

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

THE DESIGN OF A STAND-ALONE DIVISION TACTICS
SIMULATOR UTILIZING NON-PROPRIETARY (OPEN
SOURCE) MEDIA AND ITERATIVE DEVELOPMENT

by

Ryan B. Ernst

March 2006

 Thesis Advisor: Rudolph P. Darken
 Second Reader: S. Starr King

Approved for public release; distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
The Design of a Stand-Alone Division Tactics Simulator Utilizing Non-Proprietary
(Open source) Media and Iterative Development.
6. AUTHOR(S)
Ernst, Ryan B.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Fleet maneuvers, or division tactics (DIVTACS), are achieved by a series of precision

shipboard movements directed by an Officer in Tactical Control. Much like a precision drill team,
DIVTACS training requires multiple ships underway in close proximity, often a rare commodity. Costs
to conduct live training range from several Thousand (per evolution) to several Million dollars (to repair
ships after a collision at-sea). Computer simulation opens the door to maximizing DIVTACS training,
while mitigating risk.

The Navy spends in excess of $60 Million per year on simulation-based training. Currently
available simulators provide a DIVTACS capability by connecting several simulators together via a
LAN. These simulators are cost prohibitive ranging from $100,000 to Millions of dollars per unit.
They are manpower and maintenance intensive requiring dedicated infrastructures, drastically limiting
deploy-ability and reliability.

Open source applications are gaining considerable leverage in the commercial market and offer
significant cost-reductions. This thesis explored the possibilities of open source development by
providing a proof of concept division tactics simulator. Additional considerations were given to the
extension of the simulator for use in surface tactics in general and areas of future research.

15. NUMBER OF
PAGES

63

14. SUBJECT TERMS
Ship-handling, Virtual Reality, Virtual Environment, Surface Warfare, Computer Simulation,
Computer Graphics, Open source, Division Tactics, DIVTACS, Fleet Maneuvers, Surface Tactics,
Iterative Development 16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited.

THE DESIGN OF A STAND-ALONE DIVISION TACTICS SIMULATOR
UTILIZING NON-PROPRIETARY (OPEN SOURCE) MEDIA AND ITERATIVE

DEVELOPMENT

Ryan B. Ernst
Lieutenant, United States Navy
B.A.S., Miami University, 1999

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2006

Author: Ryan B. Ernst

Approved by: Rudolph P. Darken

Thesis Advisor

S. Starr King
Second Reader

Peter Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Fleet maneuvers, or division tactics (DIVTACS), are achieved by a series of

precision shipboard movements directed by an Officer in Tactical Control. Much like a

precision drill team, DIVTACS training requires multiple ships underway in close

proximity, often a rare commodity. Costs to conduct live training range from thousands

(per evolution) to millions of dollars (to repair ships after a collision at-sea). Computer

simulation opens the door to maximizing DIVTACS training, while mitigating risk.

The Navy spends in excess of $60 million per year on simulation-based training.

Currently available simulators provide a DIVTACS capability by connecting several

simulators together via a LAN. These simulators are cost prohibitive ranging from

$100,000 to millions of dollars per unit. They are manpower and maintenance intensive

requiring dedicated infrastructures, drastically limiting deploy-ability and reliability.

Open source applications are gaining considerable leverage in the commercial

market and offer significant cost-reductions. This thesis explored the possibilities of

open source development by providing a proof of concept division tactics simulator.

Additional considerations were given to the extension of the simulator for use in surface

tactics in general and areas of future research.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..1
B. OBJECTIVE ..2
C. APPROACH...2
D. SUMMARY OF CHAPTERS...4

II. BACKGROUND ..5
A. TRAINING SHIP-HANDLERS ...5
B. CURRENT SIMULATORS..6
C. OPEN SOURCE PARADIGM ...7
D. GAMING AND TRAINING ...8

III. OVERALL DESIGN ...9
A. DESIGN METHODOLOGY ..9

1. Waterfall Design Model...9
2. Spiral Design Model...9
3. Iterative Design Model ..9

B. EXTENSIBILITY..10
C. CURRENT ITERATION..10
D. APPLICATION PROGRAMMING INTERFACE HEIRARCHY..........11
E. SURFTACS LAYOUT ..13
F. FUTURE RESEARCH AND APPLICATION TO SURFACE

TACTICS (IN GENERAL)...13

IV. SCENE OBJECTS AND VISUALIZATIONS..15
A. ENVIRONMENT...15

1. Weather Modeling ...15
2. Ocean Modeling ...16

B. SHIP MODELING ..16
1. File Formats..16
2. Guided Missile Destroyer ..17

C. PARTICLE SYSTEMS ...18
1. Ship Stack Heat ..18
2. Ship Wake...18

D. FUTURE RESEARCH AND APPLICATION TO SURFACE
TACTICS (IN GENERAL)...20

V. PHYSICAL WORLD MODELING...21
A. SHIP MOTION ..21
B. USER MOTION...22
C. COLLISION DETECTION/HANDLING...22
D. FUTURE RESEARCH AND APPLICATION TO SURFACE

TACTICS (IN GENERAL)...24

 viii

VI. SCENARIOS ..27
A. INCLUDED SCENARIOS..27

1. Open Navigation...27
2. Leapfrog..28
3. Screen Formation...29
4. Column Formation...29
5. Line Abreast Formation ..29
6. Diamond Formation...29

B. FUTURE RESEARCH AND APPLICATION TO SURFACE
TACTICS (IN GENERAL)...30

VII. ARTIFICIALLY INTELLIGENT AGENTS..31
A. DISPATCHER ...31
B. AI ELEMENT ..32
C. ROLE ..32
D. TASK...32
E. FUTURE RESEARCH AND APPLICATION TO SURFACE

TACTICS (IN GENERAL)...33

VIII. USER INTERFACE ..35
A. REAL WORLD VS VIRTUAL ENVIRONMENT35
B. GRAPHICAL USER INTERFACE...37
C. AUDITORY CUEING...38
D. FUTURE RESEARCH AND APPLICATION TO SURFACE

TACTICS (IN GENERAL)...38

IX. SUMMARY ..39
A. CONCLUSION ..39
B. FUTURE RESEARCH AND APPLICATION TO SURFACE

TACTICS (IN GENERAL)...39

LIST OF REFERENCES..41

BIBLIOGRAPHY..45

INITIAL DISTRIBUTION LIST ...49

 ix

LIST OF FIGURES

Figure 1. SurfTacs Main Menu Screenshot...2
Figure 2. API Hierarchy. ...11
Figure 3. High-level Design. ...13
Figure 4. Scene Objects Design. ...15
Figure 5. SurfTacs Bridge Screenshot...17
Figure 6. Physical World Design. ...21
Figure 7. Scenario Design. ..27
Figure 8. SurfTacs Scenario Screenshot..28
Figure 9. Artificial Intelligence Design...31
Figure 10. User Interface Design. ...35
Figure 11. SurfTacs GUI Screenshot. ...37

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

ACKNOWLEDGMENTS

I would like to thank Admiral Jim Hogg and Captain Chuck Dixon for teaching

me that success requires you to “fail and fail often.” Through Admiral Hogg’s

inspiration I also learned that “the true power of information is openly passing it onto

others” and that “it’s amazing what one can accomplish if they are not concerned with

who gets the credit for the work.” These thoughts are the guiding principles by which

this thesis was executed.

I would be remiss if I didn’t give thanks to those who stood by my side during

this research. Dr. Rudy Darken’s positive attitude created the requisite ‘can-do’ work

environment. Captain Jeff Kline’s efforts generated an invaluable early contribution

from the Naval Warfare Development Center. Captain Starr King’s continued

endorsement of this research as the Chair of Warfare Innovation. Captain Mark Strom’s

dedicated friendship and technical assistance. The entire Delta3D Development Team for

their devotion to the open source paradigm. Additionally, great appreciate goes to the

Naval Education and Training Command for their continued support of innovative

initiatives.

Finally, I must thank my beautiful fiancée, Miss Sarah Torrez, for her love and

understanding through the most difficult times of this research.

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. MOTIVATION
Due to budgetary and operational constraints, live training opportunities for

surface tactics are insufficient to meet the demands of the United States Navy Surface

Fleet. The limited Fiscal budget must balance underway training time with logistics and

equipment wear. This coupled with increased operational commitments reduces

underway time for training.

Virtual training through simulation has been adopted by the Navy as a means by

which to mitigate live training shortfalls. Unfortunately, commercially-available

simulators are expensive to procure, operate and maintain. This factor limits the quantity

of simulators available and limits simulator deployment to fleet concentration areas and

the Surface Warfare Officer School in Newport, RI.

Open source applications are gaining considerable leverage in the commercial

market and offer significant cost-reductions. In particular, open source offers a low entry

fee, maximization of reuse, and the freedom to widely distribute, maintain and update

software. The primary obstacle to fielding open source is in application development

expertise. With institutions of higher knowledge, like the Naval Postgraduate School, the

expertise is available to the Navy.

Seasoned surface warfare officers are subject matter experts in surface tactics. It

is intuitive to train these experts to develop the applications that aspiring surface warfare

officers will use in their plight for tactical proficiency. Additionally, training simulators

should cover a range of sophistication with the lowest tier available to all users who may

benefit from their use.

A good candidate for open source experimentation is in the area of ship-handling,

particularly division tactics (DIVTACS). Live underway training in DIVTACS requires

the availability of several ships underway, all of which fall under the constraints noted

previously. Further, the potentially dangerous nature of DIVTACS restricts the

opportunity to perform concurrent training, i.e., engineering or combat systems drills.

Currently available simulators are able to perform DIVTACS, but must be networked

together. Networking these simulators is often avoided due to excessive demands for

these limited resources. Instead they focus towards the more common ship-handling

functions of pier-handling and underway replenishment.

Figure 1. SurfTacs Main Menu Screenshot.

B. OBJECTIVE
The primary objective of this thesis was to explore the possibilities of open source

development by providing a proof of concept division tactics simulator. A secondary

objective was the ability to extend the simulator for use in surface tactics in general and

identification of areas of future research.

C. APPROACH

“Research through application” is perhaps the best way to describe the approach

taken in this thesis. The skill set required to design and implement a ship-handling

simulator cover a very broad landscape. The author earned a greater appreciation for the

inter-relationships between component functionality in overall system performance

through the investigation of numerous fields of study. Further, the in-depth review of the

2

3

open source paradigm provides invaluable insight into how the new “open” paradigm

may be put to work for the Navy.

As will be discussed in a subsequent chapter, an iterative design was chosen to

develop the prototype, appropriately named SurfTacs. Iterative design does not attempt

to present a “bullet-proof” final product. Rather this design methodology focuses on

generating outputs far quicker than traditional design methods, albeit less complete. The

expectation is to achieve the final product after several design iterations. Every cycle

affords an opportunity to learn from previous iteration mistakes and adapt the design

accordingly. Major software design changes are never an easy proposition once coding

has begun. However, the impact of major changes is lessened when completed earlier in

the overall development process. Also, some changes may never be found until the

product is released into the user population. Add in the realization that requirements

often change during long development time forcing even well-designed applications to

conduct a major redesign and iterative design is clearly superior to other design

methodology.

SurfTacs is ultimately meant to cover an expansive set of surface tactics; from

ship-handling to combat operations and from single user to multi-team training. The

range of potential functionality is limited only by the objectives of the current iteration.

To employ a single application in this manner requires a heavy consideration to

extensibility. SurfTacs also represents a vessel through which future thesis students may

choose to focus their research. To identify the limitations of the current design, offer

suggestions for improvements and elaborate on opportunities for additional research,

applicable chapters have been expanded with a section entitled “Future Research and

Applicability to Surface Tactics (in General).”

4

D. SUMMARY OF CHAPTERS
The remainder of this thesis is broken down into the following chapters:

• Chapter II provides necessary background information for the current

iteration of SurfTacs, in particular ship-handling during DIVTACS, the

need for simulation-based training and the growing sophistication of the

open source paradigm.

• Chapter III provides the overall design methodology including a more

detailed summary of iterative design.

• Chapter IV discusses the virtual environment in terms of scene objects and

visualizations.

• Chapter V focuses on modeling the physical environment.

• Chapter VI elaborates on the scenarios chosen for inclusion in the current

iteration of SurfTacs.

• Chapter VII reports the approach taken to model human participants

through artificially-intelligent agents.

• Chapter VIII identifies the intricacies of the user interface, both graphical

and auditory devices used.

• Chapter IX summarizes the work of this thesis.

5

II. BACKGROUND

A. TRAINING SHIP-HANDLERS
Collisions between ships at sea costs millions of dollars, reduces operational

availability and often ends careers of those identified as negligent in their duties. At the

time of writing this thesis, the most recent ship collision occurred between two U.S. Navy

Arleigh-Burke Class Destroyers, the USS MCFAUL and the USS WINSTON S.

CHURCHILL. While engaged in a fleet exercise on 22 August 2005, the two destroyers

collided causing over $1.3 million dollars in damage. The Commanding Officers of both

ships received only administrative actions due to mitigating circumstances of the

incident.1 Even though the McFaul-Churchill collision was outside usual ship-handling

operations, it is a reminder of the necessity to properly train ship-handling to prevent

future collisions in all surface warfare operations.

Up until the early 1990’s, all surface warfare officers received baseline ship-

handling training aboard Yard Patrol (YP) craft at the Surface Warfare Officer School

(SWOS) in Newport, RI.2 However, these assets exceeded service life and funding was

unavailable to replace them.3 SWOS replaced the YPs with Bridge and CIC Team

Trainers operating in a virtual environment. These simulators proved expensive to

maintain and were unable to properly simulate environmental conditions and twin-screw

operations needed for pier-work.4 SWOS then procured the Conning Officer Virtual

Environment (COVE) 5 as its mainstay simulator.

However, under the Division Officer Sequencing Plan (DOSP), new surface

warfare officers receive the bulk of their ship-handling training on-the-job and never train

with the COVE simulators until after they have successfully completed Officer of the

Deck (OOD) qualifications. Prior to attending the three week SWOS course, these new

surface warfare officers may benefit from the simulators at the Marine Safety

International (MSI) training complexes located at Norfolk, Newport and San Diego.6 It

must be duly noted that attendance at MSI is a ship training requirement and not

personnel directed thus not all surface warfare officers receive MSI training.

6

B. CURRENT SIMULATORS
The Cadillac of ship-handling simulators available to the Navy is the MSI training

complex. MSI training focuses both on formal classroom training to teach fundamentals

and the virtual environment of the simulator towards the application of the classroom

training in various ship-handling scenarios. Retired Navy Captains guide teams of

trainees (preferably ship designated watch teams) through both forms of training. The

MSI simulation complex has both full mission bridge and bridge wing simulators. Ships

are required to send at least one team to a three day and a two day training session during

the inter-deployment training cycle.

The COVE ship-handling simulator provides focused conning officer training in

various ship-handling scenarios. As with MSI, they do require a qualified operator to

assist the training of the trainee. Unlike MSI, COVE trainers are portable and

deployable. The virtual environment in COVE is projected via multiple computer

screens and a head-mounted display (HMD).

Both MSI and COVE simulators may be networked to similar trainers to provide

DIVTACS training. However, due to the limited availability and high demand of these

simulators DIVTACS training is seldom performed with them. Instead, trainees are

expected to learn DIVTACS via 2-Dimensional Maneuvering Boards (MoBoards) and

on-the-job training. Being high stress multi-ship maneuvers, on-the-job training of ship-

handlers during DIVTACS elevates the operational risk of these exercises. Increased risk

forces additional watch-stander augmentation thereby increasing confusion and stress on

the bridge.

A better method for training DIVTACS is required prior to exercising a conning

officer in live training. This dilemma not only pertains to ship-handling but extends to all

areas of surface tactical training. The current business models the Navy uses are not

scalable to meet the Navy’s demand for enhanced training. The Navy can ill-afford to

produce, deploy and maintain training simulations in the quantity required to properly

train junior surface warfare officers under this commercially-oriented paradigm.

Something new is needed.

7

C. OPEN SOURCE PARADIGM
Open source is an opportunity for the creation and extension of meaningful

applications that benefit the greater good. Tim O'Reilly, founder and CEO of O'Reilly

Media, explains, "Early on, when software was developed by computer scientists, just

people working with computers, people passed around software because that was how

you got computers to do things."7 Open source represents freedom in the information age

through the concepts of unlimited distribution and open access to the underlying source

code. Karl Fogel, from software distributor CollabNet said, "Freedom is a business asset,

under certain circumstances."8

The basic idea behind open source is very simple: When programmers can
read, redistribute, and modify the source code for a piece of software, the
software evolves. People improve it, people adapt it, people fix bugs. And
this can happen at a speed that, if one is used to the slow pace of
conventional software development, seems astonishing.9

Open source developed applications are beginning to make an impact into the

commercial software markets and similarly applications developed in this manner have

the potential to positively impact the military. “Open source software is an idea whose

time has finally come. For twenty years it has been building momentum in the technical

cultures that built the Internet and the World Wide Web. Now it's breaking out into the

commercial world, and that's changing all the rules.”10 “Open Source software is also

gaining increased momentum in the enterprise. Commonly cited reasons for the growing

interest, acceptance, and even preference for Open Source products include low cost,

high value, quality and reliability, security, increased freedom and flexibility (both

hardware and software,) and adherence to open standards.”11

Further open source is about collaboration between interested parties. “The

essence of the Open Source development model is the rapid creation of solutions within

an open, collaborative environment. Collaboration within the Open Source community

(developers and end users) promotes a higher standard of quality, and helps to ensure the

long-term viability of both data and applications.”12 “No one company or individual

"owns" Linux, which was developed, and is still being improved, by thousands of

corporate-supported and volunteer programmers all over the world. Not even Linus

8

Torvalds, who started the Linux ball rolling in 1991, "owns" Linux.”13 Open source gives

life to new software applications through the unity of open enterprise and is directly

applicable to the desires of the military.

D. GAMING AND TRAINING
In the past computer gaming received the oppressive stigma of existing just for

“mindless entertainment.” Today, computer gaming is a multi-billion dollar enterprise

and is firmly entrenched within the culture of our youth. One of the initial steps in

creating software of any kind is to understand the intended users. 60% of Americans

interact with computer games with an average age of 28. 43% of gamers are female.14

Since the military is a reflection of society, it stands very likely that a large portion of

new recruits participate in computer gaming.

Computer games have evolved from simplistic amusement. They now represent

an opportunity to conduct immersive training in a virtual environment that intrinsically

appeals to the curiosity of the trainee.15 By leveraging a trainee’s curiosity, the trainee

becomes personally motivated to learn. This motivation creates an attitude of intentional

learning resulting in the retaining of useful information.

An attitude of intentional learning — of investing extra mental effort,
beyond what is required just to complete a task, with the intention of
achieving personal goals for learning — is a problem solving approach to
self-education because the goal is to transform a current state of personal
knowledge (including ideas and skills) into an improved future state.
Effective intentional learning combines an introspective access to the
current state of one's own knowledge, the foresight to envision a
potentially useful state of improved knowledge that does not exist now, a
decision that this goal-state is desirable and is worth pursuing, a plan for
transforming the current state into the desired goal-state, and a motivated
willingness to invest the time and effort required to reach this goal.16

Military training does not have to be a laborious and non-enjoyable experience.

By utilizing game-based training, military education may benefit from the trainee’s

curiosity and self-motivation to learn. The inspiration to train via gaming may even

apply outside of normal working hours if the virtual environment is appealing to the

trainee. Game-based training is an area that should continue to be explored and exploited

by the military to address the educational needs of today’s warriors.

9

III. OVERALL DESIGN

A. DESIGN METHODOLOGY
Design methodology is essentially the philosophy by which software is

developed. There are several competing design methodologies currently in practice.

They range from the traditional waterfall method to the iterative design process. The

various design methodologies will be briefly discussed in the following passages.

1. Waterfall Design Model
The waterfall model is a sequential process which seeks to forward a finished

product through each step in the software lifecycle. If problems are identified in the

product by the subsequent step, the process takes a step backward and reworks the

product. Thus, waterfall designs tend to be linear in execution and often yield very long

software development times. Additionally, the waterfall model is very inflexible to late

changes in software requirements. It is not unheard of for software developed in this

manner to be out-dated upon completion.17

2. Spiral Design Model
Spiral design seeks to mitigate some of the drawbacks of waterfall design by

executing the sequential steps several times. Spiral design also places emphasis on

assessing and mitigating risk between execution cycles. Changes in requirements tend to

not be as detrimental in this process. This spiraling pattern takes place primarily within

the software developer. Like the waterfall method, the product released to the customer

is expected to be complete and takes a considerable amount of time to produce.18

3. Iterative Design Model
Iterative design seeks to mitigate the drawbacks of spiral design by providing

intermediate products to the consumer. Many errors in software will never be found by

the engineers who create them. These deficiencies are not necessarily programming

errors, but rather are failures to properly meet the needs of the customer. Non-intuitive

interface design is a primary example of this failure. Since both waterfall and spiral

design methods never release the product until it meets the requirements and

specifications documents, many of these errors are never found. In the case of the

military, software produced in this manner may be shelved or a follow-on design ordered

10

to correct these discrepancies. Since iterative design passes a product to the user sooner,

albeit less-than-complete, these failure are found earlier in the development process and

may be corrected during subsequent iterations.19

B. EXTENSIBILITY
SurfTacs is a very ambitious project that will never be completed. That is to say,

as long as there is interest in the continued development of SurfTacs, the design will

iterate indefinitely, referred to as the “continuous beta.” A pitfall in iterative software

development is to “paint yourself into a corner.” In other words, work in a current or past

iteration prevents the success of future iterations. To avoid this tripwire, the software

development must seek to apply the software concept of extensibility. By definition,

extensibility is the capability of being extended.20

Object-oriented Programming (OOP) provides the opportunity for extensibility

through the use of abstraction, encapsulation, inheritance and polymorphism. Data

abstraction provides a mechanism to focus on the interface between objects and the

ability to ignore the details within an object. Encapsulation provides a means to hide

information from external objects. Inheritance permits specialization and, through

careful design, the opportunity for genericity. Polymorphism permits a family of classes

to utilize a singular interface thereby providing a means to execute unique behavior by

subclasses without the requirement for explicit knowledge of the subclass instance.21

C. CURRENT ITERATION
SurfTacs follows the iterative design methodology. It is assumed this program

will not meet all requirements of surface tactics in its initial iteration. The decision to

focus on DIVTACs was made to provide a product to the Navy serving a greatly needed

void in the training of junior surface warfare officers. The author’s surface ship

experience was also instrumental in this decision. Future iterations of SurfTacs will

expand beyond the constraints of the bridge watch into all areas of surface tactics and

will also serve to correct identified deficiencies of the previous iterations. As mentioned

previously, extensibility must be carefully considered to avoid constraining future

iterations.

D. APPLICATION PROGRAMMING INTERFACE HEIRARCHY

Figure 2. API Hierarchy.

Figure 1 illustrates the hierarchy of interactions between SurfTacs and various

application programming interfaces (API). At the heart of this hierarchy is Delta3D v1.1.

Delta3D “is a full-function game engine appropriate for a wide variety of modeling &

simulation applications.”22 Delta3D is funded by the Naval Education and Training

Command (NETC) and is under development at the Naval Postgraduate School in the

Modeling and Simulation Institute (MoVES). Delta3D is written in Standard C++ and

merges various independent open source initiatives into a higher-level API. Delta3D

significantly aids open source application development by abstracting the details of

lower-level API while preserving the capability to transcend directly to these lower-levels

as required.

CEGUI v0.4, short for Crazy Eddie's GUI System, “is an open source library

providing windowing and widgets for graphics APIs / engines where such functionality is

not natively available, or severely lacking. The library is object orientated, written in

Standard C++, and targeted at games developers who should be spending their time

creating great games, not building GUI sub-systems.”23 CEGUI was selected over other

11

12

open source GUI APIs due to its extensive capabilities. Additionally, CEGUI is

aggressively under development insuring future applicability.

OpenAL v1.0, “is a cross-platform 3D audio API appropriate for use with gaming

applications and many other types of audio applications.”24 OpenAL handles the intricate

details of audio hardware manipulation and allows the application to focus instead on

listener and sound positioning and play-back. OpenAL is written in Standard C++.

Delta3D adds instrumental audio management functionality easing the process of

application audio insertion.

Open Scene Graph (OSG) v1.0 “is an open source high performance 3D graphics

toolkit, used by application developers in fields such as visual simulation, games, virtual

reality, scientific visualization and modeling. Written entirely in Standard C++ and

OpenGL it runs on all Windows platforms, OSX, GNU/Linux, IRIX, Solaris and

FreeBSD operating systems.”25 OSG provides robust scene graph functionality required

of advanced visual simulation. Additional OSG utilities include; file loading, particle

system effects, and many others.

OpenGL v2.0 “is the premier environment for developing portable, interactive 2D

and 3D graphics applications.”26 OpenGL handles the intricate details of video hardware

manipulation and allows the application to focus on graphical object creation, positioning

and updating. OpenGL is written in Standard C++.

E. SURFTACS LAYOUT

Figure 3. High-level Design.

The Unified Modeling Language (UML)27 is leveraged to display the elements of

SurfTacs and their collaborations with one another and with supporting API elements.

Figure 2 illustrates the high-level design of SurfTacs. Note packages in this diagram may

represent; an independent class, a major sub-component of SurfTacs, a module of an API,

or an entire API. This high-level design serves as a roadmap for subsequent area-specific

chapters in this thesis. In order to properly orient the reader, Figure 2 should be referred

to prior to commencing each chapter.

F. FUTURE RESEARCH AND APPLICATION TO SURFACE TACTICS (IN
GENERAL)

It is often easier to visualize a better path once you’ve reached your destination.

This is definitely the case with the overall design of SurfTacs. The author utilized

pointers liberally to create collaborations between classes. This structured approach is

reasonable for small applications, but quickly turns into a nightmare for moderate and

13

14

larger applications. Often called “spaghetti code”, overuse of pointers makes graceful

deletion considerably more challenging and generates difficult to understand code.

A message-based design is one method that could be employed to avoid liberal

pointer usage. In a message-based design, messages are sent to specific classes vice

direct class method calls. If properly designed, the message sender will be unaffected if

the intended recipient is unable to receive the message (i.e., the receiver has been

deleted). Delta3D provides basic message functionality in all classes derived from the

Base Class. Deriving from Base also yields the inherit option to reference class objects

further aiding graceful deletion.

The author highly encourages a complete redesign of SurfTacs based on a

message-based design. It is equally recommended to incrementally add functionality

while insuring the graceful removal of the added functionality. This approach will

significantly reduce painful implementation efforts to localize memory leaks and

prematurely deleted references.

IV. SCENE OBJECTS AND VISUALIZATIONS

Figure 4. Scene Objects Design.

A. ENVIRONMENT

1. Weather Modeling
Delta3D offers considerable native support for creating realistic visual

environments. In particular, creating an instance of dtABC::Weather provides an eye-

pleasing sky dome with a variety of options for cloud cover, time-of-day and fog

15

16

intensity. Fog is especially important in SurfTacs as it naturally fades distant objects into

the horizon, generating a visual distance reference for the user. In order to receive the

benefits of fog, a visual object must be added as a “child” to weather. For clarity, Figure

3 omits dtABC::Weather and the “child” associations to the other classes.

2. Ocean Modeling
Unfortunately, at the time of designing and implementing SurfTacs, native

Delta3D support for water (in particular an ocean) was unavailable. This area is critical

to the believability of a ship-handling simulator. The question of whether to design a 3D

ocean (render realistic waves) or a 2D abstraction quickly came to the forefront. 3D

waves are nothing new to ship-handling simulators. MSI has had this functionality for a

number of years. However, this feature is rarely used in practice due to the likelihood of

inducing “simulator sickness” in trainees. Additionally, 3D ocean models require

considerable CPU processing time to work correctly.

In order to avoid creating a costly feature (in terms of development time and CPU

performance) that would likely be avoided by the end-users, the decision was made to

create a representative 2D ocean. The end result was a large textured plane that “moved”

with the eye-point. The texture was repeated numerous times and “pulled” across the

plane to generate the effect of wave movement and eye-point velocity. Combined with

some OpenGL blending, the ocean appears believable and is in keeping with the affinity

of the remaining visual elements of the application.

B. SHIP MODELING

1. File Formats
OSG offers support for numerous file formats. SurfTacs utilizes OSG (ASCII

text) and IVE (binary) formats. The OSG file format, being a human-readable format,

was particularly useful in making direct changes to the file without the assistance of a

modeling program. OSG files were utilized for the ship stack heat and bow and rooster

wakes (more on these visualizations later in this chapter).

The IVE file format is a native binary format added to OSG as a plug-in. The

IVE binary plug-in, developed by Uni-C's VR-Center and submitted as open source, adds

support for binary reading and writing OSG nodes. IVE format produces a much faster

load time (10-20 times) and smaller file size then the native ASCII OSG format. Since

IVE is a runtime format, it is important to keep original files, OSG, FLT, 3DS, etc., in

order to modify the models in the future.28

Figure 5. SurfTacs Bridge Screenshot.

2. Guided Missile Destroyer
The centerpiece of SurfTacs is the Arleigh-Burke Class Guided-Missile Destroyer

(DDG) model. The original model was created by a student in the NPS MoVES

curriculum (unknown name). Several modifications to the model were required in order

to create the functionality required for SurfTacs. In particular, a bridge area was added to

the destroyer model. Several visual objects on the bridge were also added (radar, helm

console, CO/XO chairs, etc). The DDG model further represents the power of open

source as the improvements made to the original model are now available for

modification by others.

Pelorus and rudder indicators were later added independent of the destroyer

model in order to facilitate dynamic manipulation. It should be noted that this

functionality may be added directly inside the model hierarchy and later manipulated
17

18

inside the application code (via various OSG nodes). However the author’s limited

modeling experience drove the decision to instead implement these items directly inside

the application code.

C. PARTICLE SYSTEMS

1. Ship Stack Heat
Delta3D offers native support for the creation of particle systems (psEditor.exe)

and the insertion and manipulation of particle systems within the engine. The gas turbine

engines (which both create the needed force to turn the propellers and produce electricity

in the Arleigh-Burke Class DDG) generate substantial amounts of heat. This heat

combined with small amounts of smoke creates a subtle visual effect in the vicinity of the

stacks. A particle system was designed to recreate this effect and loaded into the

application using the OSG file format (discussed previously in this chapter).

2. Ship Wake
The ship’s wake proved to be a little more challenging to implement. Initially, the

wake was created using the resources available natively within Delta3D. Separate

particle systems were used to create bow, rooster tail and stern wakes. The available

options within Delta3D offered a reasonably realistic wake effect. Everything was fine

until the author encountered floating point errors as a result of moving the eye-point too

far from the origin. The floating point error problem occurs due to the limitations of

numerical precision. Not all floating point numbers are possible and due to the

promulgation of error (through repeated floating point math) as fewer bits are available to

the right of the radix (as in moving away from the origin). The visual effect which occurs

is jitter, irregular appearing movement, which increases in fluctuation quickly to the point

of unacceptability.

There are numerous ways to correct the floating point error problem in virtual

environments. One way is to utilize higher precision numbers (for instance type double)

for all vertex positions. Naturally, this is only a patch to the problem as eventually the

same problem will occur, though in the case of the needs of SurfTacs this may not have

been an issue. The second method is to maintain the eye-point at the origin and instead

move the world about the eye. This change would have caused a major design alteration

and, since the problem wasn’t identified until well after implementation had begun, was

19

not considered a desirable solution. A third way to correct floating point error was to

“reposition” all entities when the eye-point passed outside some arbitrary distance from

the origin. Through empirical research, 1500 meters was chosen as this distance.

Utilizing the reposition method solved the jitter problem. Unfortunately it also

created a new problem: isolated particles. Delta3D offered no direct support to

manipulate particles directly. The solution ultimately was to create the particle system

directly in OSG and derive additional classes from osg::Operator and osg::Interpolator.

The derived operators provided a mechanism to manipulate individual particles, i.e.,

position, velocity, life (energy), etc.

Additionally, the author (assisted by Captain Jeff Wrobel, USMC) implemented a

B-Spline interpolator for the alpha blending of textures in order to maximize the visual

effect of wake particles while maintaining a natural-looking fade out. These measures

were applied to the stern and side wakes, leaving the bow wake and rooster tail

untouched as they are both short duration effects and observation of their isolated

particles after a reposition is trivial.

20

D. FUTURE RESEARCH AND APPLICATION TO SURFACE TACTICS (IN
GENERAL)

OpenGL Shaders offer an excellent opportunity to create a more realistic 2D

ocean than the one designed and implemented into SurfTacs. Shader support has recently

been added into Delta3D and some initial work towards using OpenGL Shaders to create

a realistic 2D ocean was done by the development team. It remains to be seen if native

support for procedurally-created oceans will be added to Delta3D. As this is an area that

will likely resurface during a design iteration of SurfTacs, the performance-minded

modeling of oceans is an excellent area for focused student research.

Creating better models for SurfTacs is also an area of needed work. In particular,

one may speculate the future desire to transverse through the internal passageways of the

destroyer. Why limit to SurfTacs to Arleigh-Burke class destroyers? Additional ship

models may also be desirable for future iterations of SurfTacs. In visual modeling, the

canvas has an infinite number of possibilities and is limited only by the imagination of

the modeler and the affinity of the model to the remaining visual objects of the

simulation.

V. PHYSICAL WORLD MODELING

Figure 6. Physical World Design.

A. SHIP MOTION
Physical world modeling deals with how virtual objects interact with the virtual

environment. For this iteration of SurfTacs to appear realistic to the user, the ship model

must behave in a reasonable manner with dynamic changes in rudder and throttle. Here

is yet another area where an entire thesis research may be based. However, in keeping

with the “mile wide and an inch deep” philosophy of this thesis, the author chose to

utilize a fairly simplistic motion model based on a few key assumptions:

First, SurfTacs is meant to be openly available to all that desire its use. Thus,

only unclassified information may be leveraged to drive the physical model. Without

precise (and classified) ship characteristic data, an upper bound is quickly placed on the

21

22

realism of the physical model. However, utilizing as a base for calculation the

unclassified knowledge that a ship’s tactical diameter approximates 1000 yards with all-

engines ahead standard and standard rudder (for smaller ships), combinations of engine

order and rudder may be applied in a representative manner. This works out to be a

reasonable approximation for engine order and rudder combinations close to standard, but

will likely lose accuracy as the engine order and rudder combination varies from this

base.

Second, the scenarios (to be discussed in a following chapter) exercise

DIVTACS. The proper execution of DIVTACS by individual ships most often requires

the use of standard rudder and speeds greater than bare-steerage and up to stationing

speed. If a base speed of fifteen knots (standard engine order on a destroyer) is ordered

for the formation, on average the physical model will be a reasonable approximation

Third, relative motion between ships is what is most important in DIVTACS vice

single ship motion with respect to the environment. Since all ships will essentially be

affected similarly by environmental effects like current and wind, these forces may be

abstracted with minimal loss to the fidelity of the physical model. This would certainly

not be the case in scenarios where environmental effects or the interaction between ship

forces apply, i.e., pier-handling, underway replenishment, etc.

B. USER MOTION

In this iteration of SurfTacs, user motion is independent of ship motion. User

maximum speed is modeled as 2 m/s, the equivalent of a brisk walk. The user may freely

move throughout the bridge area of their destroyer. The user is, however, confined to

their ship. Abstracting the motion of the ship (permitted through transform matrices and

use of ‘child’ relationship in Delta3D), user motion is essentially a 2D problem. With

this in mind, the author pursued the collision detection and handling scheme that follows.

C. COLLISION DETECTION/HANDLING
Early in the application development, a decision was made to create a specialized

collision detection scheme for SurfTacs. At that time, Delta3D was also in an early state

of development and had recently added the Open-Dynamics Engine (ODE).29 The

stability of ODE in Delta3D appeared somewhat questionable. In retrospect, the Delta3D

team overcame the integration challenges and now ODE is an excellent contribution to

23

the Delta3D simulation engine. Like many naive software designers, the author chose to

reinvent the wheel by creating a collision detection scheme from scratch. This decision

was perhaps the worst design decision made by the author. The following describes this

collision detection scheme to aid future SurfTacs developers/maintainers.

The Interaction class is the base class for collision detection. An instance of

Interaction may be of type dynamic, static or proximity. Dynamic Interactions have a

corresponding dynamic transform capability and thus may collide into other Interactions.

A Static Interaction has a static transform and does not actively collide into any

Interaction (even if positioned within the boundaries of another Interaction). Both

Dynamic and Static Interactions represent a physical object. A Proximity Interaction is

similar to a Static Interaction, but does not represent a physical object and is used to

trigger an event, i.e., user interaction with a piece of equipment (more to follow on

interfacing with equipment in the chapter on User Interface).

An Interaction List is a container class for all Interactions within a similar virtual

space. This permits the ability to have several Interaction Lists to segregate Interactions.

For example, this iteration of SurfTacs has two Interaction Lists; the recognized maritime

picture (RMP) for ship-ship collisions and the bridge area to handle user collisions with

the bulkheads, equipment and proximity sensors. The Interactions contained within

separate Interaction Lists do not influence one another.

Inside an Interaction List, potential collision between Dynamic and other

Interactions are identified and stored as Candidate Pairs. Utilizing a bounding circle (the

collision detection scheme is 2D) and a maximum speed (for Dynamic Interactions only),

the minimum possible time for a collision to occur between the Interactions within a

Candidate Pair is derived from their actual distance apart. The minimum possible time is

added to the current time and assigned to the Candidate Pair update time. When the

current time exceeds the Candidate Pair update time, the candidate pair is checked for

collision. If a collision has yet to occur, a new update time is calculated as performed

above.

In the event a collision occurs, the Dynamic Interaction is alerted to the collision

with a pointer to the Interaction the object collided with. In the case of a ship-ship

24

collision, the training objective of the scenario is unable to be met and a message to the

user is presented alerting to the failure. However, when a user collides with an object on

the bridge, the show must go on. A very simple collision handling scheme was used to

handle collisions of this manner. The user’s motion (at the time of collision) was simply

reversed and multiplied to ensure the user Dynamic Interaction cleared the boundary of

the object with which it collided.

The user collision handling scheme leaves much to be desired. First, unless the

user collides with the object at a perpendicular angle, the reversal in direction is precisely

opposite of the incident angle to the plane of the object. This is not only counter to what

the user expects but has the added discrepancy of prohibiting the user from smoothly

traversing along a plane. The second deficiency of this collision handling scheme is the

inherent possibility of getting “caught” inside the boundary of another Interaction when

blindly applying motion reversal. The result freezes the user in place which is certainly

an undesirable to place for the user to be! Getting “caught” seldom occurs in practice,

but even a single occurrence destroys user confidence in the believability of the

application.

D. FUTURE RESEARCH AND APPLICATION TO SURFACE TACTICS (IN
GENERAL)
After the discussion on collision detection and handling, it should be quite

apparent the need for a major design change to SurfTacs is required. Additionally, 3D

collision detection will be necessary for any future iteration of SurfTacs where movement

is outside the 2D plane, i.e., a scenario where shells are fired at an approaching aircraft.

A more generalized and efficient approach to collision detection is to implement ODE.

Collision handling may be performed through ODE or properly performed within the

application-specific code.

The ship model used in the current iteration of SurfTacs is acceptable for

DIVTACS. However, the extension of SurfTacs to other areas of ship-handling requires

a considerable improvement to both the physical model of the ship and the virtual

environment. Environmental forces acting on the ship, current and wind for example, are

important when an object unaffected (or affected differently) by these forces is added to

the scene, i.e., a pier or a man in the water. Further, the ship itself imparts a force on the

25

surrounding environment. This force manifests as high pressure zones at the bow and

stern and low pressure zones along the sides of the ship. These forces are particularly

important to the interaction between ships at close proximity (through the application of

Bernoulli’s principle.)30

26

THIS PAGE INTENTIONALLY LEFT BLANK

VI. SCENARIOS

Figure 7. Scenario Design.

A. INCLUDED SCENARIOS
In SurfTacs, specific scenarios are derived from the abstract Scenario Class.

Aside from general application setup, persistent GUI elements and the environment, each

scenario is independent of any other scenario. Designing the scenarios in this manner

maintains the desirable attribute of extensibility. The first scenario selected takes the

longest to load as the environment must be created and added to the scene. However,

within the same session of SurfTacs, all other scenarios load extremely quickly. In order

to avoid classification issues, maneuvering signals are in plain text and are of a

representative nature only. The scenarios included in this iteration of SurfTacs represent

a portion of DIVTACS but do not cover the entire breadth of DIVTACS. The following

is a breakdown of the scenarios included:

1. Open Navigation
The open navigation scenario permits the user to explore the bridge of their

destroyer without the distraction of additional shipping. This scenario is open-ended and

27

is thus completed when the user elects to finish. This scenario is meant for a first-time

user and is not expected to be utilized more than once.

2. Leapfrog
The leapfrog scenario is based on a Navy training exercise to develop ship-

handling skills for underway replenishment. In this scenario the user’s destroyer is

placed astern a second destroyer. The order to “take station” is given by the Officer in

Tactical Control (OTC). The user is expected to place their destroyer alongside the

second destroyer at the prescribed distance listed in the scenario text. The distance is

sufficiently large to avoid the Bernoulli effects created between ships at close proximity.

The second destroyer will not alter course or speed for the entire scenario. The scenario

is completed when the user’s ship maintains position alongside (within the tolerances of

+/- 3 degrees and +/- 10% range) for an uninterrupted 60 seconds. The leapfrog scenario

is perhaps the best scenario for training the effects of relative motion.

Figure 8. SurfTacs Scenario Screenshot.

28

29

3. Screen Formation
The screen formation scenario creates fours ships and places them apart at a

considerable range from one another. The OTC sends a signal to form a screen formation

and all ships are to head to their assigned screen sectors. Three of the four ships are

conned by artificially intelligent agents. The guide ship maintains course and speed

while the other two destroyers alter speed and course to properly execute the tactical

signal. In a manner similar to the Leapfrog scenario, the signal is completed when the

user’s ship achieves and maintains station for an uninterrupted 60 seconds. Three other

tactical signals are ordered in succession; two standard turns and finally an additional

screen formation. At the successful completion of the final tactical signal the scenario is

completed.

4. Column Formation

The column formation scenario is a continuation from the screen formation

scenario in that all four ships are initially placed in a screen. The OTC then orders all

ships into a column formation. Upon completion of the signal, the OTC follows with an

order to conduct a wheel turn and finally a standard turn is ordered.

5. Line Abreast Formation

The line abreast formation is a continuation from the column formation scenario

in that all four ships are initially placed in a column. The OTC then orders all ships into a

line abreast formation. Upon completion of the signal, the OTC follows with an order to

conduct a wheel turn and finally a standard turn is ordered.

6. Diamond Formation
The Diamond Formation is also a continuation of the column scenario in that all

four ships are initially placed in positions loosely resembling a column. The first order

given by the OTC is to formally place all ships into a column formation. From the

column, the OTC orders the diamond formation. From here two standard turns are

ordered and the scenario is completed.

30

B. FUTURE RESEARCH AND APPLICATION TO SURFACE TACTICS (IN
GENERAL)

Future scenario work may certainly include additional DIVTAC maneuvers.

However, scenario generation may include areas outside this realm of training. For

instance, with minor modifications a scenario could be created to exercise open ocean

navigation and application of rules of the road procedures. Perhaps man overboard,

torpedo evasion, small boat operations or flight operations could be included. Further,

tactical warfare scenarios like small boat attacks may be implemented. The possibilities

are limited only by the imagination and time available to the application designer.

Deriving scenario classes is the current method for handling scenarios. However,

this method restricts the addition and modification of scenarios to those compiled within

the executable. An alternative approach is to utilize external files (i.e., XML files) for

this purpose. XML adds the advantage of an easy to understand file format which would

greatly increase the ability of the end-user to extend the scenarios in SurfTacs without the

burden of compiling a new executable.

VII. ARTIFICIALLY INTELLIGENT AGENTS

Figure 9. Artificial Intelligence Design.

A. DISPATCHER
Taking a top-down look at the Artificial Intelligence (AI) design of SurfTacs, the

Dispatcher class is resident at the highest level. The Dispatcher class in the current

iteration of SurfTacs is nothing more than a container class of pointers to AIelement

classes. An instance of Dispatcher authorizes assigned AIelements to update each cycle.

The original intent for this class was to add the ability to prioritize the AIelements in

order to distribute scarce processing resources. However, in this iteration AI processing

resources did not significantly impact frame times to justify the additional design work to

implement this feature.

31

32

B. AI ELEMENT
AIelement derived classes are the primary agents within SurfTacs. The heart of

this class is a time-based priority queue of Tasks (discussed later in this chapter). To

make the AIelements appear more realistic a maximum of one task is permitted every

cycle. Additionally, tasks may be added with a time delay. When the current time is

greater than the first task in the queue, the associated AIelement and, more specifically

their assigned Role (more on this class in the following section), is notified of the

pending task and the Task is removed from the queue. Tasks may also be prematurely

removed from the queue by direction of the AIelement or by the associated Role. This

capability is particularly useful if a new task is generated that conflicts with a previously

added task.

C. ROLE

A Role in SurfTacs is a watch stander. For example, the ConningOfficer class is

a Role that is assigned to AIelement. Additional derived classes from Role include

Helmsman and Officer in Tactical Control (OTC). As in actual Navy command

structures, SurfTacs employs a watch standing hierarchy through the use of orders. There

are three types of orders embedded in this iteration; HelmOrder, LeeHelmOrder and

TacManOrder. The first two orders are understood between each set of conning officers

and helmsmen while the third order is used between the OTC and all conning officers.

D. TASK

As mentioned previously, Tasks are created by Roles and inserted into the time-

based priority queue located in the associated AIelement. Tasks are essentially sub-

routines performed to accomplish a desired end state. For instance, one Task in the

Helmsman Role is to “maintain course.” The goal of using Tasks is to reduce a routine

into as many sub-routines as possible. This aids both reuse of Tasks in various

combinations and the realism of the AI in the simulation due to the limiting aspects of

performing only one task per cycle (see AIelement above).

33

E. FUTURE RESEARCH AND APPLICATION TO SURFACE TACTICS (IN
GENERAL)

A natural extension to the AI in SurfTacs is the addition of more Roles. In

keeping with past recommendations, future iterations of SurfTacs may venture outside of

the scope of bridge watch-standing. For example, the creation of a Role to simulate a .50

caliber machine gun operator would be very useful in a scenario depicting a small boat

attack. As with other areas of SurfTacs, the possibilities for additional Roles are

seemingly endless.

Dedicated future AI research could better associate the SurfTacs AIelement with

the Human mental model. Creating more realistic AI starts with a better understanding of

the limitations of Human Beings. By leveraging ongoing research in Human Factors

Engineering, AI agents could be created with similar limitations as the Humans they are

attempting to depict. Areas to consider in the AI mental model could include the time to

complete a task, the ability to hold items in both short term and long term memory, and

also the application of the concept of attention.31

34

THIS PAGE INTENTIONALLY LEFT BLANK

VIII. USER INTERFACE

Figure 10. User Interface Design.

A. REAL WORLD VS VIRTUAL ENVIRONMENT
Recall the military adage, “Everything short of war is simulation.” This bold

statement reminds application designers that no matter how hard they try to build realism

into simulations, they will be less than real. Applying this knowledge to application

design is to repeatedly ask the question, “What is the training objective?” Just because

the technology available permits something to be done, does not mean it should be

done.32 An example is the tradeoff between 2D and 3D ocean models (discussed in

chapter 14). Areas of interest with respect to user interface include; dialog between the

user and AI agents and user interaction with equipment.

In this iteration of SurfTacs, the user must communicate with three AI agents; the

OTC, the helmsman and lee-helmsman. In the actual ship-handling environment, both

utilize verbal communication. However, dialog between the OTC and the conning officer

is through tactical radio communications. The skills associated with radio

35

36

communications are both physical and cognitive. As mentioned in chapter 6, the tactical

orders provided by the OTC are in plain language to avoid classification issues. This

communication is further abstracted to the simulation user in the form of a dialog box.

The user’s response to a tactical order is restricted to only “Roger, out” meaning I

understand the order and will comply. The interaction focuses on the training objective

of executing a received tactical order while abstracting the cognitive ability to break a

coded order and generation of a proper reply. Additionally, the physical ability to utilize

verbal communications with the tactical radio is similarly abstracted.

Dialog between the user and the helmsman/lee-helmsman is considerably more

challenging due to the complexity of a standard order to the helm and the necessity for

two-way dialog. A standard naval order may consist of a helm order and/or a lee-helm

order. Internally, SurfTacs divides these into separate orders for simplicity (a HelmOrder

to the Helmsman and a LeeHelmOrder to the LeeHelmsman). However, this abstraction

is not directly apparent to the user. To generate a standard order the user uses a graphical

user interface (GUI) consisting of buttons, sliders and text boxes. The user has several

ways to input a desired standard order. This versatile interface provides a reasonable

representation of the cognitive requirements to generate a standard order but fails to

exercise the user’s physical ability to properly execute the order verbally. Additionally,

the dialog between the conning officer and helmsman/lee-helmsman is captured in a

message window without auditory feedback. This abstraction provides a minimal visual

alert to the user and may not properly alert the user to important feedback from the AI

agents.33 For a recommended solution to this discrepancy, see the final section of this

chapter on future research.

Two forms of equipment are included in the current iteration; pelorus and radar

repeater. All forms of equipment may be “engaged” when the user is within a

predetermined proximal distance. There are three pelorus located on the bridge; one on

each bridge wing and a third at the centerline. A pelorus provides a means to ascertain

relative bearings, true bearings and relative motion between own ship and a visual

reference point. The pelorus must be actively disengaged by the user, but remains in its

final position giving a quick reference to the user while permitting freedom of motion.

The radar repeater provides an abstraction of the radar picture in the form of a textual

listing of all ships and their bearings and ranges in the message window (discussed in the

following section). This abstraction was chosen to focus on the cognitive ability of

assessing the surface picture vice the physical ability of detection, classification and

tracking of surface contacts.

Figure 11. SurfTacs GUI Screenshot.

B. GRAPHICAL USER INTERFACE
SurfTacs benefits greatly from a graphical user interface (GUI) made possible

through the use of dtGUI and the CEGUI API. The GUI consists of a menu system

intended to provide information to the user and the ability to select, start, pause, restart

and quit the included scenarios. The GUI also provides multiple views to the user and

annotated by symbolic icons including; default mouse mode with a mouse icon, a

standard order window identified by a ship’s wheel icon, and a binocular view associated

with a binocular icon. These icons were chosen based upon the results of a visual design

survey and are in keeping with the visual design principle of meaningfulness.34 Finally,

the GUI provides a messaging system to the user in the form of a dynamically changing

text window and a pop-up style non-modal dialog box.
37

38

C. AUDITORY CUEING
Through dtAudio and the OpenAL API, several sounds have been added to

SurfTacs. Upon entering the application, the user is greeted with four bells, often

signifying the return of the Commanding Officer. The use of this audio clip combined

with an exciting background image of an Arleigh Burke Destroyer35 underway is meant

to excite the user prior to commencing a scenario. Another short audio clip is used

whenever the user presses a button on the GUI to provide redundant feedback.36 The final

auditory cue implemented in this iteration of SurfTacs is a jet turbine sound for each

DDG in the scene. The turbine sound simulates changes in throttle by adjusting volume

and pitch and thus provides auditory feedback to the execution of lee-helm orders.

D. FUTURE RESEARCH AND APPLICATION TO SURFACE TACTICS (IN
GENERAL)

As noted earlier in this chapter, the message window provides the only reference

to dialog between the user and the helmsman/lee-helmsman. Future research should be

applied to creating a verbal interaction between these actors by exploring of the areas of

auditory cueing, voice synthesis and voice recognition. Auditory cueing may be provided

in the form of previously recorded words and phrases which are fused together in various

ways. Voice synthesis dynamically creates a verbal representation of an arbitrary string

of tokens (phrases, words and letters). Finally, voice recognition takes verbal input from

the user and converts it to a machine understandable format. Auditory cueing, voice

synthesis and voice recognition offer potential advantages but a review of their

technological limitations must be carefully considered and is thus recommended as a

future thesis research topic in and of itself.

39

IX. SUMMARY

A. CONCLUSION
SurfTacs represents more to the Navy than a single graduate student’s

perseverance over a year long struggle. SurfTacs has a greater meaning than the end

product of this or any future iteration. SurfTacs is an example to the Navy that training

needs may be solved in-house by applying the benefits of open source media and game-

based training. It is strongly encouraged for the Navy to devote manpower resources to

the development of a small cadre of personnel to build upon the open source paradigm.

The Naval Postgraduate School offers an excellent opportunity to train and screen future

members of an in-house application development team.

The open source paradigm offers numerous advantages to the Navy’s simulation

needs. Open source is a scalable resource that maximizes the benefits of software reuse.

Applications produced in this manner will be more cost-effective through the intrinsic

value of free distribution. Open source is a tool the Navy must leverage in order to meet

the growing demand for tactical surface simulation and to revolutionize Naval training in

general. Whether there is continued interest in SurfTacs or not, the Navy should not miss

this grand opportunity to innovate by exploiting the open source paradigm.

B. FUTURE RESEARCH AND APPLICATION TO SURFACE TACTICS (IN
GENERAL)

Throughout this thesis areas of potential future research and application to surface

tactics were identified. It is the author’s hope that future surface warfare officers will

also see the potential of using SurfTacs as a vehicle for their research. The future of navy

surface warfare training is in your hands. Understand that you will fail more often than

you succeed, but that is the only way you will truly learn.

40

THIS PAGE INTENTIONALLY LEFT BLANK

41

LIST OF REFERENCES

1. Dorsey, J., “Warship Training Tactic Under Scrutiny,” in The Virginia Pilot, [online
magazine] (2 November 2005 [cited 20 Dec 2005]); available from the World Wide Web
@ http://home.hamptonroads.com/stories/story.cfm?story=94602&ran=100160

2. Grassi, C., A Task Analysis of Pier Side Ship-Handling for Virtual Environment Ship-
Handling Simulator Scenario Development, (Master’s Thesis, Naval Postgraduate
School, 2000), 5.

3. Norris, S., A Task Analysis of Underway Replenishment for Virtual Environment Ship-
Handling Simulator Scenario Development, (Master’s Thesis, Naval Postgraduate
School, 1998), 7.

4. Grassi, C., A Task Analysis of Pier Side Ship-Handling for Virtual Environment Ship-
Handling Simulator Scenario Development, (Master’s Thesis, Naval Postgraduate
School, 2000), 8.

5. . Norris, S., A Task Analysis of Underway Replenishment for Virtual Environment
Ship-Handling Simulator Scenario Development, (Master’s Thesis, Naval Postgraduate
School, 1998), 16-17.

6. Grassi, C., A Task Analysis of Pier Side Ship-Handling for Virtual Environment Ship-
Handling Simulator Scenario Development, (Master’s Thesis, Naval Postgraduate
School, 2000), 8-9.

7. Reid, D., “Open Source Turns Money Spinner,” in BBC News [online magazine](6
November 2005 [cited 20 December 2005]); available from the World Wide Web @
http://news.bbc.co.uk/2/hi/programmes/click_online/4407742.stm.

8. Reid, D., “Open Source Turns Money Spinner,” in BBC News [online magazine](6
November 2005 [cited 20 December 2005]); available from the World Wide Web @
http://news.bbc.co.uk/2/hi/programmes/click_online/4407742.stm.

9. Open Source Initiative [electronic bulletin board][cited 20 December 2005]; available
from the World Wide Web @ http://www.opensource.org.

10. Open Source Initiative [electronic bulletin board][cited 20 December 2005];
available from the World Wide Web @ http://www.opensource.org.

11. Source Forge, “SourceForge.net: What is SourceForge.net?” [electronic bulletin
board][cited 20 December 2005]; available from the World Wide Web @
http://sourceforge.net/docs/about.

42

12. Source Forge, “SourceForge.net: What is SourceForge.net?” [electronic bulletin
board][cited 20 December 2005]; available from the World Wide Web @
http://sourceforge.net/docs/about.

13. Linux, “Introduction to Linux and Linux.com,” [electronic bulletin board](21 July
2004 [cited 20 December 2005]); available from the World Wide Web @
http://www.linux.com/article.pl?sid=02/03/09/1727250

14. Kirriemuir, J., “Video Gaming, Education and Digital Learning Technologies,” in D-
Lib Magazine [online magazine](February 2002 [cited 20 December 2005]); available
from the World Wide Web @ http://www.dlib.org/dlib/february02/kirriemuir/
02kirriemuir.html

15. Amory, A., Naicker, K., Vincent, J. and Adams, C., “The use of Computer Games as
an Educational Tool: 1. Identification of Appropriate Game Types and Game Elements,”
in British Journal of Educational Technology [online journal] (30(4) 1999: 311-322 [cited
20 December 2005]); available from the World Wide Web @
http://72.14.203.104/search?q=cache:S23OWECP4C8J:www.nu.ac.za/biology/staff/
amory/bjet30.rtf+amory+curiosity&hl=en&client=firefox-a

16. Rusbult, C., “Motivations for Learning and Strategies for Learning,” [electronic
bulletin board](2002 [cited 20 December 2005]); available from the World Wide Web @
http://www.asa3.org/ASA/education/learn/motives.htm

17. “Waterfall Model,” in Wikipedia [electronic bulletin board][cited 20 December
2005]; available from the World Wide Web @ http://en.wikipedia.org/wiki/
Waterfall_model

18. “Spiral Model,” in Wikipedia [electronic bulletin board][cited 20 December 2005];
available from the World Wide Web @ http://en.wikipedia.org/wiki/Spiral_model

19. “Iterative Design,” in Wikipedia [electronic bulletin board][cited 20 December
2005]; available from the World Wide Web @ http://en.wikipedia.org/wiki/
Iterative_design

20. “Extensibility,” in Merriam-Webster Online Dictionary [electronic bulletin
board][cited 20 December 2005]; available from the World Wide Web @ http://www.m-
w.com/dictionary.htm

21. “Object-oriented Programming,” in Wikipedia [electronic bulletin board][cited 20
December 2005]; available from the World Wide Web @ http://en.wikipedia.org/
wiki/Object-oriented_programming

22. Delta3D [electronic bulletin board][cited 20 December 2005]; available from the
World Wide Web @ http://delta3d.org

43

23. CEGUI [electronic bulletin board][cited 20 December 2005]; available from the
World Wide Web @ http://www.cegui.org.uk

24. OpenAL [electronic bulletin board][cited 20 December 2005]; available from the
World Wide Web @ http://www.openal.org

25. OpenSceneGraph [electronic bulletin board][cited 20 December 2005]; available
from the World Wide Web @ http://www.openscenegraph.org

26. OpenGL [electronic bulletin board][cited 20 December 2005]; available from the
World Wide Web @ http://www.opengl.org

27. Bennett, S., Skelton, J. and Lunn, K., Schaum’s Outline Series: UML, (New York:
McGraw-Hill, 2001), 47-110.

28. “Osgconv” in Open Scene Graph [electronic bulletin board][cited 20 December
2005]; available from the World Wide Web @ http://www.openscenegraph.org/
index.php?page=UserGuides.Osgconv

29. Open Dynamics Engine [electronic bulletin board][cited 20 December 2005];
available from the World Wide Web @ http://ode.org

30. “Bernoulli Principle,” in Wikipedia [electronic bulletin board][cited 20 December
2005]; available from the World Wide Web @ http://en.wikipedia.org/
wiki/Bernoulli%27s_principle

31. Wickens, C., Lee, J., Liu, Y. and Gordon Becker, S., An Introduction to Human
Factors Engineering, 2nd Ed. (Upper Saddle River: Pearson Prentice Hall, 2004), 121-
154.

32. Wickens, C., Lee, J., Liu, Y. and Gordon Becker, S., An Introduction to Human
Factors Engineering, 2nd Ed. (Upper Saddle River: Pearson Prentice Hall, 2004), 417

33. Wickens, C., Lee, J., Liu, Y. and Gordon Becker, S., An Introduction to Human
Factors Engineering, 2nd Ed. (Upper Saddle River: Pearson Prentice Hall, 2004), 193

34. Wickens, C., Lee, J., Liu, Y. and Gordon Becker, S., An Introduction to Human
Factors Engineering, 2nd Ed. (Upper Saddle River: Pearson Prentice Hall, 2004), 194

35. USS ROOSEVELT (DDG 80) Official Website [electronic bulletin board][cited 20
December 2005]; available from the World Wide Web @ http://www.ddg-
roosevelt.navy.mil/albums/precomm/underwaybinmage.jpg

36. Wickens, C., Lee, J., Liu, Y. and Gordon Becker, S., An Introduction to Human
Factors Engineering, 2nd Ed. (Upper Saddle River: Pearson Prentice Hall, 2004), 127

44

THIS PAGE INTENTIONALLY LEFT BLANK

45

BIBLIOGRAPHY

Amory, A., Naicker, K., Vincent, J., and Adams, C. “The use of Computer Games as an
 Educational Tool: 1. Identification of Appropriate Game Types and Game
 Elements,” in British Journal of Educational Technology [online journal]. 30(4)
 1999: 311-322 [cited 20 December 2005]. Available from the World Wide Web
 @ http://72.14.203.104/search?q=cache:S23OWECP4C8J:www.nu.ac.za/biology/
 staff/ amory/bjet30.rtf+amory+curiosity&hl=en&client=firefox-a

Bennett, S., Skelton J., and Lunn, K. Schaum’s Outline Series: UML. New York:
 McGraw-Hill, 2001.

 “Bernoulli Principle,” in Wikipedia [electronic bulletin board]. [cited 20 December
 2005]. Available from the World Wide Web @ http://en.wikipedia.org/
 wiki/Bernoulli%27s_principle

CEGUI [electronic bulletin board]. [cited 20 December 2005]. Available from the World
 Wide Web @ http://www.cegui.org.uk

Delta3D [electronic bulletin board]. [cited 20 December 2005]. Available from the World
 Wide Web @ http://delta3d.org

Dorsey, Jack. “Warship Training Tactic Under Scrutiny,” in The Virginia Pilot, [online
 magazine]. 2 November 2005 [cited 20 Dec 2005]. Available from the World
 Wide Web @ http://home.hamptonroads.com/stories/story.cfm?story=94602
 &ran=100160

“Extensibility,” in Merriam-Webster Online Dictionary [electronic bulletin board]. [cited
 20 December 2005]. Available from the World Wide Web @ http://www.m-
 w.com/dictionary.htm

Grassi, Charles. A Task Analysis of Pier Side Ship-Handling for Virtual Environment
 Ship-Handling Simulator Scenario Development. Master’s Thesis, Naval
 Postgraduate School, 2000.

“Iterative Design,” in Wikipedia [electronic bulletin board]. [cited 20 December 2005].
 Available from the World Wide Web @ http://en.wikipedia.org/wiki/
 Iterative_design

Kirriemuir, John. “Video Gaming, Education and Digital Learning Technologies,” in D-
 Lib Magazine [online magazine]. February 2002 [cited 20 December 2005].
 Available from the World Wide Web http://www.dlib.org/dlib/february02/
 kirriemuir/ 02kirriemuir.html

46

Linux, “Introduction to Linux and Linux.com,” [electronic bulletin board]. 21 July 2004
 [cited 20 December 2005]. Available from the World Wide Web @
 http://www.linux.com/article.pl?sid=02/03/09/1727250

Norris, Steven. A Task Analysis of Underway Replenishment for Virtual Environment
 Ship-Handling Simulator Scenario Development. Master’s Thesis, Naval
 Postgraduate School, 1998.

“Object-oriented Programming,” in Wikipedia [electronic bulletin board]. [cited 20
 December 2005]. Available from the World Wide Web @ http://en.wikipedia.org/
 wiki/Object-oriented_programming

OpenAL [electronic bulletin board]. [cited 20 December 2005]. Available from the
 World Wide Web @ http://www.openal.org

OpenGL [electronic bulletin board]. [cited 20 December 2005]. Available from the
 World Wide Web @ http://www.opengl.org

OpenSceneGraph [electronic bulletin board]. [cited 20 December 2005]. Available from
 the World Wide Web @ http://www.openscenegraph.org

Open Dynamics Engine [electronic bulletin board]. [cited 20 December 2005]. Available
 from the World Wide Web @ http://ode.org

Open Source Initiative [electronic bulletin board][cited 20 December 2005]; available
 from the World Wide Web @ http://www.opensource.org

 “Osgconv” in Open Scene Graph [electronic bulletin board]. [cited 20 December 2005].
 Available from the World Wide Web @ http://www.openscenegraph.org/
 index.php? page=UserGuides.Osgconv

Reid, David. “Open Source Turns Money Spinner,” in BBC News [online magazine]. 6
 November 2005 [cited 20 December 2005]. Available from the World Wide Web
 @ http://news.bbc.co.uk/2/hi/programmes/click_online/4407742.stm

Rusbult, C. “Motivations for Learning and Strategies for Learning,” [electronic bulletin
 board]. 2002 [cited 20 December 2005]. Available from the World Wide Web @
 http://www.asa3.org/ASA/education/learn/motives.htm

Source Forge, “SourceForge.net: What is SourceForge.net?” [electronic bulletin board].
 [cited 20 December 2005]. Available from the World Wide Web @
 http://sourceforge.net/docs/about

“Spiral Model,” in Wikipedia [electronic bulletin board]. [cited 20 December 2005].
 Available from the World Wide Web @ http://en.wikipedia.org/wiki/
 Spiral_model

47

USS ROOSEVELT (DDG 80) Official Website [electronic bulletin board]. [cited 20
 December 2005]. Available from the World Wide Web @ http://www.ddg-
 roosevelt.navy.mil/albums/precomm/underwaybinmage.jpg

“Waterfall Model,” in Wikipedia [electronic bulletin board]. [cited 20 December 2005].
 Available from the World Wide Web @ http://en.wikipedia.org/wiki/
 Waterfall_model

Wickens, C., Lee, J., Liu, Y., and Gordon Becker, S., An Introduction to Human Factors
 Engineering. 2nd Ed. Upper Saddle River: Pearson Prentice Hall, 2004.

48

THIS PAGE INTENTIONALLY LEFT BLANK

49

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. Chairman, Code CS
Computer Science Department
Naval Postgraduate School

 Monterey, CA

4. Rudolph P. Darken, Ph.D. Code CS/Dk
Computer Science Department
Naval Postgraduate School

 Monterey, CA

