTING
The purpose of developmental testing is to test the functionality of each of the

components of remote application support implemented or modified as part of this thesis.

54

These include the TRSS Parent and Child processes that execute socket calls on behalf of

remote applications, the CGI scripts that invoke the remote applications, and the remote

applications themselves.

Reproductions of the Process Overview figure (Figure 1) are presented again

within each of the following sections as a reminder of the context in which each RA

component of interest was designed to function.

1. Trusted Remote Session Server (TRSS)

Figure 9. TRSS Processes in the Context of Remote Application Support

The purpose of the first test suite is to verify that the TRSS Parent and Child

processes correctly handle the complete set of MSKT socket calls that may be requested

by a remote application. Although the functionality of the TRSS processes is tested

implicitly in later tests of the remote application support system as a whole, this test suite

is the only one to provide complete coverage of supported MSKT socket calls.

For these tests, an MSKT-enabled test server is remotely invoked on the MYSEA

server via the web shell, and a local client is launched on the MYSEA server to interact

with the test server. Although both client and server run on the MYSEA server, only the

55

server runs as a remote application and makes use of MSKTs.3 The client presents a

menu of user-selectable options, each of which causes specific MSKT socket operations

to be exercised by the server. The mskt_socket, mskt_bind, and mskt_close calls are

exercised implicitly. Together, the tests exercise every one of the supported MSKT

socket calls.

Note that this test suite was designed to test only the logic implemented

specifically within the TRSS Parent and Child source code, and not to test the previously

implemented RA support databases and modules that the TRSS processes depend on.

The formal test documentation for these components is provided in [17].

The client and server used for testing were implemented prior to the start of this

thesis, and were used for this test suite almost entirely without modification. The single

change required was in the “Miscellaneous testing” function, which was designed to test

the mskt_getpeername, mskt_getsockname, mskt_getsockopt, mskt_setsockopt, mskt_fcntl,

and mskt_ioctl calls. The mskt_ioctl function takes as its first and second parameters a

file descriptor and an integer representing an action to be taken on that file descriptor. To

ensure that the function could be handled without error on the part of the TRSS Child, a

valid ioctl action request for XTS-400 network sockets had to be supplied. (The ioctl

request made by the original test server returned a value of -1 when applied to XTS-400

network sockets. This was not useful, because an mskt_ioctl return value of -1 does not

distinguish a failure of the ioctl call from a failure of the TRSS Child process.) With

some experimentation, it was determined that the ioctl FIONREAD request could be

successfully applied to network sockets on the XTS-400, and the test server was modified

to make this request.

For the mskt_ioctl call to be properly tested in the future, the test server should be

modified so that the actual functionality of the FIONREAD request (and all other

supported types of mskt_ioctl socket requests) may be verified. All that matters for the

purposes of TRSS testing is that the mskt_ioctl call returns without an error, indicating

3 The current design for remote application support allows for the possibility of either client or server
RAs running on the MYSEA server, although the client RA would seem the more natural case. The server
RA used in this test suite exercises all of the supported client-side socket calls as well as all of the server-
side socket calls, and is therefore ideally suited to the task of testing the TRSS processes’ handling of the
full range of MSKT socket calls.

56

that the TRSS Child has successfully received the request from the test server, made the

ioctl call on its behalf, and returned the result. Whether the ioctl call itself functions as

intended is beyond the scope of TRSS testing.

In the following test suite table, the “Action” column indicates the menu option

selected within the client application for each test case, and the “RA” column specifies

the process running as the remote application (the test_socket_ra server in this test suite).

Both the client and the server generate reports as the tests are run; output constituting a

success for each test case is documented in Appendix C.

Figure 9 highlights the TRSS processes within the context of remote application

support.

Test
ID

Test Type Action RA Expected
Result

a1 read Test mskt_read test_socket_ra Success

a2 write Test mskt_write test_socket_ra Success

a3 select Test mskt_select test_socket_ra Success

a4 listen Test mskt_listen test_socket_ra Success

a5 accept Test mskt_accept,
mskt_connect

test_socket_ra Success

a6 shutdown Test mskt_shutdown test_socket_ra Success

a7 send Test mskt_send test_socket_ra Success

a8 sendto Test mskt_sendto test_socket_ra Success

a9 recv Test mskt_recv test_socket_ra Success

a10 recvfrom Test mskt_recvfrom test_socket_ra Success

a11 fork Test mskt_fork test_socket_ra Success

a12 Blocked
I/O

Test mskt_fcntl test_socket_ra Success

57

Test
ID

Test Type Action RA Expected
Result

a13 Misc
testing

Test
mskt_getpeername,
mskt_getsockname,
mskt_getsockopt,
mskt_setsockopt,
mskt_fcntl, mskt_ioctl

test_socket_ra Success

Table 5. TRSS Testing

2. CGI Invocation of Remote Applications

Figure 10. CGI RA Invocation Processes in the Context of Remote Application Support

The purpose of this test suite is to verify the functionality of the CGI mechanism

for executing remote applications. Each of the two CGI interfaces is tested: the web

shell, which allows users to enter arbitrary UNIX-style commands to be executed on the

server, and the Windows-style command menu, which allows users to select desired

actions from a list. In each case, the CGI interface is invoked via a web browser on the

MLS client, and the CGI script and requested command are executed on the MYSEA

server. The output of the command is returned via a web page back to the client.

The CGI RA Invocation processes are highlighted within the context of remote

application support in Figure 10.

58

a. Web Shell Functional Testing
Functional testing of the web shell is meant to verify that the shell may be

used to successfully invoke user-specified remote applications on the MYSEA server and

report the results back to the user. Testing should also verify that the remote application

is executed at the session level and with the user ID of the remotely authenticated user.

Because the change-directory (cd) command is implemented as a special function of the

CGI script and not executed directly as a remote application, it is tested explicitly.

These tests are performed by logging in to the MYSEA server from the

MLS client, running a session, navigating to the URL of the web shell, and interacting

with the server via a text input field on the web page.

Test
ID

Test Type Action RA Expected
Result

b1 Web shell directory-
listing check

List contents of a
directory via the web
shell

ls Contents of
directory are
displayed

Web shell change-
directory check

Change directories
via the web shell

(none) New working
directory is
confirmed

b2

Web shell directory-
listing check after change-
directory

List contents of
current directory via
the web shell

ls Contents of
new working
directory are
displayed

b3 Web shell user ID check Check user ID via
the web shell

whoami User ID
entered by the
user at login is
displayed

b4 Web shell session-level
check

Check session level
via the web shell

mysea_level Session level
previously
negotiated by
the user via
the TPE is
displayed

Table 6. Web Shell Functional Testing

59

b. Web Shell Exception Testing
The purpose of exception testing is to verify that the web shell does not

demonstrate unintended behavior when presented with unexpected or ill-formed user

input. This may include an accidental request to invoke a remote application that does

not exist, or an attempt to “break” the script by manually forging form input names or

values. Testing should verify that the web shell is functional even after being provided

with invalid input.

To demonstrate more concretely the purpose of this test suite, an excerpt

from the HTML source composing the web shell is presented below:

<form …>

…

Command: <input type=text size=40 name=cmd value=''>

…

</form>

This excerpt encodes an HTML form with a single input name/value pair,

namely, an input entitled “cmd,” which takes the form of a text box and has no pre-set

value. When a user types a command into the text box and submits the form, the string

he or she enters in this text box becomes the value of the “cmd” input. When the CGI

script on the server is invoked, it parses the user input into name/value pairs, searches for

the input entitled “cmd,” and interprets the corresponding value to be the name of the

remote application the user wishes to execute.

There are three main possibilities for error in this setup. First, the user

may enter an invalid remote application name as the value of the “cmd” input. Test c1

verifies that the CGI script prints an informative error message and returns a new,

functional shell in this case.

The second possibility is that the user may enter no value for the “cmd”

input. Test c2 verifies that the CGI script re-displays the original web shell in this case.

60

The final possibility is that the user may submit a form without a “cmd”

input at all, and possibly with some other input type instead. Note that this is different

from simply leaving the “cmd” text field empty and submitting the form; in that case, the

script still receives the “cmd” name/value pair, but the value is null. In the present case,

the script does not receive a “cmd” name/value pair at all.

The choice to implement the CGI scripts using the HTTP POST method,

rather than HTTP GET, was made in an attempt to minimize the possibility of this third

type of error occurring by accident. Forms implemented using the HTTP GET method

reveal their input name/value pairs in their URLs. For example, after entering “ls” in the

“cmd” field of the web shell, the new URL displayed in the address bar would take the

form http://servername/cgi-bin/webshell.cgi?cmd=ls. It would be easy for an

adventurous but non-malicious user to alter the input name/value pairs by manually

editing the URL, and to do so in a way that was unexpected by the CGI script. Using the

HTTP POST method hides the input names and values from the user, so that in order to

submit an invalid input name or omit an expected input name, the user would have to

manually edit the web shell source HTML or write a special-purpose client to interact

with the CGI script, neither of which is likely to be accidental.

Test c3 verifies that the submission of an invalid form input name/value

pair in place of the expected “cmd” input does not result in unintended behavior by the

web shell. By design, the script searches only for the value of the “cmd” input and re-

prints the original shell if no such value is be found. Since we have established that this

type of error is not likely to happen by accident, informative error reporting is not as vital

in this case as in others.

61

Test
ID

Test Type Action RA Expected
Result

Invalid web shell command
(i.e., invalid value for
“cmd” input field)

Attempt to
execute a non-
existent RA via
the web shell

(none) Error message
and new
command
prompt are
displayed

c1

Web shell functionality
check after invalid input

List contents of a
directory via the
web shell

ls Contents of
directory are
displayed,
indicating that
web shell is
still functional

Empty web shell command
(i.e., null value for “cmd”
input field)

Leave “cmd”
field empty and
submit form

(none) New command
prompt is
returned

c2

Web shell functionality
check after invalid input

List contents of a
directory via the
web shell

ls Contents of
directory are
displayed,
indicating that
web shell is
still functional

Invalid form input name
instead of expected “cmd”

Submit request
with manually
forged form input
name instead of
expected “cmd”

(none) New command
prompt is
returned with
no output from
invalid request

c3

Web shell functionality
check after invalid input

List contents of a
directory via the
web shell

ls Contents of
directory are
displayed,
indicating that
web shell is
still functional

Table 7. Web Shell Exception Testing

c. Command Menu Functional Testing
The purpose of the command menu functional testing is to verify that the

command menu interface may be used to successfully invoke remote applications

62

selected by the user from a list and report the results back to the user. Each of the options

presented in the menu is tested. Because the command menu CGI script is invoked using

exactly the same mechanisms and trusted processes as the web shell, explicit verification

of its user ID and session level need not be performed here.

Test
ID

Test Type Action RA Expected
Result

d1 Command menu directory-
listing check

List contents of a
directory via the
command menu

ls Contents of
directory are
displayed

d2 Command menu file-contents-
display check

Display contents of
a text file via the
command menu

cat Contents of
file are
displayed

Command menu change-
directory check

Change directories
via the command
menu

(none) New working
directory is
confirmed

d3

Command menu directory-
listing check after change-
directory

List contents of
current directory via
the command menu

ls Contents of
new working
directory are
displayed

Command menu move check Move a file via the
command menu

mv Move request
is confirmed
with no errors
reported

d4

Command menu directory-
listing check after move

List contents of
directory containing
moved file via the
command menu

ls Moved file is
displayed in
its new
location and
not its old
location

d5 Command menu copy check Copy a file via the
command menu

cp Copy request
is confirmed
with no errors
reported

63

Test
ID

Test Type Action RA Expected
Result

Command menu directory-
listing check after copy

List contents of
directory containing
the copied file via
the command menu

ls Copied file is
displayed in
its new
location and
its old
location

d6 Command menu web check Request a web page
via the command
menu

swget Requested
web page is
displayed

Command menu TFTP check Issue TFTP GET
request via the
command menu

tftp TFTP reports
that file was
transferred

d7

Command menu file-contents-
display check after TFTP

Display contents of
requested file via
the command menu

cat Contents of
requested file
are displayed

Table 8. Command Menu Functional Testing

d. Command Menu Exception Testing
The purpose of exception testing is to verify that the command menu does

not demonstrate unintended behavior when presented with unexpected or ill-formed user

input. This may include attempts to execute unlisted remote applications or to “break”

the script by manually forging form input names or values as described earlier in this

chapter, or by supplying specially crafted, non-alphanumeric command-line arguments as

form inputs. To prevent users from executing unsupported remote applications (e.g., by

appending a semi-colon to a command argument and following it with a new command,

which a normal shell would interpret as two separate commands), the CGI script verifies

that command arguments contain only the following types of characters: letters, numbers,

slashes, periods, underscores, and dashes.

The following tests verify that the command menu is functional even after

being provided with invalid input.

64

Test
ID

Test Type Action RA Expected Result

Invalid command (i.e.,
invalid form input
value for “cmd” input
field)

Attempt to execute an
unsupported RA via
the command menu

(none) “Illegal input”
error message is
displayed

e1

Command menu
functionality check
after invalid input

List contents of a
directory via the
command menu

ls Contents of
directory are
displayed,
indicating that
command menu is
still functional

Empty command (i.e.,
null form input value
for “cmd” input field)

Select no option and
submit form

(none) New command
menu is returned

e2

Command menu
functionality check
after invalid input

List contents of a
directory via the
command menu

ls Contents of
directory are
displayed,
indicating that
command menu is
still functional

Invalid form input
instead of expected
“cmd”

Submit request with
manually forged form
input name instead of
expected “cmd”

(none) New command
menu is returned
with no output
from invalid
request

e3

Command menu
functionality check
after invalid input

List contents of a
directory via the
command menu

ls Contents of
directory are
displayed,
indicating that
command menu is
still functional

Non-alphanumeric
arguments

Submit arguments
containing forbidden
punctuation

(none) Error message is
displayed

e4

Command menu
functionality check
after invalid input

List contents of a
directory via the
command menu

ls Contents of
directory are
displayed,
indicating that
command menu is
still functional

65

Test
ID

Test Type Action RA Expected Result

Incorrect number of
arguments

Attempt to move a
file without
specifying source and
destination locations

mv Error-handling is
delegated to RA
(RA reports an
error)

e5

Command menu
functionality check
after invalid input

List contents of a
directory via the
command menu

ls Contents of
directory are
displayed,
indicating that
command menu is
still functional

Table 9. Command Menu Exception Testing

3. Remote Applications

Figure 11. TFTP Client and Swget in the Context of Remote Application Support

The purpose of this test suite is to verify the functionality of the proof-of-concept

remote applications installed on the MYSEA server. These include a publicly available

TFTP client altered to use MSKT socket calls, and a simple web client (swget) that uses

MSKT socket calls to retrieve requested web pages. In this test suite, the remote

applications are invoked using the web shell.

66

Once again, this test suite was designed to test only the logic implemented or

added specifically to the remote application source code. It was not meant to

exhaustively test the implementation of the databases and modules that the remote

applications depend on.

The RA processes are highlighted within the context of remote application

support in Figure 11.

a. TFTP Client Functional Testing
The purpose of the TFTP client functional testing is to verify that the

MSKT-enabled TFTP client can be used to successfully transfer files from a TFTP server

using the TFTP GET request. It should also verify that the file transfer and termination

of the TFTP client can be accomplished via a single command-line instruction,

functionality that was added for the purpose of easily integrating the TFTP client with the

CGI remote application invocation mechanism. In this test, the user requests a file

transfer via the web shell, and verifies that the requested file was successfully transferred

into the specified directory on the MYSEA server. The file is then displayed to ensure

that it contains the expected content.

Test
ID

Test Type Action RA Expected
Result

Issue TFTP GET
request via web shell

tftp TFTP client
reports that
file was
transferred

f1 Non-interactive
TFTP file
request

Display file (specifying
the local path included
in the original TFTP
request)

cat Contents of
requested file
are displayed,
and match
known content
of file

Table 10. TFTP Client Functional Testing

67

Because the TFTP client is based on publicly available software,

exception testing is omitted here.

b. Web Client Functional Testing
The purpose of the web client (swget) functional testing is to verify that

the MSKT-enabled web client can be used to successfully transfer files from an HTTP

server. A valid request should succeed whether or not the requested resource is prefixed

with “http://”.

Test
ID

Test Type Action RA Expected Result

g1 Valid web page
request with HTTP
prefix

Request valid URL
with “http://” prefix

swget Markup content
of requested web
page is displayed

g2 Valid web page
request without
HTTP prefix

Request valid URL
without “http://”
prefix

swget Markup content
of requested web
page is displayed

Table 11. Web Client Functional Testing

c. Web Client Exception Testing
Exception testing of swget is designed to verify that the program provides

informative error messages when a requested file cannot be retrieved or when provided

with an incorrect number of command-line arguments.

68

Test
ID

Test Type Action RA Expected Result

h1 Too few
command-line
arguments

Invoke swget with
no command-line
arguments.

swget Usage error
message is
displayed

h2 Too many
command-line
arguments

Invoke swget with
two command-line
arguments.

swget Usage error
message is
displayed

h3 Unavailable
server

Request a file from
an unavailable
server.

swget Connection
error message is
displayed

h4 Unavailable
file

Request an
unavailable file from
an available server.

swget Server error
message is
displayed

Table 12. Web Client Exception Testing

C. DEVELOPMENTAL TESTING RESULTS
Developmental testing of the CGI scripts revealed no unforeseen problems. The

scripts did not need to be tailored for the XTS-400 or MYSEA software, and were

straightforward to implement and test.

Developmental testing for the TRSS processes and remote applications was

slightly more revealing, with a handful of factors contributing to initial failures:

• The problems described in Chapter IV regarding TRSS access to single-level

networks, socket call failures due to multiple binds, and xts_load_process failures

were unanticipated and required investigation.

• Minor bugs in previously implemented, but untested MYSEA remote

application support modules had to be pinpointed and corrected.

• Because the cleanup mechanisms for remote application support were still in

the design phase and not fully implemented, the presence of stale processes and

data structures meant that the server daemons often had to be restarted, or the

69

MYSEA server rebooted entirely, between each test. (Cleanup issues are

discussed in more detail in the “Future Work” section of Chapter VI.)

Furthermore, each time a change was made to the source code of a trusted

program, it not only had to be recompiled, but the trusted binary replaced and (if

applicable) the daemon restarted. This made it a very time-consuming process to

correct problems and re-run tests.

Once these initial stumbling blocks were surmounted, developmental testing

successfully demonstrated the functionality of each of the components implemented as

part of this project. The results of all test suites, including those testing the TRSS Parent

and Child processes, the CGI remote application invocation mechanisms, and the MSKT-

enabled TFTP and swget clients, were as expected. Detailed test results are provided in

Appendix C.

D. ACCEPTANCE TESTING
The goal of acceptance testing is to verify that the newly implemented remote

application components are able to successfully interact with each other in such a way

that the top-level user requirements for remote application support are fulfilled. These

requirements, first stated in Chapter III B, are as follows:

1. The RA shall be able to communicate with the local MLS server, a remote

MLS server and a RA server.

2. The remote application shall be appropriately bound to the authenticated

user’s session. Specifically, the RA process shall run with the user ID and at

the current session level of the authenticated user.

3. The user shall be able to launch the RA from the client.

4. The MLS server shall be able to support both Unix/Linux and Microsoft

Windows clients.

5. The design shall only require a minimal number of changes to the RA.

70

Of these, requirements 2 and 3 are demonstrated to be fulfilled in developmental

testing, and requirements 4 and 5 are fulfilled by design. (Although our testing is

conducted from a Windows client, there is no reason to believe that results would differ

for a Unix/Linux client, since remote application invocation is accomplished via a

platform-neutral web page.) This leaves only the first requirement, which specifies three

test cases:

1. Communication between a remote application and an external single-level

server.

2. Communication between a remote application and the local MLS server.

3. Communication between a remote application and a remote MLS server.

Of these, the first and second test cases are described in this section; the third test

case was determined to be unrealizable in the current MYSEA environment, and is

described in the “Future Work” section of Chapter VI.

The purpose of the functional acceptance testing is to verify that in Test Cases 1

and 2, the remote applications are able to successfully retrieve the requested data, with

the stipulation that the user making the request must be logged in at an allowable session

level relative to the peer hosting the files (or the files themselves, if hosted on a

multilevel server).

The purpose of the exception testing is to verify that file transfer requests that are

not allowable under the Bell-LaPadula security model or the Biba integrity model are in

fact denied.

71

1. Communication between an RA and an External Server

Figure 12. RA Request to External Server

Acceptance Test Case 1 involves communication between a remote application

and an external, single-level server. It verifies that a remotely invoked TFTP client

running on the MYSEA server is able to successfully request data from a single-level

peer if the level of the peer is equal to the session level of the requesting user, but not

otherwise. This tests the proper configuration of the Peer Level Database and its use by

the TRSS Child process in determining whether to allow the requested sendto and

recvfrom socket calls.

Because a successful file request and transfer involves two-way information flow

between the client and server, both the simple security policy and the security-* property

of the Bell-LaPadula model apply in determining whether a file request will succeed.

The simple security policy limits allowable object (peer) security levels to those less than

or equal to the security level of the subject, while the security-* property limits allowable

72

peer levels to those greater than or equal to the security level of the subject. The STOP 6

implementation of the security-* property further limits allowable objects levels to those

exactly equal to the security level of the subject. Taken together, these properties restrict

the security level of the requesting user to precisely the security level of the peer hosting

the requested file. The simple integrity policy and integrity-* property of the Biba

integrity model similarly restrict the integrity level of the requesting user to precisely the

integrity level of the peer hosting the requested file. However, integrity-level checking

has not yet been implemented in the Utility Module access functions relied upon by the

TRSS Child, and is therefore not tested here.

In this test suite, a user logged in to the MYSEA server from a client on the MLS

LAN remotely invokes the TFTP client and requests the transfer of test files from an

external TFTP server to the MYSEA server. The RA-related processes involved in this

interaction are depicted in Figure 12. The test network topology from Figure 8 is

presented again below for reference.

Figure 13. Network Components Involved in Acceptance Test Case 1

a. Acceptance Test Case 1 Functional Testing
Functional testing for this test case verifies that the TFTP file request is

successful when the security level of the user’s current session is equal to the security

level of the TFTP server. For this test, the TFTP server is registered at the sl1:il3 level in

the Peer Level Database, and the user logs in to the MYSEA server at the same level.

The user then requests the transfer of a sample text file from the TFTP server to the

MYSEA server and displays the contents of the transferred file.

Tests are conducted via the CGI command menu.

73

Test
ID

Test Type User
Session
Level

Peer
Level

Action RA Expected
Result

Issue TFTP
GET request
via
command
menu

tftp TFTP client
reports that
file was
transferred

i1 Secrecy read-
equal/write-
equal

sl1:il3 sl1:il3

Display file
via
command
menu

cat Contents of
requested file
are displayed

Table 13. Acceptance Test Case 1 Functional Testing

b. Acceptance Test Case 1 Exception Testing
Exception testing for this case verifies that the TFTP file request fails if

the security level of the user’s current session is not equal to the security level of the

TFTP server, or if the security level of the TFTP server is unknown. For each of the tests

in this suite, the TFTP server is registered in the Peer Level Database at a security level

different from the user’s current session level (or is not registered in the database at all).

In these cases, the user’s file transfer request should result in an error message and the

file should not be transferred.

74

Test
ID

Test Type User
Session
Level

Peer Level Action RA Expected
Result

Issue TFTP
GET request
via command
menu

tftp “Permission
Denied” error
is displayed

j1 Secrecy
read-up

sl1:il3 sl2:il3

Display file
via command
menu

cat File contents
are empty4

Issue TFTP
GET request
via command
menu

tftp “Permission
Denied” error
is displayed

j2 Secrecy
write-down

sl1:il3 sl0:il3

Display file
via command
menu

cat File contents
are empty

Issue TFTP
GET request
via command
menu

tftp “Permission
Denied” error
is displayed

j3 Peer-level-
unknown

sl1:il3 Undefined

Display file
via command
menu

cat File contents
are empty

Table 14. Acceptance Test Case 1 Exception Testing

4 The TFTP client opens the local target file for writing before it even attempts to make a socket

connection, so an empty file is created even if the connection is disallowed.

75

2. Communication between an RA and a Local APS

Figure 14. RA Request to Local APS via SSS

Acceptance Test Case 2 verifies that a remotely invoked web client running on

the MYSEA server is able to successfully request data from a web server (httpd) running

as an APS on the same system. This tests the proper configuration of the Peer Level

Database and its use by the TRSS Child Process in determining whether to allow the

requested socket connect call. In this case, the Peer Level Database should indicate that

the peer is multilevel, and the TRSS Child Process should therefore allow the connection.

This test case also verifies the proper configuration and use of the Remote

Connection Database by the SSS Parent and TRSS Child processes. Before the TRSS

Child may establish connections on behalf of remote applications, it is required to register

those connections in the Remote Connection Database. The SSS Parent refers to the

database when attempting to validate an incoming request (such as a web page request)

that does not originate from the TPE of an authenticated user. If the connection is found

in the Remote Connection database, the SSS Parent retrieves the session level and user

76

ID associated with the connection in the database and the SSS Child creates an APS

process to service the request. The APS process is created at the same session level and

with the same user ID as the registered remote connection, and is therefore subject to the

same access control restrictions as the requesting user as it attempts to access web pages

of various security and integrity levels. These tests will verify that remote connections

and their corresponding session information are being successfully entered and retrieved

from the Remote Connection Database. The RA-related processes involved in this

interaction are depicted in Figure 14.

In this test suite, a user logged in to the MYSEA server from a client on the MLS

LAN remotely invokes a web client and issues web page requests to the local web server.

Tests are conducted via both the command menu and the web shell. When requesting a

web page via the command menu, an HTML-rendered version of the requested page is

displayed in lieu of the original menu; when making the request via the web shell, the

raw markup of the requested file is displayed within the emulated terminal window.

The network components involved in this test case are depicted in Figure 15.

Figure 15. Network Components Involved in Acceptance Test Case 2

a. Acceptance Test Case 2 Functional Testing

Functional testing for this test case should verify that a remote user may

launch a web client on the MYSEA server which is able to successfully request a local

web page via the SSS. The test also verifies that the instance of the web APS invoked to

handle the requests runs at the session level and with the user ID of the requesting user.

Because the APS is untrusted, its session level and user ID limit the files it is able to read

to those allowable under the MAC and DAC policies of the STOP 6 operating system;

77

this has been demonstrated outside of the scope of remote application support and is

therefore not formally demonstrated here.

In this test suite, the user requests a dynamically generated web page that

displays the current session level and user ID of the CGI (and therefore, the APS) process

that generated it, along with the server IP address, the IP address of the requesting host,

and the time of the request. This information is used to verify that the web request

received by the APS was generated by the MYSEA server and not by the remote client,

and also that the APS is running with the user ID and at the session level of the remote

user.

Test
ID

Test
Type

User
Session
Level

Action RA Expected Result

k1 Web
page
request
(sl1:il3)

sl1:il3 Request CGI-
generated web
page via
command
menu

swget Rendered
version of
requested web
page is
displayed;
requesting IP
address is that of
MYSEA server;
session level of
process is sl1:il3

k2 Web
page
request
(sl3:il3)

sl3:il3 Request CGI-
generated web
page via
command
menu

swget Rendered
version of
requested web
page is
displayed;
requesting IP
address is that of
MYSEA server;
session level of
process is sl3:il3

Table 15. Acceptance Test Case 2 Functional Testing

78

b. Acceptance Test Case 2 Exception Testing
Exception testing for this case verifies that the web page request fails if

the MYSEA server was not registered in its own Peer Level Database as being an MLS

peer. For this test, the MYSEA server administrator removes the record from the

database, and a user requests a web page from the MYSEA server via the command

menu. The request should result in a connection error message, and the web page should

not be displayed.

Test
ID

Test Type User
Session
Level

Peer Level Action RA Expected
Result

l1 Peer-level-
unknown
test

sl1:il3 Undefined Request web
page via
command
menu

swget Connect
error
message is
displayed

Table 16. Acceptance Test Case 2 Exception Testing

E. ACCEPTANCE TESTING RESULTS

The results of the acceptance tests were as expected, successfully demonstrating

that remote applications are able to communicate with local MLS servers and external

single-level servers when such communications do not violate the access control policies

of the multilevel environment. With the exception of the third envisioned usage scenario

(communication between RAs and remote MLS servers, left for future work), acceptance

testing has demonstrated that the current implementation of the remote application

support mechanism meets the top-level user requirements documented in [3]. Detailed

test results are provided in Appendix C.

F. SUMMARY

This chapter has described the developmental tests performed on each remote

application support component implemented for this project, and the acceptance tests

performed to ensure that the integrated remote application support system fulfills its top-

level user requirements. All tests were successful.

Chapter VI concludes with a project summary and suggestions for future work.

79

VI. CONCLUSION

A. SUMMARY
This project has enhanced the usability of the MYSEA architecture by providing

users the ability to execute server-resident applications from diskless MYSEA clients.

Specifically, the project has involved the implementation of the following remote

application support components:

1. The Trusted Remote Session Server (TRSS) processes responsible for making

socket calls on behalf of untrusted remote applications;

2. Two distinct Common Gateway Interface (CGI) interfaces for invoking

remote applications from a client web browser:

a. A command menu, from which a user may select desired remote

applications to be executed on the server;

b. A web shell, through which a user may enter UNIX-style commands to

be executed on the server.

3. Two simple network-enabled remote applications:

a. A TFTP client, adapted from publicly available source code [14];

b. A web client, developed specifically for use as a remote application on

the MYSEA server.

This project has also involved the development and execution of a test plan to

verify the functionality of the newly implemented remote application support

components. Testing has successfully demonstrated the functionality of each component

and of the remote application support system as a whole.

B. ANALYSIS OF THESIS QUESTIONS
Two research questions were posed at the beginning of this project:

1. What modifications to the existing design are necessary to successfully

implement remote application support on the MYSEA server?

80

2. What additional functionality, if any, is required to support the remote

execution of specific desired applications?

The answer to the first question is that surprisingly few modifications were

required. The specifications developed in [3] were sufficiently detailed and thorough that

a newcomer to the project was able to pick up where the designer left off and implement

a functional remote application support system without significant difficulties. The

refinements that were required fell into two main categories:

• Privilege and access issues specific to the STOP 6 operating system. These

are issues that would have been difficult to foresee without actually

attempting an implementation. Issues that fell under this category included:

o The inability of the TRSS process to access single-level network

interfaces configured at levels lower than itself. One might reasonably

have assumed that enabling MAC/DAC exemption on the part of the

TRSS process would solve the problem, but this was not the case.

o The inability of the TPS Child process to load the TRSS Parent

process without assigning the TRSS process the Trusted Parent

Exemption. It would have been difficult to anticipate the restriction

against the invocation of privileged processes by processes below

operator-level integrity without specifically searching the

documentation for such restrictions.

• Issues involving connectionless protocols. Remote applications that make use

of connectionless protocols such as UDP do not necessary call close or

shutdown on their sockets at the end of data transfer sessions. The author of

[3] identified one potential consequence of this fact: connections that are

entered in the Remote Connection Database when these applications make

their mskt_sendto calls may remain in the database as “zombie” entries, since

it is normally the mskt_close and mskt_shutdown calls that prompt the

removal of the entries from the database. Two other issues involving

connectionless protocols were identified during this project:

81

o Socket call failures due to multiple binds. bind is called internally for

every mskt_bind, mskt_connect, and mskt_sendto call requested by a

remote application; binding the same socket more than once will result

in the failure of all bind calls after the first, and of the MSKT socket

calls in which they are attempted. This prevents remote applications

making use of more than one instance of any of the mskt_bind,

mskt_connect, or mskt_sendto functions from successfully completing

their requested socket operations. While this might not be a problem

for TCP clients that make a single connect call followed by only send

and recv calls, or for TCP servers that make a single bind call followed

by listen, accept, and send calls, it is extremely problematic for UDP

clients that typically make repeated sendto calls, since each one after

the first will fail. A temporary fix was implemented for this project,

but a more robust solution (such as the one suggested in Chapter IV)

should be implemented for future work.

o Zombie TRSS processes. A TRSS Child process should not live longer

than the remote application that it was invoked to serve. Under the

current specifications, the TRSS Child process terminates when its

remote application calls mskt_close or mskt_shutdown on its final open

socket. However, if the remote application uses a connectionless

protocol and never makes either of these calls, the TRSS Child will

continue running on the server as a zombie process. The same

potential issue exists for SSS Child processes, which should not live

longer than the APS processes that they serve. (On the flip side, a

remote application may close its final socket but still have a significant

amount of processing left to do; it does not necessarily make sense for

the TRSS Child to terminate it as soon as it has closed its final socket.

This issue is being addressed separately)

82

This leads us to the second question: what additional functionality is required to

support the remote execution of specific desired applications?

For the purposes of this project, none. A TFTP client and simple web client were

each successfully adapted for use as remote applications using the precise instructions

provided in [3]. There were, in the case of the UDP-based TFTP client, issues with

zombie TRSS processes, but the clients were otherwise functional. Cleanup issues in

general will need to be addressed in future work.

Because the applications ported for this project were relatively simple, it is

possible that problems will emerge for more complex applications – those that make use

of unsupported ioctl or fcntl calls, for example. There is also the question as to how best

to handle remote applications that make library calls which in turn make socket calls,

since these socket calls cannot be mapped to their MSKT equivalents by simply editing

the source code of the remote applications. These are important issues for future work.

C. FUTURE WORK
Additional areas for future work include the following:

1. Federated Server Environment
The top-level user requirements for remote application support, documented in

[3], specify that a remote application should be able to make APS requests to a remote

MYSEA server. However, the SSS Parent process that validates incoming APS requests

was designed to accept only two types of connections: those originating from users

logged in to the server via a TPE, and those originating from a remote application

executing on the server. When the SSS Parent receives a request, it checks for the

requesting entity in the User and Remote Connection Databases, and if it does not find a

record of it in either database, it drops the connection.

When a remote connection makes an outgoing connection request, it is entered

into the Remote Connection Database on the server on which it executes; the remote

application may therefore make APS requests of the local server, and the SSS Parent can

verify that the requests originate from a valid remote application. However, if the remote

83

application attempts to make a connection with a remote MYSEA server, that server will

have no record of the connection request in its own Remote Connection Database, and

the SSS Parent will drop the request. It is therefore impossible in the current MYSEA

environment for a remote application to communicate with an APS on a remote MYSEA

server.

Visions for the future include a federated server environment, in which MYSEA

servers will share databases containing information about authenticated users and remote

connections. In this environment, connections registered in the Remote Connection

Database by one MYSEA server will be readable by remote MYSEA servers. This will

enable the SSS Parent process to validate requests originating from remote applications

executing not just on its own server, but on any federated MYSEA server.

2. Stress Testing
The very nature of remote application support creates the potential for a

performance bottleneck at the server hosting the remote applications. In the current

implementation of remote application support on the MYSEA server, several of the

databases shared between remote application support processes are locked by the process

accessing them, in order to prevent race conditions. This could exacerbate performance

bottleneck issues. Affected databases could include the RAMSKT Map, APSMSKT

Map, MSKT, Remote Connection, and Cleanup Databases. Stress testing should be

performed to check for performance degradation as the number of simultaneous users and

APS and RA requests increases.

3. Cleanup
When a user logs out or changes session level, the data structures and processes

that provided remote application support for the user’s previous session should be purged

from the server. This is necessary so that structures from the previous session are not re-

used after the user has requested a change in session level, and so that “zombie” data

structures and processes do not continue to utilize resources on the server after they have

84

out-lived their usefulness. Specifically, the following remote application support

structures and processes should be purged at the end of a user session:

1. RAMSKT Map Database entry5

2. APSMSKT Map Database entry

3. User Database entry

4. MSKT Databases5

5. SSS Child processes

6. APS processes

7. TRSS Parent5 and Child processes

8. RA processes

Furthermore, a TRSS Child process should not live longer than the remote

application that it was invoked to serve. The same is true of SSS Child processes, which

should not live longer than the APS processes that they were invoked to serve. This issue

was discussed in Section B of this chapter.

Cleanup mechanisms are currently in the design phase, and are a major area for

future work.

4. Unauthorized Channels
The RAMSKT Map and APSMSKT Map Databases are system-low databases,

accessible to remote applications and application protocol servers running at all security

levels. This is necessary because all RAs and APSs must be able to look up the handle of

the MSKT Database to be used for their socket communications. However, because

applications running at all security levels use the same database, there exists the

possibility of a covert channel. This issue was identified in [3] and remains unresolved.

5 The RAMSKT Map Database entry, MSKT Database used for RA communications, and TRSS
Parent process should only be purged at the end of the user session if the user has no other open sessions at
that session level.

85

5. Interactive Remote Application Support
The remote applications developed for this project were very simple programs

meant to demonstrate proof-of-concept functionality of the remote application support

mechanism. In a realistic environment, more sophisticated remote applications will be

desired. This may include interactive and even graphical remote applications, both of

which are unsupported by the current CGI remote application invocation mechanism. To

enable the execution of interactive text-based remote applications, a telnet-like APS

could take the place of the CGI web shell. Its role would be similar to that of the web

shell: to relay input received from the user to a remote application on the server, and

output from the remote application back to the user, but with the difference that its

connection would be persistent. Thus, unlike the CGI web shell, it could relay

communications back and forth between the application and user multiple times over the

same socket connection. A special-purpose application would need to be developed on

the MYSEA client side in addition to the server side in order to support this type of

communication.

To enable graphical remote application support, a network-based windowing

system such as X-Windows could be ported to the MYSEA environment. This is one of

the more exciting prospects for future remote application support.

D. CONCLUSION
The need for high-assurance architectures that implement multi-domain

information protection mechanisms is widespread and growing. However, such

architectures will not be adopted unless they provide users with currently required

functionality, the ability to easily incorporate new applications and software updates, and

a familiar interface. The implementation of remote application support on the MYSEA

server has contributed to the overall usability of the MYSEA architecture by allowing

users logged in from diskless clients to execute server-resident applications using only a

web browser. The use of remote applications increases the ease of application

configuration and maintenance, and relieves constraints caused by the potentially limited

amounts of RAM and lack of non-volatile storage available on the diskless clients. It is

hoped that the development of high-assurance, highly usable MLS architectures such as

86

MYSEA will encourage the adoption of MLS computing systems by government,

military, and business organizations that stand to benefit from their use of such systems.

87

APPENDIX A: SOURCE CODE LISTING

This appendix provides a listing of the internal MYSEA source code files that

were modified or created for this project. Of these, the files implementing the Trusted

Remote Session Server (TRSS), the swget client, and the CGI remote application

invocation mechanisms were created from scratch. The files implementing the TFTP

client were adapted from publicly available source code [14], but were new to the

MYSEA distribution; these files are indicated with an asterisk. Files implementing

various other MYSEA components, including the Trusted Path Server (TPS), Secure

Session Server (SSS), RAMSKT Map Database, Source Address Binding Database, and

Socket Handler Module, existed in previous MYSEA distributions but were modified

during this project; these files are indicated with a double asterisk. Remote application

support was integrated into the February 3, 2006 (1.1x) version of the MYSEA server

software.

• TRSS files:
/usr/local/mysea/trss/

/usr/local/mysea/trss/Makefile

/usr/local/mysea/trss/trss.c

/usr/local/mysea/trss/trss.h

• CGI files:
/usr/local/mysea/cgi-bin/

/usr/local/mysea/cgi-bin/ra_demo.cgi

/usr/local/mysea/cgi-bin/simple_cmd_win.cgi

/usr/local/mysea/cgi-bin/webshell.cgi

• swget files:
/usr/local/mysea/swget/

/usr/local/mysea/swget/Makefile

/usr/local/mysea/swget/swget.c

88

• TFTP client files:
/usr/local/mysea/tftp/*

/usr/local/mysea/tftp/aconfig.h*

/usr/local/mysea/tftp/config.h*

/usr/local/mysea/tftp/extern.h*

/usr/local/mysea/tftp/main.c*

/usr/local/mysea/tftp/Makefile*

/usr/local/mysea/tftp/tftp.c*

/usr/local/mysea/tftp/tftpsubs.c*

/usr/local/mysea/tftp/tftpsubs.h*

/usr/local/mysea/tftp/version.h*

• Other MYSEA files:
/usr/local/mysea/include/ramskt_map.h**

/usr/local/mysea/make_all.sh**

/usr/local/mysea/make_tar**

/usr/local/mysea/Makefile**
/usr/local/mysea/sss/sss.c**

/usr/local/mysea/test/test_socket_server.c**

/usr/local/mysea/tps/tps_util.c**

/usr/local/mysea/util/ramskt_map.c**

/usr/local/mysea/util/sa_bind.c**

/usr/local/mysea/util/skt_hndlr.c**

89

APPENDIX B: INSTALLATION PROCEDURES

The purpose of this appendix is to describe the installation procedures for the

remote application support components developed during this project. These include the

Trusted Remote Session Server (TRSS), the TFTP and swget clients, and the CGI remote

application invocation mechanisms.

The following instructions include references to the Secure Attention Key (SAK).

On the XTS-400 console, these are the “Alt” and “Print Screen” keys pressed

simultaneously. When instructed to set the security and integrity levels, the user should

issue a SAK followed by the sl command, then enter the desired security and integrity

levels at the prompts.

The user should be logged in to the MSYEA server as admin for all of the

following steps.

A. CONFIGURE MYSEA DAEMONS
For the purposes of remote application support, all active network interfaces must

be configured at the level of the MLS LAN and serviced by a single daemon. This will

affect the following steps within the NIC TCP/IP parameter configuration section of the

normal MYSEA installation procedures:

1. In the tcpip_edit step, only the tcpip_mls daemon must be created. When

asked whether to add another network interface entry for the daemon, type y

and supply the parameters for each active network interface. If the tcpip_mls

daemon has been previously configured to service only the MLS interface, it

should be re-configured as follows:

(Set security and integrity levels – min:max)

SAK

Enter command? tcpip_edit
 change

 tcpip_mls for Enter daemon name

 <CR> for Enter TCP/IP daemon description

90

 <CR> for Modify the TCP/IP parameters

 y for Modify network interface configuration
 add

 /dev/ether1 for Enter TCP/IP device name?

 192.168.10.1 for Enter interface address?

 0.0.0.0 for Enter destination address?

 192.168.10.255 for Enter broadcast address?

 255.255.255.0 for Enter network mask?

 exit to return to the previous menu

 <CR> for Modify the route configuration?

 <CR> for Modify the resolver configuration?

 exit – to leave tcpip_edit

(If configuring remote application support for a network architecture other

than the test architecture described in Chapter V, repeat this process for each

active network interface besides /dev/ether0 and /dev/ether1.)

2. In the daemon_edit step, only the tcpip_mls daemon must be created. If

daemons such as tcpip_nipr, tcpip_sipr, or tcpip_coin have been previously

configured to service single-level networks, they should be disabled as

follows:

(Set security and integrity levels – min:max)

SAK

Enter command? daemon_edit
 change

 <daemon_name> for Enter daemon name

<CR> for all prompts but the following:

 n for Start daemon at startup

 exit – to leave daemon_edit

91

Repeat for each single-level daemon. A list of configured daemons may be

retrieved by issuing the list command within daemon_edit. All but the

tcpip_mls, tps_udpd, and ssdd daemons should be disabled.

3. In the sda step, each interface should be configured at the level of the MLS

LAN (max:il3):

(Set security and integrity levels – max:max)

SAK

Enter command? sda

 Enter device? /dev/ether1

 Enter new device security level and categories? max

 Enter new device integrity level and categories? il3

 Modify discretionary access? n

 Is access correct? y

(If configuring remote application support for a network architecture other

than the test architecture described in Chapter V, repeat this process for each

active network interface besides /dev/ether0 and /dev/ether1.)

B. BUILD MYSEA BINARIES

The mysea.tar file contains already built object code and executables. Issuing the

make_all.sh command during the normal MYSEA installation process will remove

and regenerate all of the MYSEA executables, including the newly implemented remote

application support components. The following instructions describe how to remove and

regenerate these components individually.

(Set security and integrity levels – sl0:il3)
 run

92

To rebuild the Trusted Remote Session Server (TRSS) executable:

cd /usr/local/mysea/trss

make clean

make

To rebuild the TFTP client executable:

cd /usr/local/mysea/tftp

make clean

make

To rebuild the swget client executable:

cd /usr/local/mysea/swget

make clean

make

C. CONFIGURE TRSS AS A TRUSTED PROGRAM
The TRSS executable must be designated a trusted program and granted specific

privileges in order to function properly. This may be accomplished using the tp_edit

program provided by the STOP 6 operating system. The following steps are required:

(Set security and integrity levels – min:max)

SAK

Enter command? tp_edit
cd

cd

cd – make sure in /trusted directory
add

 trss for name

 /usr/local/mysea/bin/trss for path

 <CR> for max integrity

 <CR> for min integrity

 y for assign privileges

93

 <CR> for all privileges but the following:

 y for Set owner/group

 y for Simple security exempt

 y for Security star property exempt

 y for Simple integrity exempt

 y for Integrity star property exempt

 y for Discretionary access exempt

 y for Trusted parent exempt

exit – to leave tp_edit

Now use fsm to set the permissions on the trusted executable:

(Set security and integrity levels – min:max)

SAK

Enter command? fsm
cd

/trusted for path
change

 trss for name

 N for Modify access level

 <CR> for new owner & group

 y for discretionary access

 rwx for owner

 <CR> for username

 none for group

 <CR> for group name

 none for other

 N for display object

 Y for OK to change?

exit – to leave tp_edit

94

D. SET UP CGI SCRIPTS

The CGI remote application invocation scripts must be placed within the web

server’s cgi-bin directory. The following steps should be taken only after the /home/http

directory has been created and populated during the course of the normal MYSEA

installation:

(Set security and integrity levels – sl0:il3)

SAK

Enter command? run

cp /usr/local/mysea/cgi-bin/* /home/http/cgi-bin/

E. ENABLE DEBUGGING
Optionally, the TRSS Parent and Child processes may be configured to print

debug statements to a log file by uncommenting the “DEBUG_OSS = -DDEMO” line

within the TRSS Makefile:

(Set security and integrity levels – sl0:il3)

SAK

Enter command? run
 cd /usr/local/mysea/trss

 edit Makefile

 Uncomment the line “DEBUG_OSS = -DDEMO”

 The TRSS binary must now be re-compiled:

 make clean

 make

Additionally, the trusted TRSS binary must be replaced using tp_edit:

(Set security and integrity levels – min:max)

 SAK

95

Enter command? tp_edit
cd

cd

cd – make sure in /trusted directory
 change

 Enter program name trss

 Replace program file [N] y

 Enter pathname: /usr/local/mysea/bin/trss

 Enter maximum integrity: <CR>

 Enter program name <CR>

 Enter minimum integrity <CR>

 Change privileges [N] <CR>

exit – to leave tp_edit

Debugging logs will be created in the /tmp directory at the level of the TRSS

processes (max:il3). Logs created by the TRSS Parent will have names of the form

trsspar_X.tmp, where X is the process ID of the parent; logs created by the TRSS Child

will have names of the form trsschild_Y.tmp, where Y is the process ID of the child.

Debugging may be disabled by re-commenting the appropriate line in the

Makefile, re-compiling the TRSS executable, and re-running tp_edit to replace the trusted

TRSS binary.

96

THIS PAGE INTENTIONALLY LEFT BLANK

97

APPENDIX C: TEST PROCEDURES

The purpose of this appendix is to document the test procedures used in the Test

Plan presented in Chapter V. Steps should be taken to ensure that the following

preconditions are met before testing:

• The test network connecting the MYSEA server, MYSEA client, and external
single-level server is set up as illustrated in Chapter V, Figure 8 (“Test
Network Topology”).

• The mdemo1 account exists on the MYSEA server with default session level
sl1:il3, maximum session level at least sl3:il3, and home directory
/home/mdemo1/. (Following the standard MYSEA installation instructions
will ensure this.)

• /home/mdemo1/ exists as a deflection directory on the MYSEA server. To
create the directory, take the following steps:

(As admin, set the security level to min:max)

SAK
fsm

mkdir for Enter request

 /home/mdemo1 for Enter the directory to create

 y for Should this be a deflection directory

 rwx for Enter directory modes for owner

 <CR> for Enter user name for specific permission

 rx for Enter directory modes for group

 <CR> for Enter group name for specific permission

 rx for Enter directory modes for others

 deflect for Enter request

 y for Disable deflection

 change for Enter request

 /home/mdemo1 for Enter pathname

 n for Modify access level

 mdemo1 for Enter new owner name

 other for Enter new group name

 n for Modify discretionary access

98

 n for Display the object

 y for Okay to change

 exit – to leave fsm

• /home/mdemo1/ contains a text file entitled test.txt at security level sl1:il3.
The file is readable by user mdemo1, and contains the single line:
 Test file at sl1 il3 (SIM_UNCLASSIFIED).

Create this file as follows:

(As mdemo1, set security and integrity levels – sl1:il3)

SAK

Enter command? run

 edit /home/mdemo1/test.txt

 Add the line specified above.

• The Allowed TPE, Source Address Binding, and Peer Level Databases on the
MYSEA server are configured as described below. The user should edit the
specified configuration files as admin while running a session at level sl0:il3.

o The Allowed TPE Database configuration file
(/usr/local/mysea/tpe_list) contains the following single entry:

TCBE ID Comment
192.168.0.31 Java TPE

o The Source Address Binding Database configuration file
(/usr/local/mysea/sa_bind) contains the following entries and no
others:

DestinationIP SourceIP Netmask

192.168.0.0 192.168.0.38 255.255.255.0

192.168.10.0 192.168.10.1 255.255.255.0

o The Peer Level Database configuration file (/usr/local/mysea/peer_lvl)
contains the following entries and no others, unless indicated
otherwise by specific test procedures:

PeerIP MLS_flag PeerLevel

192.168.0.38 0

192.168.10.1 1 sl1 il3

192.168.10.2 1 sl1 il3

99

• The single-level server is running an externally accessible TFTP server, which
contains in its /tftpboot directory the file tftp_test.txt. This file is world-
readable and contains the following content:

Test file from 192.168.10.2.

o To set up the TFTP server on the Red Hat Linux system plutodemo,
take the following steps:

1. Open /etc/xinetd.d/tftp

2. Set “disable” to “no” (if it is not already)

3. Click the Red Hat menu icon

4. Select “System Settings”

5. Select “Server Settings”

6. Select “Services”

7. Check “xinetd”

8. Click “Start” (or “Restart” if the process is already running)

9. Create tftp_test.txt in /tftpboot (if it does not exist already)

• The single-level server is running an externally accessible web server, which
contains in its /var/www/cgi-bin directory a world-readable and world-
executable CGI script named ra_demo.cgi. This script may be found in the
cgi-bin directory contained within mysea.tar if it is not already installed on the
single-level server. The server’s /var/www/html directory should not contain
a file called nosuchfile.html.

o To set up the web server on the Red Hat Linux system plutodemo, take
the following steps:

1. Click the Red Hat menu icon.

2. Select “System Settings”

3. Select “Server Settings”

4. Select “Services”

5. Check “httpd”

6. Click “Start” (if the process is not already running)

7. Place ra_demo.cgi in /var/www/cgi-bin (if it is not there already)

8. Ensure that the /var/www/html directory does not contain a file
called nosuchfile.html

Once these preconditions are met, testing may begin. The following test suites

may be performed individually or in sequence. Unless otherwise indicated, the MYSEA

100

daemons should be running on the server prior to the start of each test. To start the

daemons on the server:

1. As admin, set the security level to max:max.

2. SAK

3. Start the daemons:
 startup

The operating system should report that the tcipip_mls, tps_udpd, and ssdd

daemons were started successfully.

For each of the following tests, unless otherwise indicated, the user should be

logged in as mdemo1 via the Java TPE on the MYSEA client and have an active session

running. The session level should remain at the default (SIM_UNCLASSIFIED, i.e.,

sl1:il3) unless a specific test step describes otherwise. To run a session from the client:

1. Launch the Java TPE application by double-clicking the “tcbe” icon on the

desktop.

2. Set the remote IP address to that of the MYSEA server (192.168.0.38) and

press Enter.

3. Click the “SAR” button.

4. At the login prompt, type “mdemo1” and press Enter.

5. At the password prompt, type the password for mdemo1 and press Enter.

6. Click the “SAR” button.

7. Type “run” and press Enter.

8. To access the web interfaces specified in the following test suites, launch the

web browser on the client by double-clicking the “Netscape” icon on the

desktop.

101

A. TRSS TESTING
Compile the test client and server on the MYSEA server, if necessary:

1. As admin, set the security level to sl0:il3 and issue the run command.

2. Navigate to the test directory:
cd /usr/local/mysea/test

3. Compile the test client:
make test_socket_client

4. Compile the test server:
make test_socket_ra

Initialize the connection between the test client and server:

From the MYSEA client:

5. Navigate to the MYSEA server web shell by entering

http://192.168.0.38/cgi-bin/webshell.cgi in the “Address”

field of the web browser.

6. Invoke the test server as a remote application by entering

/usr/local/mysea/test/test_socket_ra in the “Command” field

of the web page and clicking the “Enter” button.

The web page should become blank while waiting for output from the

remote application.

From the MYSEA server:

7. As admin, set the security level to max:il3 and issue the run command.

8. Issue the startx command. (This will ensure that results printed to the

screen by the client are readable in full.)

9. Invoke the test client:
/usr/local/mysea/test/test_socket_client

A menu of commands should be displayed.

10. Select option Z and set both default IP addresses to 192.168.0.38.

102

11. Select option 1 to connect to the test server. Accept the default IP address

to connect to (192.168.0.38). The client should report that a connection

was established.

12. To perform test steps a1-a13, select the menu option corresponding to the

type of testing specified for each step in the table below. Whenever

prompted for an IP address, accept the default (192.168.0.38). Whenever

prompted for a number of bytes, enter 32. When prompted for a port

number, start with 2000 and increment by one for each port request.

The results for each test step should include the output provided in the “Expected

Results Summary” column of the table below. For a complete record of the observed

results for this test suite, see Appendix D.

Test
ID

Menu selection Port Expected Results Summary

a1 2 - Do read testing N/A error 0

a2 3 - Do write testing N/A error 0

a3 4 - Do select testing
- NON_BLOCKING

N/A error 0

a4 5 - Do listen testing 2000 error 0

a5 6 - Do accept
testing

2001 error 0

a6 7 - Do shutdown
testing

2002 error 0

a7 8 - Do send testing N/A error 0

a8 9 - Do sendto
testing

2003 error 0

a9 A - Do recv testing N/A error 0

a10 B - Do recvfrom
testing

2004 error 0

a11 C - Do fork testing N/A err 0

103

Test
ID

Menu selection Port Expected Results Summary

a12 D - Do Blocked I/O
testing

2005 error 0

a13 E - Do Misc testing 2006
---fcntl(F_GETFD) - 0---
error 0
---fcntl(F_GETFL) - 2---
error 0
---fcntl(F_SETFD) - 0---
error 0
---fcntl(F_SETFL) - 0---
error 0
---getpeername - 192.168.0.38---
error 0
---getsockname - 192.168.0.38---
error 0
---getsockopt(KEEPALIVE) - 0---
error 0
---setsockopt(KEEPALIVE) - 1---
error 0
---ioctl – FIONREAD - 0---
error 0

From the MYSEA client:

13. After the tests have been completed, verify that the web page is still blank,

indicating that the remote application server is still running. Had the

TRSS Child been unable to handle any of the server’s MSKT socket calls,

both processes would have terminated and a new web shell would have

been displayed.

From the MYSEA server:

14. Select menu option 0 to exit. The client should report, “Test is complete.”

From the MYSEA client:

15. Verify that the browser window once again displays the web shell,

indicating that the remote application server has terminated.

104

B. WEB SHELL FUNCTIONAL TESTING
From the client TPE, verify that the current session level is

“SIM_UNCLASSIFIED” by pressing the “SAR” button and issuing the “session”

command.

Navigate to http://192.168.0.38/cgi-bin/webshell.cgi. Enter each of the following

commands in the “Command” field, clicking “Enter” after each one. The expected

results listed in the table below will appear embedded within an emulated terminal

window.

Test
ID

Command Expected Result

b1 ls test.txt

cd /var (New command prompt:

[mdemo1 /var]#)

b2

ls cache
lib
log
run
spool
tmp

b3 whoami mdemo1

b4 /usr/local/mysea/tools/mysea_level SIM_UNCLASSIFIED

Close the browser window before proceeding to the next test suite.

C. WEB SHELL EXCEPTION TESTING
Open a new browser window and navigate to http://192.168.0.38/cgi-

bin/webshell.cgi. Issue the following commands, clicking the “Enter” button after each

one.

105

Test
ID

Command Expected Result

fakecmd No such file or directory c1

ls test.txt

(None – click “Enter”) (New shell; no new output) c2

ls test.txt

(Follow instructions below.) (New shell; no new output) c3

ls test.txt

For test c3, part 1:

1. Save the web shell as an .html file. Open the file in a text editor and make

the following changes:

a. Within the <form> element, add:
action=http://192.168.0.38/cgi-bin/webshell.cgi

b. Within the <input> element, change cmd to fakeinputname.

2. Open the modified file in the web browser.

3. Type ls in the “Command” field, and click “Enter”.

D. COMMAND MENU FUNCTIONAL TESTING
Navigate to http://192.168.0.38/cgi-bin/simple_cmd_win.cgi. Select each of the

following menu options, clicking the “Execute” button after each one. An empty “Arg”

entry in the table below indicates that the default input value should be deleted from the

text field and left empty. Otherwise, the default value should be replaced with the value

indicated in the table. A grayed-out “Arg” entry signifies that the command menu does

not have a corresponding text field.

The expected results listed below will be displayed below the “Current directory”

indicator, except in the case of the web page request in test d6. In this case, the web page

106

will replace to command menu. To return to the command menu for the test d7, click the

web browser’s “Back” button.

Test
ID

Menu selection Arg 1 Arg 2 Arg 3 Expected Result

d1 "List contents
of directory"

 Contents of directory:
test.txt

d2 "Display
contents of file"

test.txt Contents of file test.txt:

Test file at sl1 il3
(SIM_UNCLASSIFIED).

"Change to
directory"

/var (“Current directory”
indicator lists “/var” as
the current directory.)

d3

"List contents
of directory"

 Contents of directory:
cache
lib
log
run
spool
tmp

"Change to
directory"

 (“Current directory”
indicator lists
“/home/mdemo1” as the
current directory.)

"Move file
from"

test.txt test1.txt Moving file from test.txt
to test1.txt

d4

"List contents
of directory"

 Contents of directory:
test1.txt

"Copy file
from"

test1.txt test.txt Copying file from
test1.txt to test.txt

d5

"List contents
of directory"

 Contents of directory:
test.txt
test1.txt

d6 "Retrieve web
page from"

http://192.168.10.2/
cgi-bin/ra_demo.cgi

 (See below.)

107

Test
ID

Menu selection Arg 1 Arg 2 Arg 3 Expected Result

"TFTP GET" tftp_test.
txt

192.168.
10.2

/tmp/test
_d7.txt

tftp> Received 30 bytes
in 0.1 seconds [1665
bit/s]

(bit rate may differ)

d7

"Display
contents of file"

/tmp/test
_d7.txt

 Contents of file
/tmp/test_d7.txt:

Test file from
192.168.10.2.

The output from test d6 should be a web page containing the following text. (The

“Current time” value will differ.)

Demonstration of MYSEA Remote Application Support

This is a sample web page.

Web page request received from 192.168.10.1.

Web page served by 192.168.10.2.

Current time is Tue Mar 7 09:44:01 PST 2006.

After completing this test suite, delete the file test1.txt from /home/mdemo1,

either via the web shell or directly on the MYSEA server.

E. COMMAND MENU EXCEPTION TESTING
Navigate to http://192.168.0.38/cgi-bin/simple_cmd_win.cgi. Select the menu

option listed for each test in the table below, clicking the “Execute” button after each one.

For an entry of “(None)”, click the “Execute” button without selecting any radio button.

108

Test
ID

Menu Selection Arg 1 Arg 2 Arg 3 Expected Result

(Follow
instructions
below.)

 Illegal input:
fakecmd

e1

"List contents
of directory"

 Contents of
directory:
test.txt

(None) (New command
menu.)

e2

"List contents
of directory"

 Contents of
directory:
test.txt

(Follow
instructions
below.)

 (New command
menu.)

e3

"List contents
of directory"

 Contents of
directory:
test.txt

"List contents
of directory"

a;b Illegal input: ls a;b e4

"List contents
of directory"

 Contents of
directory:
test.txt

"Move file
from"

 Moving file from to

mv: missing file
argument

Try `mv --help' for
more information.

e5

"List contents
of directory"

 Contents of
directory:
test.txt

For test e1, part 1:

1. Save the command menu as an .html file. Open the file in a text editor and

make the following changes:

109

a. Within the <form> element, add:
action=http://192.168.0.38/cgi-

bin/simple_cmd_win.cgi

b. Within the <input type=radio name=cmd value='ls' …>

element, change ls to fakecmd.

2. Open the modified file in the web browser.

3. Select the "List contents of directory" option with no argument, and click

“Execute.”

For test e3, part 1:

1. Save the command menu as an .html file. Open the file in a text editor and

make the following changes:

a. Within the <form> element, add:
action=http://192.168.0.38/cgi-

bin/simple_cmd_win.cgi

b. Within the <input type=radio name=cmd value='ls' …>

element, change cmd to fakeinputname.

2. Open the modified file in the web browser.

3. Select the "List contents of directory" option with no argument, and click

“Execute.”

F. TFTP CLIENT FUNCTIONAL TESTING
Navigate to http://192.168.0.38/cgi-bin/webshell.cgi. Issue the following

commands, clicking the “Enter” button after each one.

110

Test
ID

Command Expected Result

echo getq tftp_test.txt
/tmp/test_f1.txt |
/usr/local/mysea/tftp/tftp
192.168.10.2

tftp> Received 30 bytes in 0.0
seconds [5336 bit/s]

(bit rate may differ)

f1

cat /tmp/test_f1.txt Test file from 192.168.10.2.

G. WEB CLIENT FUNCTIONAL TESTING
Navigate to http://192.168.0.38/cgi-bin/webshell.cgi. Issue the following

commands, clicking the “Enter” button after each one.

Test
ID

Command Expected Result

g1 /usr/local/mysea/swget/swget
http://192.168.10.2/cgi-
bin/ra_demo.cgi

(See below.)

g2 /usr/local/mysea/swget/swget
192.168.10.2/cgi-bin/ra_demo.cgi

(See below.)

For each of these tests, the following HTML markup should be displayed. (The

“Current time” value will differ.)

<html>
<head><title>Remote Application Support Demo</title></head>
<body>
<table border=0 cellpadding=2 cellspacing=0 width=800>
<tr><td><table border=1 cellpadding=4 cellspacing=0 width=100%>
<tr><td>
<table border=0 cellpadding=2 cellspacing=0 width=100%>
<tr bgcolor=#88bbee align=center>
<td>
Demonstration of MYSEA Remote Application Support
</td></tr></table>
</td></tr></table>

111

</td></tr>
<tr><td> <td><tr>
<tr align=center><td>
This is a sample web page.
</td></tr>
<tr><td> <td><tr>
<tr align=center><td>
Web page request received from 192.168.10.1.
</td></tr>
<tr align=center><td>
Web page served by 192.168.10.2.
</td></tr><tr align=center><td>
Current time is Tue Mar 7 10:20:21 PST 2006
.
</td></tr></table>
</body>
</html>

H. WEB CLIENT EXCEPTION TESTING
Navigate to http://192.168.0.38/cgi-bin/webshell.cgi. Issue the following

commands, clicking the “Enter” button after each one.

Test
ID

Command Expected Result

h1 /usr/local/mysea/swget/swget Usage: swget [URL]

h2 /usr/local/mysea/swget/swget arg1 arg2 Usage: swget [URL]

h3

/usr/local/mysea/swget/swget 1.1.1.1 Could not connect.

swget: connect:
Permission denied

h4 /usr/local/mysea/swget/swget
http://192.168.10.2/nosuchfile.html

(See below.)

112

For test h4, the following HTML markup should be displayed:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>404 Not Found</title>
</head><body>
<h1>Not Found</h1>
<p>The requested URL /nosuchfile.html was not found on this server.</p>
<hr />
<address>Apache/2.0.40 Server at 192.168.10.2 Port 80</address>
</body></html>

I. ACCEPTANCE TEST CASE 1 FUNCTIONAL TESTING
Navigate to http://192.168.0.38/cgi-bin/simple_cmd_win.cgi. Execute the

following commands, clicking the “Execute” button after each one.

Test
ID

Menu selection Arg 1 Arg 2 Arg 3 Expected Result

"TFTP GET" tftp_test.
txt

192.168.
10.2

/tmp/test
_i1.txt

tftp> Received 30
bytes in 0.0 seconds
[8677 bit/s]

(bit rate may differ)

i1

"Display
contents of file"

/tmp/test
_i1.txt

 Contents of file
/tmp/test_i1.txt:

Test file from
192.168.10.2.

J. ACCEPTANCE TEST CASE 1 EXCEPTION TESTING
The following tests involve the re-configuration of the Peer Level Database on the

MYSEA server. For each test, take the following steps:

Close all open browser windows on the MYSEA client.

On the MYSEA server:

(As admin, set security and integrity levels – sl0:il3)

SAK

113

Enter command? run

edit /usr/local/mysea/peer_lvl

Configure the peer level of the host 192.168.10.2 to the value specified in

the “Peer Level” table below. If the value is “Undefined,” comment the

entry out of the database file by adding a # to the beginning of the line.

(Set security and integrity levels – max:max)

SAK
stop_daemon

ssdd for Enter daemon name

tps_udpd for Enter daemon name

<CR> – to leave stop_daemon

SAK
start_daemon

tps_udpd for Enter daemon name

ssdd for Enter daemon name

<CR> – to leave start_daemon

Now log in as mdemo1 from the MYSEA client, run a session at the default

session level (sl1:il3), open a browser window, and navigate to http://192.168.0.38/cgi-

bin/simple_cmd_win.cgi. Make the menu selection indicated in the table and click the

“Execute” button.

Test
ID

Peer Level Menu
selection

Arg 1 Arg 2 Arg 3 Expected Result

"TFTP
GET"

tftp_test.
txt

192.168.
10.2

/tmp/test
_j1.txt

tftp: sendto:
Permission denied

tftp>

j1 sl2:il3

"Display
contents
of file"

/tmp/test
_j1.txt

 Contents of file
/tmp/test_j1.txt:

114

Test
ID

Peer Level Menu
selection

Arg 1 Arg 2 Arg 3 Expected Result

"TFTP
GET"

tftp_test.
txt

192.168.
10.2

/tmp/test
_j2.txt

tftp: sendto:
Permission denied

tftp>

j2 sl0:il3

"Display
contents
of file"

/tmp/test
_j2.txt

 Contents of file
/tmp/test_j2.txt:

"TFTP
GET"

tftp_test.
txt

192.168.
10.2

/tmp/test
_j3.txt

tftp: sendto:
Permission denied

tftp>

j3 Undefined

"Display
contents
of file"

/tmp/test
_j3.txt

 Contents of file
/tmp/test_j3.txt:

Close all browser windows, set the peer level for 192.168.10.2 back to sl1:il3 in

the Peer Level Database, and restart the MYSEA daemons before proceeding to the next

test suite.

K. ACCEPTANCE TEST CASE 2 FUNCTIONAL TESTING
For test k1, log in from the TPE as mdemo1 and run a session at the default

session level (sl1:il3). Then, navigate to http://192.168.0.38/cgi-

bin/simple_cmd_win.cgi, make the menu selection indicated in the table entry below, and

click “Execute.”

To avoid cleanup issues, reboot the MYSEA server and restart the daemons

between tests k1 and k2.

For test k2, log in from the TPE as mdemo1, then click the “SAR” button and

issue the “sl” command to change the session level to SIM_CONFIDENTIAL. Run a

session, then open a new browser window and navigate to http://192.168.0.38/cgi-

bin/simple_cmd_win.cgi. Make the menu selection indicated in the table entry below and

click “Execute.”

115

Test
ID

Session Level Menu selection Arg 1 Arg 2 Arg 3 Expected
Result

k1 sl1:il3 "Retrieve web
page from"

http://192.168.0.38/
cgi-bin/ra_demo.cgi

 (See below.)

k2 sl3:il3 "Retrieve web
page from"

http://192.168.0.38/
cgi-bin/ra_demo.cgi

 (See below.)

The output from test k1 should be a web page containing the following text. (The

“Current time” value will differ.)

Demonstration of MYSEA Remote Application Support

This is a sample web page.

Web page request received from 192.168.0.38.

Web page served by 192.168.0.38.

Current time is Tue Mar 7 07:35:36 PST 2006.

Process user name is mdemo1.

Process session level is sl1 il3 (SIM_UNCLASSIFIED).

The output from test k2 should be a web page containing the following text. (The

“Current time” value will differ.)

116

Demonstration of MYSEA Remote Application Support

This is a sample web page.

Web page request received from 192.168.0.38.

Web page served by 192.168.0.38.

Current time is Tue Mar 7 07:41:36 PST 2006.

Process user name is mdemo1.

Process session level is sl3 il3 (SIM_CONFIDENTIAL).

L. ACCEPTANCE TEST CASE 2 EXCEPTION TESTING
This test involves the re-configuration of the Peer Level Database. Perform the

steps listed in test j to undefine the peer level of host 192.168.0.38 in the Peer Level

Database and restart the MYSEA daemons.

Log in as mdemo1 via the TPE and run a session at the default session level.

Navigate to http://192.168.0.38/cgi-bin/simple_cmd_win.cgi. Select the menu item

indicated in the table entry below and click the “Execute” button.

Test
ID

Session
Level

Menu selection Arg 1 Arg 2 Arg 3 Expected
Result

l1 Undefined "Retrieve web
page from"

http://192.168.0.38/
cgi-bin/ra_demo.cgi

 Could not
connect.
swget:
connect:
Permission
denied

For future remote application support, restore the Peer Level Database to its

original configuration after the completion of this test.

117

APPENDIX D: TRSS DEVELOPMENTAL TESTING RESULTS

A complete record of the observed TRSS developmental testing results is

provided in the table below. Observed results for all other test suites were identical to the

expected results listed within the testing procedures of Appendix C.

Test results may differ slightly from the observed results listed below due to

random process ID assignment and timing issues, but in each case the client should report

that the test was completed without errors (i.e., with the reported error equal to 0).

Test
ID

Menu selection Port Observed Result

a1 2 - Do read testing N/A
READ, error 0, buffer length 13

---read 32 bytes---

a2 3 - Do write testing N/A
read 32 bytes
ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEF
WRITE, error 0, buffer length 14

---write 32 bytes---

a3 4 - Do select testing
- NON_BLOCKING

N/A
SELECT NB, error 0, buffer length 13

---read 30 bytes---

a4 5 - Do listen testing 2000
IP address is 192.168.0.38
sin.addr is 0x2600a8c0
Connected to 192.168.0.38, port 2000
Selecting - 3, 4- select() returns
1- result is 4
LISTEN, error 0, buffer length 28

---Connection from 192.168.0.38---

a5 6 - Do accept
testing

2001
IP address is 192.168.0.38
sin.addr is 0x2600a8c0
Waiting for a connection
Selecting - 3, 4- select() returns
1- result is 4
Connection from 192.168.0.38
ACCEPT, error 0, buffer length 36
---Connected to 192.168.0.38, port
2001---

a6 7 - Do shutdown
testing

2002
IP address is 192.168.0.38
sin.addr is 0x2600a8c0
Connected to 192.168.0.38, port 2002
Selecting - 3, 4- select() returns
1- result is 4
SHUTDOWN, error 0, buffer length 41

---Shutdown(RD) connection from
192.168.0.38---

118

Test
ID

Menu selection Port Observed Result

a7 8 - Do send testing N/A
read 32 bytes
ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEF
SEND, error 0, buffer length 14
---write 32 bytes---

a8 9 - Do sendto
testing

2003
IP address is 192.168.0.38
sin.addr is 0x2600a8c0
calling recvfrom
Selecting - 3, 4- select() returns
1- result is 4
recvfrom 32 bytes
Connection from 192.168.0.38
ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEF
SENDTO, error 0, buffer length 15
---sendto 32 bytes---

a9 A - Do recv testing N/A
RECV, error 0, buffer length 13

---read 32 bytes---

a10 B - Do recvfrom
testing

2004
IP address is 192.168.0.38
sin.addr is 0x2600a8c0
calling sendto
sendto 32 bytes
RECVFROM, error 0, buffer length 36

---recvfrom 32 bytes, from
192.168.0.38---

a11 C - Do fork testing N/A
do_fork - read 41 bytes
--in PARENT - PID 27421, child PID
is 1911
--
do_fork - read 127 bytes
--
 --
get_result - read() only got 141 of
268
cmd 0, err 0, buffer EMPTY

119

Test
ID

Menu selection Port Observed Result

a12 D - Do Blocked I/O
testing

2005
IP address is 192.168.0.38
sin.addr is 0x2600a8c0
Connected to 192.168.0.38, port 2005
Blocked I/O, error 0, buffer length
17
---fcntl() succeeded---
Blocked I/O, error 0, buffer length
15
---read() 30 bytes---
Selecting - 3, 4- select() returns
1- result is 4
do_blockedio - read 1024 so far
Selecting - 3, 4- select() returns
1- result is 4
do_blockedio - read 2048 so far
Selecting - 3, 4- select() returns
1- result is 4
do_blockedio - read 3072 so far
Selecting - 3, 4- select() returns
1- result is 4
do_blockedio - read 4096 so far
Selecting - 3, 4- select() returns
1- result is 4
do_blockedio - read 5120 so far
Selecting - 3, 4- select() returns
1- result is 4
do_blockedio - read 6144 so far
Selecting - 3, 4- select() returns
1- result is 4
do_blockedio - read() only got 0 of
1024
do_blockedio - total read 6144
Blocked I/O, error 0, buffer length
18

---write() 6144 bytes---

120

Test
ID

Menu selection Port Observed Result

a13 E - Do Misc testing 2006
IP address is 192.168.0.38
sin.addr is 0x2600a8c0
Connected to 192.168.0.38, port 2006
Selecting - 3, 4- select() returns
1- result is 3
Miscellaneous, error 0, buffer
length 18
---fcntl(F_GETFD) - 0---
Selecting - 3, 4- select() returns
1- result is 3
Miscellaneous, error 0, buffer
length 18
---fcntl(F_GETFL) - 2---
Selecting - 3, 4- select() returns
1- result is 3
Miscellaneous, error 0, buffer
length 18
---fcntl(F_SETFD) - 0---
Selecting - 3, 4- select() returns
1- result is 3
Miscellaneous, error 0, buffer
length 18
---fcntl(F_SETFL) - 0---
Selecting - 3, 4- select() returns
1- result is 3
Miscellaneous, error 0, buffer
length 26
---getpeername - 192.168.0.38---
Selecting - 3, 4- select() returns
1- result is 3
Miscellaneous, error 0, buffer
length 26
---getsockname - 192.168.0.38---
Selecting - 3, 4- select() returns
1- result is 3
Miscellaneous, error 0, buffer
length 25
---getsockopt(KEEPALIVE) - 0---
Selecting - 3, 4- select() returns
1- result is 3
Miscellaneous, error 0, buffer
length 25
---setsockopt(KEEPALIVE) - 1---
Selecting - 3, 4- select() returns
1- result is 3
Miscellaneous, error 0, buffer
length 17
---ioctl – FIONREAD - 0---
Selecting - 3, 4- select() returns
1- result is 3
Current test all done, error 0,
buffer EMPTY

121

It should be noted that the output of the test client was inconsistent for test a13

(“Miscellaneous Testing”). Specifically, the client would sometimes only print a partial

result summary before concluding the test and printing a new command menu. It is

believed that this behavior was the result of the mskt_ioctl call added for the purpose of

TRSS testing. Because the test client was not adapted to take into account the

consequences of this call (merely to check that it returned a result of 0), the addition of

the call interfered with the normal operation of the client. It was determined through the

examination of TRSS log files that the TRSS Child process was handling the mskt_ioctl

call correctly; the abnormal behavior was on the part of the test client. Furthermore,

whenever the client reported results at least through the “---ioctl – FIONREAD” line,

the results reported for the mskt_ioctl call and all previous calls indicated a return value

of 0, constituting a successful result for the purposes of TRSS testing.

122

THIS PAGE INTENTIONALLY LEFT BLANK

123

LIST OF REFERENCES

1. National Security Agency. “The GIG Vision Enabled by Information Assurance.”
Available: http://www.nsa.gov/ia/industry/gig.cfm?MenuID=10.3.2.2. Accessed:
3/19/2006.

2. Irvine, C., Levin, T., Nguyen, T., Shifflett, D., Khosalim, J., Clark, P., Wong, A.,

Afinidad, F., Bibighaus, D., and Sears, J. Overview of a High Assurance
Architecture for Distributed Multilevel Security, Proceedings 5th IEEE Systems,
Man and Cybernetics Information Assurance Workshop, United States Military
Academy, West Point, NY, 10-11 June 2004, pgs. 38-45.

3. Cooper, R. Remote Application Support in a Multilevel Environment, Naval

Postgraduate School, Master's Thesis, March 2005.

4. Bell, D. E. and La Padula, L. J. Secure Computer System: Unified Exposition and

Multics Interpretation, ESD-TR-75-306, MITRE Corporation, Bedford, MA,
1976.

5. Biba, K .J. Integrity Considerations for Secure Computer Systems, ESD-TR-76-

372, MITRE Corporation, Bedford, MA, 1977.

6. DigitalNet. XTS-400 Trusted Computer System Technical Overview, Herndon,

VA, 2002-2003. Available:
http://www.digitalnet.com/solutions/information_assurance/pdf/XTS400%20Tech
nical%20Description%206-8-04.PDF. Accessed: 11/27/2005.

7. Common Criteria Portal. Common Criteria for Information Technology Security

Evaluation, Part 1: Introduction and General Model, Version 2.2, Revision 256 –
CCIMB2004-01-001, January 2004. Available:
http://www.commoncriteriaportal.org/public/files/ccpart1v2.2.pdf. Accessed:
11/27/2005.

8. National Information Assurance Partnership (NIAP). “XTS-400™ / STOP™

6.1.E,” March 2005. Available: http://niap.nist.gov/cc-
scheme/st/ST_VID3012a.html. Accessed: 1/22/2006.

9. Eads, B. Developing a High Assurance Multilevel Mail Server, Naval

Postgraduate School, Master's Thesis, March 1999.

10. Everette, T. Examination of the Internet Message Protocol (IMAP) to Facilitate

User-Friendly Multilevel Email Management, Naval Postgraduate School,
Master's Thesis, September 2000.

124

11. Brown, E. Facilitating Secure Mail in a High Assurance LAN, Naval
Postgraduate School, Master's Thesis, September 2000.

12. Bersack, E. L. Implementation of a Hypertext Transfer Protocol Server on a High

Assurance Multilevel Secure Platform, Naval Postgraduate School, Master's
Thesis, December 2000.

13. Clark, P. Policy-Enhanced Linux, Proceedings 23rd National Information

Systems Security Conference, Volume I, pp. 418-432, Baltimore, MD, October
2000. Available: http://cisr.nps.navy.mil/downloads/00paper_linux.pdf.
Accessed: 12/06/2005.

14. Softpedia. “tftp-hpa 0.41.” Available:

http://linux.softpedia.com/progDownload/tftp-hpa-Download-5440.html.
Accessed: 1/1/2006.

15. BryerJoyner, S. and Heller, D. Secure Local Area Network Services for a High

Assurance Multilevel Network, Naval Postgraduate School, Master's Thesis,
March 1999.

16. Gamma Group. “Gamma Web Shell.” Available:

http://legacy.gammacenter.com/gamma.py/products/WebShell. Accessed:
2/21/2006.

17. Center for Information Systems Security Studies and Research, Naval

Postgraduate School. “Module Test Plan for MYSEA Version 2.0 (DRAFT),”
March 2006.

125

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library

Naval Postgraduate School
Monterey, CA

3. Hugo A. Badillo

NSA
Fort Meade, MD

4. George Bieber

OSD
Washington, DC

5. RADM Joseph Burns

Fort George Meade, MD

6. John Campbell

National Security Agency
Fort Meade, MD

7. Deborah Cooper

DC Associates, LLC
Roslyn, VA

8. CDR Daniel L. Currie

PMW 161
San Diego, CA

9. Louise Davidson
National Geospatial Agency
Bethesda, MD

10. Steve Davis

NRO
Chantilly, VA

11. Vincent J. DiMaria

National Security Agency
Fort Meade, MD

126

12. CDR James Downey
NAVSEA
Washington, DC

13. Dr. Diana Gant

National Science Foundation

14. Jennifer Guild

SPAWAR
Charleston, SC

15. Richard Hale

DISA
Falls Church, VA

16. CDR Scott D. Heller

SPAWAR
San Diego, CA

17. Wiley Jones

OSD
Washington, DC

18. Russell Jones

N641
Arlington, VA

19. David Ladd

Microsoft Corporation
Redmond, WA

20. Dr. Carl Landwehr

DTO
Fort George T. Meade, MD

21. Steve LaFountain

NSA
Fort Meade, MD

22. Dr. Greg Larson

IDA
Alexandria, VA

23. CAPT Deborah McGhee

Headquarters U.S. Navy
Arlington, VA

127

24. Dr. Vic Maconachy
NSA
Fort Meade, MD

25. Doug Maughan

Department of Homeland Security
Washington, DC

26. Dr. John Monastra
Aerospace Corporation
Chantilly, VA

27. John Mildner

SPAWAR
Charleston, SC

28. Mark T. Powell

Federal Aviation Administration
Washington, DC

29. Jim Roberts

Central Intelligence Agency
Reston, VA

30. Keith Schwalm

Good Harbor Consulting, LLC
Washington, DC

31. Charles Sherupski
Sherassoc
Round Hill, VA

32. Dr. Ralph Wachter

ONR
Arlington, VA

33. David Wirth

N641
Arlington, VA

34. CAPT Robert Zellmann

CNO Staff N614
Arlington, VA

128

35. CDR Wayne Slocum
SPAWAR
San Diego, CA

36. Dr. Cynthia E. Irvine
Naval Postgraduate School
Monterey, CA

37. Thuy D. Nguyen
Naval Postgraduate School
Monterey, CA

38. Melissa K. Egan
Civilian, Naval Postgraduate School
Monterey, CA

