

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

ISOLATED WORD RECOGNITION FROM IN-EAR
MICROPHONE DATA USING HIDDEN MARKOV

MODELS (HMM)

by

Remzi Serdar Kurcan

March 2006

 Thesis Advisor: Monique P. Fargues
 Co-Advisor: David Jenn
 Second Reader: Ravi Vaidyanathan

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Isolated Word Recognition From In-Ear Microphone
Data Using Hidden Markov Models (HMM)
6. AUTHOR(S) Remzi Serdar Kurcan

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This thesis is part of an ongoing larger scale research study started in 2004 at the Naval Postgraduate School (NPS)
which aims to develop a speech-driven human-machine interface for the operation of semi-autonomous military robots in noisy
operational environments. Earlier work included collecting a small database of isolated word utterances of seven words from
20 adult subjects using an in-ear microphone. The research conducted here develops a speaker-independent isolated word
recognizer from these acoustic signals based on a discrete-observation Hidden Markov Model (HMM).

The study implements the HMM-based isolated word recognizer in three steps. The first step performs the endpoint
detection and speech segmentation by using short-term temporal analysis. The second step includes speech feature extraction
using static and dynamic MFCC parameters and vector quantization of continuous-valued speech features. Finally, the last step
involves the discrete-observation HMM-based classifier for isolated word recognition. Experimental results show the average
classification performance around 92.77%. The most significant result of this study is that the acoustic signals originating from
speech organs and collected within the external ear canal via the in-ear microphone can be used for isolated word recognition.

The second dataset collected under low signal-to-noise ratio conditions with additive noise results in 79% recognition
accuracy in the HMM-based classifier. We also compared the classification results of the data collected within the ear canal
and outside the mouth via the same microphone. The second dataset collected under low signal-to-noise ratio conditions with
additive noise results in 79% recognition accuracy in the HMM-based classifier. We also compared the classification results of
the data collected within the ear canal and outside the mouth via the same microphone. Average classification rates obtained for
the data collected outside the mouth shows significant performance degradation (down to 63%), over that observed with the
data collected from within the ear canal (down to 86%). The ear canal dampens high frequencies. As a result, the HMM model
derived for the data with dampened higher frequencies does not accurately fit the data collected outside the mouth, resulting in
degraded recognition performances.

15. NUMBER OF
PAGES

178

14. SUBJECT TERMS In-Ear Microphone, Isolated Word Recognition (IWR), Short-Term Energy
(STE), Zero-Crossing Rate (ZCR), Mel-Frequency Cepstral Coefficients (MFCC), LPC-derived
Cepstral Coefficients (LPC-CC), Vector Quantization (VQ), K-Means Clustering Algorithm, Hidden
Markov Models (HMM), Forward-Backward Algorithm (Baum-Welch Re-estimation Algorithm),
Viterbi Algorithm

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

ISOLATED WORD RECOGNITION FROM IN-EAR MICROPHONE DATA
USING HIDDEN MARKOV MODELS (HMM)

Remzi Serdar Kurcan

Lieutenant Junior Grade, Turkish Navy
B.S., Turkish Naval Academy, 1999

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

and

MASTER OF SCIENCE IN SYSTEMS ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 2006

Author: Remzi Serdar Kurcan

Approved by: Monique P. Fargues

Thesis Advisor

David Jenn
Co-Advisor

 Ravi Vaidyanathan
 Second Reader

Jeffrey B. Knorr
Chairman, Department of Electrical and Computer Engineering

Dan Boger
Chairman, Information Sciences Department

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis is part of an ongoing larger scale research study started in 2004 at the

Naval Postgraduate School (NPS) which aims to develop a speech-driven human-

machine interface for the operation of semi-autonomous military robots in noisy

operational environments. Earlier work included collecting a small database of isolated

word utterances of seven words from 20 adult subjects using an in-ear microphone. The

research conducted here develops a speaker-independent isolated word recognizer from

these acoustic signals based on a discrete-observation Hidden Markov Model (HMM).

The study implements the HMM-based isolated word recognizer in three steps.

The first step performs the endpoint detection and speech segmentation by using short-

term temporal analysis. The second step includes speech feature extraction using static

and dynamic MFCC parameters and vector quantization of continuous-valued speech

features. Finally, the last step involves the discrete-observation HMM-based classifier for

isolated word recognition. Experimental results show the average classification

performance around 92.77%. The most significant result of this study is that the acoustic

signals originating from speech organs and collected within the external ear canal via the

in-ear microphone can be used for isolated word recognition.

The second dataset collected under low signal-to-noise ratio conditions with

additive noise results in 79% recognition accuracy in the HMM-based classifier. We also

compared the classification results of the data collected within the ear canal and outside

the mouth via the same microphone. Average classification rates obtained for the data

collected outside the mouth shows significant performance degradation (down to 63%),

over that observed with the data collected from within the ear canal (down to 86%).

Recall that the ear canal dampens high frequencies. As a result, the HMM model derived

for the data with dampened higher frequencies does not accurately fit the data collected

outside the mouth, resulting in degraded recognition performances.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. INTRODUCTION TO AUTOMATIC SPEECH RECOGNITION

(ASR)...2
B. DIMENSIONS OF DIFFICULTY IN ASR TECHNOLOGY FOR

HUMAN – COMPUTER INTERACTIONS...4
C. THESIS OBJECTIVE AND EQUIPMENT USED......................................6
D. PREVIOUS RELATED RESEARCH ...8
E. THESIS ORGANIZATION..10

II. IN-EAR MICROPHONE DATA DIGITAL PRE-PROCESSING.......................13
A. INTRODUCTION..13
B. SPEECH PRE-PROCESSING ...18

1. Spectral Analysis..18
a. Spectrogram Analysis ...19
b. Mean Correction ...21
c. High-Pass Filtering vs. Pre-Emphasis Filtering and

Band-Pass Filtering ..21
d. Framing and Windowing for Short-term Analysis................25

2. Speech Boundary Detection ..26
a. Short-term Energy Measure (STE Measure).........................27
b. Short-term Zero-crossing Rate (STZC Rate)27
c. Endpoint Detection Algorithm from STE and STZC

Measures..28
d. Endpoint Detection from Modified Teager’s Energy30

III. SPEECH FEATURE EXTRACTION AND VECTOR QUANTIZATION.........33
A. INTRODUCTION..33
B. CEPSTRAL ANALYSIS...34

1. Mel-Frequency Cepstral Coefficient (MFCC) Computation.........38
2. LPC-derived Cepstral Coefficients ..46

C. VECTOR QUANTIZATION AND CODEBOOK GENERATION47
1. Vector Quantization (VQ)...47
2. Distortion Measure ..49
3. K-Means Algorithm ...50
4. Codebook Generation from Speech Features..................................53

IV. HIDDEN MARKOV MODELS (HMM) CLASSIFIER FOR ISOLATED
WORD RECOGNITION (IWR) ..57
A. INTRODUCTION TO HMM ...57

1. Definition of the IWR Problem...60
2. Notations ...61
3. Discrete-Time Markov Process...62

a. Example 4.1: Three-State Observable Markov Model63

 viii

4. Extension to Discrete-Symbol HMMs..64
a. Example 4.2: Three-State Ergodic Hidden Markov Model...66
b. Example 4.3: Five-State Left-to-right Hidden Markov

Model ...67
B. THE THREE FUNDAMENTAL PROBLEMS FOR HMM.....................69

1. Solution to the Evaluation Problem ...69
a. The Direct Evaluation...70
b. The Forward-Backward Procedure..71

2. Solution to the Decoding Problem..74
a. The Viterbi Algorithm...75

3. Solution to the Training Problem...78
a. The Baum-Welch Re-Estimation Algorithm (B-W

Algorithm) ...78
b. Viterbi Re-Estimation Algorithm..81

C. HMM IMPLEMENTATION ISSUES...82
1. Scaling the B-W Re-estimation Formulas..82
2. Training with Multiple Observation Sequences..............................85

D. ISOLATED WORD RECOGNIZER IMPLEMENTATION USING
HMMS...87

V. HMM CLASSIFICATION RESULTS ..93
A. SYSTEM OVERVIEW ...93
B. DHMM RECOGNIZER CLASSIFICATION RESULTS.........................96

1. Overall Recognition Results..96
2. Experimental Results for the Second Dataset99
3. Timing Issues..101

VI. CONCLUSIONS AND RECOMMENDATIONS...103
A. SIGNIFICANT RESULTS AND CONCLUSIONS..................................103
B. RECOMMENDATIONS FOR FUTURE WORK....................................105

APPENDIX A. SPEECH FRONT-END DETECTION MATLAB PROGRAMS107
1. SPEECH ENDPOINT DETECTION FROM THE SHORT-TERM

ENERGY AND ZERO-CROSSING RATE ..107
2. SPEECH ENDPOINT DETECTION FROM THE FRAME-BASED

MODIFIED TEAGER ENERGY...111
3. SPEECH CROPPING BASED ON ENDPOINT DETECTION.............114

APPENDIX B. SPEECH FEATURE EXTRACTION AND VECTOR
QUANTIZATION MATLAB PROGRAMS...117
1. MEL-FREQUENCY CEPSTRAL COEFFICIENT (MFCC)

COMPUTATION...117
2. LPC-DERIVED CEPSTRAL COEFFICIENT (LPC-CC)

COMPUTATION...125
3. K-MEANS CLUSTERING ALGORITHM ..128
4. CODEBOOK GENERATION FOR VECTOR QUANTIZATION130

APPENDIX C. HIDDEN MARKOV MODEL MATLAB PROGRAMS133

 ix

1. HMM BAUM-WELCH RE-ESTIMATION ...133
2. HMM VITERBI TRAINING ALGORITHM...135
3. MULTIPLE-OBSERVATION HMM TRAINING ALGORITHM137
4. HMM LOGLIKELIHOOD COMPUTATION ALGORITHM..............140
5. HMM RECOGNITION ALGORITHM..141

APPENDIX D. HMM CLASSIFICATION RESULTS FOR MULTIPLE
EXPERIMENTS ..145

LIST OF REFERENCES..147

INITIAL DISTRIBUTION LIST ...153

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1.1. Foam-Encased in-Ear Microphone Device..7
Figure 1.2. Equipment Components Used for Speech Data Collection.8
Figure 1.3. Throat and Air-Conductive Microphone (From [Zhang, 2004].).9
Figure 1.4 Main framework of the Isolated Word HMM recognizer................................10
Figure 2.1. The Word “Right” Recorded via Ear-Microphone. ...18
Figure 2.3. Spectrograms for the Utterances of Each Word in the Vocabulary.................20
Figure 2.4. Mean Correction on One Trial of the Word “Down;” Top Plot: before

Correction, Bottom Plot: after Correction. ..21
Figure 2.5. Frequency Response of the IIR Elliptic HPF...23
Figure 2.5. High-Pass Filtering Effect on One Trial of the Word “Down.”24
Figure 2.6. Typical Example of the Use of Short-Term Energy and Zero-Crossing

Rate in Endpoint Detection..29
Figure 3.1. Linear Acoustic Model of Human Speech-Production (After [Picone,

1993]). ..35
Figure 3.2. Real Cepstrum Computation (After [Deller, 2000].).36
Figure 3.3. Real Cepstrum Computed for the Voiced Phoneme /ae/ in the Word “pan.”..37
Figure 3.4. The First 20 Coefficients of the Real Cepstrum for the Phoneme /ae/.38
Figure 3.5. Block Diagram for the MFCC Feature Extraction...40
Figure 3.6. Mel-scale Filter Band...42
Figure 3.7. Differential Filter Used to Compute Delta-MFCC Parameters.44
Figure 3.8. MFCC and Delta MFCC Parameters Extracted from the Ear-Microphone

Data of the Spoken Word “Pan.” ...45
Figure 3.9. Cepstrogram Plot of the MFCC and Delta MFCC Parameters Extracted

from the Word “Pan.” ..45
Figure 3.10. A Typical Example of Uniform Clustering of Two-Dimensional Space for

Vector Quantization. ..49
Figure 3.11. Flow Diagram for the K-means LBG Clustering Algorithm.51
Figure 3.12. Average Distortion versus Codebook Size. ...54
Figure 3.13. Block Diagram for Vector Quantization of Speech Feature Vectors (After

[Rabiner, 1993]). ..55
Figure 4.1. Inter-Speaker Temporal Variability in the Word “Right” Spoken by Four

Different Speakers. ..58
Figure 4.2 An Illustration of a Discrete Observation HMM Classifier for IWR.60
Figure 4.3. Three-State Discrete-Time Markov Chain...64
Figure 4.4. Three-State Ergodic HMM. ...67
Figure 4.5. Five-State Left-to-Right HMM..68
Figure 4.6. The Lattice Structure Used to Derive the Forward Recursion (After

[Deller, 2000])..72
Figure 4.7 Trellis Structure Illustrating the Viterbi Algorithm for a Three-State HMM..77
Figure 4.8. Illustration for the Computation of the Probability (),t i jξ (After [Rabiner,

1993]). ..80

 xii

Figure 4.9. Block Diagram of the Isolated Word HMM Recognizer ([After (Rabiner,
1993)]. ..89

Figure 5.1. System Block Diagram of the Isolated Word HMM Recognizer (After
[Sorensen, 2005].). ...93

Figure 5.2. Average Classification Rates for Testing Sets; 80 Experiments, 62.5%
Training, 37.5% Testing. ...97

Figure 5.3. 95% Confidence Intervals and the Average Classification Rates for
Testing Sets; 80 Experiments...98

Figure 5.4. 95% Confidence Intervals and the Average Classification Rates for the
Second Data Set; 80 Experiments..100

 xiii

LIST OF TABLES

Table 2.1. English Phonemes and Characteristics for Vocabulary Words of Interest.16
Table 4.1. List of Basic Notations for HMMs. ...62
Table 5.1. Confusion Matrix for the Average Classification Rates for Testing Sets; 80

Experiments, 62.5 % Training, 37.5% Testing..97
Table 5.2. 95% Confidence Level Intervals for Testing Sets; 80 Experiments.98
Table 5.4. Average Classification Rates for the Second Data Set; 80 Experiments.........99
Table 5.5. 95% Confidence Level Intervals for the Second Data Set; 80 Experiments. ..99
Table 5.3. Average Simulation Run-Times for 80 Experiments.....................................101

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ACRONYMS AND ABBREVIATIONS

A/D Analog-to-Digital
ANC Active Noise Control
ANN Artificial Neural Network
ARPA Advanced Research Projects Agency
ASR Automatic Speech Recognition
B-W Baum-Welch
CMC Cepstral Mean Correction
CSR Continuous Speech Recognition
DARPA Defense Advanced Research Projects Agency
DCT Discrete Cosine Transform
DFT Discrete Fourier Transform
DHMM Discrete-symbol (or discrete-observation) Hidden Markov Model
DSP Digital Signal Processing
DTW Dynamic Time Warping
EM Expectation-Maximization
FFT Fast Fourier Transform
FIR Finite Impulse Response
FPGA Field-Programmable Gate Array
FTE Frame-Based Teager Energy
HMM Hidden Markov Model
IID Independent and Identically Distributed
IIR Infinite Impulse Response
IWR Isolated Word Recognition
LBG Linde-Buzo-Gray
LFCC Linear Frequency Cepstrum Coefficient
LPC Linear Predictive Coding
LPC-CC LPC-derived Cepstral Coefficient
MFCC Mel-frequency Cepstral Coefficient
NIST National Institute of Standards and Technology
PLP Perceptual Linear Prediction

 xvi

RC Reflection Coefficient
RCC Real Cepstral Coefficient
RCD Remote Control Device
SNR Signal-to-Noise Ratio
STE Short-Term Energy
STZC Short-Term Zero-Crossing
TIMIT Texas Instruments and Massachusetts Institute of Technology
VQ Vector Quantization
ZCR Zero-Crossing Rate

 xvii

ACKNOWLEDGMENTS

First, I would like to thank my thesis advisor Dr. Monique P. Fargues. Her

precious guidance, continuous help, patience with my never-ending questions and

inspiration kept me on track during the course of this thesis work. I would like to also

thank my co-advisor Dr. David Jenn and my second reader Dr. Ravi Vaidyanathan for

their valuable contributions.

Special thanks go to my best friends John Ortiz and his wife Danielle Ortiz. Their

friendship and hospitality will never be forgotten.

Finally, I owe my parents Kemal Kurcan and Emel Kurcan and my sister Selda

Kurcan for their endless support and love. Their encouragement during both bad times

and good times always kept my spirits high when I was alone 10,000 miles away from

home. I dedicate this thesis to them.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

EXECUTIVE SUMMARY

The performance of modern speech recognizers may turn out to be poor under

adverse conditions, especially when classifiers are trained under high signal-to-noise ratio

(SNR) environments like noise-free chambers (typically where SNR 30 dB≥) and

operated in real-world surroundings of relatively lower SNR. Consequently, many

researchers have recently focused on the task of building more noise-robust recognizers

that may be operated in noisy environments (within a car or a noisy flight cabin) with

higher accuracy.

This thesis study is part of an ongoing larger scale research started in 2004 at the

Naval Postgraduate School which aims to develop a speech-driven human-machine

interface command and control package applicable for the operation of semi-autonomous

military robots in noisy operational environments. Earlier related research by

Vaidyanathan [Vaidyanathan, 2004b] showed that the in-ear microphone device selected

was sensitive enough to make use of tongue movements for a human-machine interface,

which led to considering its extension to speech signals for isolated word recognition.

This thesis study extended the earlier work by Newton [Newton, 2006] who

collected a database of isolated word utterances of seven words from 20 adult subjects by

using the in-ear microphone. The research conducted here develops a speaker-

independent isolated word recognizer based on these acoustic signals and a discrete-

observation Hidden Markov Model (HMM). Hence, the objectives of this research were

to:

• Develop a MATLAB simulation for a simple yet complete isolated word
Hidden Markov Model (HMM) recognizer,

• Investigate the feasibility of using the acoustic speech signals collected
within the external ear canal via the in-ear microphone for isolated word
recognition,

• Explore the performance and noise-robustness of the in-ear microphone
data for isolated word recognition in noisy operational environments.

 xx

The speech database of this study included seven isolated words {down, up, right,

left, pan, move, kill}, each repeated 50 times by 20 adult subjects and recorded with an 8

kHz sampling frequency.

The study began by investigating the characteristics of the in-ear microphone data

by spectrogram analysis. The in-ear microphone data can be considered a low-pass

filtered version of the speech signals emitted in front of the mouth. Spectrogram analysis

showed that most of the signal energy was gathered below 2.5 kHz in the acoustic signals

of the isolated word utterances. Mean correction was first applied to the in-ear

microphone data to eliminate the DC bias of the microphone and then a high-pass filter

was used to remove the noise distortion collected around 100 Hz based on the

spectrogram analysis. After high-pass filtering, the acoustic signal is split into frames for

short-term analysis. The most crucial part of pre-processing of the in-ear microphone data

is the front-end detection to locate the speech boundaries and segment the acoustic

signals of the isolated words from the non-speech or silence portion. This task becomes

harder when bodily-created noises like gulps, coughs, tongue clicks or lip smacks occur

during the in-ear microphone recordings. Non-speech events or noise may complicate the

endpoint detection of speech waveform especially when dealing with words starting or

ending with low energy phonemes (such as the weak fricative /f/, weak plosive burst /p/

or /t/) or nasals (such as /n/ at the end).

Two endpoint detection algorithms were implemented in MATLAB to determine

the beginning and the termination of speech in a given isolated word utterance. The first

segmentation algorithm combined two short-term speech signal analysis. The short-term

energy (STE) measure was used to estimate initial speech boundaries while a second

search of the zero-crossing rate (ZCR) was used to refine these boundaries. The second

speech segmentation algorithm studied was based on the frame-based modified Teager

energy. However, simulations showed this detection approach required longer processing

time than the first algorithm due to its computationally-expensive search algorithm. In

addition, the results showed the two algorithms provided comparable detection of

endpoint locations. As a result, the focus rested on the first approach that uses STE and

 xxi

ZCR to segment the in-ear microphone database due to its more computationally-efficient

algorithm.

The purpose of speech feature extraction is to convert speech waveform to some

type of parametric representation at a lower information rate for further analysis. Speech

signals have non-stationary characteristics. As a result, the speech waveforms are

commonly split into small frames (typically 5 ms to 40 ms) in which the signal

characteristics are considered quasi-stationary to allow for short-term spectral analysis

and feature extraction. A wide range of parametric speech representations may be used to

generate input feature to speech recognizers. The most commonly used speech features

include the Linear Predictive Coding (LPC) Coefficients, Real Cepstral Coefficients

(RCC), LPC-derived Cepstral Coefficients (LPC-CC) and Mel-frequency Cepstral

Coefficients (MFCC). LPC-CC and MFCC parameters were considered in this study to

determine the best feature set for the in-ear microphone database. MFCC parameters are

usually preferred over others because they are less susceptible to speaker-dependent

variations likely to be present in speech signals. Classification results showed that MFCC

parameters outperformed the LPC-CC parameters in recognition accuracy for the data

under investigation. Dynamic delta-MFCC parameters were also derived to augment the

spectral representation of the static MFCC parameters with some temporal information.

A discrete-symbol HMM (DHMM) with eight hidden states was selected as the

classifier type because that type of classifier is simple to implement, has low

computational load, and has been shown to perform well in isolated word recognition

applications. We selected a codebook of length 128 which was generated by applying the

K-means clustering algorithm to the training set of speech features. Next, vector

quantization (VQ) was applied to map the continuous-valued speech features (12 MFCC

and 12 delta-MFCC parameters) to a discrete set of codebook indices (or symbols), and

quantized features used to estimate the optimum model parameters.

Two thirds of the data were used for generating the codebook and training the

DHMM. The remaining one third of the data were used for testing the performance of the

isolated word HMM recognizer. The average classification rate for this study’s multiple-

speaker isolated word HMM recognition system was 92.77%. Results show that the

 xxii

acoustic signals originating from speech organs and collected within the external ear

canal via an in-ear microphone could be effectively used for isolated word recognition.

The second dataset collected under low SNR conditions with additive noise

resulted in 79.24% recognition accuracy in the HMM-based classifier. This result is

consistent with the theoretical noise-shielding property of the human ear, thus justifying

the use of in-ear microphone data for speech enhancement and improved recognition

under low-SNR conditions.

Finally, we investigated using the in-ear microphone outside the mouth and

comparing classification results obtained for the data collected within the ear canal and

outside the mouth. Average classification rates obtained for the data collected outside the

mouth shows significant performance degradation (down to 63%), over that observed

with the data collected from within the ear canal (down to 86%). The ear canal dampens

high frequencies. As a result, the HMM model derived for the data with dampened higher

frequencies does not accurately fit the data collected outside the mouth, resulting in

degraded recognition performances.

1

I. INTRODUCTION

This thesis study is a part of an ongoing larger scale research started in 2004 at

NPS which aims to contribute to the development of a speech-driven human-machine

interface command and control package applicable for the operation of semi-autonomous

military robots in noisy environments. Towards this end, this research focused on

developing an isolated word recognizer using Hidden Markov Models (HMM). The

HMM classifier was trained on air pressure signals collected from within the ear-canal

via an in-ear microphone because previous research results have shown these signals are

less susceptible to environmental noise distortions than those collected in front of the

mouth [Westerlund, 2003]. In a broad sense, the ultimate goal of Automatic Speech

Recognition (ASR) is to build and train computers/machines or artificial intelligence that

can receive and interpret spoken instructions and act upon them properly.

Great progress in ASR has yielded many practical applications in recent years,

such as user-friendly speech interfaces in control consoles of cars, credit card number

recognition and the verbal selection of menus over the telephone. However, after 50 year-

long research efforts and considerable advances in ASR notwithstanding, robust speech

recognition for human-machine interface still remains a challenging problem today. The

performance of the modern speech recognizers may turn out to be poor under adverse

conditions, especially when classifiers are trained under high signal-to-noise ratio (SNR)

environments like noise-free chambers (typically where SNR 30 dB≥) and operated in

real-world surroundings of relatively lower SNR [Deller, 2000]. In contrast, a healthy

human listener’s performance is usually far more stable on average under similar training

and operating conditions. Unfortunately many researchers agree that human-quality,

adaptively-learning and noise-robust machines that recognize and interpret human speech

will not be achieved in the near future [Deller, 2000; Gold, 2000; Owens, 1993].

However, even incremental improvements leading toward this ultimate goal in ASR are

of great importance.

Next, a brief history of speech recognition technology is presented before

addressing the difficulties in the ASR area.

2

A. INTRODUCTION TO AUTOMATIC SPEECH RECOGNITION (ASR)
Speech is the natural and the fundamental way of communication for most

humans. Technically speaking, Automatic Speech Recognition (ASR) refers to a

mechanism (hardware and software combined) that stores some representations of

distinguishing characteristics of speech with a source of input equipment, such as a

microphone and further processes these representations to match them to incoming

speech in an effort to interact with machines, computers and/or human users

The first primitive recognizer was developed at Bell Labs during the early 1950s.

However, it was the 1960s that brought many major breakthroughs to the field of ASR.

Some of these achievements are noteworthy to mention herein because they did not only

develop significant tools for speech recognition but also established the very basic

concepts on which this thesis work is mainly based. Specifically, the development of the

Fast Fourier Transform (FFT) by Cooley and Tukey in 1965 decreased the

computational load of Discrete Fourier Transform (DFT) with a faster algorithm, thereby

enabling the practical implementations of Digital Signal Processing (DSP) custom chips

[Cooley, 1965; Gold, 2000]. Oppenheim, Schafer, and Stockham introduced Cepstral

Analysis which performs deconvolution of the speech signal to separate an excitation

sequence from an impulse response convolved with it [Oppenheim, 1968]. Cepstral

coefficients and many derivatives have been widely used to represent the short-term

spectral envelope of speech signals thus far.

It was also the late 1960s and early 1970s that saw another useful method for

speech analysis, known as Linear Predictive Coding (LPC). One of the earliest and

complete papers on the application of linear prediction to speech analysis was published

by Atal and Schroeder [Atal, 1971; Deller, 2000]. Basically, LPC uses a pole-only

(autoregressive) filter to model the speech signal. LPC coefficients and its derivatives are

extensively used for transmitting speech spectral envelope information [Gold, 2000].

Most notably, the foundations for the statistical technique of Hidden Markov

Modeling, which models an observed sequence as produced by a sequence of hidden

states, dates back to the 1960s as well. However, the first successful applications of

Hidden Markov Modeling to speech recognition were realized in the 1970s [Gold, 2000].

3

Baum and his colleagues developed a popular expectation-maximization (EM) algorithm,

known as the Baum-Welch Re-estimation Algorithm (or Forward-Backward Algorithm),

to estimate the parameters of a Hidden Markov Model (HMM) iteratively [Baum, 1966;

Baum, 1970]. Hidden Markov Models (HMM) and the Baum-Welch Re-estimation

Algorithm are widely used today in contemporary state-of-the-art speech recognition

systems.

Dynamic Time Warping (DTW), a deterministic alternative approach to the

statistical HMM was also introduced in the 1970s. DWT normalizes the different-length

utterances of the same word and applies template-based classification to speech

recognition.

Many different approaches incorporating DTW, HMM and Artificial Neural

Networks (ANN) were developed for speech recognition in the 1970s. Among these

studies, the project of the Advanced Research Projects Agency (ARPA), was a

remarkable achievement in that it performed a 1000-word ASR system by using

connected speech from a few speakers with a word error rate of less than 10% [Gold,

2000]. In the 1980s, the project of the Defense Advanced Research Projects Agency

(DARPA Project) and the major other programs conducted by Texas Instruments and the

Massachusetts Institute of Technology (TIMIT Project) and the National Institute of

Standards and Technology (NIST) primarily concentrated on the collection of large

corpora used for training and testing speech recognizers. These large corpora were

subsequently used by the ASR research community at large for performance comparison

of different approaches applied to speech recognition.

The ASR community witnessed some other important developments in the 1980s

as well. Among those, the Mel-Cepstrum Analysis introduced by Davis [Davis, 1980],

and the Dynamic Cepstral Coefficients proposed by Furui [Furui, 1986] can be

considered remarkable techniques for speech feature-extraction due to significant

improvement in recognition accuracy.

As for the speech recognizers of the 1980s, many researchers were experimenting

with frame-based HMM recognizers, ANN recognizers or hybrid schemes combining

HMM and ANN in isolated and/or continuous contexts of speech [Gold, 2000]. Most

4

importantly, the contemporary speech recognition systems of today still use these

methods predominantly.

In the following decades, advances in computationally-efficient digital computing

power and abundant memory made the inexpensive implementation of DSP chips and

Field-Programmable Gate Arrays (FPGA) possible. Needless to say, this has been a

major boon to the performance of ASR technology. Commercial ASR applications such

as speech-to-text dictation software have been available and used extensively since the

late 1990s. However, despite considerable progress, many aspects of ASR are still

mysterious and problematic even today because the engineering view of human speech

production and human ear perception is not yet fully conclusive. Hence, the research

community believes that the field of speech recognition is still in its early infancy and

will remain to pose a challenging problem for the near future. [Deller, 2000; Gold, 2000].

Next, the dimensions of difficulty involved in ASR are discussed because

understanding the complexity of the ASR problem is the first step to practical and

achievable solutions.

B. DIMENSIONS OF DIFFICULTY IN ASR TECHNOLOGY FOR HUMAN –
COMPUTER INTERACTIONS
Waibel and Lee addressed the question of complexity involved in ASR in

[Waibel, 1990] as “dimensions of difficulty.” These are the factors that determine the

complexity and the specifications of an ASR system. Deller et al. summarizes some of

these factors that render speech recognition methods complicated [Deller, 2000].

First, speaker-dependency plays a defining role in speech recognition systems. A

speaker-dependent ASR system is trained and tested on the utterances of a specific

speaker to learn the representations characterizing speech. Thus, this type of recognizer is

designed specifically to recognize the speech of its trainer. Most commercially available

speech-to-text dictation software mainly uses this mode because it needs to be trained by

each specific user before operation. On the contrary, a speaker-independent system is

trained on many speakers in an effort to make the system capable of recognizing the

speech of a generalized population who may be outside of the training population. The

models used in this type of recognizers are derived from expected characteristics and are

not fine-tunable to the end users. Therefore, there is no need for further training when a

5

new speaker is introduced to a speaker-independent system. This operation mode is more

convenient for a telephone application where users navigate through speech-activated

menus. However, the convenience of speaker-independent systems may come with lower

recognition accuracy than that obtained with speaker-dependent systems.

Second, continuous speech recognition (CSR) systems may seem natural and

user-friendly at first glance, but they require more sophisticated recognizers to handle

word boundaries issues. Isolated word recognition (IWR) systems minimize this problem

as they require a deliberate pause between each utterance to simplify the end-point

detection algorithm needed to locate the beginning and the end of speech. As a result,

IWR is expected to have higher recognition accuracy. Generally speaking, CSR systems

require more CPU power and memory than ISR systems. Further, inter-speaker and intra-

speaker variations of the training population in articulation, pronunciation and intonation

make it even harder for CSR systems to determine speech boundaries, thus yielding lower

classification accuracy compared to that obtained with ISR systems.

Third, the vocabulary size is another key factor that affects the dimension of

difficulties in recognition. Considering the number of ambiguous utterances (e.g.,

“knight” and “night”) and acoustic confusability (e.g., “beer” and “bear”) in the

vocabulary of interest naturally, the performance of a particular recognizer is expected to

degrade with the increasing vocabulary size [Deller, 2000]. Small vocabulary (less than

100 words) recognizers can perform relatively simpler tasks such as destination sorting

systems for shipping tasks, credit card number or telephone number recognition. In these

examples, specific models for each word in the vocabulary can be stored in the system

and recognition is achieved by an exhaustive search through the whole vocabulary. As

the vocabularies become larger, the recognition task creates increasing memory

requirements. When training and modeling for each word in a larger vocabulary becomes

impractical, models of subword units like syllables and phonemes are preferred over

models of words.

Fourth, the waveform of a speech signal is very susceptible to the variations in

channel, microphone characteristics, room reverberation or background noise. Nonlinear

6

effects of noise and channel distortion can be very destructive for recognition tasks,

especially when no a-priori knowledge is available about their characteristics.

Finally, another important parameter in ASR system performances is whether any

linguistic information is built into the recognizer to fine-tune algorithms. Speech

recognizers are trained on basic speech unit models such as phones, phonemes, syllables

or words. Linguistic (or grammar) constraints deal with how these basic units should be

concatenated to form a meaningful message in a particular language. Such linguistic

information may be embedded into more sophisticated recognizers.

All the above factors have a major impact on the success of a particular ASR

system and add up to determine the necessary level of system complexity in design

phase. Among all of the above-mentioned factors, performance degradation in noisy real-

world environments is probably the most significant factor limiting the progress of ASR

technology today. Consequently, many researchers have recently focused on the task of

building more noise-robust recognizers that may be operated in noisy environments

(within a car or a noisy flight cabin) with higher accuracy [Moon, 1997; Shozakai, 1998;

Graciarena, 2003]. Lippmann et al. reported a direct comparison of human listeners and

machine recognizers on a range of tasks in his speech recognition research [Lippman,

1997; Gold, 2000]. His findings supported the fact that noise considerably degrades the

performance of ASR systems even for simple tasks, whereas the superiority of human

performance increases in noise and for more difficult speech contexts such as

spontaneous speech unlike machine recognizers. His experimental results on human

perception of distorted speech sets a good benchmark for the ultimate goal of more

humanlike, noise-robust and adaptive ASR systems of the future [Gold, 2000].

Next, the main objectives are presented as well as the specifications of the

experimental ASR system on which this thesis work is focused.

C. THESIS OBJECTIVE AND EQUIPMENT USED
The objective of this research was to design an isolated word HMM recognizer

with a small vocabulary to evaluate the effectiveness of the acoustic speech signals

collected within ear canal on speech recognition. This work uses a speech database

collected earlier by Newton [Newton, 2006] which consists of isolated word utterances

7

from 20 adult subjects. Each subject repeated a set of seven isolated words {down, up,

right, left, pan, move, kill} 50 times, recorded with an 8 kHz sampling frequency.

The speech signals were collected via the in-ear microphone shown in Figure 1.1

in an indoor office environment with medium SNR levels to simulate real-world

conditions and potential operational environments. A second set of data were collected

under additive noise in the same office environment with the in-ear microphone located

in the ear first and then in front of the mouth to evaluate the noise shielding properties of

the in-ear microphone. Figure 1.2 shows the whole equipment set-up used for database

collection including the in-ear microphone, analog-to-digital (A/D) converter, PCMCIA

card and a general purpose notebook computer.

Figure 1.1. Foam-Encased in-Ear Microphone Device.

8

Figure 1.2. Equipment Components Used for Speech Data Collection.

Next, the motivation behind this study is discussed and previous related research

summarized.

D. PREVIOUS RELATED RESEARCH
As ASR technologies are transferred more and more to daily-life applications, the

need for greater robustness to noisy environments is growing. A great deal of recent work

has highlighted the need for robust speech detection, enhancement and recognition via

the use of multiple-microphone arrays [Zhang, 2004] or more sophisticated adaptive

noise canceling devices [Westerlund, 2003].

Westerlund et al. proposed a sophisticated approach to improve speech

recognition where a Hidden Markov Model (HMM) recognizer was used to evaluate the

quality and intelligibility of speech signals recorded using an ear-microphone. One of the

pieces of equipment used in his research was an Active Noise Control (ANC) headset

equipped with an in-ear microphone and ear muffs. This work showed that the high-pass

filtering property of the passive absorbers (ear-muffs) is convenient for noise reduction

when combining an ANC headset with an in-ear microphone since the speech signal in

the external auditory canal is a low-pass filtered version of the speech signal in front of

the mouth. Consequently, Westerlund reported that this combination of passive and

9

active noise reduction methods with the use of an ear-microphone had considerable

impact on speech recognition performances, resulting in a 50% recognition rate increase

in a severely noisy environment.

The idea that a microphone can be placed on other locations of the body rather

than just in front of the mouth was also proposed by other researchers [Zhang, 2004;

Graciarena, 2003]. Zhang et al. developed a headset prototype that integrates several

heterogeneous sensors including a close-talk and a throat microphone shown in Figure

1.3 for robust speech detection and recognition, achieving promising results.

Figure 1.3. Throat and Air-Conductive Microphone (From [Zhang, 2004].).

Graciarena et al. also developed a method that combines standard microphone and

throat microphone features in noisy continuous speech recognition experiments. This

research provided significant word error rate reduction compared to that obtained with a

single microphone [Graciarena, 2003]. Although all the above-mentioned research

reported considerable robustness and improvement on speech recognition, the

implementations used were either intrusive or involved rather complicated schemes in

terms of computational load.

Vaidyanathan et al. recently introduced a unique signal processing strategy which

maps the air flow signals generated from tongue movements collected within the ear

canal to specific commands [Vaidyanathan, 2004a]. The in-ear microphone used in this

work is simpler in design and more convenient to wear when compared to more

complicated and intrusive alternatives. The microphone earpiece contains a small passive

10

sensor, which is commercially available off-the-shelf and is similar to those commonly

found in hearing aids. This work showed that various tongue movements within the oral

cavity create unique and traceable pressure changes in the human ear, which can be

captured via an ear-microphone and classified accurately. These results were applied to

the hands-free tele-operation of a mobile robot named “Whegs II hexapod robot.” This

research also reported that

…Conventional signal processing techniques are generally inadequate to
recognize the subtle pressure variations in the ear canal resulting from
tongue movement. The ear canal itself is an interference-ridden, noise-
amplified environment for acoustic recording. External noise
(environmental sounds) can also easily obscure the slight pressure
deviations accompanying tongue movement [Vaidyanathan, 2004b].

This earlier research study showed that the in-ear microphone device selected was

sensitive enough to collect tongue movements, which led to considering its extension to

speech signals. The next section presents the organization of this thesis work.

E. THESIS ORGANIZATION
This initial chapter of the thesis provided an introduction to ASR technology and

focused on the main challenges in the ASR field so as to present the fundamentals of

ASR. Then the chapter introduced the main objective of this thesis work, equipment used

for speech data collection and explained the earlier related research.

Figure 1.4 represents the main framework of the Isolated Word HMM recognizer

built to test the viability of using ear-microphone data for speech recognition in this

research.

Speech
Endpoint
Detection

Speech
Feature

Extraction

Vector
Quantization

HMM
Classification

Speech
Endpoint
Detection

Speech
Feature

Extraction

Vector
Quantization

HMM
Classification

Figure 1.4 Main framework of the Isolated Word HMM recognizer

Chapter II first presents a discussion of the characteristics of in-ear microphone

data. Next, the chapter covers the pre-processing of these acoustic signals. The pre-

11

processing involves the short-term signal analysis, the endpoint detection algorithm to

determine the onset and the termination of a spoken word in a given acoustic speech

signal.

Chapter III introduces the popular speech feature coefficients used to extract

spectral information from acoustic signals. The computation of Mel-frequency Cepstral

Coefficients (MFCC) is explained using a step-by-step approach. Then, the dynamic delta

parameters (delta-MFCC) are derived from the MFCC parameters to supplement

information of MFCC parameters with information on its rate of change over time. The

rest of the chapter deals with the vector quantization (VQ) since a discrete-observation

HMM is to be used rather than a continuous-density HMM. The K-means clustering

algorithm is described and used to generate a codebook which maps the continuous-

valued speech features (MFCC and delta-MFCC parameters) to a discrete set of

codebook indices.

Chapter IV discusses the fundamentals of HMM, the three basic HMM problems

and their efficient solution algorithms. The chapter concludes with the discrete-symbol

HMM implementation of the isolated word recognition (IWR) system to justify the

effectiveness of the air flow signals collected within the ear canal for speech recognition.

Chapter V provides a system overview of the isolated word HMM recognizer and

presents HMM classification results.

Chapter VI presents conclusions and recommendations for future work.

12

THIS PAGE INTENTIONALLY LEFT BLANK

13

II. IN-EAR MICROPHONE DATA DIGITAL PRE-PROCESSING

A. INTRODUCTION
Traditional speech recognition systems typically use a directional microphone to

collect speech data. Most directional microphone systems are successful in low-noise

environments. However, speech recognition performances may degrade significantly in

high noise surroundings, and many different methods have been proposed to improve the

robustness of speech recognition systems. Some of these include complex techniques

using multiple microphone arrays (to work on multi-channel data), adaptive noise

cancellation methods, combining different types of speech features or using sophisticated

endpoint detection schemes. However, most of them are either intrusive or impractical to

implement in real world applications.

In an effort to guard against noisy surroundings and allow for a relatively simple

speech recognition approach, an unconventional recording device, an earpiece

microphone placed inside the external ear canal was used for capturing the speech signal.

Data were collected using an 8 kHz sampling rate to ensure at least telephone-quality-like

spectral information would be available to the recognizer. A small vocabulary consisting

of seven isolated words was recorded in an earlier study [Newton, 2006] and included the

following words: left, right, up, down, move, kill and pan. Twenty experimental adult

subjects uttered each word 50 times, which led to a database of 20 50 7 7000× × = words.

First, we present a brief overview of human auditory and speech production

systems is presented, and discuss the main differences observed between the speech data

collected within the ear canal and the data collected in front of the mouth.

Fundamentally, the simplest form of communication occurs when a speaker

releases an acoustic sound pressure wave in the air by using speech articulators such as

vocal folds, palate, teeth, tongue, etc. For example, a single-frequency sound wave

traveling through air from a speaker’s mouth to a listener’s ears excites a sinusoidal

pressure variation in the direction of propagation.

Speech processing is a multi-disciplinary field as hearing is an integral part of the

speech chain, and a broad review of sound-wave propagation and hearing mechanism can

14

be found in the white paper, [Sibbald, 2001]. Due to the close connection between the

unique method of speech-collection and the human hearing process, it is first necessary to

highlight some basic related dynamics of the human auditory system before proceeding to

an engineering view of speech production. The frequency response of a healthy human

ear is between approximately 20 Hz to 20 kHz, with the high frequency capability

diminishing with age. Consequently, the standard CD audio sampling frequency was

chosen to be 44.1 kHz, which allows for frequencies up to the usual highest frequency

perceivable by the human ear since the sampling frequency should be at least double the

highest frequency component available. However, the human ear is most sensitive to a

frequency spectrum ranging from 500 Hz to 4000 Hz, which roughly corresponds to the

speech bandwidth carried along analog telephone lines [Marsh, 1999]. In addition to this

inherent sensitivity, the human ear is capable of a wide dynamic range of hearing

intensity, which is practically measured at approximately 130 dB from the threshold of

hearing to the threshold of pain. It should be noted that for the purposes of this study, the

structures of the outer and middle ear can be considered to be both a pre-amplifier and a

limiter that contribute to this remarkable sensitivity and the dynamic range [Sibbald,

2001].

Although the details of the human hearing mechanism is beyond the scope of this

thesis, it is important to note that the auditory canal can resonate and amplify sounds

within a frequency range of approximately 2000 Hz to 5500 Hz by up to a factor of 10

[Marsh, 1999]. Besides, further amplification – up to 20 times at some resonance

frequencies – takes place in the oval window of the cochlea. This knowledge provides a

clue why minute pressure variations of external noise are amplified inside the ear. Hence,

it was necessary to isolate the in-ear microphone from environmental noise sources by

placing it inside a foam case during the data collection process.

The major components of the human speech production system are the lungs,

trachea, larynx (organ of voice production), throat, oral cavity and nasal cavity; the last

three together being referred to as the vocal tract in technical discussions. Finer acoustic

organs critical to speech production include vocal cords (or vocal folds), tongue, lips,

teeth, velum and jaw, which are called articulators by speech scientists. Speech is

characterized as a discrete sequence of sound segments called phones, each

15

corresponding to certain positions of articulators during their production despite the fact

that the analog speech signal is naturally continuous and dynamic in time and magnitude.

Phones are acoustic manifestations of phonemes, which are considered to be linguistic

codes that comprise a language. An interested reader can refer to [Deller, 2000] for a list

of approximately 42 phonemes that constitute the language of American English.

From a simple engineering point of view, speech production can be considered an

acoustic filtering process in which a speech sound source excites the vocal tract filter

[Deng, 2003]. More technically, the larynx provides a periodic vibration to the vocal

cords, causing quasi-periodic voiced speech. Voiced sounds consist of a fundamental

frequency and its harmonics produced by vocal cords. Likewise, the fundamental period,

or pitch period (or only pitch), of voiced speech corresponds to the successive vocal cord

closure rate [Owens, 1993]. According to Deller, an alternative definition of the term

pitch refers to the perceived fundamental frequency of a sound, whether or not that sound

is actually present in the waveform. Although every speaker has a habitual pitch level,

pitch generally shifts up and down during speaking in response to various factors

including stress, intonation or emotion. The vocal tract changes the periodic vibration

causing formant (or resonances) and sometimes anti-formant (or anti-resonances)

frequencies, owing to the poles and the zeros in the vocal tract transfer function,

respectively [Witten, 1982]. Further, the vocal tract length significantly affects all vowel

formants frequency locations. Formant locations and pitch period are commonly used

characteristics of phonemes to extract information from the speech signal for further

analysis.

Unvoiced sounds are generated by forcing air flow through a vocal tract

constriction between the glottis and mouth. Unlike voiced speech, there is no

fundamental frequency in an excitation signal with unvoiced sounds, resulting in a noise-

like and aperiodic signal. Note that unvoiced consonants (such as the weak fricative /f/

and stop sound /t/ as in the word “Left” or the weak plosive burst /p/ as in the word

“Pan”) have considerably less energy and are usually focused on higher frequencies,

whereas the voiced vowels (such as /u/ as in the word “Up” or /o/ as in the word “Move”)

have most of the energy located in the lower portion of the spectrum as a main difference

16

[Fargues, 2005]. Table 2.1 summarizes the phonemes and the corresponding

characteristics of the words used in this study.

Word Phoneme Manner of articulation Voiced? Example word

l liquid yes love

 є (eh) vowel yes bet

f fricative no fluff
Left

t stop no tot

r liquid yes roar

αι (ay) diphthong yes bite Right

t stop no tot

Λ (ah) vowel yes mud
Up

p stop no pop

d stop yes did

αu (aw) diphthong yes bout

w glide yes wow
Down

n nasal yes none

m nasal yes maim

u (uw) vowel yes boot Move

v fricative yes valve

p stop no pop

æ (ae) vowel yes bat Pan

n nasal yes none

k stop no kick

 i (iy) vowel yes beat Kill

l liquid yes love

Table 2.1. English Phonemes and Characteristics for Vocabulary Words of Interest.

17

Having given a brief discussion of human auditory system, speech production and

the general characteristics of speech signal, it is now possible to focus on the unique

properties of the speech data collected via the in-ear microphone. Previous discussions

will demonstrate the differences between typical speech signals recorded by conventional

directional microphones and those obtained from the in-ear microphone.

Although most of the acoustic sound energy originates from the mouth, some

sound waves are emitted from the nostrils, throat and cheeks as well [Deller, 2000]. All

these pressure variations in the air constitute the analog speech waveform. This speech

waveform is first recorded by the in-ear microphone placed inside the external ear canal

and then converted to a digital format by an analog-to-digital converter for further

processing. According to Deng, typical human communication spans from below 100 Hz

up to 7 kHz due to the limitations of speech production organs [Deng, 2003].

In an effort to compare the two different data-collection methods, Figure 2.1

shows time plots and spectrograms obtained for the word “right” collected with the in-ear

microphone placed within the ear canal (top plots) and in front of the mouth (bottom

plots). Both the time plot and spectrogram illustrate a portion of 2,000 samples in the

signals. Note that both signals sounded very similar except for a small difference in the

signal loudness (or amplitude). Figure 2.1 shows that signal collected from the mouth has

higher frequency components than that collected within the ear canal. The signal

collected from the mouth (the lower waveform) has a comparatively higher frequency

content up to 3000 Hz, while the signal collected from the ear has most of its energy

located in the spectrum up to 1000 Hz. Similar behavior regarding the frequency ranges

was also observed for the other words of interest in the vocabulary. Figure 2.1 also shows

the presence of a low frequency distortion resulting from the collection equipment.

It was observed that signals obtained from within the ear canal had low

amplitudes and the A/D converter gain control was adjusted accordingly before recording

to ensure that speech signals levels were high enough for recording purposes.

18

Time

Time

0.0625 0.125 0.1875 0.25

0.0625 0.125 0.1875 0.25

Time

Time

0.0625 0.125 0.1875 0.25

0.0625 0.125 0.1875 0.25
(sec)

(sec)

(sec)

(sec)

(H
z)

(H
z)

Time

Time

0.0625 0.125 0.1875 0.25

0.0625 0.125 0.1875 0.25

Time

Time

0.0625 0.125 0.1875 0.25

0.0625 0.125 0.1875 0.25
(sec)

(sec)

(sec)

(sec)

(H
z)

(H
z)

Figure 2.1. The Word “Right” Recorded via Ear-Microphone.

Next, speech pre-processing issues are discussed. Spectral analysis, filtering,

framing and windowing for short-term analysis are covered in detail.

B. SPEECH PRE-PROCESSING

1. Spectral Analysis
Spectral analysis basically involves digital filtering techniques to remove the

noise and emphasize important frequency components of interest. Considering that the

foam-encase of the ear-microphone decreases the amount of external noise in the ear

canal during recording, the need for filtering mostly stems from the existence of bodily-

created noises such as gulps, tongue clicks, lip smacks or coughs in the signal or due to

the collection equipment. In addition, the microphone and the A/D converter used also

introduce undesirable side effects, such as a typically 50-60 Hz humming noise, a

fluctuating dc bias in the microphone and some other non-linear distortions due to the

converter [Picone, 1993].

19

Before extracting speech feature information from the in-ear microphone data, it

is first necessary to deal with the distortions in the signal to eliminate any subsequent

problems with the parametric spectral analysis.

a. Spectrogram Analysis
First, the speech signal spectrograms were analyzed to identify the

frequency bands most affected by unwanted distortions. Figure 2.3 illustrates the

spectrograms obtained for one trial of each word contained in the vocabulary spoken by

the same adult male subject.

20

Time (sec)

Time (sec)

Time (sec)

Time (sec)Time (sec)

Time (sec)Time (sec)

(H
z)

(H
z)

(H
z)

(H
z)

(H
z)

(H
z)

(H
z)

Time (sec)

Time (sec)

Time (sec)

Time (sec)Time (sec)

Time (sec)Time (sec)

Time (sec)

Time (sec)

Time (sec)

Time (sec)Time (sec)

Time (sec)Time (sec)

(H
z)

(H
z)

(H
z)

(H
z)

(H
z)

(H
z)

(H
z)

Figure 2.3. Spectrograms for the Utterances of Each Word in the Vocabulary.

Figure 2.3 shows that recordings contain non-speech components in the frequency

band between 50 to 100 Hz. It also shows that most of the speech signal energy for all

words considered is roughly contained in the frequency band ranging from 100 Hz up to

2000-2500 Hz.

21

b. Mean Correction
The purpose of mean correction is to remove any dc off-set that may be

introduced by the microphone or the converter if any. Figure 2.4 shows the time-domain

plot of the word, “down” with a mean value of 0.0265. Although the offset in the signal

before mean correction is small, the effect of mean-subtraction can be seen as a shift in

abscissa (amplitude) by close investigation.

“Down” (Zero mean after mean correction)

“Down” (Mean value 0.0265 before mean correction)

“Down” (Zero mean after mean correction)

“Down” (Mean value 0.0265 before mean correction)

Figure 2.4. Mean Correction on One Trial of the Word “Down;” Top Plot: before

Correction, Bottom Plot: after Correction.

c. High-Pass Filtering vs. Pre-Emphasis Filtering and Band-Pass
Filtering

Today’s speech recognition applications require relatively high signal-to-

noise ratio (SNR) levels (usually above 30 dB) to insure high recognition performances

[Picone, 1993]. Non-linear distortions due to recording devices, A/D conversion and

background noise degrade recognition performances. Such adverse effects can be partly

removed or decreased by applying a finite impulse response (FIR) high-pass filter.

22

Usually, a one-coefficient simple digital filter, known as a pre-emphasis

filter, is used. There are two common reasons for using this filter. First, voiced portions

have a typical attenuation of about -12 dB per octave1 with increasing frequency. Thus,

the pre-emphasis filter serves to compensate such high frequency attenuation and

improves the spectral feature extraction [Deng, 2003]. Second, human hearing is more

sensitive in the frequency band above 1 kHz. The pre-emphasis filter amplifies this

region of the spectrum and contributes in modeling the most perceptually significant

portion of the spectrum [Picone, 1993]. A common form of the pre-emphasis filter is

given in [Deng, 2003] as follows:

 () () (1),y n s n As n= − − (2.1)

where s(n) is the speech signal and A is typically chosen between 0.9 and 1.0, reflecting

the degree of pre-emphasis.

However, recall that Figure 2.3 showed that the ear canal dampened high

frequency components as most of the words energy content was contained in the

frequency range between 100 Hz to 2500 Hz, which is lower than that observed with the

speech collected outside the mouth with the same microphone. Consequently, the pre-

emphasis filtering did not contribute to the efficiency of the spectral feature analysis in

the experimental results with the MATLAB simulations. Thus, an alternative filtering

technique, high-pass filtering, was preferred to mask the low frequency ambient noise. A

6th order infinite impulse response (IIR) elliptic high-pass filter was applied. The filter

specifications were as follows:

• The stopband: 0 - 60 Hz.

• The passband: 100 – 4000 Hz (half of the sampling frequency).

• The passband ripple: 0.5 dB.

Figure 2.5 represents the frequency response of the high-pass filter used.

1 Two frequencies are an octave apart if the ratio of the higher frequency to the lower frequency is two.

23

0 0.5 1 1.5 2 2.5 3 3.5
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency (kHz)

M
ag

ni
tu

de
 (d

B)

Magnitude Response (dB)

0 0.5 1 1.5 2 2.5 3 3.5
-100

0

100

200

300

400

500

Frequency (kHz)

Ph
as

e
(d

eg
re

es
)

Phase Response

0 0.5 1 1.5 2 2.5 3 3.5
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency (kHz)

M
ag

ni
tu

de
 (d

B)

Magnitude Response (dB)

0 0.5 1 1.5 2 2.5 3 3.5
-100

0

100

200

300

400

500

Frequency (kHz)

Ph
as

e
(d

eg
re

es
)

Phase Response

Figure 2.5. Frequency Response of the IIR Elliptic HPF.

Note that the nonlinear phase response may introduce some phase

distortion in the filtered speech signal. However, verification was completed by listening

to ensure that the filtered signal was still perfectly understandable to the human ear.

24

Figure 2.5 illustrates the high-pass filter effects on one trial of the word

“Down.” Upper and lower plots present time and spectrogram traces before and after

filtering, respectively. Results show that the filter has removed the low frequency trends

observed in the original which elicit the higher frequency components more clearly in the

spectrogram plot of the filtered signal.

Time (sec)

Time (sec)

Time (sec)

Time (sec)

0.125 0.25 0.375 0.5

0.125 0.25 0.375 0.5

(H
z)

(H
z)

Time (sec)

Time (sec)

Time (sec)

Time (sec)

0.125 0.25 0.375 0.5

0.125 0.25 0.375 0.5

(H
z)

(H
z)

Figure 2.5. High-Pass Filtering Effect on One Trial of the Word “Down.”

Experiments were also conducted with a 6th order IIR elliptic band-pass

filter for performance comparison with the high-pass filter. This band-pass filter had the

following specifications:

• The first stopband: 0 – 60 Hz.

• The passband: 100 – 2000 Hz.

• The second stopband: 2400 – 4000 Hz.

• The stopband attenuation: 60 dB.

• The passband ripple: 0.5 dB.

25

The high-pass filtered data resulted in, on average, 4% better recognition

rates than the recognition rates obtained from the band-pass filtered data.

d. Framing and Windowing for Short-term Analysis

Speech is a dynamic and non-stationary process, as the amplitude of the

speech waveform varies with time due to variations in the vocal tract and articulators

[Deng, 2003]. However, speech analysis usually presumes that the statistical properties of

the non-stationary speech process change relatively slowly over time. Although this

assumption is not strictly valid, it makes it possible to process short-time speech frames,

ranging typically from 10 ms to 40 ms, as a stationary process. Generally speaking, the

use of short frame duration and overlapping frames is chosen to capture the rapid

dynamics of the spectrum. Speech parameters are extracted on a frame-by-frame basis

and the amount of overlap determines how quickly parameters can change from frame to

frame [Picone, 1993].

Windowing means multiplication of a speech signal ()s n by a window

()w n to weight or favor samples by the shape and duration of the window. Coupled with

overlapping short-term frames, successive windowing is equal to applying a sliding

window to the long-term speech signal. The simplest window has a rectangular shape,

weighting all samples of speech signal equally. In fact, not windowing segmented short-

duration frames at all is equivalent to applying a rectangular window.

Window duration determines the amount of averaging used in power or

energy calculation. Window duration and frame duration can be adjusted as a pair. For

instance, a frame duration of 20 ms can be coupled with a window duration of 30 ms

[Picone, 1993]. An alternative is to choose the window duration equal to the frame

duration for simplicity.

As a matter of fact, the selection of proper frame duration (and indirectly

the window duration) is eventually dependent on the change of rate of the vocal tract

shape. Frames of 10 ms with 50% overlap are chosen and a rectangular window applied

to each frame before calculating short-term parameters such as zero-crossing rate and

short-term energy. Note that selecting too small a frame duration or equivalently

increasing the frame rate would result in increased complexity and memory requirements.

26

2. Speech Boundary Detection

Determining the beginning and the termination of speech in the presence of

background noise is a complicated problem [Rabiner, 1975].

The problem of separating speech from background silence and noise does not

constitute a minor task, except in cases of very high signal-to-noise ratios (on the order of

30 dB or better). Environments with high SNR are rarely seen in real-world applications

of speech recognition systems [Rabiner, 1975; Deller, 2000]. Further, a noise-robust

endpoint detection algorithm must also be capable of dealing with speaker-dependent

disturbances like coughs, gulps, tongue clicks, lip-smacks, etc. [Srydal, 1995].

Also note that the efficiency of accurate endpoint detection has a significant and

direct effect on the performance of the entire recognition system. In practice, the process

of accurate endpoint detection is not stable and many recognition faults (or

misclassifications) can be traced back to poor endpoint detection [Qiang, 1998].

Rabiner and Deller et al. reported the broad categories of low energy phonemes,

which usually cause endpoint detection failures [Rabiner, 1975; Deller, 2000]:

• Weak fricatives ({f, th, h}, such as /f/ located in the word, “half”).

• Weak plosive bursts ({p, t, k}, such as /p/, /t/ and /k/ present in the words,
“pan”, “left” and “kill” respectively).

• Final nasals ({m, n, ng}, such as /n/ present in the words, “pan” and
“down”), and

• Trailing vowels at the end (such as /u/ in “zoo”).

Ordinarily, zero-crossing rate and short-term energy can be combined to form

appropriate spatial or temporal features for determining the onset and termination of

speech boundaries [Qiang, 1998]. Note that these temporal features can be extracted

simply from the sample values of speech signal without transforming the signal into the

frequency domain.

Rabiner et al. proposed a fairly simple and reliable algorithm for detecting the

beginning and the termination of speech utterances in low noise environments (i.e., in a

SNR level of at least 30 dB), based on short-time energy and a zero-crossing rate of

speech [Rabiner, 1975]. This work mainly focused on the implementation of said

algorithm in MATLAB.

27

a. Short-term Energy Measure (STE Measure)

Short-term energy is a common parameter that has been used since the

1970s, especially to distinguish between voiced sounds and unvoiced sounds or silence

[Qiang, 1998]. Qiang et al. compared the performances of the following three short-time

energy measurements in endpoint detection and concluded that the absolute short-term

energy is the most effective energy parameter for this task.

• Logarithmic short-term energy: 2

1
log () ,

N

log
n

E s n
=

⎡ ⎤= ⎣ ⎦∑ (2.2)

• Squared short-term energy: 2

1
() ,

N

sqr
n

E s n
=

=∑ (2.3)

• Absolute short-term energy:
1

() .
N

abs
n

E s n
=

=∑ (2.4)

Consequently, the absolute short-term energy was selected as the short-

time energy parameter in this endpoint detection algorithm due to its simple

implementation and efficiency. The speech signal was first divided into 50% overlapping

frames of 10 ms and then passed through a rectangular window. The short-term absolute

energy was computed by summing the absolute magnitudes of speech samples in each

frame as shown in Eq. (2.4) above. Therefore, the short-time absolute energy can be

computed as follows:

1

() () ,
m

s
n m N

E s n w m n
= − +

= −∑ (2.5)

where w(m) refers to the rectangular window with the N-length frame duration ending at

n m= . The use of an absolute magnitude function rather than square or logarithm

functions simplifies the computations, thereby decreasing the computational load in

implementation.

b. Short-term Zero-crossing Rate (STZC Rate)
The number of zero-crossings, which is also a useful temporal feature in

speech analysis, refers to the number of times speech samples change sign in a given

frame. The rate at which zero-crossings occur is a simple measure of the frequency

content of a narrowband signal [Rabiner, 1978]. The short-term zero-crossing measure, as

formally defined in [Deller, 2000] for the N-length frame interval ending at n m= , is

28

[] []

1

sgn () sgn (1)1 ().
2

m

n m N

s n s n
ZCR w m n

N = − +

− −
= −∑ (2.6)

The multiplication by a factor of 1
N

is intended to take the average value

of the zero-crossing measure. Therefore, the factor of 1
N

 can be dropped off for

simplification in computation.

The zero-crossing rate is a useful parameter for estimating whether speech

is voiced or unvoiced [Deng, 2003]. Voiced speech has most of its energy collected in the

lower frequencies, whereas most energy of the unvoiced speech is found in the higher

frequencies [Rabiner, 1978]. Since speech is wideband, the zero-crossing rate

corresponds to the average frequency of the primary energy concentration in the signal.

Since high frequencies imply high zero-crossing rates and low frequencies imply low

zero-crossing rates, high and low zero-crossing rate correspond to unvoiced and voiced

speech, respectively.

c. Endpoint Detection Algorithm from STE and STZC Measures
A popular method for endpoint detection of speech boundaries was first

published by Rabiner and Sambur [Rabiner, 1975]. The short-term energy and zero-

crossing rate of speech have been extensively used to detect the endpoints of an utterance

since then.

This algorithm was adopted and modified to better locate the beginning

and the termination of speech from the ear-microphone data. This is a two-step search

algorithm where the short-time energy for a coarse search is first used. Then, the zero-

crossing measure fine-tunes the coarse boundaries expanding forward and backward. The

zero-crossing measure applied in the second search helps detect low-energy phonemes at

the beginning or end of the word, especially when dealing with weak fricatives (/f/, /th/,

/h/), plosive bursts (/p/, /t/, /k/) or final nasals (/m/, /n/, /ng/). Figure 2.6 shows short-term

energy and zero-crossing measures for a typical utterance of the word “left” from ear-

microphone data. The mean and the standard deviation of the short-time energy and zero-

crossing measures are first computed during the first 50 ms of recording, assuming there

29

is only background noise in that interval. An upper and lower threshold (shown as uT and

lT on the upper plot of Figure 2.6.) for the short-term energy and another threshold

(shown as zcT on the lower plot of Figure 2.6) for the zero-crossing measure are set based

on these statistics and experimental findings as follows:

 8 ,lT MINSTE= × (2.7)

 32 ,uT MINSTE= × (2.8)

 min(,mean() std())MINSTE IE STE STE= + (2.9)

 0.25IE = (2.10)

 min(,mean() std()),zcT IF ZCR ZCR= + (2.11)

 0.25 .IF N= × (2.12)

where N is the frame length; STE and ZCR stand for short-time energy and zero-

crossing rate, respectively.

50 100 150 200 250 300
-5

0

5

10

15
Short-term Energy for the word "Left"

A
bs

ol
ut

e
M

ag
ni

tu
de

Frame Number

50 100 150 200 250 300

0

10

20

30

40
Zero-crossing Rate for the word "Left"

N
um

be
r o

f z
er

o-
cr

os
si

ng
s

Frame Number

Tu

Tl

N1

N1

N2

N2
N3 N4

Tzc

Figure 2.6. Typical Example of the Use of Short-Term Energy and Zero-Crossing

Rate in Endpoint Detection.

30

The short-time energy curve is then searched to find the first and second

successive crossings of the upper threshold uT . Then, it is necessary to move backward

and forward from these first and second crossings, respectively, to seek the coarse

endpoints (shown as 1N and 2N), where the lower threshold lT is first exceeded. This

initial search yields the tentative endpoints, 1N and 2N shown as dotted lines in Figure

2.6. Next, the fine search on the zero-crossing plot is performed, moving toward the ends

from 1N and 2N for no more than 10 frames, examining the zero-crossing rate to find

three occurrences of counts above the threshold zcT . Last, the final endpoint estimate is

moved backward and/or forward to the time of the first threshold crossing if three such

occurrences are found. This is the case for 3N and 4N shown as solid lines in the lower

portion of Figure 2.6. The endpoints remain at the initial estimate 1N and 2N when three

such occurrences over the zero-crossing threshold are not found. The MATLAB code for

this detection algorithm is given in Appendix A.1.

Note that incorrect detection of speech boundaries in isolated word

utterances results in potentially two negative effects: increased computations and

misclassified recognitions [Ying, 1993]. In addition to the method of short-term energy

and zero-crossing rate, experiments were conducted with the modified Teager’s energy

for comparison.

d. Endpoint Detection from Modified Teager’s Energy

Assume a signal sample is shown as ()cos ,i ix A φ= Ω + where A is the

amplitude, Ω is the digital frequency and φ is the initial phase of the signal. In Teager’s

energy algorithm, the instantaneous energy iE of the sample ix is computed by [Ying,

1993]:

 ()

2
1 1

2 2

2 2

 sin

 .

i i i iE x x x

A

A

+ −= −

= Ω

≈ Ω

 (2.13)

Equation (2.13) shows that both the square of signal amplitude and the

square of corresponding frequency component are taken into account in Teager’s energy

31

computation. Ying et al. applied the frame-based Teager’s energy measure to the

endpoint detection problem and developed the following algorithm [Ying, 1993]:

1. Compute the power spectrum for each frame of speech data,

2. Weight each sample in the power spectrum with the square of the
frequency,

3. Take the square root of the sum of the weighted power spectrum.

The resulting summation in the last step above produces the energy of one speech frame

and this measure is used to determine the endpoints of an utterance.

In this study’s experiments, the speech data is split into frames of 20 ms

with 50% overlap. The Frame-based Teager Energy (FTE) was computed as stated above.

Silence energy is determined from the first 10 frames of speech. The same energy

thresholds and l uT T from the previous detection algorithm (Rabiner and Sambur

algorithm) are calculated using Eqs. (2.7) through (2.10) and a search scheme applied to

determine where the FTE measure first exceeds the upper threshold. Finally, endpoint

locations are refined by searching along the FTE curve for the location where the lower

threshold is first passed down. This method does not include the short-term zero-crossing

measure in the search scheme. The final algorithm implemented in MATLAB is included

in Appendix A.2.

In both detection algorithms, the assumption was that only noise is

detected when the segment identified by this search scheme is less than 100 ms, as the

words considered in this study all have a longer duration. Thus, such detections are

assumed to be false alarms and dismissed during the search.

 Experiments conducted on the same trials with these two detection

algorithms produced comparable results for locating the speech boundaries in the given

utterances. As a result, the STE and ZCR detection algorithm first described in Section

(II.B.2.c) was used for the cropping task as it was simpler. Once the words are cropped

the next step is to extract the speech features relevant to the data spectral and temporal

characteristics. Speech feature extraction and vector quantization steps are discussed in

the next chapter.

32

THIS PAGE INTENTIONALLY LEFT BLANK

33

III. SPEECH FEATURE EXTRACTION AND VECTOR
QUANTIZATION

A. INTRODUCTION

Linear Predictive Coding (LPC) coefficients, Reflection coefficients (RC),

Cepstral coefficients, LPC-derived Cepstral coefficients (LPC-CC), Mel-frequency

Cepstral coefficients (MFCC) and their variations are commonly used as speech feature

parameters.

Linear Predictive Coding (LPC) has been popular for speech compression,

synthesis and as well as recognition since its introduction in the 1960s because it offers a

reasonable engineering approach for speech signal analysis. Linear prediction models the

human vocal tract as an infinite impulse response (IIR) system that produces the speech

signal. In other words, LPC makes use of an autoregressive (pole only) model to estimate

a short-term spectral envelope for the speech spectrum with an emphasis on the peak

spectral values that characterize voiced sounds. The corresponding pole-only transfer

function of the spectral model has the following form [Gold, 2000]:

1

1() .
1

P
k

k
k

H z
a z−

=

=
−∑

 (3.1)

The linear prediction problem can be stated as finding the coefficients ka , which

minimizes the mean-squared prediction error of the speech signal ()s n in terms of the

weighted sum of its past samples [Rabiner, 1993].

For vowel sounds and other voiced portions of speech, which have resonant

frequencies and high degree of similarity over short time intervals at their pitch period,

linear predictive modeling produces an efficient representation of speech. However,

resonant frequencies vary among people. Hence, LPC-based speech features tend to

include speaker-dependency into modeling, which degrades the performance particularly

for a speaker-independent recognition system. Furthermore, the all-pole constraint of the

linear prediction model can cause poor modeling of spectral nulls in noisy environments

34

[Deller, 2000]. Hence, LPC parameters are not as popular today in speech recognition

although they are still widely used for compression [Picone, 1993].

Unlike LPC analysis, Cepstral Analysis provides more robust speech features in

that they are less dependent on speaker-dependent characteristics and improves

recognition in noisy environments. In addition, some weaknesses of LPC parameters can

be smoothed by using Cepstral parameters derived from LPC analysis [Davis, 1980;

Picone, 1993]. These two reasons mainly explain why cepstrum coefficients started to

replace the direct use of LPC coefficients as the premium speech features in Hidden

Markov Model (HMM) speech recognizers in the 1980s [Deller, 2000]. The cepstral

analysis approach is discussed next.

B. CEPSTRAL ANALYSIS
Among all popular speech parameters, the most functional and efficient ones

extract spectral information (in the frequency domain) from speech, because a more

concise and easier analysis of speech can be performed spectrally rather than temporarily

(in the time domain) [Vergin, 1999]. Although speech signals demonstrate a range of

inter-speaker variations for the same utterance in the time domain, this utterance still

exhibits consistency in the frequency domain, to some extent. For this reason, spectral

analysis is preferred over temporal analysis to discriminate between phonemes and

extract speaker-independent features from speech signal.

Cepstral analysis is a special case of homomorphic signal processing. A

homomorphic system is defined as a nonlinear system whose output is a linear

superposition of the input signals under a nonlinear transformation. Cepstral analysis has

become popular in speech recognition since its discovery in the late 1960s, due to the

powerful yet simple engineering model of human speech-production behind it [Rabiner,

1978; Picone, 1993]. According to this linear acoustic model, a speech signal is produced

by filtering an excitation waveform through the vocal tract filter as depicted in Figure 3.1.

35

Vocal Tract Filter
H(f)

Speech

signal, s(n)

Excitation

Waveform, e(n)

Vocal Tract Filter
H(f)

Speech

signal, s(n)

Excitation

Waveform, e(n)

Figure 3.1. Linear Acoustic Model of Human Speech-Production (After [Picone,
1993]).

In this model, the speech signal is expressed as the convolution of an excitation

signal ()e n with the vocal tract response ()h n . The excitation sequence is either a quasi-

periodic vocal cord pulse in the case of producing voiced speech or just random noise at

the vocal tract constriction, which generates unvoiced speech [Deng, 2003].

Homomorphic signal processing offers a fairly simple method, known as cepstral

deconvolution, to decouple the vocal tract response from the excitation response, thereby

enabling it to model the vocal tract characteristics better. The decomposition of a speech

signal ()s n into the excitation sequence ()e n and the vocal tract function ()h n can be

described as follows [Picone, 1993]:

 () () (),s n e n h n= ⊗ (3.2)

where the operator, “⊗ “ represents the convolution operation. Recall that the

convolution operation in time corresponds to a multiplication in the frequency domain.

Thus, Eq. (3.2) becomes

 () () ().S f E f H f= ⋅ (3.3)

Note that the complex speech spectrum ()S f is composed of a quickly varying

part, excitation spectrum ()E f (which corresponds to high frequency components) and a

slowly-varying part, vocal tract response ()H f (which corresponds to low frequency

components). Considering that the speech signal is real-valued, the logarithm of Eq. (3.3)

on both sides leads to

 log(()) log(() ()) log(()) log(()).S f E f H f E f H f= ⋅ = + (3.4)

Now that the signal components in Eq. (3.4) are linearly combined, a linear filter

(also known as liftering operation in speech engineering terminology) can be applied to

remove the noise-like, quickly-varying excitation part from the speech spectrum. Then,

36

the inverse Fourier transform is applied to the remaining component to compute the real

cepstrum. In short, under a cepstral transformation, the non-linear convolution of two

signals () ()e n h n⊗ becomes equivalent to the linear sum of the cepstral representations

of the signals, () ()e hC s C s+ . As a result, the real cepstrum is the inverse Fourier

transform of the logarithm of the power spectrum of a speech signal [Deng, 2003]:

1

2 /

0

1() log () ,
N

j kn N
s

k
c n S k e

N
π

−

=

= ∑ for 0,1,..., 1.n N= − (3.5)

Figure 3.2 shows a block diagram representation of the short-term real cepstrum

computation.

Real CepstrumShort-term
DTFT ()log . IDTFT()s n

();sc n m

Window

Short-time

Frames

Real CepstrumShort-term
DTFT ()log . IDTFT()s n

();sc n m

Window

Short-time

Frames

Figure 3.2. Real Cepstrum Computation (After [Deller, 2000].).

Figure 3.3 plots the real cepstrum computed for the voiced phoneme, /ae/ in the

word “pan.”

37

0 50 100 150 200 250 300
-2.5

-2

-1.5

-1

-0.5

0

0.5

1
Real Cepstrum for the voiced phoneme, /ae/ in the word, "pan"

1st Peak
2nd Peak

Cepstral coefficient number

A
m

pl
itu

de

0 50 100 150 200 250 300
-2.5

-2

-1.5

-1

-0.5

0

0.5

1
Real Cepstrum for the voiced phoneme, /ae/ in the word, "pan"

1st Peak
2nd Peak

Cepstral coefficient number

A
m

pl
itu

de

Figure 3.3. Real Cepstrum Computed for the Voiced Phoneme /ae/ in the Word “pan.”

Figure 3.3 illustrates the fact that the dominant contents of the cepstra are located

near the origin, and that a small number of cepstrum coefficients can be used to provide

enough spectral information about the phoneme /ae/. In addition, pitch period information

may be extracted by the spacing between successive cepstral peak locations (in this case,

the pitch period is about 75 samples or equivalently 9.375 ms).

Figure 3.4 plots the first 20 coefficients of the real cepstrum computed above,

which shows that the first 8-10 coefficients carry most of the spectral information about

the voiced phoneme /ae/.

38

0 2 4 6 8 10 12 14 16 18 20
-2.5

-2

-1.5

-1

-0.5

0

0.5

1
First 20 coefficients of the real cepstrum computed for the phoneme, /ae/

Cepstral coefficient number

A
m

pl
itu

de

0 2 4 6 8 10 12 14 16 18 20
-2.5

-2

-1.5

-1

-0.5

0

0.5

1
First 20 coefficients of the real cepstrum computed for the phoneme, /ae/

Cepstral coefficient number

A
m

pl
itu

de

Figure 3.4. The First 20 Coefficients of the Real Cepstrum for the Phoneme /ae/.

1. Mel-Frequency Cepstral Coefficient (MFCC) Computation

In a broad sense, feature extraction aims for data reduction by converting the

input signal into a compact set of parameters while preserving spectral and/or temporal

characteristics of the speech signal information. Cepstral analysis has been extensively

used for feature extraction in speech recognition. Perhaps, the most popular derivation of

cepstral analysis combines the cepstrum with a nonlinear frequency-warping, known as

mel-scale conversion [Deller, 2000]. The resulting coefficients are called Mel-frequency

Cepstral Coefficients (MFCC) and these coefficients were used in this study.

The motive behind the derivation of MFCC’s lies in the efforts to mimic human

ear operation, and more specifically, the critical bands [Davis, 1980]. First, the spectral

resolution of the human auditory system is not linear along the frequency axis [Deng,

2003]. In other words, human sound perception is nonlinear. For example, humans can

easily discriminate between closely spaced low frequency tones such as 300 and 350 Hz

39

but not between closely spaced high frequency tones such as 3000 and 3050 Hz. Second,

the human ear has some critical bands, meaning that only the stronger of two closely-

spaced frequency tones falling into the same critical band will be perceived by the ear.

The critical bands of the human ear were experimentally determined by observing the

frequency band in which the perception of subjects change abruptly as the frequency of a

sound is varied [Deller, 2000]. As a result, the mel-scale conversion is expressed as linear

frequency spacing below 1 kHz and a logarithmic spacing above 1 kHz to mimic the

spectral characteristics of the human ear. Simply, it maps an acoustic frequency to a

perceptual frequency scale as follows [O’Shaughnessy, 1987; Picone, 1993]:

 10
()2595 log 1 .
700Mel

f HzF ⎛ ⎞= ⋅ +⎜ ⎟
⎝ ⎠

 (3.6)

In analogy, the operation of the inner ear is often viewed as a bank of bandpass

filters spaced linearly at low frequencies and logarithmically at high frequencies. Davis et

al. introduced the mel-scale critical-band filtering with a simple set of 20 triangular

bandpass filters [Davis, 1980]. Davis computed MFCC parameters for monosyllabic

word recognition as follows:

20

1

1cos , for 0,1, 2,..., ,
2 20n k

k

MFCC X n k n Mπ
=

⎡ ⎤⎛ ⎞= − =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑ (3.7)

where M is the number of MFCC coefficients and kX , 1, 2,..., 20,k = represents the log-

energy output of the thk filter.

The choice of parametric representations may significantly affect recognition

performances in isolated word recognition applications. Note that several feature

representations exist for parametrically representing the speech signal in speech

recognition. Davis et al. tested and compared the performances of mel-frequency

cepstrum coefficients (MFCC), linear frequency cepstrum coefficients (LFCC), linear

prediction coefficients (LPC), linear prediction cepstrum coefficients (LPC-CC), and

reflection coefficients (RC) for monosyllabic word recognition with a template-based,

dynamic time warping recognizer [Davis, 1980]. Their primary conclusion was that the

MFCC parameters outperform other parameter types in speech recognition applications

40

with a compact set of coefficients capturing the information relevant for recognition. The

basic conclusion of this paper is still considered valid today although there have been

many improvements in speech signal representations since the early 1980s

[Karnjanadecha, 2001].

According to Davis, MFCCs allow for better suppression of insignificant spectral

variation in the higher frequency bands and form a particularly compact representation.

Davis also reported that the Euclidean distance metric defined on the cepstrum

parameters apparently allows a better separation of phonetically distinct spectra.

Motivated by Davis et al. work, mel-frequency cepstral coefficients and their

dynamic derivatives were used for feature extraction from the ear-microphone data

during this study. Figure 3.5 shows the block diagram for the MFCC feature extraction

step by step. The key difference between MFCC’s and the cepstral coefficients lies in the

use of a mel-scale filter bank. This study’s MATLAB implementation for MFCC feature

extraction is a modification of that available in the Voice Toolbox [Brookes, 1997] and is

included in Appendix B.1.

CMCCMC

Figure 3.5. Block Diagram for the MFCC Feature Extraction.

The details of the block diagram are described below.

• Framing: First, the cropped speech data is blocked into frames of
256N = samples (corresponding to 32 ms) with 40% overlapping to

better capture temporal changes from frame to frame.

• Windowing: Next, each frame is multiplied by a window function for
short-time analysis. Applying a window which tapers down at the ends
minimizes the spectral distortion due to discontinuities or abrupt changes
at the window endpoints. Typically, a Hamming window is a good choice
in speech analysis. Thus, a Hamming window of the form was selected:

41

20.54 0.46cos , 0,1,..., 1.

() 1
 0 otherwise.

n n N
w n N

π⎧ ⎛ ⎞− = −⎪ ⎜ ⎟= −⎝ ⎠⎨
⎪⎩

 (3.8)

The window length is chosen as a trade-off between frequency resolution
and temporal resolution [Becchetti, 1999]. Recall that a short duration
window allows for the detection of the amplitude decay of formants with
better temporal resolution. However, using a longer window allows for
better spectral resolution. Although a longer window is useful for
capturing fine spectral variations, it is also in contrast to the requirement
for the quasi-stationary analysis of signal segments. As a result, a window
length equal to the frame length (256N =) was selected.

• Fast Fourier Transform (FFT): the Fast Fourier Transform is a fast
implementation of the Discrete Fourier Transform (DFT) which converts
N-samples of frames into frequency spectrum.

• Mel-frequency Warping: The mel-scale filter bank implementation used in
this study includes 24 triangular filters non-uniformly spaced along the
frequency axis, as shown in Figure 3.6.

• Log Energy Computation: This step applies a logarithm transformation to
the absolute magnitude of the coefficients obtained after mel-scale
conversion. The absolute magnitude operation discards the phase
information while the logarithm operation performs a dynamic
compression, making feature extraction less sensitive to speaker-
dependent variations. [Becchetti, 1999].

• Mel-frequency Cepstrum Computation: Mel-frequency cepstral
coefficients are computed by applying the inverse FFT to the logarithm of
the magnitude of the filter bank outputs. Note that the inverse DFT
reduces to a Discrete Cosine Transform (DCT) operation as the log
magnitude spectral of the coefficients are real and symmetric [Becchetti,
1999]. Moreover, the DCT has the advantage of producing highly
uncorrelated features [Jayant, 1984; Deng 2003]. The resulting mel-
frequency cepstral coefficients are computed as follows:

()
1

(2 1)(1)() () log () cos , 1,..., ,
2

N

k
n

n kc k w k x n k L
N

π
=

− −⎛ ⎞= =⎜ ⎟
⎝ ⎠

∑ (3.9)

where

1 , 1.
()

2 , 2 .

k
N

w k
k L

N

⎧ =⎪⎪= ⎨
⎪ ≤ ≤⎪⎩

 (3.10)

 256 (window length).N = (3.11)

42

 24 (Number of filters in the mel-scale filter bank),L = (3.12)

and ()kx n represents the output of the thk filter in the filter band.

24 48 72 96 120 128 14024 48 72 96 120 128 140

Figure 3.6. Mel-scale Filter Band

The zero-order MFCC coefficient 0c represents the average log energy of
the frame. This coefficient is usually discarded from the feature space
because absolute power measures are not reliable in speech recognition
[Picone, 1993; Becchetti, 1999]. Experimental results demonstrate that 12
coefficients were sufficient to represent the speech data under
investigation. Therefore, the zero-order coefficient was excluded and the
remaining first 12 MFCC coefficients kept for a compact representation.

• Cepstral Mean Correction (CMC): It is inevitable that a speech signal is
subject to some spectral distortions during recording and pre-processing
prior to recognition due to microphone offsets, environmental effects (like
reverberation) and/or transmission channel [Becchetti, 1999]. The cepstral
mean correction was applied to compensate for such distortion by
subtracting the cepstral mean of a frame from the cepstral coefficients for
additional robustness in recognition.

• Delta-MFCC Computation: Feature vectors consisting of only MFCC
parameters appear to provide smooth estimates of the local spectrum.

43

However, these features do not contain information regarding the speech
signal dynamic evolution, which also carries relevant information in
speech recognition [Becchetti, 1999]. Therefore, improvements in
recognition performance can be obtained by taking into account the
dynamic characteristics of the MFCC features [Deng, 2003; Furui, 1992].
The simplest approach to obtain these dynamic features takes the basic
difference of coefficients between consecutive frames. The resulting
coefficients, known as dynamic or delta parameters, reflect cepstral
changes over time. Furui et al. reported significant improvements in
recognition due to the addition of the differential features to the
instantaneous coefficients [Furui, 1986]. However, researchers have also
argued that the basic differencing operation is too sensitive to random
inter-frame variations and should be replaced by a smoother estimate of
the local time-derivative [Furui, 1986; Deller, 2000; Deng, 2003].
Consequently, most speech recognition systems today incorporate delta
features as an add-on to the static parameters such as MFCCs [Gold,
2000]. For these reasons, 12 delta-MFCC parameters were included in this
study’s set of speech features in addition to the regular MFCC parameters.
The delta-MFCC coefficients are computed using the following regression
formula:

()

1

2

1

,
2

M

k k

k M

c c
d

α α
α

α

α

α

+ −
=

=

−
=
∑

∑
 (3.13)

where the configuration parameter for the difference length is 4M = and
kd represents the delta coefficient computed in terms of the corresponding

static coefficients kc α+ to kc α− .

The regression formula shown in Eq. (3.13) is equivalent to passing the
static MFCC coefficients through a linear differential filter with impulse
and magnitude response are shown in Figure 3.7. One potential problem
with the use of delta MFCC parameters is that they are not in the same
range of amplitude with the static MFCC parameters, which results in poor
vector quantization. Through experiments, it was found that the delta
parameters approach the range of static parameters when they are
weighted by a factor of six.

44

Differential FilterDifferential Filter

Figure 3.7. Differential Filter Used to Compute Delta-MFCC Parameters.

Figure 3.8 shows a typical example of the resulting 12 MFCC and 12 weighted

delta-MFCC parameters extracted from the ear-microphone data for the spoken word

“pan.” Figure 3.9 plots the cepstrogram for the same 24 parameters.

45

0
5

10
15

20
25

0

10

20

30
-4

-2

0

2

4

6

Coefficient Number

12 MFCC plus 12 delta-MFCC parameters for the word "Pan"

Frame Number

A
m

pl
itu

de

Figure 3.8. MFCC and Delta MFCC Parameters Extracted from the Ear-Microphone

Data of the Spoken Word “Pan.”

Time (s)

M
el

-c
ep

st
ru

m
 c

oe
ffi

ci
en

t

12 MFCC plus 12 delta-MFCC parameters for the word "Pan"

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

5

10

15

20

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 3.9. Cepstrogram Plot of the MFCC and Delta MFCC Parameters Extracted

from the Word “Pan.”

46

2. LPC-derived Cepstral Coefficients

Recall that LPC model can be used to compute a smoothed version of cepstral

coefficients, known as LPC-derived Cepstral Coefficients (LPC-CC). In addition to

MFCC parameters, LPC-CC parameters were tested for performance comparison in

recognition. First, LPC coefficients were computed by using the auto-correlation method

and Levinson-Durbin recursion. The use of the auto-correlation method guarantees that

the LPC model is inherently stable [Picone, 1993]. Second, the LPC parameters are

converted to 12 cepstral parameters by using the following relation [Deller, 2000]:

 () () () ()
1

1
; ; ; ; , 1, 2,... ,

n

k

kn m a n m k m a n k m n M
n

γ γ
−

=

⎛ ⎞= + − =⎜ ⎟
⎝ ⎠

∑ (3.14)

where ();a n m represents the LP coefficients and M is the order of the LPC model.

Next, these cepstral coefficients were weighted by a window function (the raised sine

lifter) ()w nγ , which tapers at both ends. Equations (3.15) and (3.16) show this window

function ()w nγ and the resulting weighted cepstral coefficients ();w n mγ , respectively:

 () 1 sin ,
2
M nw n

Mγ
π⎛ ⎞= + ⎜ ⎟
⎝ ⎠

 (3.15)

 () () (); ; .w n m n m w nγγ γ= (3.16)

Finally, 12 delta LPC-CC parameters were computed by using the following

difference function:

 () () ()()1; ; 1 ; 1 , 1, 2,..., ,
2w w wn m n m n m n Mγ γ γ∆ = + − − = (3.17)

and included in the feature vector as done previously with the MFCC parameters. The

MATLAB implementation used for LPC-CC feature extraction was that available at

[Sorensen, 2005] and is included in Appendix B.2. Experimental results showed that the

set of MFCC parameters outperformed the LPC-CC parameters in isolated word

recognition by 7%, on average.

The next section discusses vector quantization and codebook generation.

47

C. VECTOR QUANTIZATION AND CODEBOOK GENERATION

Pattern recognition provides the technical foundation that underlies vector

quantization techniques in speech recognition [Gold, 2000]. The goal of pattern

recognition is to classify objects of interest into a number of classes (or clusters). In this

case, the objects of interest are sequences of feature vectors extracted from the ear-

microphone data using the techniques described in the previous section.

A supervised pattern recognition system is trained with labeled samples; that is,

each input pattern has a class label associated with it. Pattern recognition can also be

performed in an unsupervised fashion when information about the class membership of

the training vectors is not provided. In the case of speech recognition, the problem of

automatically separating training data into classes is often solved by a clustering

algorithm in an unsupervised fashion [Deller, 2000]. For example, vector quantization is

such a technique in which speech features vectors are clustered around some centroid

locations. The resulting cluster centers constitute a codebook. Then, the codebook can be

used to index a new feature vector by finding the cluster center (centroid) that is closest

in some norm to the new vector.

1. Vector Quantization (VQ)

Quantization converts a continuous-amplitude signal to one of a set of discrete-

amplitude signals, which is different from the original signal by the quantization error.

The independent quantization of each signal parameter separately is termed scalar

quantization, while the joint quantization of a vector is termed vector quantization (VQ)

[Makhoul, 1985]. Vector quantization can be thought of as a process of redundancy

removal that makes the effective use of nonlinear dependency and dimensionality by

compression of speech spectral parameters. Generally, the use of vector quantization

results in a lower distortion than the use of scalar quantization at the same rate [Sayood,

2000].

Vector quantization has been significantly popular in speech coding and

recognition after the introduction of LPC [Makhoul, 1985]. The VQ problem can be

summarized simply in the following manner. Suppose that (1) (2) (), ,...,
TLx x x x⎡ ⎤= ⎣ ⎦ is an

L-dimensional column vector whose components { }() ,1ix i L≤ ≤ are real-valued,

48

continuous-amplitude random variables. In vector quantization, the vector x is mapped

to another real-valued, discrete-amplitude, L-dimensional column vector, y . Thus, the

quantization function is of the form

 ().y Q x= (3.18)

Typically, y takes on one of K distinct values such that { }() , 1i
jY y j K= ≤ ≤ ,

where jy represents a vector of the form (1) (2) (), ,...,
TL

j j j jy y y y⎡ ⎤= ⎣ ⎦ . The set Y is referred

to as the codebook, and each jy is a code vector. To generate such a codebook, the

L-dimensional space LS of the speech feature vector x is partitioned into K mutually

exclusive regions or clusters such that { },1 ,jC j K≤ ≤ and a code vector jy is associated

with each cluster jC . The vector quantizer then assigns the code vector jy to the feature

vector ix if the feature vector ix is in the cluster jC , i.e.,

 () , if .j jQ x y x C= ∈ (3.19)

For 1L = , vector quantization reduces to scalar quantization. Figure 3.10

illustrates a typical example of uniform clustering of two-dimensional space ()2L = for

vector quantization. This illustration is a uniform clustering in that the two-dimensional

space is partitioned into four clusters equally. Unfortunately, speech data are not

generally this well-behaved in terms of uniform clustering and low-dimensionality

[Gold, 2000].

49

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

x axis

y
ax

is

Typical Example for Two-dimensional K-means Clustering

* samples
o centroid
 locations

2nd Cluster

3rd Cluster 4th Cluster

1st Cluster

Figure 3.10. A Typical Example of Uniform Clustering of Two-Dimensional Space for

Vector Quantization.

2. Distortion Measure

When x is quantized as jy , a quantization error results and a distortion measure

(or a distance measure) (,)jd x y can be defined between feature vector x and the code

vector (or codeword) jy .

The squared Euclidian distance is one of the most popular distortion measures in

speech recognition applications. The quantized code vector is selected to be the closest in

Euclidean distance from the input speech feature vector. The Euclidean distance is

defined by:

 () ()2() ()

1

, ,
L

i i
j j

i

d x y x y
=

= −∑ (3.20)

50

where ()ix is the thi component of the input speech feature vector, and ()i
jy is the thi

component of the codeword jy . A vector quantizer is said to be optimal if it meets the

following two necessary conditions.

• Nearest Neighbor Condition: The optimal quantizer is realized by using a
minimum distortion or nearest neighbor condition such that

 () , iff (,) (,) for and 1,2,..., .j j kQ x y d x y d x y j k k K= ≤ ≠ ∀ = (3.21)

Eq. (3.21) states that the vector quantizer selects the code vector that
results in the minimum distortion with respect to x . Thus, the cluster jC
should consist of all feature vectors that are closer to jy than any of the
other code vectors such that:

 { }2 2: 1, 2,..., .j j kC x x y x y k K= − ≤ − ∀ = (3.22)

• Centroid Condition: Each vector jy is chosen to minimize the average
distortion in cluster jC . Such a vector is called the centroid of the cluster

jC , which is equivalent to the statistical mean of the cluster members.
Thus, the centroid of the cluster jC is given by:

 () for 1, 2,..., .
1

m j

m j

m
x C

j j

x C

x
y centroid C j K∈

∈

= = =
∑

∑
 (3.23)

A popular method for codebook design is an iterative clustering algorithm known

as the K-means algorithm. This algorithm divides the set of training feature vectors into

K clusters jC in such a way that the two necessary conditions for optimality are satisfied.

The K-means algorithm is described next.

3. K-Means Algorithm
The K-means algorithm is widely used in speech processing as a dynamic

clustering approach [Deller, 2000]. “K” is pre-selected and simply refers to the number of

desired clusters. Linde, Buzo and Gray et al. were first to suggest the use of the K-means

algorithm for vector quantization with a large class of distortion measures [Linde, 1980].

Consequently, the K-means algorithm has also been named after Linde, Buzo and Gray as

the generalized LBG algorithm in speech processing literature.

51

The LBG algorithm was chosen to execute the vector quantization step for this

research. The objective of the LBG algorithm is to define the regions jC and their

representatives jy so that the overall distortion is minimized. One way to compute the

code vectors of the training set is to start with an arbitrary random initial estimate of the

code vectors and to apply the nearest neighbor condition and the centroid condition

iteratively, until a termination criterion is satisfied [Theodoridis, 2003].

Thus, a set of K code vectors is discovered into which all speech feature vectors in

the training set can be quantized with minimum distortion. This set of code vectors

represents a codebook for the feature space. Figure 3.11 shows the flow diagram for the

K-means clustering using the generalized LBG algorithm.

Start

Initialization

Search Nearest Neighbor

For Vector Coding

Compute

Squared-Euclidean Distance

Codebook Updating

Test for
Termination

Stop

No

Yes

Start

Initialization

Search Nearest Neighbor

For Vector Coding

Compute

Squared-Euclidean Distance

Codebook Updating

Test for
Termination

Stop

No

StartStart

InitializationInitialization

Search Nearest Neighbor

For Vector Coding

Search Nearest Neighbor

For Vector Coding

Compute

Squared-Euclidean Distance

Compute

Squared-Euclidean Distance

Codebook UpdatingCodebook Updating

Test for
Termination

Test for
Termination

StopStop

No

Yes

Figure 3.11. Flow Diagram for the K-means LBG Clustering Algorithm.

The operation of the generalized LBG algorithm is summarized as follows.

[Deller, 2000].

52

• Initialization. Choose an arbitrary (random) set of K code vectors, say
, 1, 2,..., ,jy j K= where jy represents the initial centroid (or initial mean

value) of the feature vectors in cluster jC .

• Iteration.

1. Apply the nearest neighbor rule for each feature vector x in the
training set to quantize x into code vector jy , where

 []arg min (,) , 1, 2,... .i
i

j d x y i K= = (3.24)

Here (,)d ⋅ ⋅ represents the squared Euclidean distance in the feature space.

2. Compute the total distortion that has occurred as a result of this
quantization in terms of the squared Euclidean distance,

 (), ,D d x Q x= ⎡ ⎤⎣ ⎦∑ (3.25)

where the sum is taken over all vectors x in the training set and ()Q x
indicates the code vector jy to which x is assigned in the current
iteration.

3. Apply the centroid condition for updating the codebook. For each
cluster, compute the centroid of all vectors x such that

() ()j jy centroid C Q x= = during the current iteration. Update the
codebook based on the new set of centroids and return to Step 1.

• Termination: Iterations in step 1 through 3 repeat until a specific

termination criterion is met. Termination criterion might be determined in
various ways, such as reaching a maximum iteration number or having a
sufficiently small squared Euclidean distance. Specifically, the goal is to
terminate the iteration when the difference between the updated code
vectors and the previous code vectors is sufficiently small.

Like many other numerical minimization algorithms, the K-means algorithm can

converge to a local optimum instead of a global optimum based on the starting point

(randomly-selected initial codebook). The distortion measure is likely to converge

towards the local minimum closest to the initial codebook. For this reason, the algorithm

should be executed several times with different initial codebooks to achieve some type

global optimality. Then, it is possible to choose the optimum codebook, which results in a

minimum overall distortion.

53

4. Codebook Generation from Speech Features

Since the discrete observation Hidden Markov Models (HMM) classifier will be

used to recognize the words of interest, this study is restricted to the production of

discrete observation symbols as input to the classifier. In other words, the naturally

occurring continuous-valued observation vectors should be quantized into indices of a

codebook before classification.

Next, the utilization of vector quantization in this study is detailed. A training

matrix of size () by F T is formed by concatenating the first 12 MFCC and 12 delta-

MFCC parameters extracted from all the training utterances. Each column of this training

matrix represents F speech features of a given frame and T is the number of all frames.

Given the size of the codebook K , this randomly-selected training matrix is used to

generate the codebook representing the acoustic information of all the words of interest.

To train the codebook properly, the training feature vectors should span the anticipated

range of acoustic information used for recognition. Two thirds of the overall data is

randomly chosen to ensure that the training data for codebook generation is sufficiently

large. In addition, it is also necessary to choose K random code vectors as initial

conditions.

Each feature vector in the training matrix is then clustered based on the squared

Euclidean distance between a training vector and each of the code vectors in the

codebook. Once all training vectors have been labeled with the corresponding code

vectors, the total distortion is computed by calculating the squared Euclidean distance.

Summation of all these distances represents the total quantization error of the codebook.

The mean of each cluster’s members is computed to find the centroid location and

each centroid location replaces the corresponding old code vector. The absolute

difference between the updated code vectors and the previous code vectors determines

the number of repetitions required before terminating the algorithm.

At this point, an important issue is to decide upon the number of required code

vectors (centroids) in the codebook for a quality representation of speech features. One

measure of the quality of a codebook is the average distance of a feature vector in the

training data from its corresponding code vector. This figure is often called the codebook

54

distortion. Obviously, the smaller the distortion, the more accurately the centroids

represent the vectors they replace. A plot of the average distortion versus codebook size

for this research is shown in Figure 3.12.

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Codebook Size

E
uc

lid
ea

n
D

is
ta

nc
e

Distance vs. Codebook Size

Figure 3.12. Average Distortion versus Codebook Size.

Note that the performance of any codebook would deteriorate if it is used with

feature types for which it has not been designed [Makhoul, 1985].

Generally, a codebook with size larger than the number of phonemes (basic

speech units) in the English alphabet is preferred to account for the temporal and spectral

variability in speech [Rabiner, 1993]. Vector quantization provides a means to reduce

storage for speech information, discrete representation and reduced computation for

speech modeling. However, Note that vector quantization also causes an inherent

distortion in representing the original feature vectors and requires training time to

generate a proper codebook.

55

Reasonably, it should be intended to keep the codebook as small as possible

without decreasing performance since a large codebook implies increased computation

and training time. Note that the centroids loosely correspond to different acoustic

phonemes in the speech. Thus, the proper codebook size can be determined by examining

the acoustic complexity of the vocabulary. If the vocabulary is small, fewer symbols

might be sufficient [Deller, 2000].

Consequently, considering all the VQ issues discussed above, a codebook of 128

code words was generated by using the K-means (LBG) algorithm on the training

sequence. The MATLAB implementations used for K-means algorithm and codebook

generation were those available at [Sorensen, 2005] and are included in Appendices B.3.

and B.4., respectively.

Next, the continuous-valued feature vectors on the testing sequence were replaced

with the codebook indices so as to obtain discrete symbols for classification, as shown in

Figure 3.13.

Codebook
K vectors

K-means
Clustering
Algorithm

Vector
Quantization

Training set of

feature vectors
{ }1 2, , ..., LX x x x=

Codebook indices

1 k K≤ ≤

Testing set of

feature vectors

Squared-Euclidean
Distance () , d ⋅ ⋅

Squared-Euclidean
Distance () , d ⋅ ⋅

Codebook
K vectors

K-means
Clustering
Algorithm

Vector
Quantization

Training set of

feature vectors
{ }1 2, , ..., LX x x x=

Codebook indices

1 k K≤ ≤

Testing set of

feature vectors

Squared-Euclidean
Distance () , d ⋅ ⋅
Squared-Euclidean
Distance () , d ⋅ ⋅

Squared-Euclidean
Distance () , d ⋅ ⋅
Squared-Euclidean
Distance () , d ⋅ ⋅

Figure 3.13. Block Diagram for Vector Quantization of Speech Feature Vectors (After

[Rabiner, 1993]).

Vector quantization converts the speech feature vectors (one feature vector per

frame) to the discrete observation sequence { }1 2, ,..., ,...,t TO o o o o= where each of the

variables to may only take integer values k from the trained codebook index for

1 k K≤ ≤ . Now that a discrete set of symbols associated with each speech signal exists, it

56

is possible to build a discrete-symbol Hidden Markov Model (HMM) classifier. The next

chapter discusses how to build such a HMM classifier for isolated word recognition.

57

IV. HIDDEN MARKOV MODELS (HMM) CLASSIFIER FOR
ISOLATED WORD RECOGNITION (IWR)

A. INTRODUCTION TO HMM

Natural speech is a time-varying and non-stationary signal. Speech signal

modeling helps characterize a set of distinct sounds inherent in speech, such as

phonemes, syllables or other subword units thanks to their distinguishing acoustic

representations. The fundamental problem in speech signal modeling is that the temporal

structure of a specific speech sound is not thoroughly well-defined or easily-predictable

due to a wide range of variability in its nature. When all combined, phonetic variability

(due to the acoustic differences of the same phoneme in different words), background

noise (owing to the microphone or channel distortion), intra-speaker variability (because

of the changing physical or emotional condition of the same speaker) and most

importantly inter-speaker variability (as a result of different utterances of the same word

by different speakers) have tremendous adverse impact on the success of any speech

signal model in use. Figure 4.1 illustrates the speaker-variable nature of speech on the

different utterances of the same word “Right” spoken by four speakers. Although it is

clearly seen that all the waveforms in Figure 4.1 have a common temporal structure, it is

possible to observe the significant variations over time in detail from one repetition of the

word to the other.

In a broad sense, signal models can be categorized into two classes; namely

deterministic models and statistical models [Rabiner, 1989]. In the first class, the

Dynamic Time Warping (DTW) approach provides a straight-forward, non-parametric,

template-based model which aims to match the incoming speech to the distinct templates

generated by normalizing time variations of speech sounds. The templates are generated

via training and generally represent coarse speech units like words. Although the DTW

approach is relatively simple and straightforward, it has a number of known limitations in

speech recognition due to the variability in speech patterns [Gold, 2000; Deller, 2000].

58

0 500 1000 1500 2000 2500
-1

0

1
The word "Right" spoken by four diferent speakers

0 500 1000 1500 2000 2500
-2

0

2

0 500 1000 1500 2000 2500
-1

0

1

0 500 1000 1500 2000 2500
-0.5

0

0.5

Am
pl

itu
de

Speech Samples

0 500 1000 1500 2000 2500
-1

0

1
The word "Right" spoken by four diferent speakers

0 500 1000 1500 2000 2500
-2

0

2

0 500 1000 1500 2000 2500
-1

0

1

0 500 1000 1500 2000 2500
-0.5

0

0.5

Am
pl

itu
de

Speech Samples
Figure 4.1. Inter-Speaker Temporal Variability in the Word “Right” Spoken by Four

Different Speakers.

The second class of statistical speech signal models better accounts for non-linear

variability in speech waveform, thereby outperforming the models of the first class. Most

statistical approaches inherently model speech as being generated based on some

probability distributions. The use of Artificial Neural Networks (ANN) and the Hidden

Markov Models technique have mainly constituted relatively elaborate and yet

extensively-used statistical models in speech recognition field thus far [Deller, 2000].

The basic theory behind the Hidden Markov Models (HMM) dates back to the

late 1900s when Russian statistician Andrei Markov first presented Markov chains.

Baum and his colleagues introduced the Hidden Markov Model as an extension to the

first-order stochastic Markov process and developed an efficient method for optimizing

the HMM parameter estimation in the late 1960s and early 1970s [Deller, 2000]. Baker at

Carnegie Mellon University and Jelinek at IBM provided the first HMM implementations

to speech processing applications in the 1970s [Rabiner, 1993]. Proper credit should also

59

be given to Jack Ferguson at the Institute for Defense Analysis for explaining the

theoretical aspects of three central problems associated with HMMs, which will be

further discussed in the following sections [Rabiner, 1989].

The technique of HMM has been broadly accepted in today’s modern state-of-the-

art ASR systems mainly for two reasons: its capability to model the non-linear

dependencies of each speech unit on the adjacent units, and a powerful set of analytical

approaches provided for estimating model parameters.

This research strictly deals with a discrete observation HMM implementation of

an Isolated Word Recognition (IWR) system to justify the effectiveness of the airflow

signals collected within the external air canal for speech recognition. Each word of

interest consists of a sequence of phonemes and each phoneme is related to the values of

the features extracted from an acoustic speech signal. Ordinarily, the method of HMM

makes it possible to capture the non-linear variability in pronunciations (or utterances)

using probabilities. The underlying assumption of the HMM approach is that the speech

signal can be characterized as a random stochastic process if it is considered to be a

sequence of quasi-stationary sounds. In other words, the HMM can be employed as the

piecewise stationary model of a nonstationary speech signal [Deng, 2003]. Further, it is

then possible to estimate the parameters of this stochastic process in a well-defined linear

model structure [Rabiner, 1989].

This chapter first starts with the definition of the isolated word recognition (IWR)

and presents the preliminary notations that will be used in the discussions of the Markov

Process and Hidden Markov Model. Next, the Discrete-time Markov process is

introduced and the ideas to the Hidden Markov Model (HMM) extended.

Understanding the HMM framework is essential to the successful recognition of

the airflow signals collected within the external air canal in this research. The three

central problems associated with decoding the hidden state sequence, recognition and

training of the HMM are discussed. Efficient solution algorithms to these problems are

detailed. Also explained are some important implementation issues, such as scaling and

training with multiple observation sequences. The chapter concludes with the HMM

application to the isolated word recognizer (IWR) used in this research.

60

1. Definition of the IWR Problem

In an IWR system, the goal is to preserve the temporal and spectral information

needed to determine the phonetic identity of speech units and ignore factors like the

background noise distortion or undesirable speaker-dependent impacts. In practice, a

model is constructed for each word from a small vocabulary. Thus, each word has a

probabilistic model of some observable symbol sequence. The task of the Isolated Word

Recognition (IWR) system can be defined as finding the best matching word out of an L -

word vocabulary whose model is most likely to generate the given observation sequence

of feature vectors extracted from a speech signal. Figure 4.2 illustrates the simplified

mechanism of a discrete observation HMM classifier for IWR task works.

Phonemes

Vector
Quantized
Features

/m/ /u/ /v/

HMM

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0
-0 . 5

-0 . 4

-0 . 3

-0 . 2

-0 . 1

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

Acoustic
Speech
Signal

Utterance of the word “Move”

Phonemes

Vector
Quantized
Features

/m/ /u/ /v/

HMM

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0
-0 . 5

-0 . 4

-0 . 3

-0 . 2

-0 . 1

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

Acoustic
Speech
Signal

Utterance of the word “Move”

Figure 4.2 An Illustration of a Discrete Observation HMM Classifier for IWR.

Assume that an observation sequence (or a set of symbols) corresponds to a set of

feature vectors extracted from an acoustic signal. Let this observation sequence be

represented by { }1 2, ,..., MO o o o= . Further, assume that the models of the words to be

recognized correspond to { }1 2, ,..., NW w w w= . Then, the following equation estimates the

61

most likely word out of the L -word vocabulary, given the observation sequence O

[Jelinek, 1997].

 ()ˆ arg max .
W L

w P W O
∈

⎡ ⎤= ⎣ ⎦ (4.1)

By applying the Bayes Rule, () () ()
()

P y x P x
P x y

P y
= to Eq. (4.1), the recognition

task transforms to the following equation:

 () () ()
()

ˆ arg max arg max .
W L W L

P O W P W
w P W O

P O∈ ∈

⎡ ⎤
⎡ ⎤= = ⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦
 (4.2)

In Eq. (4.2), ()P W is the prior probability of having that particular model, which

produces the word to be recognized. Fortunately, ()P O , the probability of the

observation sequence, can be ignored since this probability is constant when attempting

to maximize over the possible word models [Jelinek, 1997]. Hence, the resulting equation

becomes:

 () ()ˆ arg max .
W L

w P O W P W
∈

⎡ ⎤= ⎣ ⎦ (4.3)

()P O W , the probability of having a particular observation sequence O given the

word model W , will be obtained by using Hidden Markov Modeling.

2. Notations
Different sets of notations for Hidden Markov Modeling exist in the literature.

Table 4.1 lists the preliminary notation that represent the basic HMM concepts. More

advanced concepts follow on these notations. These notations are selected from [Deller,

2000; Rabiner, 1989; Dugad, 1996] for convenience and consistency throughout the

chapter.

62

Notation Definition

{ }1 2, ,..., ,...,t SQ q q q q= Q is the set of possible states where tq is the
state at time t and S is the number of states.

{ }1 2, ,..., ,...,t KO o o o o=
O is the set of possible observation symbols
where K is the number of symbols in the
codebook and to is the symbol observed at time t .

() () ()

()

() () ()

11 1 2 1

1 2

a a a S

A a i j

a S a S a S S

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

…

%

#
%
"

A is the S-by-S State transition matrix where
() ()1t ta i j P q i q j−= = = is the probability of

being in state i at time t given the previous state
was j at time 1t − . Columns of A must sum to
unity.

() () ()

()

() () ()

11 1 2 1

 b

1 2

b a b S

B k i

a K a K a K S

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

…

%

#
%
"

B is the K-by-S Observation probability matrix
where () ()t tb k i P o k q i= = = is the probability
of having the observation k at time t given the
model is in state i at time t . Columns of B must
add up to unity as well.

()

()

()

1
1

i

t

t q

t q

t q

P q

P q i

P q S

π

π π

π

⎡ ⎤= =
⎢ ⎥
⎢ ⎥
⎢ ⎥= = =⎢ ⎥
⎢ ⎥
⎢ ⎥

= =⎢ ⎥⎣ ⎦

#

#

π is the S-by-1 Initial state probability vector
which shows the probabilities of having any state
at time 1t = . Elements of the column vector π
must also sum to unity.

{ }, ,A Bλ π= λ is the compact notation for a HMM.

() ()1 2, ,..., , .t t ti P o o o q iα λ= = The forward variable.

() ()1 2, ,..., , .t t t T ti P o o o q iβ λ+ += = The backward variable.

Table 4.1. List of Basic Notations for HMMs.

3. Discrete-Time Markov Process

The Markov Chain is the underlying stochastic process of Hidden Markov

Models. A finite-state Markov Chain is a stochastic discrete-time Markov process whose

output is a set of S distinct states where each state corresponds to an observation.

63

[Rabiner, 1989]. State transitions (transition back to the original state is also possible) in

a discrete-time Markov process can occur based on only two parameters:

• State transition probability, () ()1t ta i j P q i q j−= = = where 1 , ,i j S≤ ≤

and ()
1

1 for
S

i
a i j j

=

= ∀∑ .

• Initial state probability, ()1P q i= where 1 i S≤ ≤ and ()1
1

1
S

i
P q i

=

= =∑ .

There are two distinct characteristics of a Markov process. First, there is one-to-

one correspondence between the observation sequence and the Markov Chain state

sequence. In other words, observations are deterministic. Second, the Markov Chain state

sequence is also observable.

The following example provides a better visualization of a discrete-time Markov

process.

a. Example 4.1: Three-State Observable Markov Model
Assume that a Christmas tree is ornamented with a decorative light which

takes on three colors in a sequence based on some priori probabilities. Red (R) color

corresponds to state 1, green (G) color to state 2 and blue (B) color to state 3. Model

parameters are given as follows:

() () ()
() () ()
() () ()

11 0.5 1 2 0.6 1 3 0.3

2 1 0.3 2 2 0.4 2 3 0.6

3 1 0.2 3 2 0 3 3 0.1

a a a

A a a a

a a a

⎡ ⎤= = =
⎢ ⎥

= = = =⎢ ⎥
⎢ ⎥

= = =⎢ ⎥⎣ ⎦

 and

()
()
()

1

1

1

1 0.4

2 0.3

3 0.3

P q

P q

P q

π

= =⎡ ⎤
⎢ ⎥

= = =⎢ ⎥
⎢ ⎥= =⎣ ⎦

.

This three-state Markov model is illustrated in Figure 4.3.

64

RED

1

BLUE

3

GREEN

2

0.5 0.3

0.2

0.6

0.4

0
0.3 0.6

0.1

RED

1

BLUE

3

GREEN

2

RED

1

BLUE

3

GREEN

2

0.5 0.3

0.2

0.6

0.4

0
0.3 0.6

0.1

Figure 4.3. Three-State Discrete-Time Markov Chain.

Given a sequence of observed colors when the decorative lights are turned

on, { }RO G G R B B= − − − − − , the only corresponding state sequence is

{ }1 2 2 1 3 3, , , , ,Q s s s s s s= . The probability of having this observation sequence can be

computed as

() () () ()
() () () () () ()

1 2 2 1 3 3

1 2 1 2 2 1 2 3 1 3 3

4

R , , , , ,

 1

 = 0.4 0.3 0.4 0.6 0.2 0.1 5.76 10 .

P O P G G R B B P Q P s s s s s s

P q P s s P s s P s s P s s P s s

λ λ λ λ

−

= − − − − − = =

= =

× × × × × = ×

Finally, also note that an nth-order discrete-time Markov process is a sequence of

random variables which depends only on the preceding n variables. A first-order Markov

model is typically used in speech recognition [Gold, 2000].

Next, the extension of discrete-time Markov process to Hidden Markov Models

(HMMs) is addressed.

4. Extension to Discrete-Symbol HMMs

In a stochastic Markov Model, each state is associated with a deterministically

observable event and hence the name observable Markov Model is also given. The

Hidden Markov Model can be considered an extended version of an observable Markov

Model where the observation is a probabilistic function of the state [Rabiner, 1993].

65

Given an observation sequence, there is no direct access to the underlying state sequence

which generates the observations in a HMM; hence the state sequence is hidden.

A Hidden Markov Model can be characterized by the following five model

parameters:

• S , number of hidden states in the model.

• K , number of distinct observation symbols.

• The state transition probability distribution, (){ }A a i j= , where

() ()1 and 1 , .t ta i j P q i q j i j S−= = = ≤ ≤

• The observation symbol probability distribution, (){ },B b k i= where

() () , 1 , 1 .t tb k i P o k q i i S k K= = = ≤ ≤ ≤ ≤

• The initial state distribution, (){ }1 ,P q iπ = = where 1 .i S≤ ≤

The compact notation, (), ,A Bλ λ= is usually used to define the model

parameters of an HMM for convenience.

To better explain the extension of the observable Markov Model to HMM, the

following two fundamental assumptions behind HMMs are discussed as well [Deng,

2003].

• First-order Markov process assumption which states that the state
transition at time t depends only on the previous state at time 1,t − as
expressed in the following equation. Note that state transition probability
is not time-variant.

 () () () ()1 1 1
2

,..., ,..., = , .
T

t T t t
t

P Q P q q q P q P q qλ λ λ λ−
=

= ∏ (4.4)

 () () ()
1 2 1 3 2 1... .q T Ta q q a q q a q qπ −= (4.5)

• Independent observation assumption which states that an observation is
only dependent on the particular state that generates it and is independent
from its preceding observations, as shown in Eq. (4.5).

 () () ()1 2 1 2
1

, , ,..., ,..., , ,..., ,..., , , .
T

t T t T t t
t

P O Q P o o o o q q q q P o qλ λ λ
=

= =∏ (4.6)

 () () ()1 1 2 2T Tb o q b o q b o q= (4.7)

66

The following two examples illustrate two different structures of HMMs.

a. Example 4.2: Three-State Ergodic Hidden Markov Model

The set-up of our previous example is extended with the Christmas tree

light to incorporate the hidden states and the non-deterministic observations in this

example. Suppose a Christmas tree light which turns on any one of the three colors; red

(R), green (G) and blue (B) each time a button is hit on a remote control device (RCD).

Assume that a kid changes the colors of the Christmas tree light by using any one of three

RCDs. Each RCD is biased for the generation of colors. There is no direct access to the

information about which particular RCD is used whenever a change of color occurs as an

observation. Thus, the following three hidden states occur.

• State 1: RCD1 is used.

• State 2: RCD2 is used.

• State 3: RCD3 is used.

The matrix A of state transition probabilities is given as follows:

(){ }
() () ()
() () ()
() () ()

1

1

1

1 1 0.2 1 2 0.3 1 3 0.1

2 1 0.4 2 2 0.4 2 3 0.7

3 1 0.4 3 2 0.3 3 3 0.2

t t

t t

t t

P q q P P

A a i j P q q P P

P q q P P

−

−

−

⎡ ⎤= = = = =
⎢ ⎥

= = = = = = =⎢ ⎥
⎢ ⎥

= = = = =⎢ ⎥⎣ ⎦

.

The initial state probability vector, π is

()
()
()

1

1

1

1 0.5

2 0.2

3 0.3

P q

P q

P q

π

= =⎡ ⎤
⎢ ⎥

= = =⎢ ⎥
⎢ ⎥= =⎣ ⎦

.

The matrix B of observation probabilities is expressed as follows:

(){ }
() () ()
() () ()
() () ()

1 0.6 2 0.3 3 0.4

1 0.1 2 0.5 3 0.3

1 0.3 2 0.2 3 0.3

t t

t t

t t

P o R q P R P R

B b k i P o G q P G P G

P o B q P B P B

⎡ ⎤= = = = =
⎢ ⎥

= = = = = = =⎢ ⎥
⎢ ⎥

= = = = =⎢ ⎥⎣ ⎦

.

67

This HMM is called an ergodic model in that any state can be reached

from any other state. In other words, an ergodic HMM allows for all possible state

transitions at any time, as shown in Figure 4.4.

1 2 30.2

0.4

0.4

0.3

0.4

0.4

0.1

0.7

0.21 2 30.2

0.4

0.4

0.3

0.4

0.4

1 2 30.2

0.4

0.4

1 2 30.2

0.4

0.4

0.3

0.4

0.4

0.1

0.7

0.2

Figure 4.4. Three-State Ergodic HMM.

Given that the colors { }O B G G R= − − − appear in a sequence of

observations, the following question can be asked: What is the probability of having this

observation sequence given the model parameters?

In this case, it should be obvious that there are 3 3 3 3 81× × × = possible

corresponding state sequences, iQ which might have generated the given observation

sequence, O . Thus, the probability, ()P O λ is

() () () ()
81 81

1 1
, , .i i i

i i
P O P O Q P O Q P Qλ λ λ λ

= =

= =∑ ∑

For example, if it is known that the generating state sequence is

presumably { }1 3 2 2Q s s s s= − − − , then it should be possible to compute the probability,

()P O λ as follows:

() () () 4, 0.0135 0.056 7.56 10 .P O P O Q P Qλ λ λ −= = × = ×

b. Example 4.3: Five-State Left-to-right Hidden Markov Model
Consider a bag-drawing system consisting of bags and coins as another

example of HMM. Assume there are five bags and three different types of coins; nickels,

68

dimes and quarters in each bag. Each bag has ten coins in differing numbers from each

type of coin. Six drawings from five bags are conducted when blindfolded. Therefore, it

is not known which drawing comes from which bag. However, there is a restriction to the

sequence of the bags to be used. Once a coin is drawn from any bag, the only choice is to

choose from either the same bag or go to the one of the next two larger-numbered bags

for the next drawing. For instance, { }1 2 2 3 5 5, , , , ,Q bag bag bag bag bag bag= is a valid

sequence of bags for the drawing. Thus, the drawing bags correspond to the hidden states

whereas the six coins drawn represent the observation sequence in the model.

The model parameters are given as

0.2 0 0 0 0
0.5 0.3 0 0 0 0.7 0.2 0.4 0.2 0.5
0.3 0.4 0.4 0 0 , 0.1 0.5 0.3 0.6 0.4
0 0.3 0.5 0.3 0 0.2 0.3 0.3 0
0 0 0.1 0.7 1

A B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0.4
0.2

 and 0.1 .
.2 0.1 0.2

0.1

π

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

Note that the upper triangular portion of the state transition matrix A represents the

backward state transitions, which is all zero. This type of model structure is a special case

of the model known as a left-to-right model. In a left-to-right HMM, backward state

transitions are not allowed. Speech has inherently a temporal structure and thereby can be

modeled to fit to the left-to-right HMM in a well-behaved fashion. Figure 4.5 illustrates

the structure of this specific type of HMM.

BAG BAG BAG BAG BAGBAG BAG BAG BAG BAG

Figure 4.5. Five-State Left-to-Right HMM.

Next, the three fundamental problems associated with the use of HMM

and their respective solutions are discussed.

69

B. THE THREE FUNDAMENTAL PROBLEMS FOR HMM
For a practical implementation of HMM, three basic problems of interest must be

discussed whose effective solutions will lead to the training of the model, that is the

estimation of the model parameters, { }, ,A Bλ π= , and finally the resulting classifier.

Rabiner et al. lists these central problems as follows [Rabiner, 1989]:

• Problem 1: Given an observation sequence { }1 2, ,..., ,...,t TO o o o o= and a

HMM { }, ,A Bλ π= , how is ()P O λ , the probability that the observation
sequence is generated by the given model, computed? Problem 1 is known
as the evaluation or scoring problem.

• Problem 2: Given an observation sequence { }1 2, ,..., ,...,t TO o o o o= and a

HMM { }, ,A Bλ π= , how is the generating state sequence

{ }*
1 2, ,..., ,...,t TQ q q q q= , which accounts for the observations optimally,

determined? A solution that would satisfy ()*

arg max ,

All Q
Q P Q O λ⎡ ⎤= ⎣ ⎦ in

this problem is sought. Problem 2 is also known as the decoding problem
in that the goal is to uncover the hidden part of the model, the optimal
state sequence.

• Problem 3: How is the model parameter set { }, ,A Bλ π= , which

maximizes ()P O λ , the probability of the observation sequence given the
model, estimated? Problem 3 represents the training problem.

1. Solution to the Evaluation Problem
Computing the probability of occurrence of a particular observation sequence

given the model can also be considered a scoring problem in which the attempt is to

determine the suitability of a given model to generate the particular observation

sequence. This standpoint becomes useful when aiming to choose the best model for a

designated word among many competing models where each model represents a word

from a small vocabulary [Rabiner, 1989].

Basically, there are two options available to evaluate the probability ()P O λ ; the

direct brute-force evaluation and the forward-backward procedure. The former approach,

called the direct evaluation, is straightforward albeit impractical for many real-world

70

applications. The latter method, called the forward-backward procedure, is extensively

used to address the evaluation problem in HMM.

a. The Direct Evaluation

The brute-force approach to the computation of ()P O λ starts with

finding the conditional probability (),P O Q λ along a candidate path (any allowable state

sequence) { }1 2, ,..., ,...,t TQ q q q q= then multiplies it by the probability of such a path,

()P Q λ . Summation of these products over all possible state sequences accounts for the

probability ()P O λ . Applying the independent output assumption, the joint output

probability of observations along the path Q is computed

 () () () () ()1 1 2 2
1

, ,
T

t t T T
t

P O Q P o q b o q b o q b o qλ λ
=

= =∏ (4.8)

The probability of the path Q is computed using a first-order Markov

assumption as follows:

 () () () () () ()
11 1 2 1 3 2 1

2

,
T

t t q T T
t

P Q P q P q q a q q a q q a q qλ λ λ π− −
=

= =∏ (4.9)

Therefore, the probability of observation sequence given the model is

obtained by the following computation:

 () () ()
all Q

, P O P O Q P Qλ λ λ= ∑ (4.10)

 () () () () ()
1 1 1 2 1 2 2 1

all Q

=q T T T Tb o q a q q b o q a q q b o qπ −∑ (4.11)

A close observation of Eq. (4.11) reveals the complexity of the

computational requirements in the brute-force direct evaluation approach. Considering

that there are TS distinct possible state sequences and 2 1T − multiplications are

performed in the summand of Eq. (4.11), there is a total of (2 1) 2T TT S T S− ≈ ⋅

multiplications and 1TS − additions [Dugad, 1996]. Therefore, the brute-force

computation is very expensive and it becomes essential to compute ()P O λ more

71

efficiently. Next, we consider the forward-backward procedure which is a very efficient

solution to the evaluation problem.

b. The Forward-Backward Procedure

First, the forward variable ()t iα is introduced and defined as:

 () ()1 2, ,..., , .t t ti P o o o q iα λ= = (4.12)

The forward variable ()t iα is described as the joint probability of the partial observation

sequence up to instant t , { }1 2, ,... to o o and the state i at instant t , given the model λ . The

Forward Recursion can be used to solve for ()t iα inductively as follows:

1. Initialization: for 1 ,i S≤ ≤

 () () ()1 1 1 1 1, .ii P o q i b o qα λ π= = = (4.13)

2. Recursion: for 1, 2,..., 1 and 1 ,t T j S= − ≤ ≤

 () () () ()1 1
1

.
S

t t t
i

j i a j i b o jα α+ +
=

⎡ ⎤= ⎢ ⎥⎣ ⎦
∑ (4.14)

3. Termination: for 1 ,i S≤ ≤

 () ()
1

.
S

T
i

P O iλ α
=

=∑ (4.15)

In the first step, the forward probabilities are initialized as the joint

probability of having the observation 1o at the initial state i for all possible states. In the

second step, ()1t jα + , the joint probability of the partial observation sequence up to

instant 1t + and the state j at instant 1t + is computed from ()t iα , probabilities of the

previous partial observations, recursively. The Lattice (Trellis) structure shown in Figure

4.6 illustrates how state j at time 1t + can be reached independently from any of the

S states at time t . The third step of the forward recursion shows that the desired

calculation of ()P O λ is obtained from the summation of S independent final forward

variables, () 'T i sα which realize the observation sequence [Rabiner, 1993].

72

1

2

i

#

#
S

1

2

i

#

#
S

1

2

j

#
S

S

T

A

T

E

S

"
"

"

"
TIME

OBSERVATIONS

1t − t 1t +

()1tα

()2tα

()t iα

()t Sα

()1a j

()2a j

()a j i

()a j S

to1to − 1to +

()1tb o j+

()1t jα +

1

2

i

#

#
S

11

22

ii

#

#
SS

1

2

i

#

#
S

11

22

ii

#

#
SS

11

22

jj

#
SS

S

T

A

T

E

S

"
"

"

"
TIME

OBSERVATIONS

1t − t 1t +

()1tα

()2tα

()t iα

()t Sα

()1a j

()2a j

()a j i

()a j S

to1to − 1to +

()1tb o j+

()1t jα +

Figure 4.6. The Lattice Structure Used to Derive the Forward Recursion (After

[Deller, 2000]).

The proof of the Forward Recursion is provided from [Wang, 2005] by

using the HMM assumptions [Eqs. (4.4) through (4.7)], the principal of conditional

probability given as:

 () () () () (), , , ,P A B P A B P B P A P B Aλ λ λ λ λ= = (4.16)

and the principal of total probability expressed as:

 () ()

, .
All B

P A P A B= ∑ (4.17)

73

() ()
() ()
() () ()

1 1 2 1 1

1 2 1 1 1

1 2 1 1 1 1

1 2

, ,..., , , ,

 = , ,..., , , , [From Eq. (4.16)]

 = , ,..., , , , [From Eqs.(4.6)]

 = , ,...,

t t t t

t t t t

t t t t t

j P o o o o q j

P o o o o q j P q j

P o o o q j P o q j P q j

P o o o

α λ

λ λ

λ λ λ

+ + +

+ + +

+ + + +

= =

= =

= = =

() ()
() ()

() ()

()

1 1 1

1 2 1 1

1 2 1 1
1

1 2 1 1

, , , [From Eq. (4.16)]

 = , ,..., ,

 = , ,..., , , , [From Eq.(4.17)]

 = , ,..., , ,

t t t t

t t t

S

t t t t
i

t t t

q j P o q j

P o o o q j b o j

P o o o q i q j b o j

P o o o q i P q j o

λ λ

λ

λ

λ

+ + +

+ +

+ +
=

+

= =

=

⎡ ⎤= =⎢ ⎥⎣ ⎦

= =

∑

() ()

() () ()

() () () []

2 1
1

1 2 1 1
1

1
1

,..., , , , [From Eq.(4.16)]

 = , ,..., , , , [From Eq.(4.4)]

 = From Eq.(4.12) .

S

t t t
i

S

t t t t t
i

S

t t
i

o o q i b o j

P o o o q i P q j q i b o j

i a j i b o j

λ

λ λ

α

+
=

+ +
=

+
=

⎡ ⎤=⎢ ⎥⎣ ⎦
⎡ ⎤= = =⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥⎣ ⎦

∑

∑

∑

It should be noted that there are N multiplications involved in the first

step and ()()1 1S S S+ − multiplications involved in the second step. There are no

multiplications in the third step. Therefore, the Forward Recursion results in a total of

()() 21 1S S S T S T+ + − ≈ multiplications in comparison with 2 TT N⋅ multiplications

required by the direct evaluation approach [Dugad, 1996]. Consequently, the Forward

Recursion provides a practically feasible method for the computation of the desired

probability ()P O λ .

Next, the backward variable ()t iβ is defined in a similar way as was done

with the forward variable as follows:

 () ()1 2, ,..., , .t t t T ti P o o o q iβ λ+ += = (4.18)

()t iβ is defined as the conditional probability of the observation sequence from the

instant 1t + to the final observation instant T given the state i at the instant t and the

model .λ The probability ()P O λ can be evaluated by computing ()t iβ with iterations

which are backward in time, hence called the Backward Recursion.

74

Although applying the Forward Recursion is enough for the computation

of ()P O λ , a combination of forward and backward procedures becomes useful when

dealing with the training problem. Thus, the Backward Procedure is presented, as given

in [Dugad, 1996].

1. Initialization: for 1 ,i S≤ ≤

 () 1,T iβ = (4.19)

2. Recursion: for 1, 2,...,2,1 and 1 ,t T T j S= − − ≤ ≤

 () () () ()1 1
1

,
S

t t t
j

i a j i b o j jβ β+ +
=

= ∑ (4.20)

3. Termination: for 1 ,i S≤ ≤

 () () ()1 1
1

.
S

i
i

P O b o i iλ π β
=

=∑ (4.21)

The computation of the probability ()P O λ by using the Backward

Recursion results in multiplications on the order of 2S T just like the Forward Procedure;

thereby providing an equally efficient method.

2. Solution to the Decoding Problem

The solution to Problem 1 computes ()P O λ by summing up all possible state

sequences through a Trellis structure in a HMM, hence it does not result in the optimal

state sequence that accounts for the observation sequence. In Problem 2, the single most-

likely state sequence (path) { }*
1 2, ,..., ,...,t TQ q q q q= is sought for a given observation

sequence and model. In other words, the goal is to find the optimal path that satisfies

()*

arg max , ,

All Q
Q P Q O λ⎡ ⎤= ⎣ ⎦ considering that maximizing the probability (),P Q O λ is

equivalent to maximizing (),P Q O λ . The Viterbi Algorithm can be used to determine

such an optimal state sequence as a dynamic programming method applied to HMM

[Rabiner, 1993].

75

a. The Viterbi Algorithm

The Viterbi Algorithm chooses and keeps the most-likely state sequence

for each of the S possible states at each instant recursively unlike the Forward Recursion

which sums over the transitions from all possible incoming states reaching the same

destination state. Once the Viterbi Algorithm reaches the final step at the end of

observation sequence, it uses back-tracing to find the most probably path.

Following reformulation of the decoding problem provides an insight into

the Viterbi Algorithm as it is applied to the estimation of the optimal state sequence in a

HMM [Dugad, 1996]. Ultimately, the goal is to maximize the probability (),P Q O λ .

The principal of conditional probability is employed first using Eqs. (4.10) and (4.11) to

obtain

() () (), ,P O Q P O Q P Qλ λ λ= (4.22)

 () () () () ()1 1 2 1 2 2 1... .i T T T Tb o q a q q b o q a q q b o qπ −= (4.23)

Then, a distance function associated with any possible state sequence

along the path from 1t = up to t T= is defined by taking the negative logarithm of Eq.

(4.23) as follows:

 () ()() () ()()11 2 1 1 1
2

, ,..., log log .
T

T T q t t t t
t

D D q q q b o q a q q b o qπ −
=

⎡ ⎤= = − +⎢ ⎥⎣ ⎦
∑ (4.24)

Now, observe that the maximization problem to obtain the most-likely

state sequence given in the following equation

 ()*

arg max , for 1,2,...,

tAll q
Q P Q O t Tλ⎡ ⎤= =⎣ ⎦ (4.25)

turns out to be a minimization problem over the distance function as expressed in

 ()*
1 2

arg min , ,..., .

t

T
All q

Q D q q q= ⎡ ⎤⎣ ⎦ (4.26)

76

The term ()()1 1 1log q b o qπ− in Eq. (4.24) is called the initial weight of

having observation 1o at the initial state 1q . The weight of a given state sequence is equal

to the summation of all the weights along the path. In a similar way, the term

() ()()log ta j i b o j− in Eq. (4.24) corresponds to the cost associated with going from

state i to state j at time t . Note that the weight function is associated with a state

sequence, whereas the cost function is associated with a state transition only.

There are two expressions used in the Viterbi Algorithm. The term ()t iδ

stands for the accumulated weight along the path as far as proceeding to state i at time t .

The term ()t jΨ denotes the state at time 1t − whose transition to state j at time t has

the minimum corresponding cost. It is necessary to keep track of the latter argument so as

to backtrack and decode the optimal state sequence in the end. It is now possible to

present the Viterbi Algorithm as follows:

1. Initialization: for1 i S≤ ≤

 () () ()()1 1log log ,ii b o iδ π= − − (4.27)

 ()1 0,iΨ = (4.28)

2. Recursion: for 2 and 1t T j N≤ ≤ ≤ ≤

 () () ()() ()()11
min log log ,t t ti S

j i a j i b o jδ δ −≤ ≤
⎡ ⎤= − −⎣ ⎦ (4.29)

 () () ()()1
1

arg min log ,t t
i S

j i a j iδ −
≤ ≤

⎡ ⎤Ψ = −⎣ ⎦ (4.30)

3. Termination:

 ()*

1
min ,Ti S

P iδ
≤ ≤

= ⎡ ⎤⎣ ⎦ (4.31)

 ()*

1
arg min ,T T

i S
q iδ

≤ ≤
= ⎡ ⎤⎣ ⎦ (4.32)

4. Backtracking: for 1, 2,...,2,1t T T= − −

77

 ()* *
1 1 .t t tq q+ += Ψ (4.33)

The argument *P , the negative log probability of the path with the

minimum weight, is called the log likelihood. Although the expression ()*exp P− equals

the desired probability strictly, the argument of log likelihood is preferably used instead

of the regular probability for convenience in computations without any conversion. Note

that small log likelihood measures correspond to large probabilities. In addition, taking

the negative logarithm is a means of circumventing the precision and underflow problems

which occur when small probability values are multiplied iteratively.

A little thought over the steps involved in the Viterbi Algorithm reveals

that the computational requirement for finding the most-likely path is, similar to the

Forward Procedure, on the order of 2S T additions.

Figure 4.7 illustrates that the Viterbi Algorithm operates in a Trellis

structure in a similar way as that followed in the Forward Recursion. Bold arrows

represent the choice of the most-likely state at each time step and the resulting best state

sequence is shown as { }*
2 1 3 2 2, , , ,Q S S S S S= in the three-state HMM in Figure 4.7.

1S

2S

3S

1S

2S

3S

1S

2S

3S

1S

2S

3S

1S

2S

3S

S

T

A

T

E

S

TIME

OBSERVATIONS

1t = 2t = 3t = 4t = 5t =

1o 2o 3o 4o 5o

1S

2S

3S

1S

2S

3S

1S

2S

3S

1S

2S

3S

1S

2S

3S

S

T

A

T

E

S

1S

2S

3S

1S

2S

3S

1S

2S

3S

1S

2S

3S

1S

2S

3S

1S

2S

3S

1S

2S

3S

1S

2S

3S

1S

2S

3S

1S

2S

3S

1S

2S

3S

S

T

A

T

E

S

TIME

OBSERVATIONS

TIME

OBSERVATIONS

1t = 2t = 3t = 4t = 5t =

1o 2o 3o 4o 5o

Figure 4.7 Trellis Structure Illustrating the Viterbi Algorithm for a Three-State HMM

78

3. Solution to the Training Problem

The training problem deals with adjusting (or re-estimating) the model parameters

(), ,A Bλ π in an effort to learn and encode the characteristics of the observation

sequence into the model such that the model should identify a similar observation

sequence in future [Dugad, 1996].

Unfortunately, optimizing the training parameters of a HMM is difficult to

address as there is no known analytical method that maximizes the joint probability of the

training data in a closed form [Rabiner, 1993]. Two of the most popular methods to

handle this problem are discussed. First, it is possible to optimize the parameters

(), ,A Bλ π such that the likelihood of occurrence for the training data ()P O λ is locally

maximized by using the iterative Baum-Welch algorithm, also known as the Forward-

Backward algorithm [Baum, 1966; Baum 1970]. Second, the problem can be solved by

first applying the Viterbi algorithm, and next maximizing the likelihood ()P O λ over the

single most-likely state sequence.

a. The Baum-Welch Re-Estimation Algorithm (B-W Algorithm)

This method starts with an initial arbitrary model λ and searches for a

new model λ̂ which improves the probability that the given observation sequence is

generated by the new model, at each iteration until a maximum is reached, such that:

 () ()ˆ .P O P Oλ λ≥ (4.34)

This optimization criterion is known as the maximum likelihood criterion. Some new

notations from [Rabiner, 1993; Dugad, 1996] are first introduced to explain the B-W re-

estimation algorithm. The term ()t iγ denotes the conditional probability of being in state

i at time t , given the full observation sequence { }1 2, ,..., ,...,t TO o o o o= and the model

(), , ,A Bλ π as defined in the following form:

 () (), .t ti P q i Oγ λ= = (4.35)

79

By using the definitions of the Forward variable ()t iα from Eq. (4.12),

the Backward variable ()t iβ from Eq. (4.18) and the Bayes Rule, the following relation is

obtained:

 () ()
()

() ()
()

,
.t t t

t

P q i O i i
i

P O P O
λ α β

γ
λ λ

=
= = (4.36)

 The conditional probability of being in state i at time t and making a

transition to state j at time 1t + , (), ,t i jξ is also defined, given the observation and the

model, i.e.,

 () ()1, , , .t t ti j P q i q j Oξ λ+= = = (4.37)

By using the forward and backward variables and the Bayes’ Rule, the

probability (),t i jξ can be written in the form [Rabiner, 1993]:

() ()
()

() () () ()
()

() () () ()

() () () ()

1

1 1

1 1

1 1
1 1

, ,
,

 =

 = .

t t
t

t t t

t t t
S S

t t t
i j

P q i q j O
i j

P O

i a j i b o j j
P O

i a j i b o j j

i a j i b o j j

λ
ξ

λ

α β
λ

α β

α β

+

+ +

+ +

+ +
= =

= =
=

∑∑

 (4.38)

The derivation involved in Eq. (4.38) can be seen intuitively in Figure 4.8,

which illustrates how the probability (),t i jξ is computed. In this illustration, ()t iα and

()1t jβ + account for the partial observation sequences { }1 2, ,..., to o o and

{ }1 2, 1, ..., ,t t T To o o o+ + − , respectively. For completeness, ()a j i explains the transition from

state i to state j and ()1tb o j+ represents the probability of selecting the symbol 1to +

from state j . All these probabilities are multiplied to compute the numerator term in Eq.

(4.38) because their respective events are statistically independent. Summation of these

products over all possible states and j i accounts for the denominator term in Eq. (4.38).

80

iS

1

2

3

S

i

#
()t iα

j

1

2

3

S
#

jS

()1t iβ +

() ()1ta j i b o j+

TIME 1t − t 1t + 2t +

S

T

A

T

E

S

iS

1

2

3

S

i

#
()t iα

j

1

2

3

S
#

jS

()1t iβ +

() ()1ta j i b o j+

iS

1

2

3

S

11

22

33

S

ii

#
()t iα

j

1

2

3

S
#

jS

()1t iβ +

jj

1

2

3

S

11

22

33

S
#

jS

()1t iβ +

() ()1ta j i b o j+

TIME 1t − t 1t + 2t +

S

T

A

T

E

S

Figure 4.8. Illustration for the Computation of the Probability (),t i jξ (After [Rabiner,
1993]).

It should also be pointed out that ()t iγ is related to (),t i jξ by summation

over j as shown below:

 () ()
1

, .
S

t t
j

i i jγ ξ
=

=∑ (4.39)

Summation of ()t iγ over the observation time t provides a useful quantity, the expected

number of transitions from state i

1

1
() Expected number of transitions from state .

T

t
t

i iγ
−

=

=∑ (4.40)

By way of similar reasoning, the expected number of transitions from state i to state j is

obtained by summing (),t i jξ over the time index t

 ()
1

1
, Expected number of transitions from state to state .

T

t
t

i j i jξ
−

=

=∑ (4.41)

Now that all the underlying concepts have been discussed and their

respective notations given, Eqs. (4.40) and (4.41) can be used in the Baum-Welch re-

estimation formulas as follows [Rabiner, 1993]:

81

()1

ˆ Expected number of times having state at time 1.
 = , 1 .

i t
i i S

π
γ

= =

≤ ≤
 (4.42)

()

()
1

1
1

1

Expected number of transitions from state to state ˆ
Expected number of transitions from state

,
 = .

T

t
t

T

t
t

i ja j i
j

i jξ

γ

−

=
−

=

=

∑

∑

 (4.43)

()

()

()

1

1

Expexted number of times in state and observing symbol ˆ
Expected number of times in state

 = .t

t

T

t
t
o k

T

t
t

j o kb k j
j

j

j

γ

γ

=
=

=

=
=

∑

∑

 (4.44)

Based on the formulas given in Eqs. (4.42) through (4.43), an updated model λ̂ is

obtained until the new model satisfies the condition:

 () ()ˆ ,P O P Oλ λ ε− ≥ (4.45)

where the tolerance denotes a very small numberε .

However, the B-W Re-estimation algorithm improves towards the nearest

maxima in the proximity of the initial model parameters owing to the complex nature of

the joint likelihood function of the training set ()P O λ which has many local maxima.

One way to circumvent this problem is to repeat the B-W re-estimation algorithm a few

times with different random initial model parameters and select the best re-estimated

model which returns the maximum ()P O λ .

b. Viterbi Re-Estimation Algorithm

The Viterbi decoding algorithm has been applied to ascertain the optimal

hidden state sequence so far. This algorithm can also be applied to the training problem to

re-estimate the model parameters over the most-likely state sequence, unlike the B-W re-

estimation algorithm which works over all possible state sequences.

82

In a left-to-right HMM set-up, the initial state can be designated as state

one to save from re-estimating the initial state probabilities. First, the optimal state

sequence *Q is estimated and then the probability ()*,P O Q λ is evaluated. The

following arguments are also tracked along the most probable path [Deller, 2000]:

 () * Number of transitions from state to state along the path ,n j i i j Q= (4.46)

 () * Number of transitions from state along the path ,n i i Q=i (4.47)

 () * Number of transitions to state along the path ,n j j Q=i (4.48)

()

*

, Number of times observation and state

 occur concerrently along the path .
t tn o k q j k j

Q

= = =
 (4.49)

The Viterbi re-estimation formulas are presented as follows:

 () ()
()

ˆ ,
 i

n j i
a j i

n
=

i
 (4.50)

 () ()
()

,ˆ .

t tn o k q j
b k j

n j
= =

=
i

 (4.51)

Note that although the Viterbi re-estimation algorithm seems simpler and

more computationally-efficient than the B-W re-estimation, it does not incorporate all

possible state sequences into the model update.

C. HMM IMPLEMENTATION ISSUES
This section discusses two important implementation issues for training and

recognition of HMMs. First, there is a numerical underflow problem inherent in the

computation of the B-W re-estimation formulas. Second, it is necessary that HMMs be

trained by multiple observation sequences so as to obtain a more rigorous representation

of the statistical variations inherent in the observations (or utterances of words for IWR

purpose.).

1. Scaling the B-W Re-estimation Formulas

It has been demonstrated that the B-W re-estimation formulas given in Eqs (4.42)

through (4.44) can be used to update the model parameters. A potential problem with the

83

forward, backward variables and the B-W re-estimation formulas is that as the time index

t increases, the large number of multiplications of probabilities between 0 and 1 may

exceed the precision range of numerical computations, hence causing underflow

problems. As a result, it becomes necessary to scale the forward and backward variables

to circumvent this problem [Rabiner, 1993]. First, the re-estimation formula for ()â j i

must be rewritten in terms of the forward and backward variables by using Eqs. (4.38)

and (4.39).

 ()
() () () ()

() () () ()

1

1 1
1

1

1 1
1 1

ˆ .

T

t t t
t

T S

t t t
t j

i a j i b o j j
a j i

i a j i b o j j

α β

α β

−

+ +
=

−

+ +
= =

=
∑

∑∑
 (4.52)

Next, the forward variable ()t iα is scaled by the scaling coefficient tc , that is:

()

1

1 ,t S

t
j

c
jα

=

=

∑
 (4.53)

() ()
()

()
1

 ,

t t t

t
S

t
j

i c i

i

j

α α

α

α
=

=

=

∑
 (4.54)

where the notation ()t iα denotes the scaled version of the forward variable. Similarly,

the backward variable is scaled and shown as

 () ().t t tj c jβ β= (4.55)

Note that the computations are kept within a reasonable dynamic range and the

following scaled re-estimation formulas obtained by replacing the un-scaled forward and

backward variables with the scaled variables in B-W re-estimation formulas, resulting in

[Rabiner, 1993]:

84

 ()
() () () ()

() () () ()

1

1 1
1

1

1 1
1 1

,

T

t t t
t

T S

t t t
t j

i a j i b o j j
a j i

i a j i b o j j

α β

α β

−

+ +
=

−

+ +
= =

=
∑

∑∑
 (4.56)

 ()
() ()

() ()

1

1

1

1

.t

T

t t
t
o k
T

t t
t

j j

b k j
j j

α β

α β

−

=
=
−

=

=

∑

∑
 (4.57)

Furthermore, the probability ()P O λ can be computed in terms of the scaling

factor tc . The following property is introduced first [Rabiner, 1993]:

 ()
11

1.
T S

t T
it

c iα
==

=∑∏ (4.58)

From Eqs. (4.15) and (4.58),

 ()
1

1,
T

t
t

c P O λ
=

⋅ =∏ (4.59)

and

 ()
1

1 .T

t
t

P O
c

λ

=

=

∏
 (4.60)

By taking the negative logarithm on both sides of Eq. (4.60), the log likelihood function

is computed given as [Deller, 2000]:

 ()
1

log log .
T

t
t

P O cλ
=

⎡ ⎤ = −⎣ ⎦ ∑ (4.61)

Finally, it should be noted that the Viterbi decoding and re-estimation algorithms,

as described in the previous sections, are not inherently susceptible to an underflow

problem due to the logarithmic operations involved. Therefore, it is not necessary to scale

the Viterbi algorithm.

85

The MATLAB implementation for the scaled B-W re-estimation algorithm is that

available at [Sorensen, 2005] and given in Appendix C.1. The MATLAB implementation

for the Viterbi training algorithm is provided in Appendix C.2.

2. Training with Multiple Observation Sequences
The training algorithms and the method of scaling the re-estimation formulas for

HMM so far have been discussed, provided that there is only a single observation

sequence of interest { }1 2, ,..., TO o o o= available. However, training a HMM using a

single observation sequence is not practical in most real-world applications because it is

possible to build a more rigorous model which encodes many statistical variations of the

same event to be modeled by using multiple observations. Such a model is more likely to

extract a set of characteristics relevant to the recognition of a particular word. Therefore,

a modification to the re-estimation procedure is essential to account for multiple

observations [Rabiner, 1993; Deller 2000].

Thus, the study uses a left-to-right model in which state transitions from state 1 at

time 1t = to state S at time t T= occur sequentially, assuming that there are

L observation sequences denoted as,

 { }(1) (2) () (), ,..., ,..., ,l LO O O O O=� (4.62)

where ()() () () ()
1 2, ,...,

l

l l l L
TO o o o= represents the thl observation sequence. By assuming that

all observation sequences are statistically independent, the joint probability of L

observation sequences results in

 () ()()

1

.
L

l

l

P O P Oλ λ
=

=∏ (4.63)

Recall that the re-estimation formulas are calculated by enumerating the

occurrences for each event. Hence, the unscaled version of the re-estimation formulas for

multiple observation sequences should add up the expected number of occurrences for

each individual observation sequence as follows:

86

 () () () () () ()

() () ()

1
()

1 1()
1 1

1

()
1 1

1

,
1

l

l

TL
l l l
t t tl

l t

TL
l l
t tl

l t

i a i j b o j j
P O

a j i
i i

P O

α β
λ

α β
λ

−

+ +
= =

−

= =

=
∑ ∑

∑ ∑
� (4.64)

and

 ()
() () ()

() () ()

()

1

()
1 1

1

()
1 1

1

.
1

l

l
t

l

TL
l l
t tl

l t
o k
TL

l l
t tl

l t

j j
P O

b k j
j j

P O

α β
λ

α β
λ

−

= =
=
−

= =

=

∑ ∑

∑ ∑
� (4.65)

Equation (4.60) is modified to obtain the relation between ()l
tc , the scaling factor

for the thl observation and ()()lP O λ for the multiple-observation scenario in Eq. (4.66)

 ()
1

() ()

1

.
lT

l l
t

t

P O cλ
−

=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∏ (4.66)

Rewriting Eqs. (4.64) and (4.65) in terms of the scaled variables () () and l l
t ti iα β the

scale factor ()l
tc and the term

()()

1
lP O λ

 causes each other to be canceled out of the

nominator and the denominator, due to the relation given in Eq. (4.66). Consequently, the

modified re-estimation formulas in terms of scaled variables become:

 ()
() () () ()

() ()

1
()

1 1
1 1

1

1 1

,

l

l

TL
l l l
t t t

l t
TL

l l
t t

l t

i a j i b o j j
a j i

i i

α β

α β

−

+ +
= =

−

= =

=
∑∑

∑∑
� (4.67)

 ()
() ()

() () ()

()

1

1 1

1

()
1 1

,
1

l

l
t

l

TL
l l
t t

l t
o k

TL
l l
t tl

l t

j j

b k j
j j

P O

α β

α β
λ

−

= =
=

−

= =

=

∑ ∑

∑ ∑
� (4.68)

and

87

 () () () ()1 2
1

1 1

, ,11 .
l lL

i l
l

o i o i
P q i

L c
α β

π
=

= = = ∑� (4.69)

Note that it is not necessary to re-estimate iπ in a left-to-right HMM structure by

assuming 1 1π = and 0 when 1.i iπ = ≠ Finally it should be pointed out that the same

rationale behind the modification of B-W re-estimation formulas to account for multiple

observation sequences also applies to the Viterbi re-estimation approach.

The MATLAB implementation for the HMM training with the multiple

observations (speech feature vectors) is that available at [Sorensen, 2005] and presented

in Appendix C.3.

D. ISOLATED WORD RECOGNIZER IMPLEMENTATION USING HMMS
Hidden Markov modeling was discussed, as well as the underlying assumptions of

HMMs, the model parameters, their common structures and the basic implementation

issues. Also presented were two popular training algorithms for estimating optimal model

parameters in this chapter. From an acoustic signal modeling point of view, a HMM can

be considered a combination of two stochastic processes. These are a hidden Markov

Chain, which represents the temporal variability of an acoustic signal in the hidden state

sequence, and an observable process which explains the spectral properties of an acoustic

signal. Based on this background knowledge, an isolated word recognizer using discrete

symbol HMM classification is now introduced, so as to identify seven distinct sets of

acoustic signals collected from within the external ear canal.

The discrete symbol HMM works with a finite set of integer symbols from a

codebook. The K-means clustering algorithm makes it possible to generate such a

codebook from the feature vectors of a training data set. The discrete observation

sequences are derived from the indices of the codebook by using the feature vectors of a

designated word from the vocabulary. The goal is to identify the designated unknown

words that these observation sequences represent, by using Hidden Markov modeling. A

left-to-right HMM structure attempts to model the sequential pattern likely to be present

within the symbols of a given observation set. Needless to say, there are temporal

variations in the nature of speech utterances. Thus, it should be pointed out that a left-to-

right model is more appropriate for isolated word recognition [Rabiner, 1993]. An

88

additional common restriction on such a model structure is that no more than two-state

jumps at a time are allowed in forward transitions. This is also known as a Bakis model

[Deller, 2000].

Therefore, the model structure chosen for recognition is a left-to-right HMM with

discrete observation symbols. It is also noteworthy to point out that even an ergodic

HMM trained with speech utterances often fits into a sequential structure eventually with

backward transition probabilities turning out to be zero [Deller, 2000].

Unfortunately, there is not a widely-accepted method to determine the proper size

of the model, that is, the number of states necessary to encode the relevant characteristics

of the observations into the model so as to result in the best recognition accuracy.

Needless to say, the relationship between the number of states and the performance of

HMM is crucial.

One of the basic linguistic units commonly used in Hidden Markov modeling is

the phoneme. As a matter of fact, a phoneme is nothing more that an abstract unit that

might have various acoustic forms from one context to another or sometimes from

speaker to speaker due to the naturally occurring variations in the utterance.

Some researchers suggest the number of states be at least equal to the number of

phonemes contained in the designated word. Some others report it is better to assign two

or sometimes three states per phoneme taking into account the phoneme itself and the

transitions to and from it [Deng, 2003; Becchetti, 1999]. In most real-world HMM

applications, experimental results suggest the proper model size [Deller, 2000]. Selecting

too small a number of states would result in poor classification due to the lacking

capability in modeling properly. Also, it should be noted that large models suggest

increased computational and memory cost. In the training phase, model sizes of five

through eight states were experimented with to determine the proper model size. This

study’s experimental results showed that eight states are sufficient to model the linguistic

units of phonemes present in the vocabulary. The assumption is that the number of states

should correspond roughly to the average number of distinct sounds (phonemes or

syllabuses) in each word. Thus, an eight-state HMM was selected.

89

There are mainly two approaches to implement an isolated word recognizer using

HMMs. The first technique models each word in a small vocabulary with a separate

HMM. The second is more appropriate for larger vocabularies whose goal is to model

subword basic units such as phonemes, diphones or triphones. In this method, all these

models should be combined to account for the whole word. The former technique was

chosen by modeling each one of the seven words in the vocabulary by a separate HMM

as shown in Figure 4.9.

HMM
Training

HMM
For

Word 1

HMM
Scoring

HMM
For

Word 2

HMM
Scoring

HMM
For

Word 7

HMM
Scoring

HMM
Testing

#

•

•

Vector
Quantized

Observations

•

()1P O λ

()2P O λ

()7P O λ

Select
Maximum
Likelihood•

1λ

2λ

7λ

()*

1 7
arg max w

w
w P O λ

≤ ≤

⎡ ⎤= ⎣ ⎦

*w

HMM
Training

HMM
Training

HMM
For

Word 1

HMM
Scoring

HMM
For

Word 1

HMM
For

Word 1

HMM
Scoring
HMM

Scoring

HMM
For

Word 2

HMM
Scoring

HMM
For

Word 2

HMM
For

Word 2

HMM
Scoring
HMM

Scoring

HMM
For

Word 7

HMM
Scoring

HMM
For

Word 7

HMM
For

Word 7

HMM
Scoring
HMM

Scoring

HMM
Testing
HMM

Testing

#

•

•

Vector
Quantized

Observations

Vector
Quantized

Observations

•

()1P O λ

()2P O λ

()7P O λ

Select
Maximum
Likelihood

Select
Maximum
Likelihood•

1λ

2λ

7λ

()*

1 7
arg max w

w
w P O λ

≤ ≤

⎡ ⎤= ⎣ ⎦

*w

Figure 4.9. Block Diagram of the Isolated Word HMM Recognizer ([After (Rabiner,

1993)].

The procedure followed in the isolated word recognition may be divided into two

steps [Rabiner, 1993]:

1. First, a separate HMM is built for each word in the vocabulary, where.
each word model has the same number of states. This step involves the
training phase to estimate the model parameters (), ,w A Bλ π= using

90

either the B-W re-estimation technique or the Viterbi re-estimation
algorithm described in Section (IV.B.3).

2. Second, the trained HMMs are used to identify each unknown word in the
testing data set. The recognition phase involves the computation of the
likelihood ()wP O λ for all possible models given the observation

sequence belonging to the designated unknown word. Specifically, the
Forward-Backward recursion described in Section (IV.B.1) is used to
calculate ()wP O λ for the trained seven models and then the index of the

model with the maximum likelihood is identified as the designated word
such that:

 ()*

1 7

arg max .w

w

w P O λ
≤ ≤

⎡ ⎤= ⎣ ⎦ (4.70)

In training the models, both the Baum-Welch re-estimation and the Viterbi re-

estimation algorithms were used for comparison. The Baum-Welch re-estimation

algorithm outperformed the Viterbi re-estimation algorithm by resulting in slightly better

recognition rates after the training. Therefore, the B-W re-estimation scheme, which uses

multiple observation sequences as described in Section (IV.C.2), were chosen to train the

models. This scheme implements training using scaled forward and backward variables to

prevent underflow problems in numerical computations. Initial model parameters

(), ,A B π are randomly chosen before training. Then, these models are trained until they

have an optimized set of parameters, which produces the maximum likelihood ()wP O λ

for the given observation sequence of the designated word w . It was observed that these

models do not necessarily converge to the same parameters when the training for each

model is repeated.

In recognition, the MATLAB implementations available at [Sorensen, 2005] were

used. The MATLAB routine in the Appendix C.4. computes the log likelihood function

for a given observation sequence and trained model parameters. The MATLAB routine in

Appendix C.5. implements the HMM-based recognition by selecting the model which has

the maximum log likelihood as the identified word.

The whole data set was consisted of 50 repetitions for each of the seven words

{ }, , , , , ,left right up down kill pan move spoken by 20 adult subjects. Two thirds of the data

91

set was randomly selected for training and the remaining one third of the data was used

for testing.

The next chapter starts with a brief overview of the entire isolated word

recognition system, describing each step from the in-ear microphone data collection to

the classification of the words under consideration. Finally, HMM-based average

classification results are presented for the isolated word recognition system used in this

study.

92

THIS PAGE INTENTIONALLY LEFT BLANK

93

V. HMM CLASSIFICATION RESULTS

This chapter presents a system overview of the speaker independent, small-

vocabulary, isolated word HMM recognizer before discussing classification results.

A. SYSTEM OVERVIEW
The main goal of the study was to recognize a set of seven spoken words, in

which the acoustic signals were collected within the external ear canal using an isolated

word recognizer. The small vocabulary consists of seven words: {left, right, up, down,

move, pan, kill} and the speech database was generated using 20 adult subjects who

uttered each word 50 times by wearing the in-ear microphone discussed earlier. A

discrete-symbol HMM recognizer was chosen because the vocabulary under

consideration is small and consists of short words. The isolated word recognition system

assumes that the speech signal is a realization of some message composed of basic

subword units, e.g., phones (or phonemes), which can be considered as a sequence of

symbols from a unique codebook. Figure 5.1 represents the overall block diagram of the

isolated word HMM recognizer used in the study.

Recording
Via

Ear-Mic

A/D
Converter

Front-end
Detector

Feature
Extraction

Vector
Quantization

HMM
for

Word 1

Probability
Computation

Probability
Computation

HMM
for

Word 2

.

.

.

Probability
Computation

HMM
for

Word 7

Testing

Training

Maximum

Detector

Analog Speech

Speech Signal, s(n)

Cropped signal

Codebook

generated

Feature vectors

{ }1 2, ,..., TF f f f=

Observation sequence

{ }1 2, ,..., TO o o o=

Observation sequence

{ }1 2, ,..., TO o o o=

()1P O M

()7P O M

Recognized

Word
(){ }arg maxi iP O M

Recording
Via

Ear-Mic

A/D
Converter

Front-end
Detector

Feature
Extraction

Vector
Quantization

HMM
for

Word 1

Probability
Computation

Probability
Computation

HMM
for

Word 2

.

.

.

Probability
Computation

HMM
for

Word 7

Testing

Training

Recording
Via

Ear-Mic

A/D
Converter

Front-end
Detector

Feature
Extraction

Vector
Quantization

HMM
for

Word 1

Probability
Computation

HMM
for

Word 1

Probability
Computation

Probability
Computation

HMM
for

Word 2

Probability
Computation

HMM
for

Word 2

.

.

.

Probability
Computation

HMM
for

Word 7

Probability
Computation

HMM
for

Word 7

Testing

Training

Maximum

Detector

Maximum

Detector

Analog Speech

Speech Signal, s(n)

Cropped signal

Codebook

generated

Feature vectors

{ }1 2, ,..., TF f f f=
Feature vectors

{ }1 2, ,..., TF f f f=

Observation sequence

{ }1 2, ,..., TO o o o=
Observation sequence

{ }1 2, ,..., TO o o o=

Observation sequence

{ }1 2, ,..., TO o o o=
Observation sequence

{ }1 2, ,..., TO o o o=

()1P O M

()7P O M

Recognized

Word
(){ }arg maxi iP O M

Recognized

Word
(){ }arg maxi iP O M

Figure 5.1. System Block Diagram of the Isolated Word HMM Recognizer (After

[Sorensen, 2005].).

94

The IWR system includes the following six phases:

1. Recording step: Audio recordings containing the utterances were first
collected using the in-ear microphone in an earlier study by [Newton,
2006] as described in Section I.C. Recall that a total of 50 20 7 7000× × =
isolated utterances of seven words were collected within the external ear
canal. In addition, 1,000 isolated utterances of the word “Kill” were
collected from the same 20 adult subjects within the external ear canal
while a piece of loud music was played in the same room to simulate noisy
environment conditions. This dataset was named “Kill_noise” in the
database. Finally, 400 isolated utterances of the word “Right” were
collected from the same adult subjects with the in-ear microphone placed
outside the mouth to investigate potential distortions due to the ear canal.
This dataset was named “Right_outside.”

 An A/D converter digitized the speech recordings with 8 kHz sampling
rate and 16-bit quantization scheme. Next, the digitized speech was
transferred to and stored in a notebook PC via the PCMCI card (DAQ
Card-Al-16E-4 by National Instruments).

2. Front-end detection step: One of the hardest challenges encountered in
this study was to accurately extract the speech utterances from the audio.
First, the mean of the digital signal was normalized to zero, so as to
eliminate any bias introduced by the microphone. Second, the signal was
passed through a high-pass filter with a passband of 100 Hz to 4000 Hz in
order to remove equipment-related disturbances such as 50/60 Hz
humming noise. Third, a search scheme based on short-time energy and
zero-crossing rate was used to identify beginning and end of each
utterance, as discussed earlier in Chapter II. A rectangular window was
applied and the signal partitioned into 50% overlapping frames of 10 ms
for short-term processing, as discussed in Chapter II. Note that a second
detection algorithm using frame-based modified Teager’s energy was also
considered [Ying, 1993]. However, the latter scheme produced
comparable results to the first detection scheme at a higher computational
load, and as a result, was not used in the final speech endpoint detection
phase. Finally, the speech portion of each signal was cropped and stored
based on the estimated boundaries.

3. Feature extraction step: Feature extraction was performed to obtain the
spectral and temporal characteristics of the speech waveform in a compact
representation. First, the signal was divided into frames of 256 samples
(corresponding to 32 ms) with an overlap of 100 samples (roughly
corresponding to 40% overlapping) from frame to frame and a Hamming
window applied to each frame. Two types of speech feature were
considered: LPC-derived Cepstral Coefficients (LPC-CCs) and Mel-
frequency Cepstral Coefficients (MFCCs). Results conducted on a small
portion of the database showed classification results obtained with MFCC
parameters were better than those obtained with the LPC-CC parameters,
thus the preference was to use MFCC parameters as speech features for

95

the study. A filter bank of 24 triangular filters was used for the mel-scale
conversion in the MFCC computation. The first 12 MFCC (static
parameters) and 12 delta-MFCC (dynamic parameters) parameters were
extracted from each frame of the cropped speech signal. Finally, the mean
of the static MFCC parameters was normalized to zero and the delta-
MFCC parameters were scaled to the range of the static MFCC parameters
by multiplying them by a factor of six.

4. Vector quantization (VQ) step: Two thirds of the database was selected
randomly to form the training set, while the reminder was used as the
testing test. Feature vectors were generated from the training set and used
to generate a codebook of length equal to 128 with the K-means
clustering, as discussed in Chapter III. Note that a randomly generated
codebook was also considered in an effort to significantly reduce the
computational load by eliminating the K-means algorithm training phase.
Kinnunen et al. reported that there is “no clusters” in the speech feature
space based on the Euclidean distance metric and the cepstrum-based
parameters (RCC, MFCC and LPCC) [Kinnunen, 2001]. This research
study concluded that the role of vector quantization is only to remove
redundancy from speech features and detecting clusters does not play a
key role in codebook generation. Therefore, any fast method of choosing
uniformly-spaced linear code vectors among the sample feature vectors
should establish a codebook and work out for speech recognition.
Motivated by the findings from [Kinnunen, 2001] a random codebook was
considered using 256 symbols uniformly spaced in the range of speech
features. However, experimental results showed that this linear codebook
resulted in poor classification performances, and was not considered
further. Note that our results did not agree with the findings in that earlier
paper by [Kinnunen, 2001]. It is surmised that the differences could arise
from the in-ear microphone data characteristics due to low-pass filtering in
the ear canal. Both training and testing feature sets were vector-quantized
and provided inputs to the DHMM classifier set-up, as explained next.

5. Discrete-symbol Hidden Markov Model training step: A discrete-symbol
HMM was selected with eight states for each word in the vocabulary. The
training sequence of vector-quantized symbols was used to train each
model and the model parameters that maximize the likelihood of the
training set were estimated using the Baum-Welch re-estimation, as
discussed in Chapter IV. Also applied was the Viterbi training algorithm
for comparison and through experiments it was discovered that the Baum-
Welch re-estimation algorithm resulted in better classification rates than
those obtained with the Viterbi algorithm for the data considered.

6. Hidden Markov Model recognition step: Recall that endpoint detection,
feature extraction and vector quantization were performed for each word
in the testing set, as illustrated in Figure 5.1. Once model parameters are
determined from the training set, the recognizer is designed to decide that
unlabelled data is most likely to have come from a specific model iM by

96

selecting the model which maximizes the a-posteriori probability that the
data was generated by the given model, i.e.,

 ()arg max for 1, 2,...,7.i
i

P O M i⎡ ⎤ =⎣ ⎦ (5.1)

 That is, the recognizer identifies the model, which is most-likely, given the
discrete observation sequence.

Next, the overall HMM classification results obtained with the data under

consideration are presented.

B. DHMM RECOGNIZER CLASSIFICATION RESULTS
Eighty experiments were conducted to investigate the overall classification results

obtained with a DHMM classifier approach on the database, where two thirds of the data

were randomly selected for the training phase and the reminder one third of the data were

used for testing. Several models were considered by varying the frame length, the number

of MFCC coefficients, and implementations with and without the delta-MFCC

coefficients. The combination leading to the best average classification results is shown

below:

a. Frame length: 256 samples.

b. Increments: 156 samples (40% overlapping frames).

c. Speech features: 12 MFCCs and 12 delta-MFCCs.

d. Mel-scale filter bank: 24 triangular filters.

e. Delta-MFCC scaling factor: 6.

f. Codebook size: 128 symbols.

g. Model size of HMMs: 8 states.

First, the overall average classification results for the isolated words under

consideration are discussed. Second, the experimental findings for the second dataset

(Kill_noise and Right_outside) are presented to show the recognition performance in

noisy environment conditions and the potential distortions due to the ear canal

investigated. Finally, the timing issues regarding the simulation run-times were

examined.

1. Overall Recognition Results
Results show the overall classification rate to be equal to 92.77%. Table 5.1

shows the confusion matrix of the average classification results obtained on the testing

97

sets over 80 experiments. Figure 5.2 plots the average classification rates obtained for

each word.

AVERAGE CLASSIFICATION RATES FOR THE TESTING SET (%)
WORD

Up Down Left Right Kill Pan Move

Up 92.5500 3.2125 2.3375 0.4375 0.3458 0.8208 0.2958

Down 0.3042 92.3333 1.7958 0.3250 2.3292 2.3500 0.5625

Left 2.1375 1.6875 87.6833 7.0792 0.6542 0.3625 0.3958

Right 0.4875 1.0750 2.6417 94.6708 0.4000 0.3792 0.3458

Kill 0.3125 1.7250 0.7917 0.4667 94.2292 2.2500 0.2250

Pan 0.0917 3.5500 0.9375 0.3375 1.8708 91.9458 1.2667

Move 0.6875 0.1000 1.4542 1.2875 0.2917 0.2167 95.9625

Average Classification: 92.77%
Table 5.1. Confusion Matrix for the Average Classification Rates for Testing Sets; 80

Experiments, 62.5% Training, 37.5% Testing.

75

80

85

90

95

100

%
Classification

Rates

Up Down Left Right Kill Pan Move
Vocabulary Words

Average Classification Rates for the Testing Set

Figure 5.2. Average Classification Rates for Testing Sets; 80 Experiments, 62.5%

Training, 37.5% Testing.

98

Table 5.2 lists the resulting 95% confidence level intervals for the averaged

classification results obtained for 80 experiments on testing sets. Figure 5.3 illustrates the

95% confidence level intervals and the average classification rates for the testing set.

WORD 95% CONFIDENCE INTERVALS
FOR TESTING SETS, in %

Up [86.0000 - 96.0000]

Down [86.0000 - 95.3333]

Left [79.3333 - 93.3333]

Right [92.3333 - 97.0000]

Kill [91.0000 - 97.3333]

Pan [86.6667 - 96.0000]

Move [93.0000 - 98.0000]

Overall
Classification

 [91.0952 - 94.2857]

Table 5.2. 95% Confidence Level Intervals for Testing Sets; 80 Experiments.

. .
.

. . .
..

95% Confidence Intervals for the Testing Set

75

80

85

90

95

100

Up Down Left Right Kill Pan Move

Vocabulary Words

95
%

 C
on

fid
en

ce
 In

te
rv

al
s

Average Classification Rates→i

95% Confidence Intervals for the Testing Set

75

80

85

90

95

100

Up Down Left Right Kill Pan Move

Vocabulary Words

95
%

 C
on

fid
en

ce
 In

te
rv

al
s

Average Classification Rates→i.
. .

.
. . .

.
. .

.
. . .

..
95% Confidence Intervals for the Testing Set

75

80

85

90

95

100

Up Down Left Right Kill Pan Move

Vocabulary Words

95
%

 C
on

fid
en

ce
 In

te
rv

al
s

Average Classification Rates→i

95% Confidence Intervals for the Testing Set

75

80

85

90

95

100

Up Down Left Right Kill Pan Move

Vocabulary Words

95
%

 C
on

fid
en

ce
 In

te
rv

al
s

Average Classification Rates→i.
. .

.
. . .

.

Figure 5.3. 95% Confidence Intervals and the Average Classification Rates for

Testing Sets; 80 Experiments.

99

Figure 5.2 shows that the misclassification rate (or the word error rate) of the

word “Left” stands out as the worst among all words. In an effort to find the cause of the

performance degradation for this word, the misclassified “Left” utterances were traced

back. We noted that misclassification errors occurred for trials where ending boundaries

did not include the low energy “t” sound which was supposed to be present at the end of

the word “Left.” As a result, we surmise these errors were mostly caused by the incorrect

detection of the speech boundaries, due to the hard-to-detect unvoiced low-energy ending

sound “t” in the word “Left.”

2. Experimental Results for the Second Dataset
Eighty experiments were also run with the second data set consisting of 1,000

utterances of “Kill_noise” and 400 utterances of “Right_outside.” Table 5.4 shows the

average classification rates for the second data set while Table 5.5 lists the 95%

confidence level intervals for the second data set.

AVERAGE CLASSIFICATION RATES FOR

THE SECOND DATA SET (%) WORD

Up Down Left Right Kill Pan Move

Right_outside 0.8747 4.1858 9.5897 83.5146 0.8969 0.9192 0.0191

Kill_noise 2.0082 5.3058 4.1641 2.6784 79.2431 6.1595 0.4409

Table 5.4. Average Classification Rates for the Second Data Set; 80 Experiments.

WORD 95% CONFIDENCE INTERVALS
FOR THE SECOND DATA SET

Right_outside [63.1043 - 94.6565]

Kill_noise [72.6809 - 84.5056]

Table 5.5. 95% Confidence Level Intervals for the Second Data Set; 80 Experiments.

Figure 5.4 illustrates the 95% confidence level intervals and the average

classification rates for the second data set consisting of the words “Right_outside” and

“Kill_noise”. Note that hidden Markov models were trained with the first data set of

words { }, , , , , , up down left right kill pan move and tested on the second data set in these

experiments.

100

.
95% Confidence Intervals for the Second Data Set

50

55

60

65

70

75

80

85

90

95

100

Right_outside Kill_noise

Second Data Set Words

95
%

 C
on

fid
en

ce
 In

te
rv

al
s

Average Classification Rates→i

95% Confidence Intervals for the Second Data Set

50

55

60

65

70

75

80

85

90

95

100

Right_outside Kill_noise

Second Data Set Words

95
%

 C
on

fid
en

ce
 In

te
rv

al
s

Average Classification Rates→i.
. .

.
95% Confidence Intervals for the Second Data Set

50

55

60

65

70

75

80

85

90

95

100

Right_outside Kill_noise

Second Data Set Words

95
%

 C
on

fid
en

ce
 In

te
rv

al
s

Average Classification Rates→i

95% Confidence Intervals for the Second Data Set

50

55

60

65

70

75

80

85

90

95

100

Right_outside Kill_noise

Second Data Set Words

95
%

 C
on

fid
en

ce
 In

te
rv

al
s

Average Classification Rates→i.
. .

Figure 5.4. 95% Confidence Intervals and the Average Classification Rates for the

Second Data Set; 80 Experiments

Recall that the isolated utterances of the words “Right_outside” and “Kill_noise”

were not included in the training population which was used to estimate the model

parameters. The following comments can be made.

1. Average classification rates for the word “Kill” collected within the ear canal while
the subject is placed in a severely distorted environment show the ear-canal and the
foam casing noise limit recognition degradations over what would be observed from
the same signal collected in front of the mouth. However, they also indicate that
recognition performance still worsens, thereby showing the need for some noise
canceling pre-processing to minimize these noise distortions prior to the recognition
stage.

2. Average classification rates obtained for the word “Right” collected outside the
mouth shows significant performance degradation (down to 63%), over that
observed with the same word collected from within the ear canal (down to 86%).
Recall that the ear canal dampens high frequencies, as shown in Figure 2.1 which
presents spectrograms of two trials of the word “Right” collected within the ear
canal and outside the mouth, respectively. As a result, the HMM model derived for
the data with dampened higher frequencies does not accurately fit the data collected
outside the mouth, resulting in degraded recognition performances.

101

3. Timing Issues

Table 5.3 shows the average training times per utterance of a word for the

following four computational tasks which are part of the classifier set-up: 1) the K-means

clustering step which transforms the continuous valued feature vectors into a codebook,

2) the Baum-Welch re-estimation algorithm step which is applied to compute the HMM

parameters, 3) the overall average training time, and 4) the average time needed to make

a decision for a word from the testing set. The specifications shown are based on average

MATLAB simulation run-times obtained with a PC with 3 GHz Intel Pentium IV

processor and 1 GB of RAM. Table 5.3 shows that the K-means clustering algorithm step

represents more than 50% of the overall training time needed to generate the codebook,

while the computational time of the Baum-Welch re-estimation algorithm step needed to

train one of the HMMs is about 44% less. Finally, we note that the recognition time on a

per word basis is about 1/3 of that required at the training phase.

SIMULATION TYPE AVERAGE MATLAB SIMULATION
RUN-TIME (seconds)

K-means algorithm training time
per word: 0.0771

Baum-Welch algorithm training time
per word: 0.0431

Overall training time per word: 0.1202

Recognition time per word: 0.0428

Table 5.3. Average Simulation Run-Times for 80 Experiments.

102

THIS PAGE INTENTIONALLY LEFT BLANK

103

VI. CONCLUSIONS AND RECOMMENDATIONS

This thesis study extended the earlier work by Newton [Newton, 2006] who

collected a database of isolated word utterances of seven words from 20 adult subjects by

using the in-ear microphone. The objective of this thesis was to study this database and

demonstrate the feasibility of using acoustic speech signals collected within the external

ear canal for isolated word recognition. The intent was also to investigate the

performance and noise-robustness of the in-ear microphone data for speech recognition in

noisy operational environments. These objectives were successfully accomplished by

implementing a discrete-observation HMM-based isolated word recognizer in MATLAB.

A. SIGNIFICANT RESULTS AND CONCLUSIONS
The following specific conclusions were drawn through experimental results:

• Three types of digital filters: a first-order pre-emphasis filter (FIR), a
sixth-order bandpass filter (IIR) and a sixth-order high-pass filter (IIR)
were implemented and applied to the database in the pre-processing step.
The use of high-pass filter resulted in the best classification performances
in the isolated word HMM recognizer.

• Two different speech segmentation procedures for endpoint detection were
studied. The first approach used the short-term energy (STE) and the zero-
crossing rate (ZCR), while the second was based on the frame-based
modified Teager energy. Results showed similar detection accuracies
were obtained for both. The Teager energy approach was found to be
computationally more expensive than the alternative, and as a result, it
was not used in the detection/cropping step. However, we also noted the
STE and ZCR detection approach still produced misdetection of word
boundaries for some of the words with weak fricative sounds.

• Two popular types of speech features, specifically LPC-derived Cepstral
coefficients (LPC-CC) and Mel-frequency Cepstral coefficients (MFCC)
were extracted from speech frames separately and their performances
compared. The use of MFCC parameters for feature extraction resulted in
better recognition rates. In addition, augmentation of the static MFCC
parameters by the dynamic delta-MFCC parameters improved recognition
rates. Finally, we also noted that Cepstral mean correction and delta
parameters scaling had a significant impact for feature enhancement,
improving the classification accuracy further.

• K-means clustering was implemented for codebook generation and vector
quantization of continuous valued speech features. We observed that
increasing the codebook size diminished the quantization distortion.
However, large codebook sizes (over 128 codewords) were not practical

104

for this study’s small-vocabulary recognition system, considering the
increased training time associated with a larger codebook. We also
investigated the use of a linear codebook uniformly spaced along the range
of speech features, which resulted in poor clustering and classification. It
was observed that the K-means clustering algorithm with the selection of a
sufficiently-large codebook size can be effectively used to obtain discrete
speech feature sequences for training the discrete-observation HMMs.

• The selection of proper HMM parameters such as the number of discrete
symbols (or equivalently codebook size) and the number of hidden states
to set up the HMM plays a key role in recognition performance. Although
there are only four phonemes per word in this study’s vocabulary on
average, experimental results showed the state size of eight was required
to model the speech characteristics of in-ear microphone data for high
classification accuracy.

The average classification rate for this study’s small-vocabulary, multiple-speaker

isolated word HMM recognition system was 92.77%. Results show that the acoustic

signals originated from speech organs and collected within the external ear canal via an

in-ear microphone can be effectively used for isolated word recognition.

The second dataset collected under low SNR conditions with additive noise

resulted in 79.24% recognition accuracy in the HMM-based classifier. This result is

consistent with the theoretical noise-shielding property of the human ear, thus justifying

the use of in-ear microphone data for speech enhancement and improved recognition

under low-SNR conditions.

Finally, we investigated using the in-ear microphone outside the mouth and

comparing classification results obtained for the data collected within the ear canal and

outside the mouth. Average classification rates obtained for the data collected outside the

mouth shows significant performance degradation (down to 63%), over that observed

with the data collected from within the ear canal (down to 86%). Recall that the ear canal

dampens high frequencies. As a result, the HMM model derived for the data with

dampened higher frequencies does not accurately fit the data collected outside the mouth,

resulting in degraded recognition performances.

These initial results are considered highly encouraging for the development of a

human-machine interface using the in-ear microphone for the tele-operation of military

robots in noisy operational environments.

105

B. RECOMMENDATIONS FOR FUTURE WORK

Results indicate that there is still room for recognition rate improvements. Four

main areas for further work are identified.

First, the current database may be expanded to include additional speakers and the

vocabulary size may be increased to include possible voice commands considering the

development of a human-computer interface under consideration. In addition, a “clean”

database needs to be collected inside a noise-controlled room to more formally

investigate the impact of noise on the in-ear microphone data. Next, a set of standard

noise databases with known SNR levels should be added synthetically to distort the data

in order to investigate the performance degradation under known SNR levels.

Second, it was observed that some word errors, especially for the word “Left” in

the vocabulary, were due to the misdetection of speech endpoints. Further improvement

should be possible with an improved speech segmentation algorithm development. A

possible alternative segmentation algorithm may include entropy-based measures to

locate the speech boundaries in noisy environments better.

Third, speech features other than the MFCC and LPC-CC may be studied in an

effort to determine the proper set of features for the in-ear microphone data. An

alternative to the MFCC parameters is the use of Perceptual Linear Prediction (PLP)

coefficients. Further, to augment the spectral speech features an energy term such as the

log of frame-based speech energy can be appended to the speech parameters. The use of

second order differential coefficients (delta-delta parameters) may also be investigated.

Finally, performance improvement may be achieved by implementing different

model structures. The current isolated word recognizer was a simple discrete-observation

HMM set-up because discrete systems require low run-time computation. However,

vector quantization reduces the accuracy by introducing some distortion. Therefore, a

continuous-density HMM structure using Gaussian mixture densities could be selected

for investigation. Another limitation of the current HMM set-up is due to the first-order

Markov chain assumption which provides a temporal structure for modeling the time

evolution of speech spectral characteristics from one state into the next by state

transitions. Ideally, the observation vectors are assumed to be independent and identically

106

distributed (IID) within each state. The IID assumption suggests that there is no

correlation between successive observation vectors (or speech feature vectors), which is

not strictly true in terms of basic linguistic units. Therefore, a higher-order model

structure with discrete observations could also be investigated.

Alternatively, the incorporation of state duration densities into the HMMs,

applying the error corrective training method or Bayesian Network adaptation might

initiate a wide range of research topics and improve system performance.

107

APPENDIX A. SPEECH FRONT-END DETECTION MATLAB
PROGRAMS

This appendix includes the MATLAB programs used in the front-end detector of

the isolated word recognition system. These programs determine the endpoints of speech

boundaries and crop speech signals based on the detected endpoints. References show the

specific endpoint detection algorithms implemented in the codes.

1. SPEECH ENDPOINT DETECTION FROM THE SHORT-TERM
ENERGY AND ZERO-CROSSING RATE

% Filename : endpoint1.m
% Written by : R.S. Kurcan, LTJG. TU NAVY.
% Date last revised : 10\18\2005.
% Purpose : This function reads in a speech file and applies an endpoint
% detection algorithm based on Short-term Energy and Zero-crossing Rate to determine
% the speech boundaries.
%
function [datacropped,speechlength,speechflag] = endpoint1(datadir,fs,win,fl,inc);
%
% Endpoint Detection Using Short-term Energy and Zero-crossing Rate.
% <Inputs>
% datadir : Directory of the txt file containing speech signal.
% fs : Sampling frequency in Hz (Default 8000).
% win : Window type 'R' Rectangular window in time.
% 'N' Hannning window in time.
% 'H' Hamming window in time.
% fl :Frame length (Default 80 samples corresponding to 10 ms).
% inc :Increment in num of samples (Default 40).
% <Outputs>
% datacropped : This returns the cropped speech signal based on endpoint
% detection.
% speechflag : If any speechflag is set for warning any single one or
% combination of the following problems might have occurred.
% 1. Split data file may be corrupt if norm(s)<0.1
% 2. Infinite loop in raw search algorithm for speech
% boundaries if there is no signal detected that has 20 frames or longer
% duration.
% 3. Speech portion of the signal starting too early
% might indicate a possible noise sequence in the beginning due to
% bad recording.
% All above cases need further investigation after cropping speech to determine if
% the cropped data is corrupt.
% speechlength : It is the length of the cropped speech signal.
%

108

% <References>
% [1] L. R. Rabiner and M. R. Sambur, “An algorithm for determining the endpoints
% of isolated utterances,” The Bell System Technical Journal, February 1975.
%
%--

clc, clear('s');
if nargin < 2 fs = 8000; end
if nargin < 3 win = 'R'; end % Default Rectangular Window.
if nargin < 4 fl = fs/100; end % Default frame length is 80 for 10 ms.
if nargin < 5 inc = fl/2; end % Default inc.in overlapping window is 40.
if win == 'R'
 % Default Rectangular Window of length 80 for 10 ms frames.
 w = rectwin(fl);
 else if win =='N' w = hann(fl);
 else if win =='H' w = hamming(fl); end
 end
end

s = load(datadir);
sm = s-mean(s); % Takes the mean out of data before processing.
speechflag = 0;

% IIR Elliptical BPF Design
%d = fdesign.bandpass(100/4000,150/4000,2000/4000,2400/4000,60,0.5,60);
%hd = ellip(d);
%sf = filter(hd,sm); % Filters the speech data.

% Design of a first-order pre-emphasis filter
%a = 1;
%b = [1, -15/16];
%sf = filter(b,a,sm);

% IIR Elliptical HPF Design
d = fdesign.highpass('n,fst,fp,ap',10,60/4000,100/4000,0.5);
hd = ellip(d);
sf = filter(hd,sm);

% Checking bad split trials below if any.
if norm(sf) < 1.5; datacropped = []; speechflag = 1; speechlength = 0;
else

% Truncating the data to make it divisible by frame length.
m = floor(length(sf)/inc);
sf = sf(1:m*inc);

109

% Short-term energy per frame is STE and Zero crossing count
% per frame is ZCR. % 50 overlaping frames taken by default.
for n=1:m-1;
 sw = sf(inc*(n-1)+1:inc*(n-1)+fl).*w; STE(n) = sum(abs(sw));
 for j= 2:fl;
 zc(j)=abs(sign(sw(j))-sign(sw(j-1)))/2;
 end
 ZCR(n) = sum(zc);
end

% Assuming there is no speech during the first 100 ms of recordings,
% Mean and standard deviation of ZCR and STE for the first ten frames.
avgzcr = mean(ZCR(1:10)); stdzcr = std(ZCR(1:10));
avgste = mean(STE(1:10)); stdste = std(STE(1:10));

% Setting up STE Upper and Lower Thresholds and ZCR Threshold.
IF = fl/4; % 20 crossings per 10 ms is a fixed value when N=80;
IZCT = min(IF,avgzcr+stdzcr); % Zero-crossing Rate Threshold.
IE = 0.25; % Upper level for avgste in case high noise
% present in first 20 frames.
minste = min(IE,avgste+stdste);
ITL = 8*minste; % Lower threshold for STE.
ITU = 32*minste; % Upper threshold for STE.
FT = (ITU-ITL)/2 + ITL; % Fine threshold for STE.

% Following algorithm firsts makes a raw search for endpoint detection
% based on STE, ITU and UTL. Then it refines the speech boundaries using
% ZCR and IZCT for the successive and preceding 6 frames forth and back.
% If the interval btwn rawstart and rawend is less than 100 ms (20 frames)
% algorithm assumes that it is just a click noise (or a spike), not speech.

duration = 0; rawend = 0; rawstart = 0; loopn =0; d = 1; refindex = 0;
while duration < 21; % Raw search for speech boundaries starts.
 for n = d:m-1
 if STE(n) > ITU;
 refindex = n; rawstart = n;
 for l = refindex:-1.0:1
 if STE(l) < FT; rawstart = l; break; end
 end
 break;
% If STE of speech signal does not exceed upper threshold, ITU is set to ITU = ITU/2
% and makes one more search.
 else if n == m-1;
 ITU = ITU/2; FT = FT/2;
 for v = 1:m-1
 if STE(v) > ITU;

110

 refindex = v; rawstart = v;
 for p = refindex:-1.0:1
 if STE(p) < FT; rawstart = p; break; end
 end
 break;
 end
 end
 end
 end
 end
 if refindex ~= 0;
 for k = refindex:m-1
 if STE(k) < FT; rawend = k; break; end
 end
 end
 duration = rawend - rawstart; % If duration < 20 frames, it keeps scanning.
 if (duration == 0); speechflag =2; break; end
 if (duration < 0); speechflag =3; break; end
 loopn = loopn+1;
 if loopn > 10; speechflag = 4; speechlength = 0; break; end % Prevents infinite loop.
 d = rawend+1;
end

% Fine search using total number of intervals crossing threshold of ZCR.
finestart = rawstart; fineend = rawend;

if (duration>23)&&(duration<50)
nzc = 0; update = 0;
if (rawstart-6) > 0;
for n = rawstart:-1:(rawstart-6)
 if ZCR(n) > IZCT; nzc = nzc+1; update = n; end
end
if nzc > 3; finestart = update; end
end

nzc = 0; update = 0;
if ((rawend+6) < length(ZCR))&&(rawend ~= 0);
for n = rawend:(rawend+6)
 if ZCR(n) > IZCT; nzc = nzc+1; update = n; end
end
 if nzc > 3; fineend = update; end
end
end

starti = inc*(finestart)+1;
endi = inc*(fineend);

111

if (endi-starti) > 878;
speechlength = endi-starti;
datacropped = sf(starti:endi);
speechflag = 0;
else speechlength = 0; datacropped = sf;
end

% Plots of STE, ZCR, and original speech signal, thresholds and resulting
% endpoints on the speech signal.
%figure(1);
%subplot(3,1,1); plot(STE); hold on,
%subplot(3,1,1), plot(1:length(STE),ITU,'r'), hold on;
%subplot(3,1,1), plot(1:length(STE),ITL,'g');
%title('Short-term Energy'); ylabel('Magnitude'); xlabel('Frame Number');

%subplot(3,1,2); plot(ZCR); hold on;
%subplot(3,1,2); plot(1:length(ZCR),IZCT,'r');
%title('Zero-crossing Rate'); ylabel('Zero-crossings');
%xlabel('Frame Number');

%subplot(3,1,3); plot(s); hold on;
%subplot(3,1,3); plot(starti,-2:0.1:2,'r'); hold on;
%subplot(3,1,3); plot(endi,-2:0.1:2,'r');
%title(datadir); ylabel('Magnitude');
%xlabel('Sample Number');

%figure(2);
%subplot(2,1,1); plot(s(starti:endi)); title('Original Speech Cropped');
%subplot(2,1,2); plot(sf(starti:endi)); title(datadir); % filtered speech cropped.

end

%---
% End of function endpoint1.m
%---

2. SPEECH ENDPOINT DETECTION FROM THE FRAME-BASED

MODIFIED TEAGER ENERGY
% Filename : endpoint2.m
% Written by : R.S. Kurcan, LTJG. TU NAVY.
% Date last revised : 11\08\2005.
% Purpose : This function reads in a speech file and applies an endpoint
% detection algorithm based on the frame-based modified Teager’s energy to determine
% the speech boundaries.
%
function [datacropped,speechlength,speechflag] = endpoint2(datadir,fs,win,fl,inc);

112

% Endpoint Detection Using Frame-based Modified Teager’s Energy.
% <Inputs>
% datadir :Directory of the txt file containing speech signal.
% fs :Sampling frequency in Hz (Default 8000).
% win :Window type 'R' Rectangular window in time.
% 'N' Hannning window in time.
% 'H' Hamming window in time.
% fl :Frame length (Default 80 samples corresponding to 10 ms).
% inc :Increment in num of samples (Default 40).
% <Outputs>
% datacropped :it returns the cropped speech signal based on endpoint
% detection.
% speechflag :If speechflag is set to 1 it returns a warning regarding
% any single one or combination of the following problems.
% 1. Split data file may be corrupt if norm(s)<3
% 2. Infinite loop in raw search algorithm for speech
% boundaries if there is no signal detected that has 20 frames or longer
% duration.
% 3. Speech portion of the signal starting too early
% might indicate a possible noise sequence in the beginning due to
% bad recording.
% All above cases need further investigation after cropping to make sure
% the cropped data is not corrupt.
% <References>
% [1] G. S. Ying, C. D. Mitchell, L. H. Jamieson, “Endpoint detection of isolated
% utterances based on a modified Teager energy measurement,” Proceedings of 1993
% IEEE International Conference on Acoustics, Speech, and Signal Processing
% (ICASSP-93), Vol.2, pp.732-735, April 1993.
%--

if nargin < 2 fs = 8000; end
if nargin < 3 win = 'R'; end % Default Rectangular Window.
if nargin < 4 fl = fs/50; end % Default frame length is 160 for 20 ms.
if nargin < 5 inc = fl/2; end % Default inc.in overlapping window is 80.
if win == 'R'
 % Default Rectangular Window of length 160 for 20 ms frames.
 w = rectwin(fl);
 else if win =='N' w = hann(fl);
 else if win =='H' w = hamming(fl); end
 end
end

s = load(datadir);
sm = s-mean(s); % Takes the mean out of data before processing.
speechflag = 0;
if norm(sm) < 1.5; datacropped = []; speechflag =1; % Checking bad split trials if any.

113

else

% IIR Elliptical BPF Design
%d = fdesign.bandpass(100/4000,150/4000,2000/4000,2400/4000,60,0.5,60);
%hd = ellip(d); sf = filter(hd,sm); % Filters the speech data.

% First-order pre-emphasis filter
%a = 1; b = [1, -15/16];
%sf = filter(b,a,sm);

% IIR Elliptical HPF filter
d = fdesign.highpass('n,fst,fp,ap', 6, 100/4000, 150/4000, 0.5);
hd = ellip(d); sf = filter(hd,sm);

% Frame-based Teager Energy Measure
% 1. Calculate the power spectrum
% 2. Weight each sample in the power spectrum with the square of the frequency
% 3. Take the square root of the sum of the weighted power spectrum.

% Zero padding signal if necessary before % 50 overlapping windowing.
m1 = (length(sf)/inc);
m1 = ceil(m1); sf(length(sf):inc*m1) = zeros;

end

% Frame-based Teager's Energy Measurement, FTE
f = fs*(0:64)/128;
Wf = f.^2; % Weighting factor for power spectrum of each frame.
for n=1:m1-1;
 sw = sf(80*(n-1)+1:80*(n-1)+160).*w;
 swfft = fft(sw,128);
 Ps = swfft.*conj(swfft) / 128;
 WPs = transpose(Ps(1:65)).*Wf; % Power Spect. weighted by the square of the freq.
 FTE(n) = sqrt(sum(WPs));
end
% Endpoint detection using Teagar's Frame-based Modified Energy.
maxft = mean(FTE(1:10))+std(FTE(1:10));
maxfte = min(12,maxft);
ITL_T = 6*maxfte;
ITU_T = 18*maxfte;
dur = 0; rend = 0; rstart = 0; dt = 1; loopn = 0;
while dur < 20;
 for n = dt:(m1-1)
 if FTE(n) > ITU_T;
 rindex = n;
 for l = rindex:-1.0:1

114

 if FTE(l) < ITL_T; rstart = l; break; end
 end
 break
 end
 end
 for k = rindex:m1-1
 if FTE(k) < ITL_T; rend = k; break; end
 end
 dt = rend+1;
 dur = rend - rstart;
 loopn = loopn +1;
 if loopn > 5; speechflag =0; speechlength =0; break; end
end
startt = 80*rstart;
endt = 80*(rend-1);
speechlength = startt-endt;
datacropped = sf(startt:endt);

% Plots of ste, zcr, FTE, original speech signal, thresholds and resulting
% endpoints on the speech signal.
figure(1); subplot(2,1,1); plot(FTE); hold on;
subplot(2,1,1), plot(1:length(FTE),ITU_T,'r'), hold on;
subplot(2,1,1), plot(1:length(FTE),ITL_T,'g');
title('Frame-based Teagers Energy'); ylabel('Magnitude'); xlabel('Frame Number');
subplot(2,1,2); plot(s); hold on;
subplot(2,1,2); plot(startt,-2:0.1:2,'g'); hold on;
subplot(2,1,2); plot(endt,-2:0.1:2,'g');
title('MOVE'); ylabel('Magnitude'); xlabel('Sample Number');

end
%---
% End of function endpoint2.m
%---

3. SPEECH CROPPING BASED ON ENDPOINT DETECTION
% Filename : cropspeech.m
% Written by : R.S. Kurcan, LTJG. TU NAVY.
% Date last revised : 11\15\2005.
% Purpose : This function crops the individual speech files
% in the the “Split” folder and saves them in the “Cropped” folder based
% on an endpoint detection algorithm.
% <Description>
%
% This function crops the split speech files located in the user-specified
% 'Data' directory and saves them in the subfolder, “Cropped.”
% User specifies the directory of the folder where the speech data is

115

% stored. This routine first lists the personal folders, then it finds the
% split folder under each person and then lists the folders of 7 words.
% Afterward, the algorithm calls for the endpoint.m function for each
% word (txt file). Cropped data file is saved under the folder 'Cropped'
% unless it is corrupt. If it is corrupt it is saved under folder 'Corrupt'
%--

w = cd;
user_entry = input('Specify the directory of the folder for the speech data:\n','s');
ind_folder = dir(user_entry);
max_length = 3000; min_length = 2500;

for n = 3:length(ind_folder)
 parentdir = strcat(user_entry,'\',ind_folder(n).name);
 cd(parentdir);
 mkdir('Cropped'); mkdir('Corrupt');
 cd(strcat(parentdir,'\Cropped'));
 mkdir('down'); mkdir('kill'); mkdir('kill_noise'); mkdir('left');
 mkdir('move'); mkdir('pan'); mkdir('right'); mkdir('right_outside');
 mkdir('up');
 cpath = strcat(parentdir,'\Split');
 cd(cpath);
 split_folder = dir;
 flags = []; flags.stat = []; flags.name = []; g = 1;

 for m = 3:length(split_folder)
 wpath = strcat(cpath,'\',split_folder(m).name);
 cd(wpath);
 word_folder = dir;
 cd(w);
 %zlen = []; p = 1;
 for k = 3:length(word_folder)
 datapath = strcat(wpath,'\',word_folder(k).name);

 [datacropped,speechlength,speechflag] = endpoint1(datapath); % Calls the
 % endpoint detection function.
 fprintf(1,'... Cropping file: %s and length, %6.2f\n',datapath, speechlength);

 if (speechflag == 0) % If cropped data is not a bad one.
 if speechlength > max_length;
 max_length = speechlength;
 max_file = word_folder(k).name;
 else if (speechlength < min_length)&&(speechlength ~= 0);
 min_length = speechlength;
 min_file = word_folder(k).name;
 end

116

 end
 savepath =strcat(parentdir,'\Cropped\',split_folder(m).name,...
 '\',word_folder(k).name);
 save(savepath, 'datacropped','-ASCII');
 %zlen(p) = speechlength;
 %p = p+1;
 else % If cropped data is a bad trial.
 savepath =strcat(parentdir,'\Corrupt\',word_folder(k).name);
 save(savepath, 'datacropped','-ASCII');
 flags(g).name = word_folder(k).name;
 flags(g).stat = speechflag;
 g = g+1;
 end
 clear('datacropped','speechlength','speechflag');
 end
 %savepath =strcat(parentdir,'\Cropped\',split_folder(m).name,'\zlen.txt');
 %save(savepath, 'zlen','-ASCII'); clear('zlen');

 end
 savepath =strcat(parentdir,'\Corrupt');
 cd(savepath);
 save('flagstat.mat', 'flags');
 clear('flags');
end
max_file
max_length
min_file
min_length
%---
% End of function endpoint2.m
%---

117

APPENDIX B. SPEECH FEATURE EXTRACTION AND VECTOR
QUANTIZATION MATLAB PROGRAMS

This appendix includes the MATLAB programs used for feature extraction

(MFCC and LPC-CC computation), vector quantization and codebook generation. All the

MATLAB codes originated from those available at [Sorensen, 2005] and [Brookes,

1997]. Either the original codes were used or they were modified and the source of code

cited in the header of each program.

1. MEL-FREQUENCY CEPSTRAL COEFFICIENT (MFCC)
COMPUTATION

% Filename : melcepst.m
% Written by : Mike Brookes (VOICEBOX).
% Date last revised : 02/21/2005.
% Modified by : R.S. Kurcan, LTJG. TU NAVY.
% Date last modified : 10/25/2005.
% Purpose : This routine computes the Mel-cepstrum Cepstral
% Coefficients (MFCC) of a speech signal on a frame-by-frame basis. This
% routine calls the following subroutines: enframe.m, melbankm.m,
% rfft.m and rdct.m which were also written by Mike Brookes and appended
% to the end of the routine.
%
function c = melcepst(s,fs,w,nc,p,n,inc)
%
% Simple use: c=melcepst(s,fs) % calculate mel cepstrum with 12 coefs,
% 256 sample frames
% c=melcepst(s,fs,'e0dD') % include log energy, 0th cepstral coef,
% delta and delta-delta coefs
%
% <Inputs>
% s :speech signal
% fs :sample rate in Hz (default 11025)
% nc :number of cepstral coefficients excluding 0'th coef. (default 12)
% n :length of frame (default power of 2 <30 ms))
% p :number of filters in filterbank (default floor(3*log(fs)))
% inc :frame increment (default n/2)
%
% w :any sensible combination of the following:
%
% 'R' :rectangular window in time domain
% 'N' :Hanning window in time domain
% 'M' :Hamming window in time domain (default)
%

118

% 't' :triangular shaped filters in mel domain (default)
% 'n' :hanning shaped filters in mel domain
% 'm' :hamming shaped filters in mel domain
%
% 'p' :filters act in the power domain
% 'a' :filters act in the absolute magnitude domain (default)
%
% '0' :include 0'th order cepstral coefficient
% 'e' :include log energy
% 'd' :include delta coefficients (dc/dt)
% 'D' :include delta-delta coefficients (d^2c/dt^2)
%
% 'z' :highest and lowest filters taper down to zero (default)
% 'y' :lowest filter remains at 1 down to 0 frequency and
% highest filter remains at 1 up to nyquist freqency
%
% If 'ty' or 'ny' is specified, the total power in the fft is preserved.
%
% <Output> c :mel cepstrum output: one frame per row
%
% Copyright (C) Mike Brookes 1997
%
% VOICEBOX is a MATLAB toolbox for speech processing. Home page is at
% http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
%
--

format long;
if nargin<2 fs=8000; end
if nargin<3 w='M'; end
if nargin<4 nc=12; end
if nargin<5 p=floor(3*log(fs)); end
if nargin<6 n=pow2(floor(log2(0.03*fs))); end
if nargin<7 inc=floor(n/2); end

fh=0.5; % fh high end of highest filter as a fraction of fs.
fl=0; % fl low end of the lowest filter as a fraction of fs.
if length(w)==0; w='M'; end
if any(w=='R')
 z=enframe(s,n,inc);
elseif any (w=='N')
 z=enframe(s,hanning(n),inc);
else
 z=enframe(s,hamming(n),inc); % Hamming window in time domain (default).
end
f=fft(z.');

119

[m,a,b]=melbankm(p,n,fs,fl,fh,w);
pw=f(a:b,:).*conj(f(a:b,:));
pth=max(pw(:))*1E-6;
if any(w=='p') % filters act in the power domain.
 y=log(max(m*pw,pth));
else % filters act in the absolute magnitude domain (default).
 ath=sqrt(pth);
 y=log(max(m*abs(f(a:b,:)),ath));
end
c=dct(y).';
nf=size(c,1);
nc=nc+1;
if p>nc
 c(:,nc+1:end)=[];
elseif p<nc
 c=[c zeros(nf,nc-p)];
end
if ~any(w=='0') % It is better not to include 0th order mel cepstrum
% coefficient due to its more pronounced high amplitude.
 c(:,1)=[];
 nc=nc-1;
end
if any(w=='e') % include log energy.
 c=[log(sum(pw)).' c];
 nc=nc+1;
end

% calculate derivative

if any(w=='D')
 vf=(4:-1:-4)/60;
 af=(1:-1:-1)/2;
 ww=ones(5,1);
 cx=[c(ww,:); c; c(nf*ww,:)];
 vx=reshape(filter(vf,1,cx(:)),nf+10,nc);
 vx(1:8,:)=[];
 ax=reshape(filter(af,1,vx(:)),nf+2,nc);
 ax(1:2,:)=[];
 vx([1 nf+2],:)=[];
 if any(w=='d')
 c=[c vx ax];
 else
 c=[c ax];
 end
elseif any(w=='d')
 vf=(4:-1:-4)/60;

120

 ww=ones(4,1);
 cx=[c(ww,:); c; c(nf*ww,:)];
 vx=reshape(filter(vf,1,cx(:)),nf+8,nc);
 vx(1:8,:)=[];
 c=[c vx];
end

if nargout<1
 [nf,nc]=size(c);
 t=((0:nf-1)*inc+(n-1)/2)/fs;
 ci=(1:nc)-any(w=='0')-any(w=='e');
 imh = imagesc(t,ci,c.');
 axis('xy');
 xlabel('Time (s)');
 ylabel('Mel-cepstrum coefficient');
 map = (0:63)'/63;
 colormap(jet(64));
 % colormap([map map map]);
 colorbar;
end

%---
% End of routine melcepst.m
%---

% SUBROUTINE
function f=enframe(x,win,inc)
% ENFRAME split signal up into (overlapping) frames: one per row. F=(X,WIN,INC)
%
% F = ENFRAME(X,LEN) splits the vector X up into
% frames. Each frame is of length LEN and occupies
% one row of the output matrix. The last few frames of X
% will be ignored if its length is not divisible by LEN.
% It is an error if X is shorter than LEN.
%
% F = ENFRAME(X,LEN,INC) has frames beginning at increments of INC
% The centre of frame I is X((I-1)*INC+(LEN+1)/2) for I=1,2,...
% The number of frames is fix((length(X)-LEN+INC)/INC)
%
% F = ENFRAME(X,WINDOW) or ENFRAME(X,WINDOW,INC) multiplies
% each frame by WINDOW(:)

% Copyright (C) Mike Brookes 1997
% Version: enframe.m,v 1.3 2005/02/21 15:22:12
%
% VOICEBOX is a MATLAB toolbox for speech processing.

121

% Home page: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
%
--

nx=length(x);
nwin=length(win);
if (nwin == 1)
 len = win;
else
 len = nwin;
end
if (nargin < 3)
 inc = len;
end
nf = fix((nx-len+inc)/inc);
f=zeros(nf,len);
indf= inc*(0:(nf-1)).';
inds = (1:len);
f(:) = x(indf(:,ones(1,len))+inds(ones(nf,1),:));
if (nwin > 1)
 w = win(:)';
 f = f .* w(ones(nf,1),:);
end

%--
% End of subroutine enframe.m
%--

% SUBROUTINE
function [x,mn,mx]=melbankm(p,n,fs,fl,fh,w)
% MELBANKM determine matrix for a mel-spaced filterbank
% [X,MN,MX]=(P,N,FS,FL,FH,W)
%
% <Inputs>
% p :number of filters in filterbank
% n :length of fft
% fs :sample rate in Hz
% fl :low end of the lowest filter as a fraction of fs (default = 0)
% fh : high end of highest filter as a fraction of fs (default = 0.5)
% w :any sensible combination of the following:
% 't' :triangular shaped filters in mel domain (default)
% 'n' :hanning shaped filters in mel domain
% 'm' :hamming shaped filters in mel domain
%
% 'z' :highest and lowest filters taper down to zero (default)
% 'y' :lowest filter remains at 1 down to 0 frequency and

122

% highest filter remains at 1 up to nyquist freqency
%
% If 'ty' or 'ny' is specified, the total power in the fft is preserved.
%
% <Outputs>
% x :a sparse matrix containing the filterbank amplitudes
% If x is the only output argument then size(x)=[p,1+floor(n/2)]
% otherwise size(x)=[p,mx-mn+1]
% mn :the lowest fft bin with a non-zero coefficient
% mx :the highest fft bin with a non-zero coefficient
%
% <Usage>
% f=fft(s); f=fft(s);
% x=melbankm(p,n,fs); [x,na,nb]=melbankm(p,n,fs);
% n2=1+floor(n/2); z=log(x*(f(na:nb)).*conj(f(na:nb)));
% z=log(x*abs(f(1:n2)).^2);
% c=dct(z); c(1)=[];
%
% To plot filterbanks e.g. plot(melbankm(20,256,8000)')
%
% Copyright (C) Mike Brookes 1997
% Version: melbankm.m,v 1.3 2005/02/21 15:22:13
%
% VOICEBOX is a MATLAB toolbox for speech processing.
% Home page: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
%

if nargin < 6
 w='tz';
 if nargin < 5
 fh=0.5;
 if nargin < 4
 fl=0;
 end
 end
end
f0=700/fs;
fn2=floor(n/2);
lr=log((f0+fh)/(f0+fl))/(p+1);
% convert to fft bin numbers with 0 for DC term
bl=n*((f0+fl)*exp([0 1 p p+1]*lr)-f0);
b2=ceil(bl(2));
b3=floor(bl(3));
if any(w=='y')
 pf=log((f0+(b2:b3)/n)/(f0+fl))/lr;

123

 fp=floor(pf);
 r=[ones(1,b2) fp fp+1 p*ones(1,fn2-b3)];
 c=[1:b3+1 b2+1:fn2+1];
 v=2*[0.5 ones(1,b2-1) 1-pf+fp pf-fp ones(1,fn2-b3-1) 0.5];
 mn=1;
 mx=fn2+1;
else
 b1=floor(bl(1))+1;
 b4=min(fn2,ceil(bl(4)))-1;
 pf=log((f0+(b1:b4)/n)/(f0+fl))/lr;
 fp=floor(pf);
 pm=pf-fp;
 k2=b2-b1+1;
 k3=b3-b1+1;
 k4=b4-b1+1;
 r=[fp(k2:k4) 1+fp(1:k3)];
 c=[k2:k4 1:k3];
 v=2*[1-pm(k2:k4) pm(1:k3)];
 mn=b1+1;
 mx=b4+1;
end
if any(w=='n')
 v=1-cos(v*pi/2);
elseif any(w=='m')
 v=1-0.92/1.08*cos(v*pi/2);
end
if nargout > 1
 x=sparse(r,c,v);
else
 x=sparse(r,c+mn-1,v,p,1+fn2);
end

%--
% End of subroutine melbankm.m
%---

% SUBROUTINE
function y=rfft(x,n,d)
% RFFT FFT of real data Y=(X,N)
% Data is truncated/padded to length N if specified.
% N even: (N+2)/2 points are returned with
% the first and last being real
% N odd: (N+1)/2 points are returned with the
% first being real
% In all cases fix(1+N/2) points are returned
%

124

% Copyright (C) Mike Brookes 1998
% Version: rfft.m,v 1.3 2005/02/21 15:22:14
%
% VOICEBOX is a MATLAB toolbox for speech processing.
% Home page: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
%
--

s=size(x);
if prod(s)==1
 y=x
else
 if nargin <3
 d=find(s>1);
 d=d(1);
 if nargin<2
 n=s(d);
 end
 end
 if isempty(n)
 n=s(d);
 end
 y=fft(x,n,d);
 y=reshape(y,prod(s(1:d-1)),n,prod(s(d+1:end)));
 s(d)=1+fix(n/2);
 y(:,s(d)+1:end,:)=[];
 y=reshape(y,s);
end

%---
% End of subroutine rfft.m
%---

% SUBROUTINE
function y=rdct(x,n,a,b)
%RDCT Discrete cosine transform of real data Y=(X,N,A,B)
% Data is truncated/padded to length N.
%
% This routine is equivalent to multiplying by the matrix
%
% rdct(eye(n)) = diag([sqrt(2)*B/A repmat(2/A,1,n-1)]) * cos((0:n-1)'*(0.5:n)*pi/n)
%
% Default values of the scaling factors are A=sqrt(2N) and B=1 which results in an
% orthogonal matrix. Other common values are A=1 or N and/or B=1 or sqrt(2).
% If b~=1 then the columns are no longer orthogonal.
%

125

% Copyright (C) Mike Brookes 1998
% Version: rdct.m,v 1.4 2005/02/21 15:22:14 dmb
%
% VOICEBOX is a MATLAB toolbox for speech processing.
% Home page: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
%

fl=size(x,1)==1;
if fl x=x(:); end
[m,k]=size(x);
if nargin<2 n=m;
end
if nargin<4 b=1;
 if nargin<3 a=sqrt(2*n);
 end
 end
if n>m x=[x; zeros(n-m,k)];
elseif n<m x(n+1:m,:)=[];
end

x=[x(1:2:n,:); x(2*fix(n/2):-2:2,:)];
z=[sqrt(2) 2*exp((-0.5i*pi/n)*(1:n-1))].';
y=real(fft(x).*z(:,ones(1,k)))/a;
y(1,:)=y(1,:)*b;
if fl y=y.'; end

%---
% End of subroutine rdct.m
%---

2. LPC-DERIVED CEPSTRAL COEFFICIENT (LPC-CC) COMPUTATION
% Filename : hmmfeatures.m
% Written by : Peter S.K. Hansen, IMM, Technical University of Denmark.
% Date last revised : 09/30/2000.
% Purpose : This routine computes the LPC-derived Cepstral Coefficients
% (LPC-CC) for feature extraction. This routine calls the subroutine durbin.m which is
% also written by Peter S.K. Hansen so as to implement the Levinson-Durbin recursion.
% This subroutine is appended to the end of the routine.

function y = hmmfeatures(s,N,deltaN,M,Q)
% hmmfeatures --> Feature extraction for HMM recognizer.
%
% <Synopsis>
% y = hmmfeatures(s,N,deltaN,M,Q)
%

126

% <Description>
% A frame based analysis of the speech signal, s, is performed to
% give observation vectors (columns of y), which can be used to train
% HMMs for speech recognition.
%
% The speech signal is blocked into frames of N samples, and
% consecutive frames are spaced deltaN samples apart. Each frame is
% multiplied by an N-sample Hamming window, and Mth-order LP analysis
% is performed. The LPC coefficients are then converted to Q cepstral
% coefficients, which are weighted by a raised sine window. The result
% is the first half of an observation vector, the second half is the
% differenced cepstral coefficients used to add dynamic information.
% Thus, the returned argument y is an 2Q-by-T matrix, where T is the
% number of frames.
%
% <References>
% [1] J.R Deller, J.G. Proakis and F.H.L. Hansen, “Discrete-Time
% Processing of Speech Signals”, IEEE Press, chapter 12, (2000).
%
%--

Ns = length(s); % Signal length.
T = 1 + fix((Ns-N)/deltaN); % No. of frames.

a = zeros(Q,1);
gamma = zeros(Q,1);
gamma_w = zeros(Q,T);

win_gamma = 1 + (Q/2)*sin(pi/Q*(1:Q)'); % Cepstral window function.

for (t = 1:T) % Loop frames.
 % Block into frames.
 idx = (deltaN*(t-1)+1):(deltaN*(t-1)+N);

 % Window frame.
 sw = s(idx).*hamming(N);

 % Short-term autocorrelation.
 [rs,eta] = xcorr(sw,M,'biased');

 % LP analysis based on Levinson-Durbin recursion.
 [a(1:M),xi,kappa] = durbin(rs(M+1:2*M+1),M); % LP analysis.

 % Cepstral coefficients.
 gamma(1) = a(1);
 for (i = 2:Q)

127

 gamma(i) = a(i) + (1:i-1)*(gamma(1:i-1).*a(i-1:-1:1))/i;
 end

 % Weighted cepstral sequence for frame t.
 gamma_w(:,t) = gamma.*win_gamma;
end

% Time differenced weighted cepstral sequence.
delta_gamma_w = gradient(gamma_w);

% Observation vectors.
y = [gamma_w; delta_gamma_w];

%---
% End of routine hmmfeatures.m
%---

% SUBROUTINE
function [a,xi,kappa] = durbin(r,M)
% durbin --> Levinson-Durbin Recursion.
%
% <Synopsis>
% [a,xi,kappa] = durbin(r,M)
%
% <Description>
% The function solves the Toeplitz system of equations
%
% [r(1) r(2) ... r(M)] [a(1)] = [r(2)]
% [r(2) r(1) ... r(M-1)] [a(2)] = [r(3)]
% [. . .] [.] = [.]
% [r(M-1) r(M-2) ... r(2)] [a(M-1)] = [r(M)]
% [r(M) r(M-1) ... r(1)] [a(M)] = [r(M+1)]
%
% (also known as the Yule-Walker AR equations) using the Levinson-
% Durbin recursion. Input r is a vector of autocorrelation
% coefficients with lag 0 as the first element. M is the order of
% the recursion.
%
% The output arguments are the M estimated LP parameters in the
% column vector a, i.e., the AR coefficients are given by [1; -a].
% The prediction error energies for the 0th-order to the Mth-order
% solution are returned in the vector xi, and the M estimated
% reflection coefficients in the vector kappa.
%
% Since kappa is computed internally while computing the AR coefficients,
% then returning kappa simultaneously is more efficient than converting

128

% vector a to kappa afterwards.
%
% <References>
% [1] J.R Deller, J.G. Proakis and F.H.L. Hansen, “Discrete-Time
% Processing of Speech Signals”, IEEE Press, p. 300, (2000).
%
% <Revision>
% Peter S.K. Hansen, IMM, Technical University of Denmark
%
% Last revised: September 30, 2000
%---

% Initialization.
kappa = zeros(M,1);
a = zeros(M,1);
xi = [r(1); zeros(M,1)];

% Recursion.
for (j=1:M)
 kappa(j) = (r(j+1) - a(1:j-1)'*r(j:-1:2))/xi(j);
 a(j) = kappa(j);
 a(1:j-1) = a(1:j-1) - kappa(j)*a(j-1:-1:1);
 xi(j+1) = xi(j)*(1 - kappa(j)^2);
end

%---
% End of subroutine durbin.m
%---

3. K-MEANS CLUSTERING ALGORITHM
% Filename : k_means.m
% Written by : Peter S.K. Hansen, IMM, Technical University of Denmark.
% Date last revised : 09/30/2000.
% Purpose : This routine implements the K-means clustering algorithm for
% the speech feature vectors.
function [Yc,c,errlog] = k_means(Y,K,maxiter)
% kmeans --> Trains a k-means cluster model.
%
% <Synopsis>
% [Yc,c,errlog] = k_means(Y,K,maxiter)
%
% <Description>
% The function uses the k-means algorithm to set the centroids of
% a cluster model. The matrix Y represents the data which is being
% clustered, with each row corresponding to a vector, and K is the
% desired number of clusters. The cluster centroids are returned in

129

% the matrix Yc (rows), and the cluster number for each data vector
% are returned in the vector c. The sum of squares error function is
% used in the algorithm, and a log of the error values after each
% iteration is returned in errlog. The maximum number of iterations
% is specified by maxiter.
%
% <References>
% [1] J.R Deller, J.G. Proakis and F.H.L. Hansen, “Discrete-Time
% Processing of Speech Signals”, IEEE Press, p. 71, (2000).
%---

[M,N] = size(Y); % Number of vectors and vector dim.
if (K > M)
 error('More centroids than data vectors.')
end

errlog = zeros(maxiter,1); % Log of error value after each iteration.

% Initialize centroids Yc by random selection of K vectors in Y.
perm = randperm(M);
Yc = Y(perm(1:K),:);

% Constant term in squared Euclidean distance between rows in Y and Yc.
d2y = (ones(K,1)*sum((Y.^2)'))';

for (i = 1:maxiter)
 % Save old centroids to check for termination.
 Yc_old = Yc;

 % Squared Euclidean distance (M-by-K matrix) between rows in Y and Yc.
 d2 = d2y + ones(M,1)*sum((Yc.^2)') - 2*Y*Yc';

 % Assign each vector in Y to nearest centroid.
 [errvals,c] = min(d2');

 % Adjust the centroids based on the new assignments.
 for (k = 1:K)
 if (sum(c==k)>0)
 Yc(k,:) = sum(Y(c==k,:))/sum(c==k);
 end
 end

 % Error value is the total squared distance from cluster centroids.
 errlog(i) = sum(errvals);
 fprintf(1,'... Iteration %4d --- Error %11.6f\n',i,errlog(i));

130

 % Test for termination.
 if (max(max(abs(Yc - Yc_old))) < 10*eps)
 errlog = errlog(1:i);
 return
 end
end

%--
% End of routine k_means
%--

4. CODEBOOK GENERATION FOR VECTOR QUANTIZATION
% Filename : hmmcodebook.m
% Written by : Peter S.K. Hansen, IMM, Technical University of Denmark.
% Date last revised : 09/30/2000.
% Modified by : R.S. Kurcan, LTJG. TU NAVY.
% Date last modified : 12/18/2005.
% Purpose :This routine generates a codebook using the subroutine
% k_means.m. This codebook is used for vector quantization of the continuous-valued
% speech feature vectors.
function [cb,K,T,dist,index] = hmmcodebook(datadir,ntrial,Kmax,maxiter);
% hmmcodebook.m --> Codebook generation for HMM recognizer.
%
% <Synopsis>
% [cb,K,T,dist] = hmmcodebook(datadir,ntrial,Kmax,maxiter)
%
% <Inputs>
% Kmax : Maximum cluster number for k_means.m subfunction
% maxiter : Maximum iteration number in k-means clustering algorithm
% datadir : Directory of the speech data
% ntrial : Number of occurrences of each word to be used for
% generating the codebook
%
% <Outputs>
% cb : Codebook vectors (Locations of cluster centroids)
% K : Number of vector-quantized clusters
% T : Number of observation vectors (rows) used to generate codebook.
% dist : VQ distortion based on Euclidean distance
%
% <Description>
% After user specifies the initial directory of the data folder,
% this routine reads the data in from the cropped folder. Next it computes
% the 12 MFCC parameters and 12 delta-MFCC parameters. Zero-order MFCC
% coefficient is excluded from the features. Cepstral Mean Substraction is
% applied to the static MFCC parameters. Dynamic MFCC parameters are
% weighted by six to fit them into the range of static parameters.

131

% A feature matrix of 24 by T is computed where T shows the frame length.
% The feature vectors for all sequences are concatenated and then vector
% quantized (clustered) into K < Kmax feature vector (centroids).
% The number of observation vectors used to generate the codebook is
% returned in T, and the VQ average distortion is returned in dist.
%
% <References>
% [1] J.R Deller, J.G. Proakis and F.H.L. Hansen, “Discrete-Time
% Processing of Speech Signals”, IEEE Press, chapter 12, (2000).
% --
format long;
if nargin<4 maxiter=1000; end
if nargin<3 Kmax=128; end
if nargin<2 ntrial=15; end
if nargin<1 datadir='D:\MATLAB7\work\Data'; end

cw = cd;
ind_folder = dir(datadir);

% The structure array words.name excludes the words : 'right_outside' and
% 'kill_noise'
words(1).name='down'; words(2).name='kill'; words(3).name='left';
words(4).name='move'; words(5).name='pan'; words(6).name='right';
words(7).name='up';

% Before feature extraction MFCC parameters are set below.
fs = 8000; % Sampling freq.
w ='Mtd'; % Hamming window in time domain, triangular shaped filters
% in mel domain. All filters act in the absolute magnitude domain. Delta
% parameters are computed as well.
nc = 12; % 12 MFCC plus 12 delta-MFCC computed excluding 0'th coef.
p = 24; % number of filters in critical-band filterbank (default 26).
n = 256; % length of frame.
inc = 156; % increments in the speech frames.
coef = []; % feature matrix
index = randperm(40); % Trial index splits the data into training set and test set.
k = index(1:ntrial); % Training index
cntr = 1;

for a = 3:length(ind_folder)
 parentdir = strcat(datadir,'\',ind_folder(a).name,'\Cropped\');
 for g = 1:7
 wpath = strcat(parentdir,words(g).name);
 cd(wpath);
 wfolder = dir;
 for m = 1:ntrial

132

 dpath = strcat(wpath,'\',wfolder(k(m)+2).name);
 s = load(dpath,'-ascii');

 cd(cw);
 f = melcepst(s,fs,w,nc,p,n,inc); % returns each row as a frame
 % Cepstral mean substraction applied to the 12 MFCC parameters.
 f1 = f(:,1:12); f1 = f1 - mean(f1(:));
 f = [f1 6*f(:,13:24)];
 f = f'; % Each column is set as a frame.

 fprintf(1,'... Reading file: %4d, %s, T = %4d\n',cntr,…
 wfolder(k(m)+2).name,length(f));

 cntr = cntr+1;
 coef = [coef f]; % Feature matrix containing all
 % training occurences of words.
 clear('f','f1','s');
 end
 end
end

spath = 'D:\MATLAB7\work\Thesis\';
cd(spath);
mkdir('Training');

% K-means search reads in rows of input as MFCC features and
% columns of the data correspond to speech frames.

[Yc,c,errlog] = k_means(coef',Kmax,maxiter); % Vector quantization.

cb= Yc(unique(c),:)'; % Only use clusters with assignments.

[N,K] = size(cb); % Codebook symbol size K.
[N,T] = size(coef); % Vector dim and number of vectors.
dist = sqrt(errlog(end))/T; % VQ average distortion measure.
savepath = strcat(spath,'Training\cb.txt');
save(savepath, 'cb','-ascii');
savepath = strcat(spath,'Training\trialindex.txt');
save(savepath, 'index','-ascii');
cd(cw);

%---
% End of routine hmmcodebook.m
%---

133

APPENDIX C. HIDDEN MARKOV MODEL MATLAB PROGRAMS

This appendix includes various MATLAB programs used for HMM-based

recognition of the isolated words. Most of these MATLAB codes originated from those

available at [Sorensen, 2005]. Either the original codes were used or they were modified

and the source of code cited in the header of each program.

1. HMM BAUM-WELCH RE-ESTIMATION
% Filename : hmmfb.m
% Written by : Peter S.K. Hansen, IMM, Technical University of Denmark.
% Date last revised : 09/30/2000.
% Purpose : This subroutine implements Baum-Welch re-estimation algorithm
% (or Forward-Backward algorithm) and is called in the routine “hmmtrain.m” for the
% training of HMMs.
%
function [A,B,pi1,loglike] = hmmfb(ytrain,S,K,maxiter,tol)
%
% <Synopsis>
% [A,B,pi1,loglike] = hmmfb(ytrain,S,K,maxiter,tol)
%
% <Description>
% The function implements the F-B reestimation algorithm used
% to train a HMM based word classifier. The input arguments are
% the L training sequences (same word), i.e., vectors in the
% cell-array ytrain, the HMM parameters, S and K, which are the
% number of states and the number of symbols (codebook vectors),
% and maxiter and tol are stopping criteria in the F-B algorithm,
% e.g., 5000 and 1e-3.
% The output arguments are the S-by-S state transition matrix A,
% the K-by-S observation probability matrix B, and the initial state
% probability vector pi1. Finally, the output vector loglike is
% the log-likelihood as function of the iteration number in the
% F-B reestimation algorithm.
%
% <References>
% [1] J.R Deller, J.G. Proakis and F.H.L. Hansen, “Discrete-Time
% Processing of Speech Signals”, IEEE Press, chapter 12, (2000).
%--
 L = length(ytrain); % Number of training sequences.

A = rand(S,S); A = A./repmat(sum(A),S,1); % Initial random model
B = rand(K,S); B = B./repmat(sum(B),K,1); % with probability sum
pi1 = rand(S,1); pi1 = pi1/sum(pi1); % normalized to one columnwise.

134

loglike = zeros(maxiter,1); % Log-likelihood measures.
loglike_old = -inf; % From previous iteration.
loglike_dif = inf; % Difference.

k = 0;
while (k < maxiter) & (loglike_dif >= tol)
 k = k + 1; % Iteration counter.
 pi_c = 0; A_c = 0; B_c = 0; % Initialize sum over
 loglike_c = zeros(L,1); % sequences.

 for (l = 1:L)
 y = ytrain{l}; % l'th sequence.
 T = length(y); % Length of l'th seq.
 alpha = zeros(S,T); % Forward recursion.
 beta = zeros(S,T); % Backward recursion.
 scale = zeros(T,1); % Scale factors.
 alpha(:,1) = pi1.*B(y(1),:)'; % Alpha for t=1.
 scale(1) = sum(alpha(:,1)); % Scale factor for t=1.
 alpha(:,1) = alpha(:,1)/scale(1); % Scaled alpha for t=1.
 for (t = 2:T)
 alpha(:,t) = A*alpha(:,t-1).*B(y(t),:)';
 scale(t) = sum(alpha(:,t)); % Scale factor for t.
 alpha(:,t) = alpha(:,t)/scale(t); % Scaled alpha for t.
 end

 beta(:,T) = 1/scale(T); % Beta for t=T.
 for (t = (T-1):-1:1) % Scaled beta for t.
 beta(:,t) = A'*(beta(:,t+1).*B(y(t+1),:)')/scale(t);
 end

 loglike_c(l) = sum(log10(scale)); % Log-likelihood.
 gamma_c = (alpha.*beta).*repmat(scale',S,1);
 A_c = A_c + (alpha(:,1:T-1)*(B(y(2:T),:)'.*beta(:,2:T))').*A';
 B_c = B_c + (gamma_c*(repmat([1:K],T,1)==repmat(y(:),1,K)))';
 pi_c = pi_c + gamma_c(:,1);
 end

 loglike(k) = sum(loglike_c);
 loglike_dif = loglike(k) - loglike_old;
 loglike_old = loglike(k);

 pi1 = pi_c/sum(pi_c);
 A = A_c./repmat(sum(A_c),S,1);
 B = B_c./repmat(sum(B_c),K,1);
 fprintf(1,'... Log likelihood: %6.3f\n',loglike(k));
end

135

loglike = loglike(2:k);

%---
% End of function hmmfb.m
%---
2. HMM VITERBI TRAINING ALGORITHM
% Filename : hmmviterbi.m
% Written by : R.S. Kurcan, LTJG. TU NAVY.
% Date last revised : 11/28/2005.
% Purpose : This subroutine implements the Viterbi Training Algorithm.
%
function [A,B, pi1,loglike] = hmmviterbi(ytrain,S,K,maxiter,tol)
%
% <Synopsis>
% [A,B,loglike] = hmmviterbi(ytrain,S,K,maxiter,tol)
%
% <Description>
% This function is loosely based on the file “hmmfb.m” written by Peter S.K. Hansen,
% in an effort to follow similar notations. The function implements the Viterbi %
algorithm used to train a HMM-based word classifier as an alternative to F-B %
algorithm. The input arguments are the L training sequences of the same word, i.e., %
vectors in the cell-array ytrain, the HMM parameters, S and K, which are the number %
of states and the number of symbols (codebook vectors). Maxiter and tol are %
stopping criteria in the Viterbi algorithm, e.g., 1000 and 1e-5.
% The output arguments are the S-by-S state transition matrix A, the K-by-S
% observation probability matrix B. The initial state probability vector pi1 is not
% estimated assuming the initial state is state one in a left-to-right HMM. Finally, the
% output vector loglike is the log-likelihood as function of the iteration number in the
% Viterbi algorithm.
%
% <References>
% [1] J.R Deller, J.G. Proakis and F.H.L. Hansen, “Discrete-Time
% Processing of Speech Signals”, IEEE Press, chapter 12, (2000).
%---
L = length(ytrain); % Number of training sequences.

A = rand(S,S);
Au = tril(A); % Lower triangular part of A.
Al = triu(A,1); % Upper triangular part of A.
A = Au + eps*Al; % Upper tri. part set to 'eps' for a left-to-right HMM.
A = A./repmat(sum(A),S,1); % Columns of A and B must sum
B = rand(K,S); B = B./repmat(sum(B),K,1); % to unity.
pi1 = [1; zeros(S-1,1)]; % a particular state designated as initial state.

loglike = zeros(maxiter,1); % Log-likelihood measures.

136

loglike_old = inf; % From previous iteration.
loglike_dif = inf; % Difference.

k = 0;
while (k < maxiter) & (loglike_dif >= tol)
 k = k + 1; % Iteration counter.
 loglike = zeros(L,1);

 for (l = 1:L)
 y = ytrain{l}; % l'th sequence.
 T = length(y); % Length of l'th seq.

 % Initialization
 Dmin = zeros(T,S); % Dmin(t,it) is distance from (0,0) to (t,it)
 % over the best path.
 Dmin(1,:) = pi'.*B(y(1),:); % Dmin(1,i) at time t=1.
 gamma = zeros(T,S); % The best final state on the optimal partial
 % path ending at (t,it).
 % Recursion
 for t = 2:T
 for i = 1:S
 D = Dmin(t-1,:)+(-log10(A(i,:)))+(-log10(B(y(t),:)));
 [Dmin(t,i),gamma(t,i)] = min(D);
 end
 end

 % Termination
 bestseq = zeros(1,T);
 [mindist,argmin] = min(Dmin(T,:));
 bestseq(T) = argmin;

 % Backtracking
 for t = (T-1):-1:1
 bestseq(t) = gamma(t+1, bestseq(t+1)); % Best state sequence.
 end
 loglike(l) = mindist;
 end

 loglike(k) = sum(loglike);
 loglike_dif = loglike_old - loglike(k);
 loglike_old = loglike(k);

 % Viterbi reestimation
 for i = 1:S
 X = find(bestseq == i);
 nfromi(i) = length(X); % Number of transitions from state i.

137

 end
 ntoj = nfromi; % Number of transitions to state j.
 nfromi(bestseq(end)) = nfromi(bestseq(end))-1; % First and last states
 ntoj(bestseq(1)) = ntoj(bestseq(1))-1 % don't count transitions.

 nu_ji = zeros(S,S); % Number of transitions from state i to state j.
 for m =1:S-1
 i = bestseq(m);
 j = bestseq(m+1);
 nu_ji(j,i) = nu_ji(j,i)+1;
 end

 nu_kj = zeros(K,S); % Number of times observation k and state j occur jointly.
 for p = 1:S
 for t = 1:T
 nu_kj(y(t),bestseq(p)) = nu_kj(y(t),bestseq(p))+1;
 end
 end

 % Model parameters updated
 A_m = nu_ji./repmat(nfromi,S,1);
 B_m = nu_kj./repmat(ntoj,K,1);

 fprintf(1,'... Log likelihood: %6.3f\n',loglike(k));

end
 loglike = loglike(2:k);

%---
% End of function hmmviterbi.m
%---
3. MULTIPLE-OBSERVATION HMM TRAINING ALGORITHM
% Filename : hmmtrain.m
% Written by : Peter S.K. Hansen, IMM, Technical University of Denmark.
% Date last revised : 09/30/2000.
% Modified by : R.S. Kurcan, LTJG. TU NAVY.
% Date last modified : 01/05/2006.
% Purpose : This routine implements the multiple-observation training of
% HMMs using the Baum-Welch re-estimation algorithm. (see also hmmfb.m)
%
function [A_m,B_m,pi_m,loglike_m,testidx] = hmmtrain(S,O,R,maxiter,tol,datadir);
%
% <Inputs>
% S : Number of hidden states in HMMs
% O : Number of observation sequences taken from each speaker for training of
% the same word.

138

% R : Number of words to be recognized
% maxiter : Max. iteration number to terminate training
% tol : Tolerance to terminate training
% datadir : Directory of the cropped speech data
%
% <Outputs>
% A_m : Cell array for the state transition matrices of HMMs
% B_m : Cell array for the observation probability matrices of HMMs
% pi_m : Cell array for the state probability vectors of HMMs
% loglike_m : Cell array for the log likelihood of the observation
% sequences given the models.
%
% <Description>
% The function implements training of multiple HMMs. The training
% sequences are defined by the cell-array data. The length of the
% cell-array corresponds to the number of words, and each cell is a
% new cell array with filenames for occurrences of this spoken word.
% For each sequence, a frame based analysis is performed using the
% function y = melcepst(s,fs,w,nc,p,n,inc)to give observation
% vectors, which are then vector quantized into the possible
% codebook vectors given by cb. For each word, the (quantized)
% observation sequences are then used to train a HMM for this word,
% using the F-B reestimation algorithm. Here, S is the number of
% states in the HMM, and maxiter and tol are stopping criteria in
% the F-B algorithm, e.g., 1000 and 1e-5. The output probability
% measures for the HMMs are returned in the cell-arrays A_m, B_m,
% pi_m, and loglike_m.
%
% <References>
% [1] J.R Deller, J.G. Proakis and F.H.L. Hansen, “Discrete-Time
% Processing of Speech Signals”, IEEE Press, chapter 12, (2000).
%--

format long;

% Default input parameterts
if nargin < 6 datadir='C:\Program Files\MATLAB71\work\Data'; end
if nargin < 5 tol = 1e-5; end
if nargin < 4 maxiter = 1000; end
if nargin < 3 R = 7; end
if nargin < 2 O = 25; end
if nargin < 1 S = 8; end

cb = load('C:\Program Files\MATLAB71\work\Training\cb.txt','-ascii');
index = load('C:\Program Files\MATLAB71\work\Training\trialindex.txt','-ascii');

139

% The structure array words.name includes the seven words to be recognized.
words(1).name='up'; words(2).name='down'; words(3).name='left';
words(4).name='right'; words(5).name='kill'; words(6).name='pan';
words(7).name='move';

% MFCC parameters are set before feature extraction.
fs = 8000; % Sampling freq.
w ='Mtd'; % Hamming window in time domain, triangular shaped filters.
% in mel domain. All filters act in the absolute magnitude domain. Delta
% parameters are specified for computation as well.
nc = 12; % 12 MFCC plus12 delta-MFCC computed excluding 0'th coef.
p = 24; % number of filters in critical-band filterbank (default 26).
n = 256; % length of frame.
inc = 156; % increments in the speech frames.
coef = []; % feature matrix with each column representing a frame.

[dim,K] = size(cb); % Get symbol size K from the codebook.
A_m = cell(R,1); % Output arguments in cell-arrays.
B_m = cell(R,1);
pi_m = cell(R,1);
loglike_m = cell(R,1);

cw = cd;
ind_folder = dir(datadir);
L = (length(ind_folder)-2)*O; % Total number of occurrences of i'th word.
trnidx = index(1:O); % Random trial indeces for training.
testidx = index(O+1:end); % Random trial indeces for testing.
cntr = 1;
for i = 1:R % Loop words.
 ytrain = cell(L,1); % Generate cell-array for train seq.
 j = 1;

 for a = 3:length(ind_folder)
 parentdir = strcat(datadir,'\',ind_folder(a).name,'\Cropped\', words(i).name);
 cd(parentdir);
 wfolder = dir;

 for m = 1:O

 s = load(wfolder(trnidx(m)+2).name,'-ascii'); % Load word file
 cd(cw);
 y = melcepst(s,fs,w,nc,p,n,inc); % Extract MFCC feature vectors.

 % Cepstral mean-substraction applied to the 12 MFCC parameters.
 y1 = y(:,1:12); y1 = y1 - mean(y1(:));
 y = [y1 6*y(:,13:24)];

140

 y = y'; % Each column is set as feature vector of a frame.
 [dim,T] = size(y); % Number of vectors T.
 yk = zeros(T,1);

 fprintf(1,'... Reading file: %4d, %s, T = 4d\n',cntr,wfolder(trnidx(m)+2).name,T);
 cntr = cntr + 1;
 for (t = 1:T) % Vector quantization.
 [dist,k] = min(sum((cb-repmat(y(:,t),1,K)).^2));
 yk(t) = k; % Symbol at time/frame t.
 end;

 ytrain(j) = {yk};
 j = j+1;
 clear('y','y1','s','yk','k');
 cd(parentdir);
 end
 end
 cd(cw);
 [A,B,pi1,loglike] = hmmfb(ytrain,S,K,maxiter,tol);
 A_m(i) = {A};
 B_m(i) = {B};
 pi_m(i) = {pi1};
 loglike_m(i) = {loglike};
end

%---
% End of function hmmtrain.m
%---

4. HMM LOGLIKELIHOOD COMPUTATION ALGORITHM
% Filename : loglike.m
% Written by : Peter S.K. Hansen, IMM, Technical University of Denmark.
% Date last revised : 09/30/2000.
% Purpose : This routine computes the log-likelihood for a given
% observation sequence y consisting of vector quantized speech feature
% vectors by using Hidden Markov Model parameters.

function loglike = hmmlogp(y,A,B,pi1)
% hmmlogp --> Log-likelihood for given observation sequence and HMM.
%
% <Description>
% The function calculates the log-likelihood for a given observation sequence y,
% and Hidden Markov Model A, B, and pi1. Here, A is the S-by-S state transition
% matrix, B is the K-by-S observation probability matrix, and pi1 is the initial state
% probability vector.
%

141

% <References>
% [1] J.R Deller, J.G. Proakis and F.H.L. Hansen, “Discrete-Time
% Processing of Speech Signals”, IEEE Press, chapter 12, (2000).
%--

format long;
T = length(y); % Length of observation sequence.
S = length(A); % Number of hidden states.

alpha = zeros(S,T); % Forward recursion.
beta = zeros(S,T); % Backward recursion.
scale = zeros(T,1); % Scale factors.

alpha(:,1) = pi1.*B(y(1),:)' + eps; % Alpha for t=1.
scale(1) = sum(alpha(:,1)); % Scale factor for t=1.
alpha(:,1) = alpha(:,1)/scale(1); % Scaled alpha for t=1.
for (t = 2:T)
 alpha(:,t) = A*alpha(:,t-1).*B(y(t),:)';
 scale(t) = sum(alpha(:,t)); % Scale factor for t.
 alpha(:,t) = alpha(:,t)/(scale(t) + eps); % Scaled alpha for t.
end

loglike = sum(log10(scale + eps));
 %--
% End of function hmmlogp
%---

5. HMM RECOGNITION ALGORITHM
% Filename : hmmrecog.m
% Written by : Peter S.K. Hansen, IMM, Technical University of Denmark.
% Date last revised : 09/30/2000.
% Modified by : R.S. Kurcan, LTJG. TU NAVY.
% Date last modified : 02/10/2006.
% Purpose : This routine implements HMM recognition for a given
% observation sequence based on the trained input model parameters.
%
function [logp,guess] = hmmrecog(A_m,B_m,pi_m,testidx);
% hmmrecog --> HMM based word classifier.
%
% <Description>
% The function implements HMM based recognition, where the cell-array
% data contains filenames for the spoken words to be recognized.
% For each word, a frame based analysis is performed using the
% function y = melcepst(s,fs,w,nc,p,n,inc) to give observation
% vectors, which are then vector quantized into the possible
% codebook vectors stored in the file cb.txt. The resulting observation

142

% sequence and the probability measures for all the HMMs, given by the
% cell-arrays A_m, B_m, and pi_m, are then used to calculate the
% log-likelihoods for the HMMs (column of logp). The input “testidx”
% contains the randomly chosen trial index for the testing set. The word
% associated with the HMM of highest log-likelihood is declared
% to be the recognized word, and the index is returned in guess.
% This procedure is repeated for all the words in data.
%
% <References>
% [1] J.R Deller, J.G. Proakis and F.H.L. Hansen, “Discrete-Time
% Processing of Speech Signals”, IEEE Press, chapter 12, (2000).
%---

format long;

datadir='C:\Program Files\MATLAB71\work\Data';
cb = load('C:\Program Files\MATLAB71\work\Training\cb.txt','-ascii');
%index = load('C:\Program Files\MATLAB71\work\Training\trialindex.txt','-ascii');

% The structure array words.name includes the seven words to be recognized.
words(1).name='up'; words(2).name='down'; words(3).name='left';
words(4).name='right'; words(5).name='kill'; words(6).name='pan';
words(7).name='move';

% Before feature extraction MFCC parameters are set below.
fs = 8000; % Sampling freq.
w ='Mtd'; % Hamming window in time domain, triangular shaped filters.
% in mel domain. All filters act in the absolute magnitude domain. Delta
% parameters are specified for computation as well.
nc = 12; % 12 MFCC plus 12 delta-MFCC computed excluding 0'th coef.
p = 24; % number of filters in critical-band filterbank (default 26).
n = 256; % length of frame.
inc = 156; % increments in the speech frames.
coef = []; % feature matrix with each column representing a frame.

[dim,K] = size(cb); % # of observation symbols.
R = length(A_m); % # of trained words (7 words).

O = length(testidx); % # of test words from each speaker per word.

cw = cd;
ind_folder = dir(datadir);
L = (length(ind_folder)-2)*O; % Total # of ith words to be recognized/tested.
logp = zeros(R,L);
v = 1; cntr = 1;

143

for i = 1:R % Loop words.

 for a = 3:length(ind_folder)
 parentdir = strcat(datadir,'\',ind_folder(a).name,'\Cropped\', words(i).name);
 cd(parentdir);
 wfolder = dir;

 for m = 1:O
 % Load test word signal from file.
 s = load(wfolder(testidx(m)+2).name,'-ascii');

 cd(cw);
 y = melcepst(s,fs,w,nc,p,n,inc); % Extract 12 feature vectors.

 % Cepstral mean-substraction applied to the 6 MFCC parameters.
 y1 = y(:,1:12); y1 = y1 - mean(y1(:));
 y = [y1 6*y(:,13:24)];
 y = y';

 [dim,T] = size(y); % Number of vectors T.

 fprintf(1,'... Reading file:%4d, %s, T %4d\n',cntr,wfolder(testidx(m)+2).name,T);
 cntr = cntr + 1;
 yk = zeros(T,1);

 % Vector quantization.
 for (t = 1:T)
 [dist,k] = min(sum((cb-repmat(y(:,t),1,K)).^2));
 yk(t) = k;
 end

 % Scoring
 for (j = 1:R) % Estimate log-likelihood for each model.
 logp(j,v) = hmmlogp(yk,A_m{j},B_m{j},pi_m{j});
 end
 v = v+1;
 clear('y','y1','s','yk','k');
 cd(parentdir);
 end
 end
end
cd(cw);
[loglike,guess] = max(logp);
%--
% End of function hmmrecog.m
%--

144

THIS PAGE INTENTIONALLY LEFT BLANK

145

APPENDIX D. HMM CLASSIFICATION RESULTS FOR
MULTIPLE EXPERIMENTS

% Filename : hmmresult.m
% Written by : R.S. Kurcan, LTJG. TU NAVY.
% Date last revised : 02/15/2005.
% Purpose : This subroutine estimates confusion matrices and
% computes 95 % confidence intervals for N experiments
%
% hmmresult --> HMM based IWR classification results and confusion matrices
%
% <Description>
% The function implements estimates confusion matrices and computes
% 95 % confidence intervals for N experiments where N is the number
% of multiple experiments. N is chosen such that (N*0.05/2) should be
% integer for 95 % confidence interval computation.
%---
clear all;
N = 80; % # of experiments
conf = cell(N,1);
rate = cell(N,1);
R = 7;

for i=1:N
 [cb,K,T,dist,index] = hmmcodebook;
 [A_m,B_m,pi_m,loglike_m,testidx] = hmmtrain;
 [logp,guess] = hmmrecog(A_m,B_m,pi_m,testidx);
 O =length(testidx);
 classrate = zeros(R,R);
 for h = 1:R;
 for k = 1:R;
 classnum = 0;
 n = (O*(k-1)*20)+1;
 m = O*k*20;
 for l = n:m
 if guess(l) == h; classnum = classnum + 1; end
 end
 classrate(k,h) = classnum/(O*20);
 end
 end
 classrate = classrate*100;
 overallrate = sum(diag(classrate))/R;
 format short;
 conf(i) = {classrate};
 rate(i) = {overallrate};

146

 clear('cb','K','T','dist','index','A_m','B_m','pi_m','loglike_m',...
 'testidx','logp','guess','guess','classnum','classrate','overallrate');
 rmdir('C:\Program Files\MATLAB71\work\Training','s');
end

mkdir('H:\Docs\Thesis_Work\Confusion');
savepath1 = 'H:\Docs\Thesis_Work\Confusion\conf.mat';
save(savepath1,'conf','-mat'); % Confusion matrices for N exp. are stored in cell array.
savepath2 = 'H:\Docs\Thesis_Work\Confusion\rate.mat';
save(savepath2,'rate','-mat'); % Class. rates for each of N exp. are stored in cell array.

% 95% Confidence intervals computation and average of N exps. classification results.

confint = zeros(8,2);
b = []; sum_conf = zeros(7,7); d = zeros(80,1);
for i = 1:N
 a = diag(conf{i})'; % Diag. elements of confusion matrices set as rows.
 b = [b ; a];
 sum_conf = sum_conf + conf{i};
 d(i) = rate{i};
end

c = sort(b); % Columns of the matrix b is sorted in ascending order.
e = sort(d);
confint(1:7,1) = c(1+(N*0.05/2),:); % min in 95 % confidence interval.
confint(1:7,2) = c(N-(N*0.05/2),:); % max in 95 % confidence interval.
confint(8,1) = e(1+(N*0.05/2),1); % min in 95 % conf. interval for avg classification.
confint(8,2) = e(N-(N*0.05/2),1); % max in 95 % conf. interval for avg classification.

classification = mean(c); % Mean of N exp. classification result.
mean_conf = sum_conf / N; % Mean of N exp. confusion matrix.

savepath3 = 'H:\Docs\Thesis_Work\Confusion\confint.mat';
save(savepath3,'confint','-mat'); % 95% confidence intervals are stored in array.

savepath4 = 'H:\Docs\Thesis_Work\Confusion\classification.mat';
save(savepath4,'classification','-mat'); % Average classification rates for all words
% out of N exp. are stored in array.

savepath5 = 'H:\Docs\Thesis_Work\Confusion\mean_conf.mat';
save(savepath5,'mean_conf','-mat'); % Average confusion matrix for N exp. is
% stored in array.
%
%--
% End of function hmmresult.m
%--

147

LIST OF REFERENCES

[Atal, 1971] B. S. Atal and L. S. Hanauer, “Speech analysis and synthesis by
linear prediction of the speech wave,” Journal of the Acoustic Society of America,
Vol. 50, pp. 637-655, 1971.

[Becchetti, 1999] C. Becchetti and L. P. Ricotti, Speech Recognition Theory and
C++ Implementation, John Wiley & Sons, West Sussex, England, 1999.

[Baum, 1966] L. E. Baum and T. Petrie, “Statistical inference for probabilistic
functions of finite state Markov chains,” Annals of Mathematical Statistics, Vol. 37,
pp. 1554-1563, 1966.

[Baum, 1970] L. E. Baum, T. Petrie and G. Soules, “A maximization technique in
the statistical analysis of probabilistic functions of Markov chains,” Annals of
Mathematical Statistics, Vol. 41, pp. 164-171, 1970.

[Brookes, 1997] Mike Brookes, VOICEBOX: Speech Processing Toolbox for
MATLAB (software), Avail. www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html,
1997, last accessed 02.15.2006.

[Cooley, 1965] J. W. Cooley and J. W. Tukey, “An algorithm for the machine
computation of complex Fourier series,” Mathematical Computations, Vol. 19, pp.
297-301, 1965.

[Davis, 1980] S. Davis and P. Mermelstein, “Comparison of parametric
representations for monosyllabic word recognition in continuously spoken
sentences,” IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 28,
No. 4, pp. 357-366, 1980.

[Deller, 2000] J. R. Deller, J. H. L. Hansen and J. G. Proakis, Discrete-Time
Processing of Speech Signals, IEEE Press, New York, 2000.

[Deng, 2003] L. Deng and D. O’Shaughnessy, Speech Processing A Dynamic
and Optimization-Oriented Approach, Marcel Dekker, New York, 2003.

[Dugad, 1996] R. Dugad and U.B. Desai, “A tutorial on hidden Markov models,”
Technical Report No. SPANN-96.1, Indian Institute of Technology, Bombay, India,
May 1996.

[Fargues, 2005] M. P. Fargues, Class Notes for EC4440 (Statistical Digital Signal
Processing), Naval Postgraduate School, Monterey, California, 2005 (unpublished).

148

[Furui, 1986] S. Furui, “Speaker-independent isolated word recognition using
dynamic features of speech spectrum,” IEEE Transactions on Acoustics, Speech and
Signal Processing, Vol. 34, No. 1, pp. 52-59, 1986.

[Furui, 1992] S. Furui, M. M. Sondhi, Advances in Speech Signal Processing,
Marcel Dekker, New York, 1992.

[Gold, 2000] B. Gold and N. Morgan, Speech and Audio Signal Processing,
John Wiley & Sons, 2000.

[Graciarena, 2003] M. Graciarena, H. Franco, K. Sonmez and H. Bratt, “Combining
standard and throat microphones for robust speech recognition,” IEEE Signal
Processing Letters, Vol. 10, No. 3, pp. 72-74, March 2003.

[Jayant, 1984] N. S. Jayant and P. Noll, Digital coding of waveforms: principles
and applications to speech and video, Prentice-Hall, 1984.

[Jelinek, 1997] F. Jelinek, Statistical Methods for Speech Recognition, The MIT
Press, Massachusetts, 1997.

[Karnjanadecha, 2001] M. Karnjanadecha and S. A. Zahorian, “Signal modeling for high-
performance robust isolated word recognition,” IEEE Transactions on Speech and
Audio Processing, Vol. 9, No. 6, pp. 647-654, September 2001.

[Kinnunen, 2000] T. Kinnunen, T. Kilpeläinen, P. Fränti “Comparison of Clustering
Algorithms in Speaker Identification,” Proceedings of International Conference on
Signal Processing and Communications (SPC 2000), pp. 222-227, Marbella, Spain,
September 2000.

[Kinnunen, 2001] T. Kinnunen, T. Kilpeläinen, P. Fränti “Is Speech Data Clustered?
– Statistical Analysis of Cepstral Features,” Proceedings of 7th European Conference
on Speech Communication and Technology (Eurospeech 2001), vol. 4, pp. 2627-
2630, Aalborg, Denmark, September 2001.

[Lippmann, 1997] R. P. Lippmann, Lincoln Laboratory, “Speech recognition by
machines and humans,” Speech Communication, Vol.22, pp.1-15, 1997.

[Linde, 1980] Y. Linde, A. Buzo and R. M. Gray, “An algorithm for vector
quantizer design,” IEEE Transactions on Communications, Vol. 28, pp. 84-95, 1980.

[Makhoul, 1985] J. Makhoul, S. Roucos and H. Gish, “Vector quantization in speech
coding,” Proceedings of the IEEE, Vol. 73, No. 11, pp. 1551-1588, November, 1985.

[Marsh, 1999] A. Marsh, “Human ear and hearing,” The University of Western
Australia, Online Information and Course Notes, 1999, Avail.
[http://www.kemt.fei.tuke.sk/Predmety/KEMT320_EA/_web/Online_Course_on_Ac

149

oustics/hearing.html], last accessed 02.15.2006. [Moon, 1997] S. Moon and
J. N. Hwang, “Robust speech recognition based on joint model and feature space
optimization of hidden Markov models,” IEEE Transactions on Neural Networks,
Vol .8, No .2, pp. 194-204, March 1997.

[Newton, 2006] M. Newton, Master’s thesis, Naval Postgraduate School,
Monterey, California, 2006 (To be completed.)

[Oppenheim, 1968] A. V. Oppenheim, R. W. Schafer and T. G. Jr. Stockham,
“Nonlinear filtering of multiplied and convolved signals,” Proceedings of the IEEE,
Vol. 56, No. 8, pp. 1264-1291, 1968.

[Owens, 1993] F. J. Owens, Signal Processing of Speech, McGraw-Hill, 1993.

[O’Shaughnessy, 1987] D. O’Shaughnessy, Speech Communications, Addison Wesley,
1990.

[Picone, 1993] J. W. Picone, “Signal modeling techniques in speech recognition,”
Proceedings of the IEEE, Vol. 81, No. 9, pp. 1215-1247, September 1993.

[Qiang, 1998] H Qiang and Z. Youwei, “On prefiltering and endpoint detection of
speech signal,” Proceedings of 1998 Fourth International Conference on Signal
Processing, (ICSP '98), Vol. 1, pp. 749-752, October 1998.

[Rabiner, 1975] L. R. Rabiner and M. R. Sambur, “An algorithm for determining
the endpoints of isolated utterances,” The Bell System Technical Journal, February
1975.

[Rabiner, 1978] L. R. Rabiner and R. W. Schafer, Digital Processing of Speech
Signals, Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

[Rabiner, 1989] L. R. Rabiner, “A tutorial on hidden Markov models and selected
applications in speech recognition,” Proceedings of the IEEE, Vol.77, No.2, pp.257-
286, February 1989.[Rabiner, 1993] L. R. Rabiner and B-H. Juang,
Fundamentals of Speech Recognition, Prentice Hall, 1993.

[Sayood, 2000] K. Sayood, Introduction to Data Compression, Second Edition,
Morgan Kaufmann Publishers, San Francisco, California, 2000.

[Sibbald, 2001] A. Sibbald, “An introduction to sound and hearing,” White paper,
Sensaura, 2001, Avail. [http://www.sensaura.co.uk/whitepapers/pdfs/dev005.pdf], last
accessed February 15, 2006.

[Shozakai, 1998] M. Shozakai, S. Nakamura and K. Shikano, “Robust speech
recognition in car environments,” Proceedings of the 1998 IEEE International

150

Conference on Acoustics, Speech and Signal Processing (ICASSP `98), Vol. 1, pp.
269-272, May 1998.

[Sorensen, 2005] A. Sorensen and M. Swanholm, Speech coding and recognition
course notes, Avail. [http://www.itu.dk./courses/TKG/E2002], last accessed February
15, 2006.

[Srydal, 1995] A. Srydal, R. Bennett and S. Greenspan, Applied Speech
Technology, CRC Press, Florida, 1995.

[Theodoridis, 2003] S. Theodoridis and K. Koutroumbas, Pattern Recognition, Second
Edition, Academic Press, San Diego, California, 2003.

[Vaidyanathan, 2004a] R. Vaidyanathan, K. Hyunseok, L. Gupta and J. West,
“Parametric and non-parametric signal analysis for mapping air flow in the ear-canal
to tongue movements: a new strategy for hands-free human-machine interfaces,”
Proceedings of the 2004 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP `04), Vol. 5, pp. 613-16, May 2004.

[Vaidyanathan, 2004b] R. Vaidyanathan, L. Gupta, B. Chung, T. J .Allen, R. D. Quinn,
M. Tabib-Azar, J. Zarycki, J. Levin, “Human-machine interface for tele-robotic
operation: mapping of tongue movements based on aural flow monitoring,”
Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2004), Vol. 1, pp. 859-865, September-October 2004.

[Vergin, 1999] R. Vergin, “An algorithm for robust signal modeling in speech
recognition,” Proceedings of the 1998 IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP '98), Vol. 2, pp. 969-972, May, 1998.

[Waibel, 1990] A. Waibel and K. F. Lee, Readings in Speech Recognition,
Morgan-Kauffmann, Palo Alto, California, 1990.

[Wang, 2005] H. Wang, Class Notes on Hidden Markov Models, Avail.
[http://tigpbp.iis.sinica.edu.tw/05_Spring/access%20to%20all/20050408part1.ppt#28
2,1,Hidden Markov Models], last accessed February 17, 2006.

[Westerlund, 2003] N. Westerlund, “Applied Speech Enhancement for Personal
Communication,” Licentiate thesis, Blekinge Institute of Technology, Ronneby,
Sweden, May 2003.

[Witten, 1982] I. H. Witten, Principles of Computer Speech, Academic Press,
1982.

[Ying, 1993] G. S. Ying, C. D. Mitchell, L. H. Jamieson, “Endpoint detection of
isolated utterances based on a modified Teager energy measurement,” Proceedings of

151

1993 IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP-93), Vol. 2, pp. 732-735, April 1993.

[Zhang, 2004] Z. Zhang, L. Zicheng, M. Sinclair, A. Acero, L. Deng, J. Droppo,
X. Huang and Y. Zheng, “Multi-sensory microphones for robust speech detection,
enhancement and recognition,” Proceedings of the 2004 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP `04), Vol. 3, pp. iii-
781-4, May 2004.

152

THIS PAGE INTENTIONALLY LEFT BLANK

153

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Jeffrey B. Knorr
Chairman, Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

4. Dan Boger
Chairman, Information Sciences Department
Naval Postgraduate School
Monterey, California

5. Monique P. Fargues
Department of Electrical and Computer Engineering
Naval Postgraduate School

 Monterey, California

6. David Jenn
Department of Electrical and Computer Engineering
Naval Postgraduate School

 Monterey, California

7. Ravi Vaidyanathan
Systems Engineering Department
Naval Postgraduate School

 Monterey, California

8. Deniz Kuvvetleri Komutanligi (Turkish Navy Headquarters)
Ankara, Turkey

9. Deniz Harp Okulu Komutanligi (Turkish Naval Academy)
Istanbul, Turkey

10. Dz.K.K. Arastirma Merkezi Komutanligi
Elektronik Grup Baskanligi
(Turkish Navy Research Development Center)
Istanbul, Turkey

154

11. Dz.K.K. Deniz Bilimleri Enstitusu
(Turkish Naval Science Institution and Engineering School)
Istanbul, Turkey

