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ABSTRACT 
 

This study investigates the impact of the synoptic-scale flow on the propagation 

and intensity of the sea breeze front at Eglin Air Force Base.  The period of study was 

May through September from 2001 to 2005.  The 925 mb wind direction and speed from 

the 12 UTC Tallahassee sounding was used to categorize 509 days as having an offshore, 

onshore, or coast parallel synoptic-scale flow regimes.  Days with similar synoptic-scale 

flows were then composited together to create hourly surface analyses for each regime.  

Sea breeze frontogenesis, location and intensity were analyzed on hourly plots of 

temperature, winds and frontogenesis. 

Results indicate that the most intense sea breeze fronts formed under 3-5 1ms−  

offshore, 7-9 1ms−  coast parallel easterly, and 3-5 1ms−  coast parallel westerly synoptic-

scale flow while the weakest fronts formed under 0-3 1ms−  onshore and coast parallel 

westerly flow.  The inland penetration of the sea breeze front was restricted under 

offshore synoptic-scale flow but propagated through the entire Eglin Range Complex 

under onshore flow.   

The intensity of the sea breeze front was found to be a balance between 

convergence (frontogenetic) and turbulent mixing (frontolytic).  Under onshore flow the 

sea breeze front formed late in the afternoon when convergence at the front was 

maximized and turbulent mixing decreased.  Under offshore flow, the strongest sea 

breeze fronts formed early in the afternoon due to strong convergence between offshore 

and onshore winds and weak turbulent mixing. 
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I. INTRODUCTION  

A. BACKGROUND 
The Gulf Coast is one of the most convectively active regions in the nation 

(Stroupe et al. 2004).  Eglin Air Force Base (AFB), located in the western Florida 

panhandle (Fig. 1), averages over 90 thunderstorm days per year.  The majority of this 

thunderstorm activity occurs during the summer, with the installation averaging 68 

thunderstorm days between May and September.  Lightning associated with 

thunderstorms can cause injury to personnel and damage equipment.  Thunderstorms also 

produce strong surface winds which results in low-level wind shear, heavy rain, hail, and 

can significantly reduce ceilings and visibility.  Thunderstorms restrict all flight, 

maintenance, and ground operations at Eglin and are the primary summer forecasting 

problem for Air Force Weather meteorologists in this region. 

 
Figure 1.  Eglin Air Force (AFB) is located in the western Florida Panhandle 

between Apalachicola, Fl and Mobile, Al. 
 

The summer maximum in thunderstorm activity is primarily attributed to the daily 

sea breeze cycle.  As far back as Byers and Rodebush (1948), summer thunderstorms in 

Florida have been linked to the afternoon sea breeze.  To date, the majority of research 
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has focused on south Florida where the peninsular geography provides an excellent 

opportunity to investigate the relationship between the sea breeze and convective activity.   

During summer, when meteorological conditions are undisturbed by synoptic-scale 

weather systems, sea breezes form along the east and west coasts of the peninsula and 

propagate inland, often combining in central Florida and initiating thunderstorms.  This 

daily cycle strongly modulates the location and timing of deep convection (Burpee and 

Lahiff 1984).  The sea breeze front, located at the leading edge of the inland moving 

marine air, is a favored area for thunderstorm formation due to enhanced low-level 

convergence.  Numerous investigators (Blanchard and Lopez 1985; Nichols et al. 1990; 

Boybeyi and Raman 1992; Zong and Tackle 1993; Wilson and Megenhardt 1996; Rao et 

al. 1999) identified such convergence lines associated with the sea breeze front as a 

primary mechanism in the formation and spatial distribution of warm season rainfall over 

the Florida Peninsula.  While thunderstorm development along the sea breeze front is an 

almost daily occurrence, the timing and location of convection can vary dramatically 

from day to day.  The onset of the sea breeze circulation and location of the sea breeze 

front similarly exhibit daily variability.  This variability is primarily attributed to changes 

in the low-level synoptic-scale flow since surface forcing of the sea breeze varies little 

from day to day (Blanchard and Lopez 1985). 

Numerical (Estoque 1962; Bechtold et al. 1991; Arritt 1993) and observational 

(Kingsmill 1995; Atkins and Wakimoto 1997; Gilliam et al. 2004) studies indicate that 

the synoptic-scale flow plays an important role in the daily evolution of the sea breeze.  

Whereas onshore synoptic-scale flow tends to create weaker sea breezes that form later in 

the day and propagate long distances inland, offshore flow creates stronger sea breezes 

that form earlier in the day and propagate only short distances inland.  Coast-parallel flow 

creates sea breezes that are similar to the onshore and offshore cases.  Thus, the 

interaction of synoptic-scale flow with the sea breeze circulation controls the location of 

sea breeze convergence zones that initiate thunderstorms. 

Blanchard and Lopez (1985) created composite radar charts from south Florida 

and determined that changes in the synoptic-scale wind field correspond closely to 

changes in the observed radar data.  Numerical modeling simulations conducted by 

Boybeyi and Raman (1992) suggested that the spatial and temporal variation of sea 
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breeze convergence zones and associated convective activity depend to a large extent on 

the direction and magnitude of the ambient wind over the Florida Peninsula.  Under 

southeasterly synoptic flow, a strong convergence zone and significant rainfall occur 

primarily along the west coast of the peninsula.  The onshore flow along the east coast 

creates a weak sea breeze while offshore flow along the west coast opposes the sea 

breeze, holding it at the coast and strengthening surface convergence.  On the other hand, 

a southwesterly wind favors strong convergence and rainfall along the east coast, for 

similar reasons.  Under light wind conditions, two lines of intense convergence and 

rainfall occur; one near each coast.  Frank et al. (1967) found similar results and noted 

that days with relatively light winds were characterized by a line of deep convection 

located 20-40 km inland.   

The role of coastline curvature and its modulating effects on the sea breeze has 

also been studied.  Numerical simulations (Pielke 1974; Boybeyi and Raman 1992) 

suggest that convex coastlines exhibit strong sea breeze convergence while concave 

coastlines generate divergence.  Thus, it seems likely that coastline irregularity strongly 

affects the location of precipitation (Baker et al. 2001). 

The above studies provide firm evidence that sea breezes evolve differently in the 

presence of low-level synoptic-scale flow.  Therefore, it should not be surprising that sea 

breezes forming along curved coastlines in the presence of synoptic-scale flow will not 

move inland at equal speeds, nor have equal intensity, because the flow relative to the 

coastline varies.  Given the effects of synoptic flow over a complex coastline, is it 

possible to accurately forecast the location of the sea breeze front as it moves inland 

during the day?   Surprisingly, given the amount of research, there has been little in the 

way of investigation into this aspect of the sea breeze.  Most numerical simulations 

(Bechtold et al. 1991; Arritt 1993) are two-dimensional with the assumption of 

uniformity in the direction parallel to the coastline or model only offshore and onshore 

cases ignoring important coast-parallel flow regimes.  While they provide important 

insight into the propagation speed of the sea breeze front in the presence of synoptic-scale 

flow, all evidence shows that the three-dimensional effects of complex coastlines can 

have a dramatic impact on the characteristics of the sea breeze.  Observational studies by 

Gilliam et al. (2004) and Atkins and Wakimoto (1997) attempted to quantify the inland 
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propagation speed of sea breeze fronts along complex coastlines under specific synoptic-

scale flow regimes.  Their results will be discussed in depth in Chapter two. 

While the majority of research has focused on the Florida Peninsula, several 

researchers have looked at the northern Gulf Coast and the role of the sea breeze in 

modulating summer convective activity.  Satellite and lightning studies conducted for this 

region reinforce the importance of low-level synoptic flow in the formation and evolution 

of the sea breeze and associated convection.  Stroupe et al. (2004) created a warm season 

lightning climatology and determined flash densities across the Gulf Coast are closely 

related to the prevailing low-level synoptic flow which controls the sea breeze.  

Furthermore, convex-shaped coastlines enhanced lightning development while concave 

coastlines diminished flash densities.  Gould and Fuelberg (1996), using GOES-8 visible 

satellite images centered on Tallahassee, Fl to create a sea breeze satellite climatology, 

also discovered preferential areas for convective development over the Florida Panhandle 

under different synoptic-scale flow regimes. 

   

B. MOTIVATION 
Eglin Range Complex, which includes Eglin Air Force Base and the Eglin 

Reservation, is one of the Air Force's largest bases and is home of the Air Armament 

Center, the primary weapons research and development center for the United States Air 

Force.  The Eglin Range Complex consists of 724 square miles of varied multi-

environmental land area with 45 test areas, 34 test systems/facilities, and 26 multipurpose 

systems/facilities for testing and evaluation of munitions and weapons systems (Fig. 2).  

The Eglin Range is the only Department of Defense range with both a water and land 

range for weapons testing.  Both air-to-air and air-to-surface weapon tests exploit this 

varied topography that provides a land clutter background, a land/sea interface, and the 

water background of the Gulf of Mexico.  The major test areas are Air-to-Ground 

Ranges, Gun Test Facilities, Electro-optical/Millimeter Wave Evaluation, Static Warhead 

Test Areas, and Kinetic Energy munitions Test Facility.  Eglin AFB also is host to the 

33d Fighter Wing and 53d Wing, the 20th Space Surveillance Squadron, the Navy School 

Explosive Ordnance Disposal, 919th Special Operations Wing (Hurlburt Field), the 

Army's 6th Ranger Training Battalion, Unmanned Aerial Vehicle Battlelab, and is the 
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future home of the Joint Strike Fighter.  A total of over 120 aircraft, including F-16, F-4, 

A-10, F-111, T-38, F-15, UH-1 and the C-130, AC-130, RF-4 and HC-130 aircraft, 

operate from Eglin’s runways.    

 
Figure 2.  The Eglin Range Complex 

 

Eglin generated more than 500 sorties per month in 2005 (Mackey 2005, personal 

communications).  When considering Eglin’s large and varied mission, it’s easy to 

understand that demand for the limited range space is high.  Scheduling aircraft and range 

times is a complex task further complicated by the daily summer thunderstorms common 

to the region.  Accurate forecasts of the timing and location of thunderstorms not only 

protects lives and resources, but enables planners to efficiently schedule valuable range 

space that costs over $20K per hour.   

  

C. CURRENT FORECAST TECHNIQUE 
The 28th Operational Weather Squadron (OWS) at Shaw AFB is responsible for 

providing operational forecasts and resource protection for Eglin AFB.  The 46th Weather 

Squadron (WS) located at Eglin AFB tailors these forecasts to create mission execution 

forecasts supporting air and ground operations.  These forecast centers do not have a sea 



6 

breeze forecasting technique.  However, they do have a technique for forecasting warm 

season thunderstorms initiated by the sea breeze front between June and September.  The 

technique is called WINNDEX after Mr. Roger Wynn, who developed the technique in 

1986.  WINNDEX considers the following variables derived from the Tallahassee, FL 

sounding: 1) 2,000 ft wind direction to determine synoptic-scale low level flow that 

governs sea breeze front propagation speed; 2) dewpoint depression at 700, 600, and 500 

mb to determine if sufficient moisture is available through the atmosphere to support 

deep convection; and 3) 12,000, 14,000, and 16,000 foot synoptic-scale wind direction to 

determine mid-level steering currents that govern thunderstorm movement.  These factors 

produce values that, with the use of nomograms, provide the time period and likely 

location of thunderstorms, either Eglin AFB, the Eglin Range Complex, or both.  While 

WINNDEX is a useful tool, a blanket forecast for thunderstorm development on the 

“Eglin Range Complex” is too general and highlights a weakness of the study.  For 

example, thunderstorms forming along the coastline may allow use of other sections of 

the range, which measures 34 km from the southern to northern boundary and 81 km 

from east to west (Fig. 3).  Currently, the nomagrams do not specify a location on the 

range complex for thunderstorm development.   

 
Figure 3.  The Eglin Range Complex measures 34 km from north to south and 84 km 

from west to east. 



7 

 

D. STATEMENT OF THE PROBLEM 
During summer, the day-to-day problem facing forecasters is the timing and 

location of thunderstorms.  Thunderstorm timing and location is a function of the onset of 

the sea breeze and location of the sea breeze front.  The rate of inland penetration and 

intensity of the sea breeze front during any given day is largely a function of the low-

level synoptic flow relative to the coastline.  Therefore, an accurate forecast of the 

location of the sea breeze front is a critical step in accurately forecasting thunderstorm 

timing and location.   

The purpose of this study is:   

1. Examine the inland penetration of the sea breeze front along the Eglin 

coastline under specific synoptic-scale flow regimes using routinely available 

upper air and surface observations. 

2. Examine the evolution of sea breeze front intensification under specific 

synoptic-scale flow regimes. 

3.  Compare the results with similar studies conducted along the North Carolina 

and Florida coastlines. 

4.  Create a nomogram of inland penetration distance of the sea breeze front with 

respect to time to be utilized by 46th WS and 28th OWS forecasters to increase 

the accuracy of summer thunderstorm forecasting. 

This study will be restricted to the warm season, defined as May through 

September.  The period of study is 2001 to 2005.  The flow regime for each day of the 

study was categorized as offshore, onshore, coast-parallel, or calm based on the 925 mb 

wind direction and speed from the 12 UTC Tallahassee sounding.  Surface weather 

observations were used to create composite charts of temperature, wind, pressure for each 

flow regime in order to study the hourly evolution of the sea breeze at Eglin. 
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II. BACKGROUND 

A. THE SEA BREEZE CIRCULATION 
The sea breeze is a mesoscale, thermally-forced phenomenon that occurs at the 

land-sea boundary.  The sea breeze arises from the development of a thermal gradient 

across the coastline as the land becomes warmer than the water.  This situation primarily 

occurs during the warm season, i.e., from spring through autumn, when as a result of 

strong heating, the land becomes warmer than water.  Synoptic-scale flow is weak during 

this period with clear skies, which allows maximum daytime solar heating and nighttime 

radiational cooling that result in a pronounced diurnal cycle in wind direction and speed 

along coastal regions. 

Consider a flat coastline with no along-coast variation, no background flow, and a 

uniform temperature field across both land and water.  After sunrise, the land will warm 

much faster than water due to its lower heat capacity and absence of mixing.  In the 

presence of light synoptic-scale flow, a land-water temperature difference of 

approximately 3°C will initiate a sea breeze (Walsh 1974).  Vertical heat fluxes warm air 

above the land surface and cause constant pressure surfaces aloft to bulge upward (Fig. 

4).  This leads to higher pressure and divergence aloft and low pressure at the surface.  

 
Figure 4.  Schematic of the sea breeze circulation.  Atmospheric warming cause 

constant pressure surfaces aloft to bulge upward while surface pressures fall over 
land.  Wind accelerates onshore at the surface and return seaward aloft creating the 
sea breeze circulation. 
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In response to the thermally induced pressure gradients, winds accelerate offshore aloft 

and onshore at the surface.  Surface winds are typically 5-10 1ms− .  Modeling (Arritt 

1993; Bechtold et al. 1991) and observational (Kingsmill 1995; Laird et al. 1995) studies 

indicate the vertical extent of the sea breeze is between 1,500 to 3,000 feet.  In this 

scenario, the temperature and pressure gradients occur only at, and perpendicular to, the 

coastline.  Inland, there is no pressure gradient at the surface, so there is convergence 

over land and divergence over water.  Air ascends in the convergent region at the coast 

and returns seaward aloft where it descends and diverges at the water surface, which 

completes the closed sea breeze circulation. 

The magnitude of sea breeze winds is proportional to the temperature gradient.  

The direction of the wind associated with the sea breeze is directed inland perpendicular 

to the temperature and pressure gradients.  Since the strongest thermal gradient is along 

the coast, the strongest sea breeze winds are in this region.  The thermal gradient at the 

coast resembles a shallow cold front and is known as the sea breeze front.  As the day 

progresses, the sea breeze front will penetrate inland.  The distance inland that the sea 

breeze penetrates is limited by the heating of the cool air behind the front by the land, 

which acts to relax the temperature gradient.  As the sun sets and heating ends, the land 

will cool more rapidly than the water, which at this time is starting to produce 

atmospheric heating.  The temperature gradient reverses with radiational cooling over 

land causing surface pressures to rise and heating over water causing surface pressures to 

fall.  Surface winds respond to the gradient reversal by accelerating toward the water, 

while winds aloft accelerate toward land to complete the closed circulation, which is the 

land breeze.  This cycle will be repeated daily as long as synoptic conditions allow the 

land to heat and become warmer than the adjacent water. 

Since the sea breeze cycle is thermally forced, it is constructive to look at a simple 

mathematical model to understand the impact of certain physical processes and their 

modifying effects on the circulation.  The sea breeze can be modeled mathematically by 

integrating around the closed loop of the circulation.  The following derivation is from 

Nuss (2005).  The circulation C is defined as; 
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 C V dl= •∫   (2.1) 

where V is the velocity vector integrated around the total path length of the loop dl.  

Stokes Theorem is used to relate the circulation to the curl of the velocity integrated over 

the domain of the circulation; 

C VdS= ∇×∫∫  (2.2) 

The time rate of change of the circulation is given by differentiating equation 

(2.2) with respect to time, which results in the following relationship: 

VdC dS
dt dt

∇×
= ∫∫  (2.3) 

This allows us to consider the circulation evolution by understanding the change 

in velocity within the domain.  Using the concepts of circulation identified above, a 

simple mathematical model of the perturbation velocity field associated with the sea 

breeze can be developed.  In perturbation theory, velocity is divided into two parts, a 

basic state portion which is constant with time, and a perturbation portion, which is the 

local deviation of velocity from its basic state.  To simplify the model, the assumptions 

made in the idealized sea breeze situation described above are used along with the 

assumption that the sea breeze is shallow compared to the scale height of the atmosphere.  

In this situation, there are no pressure perturbations and buoyancy is due to potential 

temperature perturbations only. 

Following the derivation by Hsu (1970), an equation to estimate the maximum 

wind in the sea breeze at time (t=0), the time of the maximum thermal gradient, is; 

( )
'

max 2 2

kg ZU
k Lο

θ
θ

∆=
+ Ω

  (2.4) 

'θ∆  is the temperature perturbation associated with the sea breeze front, k  is a linear 

friction constant, Ω  is the earth’s rotational speed, οθ  is the initial background 

temperature, Z  represents the depth of the sea breeze circulation and L  is the length 

scale over which the thermal gradient occurs.  Based on equation (2.4), several processes 
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can impact sea breeze intensity.  First, a large thermal perturbation results in stronger sea 

breeze winds.  As the perturbation increases, the sea breeze winds increase.  Next, the 

depth over which the sea breeze circulation occurs impacts the strength of the circulation.  

Deep circulations are strong circulations while shallow circulations are weak ones.  

Finally, the length scale over which the thermal gradient occurs has an opposite effect on 

sea breeze intensity.  Small length scales imply sharp thermal gradients that force strong 

sea breezes.  As the length scale increases, sea breeze intensity decreases.  

Modifying influences to the sea breeze are not restricted to the variables in this 

simple equation.  Factors that alter the diurnal heating cycle, synoptic-scale flow, and 

coastline characteristics all act to modify the evolution of the sea breeze circulation (Nuss 

2005).  While the focus of this research is on the impact of the synoptic-scale flow, each 

factor is important and will be briefly discussed. 

 

B. MODIFYING EFFECTS 

 

1. The Diurnal Heating Cycle 

Since the sea breeze is a thermally forced phenomenon, any factor that modifies 

the diurnal heating cycle will affect the evolution of the sea breeze.  Such factors include 

the time of year, land surface characteristics, cloud cover, static stability, and planetary 

boundary layer depth (Nuss 2005).   

For a sea breeze to develop, land must be warmer than the adjacent water.  

Summer, with its long days and high sun angle, favors the sea breeze due to increased 

solar insolation and heating of land surfaces.  Additionally, synoptic-scale weather 

systems are rare during summer.  Therefore, the diurnal heating cycle forces the daily 

weather in coastal regions. 

The physical properties of the underlying land surface also have a direct impact 

on the structure and diurnal evolution of the sea breeze.  Variations in surface albedo, 

specific heat, and soil moisture content determine the rate and magnitude of heat and 

moisture fluxes that control the timing and magnitude of the land-water temperature 

gradient.  A sandy, dry soil will heat much more rapidly than a moist, vegetative area 
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where incoming solar radiation is partitioned between heating and evaporation of 

moisture.  The result is a larger diurnal temperature change and larger land-water 

temperature gradient.  In addition, changes in the spatial distribution of land types can 

force local mesoscale circulations that can interact with the sea breeze to focus 

convergence and convection.  Marshall et al (2004) determined, by comparing numerical 

models using pre-1900 land cover and 1997 land cover, that anthropogenic land cover 

changes in the Kissimmee River Basin of Florida increased surface temperatures and 

decreased rainfall in the region.   

Cloud cover plays an important role in sea breeze modification by altering the 

surface heating pattern.  This modification can be both positive and negative.  Clouds 

present at the time of sea breeze generation will limit the amount of radiative heating and 

can delay the onset of the sea breeze.  If land does not become warmer than water, the sea 

breeze will not form.  A weak sea breeze will result if cloud cover persists through the 

entire heating cycle.  Clouds also act to intensify the land-water thermal gradient.  Cloudy 

skies over water coupled with clear skies over land results in an amplified temperature 

gradient and a strong sea breeze.  Clouds also form in the region of convergence and 

vertical motion associated with the sea breeze front.  The effect can be both 

frontogenetical and frontolytic.  If cloud cover acts to reduce radiational heating of the 

cool marine while leaving regions ahead of the front clear, the temperature gradient is 

enhanced and the sea breeze front strengthens. 

Static stability influences the strength of the sea breeze by controlling the depth 

over which the circulation develops.  Strong static stability damps vertical motion which 

reduces the amount of mixing and results in a shallow boundary layer and weak sea 

breeze circulation.  Conversely, weak static stability can enhance vertical motions and 

boundary layer mixing.  The result is a deep boundary layer and a strong sea breeze 

circulation.   
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2. Synoptic-Scale Flow 
Both observation and numerical research suggest that the sea breeze evolves 

differently under the influence of a prevailing background synoptic flow (Estoque 1962; 

Bechtold et al. 1991; Arritt 1993; Zong and Takle 1993; Atkins and Wakimoto 1997; 

Gilliam et al. 2004).  The intensity and rate of inland penetration of the sea breeze are 

strongly modulated by the presence of a background flow. 

 

a.  Model Studies 
Estoque (1962) was one of the first investigators to examine the influence 

of synoptic-scale flow on the sea breeze.  Using a numerical model, he considered 

offshore, onshore, coast-parallel with land on the left and coast-parallel with land on the 

right flow across a straight coastline.  Results determined that a 5 1ms−  offshore flow 

produced the strongest sea breeze circulation.  Offshore flow acted to advect warm air 

over land towards the coastline, strengthening the temperature and pressure gradients.  By 

1100LT, the sea breeze was only evident by a weakening of the offshore flow at the 

coastline as the thermal perturbation strengthens.  The delayed onset of the sea breeze has 

important implications.  First, the sea breeze front is held at the coastline keeping cool 

marine air offshore.  Radiational heating continued over land and the offshore flow 

advected the warm air towards the coast, generating a concentrated thermal gradient 

within 8 km of the coastline.  As a result, the largest vertical motions at the sea breeze 

front were associated with offshore flow.  Offshore flow also restricted the inland 

penetration of the sea breeze front.  By 1700LT, the sea breeze front moved 

approximately 10 km inland of the coastline.   

On the other hand, Estoque (1962) determined a 5 1ms−  onshore flow 

produced the weakest sea breeze circulation.  The advection of cool marine air inland 

inhibited heating and resulted in weaker gradients of temperature and pressure.  

Therefore, little vertical motion was associated with the sea breeze front under onshore 

conditions.  Inland penetration of the sea breeze front under onshore flow is difficult to 

determine because the flow everywhere in the domain is onshore.  However, the sea 
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breeze front could be detected by slightly stronger onshore flow across the weak 

temperature gradient.  By 1100LT, the sea breeze front was located approximately 8 km 

inland and moved to a position 50 km from the coastline by 1700LT. 

Estoque (1962) also examined a case with no synoptic-scale flow and 

found that the magnitude of the circulation and vertical motion was similar to the 

offshore case.  There are several important differences.  First, the onset of the sea breeze 

occurs earlier without opposing flow.  Onshore flow is evident by 1100LT and the sea 

breeze front had penetrated close to 18 km inland.  By 1700LT, the sea breeze front was 

located approximately 32 km inland.  However, the magnitude of the circulation and 

vertical motion was similar to the offshore case. Check alignment all the way through 

Bechtold et al. (1991) investigated the influence of synoptic-scale flow on 

sea breeze evolution with a two-dimensional non-linear model by varying the magnitude 

of the ambient flow.  Bechtold et al. (1991) considered offshore flow of 5 and 10 1ms−  

along with a no-wind case.  In agreement with Estoque (1962), Bechtold et al. (1991) 

determined an offshore flow between 5 and 6 1ms−  produced the strongest sea breeze 

circulations and vertical motion.  The temperature gradient associated with the sea breeze 

strengthened between 1200LT and 1500LT.  Analysis suggested that lack of mixing 

between the two air masses was responsible for the strong thermal perturbation.  The sea 

breeze front remained within 13 km of the coastline under a 5 1ms−  offshore flow and did 

not show a significant move inland until 1800LT.  Between 1800LT and 2100LT, the 

thermal gradient weakened due to turbulent mixing as the sea breeze front reached a 

distance of 31 km inland.  Interestingly, increasing the magnitude of the offshore flow 

decreased the strength of the circulation and suppressed vertical motion.  Results 

indicated an offshore flow of 10 1ms−  suppressed formation of a thermal gradient at the 

coastline and transported the sea breeze circulation offshore.  In the no-wind case, the sea 

breeze front was located close to the coastline with a well defined thermal gradient at 

1200LT.  The gradient weakened between 1500 and 1800LT as the sea breeze front 

penetrated almost 100 km inland.  The sea breeze front pushed through the entire model 

domain by 2100LT.  
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Arritt (1993) conducted 31 numerical model simulations to investigate the 

characteristics of the sea breeze under various synoptic-scale flows by varying the 

magnitude of the flow from calm to 15 1ms−  offshore.  His results compare favorably to 

Estoque (1962) and Bechtold et al. (1991).  First, increased opposing flow from 0 to 5 
1ms−  resulted in increased sea breeze intensity and stronger upward vertical motion.  In 

addition, increased opposing flow delayed the onset of the sea breeze and slowed its 

inland penetration.  Figure 5 details the inland penetration of the sea breeze as a function 

of time for various opposing flows.  For example, the onset of the sea breeze was delayed  

 
Figure 5.  Inland penetration of the sea breeze as a function of geostrophic offshore 

flow and local time.  The distance value of 0 represents the coastline.  Geostrophic 
flow values of 0 or calm (blue), 2 -1ms  (pink), 4 -1ms  (yellow), 5 -1ms  (turquoise), 
and 6 -1ms  (purple).  Distances are measured in km.  (From Ref. Arritt, 1993). 

 

until 1300L and the sea breeze front moved approximately 10 km inland in the presence 

of 5 1ms−  offshore flow.  Opposing flow of 6 1ms−  produced the strongest sea breeze 

winds and upward vertical motion while restricting the inland penetration of the sea 

breeze front to the coastline.  The largest thermal gradient was also associated with the 6 
1ms−  offshore flow.  Offshore flow greater than 6 1ms−  resulted in a well defined sea 

breeze circulation located entirely offshore in agreement with results obtained by 
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Bechtold et al. (1991).  Arritt (1993) further demonstrated that convergent frontogenesis 

is the main source term for sea breeze frontogenesis and the effect of convergent 

frontogenesis is maximized for 3-6 1ms−  offshore flow.  Convergence between the 

offshore flow and onshore sea breeze winds concentrates the thermal gradient at the 

coastline resulting in sea breeze front intensification.   

Arritt (1993) indicated the presence of onshore flow of more than 3 1ms−  

suppressed the thermal perturbation associated with the sea breeze.  Inland penetration 

distances of the sea breeze front where not calculated since the flow everywhere is 

onshore and the front is ill defined.  Vertical motions associated with the sea breeze front 

are much weaker under onshore flow than offshore flow; however, that weak vertical 

motion is maximized late in the period (1800LT) for onshore flow up to 3 1ms− .  In 

addition, convergent frontogenesis is suppressed resulting in a weak thermal perturbation 

of the large scale flow.  A similar study by Zhong and Tackle (1993) indicated the sea 

breeze was suppressed for onshore flow exceeding 5 1ms−  and Cetola (1997) found that 

an onshore flow of 4 1ms−  along the Cape Canaveral coast was enough to suppress the 

sea breeze.  

Model simulations conducted by Gilliam et al. (2004) determined the 

inland propagation distance of 70 km at 1700LT for a sea breeze forming under onshore 

flow of 2 1ms−  along the coastline of North Carolina.  In their simulation, the sea breeze 

forms earlier in the day and propagates inland steadily with slight acceleration after 

1800LT.  Sea breeze strength, as determined through vertical velocity, indicated a weak 

sea breeze through early afternoon with strengthening between 1800-2000LT.  The sea 

breeze front propagated 80-100 km inland by that time. 

While impacts to the sea breeze under onshore and offshore flow are well 

documented, coast-parallel cases have received less attention.  Synoptic-scale flow 

parallel to the coastline represents an intermediate sea breeze evolution relative to the 

onshore and offshore cases.  Synoptic-scale flow with land on the right develops when 

the large scale pressure pattern has high pressure over land and low pressure over water.  

Surface friction tends to produce a weak offshore wind component, so a sea breeze that 

develops in this situation has characteristics of the offshore flow case (Zhong and Tackle 
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1993; Nuss 2005).  Sea breezes that develop under synoptic-scale winds that blow with 

land on the left have characteristics of the onshore case because surface friction produces 

an onshore component (Zhong and Tackle 1993; Nuss 2005). 

Numerically, Estoque (1962) found that when the synoptic-scale wind 

blows with land on the right the offshore component helped strengthen the temperature 

and pressure gradient at the coast similar to the offshore flow case, but with a slightly 

weaker magnitude.  Under 5 1ms−  coast-parallel flow, a compact, 6 km thermal gradient 

was evident at 1100LT stretching to 18 km by 1700LT.  This compact temperature 

gradient results in strong vertical motions by 1700LT.  The modeled sea breeze front 

penetrated approximately 5 km onshore by 1100LT and moved inland only 18 km by 

1700LT.  Conversely, the sea breeze that developed under 5 1ms−  coast-parallel flow 

with land on the left was slightly stronger that the sea breeze that formed under direct 

onshore flow.  By 1100LT, the sea breeze front was approximately 2 km inland and a 

thermal gradient stronger than a true onshore case formed.  By 1700LT, the sea breeze 

front was approximately 30 km inland with calculated upward vertical motion evident 

slightly stronger than the onshore case.   

Most numerical modeling simulations discussed above only consider two-

dimensional effects when modeling the sea breeze and ignore important three-

dimensional effects such as coastline curvature, land inhomogeneity, and coast-parallel 

flow.  Given these limitations, they do provide useful insight into the behavior of the sea 

breeze under various background flows.  All results agree that a 5 1ms−  offshore flow 

produces the strongest sea breeze while onshore synoptic-scale flow less than 3 1ms−  

produces the weakest sea breeze.  Sea breezes forming under offshore flow start and are 

most intense during late morning.  Opposing flow delays the onset of the sea breeze and 

restricts its inland penetration.  As a result, the strongest thermal perturbations form at the 

coast as cool marine air remains offshore and does not mix with warm air over land.  Sea 

breezes move inland slowly under light offshore flow and are most intense during the 

early afternoon, after which they weaken and accelerate inland.  Sea breezes forming 

under onshore flow begin earlier in the day and strengthen slightly during the late 

afternoon. 
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Convergence is the dominant term in sea breeze frontogenesis and is 

maximized under offshore flow as it meets with onshore sea breeze winds at the coast.  

Strong convergence results in the strongest upward vertical motion at the sea breeze 

front.  Convergence is suppressed when the flow is onshore as winds everywhere are 

directed onshore.  Increasing the magnitude of both offshore and onshore flow 

suppressed sea breeze formation.  Offshore flow of 6 1ms−  transports the sea breeze 

circulation offshore.  However, results differ on the magnitude of onshore flow required 

to suppress the sea breeze.  Values ranging from 3-5 1ms−  have been documented.  

Nevertheless, there is agreement that stronger onshore flow suppresses sea breeze 

development. 

 

b. Observational Studies 

Atkins and Wakimoto (1997) used dual-doppler techniques to investigate 

the characteristics of the sea breeze along the Florida coast near the Kennedy Space 

Center.  The sea breeze front is often delineated by a “thin line” of enhanced reflectivity 

values in the optically clear boundary layer (Atkins and Wakimoto, 1997).  The thin line 

is attributed to the density gradient and insects caught in the turbulent mixing at the 

leading edge of cool marine air.  Based on research by Atkins et al. (1995), who 

determined that the sea breeze thin line and kinematic sea breeze frontal boundary are 

collocated, they were able to track the sea breeze under different flow regimes.  The 

evolution of the sea breeze was summarized in three stages: morning, afternoon, and late 

afternoon.  Under offshore flow, a thin line of reflectivity values approximately 16 DBZ 

associated with the sea breeze front formed at the coastline.  Reflectivity values increased 

through the day as the front slowly moved inland.  This front movement was attributed to 

increasing convergence along the front due to strengthening sea breeze flow.  By late 

afternoon, reflectivity values along the front were at their maximum while the width of 

the thin line shrank, indicating increased frontogenesis.  This observation of a stronger 

sea breeze front that propagates slowly inland reaching maximum strength in the 

afternoon agrees with numerical model results.  Sea breeze fronts forming under offshore 

flow exhibited larger vertical velocity at the leading edge of the circulation, indicating 

stronger gradients of temperature and pressure along the front, also in agreement with 
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numerical results.  Reflectivity values normally increased from morning to afternoon as 

sea breeze frontogenesis increased, thereby making this an effective method to monitor 

the daily evolution of the sea breeze front.  However, the intensity of the sea breeze front 

is a function of the synoptic-scale flow, so the intensity of the thin line will vary. 

Atkins and Wakimoto (1997) found no easily identifiable thin line along 

the Cape Canaveral coast under onshore flow conditions.  Results indicate a frontal zone 

formed between the sea breeze and ambient airmass but convergence and frontogenesis 

were small because the ambient and sea breeze winds are in the same direction.  

Furthermore, no identifiable cloud line was evident on visible imagery.  The sea breeze 

frontal zone became evident in visible imagery late in the day as cumulus clouds 

developed.  Radar did not detect a thin line but did indicate convective cells co-located 

with cumulus cells on visible satellite imagery.  The sea breeze frontal zone penetrated 

approximately 40-60 km inland by late afternoon, farther inland than offshore or coast-

parallel flow and in agreement with Gilliam et al. (2004), Arritt (1993), and Estoque 

(1962).  Observations indicate that gradients of temperature and moisture are small with 

the sea breeze frontal zone on onshore flow days.  The only indication of sea breeze 

passage was a strengthening of the onshore flow.  Under coast-parallel flow with land on 

the right over Cape Canaveral, convergence at the sea breeze front was smaller than with 

offshore cases.  Atkins and Wakimoto (1997) were not able to detect a thin line with 

radar until late afternoon during which time convergence along the front increased.  

Reflectivity values however, where smaller than true offshore cases.  Furthermore, the 

sea breeze front penetrated further inland than true offshore flow cases.   

 

3. Coastline Characteristics 
Coastline characteristics such as curvature and topography act to alter the 

convergence patterns of the sea breeze.  As discussed above, thermal gradients that force 

the sea breeze form parallel to the coastline and the resultant sea breeze flow is directed 

onshore perpendicular to the gradient.  Therefore, coastlines that exhibit curvature act to 

create convergent or divergent sea breezes.  Convex coastlines such as points or 

headlands produce sea breezes that converge over land.  Convergence of sea breeze fronts 

act to initiate convection and strongly determines the location and timing of precipitation 



21 

(Baker et al. 2001).  Sea breezes along concave coastlines, such as bays, become 

divergent and diminish the chance for convergence and frontal lifting.  Numerical 

simulations conducted by Boybeyi and Raman (1992) show enhanced convergence 

associated with the convex coastlines of the Florida peninsula.  The magnitude of the 

curvature is also a factor.  Small bays or headlands may simply weaken the thermal 

gradient along the coast instead of changing the direction, resulting in intensity changes 

of the sea breeze without altering the patterns of convergence along the coastline (Nuss 

2005).  An example of convergent and divergent regions along the Florida coastline is 

illustrated in Fig. 6. 

 
Figure 6.  Convergent and divergent sea breeze flow along the curved coastline of 

Florida.  Red areas indicate headlands that enhance convergence due to sea breeze 
front interaction.  Blue areas indicate divergent regions.  (From Ref. COMET, 
http://meted.ucar.edu/mesoprim/seabreez/print.htm, 2003) 
 

In addition to curvature, inland water bodies force their own mesoscale 

circulations that interact with the sea breeze to alter convergence patterns.  Numerous 

studies have documented the complex interaction of the sea breeze front with river 

breezes along the Cape Canaveral coastline (Laird et al. 1995; Zhong and Tackle 1993).  
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While river breezes are weaker than the sea breeze, they have a strong influence on where 

convection develops as the sea breeze front propagates inland.  Convergence lines 

associated with the river breezes remained stationary around the river until disrupted by 

the sea breeze.  The intersection point of these two features is a good predictor of initial 

and subsequent convective development (Laird et al. 1995; Zhong and Tackle 1993).  

Doppler radar (Laird et al. 1995) and high resolution satellite imagery (Atkins and 

Wakimoto 1997) have been used to detect breezes forced by inland water bodies.   

Armed with this knowledge, it should not be surprising that sea breeze fronts 

forming along curved coastlines in the presence of synoptic-scale flow will not move 

inland at equal speeds, nor have equal intensity, because the flow relative to the coastline 

varies.  An idealized example of flow along a concave coastline is given in Fig. 7, where 

the grey arrow represents the synoptic-scale flow.  In the center of the bay the flow is 

offshore, but it is coast-parallel with land on the right on the west side of the bay and 

coast-parallel with land on the left on the east side of the bay.  Therefore, an intense sea 

breeze front is expected close to the coast in the center of the bay along with a 

moderately intense sea breeze front that moves a short distance inland on the west side of 

the bay, and a weak sea breeze front that propagates a good distance inland on the east 

side of the bay.  From this example, it is obvious that changing the synoptic-scale flow 

can have dramatic effect on how the sea breeze evolves along a curved coastline.   
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Figure 7.  Example of synoptic-scale flow along a concave coastline.  The grey 

arrow represents the direction of the synoptic-scale flow.  Under northerly winds, 
the flow is offshore, but it is coast-parallel with land on the right on the west side 
of the bay and coast-parallel with land on the left on the east side of the bay. 

 

In a study of sea breezes along the North Carolina coast, Gilliam et al (2003) 

observed the sea breeze front to be weaker and propagate further inland when flow was 

coast-parallel compared to portions of the coast where the relative flow was offshore.  

The sea breeze front only became detectable by late afternoon.  Numerical solutions 

indicated that a sea breeze forming under 2 1ms−  southerly coast-parallel flow would 

move approximately 40 km inland by 1700LT while northerly offshore coast relative 

flow limited the inland penetration of the sea breeze to 30 km.   

Since inland bays and water bodies force their own breezes, the direction and 

magnitude of the synoptic-scale flow has the same modifying effects as on the sea breeze.  

Eglin has a complex coastline that includes two inland bays with thin barrier islands 

between ocean and bays that complicates sea breeze behavior.  The geography and 

climatology of the region around Eglin AFB will be described in the next section. 
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C.   EGLIN AFB GEOGRAPHY AND SUMMER CLIMATOLOGY 

 

1.   Area Geography 

The Eglin Range Complex sits at the apex of a large coastal bay bounded by 

Apalachicola, Fl to the east and Mobile, Al to the west (Chap 1, Fig. 1).  The Eglin Range 

Complex covers approximately 720 square miles, and reaches its highest point at 250 feet 

on the northwest corner.  The range is approximately 36 km wide and measures 85 km 

from east to west.  It is bordered along the north by rivers and on the east by creeks.  The 

southern boundary runs along Choctawhatchee Bay and the Gulf of Mexico.  The western 

boundary reaches East Bay.  The majority of the terrain is either flat or made up of gentle 

rolling hills covered with woods of scrub oak and pine trees.  This terrain is cut by many 

shallow creeks with steep-walled valleys and is dotted with numerous ponds and tiny 

lakes.  Large marshes to the northwest and southwest surround the Yellow River and East 

Bay.  The northern boundary of the range is approximately 36 km from the Gulf of 

Mexico and  

The Florida Panhandle's topography inclines northward from the Gulf of Mexico, 

and reaches its highest elevation of 345 feet just north of Eglin Range Complex.  The 

coastal bays are large, shallow bodies of water fed directly with fresh water inflow.  The 

Choctawhatchee and Pensacola Bays average depth is 4.5 m.  This, combined with the 

regular inflow of fresh water, causes water temperature fluctuations much greater than 

those of the Gulf of Mexico, both diurnally and seasonally, and results in significant local 

weather effects.  The Choctawhatchee Bay is just east of Pensacola Bay on the western 

end of the Florida Panhandle.  The bay is separated from the Gulf of Mexico along most 

of its length, but connects through the Pensacola and East passes entering through the 

south at Destin Pass.  Pensacola Bay is in the Western Florida panhandle near the 

Florida-Alabama border. The Pensacola Bay system is the fourth largest in Florida, one 

third of which is in Florida, and two thirds of which are in Alabama.  The bay is 

separated from the Gulf of Mexico by a combination of a peninsula, the Santa Rosa 

Sound, and Santa Rosa Island. Water exchange with the Gulf takes place between Santa 

Rosa Island and Perdido Key. 
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Figure 8.  The Eglin Range Complex covers approximately 720 square miles.  It is 

bordered along the north by rivers and on the east by creeks. The southern 
boundary runs along Choctawhatchee Bay and the Gulf of Mexico while the 
western boundary reaches Pensacola's East Bay.  

 

As mentioned above, the synoptic-scale flow relative to the coastline plays a 

significant role in modifying the sea breeze.  Inspection of Figures 1 and 8 reveals that 

the coastline along this region is concave.  The coastline curves southeastward at the 

eastern extent of the range and bends slightly southwestward at the western extent of the 

range (Fig. 8).  At the eastern section of the range, the coastline is oriented 120° - 290°, 

so a southeasterly or northwesterly wind would be coast-parallel.  At the western extent 

of the range, the coastline is oriented 255° - 75°, so a west-southwesterly and east-

northeasterly synoptic-scale wind would be coast-parallel.  Based on the coastline 

curvature, the sea breeze at Eglin should display significant along-coast variability in 

strength and inland penetration speed based on the direction of the synoptic-scale flow.   
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2. Eglin Climatology 

Several criteria have been given for sea breeze initiation.  First, the land must be 

warmer than the water.  Research indicates that a temperature difference of as little as 

1°C can initiate a sea breeze.  The stronger the temperature difference, the stronger the 

sea breeze.  We can use this information to determine when the sea breeze becomes 

active at Eglin AFB.  Figure 9 compares Eglin AFB (KVPS) and Duke Field (KEGI) 

average monthly high temperatures to average monthly sea surface temperatures recorded 

at Buoy 42039.  Buoy 42039 is located in the Gulf of Mexico approximately 115 nautical 

miles south of Eglin AFB.  By April, Eglin AFB average high temperatures are 

approximately 2° C warmer than the sea surface temperature.  The maximum land water 

temperature difference is 3° C in June and decreases by October when Gulf of Mexico 

temperatures become warmer than land.  Therefore, we would expect the sea breeze 

activity starting in April, reaching maximum intensity in June, then ending by October.   

 

 

 
Figure 9.  Comparison of average monthly high temperatures (°C) between Eglin 

AFB (blue) and Duke Field (pink) average to the monthly sea surface temperatures 
(°C ) recorded at Buoy 42039 (yellow), located in the Gulf of Mexico 
approximately 115 nautical miles south of Eglin AFB 
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Figure 10 contains plots of wind direction for the months of April to October as a 

function of local time.  K. Borne et al (1998) used the occurrence of a distinct reversal in 

the surface wind direction within 24 hours, not attributed to a synoptic scale circulation, 

as the principal criterion to recognize the sea breeze along the Swedish coast.  The figure 

shows that the winds are primarily northerly for all months between midnight and 0500L.  

As the sun rises and surface heating commences, the winds respond by turning east-

southeasterly.  This is considered to be an influence of the Choctawhatchee Bay and the 

initiation of the sea breeze.  Average monthly temperatures for the bay are similar to 

Buoy 42039, but detailed daily records are not available.  Since the depth of the bay is 

shallow, significant diurnal temperature changes are likely and it is possible that bay 

temperatures can be significantly cooler by mid morning, thereby initiating the 

southeasterly wind.  By 1500-1700L, winds in all months are southwesterly, which is 

onshore.  As the sun sets and land cools, winds return to a northerly direction and 

complete the 24 hour wind reversal. 
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Figure 10.  Wind direction as a function of local time (CDT) at Eglin AFB for the 

months of May (pink), June (yellow), July (turquoise), August (purple), and 
September (red).   

 

The impact of the synoptic-scale flow along the complex coastline of Eglin on sea 

breeze evolution is investigated in subsequent chapters.  Chapter III outlines the data used 

in this study as well as the analysis methods employed.  Results are discussed in Chapter 

IV. 
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III. DATA AND METHODOLOGY 

765 days from May through September, 2001 to 2005, were considered for this 

study.  Days with similar low-level winds were grouped together in order to investigate 

the impact of the synoptic-scale flow on the sea breeze at Eglin.  The methods used to 

gather the data and procedures used to group days by flow regime are described in the 

following sections. 

 

A. DATA 

 

1. Radiosonde Data 
Radiosonde data from 2001 to 2005 were available for download on the 

University of Wyoming website (http://weather.uwyo.edu/upperair/sounding.html).  

Tallahassee, Fl (KTLH) was chosen as the site that best describes the low-level flow in 

the Eglin region.  Tallahassee is 217 km east of Eglin AFB and is the closest routinely 

available radiosonde observation.  The 12 UTC sounding for each day of the study was 

downloaded and saved as a text file.  The 925 mb wind direction, speed, month, day, and 

year from each sounding was entered into a spreadsheet.  12 UTC soundings were 

available for 737 of the 765 days considered for this study (Table 1). 

MAY JUNE JULY AUGUST SEPTEMBER TOTALS
2001 30 29 29 27 23 138
2002 31 30 31 31 29 152
2003 30 29 31 31 30 151
2004 29 27 31 30 30 147
2005 30 30 30 30 29 149
TOTALS 150 145 152 149 141 737

12 UTC KTLH SOUNDINGS

 
Table 1.  Available 12 UTC KTLH upper air soundings by month and year. 
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2. Surface Observations 

Observations from 19 sites located in and around the Eglin Range Complex (Fig. 

11) were collected for each day of the study.  Each type of observation is discussed in the 

following sections.   

 
Figure 11.  Locations of automated and manned surface weather observations 

used in this study.  Red squares indicate locations of METAR sites, yellow 
triangles indicate locations of ASOS sites, and blue circles indicate locations of 
RAWS sites. 

 

a. Remote Automated Weather Sensor (RAWS) Sites 
The RAWS system is a fixed meteorological weather system employed by 

the 46th Training Wing to support flying and ground missions on the Eglin Range 

Complex (Fig. 12).  13 sensors were available for the study period.  The Model 555 Data 

Acquisition System, a self-contained microprocessor-based environmental data collection 

system, records temperature (°F), wind speed (knots), direction (knots), wind gusts 

(knots), relative humidity (%), and barometric pressure (Ins Hg) at two minute intervals.  
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The data is transmitted via a Very High Frequency (VHF) radio link from the remote 

system to the 46th WS where it is recorded on a computer.   

 
Figure 12.  Picture of the RAWS at site C-72. 

 

RAWS data was obtained from the 45th WS in the form of tab delimited 

text files.  Incomplete or corrupt observations were removed from the data set.  Table 2 

details the RAWS system locations, elevations, and data availability. 



32 

SENSOR LAT (D.M.S) LONG (D.M.S) ELEV (FT MSL) DATA AVAILABILITY
A-5 30.23.43N 86.35.47W 10 2001, 2002, 2003, 2004, 2005
A-13B 30.23.39N 86.45.59W 10 Sep 2004, 2005
B-71 30.31.04N 86.38.25W 149 2001, 2002, MAY-JUN 2003, 2004, 2005
B-75 30.33.13N 86.45.36W 201 2001, 2002, 2003, 2004, 2005
C-52N 30.34.49N 86.19.41W 183 2001, 2002, 2003, 2004, 2005
C-72 30.39.44N 86.20.47W 258 2001, 2002, 2003, 2004, 2005
BOILING 30.34.43N 86.53.59W 25 2001, 2002, 2003, 2004, 2005
MASON 30.38.31N 86.47.12W 25 2001, 2002, 2003, 2004, 2005
WEAVER 30.33.11N 86.56.18W 25 2001, 2002, 2003, 2004, 2005
COUPLAND 30.31.28N 86.39.10W 253 2001, 2002, 2003
C7A 30.38.13N 86.19.56W 210 2003, 2004, 2005
GLLD2 30.37.52N 86.17.21W 206 2003, 2004, 2005
C64 30.40.15N 86.25.08W 198 JUNE 2003, 2004, 2005

REMOTE AUTOMATED WEATHER SENSORS (RAWS)

 
Table 2.  RAWS Sensor Data 

 

Sensors Boiling, Mason, and Weaver are used to support Army Ranger 

training along the Yellow River (Ref Figure 11 for location).  The region is heavily 

forested and the sensors are located in small clearings surrounded by trees.  As a result, 

weaker wind speeds are reordered at these sites because the trees block the wind sensors.  

This also resulted in many observations of calm winds.  However, wind direction 

compared favorably to surrounding observations.  Given the need for observations from 

this region of the study domain, data from the three RAWS sites were not excluded, but 

impacted the analysis.  Impacts are discussed in the next chapter. 

 

b. METAR Sites 
Air Force Weather personnel record and disseminate surface weather 

observations from Eglin AFB, Duke Field, and Hulbert Field.  Weather observations are 

coded and disseminated in Aviation Routine Weather Reports, or METAR code.  The Air 

Force Combat Climatology Center (AFCCC) provided hourly METAR observations in 

the form of comma delimited text files.  Wind direction, speed (knots), gust (knots), 

temperature (C), dew point (C), and pressure (Ins Hg) were used in this study.  Visual 

quality control was conducted and corrupt or missing data was removed from the data set.   
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Observations are recorded and disseminated daily without breaks in 

service at both Eglin AFB and Hulbert Field.  However, Duke Field is a limited duty 

station and observations are recorded and disseminated Monday through Friday between 

14 UTC and 4 UTC.  Table 3 details the location and data availability of the three 

METAR sites. 

 

STATION ICAO LAT (D.M.S) LONG (D.M.S) ELEV (FT MSL) DATA AVAILABILITY
EGLIN AFB, FL KVPS 30.28N 86.31W 95 MAY-SEP 2001-2005
DUKE FIELD, FL KEGI 30.39N 86.31E 197 MAY-SEP 2001-2005
HULBERT FIELD, FL KHRT 30.25N 86.4W 36 MAY-SEP 2001-2005

METAR SITES

 
Table 3.  METAR Sites. 

 

c. Automated Surface Observing System (ASOS) Sites 
ASOS sites are located at regional airfields and are not augmented by 

human observers.  Sensors measure and record wind direction, speed (knots), gust 

(knots), temperature (C), dew point (C), and pressure (Ins Hg), format the observation in 

METAR code, and disseminate the observation.  Hourly surface observations from three 

ASOS sites were obtained from AFCCC in comma delimited text files.  The same quality 

control measures were conducted with ASOS data as with RAWS and METAR files.  

Table 4 details the location and data availability of the ASOS sites. 

STATION ICAO LAT (D.M.S) LONG (D.M.S) ELEV (FT MSL) DATA AVAILABILITY
CRESTVIEW, FL KCEW 30.46N 86.31W 220 MAY-SEP 2001-2005
DESTIN, FL KDTS 30.24N 86.28W 23 MAY-SEP 2001-2005
WHITING FIELD, FL KNSE 30.43N 87.1W 200 MAY-SEP 2001-2005

ASOS SITES

 
Table 4.  ASOS Sites 
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3. GOES Satellite Data 

GOES-12 IR satellite imagery was available from the National Climatic Data 

Center Historical GOES Browser Server (http://cdo.ncdc.noaa.gov/GOESBrowser) and 

Unisys Satellite Imagery Achieve (http://weather.unisys.com/archive/sat_ir/) websites.  

Between the two sources, imagery was available for each day of the study. 

 

4. KEVX WSR-88D Radar Data 
Base Reflectivity products from the Eglin WSR-88D (KEVX) were obtained from 

the National Climatic Data Center (NCDC) web site 

(http://www.ncdc.noaa.gov/oa/radar/radarresources.html) and are used to present case 

studies of sea breeze events.  The KEVX NEXRAD site is located 60 km east of Eglin 

AFB and provides excellent coverage of the Eglin Range Complex.  Data was obtained 

using the NCDC NEXRAD Inventory Search Tool and displayed using the NCDC Java 

NEXRAD Viewer.   

 

5. NCEP/NCAR Surface Reanalysis 

In order to composite days with similar synoptic-scale flows, surface observations 

had to be fit to a horizontal grid.  NCEP/NCAR reanalysis variables of air temperature, 

mean sea level pressure, zonal and meridional wind components were used by an 

interpolation scheme to combine the observations with the surface reanalysis fields to 

produce an objective analysis on a 2 km grid.  The variables used are Class A variables 

and are considered the most reliable class of variables because they are strongly 

influenced by observed data (Kalnay et al. 1996).  Reanalysis variables were available at 

a horizontal resolution of 2.5°, temporally every six hours at 00, 06, 12, and 18 UTC, and 

in standard GRIB format from the NPS Department of Meteorology.  The interpolation 

method is covered in a later section.   

 

B. METHOD OF ANALYSIS 
Numerical and observational studies have demonstrated that three factors largely 

determine the development, evolution, and inland penetration of the sea breeze.  These 
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factors are adequate differential heating between land and water, coastline shape and low-

level synoptic flow.  The analysis methodology was developed to ensure that each factor 

is addressed and a complete set of sea breeze days was compiled.   

 

1. Removal of Disturbed Days 
The first step in this study was to compile a set of days that were not influenced 

by tropical or synoptic-scale weather disturbances.  Cloud cover associated with these 

types of disturbances, especially significant cloud cover at sunrise, limits the amount of 

differential heating between land and water and disrupts the normal summertime 

convective regime, resulting in a weak or non-existent sea breeze.  In order to filter these 

days from the study, a subjective classification scheme was used to designate each day as 

“disturbed” or “undisturbed” based on the 12 UTC GOES-12 IR image.  A similar 

classification scheme was employed by Burpee (1979) in a study of south Florida 

convection and by Biggar (1992) in his study of sea breeze enhanced thunderstorms 

along the Florida Panhandle.  If the IR image indicated cloud cover over the Eglin area, 

the day was tentatively classified as “disturbed”.  The final determination was made 

based on the 12 UTC KVPS observation.  If more than 50% cloud cover was reported, 

the day was classified as “disturbed” and eliminated from the study.  Of the 737 days 

considered, a total of 228 days were classified as “disturbed” and eliminated, leaving 509 

“undisturbed” days with the potential for developing a strong sea breeze. 

 

2. Synoptic-Scale Flow Regimes 
In order to examine the influence of the synoptic-scale flow on the sea breeze, a 

classification scheme was required to determine if the flow was offshore, onshore, or 

coast-parallel for the 509 “undisturbed” days of the study.  The objective was to create 

flow regimes so that the wind within each would be approximately parallel or 

perpendicular to the coastline.  This determination was based on the coastal geometry of 

the Eglin region (Fig. 13).  Even though the coastline is concave, its orientation is 

basically west to east.  Therefore, the flow regime was classified as Coast-Parallel 

Westerly (coast parallel with land on the left) if low-level winds were between 256-289° 

and Coast Parallel Easterly (coast parallel with land on the right) if the low-level winds 
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were between 075-119°.  Flow from 290-074° was classified as Offshore and flow 

between 120-255° was classified as Onshore.  An additional flow regime of Calm was 

established if the wind speed was less than 3 1ms− , regardless of flow direction, in order 

to study the sea breeze under light synoptic-scale flow.   

 

 
Figure 13.  Quadrants for classifying the synoptic-scale flow over Eglin AFB, 

Fl.  The flow regime was classified as Coast-Parallel Westerly (coast parallel with 
land on the left) if low-level winds were between 256-289° and Coast Parallel 
Easterly (coast parallel with land on the right) if the low-level winds were between 
075-119°.  Flow from 290-074° was classified as Offshore while flow between 
120-255° was classified as Onshore. 

 

A distinction is made between light, moderate, and strong flow since increasing 

the strength of the synoptic-scale winds has a dramatic effect on the development, 

evolution, and movement of the sea breeze front.  Opposing synoptic flow inhibits the 

inland penetration of the sea breeze but also enhances the convergence and upward 

vertical motion along the sea breeze front.  Conversely, onshore synoptic flow aids in the 

inland penetration of the sea breeze but limits the development of convergence along the 

sea breeze front.  Therefore, offshore flow was divided into 3-5, 5-7, 7-9, and > 9 1ms−  
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bins and onshore flow was divided into 0-3, 3-5, and greater than 5 1ms−  bins.  Since 

coast parallel flows are hybrids of the offshore and onshore regimes, Coast Parallel 

Westerly uses the onshore speed bins and Coast Parallel Easterly uses the offshore speed 

bins. 

 

3. Categorizing Days According to Flow Regime 
This study follows previous Florida studies (Lopez and Holle 1987; Biggar 1992; 

Gould and Fuelberg 1996; Stroupe et al. 2004) by grouping days that have similar 

synoptic-scale flows.  Each of the 538 days was designated as Offshore, Onshore, Coast 

Parallel Westerly, or Coast Parallel Easterly based on the 925 mb wind direction taken 

from the corresponding day’s 12 UTC KTLH sounding.  The 925 mb flow was assumed 

to be representative of the synoptic-scale flow over the Eglin region.  Previous studies 

(Lopez and Holle 1987; Cetola 1997; Stroupe et al. 2004) used similar methods to 

determine flow regimes for the Florida Panhandle.  12 UTC is the morning sounding for 

the Eglin region, 0700L CDT, and therefore represents the low-level flow regime the sea 

breeze developed under as daytime heating commenced.  In addition, this level is 

considered the gradient level and located above the nightly radiation inversion, under 

which wind direction and speed are influenced by mesoscale processes and not 

representative of the synoptic-scale flow.  Once the flow regime was determined, the 925 

mb wind speed was used to place that day in the appropriate speed bin associated with the 

flow regime.  The date, wind direction, and wind speed in knots and 1ms−  were entered 

into a spreadsheet.  Of the 509 “undisturbed” days, 122 were classified as Offshore, 210 

were classified as Onshore, 53 were classified as Coast Parallel Westerly, and 77 were 

classified as Coast Parallel Easterly.  Table 5 lists the total number of days that fell into 

each flow regime and speed bin.  Reference Appendix A through E for complete lists of 

days included in each flow regime. 
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CALM
3-5 m/s 5-7 m/s 7-9 m/s >9 m/s 0-3 m/s 3-5 m/s >5 m/s < 3 m/s

52 34 17 19 38 80 92 107
345 333 355 38 185 189 192 199
7.54 11.09 15.12 24.00 3.87 7.56 13.32 3.54
3.88 5.71 7.78 12.60 1.99 3.89 6.85 1.82

3-5 m/s 5-7 m/s 7-9 m/s >9 m/s 0-3 m/s 3-5 m/s >5 m/s TOTAL DAYS
7 20 26 14 12 13 28 509
99 91 94 91 270 271 270

7.71 10.65 15.08 23.94 3.42 7.15 13.75
3.97 5.48 7.76 12.32 1.76 3.68 7.08

2001-2005 SYNOPTIC SCALE REGIME TOTALS

Avg Speed (Kts)
Avg Speed (m/s)

CP EASTERLY

ONSHOREFLOW REGIME
SPEED BIN

FLOW REGIME CP WESTERLY

Avg Speed (m/s)

OFFSHORE

SPEED BIN
# of Days

# of Days
Avg Direction (°)
Avg Speed (Kts)

Avg Direction (°)

 
Table 5.  2001-2005 synoptic-scale flow regime totals. 

 

4. Multiquadric Interpolation 
Hourly analyses of the 509 days were produced using the surface observations 

obtained from the study area to allow compositing of like regimes.  To accomplish this 

task, a multiquadric interpolation scheme developed by Nuss and Titley (1994) was 

employed to fit the scattered surface observations to an analysis grid.  The interpolation 

scheme, called 3DMQ, used two dimensional interpolation to combine the scattered 

observations with a first guess field into a surface analysis on a 2 km grid covering the 

area.  NCEP/NCAR reanalysis fields were used as the first guess field.  The benefit in 

using the multiquadric interpolation scheme is that by fitting the observations to a regular 

grid, computational diagnostics can be performed on the meteorological fields.  Nuss and 

Titley (1994) demonstrated that multiquadric interpolation, which uses hyperboloiod 

radial basis functions, is superior to several other interpolation schemes to fit scattered 

data to uniform grids while retaining small scale features resolved by the observations.  

Furthermore, Nuss and Titley (1994) demonstrated the superior accuracy of multiquadric 

interpolation over Cressman and Barnes interpolation schemes with meteorological 

observations distributed across a land-sea boundary. 

Following Nuss and Titley (1994), the interpolation equation using radial basis 

functions is 

( ) ( )
1

N

i i
i

H X Q X Xα
=

= −∑  (3.1) 
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where ( )H X  is a spatially varying field such as temperature or pressure and ( )iQ X X−  

is a radial basis function where ( )iQ X X−  represents the vector between an observation 

point iX  and any other point in the domain.  The coefficients iα  are weighting functions 

that are specified.  The multiquadric method uses hyperboloid functions as the basis 

functions in the form 

( )
1

2 2

2 1.0i
i

X X
Q X X

c

⎛ ⎞−
⎜ ⎟− = − +
⎜ ⎟
⎝ ⎠

 (3.2) 

where c  is an arbitrary, and typically, small constant called the multiquadric parameter.  

Here X  represents the position vector in two dimensions. 

The problem in applying this technique to meteorological observations is that 

errors and incomplete sampling of small scale features may result in unrealistic analyses.  

Observation error can be addressed using a smoothing parameter λ  that filters unresolved 

scales from the analysis.  The observation error can be varied for different observation 

sources with the result that the analysis will fit more closely to some observations than 

others.  In this study, less error was assigned to the actual observations than to the 

reanalysis fields. 

The multiquadric parameter becomes important when spacing between 

observations becomes very small.  For small values of c , very tight gradients are easily 

represented.  For large values of c , the interpolation cannot easily represent tight 

gradients or fit closely spaced observations.  However, observation spacing with this data 

set is not a factor, so c  is small and can easily represent the gradients. 

A shell script called run3dmq organized the input fields for 3DMQ.  3DMQ 

required an observation time and two first guess times that straddle the observation time.  

NCEP/NCAR reanalysis fields were available at six hour intervals (00, 06, 12, 18 UTC) 

and at 2.5° resolution; therefore, 3DMQ linearly interpolated the meteorological variables 

in time to provide the first guess field on the 2 km grid.  For example, an analysis using 

observations from 16 UTC on 5 June would be fit between first guess analyses at 12 UTC 

and 18 UTC from 5 June.  Wind direction, speed (knots), temperature (C), dew point (C) 
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or relative humidity (%), and pressure (In Hg) were extracted from the observation text 

files.  3DMQ was run for 00 through 23 UTC for each of the 509 days of the study.  Each 

run of 3DMQ produced output files for temperature, U wind component, V wind 

component, moisture, geopotential height and sea level pressure.  A hardcopy of surface 

winds, temperature and available observations was generated for each run of 3DMQ for 

quality control purposes (Fig. 14).  If missing or bad observations were detected, the 

observation was removed and 3DMQ was re-run for that hour.   

 

 
Figure 14.  Output from the multiquadric interpolation scheme 3DMQ over the 

study domain.  Surface isotherms in °C are colored red, winds in knots are blue 
and station plots of available observations are black.  Gridded fields are available 
at 2 km resolution. 
 

There are several properties of the multiquadric interpolation scheme that must be 

highlighted.  The first issue that arises is the lack of observations at the boundaries of the 

domain, especially the southern and eastern boundaries.  An important property of the 

multiquadric technique is that it smoothly analyzes the scales represented by the 

observations in one region while not producing undesired results elsewhere (Nuss and 

Titley 1994).  In our case, the boundaries of the domain are data-sparse while the center 
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of the domain is more data-dense.  The multiquadric interpolation scheme retains the 

large-scale features at the boundaries of the domain without sacrificing resolution of the 

small-scale features at the center of the domain.  The lack of observations at the 

boundaries causes the analyses to default to the 2.5° resolution first guess field.  The 

result is a distinct circular shape to the isotherm analysis seen in Figure 15.  It is unlikely 

any conclusions can be drawn from analysis or computations generated at the edges of 

the study domain due to the lack of resolution.  Secondly, the RAWS sites discussed in 

section 2.B.1 influence the objective analysis by decreasing the wind field at each grid 

point along the Yellow River.  The placement of the RAWS in a forested region resulted 

in wind speeds that are weaker than surrounding stations.  The effect of the interpolation 

scheme is to resolve this feature and decrease the magnitude of the first guess velocity 

field in this region.  Therefore, wind speed along the Yellow River is consistently 

weaker.  

 

5. Compositing 

Once surface analyses were completed for each of the 509 days, they were 

composited by flow regime via a program called AVERAGE.  AVERAGE is a 

FORTRAN program developed by Professor Wendell Nuss that takes a list of gridded 

data and computes the mean of the specified field at each grid point.  The result is a 

composite field over the study domain which can then be displayed.  Composite surface 

analyses were generated for each of the flow regimes to investigate the hourly evolution 

of the sea breeze under the various synoptic-scale flow regimes.  Results from the 

composites are discussed in the next chapter. 

 

6. VISUAL 
The VISUAL program is a FORTRAN program developed by Prof. Wendell Nuss 

to display a wide variety of meteorological datasets.  The program is based on NCAR 

Graphics and XGKS graphical software for plotting.  The gridded analyses generated 

from 3DMQ were manipulated and displayed using VISUAL to diagnose characteristics 

of the sea breeze.   
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7. Sea Breeze Front Intensity 
A common diagnostic equation used to determine frontal strength is 

Frontogenesis.  Frontogenesis (frontoloysis) is defined as the rate of increase (decrease) 

of the magnitude of the temperature gradient with time (Carlson 1991, p. 351).  

Following Carlson (1991, p. 353), the Frontogenesis equation is  

 

d u v
dt y y x y y y p y t

θ θ θ ω θ θ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− = − + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
 (3.1) 

 

where the time rate of change of the one-dimensional temperature gradient, 
y
θ⎛ ⎞∂−⎜ ⎟∂⎝ ⎠

, is 

considered a measure of frontal strength.  The y-direction is taken to be across the front 

towards cold air.  Equation (3.1) relates certain physical processes, which act to 

strengthen or weaken the thermal gradient, to the evolution of the potential temperature 

gradient over time. 

The first term on the right hand side of equation 3.1 describes the effect of 

horizontal shear in rotating along-front thermal gradients 
x
θ∂

∂
 into cross-front thermal 

gradients.  The continued effect of the shear wind field is to push the isotherms together 

with time (Fig. 15).   
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Figure 15.  Schematic temperature deformation for pure shear.  Broken red lines 

represent isotherms.  Arrows represent the direction and magnitude of the initial 
wind deformation (t=0).  (From Ref. Carlson 1991). 

 

The second term contains the effects of confluence or convergence in the cross-

front wind components v
y

∂
∂

 in concentrating a thermal gradient.  In confluent 

deformation, the flow pattern acts to compress the thermal gradient with time, as shown 

in Fig. 16.  Arritt (1993) determined that convergence is the dominate term in sea breeze 

frontogenesis.  When the synoptic scale flow is directed offshore, the temperature 

gradient is enhanced by convergence between the offshore flow and sea breeze winds.  

Conversely, when the synoptic-scale flow is directed onshore, convergence is suppressed 

and the thermal gradient is not intensified.   

Frontogenesis is important because the process that acts to alter the intensity of 

thermal gradients in fronts results in important vertical circulations that can organize 

clouds and precipitation.  Changes in the intensity of the sea breeze front, as measured by 

frontogenesis, can indicate likely areas and times of strong vertical motions that create 
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clouds and precipitation.  The third and fourth term, the tilting and diabatic terms, 

represent important physical process but are not evaluated in this thesis. 

 
Figure 16.  Schematic deformation pattern for pure confluence.  The broken red lines 

represent isotherms and arrows the magnitude and direction of the wind.  The 
initial wind and temperature distribution is at t=0.  (From Ref. Carlson 1991). 

 

The strength of the sea breeze front is a balance between the frontogeneic effect 

of convergence and the frontolytic effect of turbulent mixing.  As the cool sea breeze air 

mass moves inland, it converges with warm air that has been heated over land.  The 

convergence of onshore sea breeze winds with opposing flow over land acts to tighten the 

thermal gradient between the two airmasses which leads to the formation of the sea 

breeze front.  On the other hand, as the cool sea breeze air penetrates inland, it is heated 

by the land and warms through turbulent mixing.  This process acts to reduce the 

temperature contrast between the two air masses, which is frontolytic. 

Results from the composites of offshore, onshore, and coast parallel synoptic-

scale flow regimes are presented in the next chapter.   
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IV. RESULTS 

This chapter presents the results of the composite surface charts generated for the 

calm, offshore, onshore and coast parallel flow regimes.  Hourly composite surface 

analyses where generated starting at 06 UTC (0100 CDT) through 05 UTC (2400 CDT) 

for each synoptic-scale flow regime to determine the impact of the synoptic scale flow on 

the inland penetration and intensity of the sea breeze at Eglin.   

Through the use of frontogenesis and temperature analysis, the impact of the 

synoptic scale flow on the inland penetration and intensity of the sea breeze front at Eglin 

is investigated.  A case study is presented for each synoptic-scale flow regime using 

surface analyses and WSR-88D reflectivity products to gain insight into the 

characteristics of the sea breeze prior to presenting the results of the composites.  The 

case studies provide a representative example of what the composite generalizations are 

based on and illustrate some of the data limitations.  WSR-88D reflectivity products are 

not impacted by these limitations and provide observed data that can be used to help 

interpret the composites. 

 

A. COMPOSITES 

 

1. Calm 

The Calm regime is presented first because an understanding of sea breeze 

evolution free of synoptic-scale influences provides a good baseline from which to infer 

the impact of the other synoptic-scale flows on sea breeze evolution.  Estoque (1962) 

noted that the magnitude of the circulation and vertical motion associated with the sea 

breeze in a no-wind case were similar to the offshore case, but had several important 

differences.  Firstly, the onset of the sea breeze occurred earlier without opposing flow.  

Secondly, the sea breeze front penetrated farther inland than the offshore flow case. 
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A case study is presented to highlight the characteristics of the sea breeze under 

calm synoptic wind conditions at Eglin, followed by the Calm composites. 

 

a. 7 May 2005 Case Study 
The synoptic-scale winds from the 7 May 2005 12 UTC Tallahassee 

sounding was from the northeast at 0.5 1ms− .  The sea breeze began at 15 UTC 

(UTC=CDT + 5h), approximately three hours after sunrise.  A weak 2 to 3 °C 

temperature gradient had developed between RAWS sites 20 km inland and the coast.  

Isotherms were aligned parallel to the coastline of the Gulf of Mexico and turned 

northeastward at Eglin AFB following the coastline of Choctawhatchee Bay.  Due to the 

orientation of the isotherms along the coast, the sea breeze winds were southeasterly 

along the coast of Choctawhatchee Bay and southerly along the Gulf of Mexico coastline.  

Flow was light, approximately 2.5 1ms− , in response to the weak thermal gradient.  

By 18 UTC, the sea breeze had penetrated 20 km inland from the Gulf of 

Mexico and the Choctawhatchee Bay (Fig 17).  The tightest temperature gradient is seen 

along the coastline and the leading edge of the sea breeze is only evident as a wind shift 

line.  However, cool sea breeze air has surged north from the Gulf of Mexico and 

Choctawhatchee Bay to RAWS sites Coupland and B-75.   
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Figure 17.  Surface analysis at 18 UTC for 07 May 2005, a Calm flow day.  Isotherms 

(°C) are in red contoured every half degree and winds (full barb 5 1ms− , half-barb 
2.5 1ms− ) are plotted at 2 km grid points.  Available station observations are 
plotted in black with temperature (°C top left), sea level pressure (mb top right), 
winds (full barb 5 1ms− , half-barb 2.5 1ms− ), dewpoint (°C bottom left), and 
station identification (bottom right).  The heavy dashed line represents the location 
of the wind shift associated with the leading edge of the sea breeze.  
 

A weak thin line is detectable in the 18 UTC KEVX base reflectivity 

product (Fig. 18) and corresponds to the leading edge of the onshore flow from the 18 

UTC surface analyses (Fig. 17).  The reflectivity is weak in the thin line because the 

thermal gradient associated with the sea breeze front is weak, even though wind 

convergence is evident in the surface analyses.   

By 21 UTC, the sea breeze front had penetrated 28 km inland and was 

located near Crestview (KCEW).  The thin line had increased in intensity as it moved 

north, indicating the sea breeze front strengthened over the past three hours.  The 21 UTC 

surface analyses shows southwesterly sea breeze winds of 10 1ms−  along the coastline 

extending as far north as the center of the Eglin Range Complex.  The thermal gradient 

also intensified as cool marine air was advected inland.  A 3 °C temperature gradient had 
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developed between the sea breeze front and the coastline, which explains the increasing 

strength of the thin line seen on radar.   

 
Figure 18.  18 UTC 07 May 2005 KEVX base reflectivity product illustrating the thin 

line associated with the sea breeze front.  The white arrow indicates the direction 
of the synoptic-scale flow.  Station identifiers are in blue and the reflectivity scale 
is shown on the right hand side of the image.  (From Ref. National Climatic Data 
Center, http://www.ncdc.noaa.gov/oa/radar/radardata.html, February 2006). 

 

By 23 UTC, the sea breeze is located north of Crestview (KCEW).  There 

is very little temperature gradient across the Eglin Range any more as the cool marine air 

covers the entire area.  Winds are southwesterly across the range complex at 5-8 1ms− .  

The thin line on radar and continues to strengthen as the front moves north.  Atkins and 

Wakimoto (1997) suggested that sea breeze fronts often strengthen in the late afternoon 

due to increased convergence at the sea breeze front as sea breeze flow increases, and due 

to decreased mixing at the front by boundary layer convection, which decreases by late 

afternoon.  This seems to be happening here.  This sea breeze front did not initiate 

convection as it moved through the Eglin Range.   
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b. Calm Composite 

107 days were categorized as Calm.  The average magnitude of the 

synoptic scale flow is 1.8 1ms− .  Under calm conditions, the sea breeze begins between 

15 and 16 UTC.  The strongest thermal gradient occurs along the coastline and the along-

coast temperature contours are aligned parallel to the coastline along the Gulf of Mexico; 

however, the contours bend northeastward and follow the northern coastline of the 

Choctawhatchee Bay.  This indicates that the temperature perturbation created by the bay 

is large enough to alter the direction of the along-coast temperature contours.  As a result, 

sea breeze onset often begins with winds from the southeast at Eglin AFB.  Southeast 

flow is perpendicular to the along-coast isotherms along this section of coastline.  The sea 

breeze front is weak at this time.  There is little opposing flow north of the sea breeze 

front; therefore convergence along the front is minimal.   

By 19 UTC, the sea breeze front is located 25 km from the Gulf of 

Mexico, 15 km from the Choctawhatchee Bay, and is oriented east to west across the 

range as indicated by the blue line in Figure 19.  A weak temperature gradient has formed 

along the leading edge of the sea breeze and frontogenesis values of < 

20 -1 -1 Day  100 kmK are located along this thermal band.  The thermal gradient formed 

as air behind the front warmed by less than 0.2 °C between 16 and 19 UTC while air 

temperatures north of the sea breeze front warmed by 1.2 °C over the same three hour 

period.  Thus a 0.8 °C temperature gradient evolved over a 10 km distance.  According to 

equation 2.4, the strength of the sea breeze is proportional to the temperature perturbation 

across the sea breeze front and inversely proportional to the length scale of the 

temperature gradient.  Under Calm synoptic-scale flow, differential heating increased the 

temperature perturbation while reducing the length scale of the temperature gradient, 

thereby increasing the strength of the sea breeze front.  By 20 UTC the sea breeze front is 

north of Crestview and out of the Eglin Range Complex. 

Frontogenesis values of 400 -1 -1Day  100 kmK located to the northeast of 

East Bay are a result of wind data obtained from the RAWS sensors discussed in Chapter 

Three (Fig. 19).  Analyses of the wind data from the RAWS sensors consistently led to 

frontogenesis values inconsistent with other observations.  It was concluded these data 
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were of insufficient quality to be used in this study.  While it is likely a temperature 

gradient associated with the sea breeze front exists in this region, the effect of stronger 

sea breeze flow moving into the region of consistently weak or calm winds acts to 

increase the convergence in the region, resulting in large frontogenesis values.  In 

addition, reflectivity values associated with the thin line observed in the case study (Fig. 

18) do not support the intense sea breeze front implied by the 400 -1 -1 Day  100 kmK  

frontogenesis values.  Therefore, results from this region will not be included in this or 

the following composites analyses   

 

 
Figure 19.  Computed 3-hourly air temperature change (19-16 UTC in °C) contoured 

every 0.2 °C in red, 19 UTC frontogenesis plotted in blue contours every 50 
-1 -1 Day  100 kmK  and 19 UTC surface wind barbs (full barb 5 1ms− , half-barb 2.5 

1ms− ) for the Calm synoptic-scale flow regime.  The heavy blue line indicates the 
location of the sea breeze front at the leading edge of the temperature gradient. 
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A graphical illustration of the inland penetration and intensity of the sea 

breeze front is presented in Figure 20.  Based on the along-coast isotherm analyses as in 

Figure 19, inland penetration distances of the sea breeze front are measured from the 

Choctawhatchee Bay instead of the Gulf of Mexico in the eastern half of study domain.  

The sea breeze began by 1530 UTC and by 16 UTC, the sea breeze front was located 

10 km inland from the Gulf of Mexico and 5 km inland from the Choctawhatchee Bay.  

The sea breeze could only be detected by a wind shift line as it moved to a position 

20 km from the Gulf of Mexico and 15 km from Choctawhatchee Bay by 19 UTC.  The 

sea breeze front intensified by 20 UTC as onshore flow strengthened to 10 1ms−  and 

convergence increased.  Increased convergence, coupled with differential heating, 

decreased the length scale of the temperature gradient associated with the sea breeze 

front.  By 21 UTC, the sea breeze front had moved north of the Eglin Range Complex. 

 

 
Figure 20.  Illustration of the position and intensity of the sea breeze front for Calm 

synoptic-scale flow in the Eglin Range Complex.  Blue lines indicate positions of 
the sea breeze front and the bold blue line indicates the most intense sea breeze at 
that hour.  Grey lines indicate the distance inland (km) from the Gulf of Mexico 
and Choctawhatchee Bay. 
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2. Offshore Synoptic-Scale Flow 

Studies indicate that offshore synoptic-scale flow produces the most intense sea 

breezes.  It delays the onset of the sea breeze at the coast, which results in increased 

heating of land surfaces while the marine air over water remains cool.  The convergence 

of the offshore flow over land and the onshore sea breeze winds enhances the thermal 

gradient and produces strong sea breeze fronts.  Evidence suggests that these fronts are 

most intense during the late morning and early afternoon.  Sea breeze fronts forming 

under offshore flow remain near the coastline until afternoon, at which time the front 

starts moving inland and decreases in intensity.   

 

a. 23 June 2005 Case Study 

Figure 21 presents the surface analysis at 12 UTC 23 June 2005, an 

offshore flow day.  The 12 UTC KTLH sounding indicated the low-level synoptic-scale 

flow was from the northeast (55°) at 3.1 1ms− .  The surface analysis shows that winds 

were from the northwest to north at 2.5 1ms−  across the Eglin Range and coastal areas.  

Temperatures inland are 21 °C while coastal stations report temperatures near 25 °C, 

creating a 4 °C temperature gradient over 20 km, with the land cooler than the water.  

The isotherms are roughly parallel to the Choctawhatchee Bay and bend southwestward 

towards Hulbert Field.  The base reflectivity product from the KEVX WSR-88D (not 

shown) shows a thin line along the coast to the east of Destin, but a thin line is not 

evident along the Choctawhatchee Bay and Gulf of Mexico coastline. 
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Figure 21.  Surface analysis at 12 UTC for 23 June 2005, an offshore flow day.  

Isotherms (°C) are in red contoured every half degree and winds (full barb 5 1ms− , 
half-barb 2.5 1ms− ) are plotted at 2 km grid points.  Available station observations 
are plotted in black with temperature (°C top left), sea level pressure (mb top 
right), winds (full barb 5 1ms− , half-barb 2.5 1ms− ), dewpoint (°C bottom left), 
and station identification (bottom right). 

 

The sea breeze begins at 1630 UTC, and by 18 UTC (Fig. 22) the sea 

breeze front is located 10 km inland from the Gulf of Mexico, close to the coast of the 

Choctawhatchee Bay.  Southerly flow behind the front is 5 1ms−  while northeast winds 

north of the sea breeze front have increased to 5-8 1ms− .  A 1.5 °C temperature gradient 

has developed between the sea breeze front and the coastline, a distance of 10 km.  Of 

note: Cool sea breeze air surged north to RAWS sites B-75 and Coupland and the 

isotherms marking the leading edge of the sea breeze front show distinct along–front 

undulations.  The undulations along the front are a result of the northeast synoptic-scale 

flow.  While this is considered light offshore flow, the complex nature of the coastline in 

this region creates along-coast variations in the flow regime.  The coastline near Eglin 

AFB (KVPS) is oriented northeast to southwest, which is parallel to the synoptic-scale 

flow and enabled the sea breeze to penetrate further inland to the RAWS sites.  East of 
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Eglin the synoptic-scale flow is more offshore and west of Hulbert Field (KHRT) the 

flow is parallel to the coast.  As a result, the sea breeze front stays close to the coast of 

the Choctawhatchee Bay and is able to penetrate further inland from the Gulf of Mexico. 

 

 
Figure 22.  Surface analysis at 18 UTC for 23 June 2005.  The sea breeze front has 

penetrated 10 km inland from the Gulf of Mexico.  The heavy blue line indicates 
the position of the sea breeze front. 

 

The corresponding 18 UTC radar image (Fig. 23) indicates a well defined 

thin line associated with the sea breeze front.  The thin line exhibits the same along-front 

variations indicated by the isotherm analysis in Figure 22.  However, it is apparent that 

the thin line has taken the shape of the coastline.  The sea breeze front is located 10 km 

inland from East Bay and extends northeastward to a point north of Eglin AFB.  From 

this point, the thin line is held close to the coast of Choctawhatchee Bay.  A thin line also 

formed on the south side of Choctawhatchee Bay to the east of Destin (KDTS).  The 

synoptic-scale flow is offshore along this section of coastline and holds the sea breeze 

and associated thin line at the coast.  Reflectivity values along the thin line approach 

20 dBZ in this region while reflectivity values of 10 to 15 dBZ are associated with the 
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thin line on the Eglin Range Complex, indicating a stronger sea breeze front in the 

presence of the offshore flow.   

 

 
Figure 23.  18 UTC 23 June 2005 KEVX base reflectivity product illustrating the thin 

line associated with the sea breeze front.  The front moved 10 km inland between 
KVPS and the East Bay where the synoptic-scale flow is coast parallel.  The front 
is held at the coastline of the Choctawhatchee Bay where the flow is offshore.  An 
intense thin is located west of Destin where the synoptic-scale flow is offshore 
(From Ref. National Climatic Data Center, 
http://www.ncdc.noaa.gov/oa/radar/radardata.html, February 2006). 

 

By 21 UTC, the sea breeze has penetrated 25 km inland from the Gulf of 

Mexico.  It bends southeastward to a position 10 km north of the Choctawhatchee Bay.  

Reflectivity values of 20 to 25 dBZ are associated with the thin line located north of 

Choctawhatchee Bay, indicating the sea breeze front is strongest in the region where the 

synoptic-scale flow is offshore.  Reflectivity values along the thin line further west are 

between 10 and 15 dBZ and indicate a less intense front where the synoptic-scale flow is 

coast-parallel.  By 23 UTC, the sea breeze front has penetrated through the entire Eglin 

Range Complex. 
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b. Offshore Composites 

The sea breeze for the offshore regime begins 1630 UTC under 3-5 1ms−  

offshore flow, one hour later than the Calm regime.  The sea breeze is first evident as a 

weakening in the offshore flow along the coastline. By 18 UTC, the sea breeze front is 

located 10 km inland from the Gulf of Mexico and 5 km inland from the Choctawhatchee 

Bay.  The front is oriented northeast to southwest, which is the orientation of the 

coastline from the eastern tip of Choctawhatchee Bay westward to East Bay.  Sea breeze 

flow is from the southeast at 2.5 1ms− . 

The sea breeze front reaches its maximum intensity between 18 and 19 

UTC 20 km from the Gulf of Mexico and 15 km from the Choctawhatchee Bay (Fig. 24).  

Regions north of the sea breeze front experience three hour temperature perturbations of 

over 2 °C while coastal regions behind the sea breeze front experience three hour 

perturbations of 0.8 °C.  The result is a concentrated temperature perturbation gradient 

over a 20 km distance.  Frontogenesis values of 325 -1 -1Day  100 kmK  are located along 

the perturbation gradient.  Strong frontogenesis occur in this area as sea breeze winds 

along the coast, now at 10 1ms− , converges with weaker onshore flow at the leading edge 

of the front.  This speed convergence acts to concentrate the isotherms and intensify the 

sea breeze front.  The same frontogenetical forcing occurred under the Calm regime, but 

the temperature perturbations and wind convergence are larger under offshore flow.  A 

frontogenesis maximum also occurs 10 km north of Eglin AFB where the coastline of the 

Choctawhatchee Bay bends northeastward.  The bend in the coastline at Eglin AFB 

creates a convergent region by altering the along-coast isotherms.  Since sea breeze winds 

accelerate onshore perpendicular to the along-coast isotherms, flow west of the bend 

moves northward while flow along the bend moves northwestward, converging north of 

Eglin AFB.   

By 20 UTC, the sea breeze front orients to a northwest to southeast 

position 30 km from the Gulf of Mexico and 12 km from the Choctawhatchee Bay.  

Between 20 and 21 UTC, onshore flow turned southwesterly and the sea breeze front 

accelerated through the Eglin Range Complex with decreasing intensity. 
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A graphical illustration of the position of the sea breeze front under 3-5  
1ms−  offshore flow is presented in Figure 26A.  The position of the sea breeze front in 

this and subsequent figures was determined by analysis of temperature, winds and 

frontogenesis in the composites.  Initially, the sea breeze front is oriented northeast to 

southwest and remains within 12 km of the coastline between 16 and 18 UTC.  By 19 

UTC, the sea breeze front is oriented east to west and reaches its maximum intensity as 

differential heating creates a strong thermal gradient that speed convergence concentrates 

approximately 15 to 20 km inland from the Gulf of Mexico and Choctawhatchee Bay.  

Sea breeze winds are southerly at 5 1ms−  while the sea breeze front is oriented east to 

west.  Sea breeze winds become southwesterly by 20 UTC, after which the sea breeze 

front orients northwest to southeast and accelerates inland while decreasing in intensity.  

Arritt (1993) found that the sea breeze began between 1100 and 1200L in the presence of 

3 1ms−  offshore flow.  Gilliam et al (2004) indicated that the sea breeze along North 

Carolina remained within 10 km of the coast under 2 1ms−  offshore flow until 1300L, 

was 20 km inland by 1700L, and 30 km by 1800L.  The 3-5 5 1ms−  composite agrees 

well with these previous studies.   
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Figure 24.  Computed 3-hour air temperature change (19-16 UTC in °C) contoured 

every 0.2 °C in red, frontogenesis plotted in blue contours every 50 
-1 -1 Day  100 kmK  at 19 UTC and surface wind barbs (full barb 5 1ms− , half-barb 

2.5 1ms− ) at 19 UTC for the Offshore 3-5 1ms−  regime.  The blue line represents 
the location of the sea breeze front as analyzed from temperature, winds, and 
frontogenesis. 

 

Increasing the magnitude of the offshore flow to 5-7 1ms− produced the 

expected effects on the sea breeze.  First, onset of the sea breeze was delayed by 

approximately 1 hour when compared to the 3-5 1ms−  regime.  Secondly, the sea breeze 

front penetrated only 12 to 15 km inland from the Gulf of Mexico and Choctawhatchee 

Bay by 21 UTC, after which air temperatures cool over the Eglin Range complex and the 

sea breeze weakens in place (Fig. 26B).  The sea breeze front reached maximum intensity 

at 16 UTC with frontogenesis values of 150 -1 -1Day  100 kmK , and maintained this 

intensity through 20 UTC. 
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Past studies (Estoque 1962; Bechtold et al. 1991; Arritt 1993; Gilliam et 

al. 2004) indicated that the strongest sea breeze formed under 5-6 1ms−  offshore flow.  In 

this study, the 5-7 1ms−  regime produced the weakest sea breeze front while 3-5 1ms−  

opposing flow produced the strongest front.  A comparison in temperatures at the time of 

maximum frontal intensity between the two regimes indicates that 5-7 1ms−  offshore 

flow suppressed the temperature perturbation across the Eglin Range (Fig. 25).  

Temperatures were 0.5 to 0.8 °C cooler in the 5-7 1ms−  regime when compared to the 3-

5 1ms−  regime.  In addition, onshore winds in the 5-7 1ms−  regime were 4 1ms−  weaker 

across the temperature gradient than the 3-5 1ms−  regime.  Therefore, increasing the 

magnitude of the offshore synoptic scale flow suppressed the temperature perturbation 

across the sea breeze front.  The weaker perturbation resulted in weaker onshore flow that 

failed to concentrate the temperature gradient across the sea breeze front.  According to 

equation 2.4, a smaller temperature perturbation over a longer length scale results in a 

weaker sea breeze.   

 

Figure 25.  Air temperature difference (°C contoured every .2) between the 3-5 1ms−  
offshore flow regime at 19 UTC and the 5-7 1ms−  offshore flow regime at 20 
UTC.  Negative values indicate the air temperature from the 3-5 1ms−  regime are 
warmer than the 5-7 1ms−  regime. 
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Under 7-9 1ms−  offshore flow, onset of the sea breeze is delayed until 

18 UTC, 2 hours after the 3-5 1ms−  regime.  As expected, increasing the magnitude of the 

offshore synoptic-scale flow restricted the inland penetration of the sea breeze front.  

Under this flow regime, the sea breeze front penetrated to the coastline of the 

Choctawhatchee Bay and 10 km inland from the Gulf of Mexico by 21 UTC (Fig 26C).  

The sea breeze front is strongest between 19 and 20 UTC with frontogenesis values of 

225 -1 -1 Day  100 kmK  located along the coastline.  Maximum frontogenesis occurred 

when air temperatures cooled behind the sea breeze front by 1 °C while warming by 

1.2 °C north of the front.  In this regime, stronger offshore flow is present at the sea 

breeze front, which acts to increase convergence with the onshore sea breeze flow and 

intensify the thermal gradient.  The increased convergence results in a stronger sea breeze 

front when compared to the 5-7 1ms−  regime. 

Offshore synoptic-scale flow greater than 9 1ms−  suppressed the 

development of the sea breeze along Eglin’s coastline.  Numerically, Arritt (1993) found 

a sea breeze circulation for opposing flow of 9 1ms− ; however, the circulation is located 

entirely offshore.  A determination cannot be made about the presence of a sea breeze 

offshore in this study due to lack of observations off the Eglin coastline.   
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Figure 26.  Illustration of the position and intensity of the sea breeze front for 

Offshore synoptic-scale flow of (A) 3-5 1ms− , (B) 5-7 1ms− , (C) 7-9 1ms−  and (D) 
>9 1ms−  in the Eglin Range Complex.   

 

3. Onshore Synoptic-Scale Flow 
Previous numerical and observational studies agree that the presence of onshore 

synoptic-scale flow of 3 1ms−  or less produces the weakest sea breeze.  The advection of 

cool marine air inland inhibits heating and results in weaker gradients of temperature and 

pressure.  Inland penetration of the sea breeze front under onshore flow is difficult to 

determine because the flow everywhere in the domain is onshore.  However, the sea 

breeze front can be detected by slightly stronger onshore flow across the weak 

temperature gradient associated with the sea breeze front.  Convergent frontogenesis is 

suppressed under onshore flow resulting in a weak thermal perturbation of the large scale 

flow.  Therefore, little vertical motion is associated with the sea breeze front under 

onshore conditions.  In addition, the sea breeze can travel large distances inland under 

onshore flow, and usually intensifies late in the period (1800L).  Increasing the 
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magnitude of the onshore flow suppresses sea breeze development; however, there is not 

a consensus in the literature on the magnitude of the flow required to suppress the sea 

breeze.   

Composites were constructed for onshore flow of 0-3, 3-5, and greater than 

5 1ms−  and are presented after examining a case study of an onshore flow event.   

 

a. 20 June 2001 Case Study 
The 12 UTC Tallahassee sounding indicated that the low level synoptic 

flow over the Florida Panhandle on 20 Jun 2001 was from 195° at 2 1ms− .  Surface 

observations prior to the onset of the sea breeze indicated a light offshore wind developed 

overnight over the Eglin Range Complex.  The sea breeze began at 1430 UTC and by 15 

UTC the sea breeze had penetrated 12 km inland from the Choctawhatchee Bay (Fig 27).  

However, no sea breeze is evident along the coast west of Hulbert Field.  There is little 

thermal gradient at the leading edge of the sea breeze, only a convergence zone located 

between 5 1ms−  southerly flow and 2.5 1ms−  southeasterly flow.  A thin line is not 

present on the corresponding 15 UTC KEVX base reflectivity product, which supports 

the observation that a sea breeze front has not formed. 
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Figure 27.  Surface analysis at 15 UTC for 20 June 2001.  The sea breeze front has 

penetrated 12 km inland from the Choctawhatchee Bay but flow remains offshore 
along the coastline west of Hulbert Field.  Dashed black line indicates the wind 
shift associated with the leading edge of the sea breeze 

 

By 18 UTC, a weak thermal gradient is located 20 km inland indicating 

formation of the sea breeze front.  There is 2 °C temperature gradient between the coast 

and the sea breeze front, and winds along the coast are southerly at 10 1ms− .  The 1830 

UTC KEVX reflectivity product indicated thunderstorms formed along the sea breeze 

front (Fig 28).  A thin line associated with the sea breeze front was not detected on radar 

prior to thunderstorm initiation.  The thunderstorms continue to move north with the sea 

breeze front and are located over 30 km inland by 20 UTC. 

Under onshore flow, the sea breeze began between 14 and 15 UTC.  The 

sea breeze front was not detected until 18 UTC.  Prior to that, a wind shift and 

strengthening of the onshore flow was the only indication the sea breeze was moving 

inland.  By 18 UTC, a weak thermal gradient formed 20 km inland and was the first 

indication of a sea breeze front.  Thunderstorms formed along the sea breeze front by 

1830 UTC.  A thin line associated with the sea breeze was not detected before 

thunderstorm initiation.   
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Figure 28.  1830 UTC base reflectivity product from 20 June 2001.  Thunderstorms 

formed along the sea breeze front 20 km inland.  (From Ref. National Climatic 
Data Center, http://www.ncdc.noaa.gov/oa/radar/radardata.html, February 2006). 

 

a. Onshore Composites 

Analyses of the 0-3 1ms−  onshore flow composite indicates the average 

start time of the sea breeze is 15 UTC.  There is no concentrated thermal gradient evident 

indicating a sea breeze front until 18 UTC.  By 19 UTC, the sea breeze front is located 20 

km inland in a region where temperature perturbation contours start to concentrate (Fig. 

29).  Frontogenesis values of 40 to 60 -1 -1Day  100 kmK  along the contours indicate the 

sea breeze front is undergoing weak intensification.  The weakness of the sea breeze front 

can be understood using equation 2.4, which states that the strength of the sea breeze is 

proportional to the temperature perturbation across the sea breeze front and inversely 

proportional to the length scale of the temperature gradient.  At 19 UTC, there is a .4 °C 

temperature perturbation that occurs over a length scale of 10 km.  By comparison, the 

strongest sea breeze front formed under light offshore flow where the temperature 

perturbation was 1.5 °C over 10 km.  When the synoptic scale flow is onshore, cool 

marine air advects farther inland earlier in the day, suppressing the temperature 

perturbation which results in a weak sea breeze front.  Between 19 and 20 UTC, the sea 

breeze front moved to a point 30 km inland and started to weaken.   
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Figure 29.  Computed 3-hourly air temperature change (19-16 UTC in °C) contoured 

every 0.2 °C in red, 19 UTC frontogenesis plotted in blue contours every 20 
-1 -1 Day  100 kmK  and surface wind barbs (full barb 5 1ms− , half-barb 2.5 1ms− ) at 

19 UTC for the Onshore 0-3 1ms−  regime.  The blue line indicates the position of 
the sea breeze front based on analysis of temperature, wind and frontogenesis. 

 

Increasing the magnitude of the onshore synoptic scale flow produced a 

similar sea breeze evolution.  Under 3-5 1ms−  onshore flow, the sea breeze begins 

between 14 and 15 UTC.  By 16 UTC, light southeasterly flow extends 20 km inland.  As 

with the 0-3 1ms−  regime, there is no identifiable sea breeze front, only a weak 

convergence zone at the leading edge of 5 1ms−  southerly winds.  By 18 UTC, a weak 

thermal gradient formed in the convergent region where air temperatures north of the 

convergence zone warm faster than regions south of the convergent zone.  The sea breeze 

front forms between 15 and 18 km inland and reaches maximum intensity at 19 UTC, 22 

km from the Gulf of Mexico and 15 km from the Choctawhatchee Bay.  Frontogenesis 
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values of 100 -1 -1 Day  100 kmK  located 15 km north of the Choctawhatchee Bay 

indicate sea breeze front intensification.  This front is stronger than the sea breeze front 

that formed under 0-3 1ms−  flow.  Comparing three hour temperature perturbations 

between 16 and 19 UTC for both regimes revealed that while temperatures warm by 

0.8°C north of the sea breeze front for both regimes, there is no temperature change south 

of the front in the 3-5 1ms−  regime while temperatures warm slightly under 0-3 1ms−  

flow.  The differential heating results in a weak increase in the thermal gradient under 3-5 
1ms−  onshore flow leading to a stronger sea breeze front.   

Onshore flow greater than 5 1ms−  suppressed the development of a sea 

breeze front.  Onshore winds were evident along the coast at 12 UTC and were onshore 

through the entire Eglin Range Complex by 14 UTC.  At 17 UTC, a weak convergence 

line formed 20 km inland between stronger 5 1ms−  sea breeze flow advancing northward 

and 2.5 1ms−  southeasterly flow.  A weak thermal gradient formed 30 km inland in the 

convergent region by 18 UTC, but by 19 UTC this gradient was not evident as 

temperatures cooled across the Eglin Range.  This might have been the initiation of a sea 

breeze front, but since it propagated out of the study domain, there is no way to tell if a 

sea breeze front formed.   

A graphical illustration of the sea breeze propagation and intensity is 

presented in Figure 30 for the onshore regime.  The sea breeze began at 15 UTC under 0-

3 1ms−  flow and at 12 UTC under 5 1ms−  onshore flow.  A sea breeze front formed at 19 

UTC for both 0-3 and 3-5 1ms−  onshore flow regimes 20 km inland.  The fronts formed 

in a convergence zone at the leading edge of 5 1ms−  southerly flow when differential 

heating across the convergence zone enhanced the temperature gradient.  The strongest 

sea breeze front formed at 19 UTC under 3-5 1ms−  onshore flow.  Synoptic-scale flow 

greater than 5 1ms−  suppressed sea breeze front development on the Eglin Range 

Complex; however, a weak thermal gradient developed at 18 UTC close to 30 km inland 

and could have been the initiation of a sea breeze front.  Finally, the sea breeze fronts that 

formed under onshore flow propagated through the Eglin Range Complex the fastest.  

These findings are consistent with studies by Atkins and Wakimoto (1997) and Gilliam et 
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al. (2004) who found that the sea breeze front formed late in the day for onshore 

synoptic-scale flow as convergence increased along the front and turbulent mixing of the 

airmasses decreased.  However, the sea breeze fronts were much weaker than fronts 

forming in the presence of offshore flow because the temperature perturbations are 

smaller and the length scales of the thermal gradients are larger.   

 
Figure 30.  Illustration of the position and intensity of the sea breeze front for Onshore 

synoptic-scale flow of (A) 0-3 1ms− , (B) 3-5 1ms− , and (C) > 5 1ms−  in the Eglin 
Range Complex. 

 

4. Coast Parallel Easterly Synoptic-Scale Flow 

Synoptic-scale flow with land on the right develops when the large scale pressure 

pattern has high pressure over land and low pressure over water.  Surface friction tends to 

produce a weak offshore wind component, so a sea breeze that develops in this situation 

has characteristics of the offshore flow case (Zhong and Tackle 1993; Nuss 2005).  Sea 

breezes forming under coast parallel offshore flow start earlier, however, are not as 

intense as sea breezes forming under offshore synoptic-scale flow. 
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a. 20 September 2005 Case Study 
Figure 31 presents the surface analysis at 12 UTC 20 September 2005, 

which was a coast parallel easterly flow day.  The 12 UTC KTLH sounding indicated the 

low-level synoptic-scale flow over the region was east-northeast (075°) at 6.2 1ms− .  

Inland stations reported temperatures of 22 °C while coastal temperatures are 26 °C.  This 

is a 4 °C temperature difference over approximately 20 km.  The surface data shows light 

north to northeasterly flow across much of the Eglin Range Complex and coastal stations. 

By 18 UTC, the leading edge of the thermal gradient had advanced inland 

from the coastline, indicating the onset of the sea breeze.  The sea breeze front penetrated 

10 km inland from the Gulf of Mexico and 8 km from Choctawhatchee Bay (Fig. 32).  A 

4 °C temperature difference between inland and coastal stations is still evident; however, 

the isotherms have concentrated along the coastline indicating a tightening thermal 

gradient and intensifying sea breeze front.  Surface winds increased from the south at 5-

10 1ms−  along and approximately 10 km inland from the Gulf of Mexico and 

Choctawhatchee Bay, then back to the east-southeast at the eastern section the Eglin 

Range.  Offshore flow is evident over the northern section of the range. 
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Figure 31.  Surface analysis at 12 UTC for 20 September 2005, a coast parallel 

offshore flow day.  Isotherms (°C) are in red contoured every half degree and 
winds (full barb 5 1ms− , half-barb 2.5 1ms− ) are plotted at 2 km grid points.  
Available station observations are plotted in black with temperature (°C top left), 
sea level pressure (mb top right), winds (full barb 5 1ms− , half-barb 2.5 1ms− ), 
dewpoint (°C bottom left), and station identification (bottom right). 

 

The KEVX base reflectivity product from 18 UTC indicates a well defined 

thin line associated with the sea breeze stretching from East Bay to Eglin AFB, then 

bending southeastward towards Choctawhatchee Bay (Fig 33).  Reflectivity values 

between 15 and 20 dBZ are associated with the thin line.  The location of thin line 

corresponds with the leading edge of the temperature gradient and wind convergence 

indicated in the 18 UTC surface analyses.  The east-northeast synoptic-scale flow has 

restricted the inland penetration of the sea breeze front along the eastern section of the 

Choctawhatchee Bay where the flow is offshore.  The sea breeze moved inland farther 

over the western half of the domain where the flow is coast parallel.   
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Figure 32.  Surface analysis at 18 UTC for 20 September 2005.  The sea breeze front 

penetrated 10 km inland and intensified as indicated by the intensifying thermal 
gradient at the coast. 

 

By 21 UTC, the front moved inland to a position along the Yellow River 

in the west, but has remained quasi-stationary near Eglin AFB and the Choctawhatchee 

Bay.  Northeasterly flow over the interior of the Eglin Range allowed temperatures to 

warm to 35 °C while stations along the coast under onshore flow have remained near 31 

°C.  Differential heating tightened the temperature gradient between the coastline and the 

leading edge of the sea breeze front 12 km inland while convergence between 

northeasterly flow and southerly sea breeze flow concentrate the thermal gradient.  The 

corresponding base reflectivity product indicates the thin line has strengthened as well, 

with reflectivity values increasing to 20 to 25 dBZ (Fig. 34).  The thin line is located 20 

km inland from the Gulf of Mexico and 10 km inland from the Choctawhatchee Bay.   

By 23 UTC, the sea breeze front has weakened and the thin line is not 

detectable on radar over land; however, a strong thin line was located in the Gulf of 

Mexico south of KDTS.  To account for this movement, the 00 UTC sounding from 
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Tallahassee was checked to see if the low-level flow over the region changed since 12 

UTC.  The 925 mb flow backed to the northeast and increased to 9.8 1ms−  since 12 UTC.  

This suggests that the strong offshore flow suppressed the sea breeze over land and 

advected the sea breeze front over the Gulf of Mexico. 

 

 
Figure 33.  18 UTC 20 September 2005 KEVX base reflectivity product illustrating 

the thin line associated with the sea breeze front.  Reflectivity values between 15 
and 20 dBZ are indicated along the front.  (From Ref. National Climatic Data 
Center, http://www.ncdc.noaa.gov/oa/radar/radardata.html, February 2006). 

 

Under coast parallel easterly flow, the sea breeze started at 15 UTC and 

moved approximately 20 km inland where the flow was parallel to the coast and 10 km 

from the coastline where the synoptic-scale flow retained an offshore component.  The 

sea breeze front intensified between 15 and 21 UTC and maximum reflectivity values 

were detected at 21 UTC.  The sea breeze front reached its furthest point inland at 21 

UTC, after which the sea breeze weakened as the temperature gradient relaxed and the 

synoptic-scale flow increased. 
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Figure 34.  20 UTC 20 September 2005 KEVX base reflectivity product illustrating 

the thin line associated with the sea breeze front.  The front moved 20 km inland 
between KHRT and the East Bay where the synoptic-scale flow is coast parallel.  
The front is held at the coastline of the Choctawhatchee Bay and crosses the bay to 
KDTS where the flow is offshore.  (From Ref. National Climatic Data Center, 
http://www.ncdc.noaa.gov/oa/radar/radardata.html, February 2006). 

 

b. Coast Parallel Easterly Composites 
Composite analysis indicates the sea breeze began between 14 and 15 

UTC for the 3-5 1ms−  regime.  The sea breeze front is ill defined at this time, but is 

located 12 km inland from the Choctawhatchee Bay.  By 18 UTC, the sea breeze front 

becomes better defined.  Winds north of Duke Field are easterly while southerly onshore 

flow has penetrated 20 km inland.  The three hour temperature change between 15 and 18 

UTC indicates air temperatures in the easterly flow increase 2 °C while air temperatures 

in the onshore flow increase 1 °C (Fig. 35).  A concentrated thermal gradient develops 20 

km inland near East Bay, bulges northward to a position 25 km inland in the center of the 

domain and drops southeasterly towards the Choctawhatchee Bay.  Frontogenesis values 

of 150 -1 -1 Day  100 kmK  along the thermal band indicate intensification of the sea 

breeze front as convergence between easterly flow and southerly onshore flow 
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concentrates the thermal gradient.  Sea breeze winds respond to the intensifying thermal 

gradient by increasing to 10 1ms−  along the coastline of Choctawhatchee Bay and the 

Gulf of Mexico. 

 
Figure 35.  Computed 3-hourly air temperature change (18-15 UTC in °C) contoured 

every 0.2 °C in red and Frontogenesis plotted in blue contours every 50 
-1 -1 Day  100 kmK  and wind barbs (full barb 5 1ms− , half-barb 2.5 1ms− ) for Coast 

Parallel Easterly 3-5 1ms−  regime.  Solid blue line indicates the position of the sea 
breeze front based on analyses of temperature, winds and frontogenesis. 

 

By 20 UTC, temperatures over the western section of the domain have 

cooled by 1 to 1.5 °C indicating the sea breeze front has moved through this region.  The 

front moved 30 km north of the Gulf of Mexico and 20 km north of the Choctawhatchee 

Bay, oriented northwest to southeast.  Frontogenesis values of 125 -1 -1 Day  100 kmK  

along the thermal gradient indicated the sea breeze front weakened over the preceding 

two hours.  By 23 UTC, the sea breeze front moved through the entire domain. 
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Under the 5-7 1ms−  regime, onshore flow begins along the coast by 17 

UTC between Choctawhatchee Bay and East Bay, 2.5 hours later than the 3-5 1ms−  

regime.  Similar to the 3-5 1ms−  composite, the sea breeze front is ill-defined until 18 

UTC, at which point air temperatures inland warm more than 1.5 °C compared to 

temperatures along the coast (Fig. 36).  Frontogenesis increases with values of 125 
-1 -1 Day  100 kmK  located along the temperature gradient 10 km inland from the 

Choctawhatchee Bay and Gulf of Mexico.  The sea breeze front is oriented northeast to 

southwest, conforming to the coastline shape.  The sea breeze front weakens by 19 UTC 

and is located 10 km from the Choctawhatchee Bay and 18 km from the Gulf of Mexico.  

This is the maximum distance inland the sea breeze front penetrates under 5-7 1ms−  

Coast Parallel Easterly synoptic-scale flow.  Northeasterly winds strengthened across the 

entire Eglin Range Complex by 21 UTC and the sea breeze front weakened in place. 

 
Figure 36.  Computed 3-hourly air temperature change (18-15 UTC in °C) contoured 

every 0.2 °C in red, 18 UTC frontogenesis plotted in blue contours every 50 
-1 -1 Day  100 kmK  and 18 UTC surface wind barbs (full barb 5 1ms− , half-barb 2.5 

1ms− ) for Coast Parallel Easterly 5-7 1ms−  regime. 
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The sea breeze begins by 16 UTC under 7-9 1ms−  coast parallel flow, one 

hour earlier than the 5-7 1ms−  regime and approximately one hour later than the 3-5 1ms−  

regime.  The timing difference is attributed to the direction of the synoptic scale flow.  

The direction of the synoptic-scale flow is 91° in the 5-7 1ms−  regime, which is coast 

parallel over the Eglin region.  The direction of the synoptic-scale flow in the 3-5 and 7-9 
1ms−  regimes are from 99° and 94° respectively, both of which contain onshore 

components.  As a result, the sea breeze starts earlier in the 3-5 and 7-9 1ms−  regime than 

the 5-7 1ms−  regime.  The sea breeze evolves in a similar manner as the other cases with 

easterly flow across the northern sections of the Eglin Range and southeasterly onshore 

flow along the coast.  The sea breeze front is difficult to detect until 18 UTC.  Northern 

sections of the range that are under easterly flow continue to heat faster than coastal 

sections of the range that are experiencing onshore flow.  Three hour temperatures 

changes show 2.5 °C rises in air temperature in the northern section of the range while 

coastal regions increased 1.5 °C.  Frontogenesis values of 200 -1 -1Day  100 kmK  15 km 

north of the Choctawhatchee Bay and 20 km north of the Gulf of Mexico indicate the 

intensification of the sea breeze front in that region.   

Figure 37 shows that by 21 UTC, air temperatures in the interior of the 

Eglin Range drop, while the northeastern portion of the Eglin Range that remained under 

easterly flow continued to warm.  The convergence between the southerly onshore flow 

behind the sea breeze front and northeasterly flow north of the front, coupled with the 

differential heating of the two air masses, caused the front to intensify as evident by the 

350 -1 -1 Day  100 kmK  frontogenesis values approximately 20 km inland.  As with the 

other regimes, the sea breeze front strengthens when the temperature perturbation 

increased while convergence reduces the length scale of the thermal gradient.  After 21 

UTC, air temperatures decrease across the entire Eglin Range and the sea breeze front 

weakens rapidly. 
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Figure 37.  Computed 3-hourly air temperature change (21-18 UTC in °C) contoured 

every 0.2 °C in red, Frontogenesis plotted in blue contours every 50 
-1 -1 Day  100 kmK , and wind barbs (full barb 5 1ms− , half-barb 2.5 1ms− ) for 

Coast Parallel Easterly 7-9 1ms−  regime.  Solid blue line indicates the location of 
the sea breeze front based on analysis of temperature, wind and frontogenesis. 

 

Coast Parallel Easterly synoptic-scale flow greater than 9 1ms−  suppressed 

the development of the sea breeze along Eglin’s coastline.  Winds across the range 

complex remained east-northeast at 5-10 1ms−  through the 23 hour period of the 

composite.  Onshore flow did not develop in this regime, and the absence of cool sea 

breeze air inland, air temperatures were horizontally uniform over the Eglin Range 

Complex.  The three hour temperature difference between 15 and 18 UTC indicated the 

largest temperature rise, 2.8 °C, was located offshore of Destin while the rest of the Eglin 

Range Complex warmed by 2.4 °C.  Numerical simulations by Arritt (1993) found that 

convergence was less effective in strengthening the temperature gradient when offshore 

flow was strong enough to suppress the sea breeze circulation.  In this flow regime, 

uniform turbulent mixing over land and weak convergence due to lack of onshore flow 

resulted in the suppression of the sea breeze and supports Arritt’s (1993) findings. 
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A graphical illustration of the position and intensity of the sea breeze front 

for Coast Parallel Easterly flow is presented in Figure 38.  Under coast parallel easterly 

flow, the sea breeze beings approximately 1 hour earlier than the corresponding offshore 

flow regimes, except for 7-9 1ms−  coast parallel easterly flow.  In this regime, the sea 

begins by 14 UTC while the corresponding offshore flow regime begins by 18 UTC.  

This difference is attributed to the direction of the synoptic-scale flow.  In the coast 

parallel regime, the synoptic-scale flow is from 94°, which has an onshore component.  

The synoptic-scale flow in the 7-9 1ms−  offshore flow regime is from 355°, which is 

almost directly offshore.  The onshore component of the flow in the coast parallel 

westerly regime created a sea breeze that is weaker and begins earlier than the offshore 

regime.  Interestingly, the approximate offshore components of the coast parallel regimes 

are less than 5 1ms−  yet the inland propagation of the sea breeze is comparable to the 

offshore regime.  The orientation of the front, however, is parallel to the synoptic-scale 

flow in the coast parallel easterly regime. 
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Figure 38.  Illustration of the position and intensity of the sea breeze front for (A) 3-5, 

(B) 5-7, (C) 7-9 and (D) >9 1ms−  Coast Parallel Easterly flow in the Eglin Range 
Complex. 

 

5. Coast Parallel Westerly Synoptic-Scale Flow 
Synoptic-scale flow with land on the left develops when the large scale pressure 

pattern has high pressure over water and low pressure over land.  Surface friction tends to 

produce a weak onshore wind component, so a sea breeze that develops in this situation 

has characteristics of the onshore flow regime (Zhong and Tackle 1993; Nuss 2005).  Sea 

breezes forming under coast parallel onshore flow start later and are more intense than 

sea breezes forming under the onshore flow regime.   
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a. 14 August 2005 Case Study 

Synoptic-scale flow was from 270° at 3.6 1ms−  on 14 August.  The 17 

UTC surface analyses (Fig. 39) indicated the sea breeze had already begun and the sea 

breeze front was located 10 km inland from the Gulf of Mexico, but is held close to the 

coastline of the Choctawhatchee Bay.  Westerly synoptic-scale flow was parallel to the 

coast Gulf Coast at Hulbert Field.  It had an offshore component along the northeast-to-

southwest oriented coastline near Eglin AFB.  As a result, the sea breeze front penetrated 

farther inland where the flow was coast parallel and remained close to the coastline where 

the synoptic-scale flow retained an offshore component.  Air temperatures are 32 ° C at 

RAWS site Coupland and 30 °C along the coast at Hulbert Field, indicating a 2 °C 

temperature gradient associated with the sea breeze front.   

By 19 UTC, a thin line was evident on the KEVX base reflectivity product 

20 km inland from the Gulf of Mexico and 15 km from the Choctawhatchee Bay (Fig. 

40).  Reflectivity values of 15 to 20 dBZ associated with the thin line were similar in 

magnitude to those found along the thin line under offshore flow.  The sea breeze front 

moved to a position 25 km inland by 21 UTC.  Thunderstorms formed along the sea 

breeze front at that time, after which an outflow boundary moved south towards the 

coastline and disrupted the thermal gradient that forced the sea breeze.   

Under the coast parallel westerly flow, the sea breeze began at 1630 UTC 

and moved 15 and 20 km inland from the coastline by 19 UTC.  A thin line was detected 

by radar on 18 UTC and was indicative of a strong sea breeze front.  Under pure onshore 

flow, the sea breeze began at 15 UTC and no thin line is detected during the life cycle of 

the sea breeze.   
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Figure 39.  Surface analysis at 17 UTC for 14 August 2005.  The location of the sea 

breeze front is indicated by the solid blue line.  The sea breeze front penetrated 10 
km inland from the Gulf of Mexico, but remained close to the coastline of the 
Choctawhatchee Bay.  The blue line indicates the location of the sea breeze front. 

 

b. Coast Parallel Westerly Composites 

The sea breeze begins at 16 UTC under 0-3 1ms−  coast parallel westerly 

flow and by 17 UTC 2.5 1ms−  southerly flow is evident 12 km inland from the Gulf of 

Mexico and 8 km inland from the Choctawhatchee Bay.  The average direction of the 

synoptic-scale flow for this composite is 270°, which is parallel to the coastline in the 

Hulbert Field region.  This enables the sea breeze to penetrate further inland along this 

section of coastline while westerly flow has an offshore component along the 

Choctawhatchee Bay where the sea breeze remains close to the coastline.  The 

temperature perturbation is suppressed under coast parallel westerly flow and a sea 

breeze front is not present until 19 UTC.  By then, the sea breeze front is located 25 km 

inland.  Temperatures in the sea breeze air mass cool while slight warming occurs north 
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of the sea breeze.  This differential heating results in an increase in the temperature 

gradient between the air masses.  The temperature perturbation is 0.6 °C over a 15 km 

distance and there is no wind convergence at the boundary.  The lack of convergence in 

concert with a weak temperature perturbation over a large length scale results in 

frontogenesis values of 20 -1 -1 Day  100 kmK .  By 20 UTC, the sea breeze front moves 

north of Crestview and out of the Eglin Range Complex. 

 

 
Figure 40.  1900 UTC base reflectivity product from 14 August 2005.  (From Ref. 

National Climatic Data Center, http://www.ncdc.noaa.gov/oa/radar/radardata.html, 
February 2006). 

 

The most intense sea breeze front forms under 3-5 1ms−  coast parallel 

westerly flow.  Unlike the 0-3 1ms−  regime, winds are northwesterly at 2.5 1ms−  over the 

Eglin Range Complex as the sea breeze begins at 16 UTC.  The presence of offshore flow 

prior to the onset of the sea breeze is similar to the offshore flow regimes.  Southwest 

winds of 2.5 1ms−  are located south of the sea breeze front which penetrated 5 km inland 
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from the Gulf of Mexico but remained at the coastline of the Choctawhatchee Bay.  The 

northwest flow also restricts the inland penetration of cool sea breeze air and resulted in 

strong differential heating across the sea breeze front.  Air temperatures warmed by 6 °C 

north of the sea breeze front while locations south of the front warm by 2.5 °C between 

13 and 16 UTC.  The convergence between the northwest flow over land and the 

southwesterly sea breeze winds concentrates the thermal gradient in this region and 

results in a large temperature perturbation over a 12 km distance.  The sea breeze front 

moves north to a position 12 km from the Choctawhatchee Bay and 15 km from the Gulf 

of Mexico by 18 UTC and intensifies (Fig. 41).  Sea breeze winds increase to 5-8 1ms−  

and cool marine air limits atmospheric heating behind the front.  North of the front, 

temperatures increase by 3 °C between 15 and 18 UTC.  The differential heating and 

convergence at the front results in frontogenesis values of 300 -1 -1Day  100 kmK .   

By 19 UTC, the front weakens and moves north to a position 25 km 

inland.  Winds across the entire Eglin Range are southwesterly, decreasing convergence 

at the sea breeze front.  Additionally, differential heating diminishes across the front.  

This decreases the magnitude of the temperature gradient and increases the length scale 

associated with the sea breeze front.   
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Figure 41.  Computed 3-hour air temperature change (18-15 UTC in °C) contoured 

every 0.2 °C in red, frontogenesis plotted in blue contours every 50 
-1 -1 Day  100 kmK  at 18 UTC and surface wind barbs (full barb 5 1ms− , half-barb 

2.5 1ms− ) at 18 UTC for the Offshore 3-5 1ms−  regime.  Solid blue line indicates 
the position of the sea breeze front based on analyses of temperature, wind and 
frontogenesis. 

 

Increasing the magnitude of the coast parallel westerly flow suppresses the 

development of a sea breeze front.  Prior to the onset of the sea breeze at 15 UTC, the 

winds are west to northwest across the entire Eglin Range.  The increased magnitude of 

the synoptic scale flow limits heating over land areas and results in little thermal 

perturbation as the daytime progresses.  A wind shift line becomes evident 15 km inland 

by 17 UTC as winds back from westerly to southwesterly.  This wind shift moves north 

through the Eglin Range Complex by 19 UTC.  
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Figure 42 illustrates the movement and intensity of the sea breeze front for 

the three coast parallel westerly synoptic regimes.  Coast parallel 0-3 1ms−  experiences 

the largest thermal perturbation but lack of wind convergence limits the frontogenesis 

until late afternoon, at which time differential heating across the sea breeze front 

strengthens the thermal gradient and a sea breeze front forms.  Coast parallel flow of 3-5 
1ms−  generates the strongest sea breeze front.  A strong thermal perturbation coupled 

with wind convergence at the leading edge of the sea breeze concentrates the thermal 

gradient and results in an intense sea breeze front.  In addition, the direction of the 

synoptic scale flow for the composite is slightly north of west and results in a larger 

offshore wind component along the coast.  Frontogenesis values at 19 UTC are of similar 

magnitude to frontogenesis values associated with offshore flow.  Finally, increasing the 

magnitude of the coast parallel westerly flow results in westerly flow across the entire 

Eglin Range Complex as daytime heating commences.  The stronger winds limit the 

amount of daytime heating.  The lack of a strong thermal perturbation coupled with weak 

wind convergence suppresses the development of a sea breeze front.  A wind shift line is 

the only evidence of a sea breeze as winds back from westerly to southwesterly.  The 

wind shift line moves through the Eglin Range Complex by 19 UTC. 

 

6. Summary of Results 
Table 6 summarizes the findings from the composites presented in this chapter.  

Sea breeze start time, time of maximum frontal intensity, frontogenesis value at the time 

of maximum intensity, maximum inland penetration and time of maximum inland 

penetration of the sea breeze front are presented in a tabular format.   
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Figure 42.  Illustration of the position and intensity of the sea breeze front for Coast 

Parallel Westerly synoptic-scale flow of (A) 0-3 1ms− , (B) 3-5 1ms− , and (C) > 5 
1ms−  in the Eglin Range Complex. 
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REGIME CALM
SPEED BIN < 3 m/s 3-5 m/s 5-7 m/s 7-9 m/s > 9 m/s 0-3 3-5 >5

Sea Breeze Start Time (UTC) 1530 1630 1730 1800 N/A 15 1430 12
Sea Breeze Front Intensity
Time (UTC) 19 19 16-19 19 N/A 19 19 18
Frontogenesis Value (K/Day/100km) 20 325 125 225 N/A 60 100 40
Maximum Inland Penetration
Distance (km) Eglin Range Eglin Range 12-15 2-10 N/A Eglin Range Eglin Range Eglin Range
Time (UTC) 21 22 21 21 N/A 2030 1930 1830

REGIME
SPEED BIN 3-5 m/s 5-7 m/s 7-9 m/s > 9 m/s 0-3 3-5 >5

Sea Breeze Start Time (UTC) 1430 17 16 N/A 16 16 15
Sea Breeze Front Intensity
Time (UTC) 18 18 21 N/A 19 18 N/A
Frontogenesis Value (K/Day/100km) 150 125 350 N/A 20 300 N/A
Maximum Inland Penetration
Distance (km) Eglin Range 8-15 22 N/A Eglin Range Eglin Range Eglin Range
Time (UTC) 2130 21 21 N/A 20 20 1830

OFFSHORE ONSHORE

COAST PARALLEL EASTERLY COAST PARALLEL WESTERLY

 
Table 6.  Sea breeze properties by synoptic-scale flow regime.  All time in UTC.  

“Eglin Range” in the Distance column refers to sea breeze fronts that propagated 
through the Eglin Range Complex.   
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 
In this study, the propagation and intensity of the sea breeze front at Eglin AFB 

was investigated under offshore, onshore, coast parallel easterly and coast parallel 

westerly synoptic-scale flow regimes.  509 sea breeze days were collected between May 

and September of 2001 to 2005 and days with similar synoptic-scale flow regimes were 

composited.  Through the use of the frontogenesis equation, the strength and location of 

the sea breeze front was determined on the Eglin range complex.  The major findings of 

this study are summarized below.   

First, the Choctawhatchee Bay disrupts the along-coast temperature contours.  

Initially, the coastline was considered concave.  However, analysis indicated that the 

northern coastline of the Choctawhatchee Bay is the effective coastline in this region.  As 

a result, under light synoptic-scale flow, the sea breeze at Eglin begins with a 

southeasterly wind because the coastline in the region is oriented northeast to southwest.  

Inland penetration distances of the sea breeze were calculated from the northern coast of 

the Choctawhatchee Bay.  The northern coast has numerous bays and headlands that 

create mesoscale along-front variations in sea breeze location and intensity. 

The strength of the sea breeze front is determined by a balance between 

convergence and turbulent mixing.  Under offshore flow, the onset and inland penetration 

of the sea breeze is delayed by as much as two hours compared to onshore flow.  This has 

important implications regarding sea breeze strength.  First, the sea breeze front is held at 

the coastline keeping cool marine air offshore.  This enables radiational heating to 

continue over land through the day.  The turbulent mixing between cool sea breeze air 

and air warmed by land is minimized as the sea breeze front is held at the coastline.  

Second, convergence is maximized as onshore sea breeze winds converge with flow off 

the land, resulting in a concentrated thermal gradient and strong frontogenesis.  In 

addition, the temperature perturbation is largest with offshore flow and the length scale 

associated with the sea breeze front is smallest, resulting in a strong sea breeze front.  

Conversely, under onshore synoptic-scale flow, the advection of cool sea breeze air 



88 

inland early in the day suppresses the formation of the temperature perturbation.  As the 

sea breeze penetrates inland, turbulent mixing reduces the temperature contrast between 

the two air masses.  This results in weak thermal perturbations at the leading edge of the 

sea breeze and large length scales associated with the weak thermal gradient.  However, 

sea breeze fronts did form under onshore synoptic-scale flow late in the day between 18 

and 19 UTC.  At this time, turbulent mixing has decreased and convergence at the sea 

breeze front has increased which results in the formation of weak sea breeze fronts 20 km 

inland.  These findings are in agreement with past studies (Arritt 1993; Atkins and 

Wakimoto 1997; Gilliam et al 2004). 

Offshore synoptic-scale flow produces strong sea breeze fronts that weaken by 

afternoon.  The average start time for the sea breeze is 1730 UTC.  The strongest sea 

breeze front forms under 3-5 1ms−  offshore flow, somewhat in disagreement with past 

numerical research that found the most intense sea breeze formed under 5-6 1ms−  

offshore flow.  However, this numerical research was conducted using two dimensional 

models to simulate the sea breeze along straight coastlines and did not account for 

changes in the magnitude or direction of the synoptic scale flow or important three-

dimensional effects of curved coastlines.  Results presented in this thesis agree with past 

research in that increasing the magnitude of the offshore flow suppresses sea breeze front 

development.  Under offshore flow greater than 9 1ms− , no sea breeze forms along the 

Eglin coastline.  Offshore synoptic-scale flow of 7-9 1ms−  holds the sea breeze front to 

within 15 km of the coastline.  Therefore, thunderstorm development is likely within 15 

km of the coast under offshore flow up to 9 1ms− . 

Onshore flow creates weak sea breeze fronts that strengthened late in the day 

along the coastline of Eglin AFB.  The average start time of the sea breeze under onshore 

synoptic-scale flow is 1330 UTC, two hours earlier than the offshore case.  Initially, the 

sea breeze front is difficult to detect; however, between 18 and 19 UTC, a weak sea 

breeze front forms 20 km inland as turbulent mixing of the sea breeze air decreases and 

convergence at the sea breeze front increases.  This is in agreement with studies by 

Atkins and Wakimoto (1997) and Gilliam et al. (2004).  Unlike offshore synoptic-scale 

flow, sea breeze fronts forming under onshore flow propagate through the Eglin Range 
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Complex by 19 UTC.  The strongest sea breeze front in this regime forms in the presence 

of 4 1ms−  onshore flow while onshore flow greater than 5 1ms−  suppressed the 

development of a sea breeze front.  Therefore, convective development along the sea 

breeze front under onshore flow is likely late in the afternoon in the northern sections of 

the range complex.   

Sea breeze evolution under coast parallel synoptic-scale flow regimes were also 

investigated in this thesis.  The average start time of the sea breeze under coast parallel 

easterly and westerly flow was 1500 UTC, 2.5 hours earlier than the offshore flow regime 

and 1.5 hours later than the onshore flow regime.  Sea breeze fronts forming under coast 

parallel easterly flow are weaker than fronts in the offshore regime while sea breeze 

fronts forming under coast parallel westerly flow are stronger than fronts in the onshore 

regime, as predicted by theory.  Coast parallel easterly flow of 7-9 1ms−  produces a 

strong sea breeze front located 20 km inland while flow greater than 9 1ms−  suppresses 

the development of a sea breeze.  Sea breeze fronts forming under coast parallel easterly 

flow are initially weak, but strengthen by midday in the middle of the Eglin Range 

Complex.  Atkins and Wakimoto (1997) found similar results in their investigation of sea 

breeze fronts along Cape Canaveral.   

One of the strongest sea breeze fronts of this study formed under 3-5 1ms−  coast 

parallel westerly flow.  The characteristics of this sea breeze front were similar to sea 

breeze fronts forming under offshore flow.  Initially, this was a surprising result; 

however, there is evidence that supports the presence of a strong sea breeze front forming 

on the Eglin Range Complex under coast parallel westerly flow.  Camp et al. (1998) 

found maxima in lightning flash densities along sections of the Florida Panhandle under 

2-5 1ms−  westerly flow.  Sections of coastline that are parallel to the westerly flow 

exhibited larger flash densities than sections of coastline where the flow was offshore.  

The region between East Bay and Choctawhatchee Bay was singled out a region of 

lightning flash maxima.  In addition, flash densities under westerly flow exceeded those 

associated with easterly flow.  Coast parallel westerly flow of 0-3 and greater than 5 
1ms−  suppressed or produced weak sea breeze fronts.   
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B. RECOMMENDATIONS 

1.  This study determined the location and strength of the sea breeze front on the 

Eglin Range Complex under various synoptic-scale flow regimes.  However, 

the presence of a strong sea breeze front does not equate to thunderstorm 

formation.  Accurately forecasting the location and strength of the sea breeze 

front is the first step in improving summer thunderstorm forecasting at Eglin 

AFB.  Therefore, this topic should remain on the Air Force Weather Agency 

Thesis Topic list. 

2.  It is recognized that the synoptic-scale flow regime can change during the 

course of the day.  However, that was not considered for this study.  To get a 

true sense of the evolution of the sea breeze under the regimes presented, days 

when the synoptic-scale flow regime changes between 12 and 00 UTC should 

be filtered from the study.  This will require that the period of study be 

expanded from the five years considered for this study in order to retain a 

large number of days for compositing.  This is especially true for the coast 

parallel regimes which, in this study, contained approximately 55 days each.  

3.  In this study, coast parallel westerly flow of 3-5 1ms−  produced a strong sea 

breeze front that was similar in movement and intensity to the offshore 

regime.  Originally, this was a surprising result.  However, this finding has 

some support in the literature.  Camp et al. (1998) examined cloud-to-ground 

lightning strikes over the Florida Panhandle as a function of the prevailing 

synoptic-scale flow and found lightning flash maxima between East Bay and 

the Choctawhatchee Bay under 2-5 1ms−  westerly flow.  The maxima were 

located where the flow was parallel to the coastline.  Regions of the coastline 

where the westerly flow was offshore, which should create strong sea breeze 

front, did not show the same lightning maxima.  Additionally, their results 

showed increased lightning activity when the panhandle was under southeast 

synoptic-scale flow when compared to southwest flow.  Therefore, the 

offshore and onshore synoptic-scale flow regimes presented in this thesis 

should be subdivided in order to investigate the propagation and intensity of 
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sea breeze fronts forming under northeast, northwest, southeast and southwest 

synoptic-scale flow regimes.   

4.  The method of compositing days by flow regime is not limited to surface 

meteorological fields.  Lack of data at the boundaries of the study domain and 

poorly sampled wind data within the study area limited the analyses of the sea 

breeze.  However, the KEVX WSR-88D is 60 km to the east of Eglin AFB 

and provides excellent coverage of the Eglin Range Complex.  The case 

studies presented in this thesis show that the propagation and intensity of the 

sea breeze front can be monitored at a high temporal and spatial resolution.  It 

is recommended that products such as base reflectivity, velocity, and hourly 

precipitation be composited by synoptic-scale flow regime to compare the 

location and strength of the sea breeze front to the composites presented in 

this thesis.  As mentioned above, strong frontogenesis does not necessarily 

equate to thunderstorms.  Composites of WSR-88D products could correlate 

the timing and location of thunderstorms to the location and intensity of the 

sea breeze front. 

5.  The thermodynamic environment is a key component in forecasting summer 

thunderstorms.  Therefore, an investigation into the stability indices that best 

predict thunderstorm activity over the Eglin Range Complex should be 

undertaken.  In this study, the strongest sea breeze fronts formed under 

offshore synoptic-scale flow while the weakest fronts formed under onshore 

flow.  However, Camp et al. (1998) found that the atmosphere is 

thermodynamically stable under offshore flow in the panhandle of Florida and 

less likely for convection while the third largest number of lightning flashes 

found on the gulf coast occurred under onshore synoptic-scale flow.   

6.  A frequency distribution of days by 925 mb wind direction was conducted to 

determine the most common wind directions for this study (Fig. 43).  As 

expected, southeasterly and southwesterly winds were most common.  An 

unexpected result, however, was the large number of days with westerly 925 

mb winds.  Further investigation revealed the majority of days with westerly 
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winds occurred in July of 2001, 2002, and 2004.  2001, 2002, and 2004 had 

10, 10, and 12 days respectively with 925 mb westerly winds.  Using the 

NCEP/NCAR reanalysis fields from the Climate Diagnostic Center (CDC), 

the 10 days with westerly winds in July 2001 were composited and fields were 

calculated for 925 mb heights, 925 mb winds, and 500 mb heights.  The 

average 500 mb heights for the 10 days in July 2001 revealed a deep trough 

along the East Coast of North America.  This trough caused a southward shift 

in the mean position of the Azores High across Florida.  As a result, 925 mb 

wind vectors for the 10 days revealed anomalous northwest flow across the 

Florida Panhandle instead of the normal southwest flow.  Interestingly, plots 

for 2002 and 2004 show the same anomalous trough along the U.S. East Coast 

creating west to northwest flow across the Florida Panhandle.  Gould and 

Fuelberg (1996), who investigated the role of synoptic-scale flow on 

thunderstorm activity in the Florida Panhandle, also found an unexpected 

number of days with westerly to northwesterly winds over the Florida 

Panhandle during the summer of 1995.  Gould and Fuelberg (1996) attributed 

this anomaly to the large number of continental high pressure systems which 

affected the region during that summer.  According to the CDC’s Oceanic 

Nino Index, 1995, 2002, and 2004 were years where the three month running 

mean of sea surface temperature anomalies in Nino region 3.4 (5°N-5°N; 

120°-170°W) were positive indicating El Nino episodes.  2001 was a 

transition year between a La Nina episode in 2000 and the El Nino episode in 

2001.  Results in this study and from Camp et al. (1998) suggests westerly 

synoptic-scale flow creates a strong sea breeze front with lightning flash 

maxima located between Choctawhatchee Bay and East Bay.  Future research 

should investigate possible climate impacts due to El Nino episodes on the 

intensity of the sea breeze front and convective activity in the Florida 

Panhandle  
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Figure 43.  Distribution of days according to their 925 mb wind direction for KTLH 

from may to September, 2001 to 2005.  Directions are grouped in 10° bins. 
 
 



94 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



95 

APPENDIX A – CALM COMPOSITE DATES 

Date Direction Kts m /s
17-Jun-01 25 4 2.06
20-Jun-01 195 4 2.06
24-Jun-01 360 4 2.06
26-Jun-01 170 2 1.03
7-Jul-01 250 5 2.57
19-Jul-01 205 3 1.54
31-Jul-01 310 2 1.03
4-Aug-01 135 4 2.06
15-Aug-01 340 2 1.03
16-Aug-01 240 4 2.06
22-Aug-01 35 4 2.06
24-Aug-01 270 4 2.06
29-Aug-01 195 6 3.09
6-Sep-01 50 3 1.54
17-Sep-01 260 4 2.06
22-Sep-01 160 5 2.57
11-M ay-02 130 4 2.06
1-Jun-02 220 5 2.57
4-Jun-02 45 4 2.06
13-Jun-02 15 2 1.03
16-Jun-02 280 4 2.06
30-Jun-02 50 5 2.57
3-Jul-02 320 4 2.06
4-Jul-02 295 2 1.03
6-Jul-02 40 4 2.06
7-Jul-02 85 4 2.06
12-Jul-02 160 2 1.03
13-Aug-02 150 4 2.06
19-Aug-02 250 5 2.57
21-Aug-02 165 5 2.57
23-Aug-02 270 3 1.54
28-Aug-02 285 4 2.06
29-Aug-02 85 4 2.06
30-Aug-02 130 4 2.06
16-Sep-02 335 2 1.03
17-Sep-02 320 2 1.03
18-Sep-02 180 4 2.06
4-M ay-03 300 5 2.57
14-M ay-03 145 5 2.57
16-M ay-03 220 5 2.57
24-M ay-03 55 4 2.06
25-M ay-03 260 3 1.54
16-Jun-03 160 5 2.57
22-Jun-03 285 2 1.03
23-Jun-03 95 4 2.06
25-Jun-03 115 4 2.06
8-Jul-03 250 5 2.57
16-Jul-03 355 3 1.54
18-Jul-03 260 1 0.51
26-Jul-03 230 1 0.51
9-Aug-03 112 5 2.57
10-Aug-03 330 3 1.54
16-Aug-03 250 3 1.54
17-Aug-03 230 5 2.57
20-Aug-03 155 1 0.51
24-Aug-03 30 5 2.57
25-Aug-03 90 3 1.54
26-Aug-03 80 1 0.51
27-Aug-03 155 2 1.03
12-Sep-03 344 4 2.06
11-M ay-04 165 4 2.06
20-M ay-04 20 2 1.03
21-M ay-04 275 3 1.54
25-M ay-04 265 5 2.57
6-Jul-04 185 4 2.06
8-Jun-04 335 4 2.06
13-Jun-04 330 3 1.54
16-Jun-04 160 5 2.57
11-Jul-04 315 5 2.57
20-Jul-04 295 3 1.54
21-Jul-04 305 5 2.57
22-Jul-04 340 4 2.06

CALM
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23 -Ju l-04 3 40 3 1 .54
28 -Ju l-04 3 02 2 1 .03
14 -A u g -0 4 1 40 4 2 .06
24 -A u g -0 4 5 5 2 .57
27 -A u g -0 4 1 50 5 2 .57
2 -S ep -04 1 45 4 2 .06
9 -S ep -04 3 0 3 1 .54
10 -S e p -0 4 6 0 5 2 .57
7 -M a y-05 4 5 1 0 .51
8 -M a y-05 2 35 2 1 .03
11 -M ay-0 5 6 5 4 2 .06
13 -M ay-0 5 8 0 2 1 .03
19 -M ay-0 5 1 65 5 2 .57
26 -M ay-0 5 8 0 5 2 .57
27 -M ay-0 5 3 35 3 1 .54
28 -M ay-0 5 2 55 5 2 .57
6 -J un -0 5 1 20 2 1 .03
7 -J un -0 5 2 90 4 2 .06
8 -J un -0 5 3 0 1 0 .51
19 -Ju n -05 3 20 3 1 .54
22 -Ju n -05 5 5 5 2 .57
8 -J u l-0 5 1 50 3 1 .54
19 -Ju l-05 9 5 2 1 .03
21 -Ju l-05 3 60 2 1 .03
26 -Ju l-05 3 25 2 1 .03
28 -Ju l-05 3 00 2 1 .03
16 -A u g -0 5 2 73 5 2 .57
17 -A u g -0 5 2 25 4 2 .06
20 -A u g -0 5 3 20 2 1 .03
21 -A u g -0 5 3 30 4 2 .06
22 -A u g -0 5 2 90 5 2 .57
24 -A u g -0 5 1 95 2 1 .03
16 -S e p -0 5 3 25 4 2 .06
17 -S e p -0 5 2 60 3 1 .54
19 -S e p -0 5 1 10 3 1 .54

#  D AY S AV G AV G AV G
10 7 1 99 3 .54 1 .82  
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APPENDIX B – OFFSHORE COMPOSITE DATES 

Date Direction Kts m/s Date Direction Kts m/s Date Direction Kts m/s
6-May-01 70 8 4.12 14-May-01 20 12 6.18 23-May-01 10 14 7.21

12-May-01 320 6 3.09 13-May-01 320 10 5.15 21-May-02 45 17 8.75
17-May-01 300 8 4.12 16-May-01 305 10 5.15 22-May-02 70 16 8.23
18-May-01 300 8 4.12 26-May-01 320 10 5.15 15-Jun-02 5 17 8.75
25-Jun-01 20 6 3.09 20-Jul-01 300 10 5.15 18-Jul-02 35 16 8.23
14-Jul-01 65 8 4.12 10-Aug-01 290 12 6.18 7-Aug-02 5 14 7.21

25-Aug-01 320 6 3.09 21-Aug-01 350 10 5.15 4-Sep-02 45 15 7.72
26-Aug-01 290 6 3.09 2-May-02 318 11 5.66 28-May-03 360 15 7.72
16-Sep-01 10 8 4.12 20-Jun-02 65 13 6.69 29-May-03 295 14 7.21
21-Sep-01 335 6 3.09 16-Jul-02 295 12 6.18 29-Jul-03 300 17 8.75
27-Sep-01 345 6 3.09 17-Jul-02 305 11 5.66 3-May-04 295 17 8.75
5-May-02 320 9 4.63 20-Aug-02 290 12 6.18 12-Jul-04 5 14 7.21

26-May-02 315 8 4.12 25-Aug-02 305 13 6.69 6-Aug-04 290 14 7.21
3-Jun-02 35 6 3.09 3-Sep-02 55 10 5.15 18-Sep-04 335 15 7.72

29-Jun-02 70 6 3.09 11-Sep-02 295 10 5.15 6-May-05 25 14 7.21
2-Jun-02 350 8 4.12 2-May-03 295 11 5.66 10-Sep-05 45 14 7.21
1-Jul-02 40 8 4.12 13-May-03 345 11 5.66 14-Sep-05 300 14 7.21
2-Jul-02 25 8 4.12 21-Jun-03 295 13 6.69

19-Jul-02 45 9 4.63 8-Sep-03 10 11 5.66
20-Jul-02 295 7 3.60 28-Sep-03 300 13 6.69
2-Aug-02 40 8 4.12 4-May-04 335 10 5.15
6-Aug-02 325 9 4.63 13-Jul-04 325 11 5.66
2-Sep-02 55 9 4.63 25-Aug-04 55 10 5.15

10-Sep-02 10 9 4.63 13-Aug-04 350 10 5.15
23-May-03 340 7 3.60 24-May-05 330 13 6.69

17-Jul-03 305 8 4.12 15-Jun-05 330 10 5.15
7-Sep-03 55 8 4.12 16-Jun-05 305 13 6.69
9-Sep-03 360 6 3.09 1-Jul-05 290 10 5.15

11-Sep-03 50 7 3.60 22-Jul-05 305 10 5.15
18-Sep-03 35 8 4.12 23-Jul-05 340 13 6.69
19-Sep-03 330 9 4.63 27-Jul-05 300 10 5.15
6-May-04 5 7 3.60 2-Sep-05 40 10 5.15
7-May-04 10 6 3.09 3-Sep-05 70 10 5.15
8-May-04 35 9 4.63 12-Sep-05 335 12 6.18

19-May-04 70 6 3.09
18-Jun-04 315 8 4.12
24-Jul-04 20 9 4.63
19-Jul-04 335 6 3.09
1-Aug-04 315 6 3.09
3-Aug-04 295 9 4.63
4-Aug-04 295 8 4.12
2-May-05 35 8 4.12
3-May-05 35 7 3.60

11-May-05 355 9 4.63
29-May-05 295 8 4.12
23-Jun-05 55 6 3.09
14-Sep-05 295 7 3.60
17-Jun-05 295 9 4.63
24-Jul-05 70 9 4.63

15-Aug-05 30 8 4.12
15-Sep-05 290 8 4.12
18-Sep-05 10 6 3.09
# DAYS AVG AVG AVG # DAYS AVG AVG AVG # DAYS AVG AVG AVG

52 178 7.54 3.88 4 34 258 11.09 5.71 17 145 15.12 7.78

OFFSHORE
290-074 (3-5 m/s) 290-074 (5-7 m/s) 290-074 (7-9 m/s)
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D a t e D i r e c t i o n K t s m / s
2 2 - J u l - 0 1 7 0 2 0 1 0 . 2 9

1 4 - S e p - 0 1 7 0 3 3 1 6 . 9 8
1 5 - S e p - 0 1 4 0 3 5 1 8 . 0 1
2 9 - S e p - 0 1 7 0 2 8 1 4 . 4 1
3 0 - S e p - 0 1 5 0 2 6 1 3 . 3 8
1 9 - M a y - 0 2 5 0 2 9 1 4 . 9 3
2 0 - M a y - 0 2 4 5 2 3 1 1 . 8 4

3 - A u g - 0 2 6 0 2 9 1 4 . 9 3
5 - S e p - 0 2 6 5 1 9 9 . 7 8

1 7 - S e p - 0 3 6 0 2 0 1 0 . 2 9
2 9 - S e p - 0 3 2 5 1 8 9 . 2 6
3 0 - S e p - 0 3 5 0 1 8 9 . 2 6
2 3 - S e p - 0 3 3 0 1 6 1 0 . 2 9

5 - S e p - 0 4 6 0 3 2 1 6 . 4 7
2 0 - S e p - 0 4 7 0 2 4 1 2 . 3 5
2 4 - S e p - 0 4 7 0 1 9 9 . 7 8

1 - M a y - 0 5 3 3 5 1 8 9 . 2 6
7 - S e p - 0 5 6 5 3 1 1 5 . 9 5
9 - S e p - 0 5 3 0 1 8 9 . 2 6

#  D A Y S A V G A V G A V G
1 9 6 9 2 4 . 0 0 1 2 . 4 6

2 9 0 - 0 7 4  ( > 9  m / s )
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APPENDIX C – ONSHORE COMPOSITE DATES 

Date Direction Kts m/s Date Direction Kts m/s Date Direction Kts m/s
26-Jun-01 170 2 1.03 10-May-01 255 6 3.09 21-May-01 220 14 7.21
20-Jun-01 195 4 2.06 24-May-01 255 8 4.12 31-May-01 250 12 6.18
19-Jul-01 205 3 1.54 5-Jun-01 160 8 4.12 28-Jun-01 140 12 6.18
7-Jul-01 250 5 2.57 19-Jun-01 180 6 3.09 29-Jun-01 155 10 5.15

4-Aug-01 135 4 2.06 27-Jun-01 120 8 4.12 14-Jun-01 255 17 8.75
16-Aug-01 240 4 2.06 4-Jun-01 195 8 4.12 2-Jul-01 150 11 5.66
29-Aug-01 195 6 3.09 21-Jun-01 210 8 4.12 18-Jul-01 140 11 5.66
22-Sep-01 160 5 2.57 8-Jul-01 255 7 3.60 26-Jul-01 150 14 7.21
11-May-02 130 4 2.06 24-Jul-01 225 9 4.63 28-Jul-01 175 10 5.15

1-Jun-02 220 5 2.57 30-Aug-01 170 8 4.12 27-Jul-01 180 15 7.72
12-Jul-02 160 2 1.03 31-Aug-01 170 8 4.12 29-Jul-01 230 10 5.15

13-Aug-02 150 4 2.06 1-Sep-01 180 8 4.12 13-Aug-01 215 10 5.15
21-Aug-02 165 5 2.57 2-Sep-01 215 9 4.63 17-Aug-01 240 10 5.15
30-Aug-02 130 4 2.06 6-May-02 150 7 3.60 18-Aug-01 200 14 7.21
19-Aug-02 250 5 2.57 24-May-02 130 9 4.63 4-Sep-01 215 11 5.66
18-Sep-02 180 4 2.06 27-May-02 145 6 3.09 23-Sep-01 195 10 5.15
14-May-03 145 5 2.57 30-May-02 135 7 3.60 8-May-02 170 13 6.69
16-May-03 220 5 2.57 31-May-02 150 6 3.09 10-May-02 160 17 8.75
16-Jun-03 160 5 2.57 7-May-02 195 7 3.60 12-May-02 165 14 7.21

8-Jul-03 250 5 2.57 19-Jun-02 150 6 3.09 16-May-02 140 12 6.18
26-Jul-03 230 1 0.51 28-Jun-02 175 7 3.60 17-May-02 175 11 5.66

20-Aug-03 155 1 0.51 7-Jun-02 215 7 3.60 28-May-02 135 11 5.66
27-Aug-03 155 2 1.03 27-Jun-02 245 7 3.60 1-May-02 233 20 10.29
16-Aug-03 250 3 1.54 10-Jul-02 145 6 3.09 3-May-02 240 20 10.29
17-Aug-03 230 5 2.57 11-Jul-02 145 8 4.12 4-May-02 240 20 10.29
11-May-04 165 4 2.06 5-Jul-02 250 7 3.60 9-May-02 195 15 7.72
16-Jun-04 160 5 2.57 24-Jul-02 245 9 4.63 8-Jun-02 125 14 7.21

6-Jul-04 185 4 2.06 17-Aug-02 140 9 4.63 18-Jun-02 160 10 5.15
14-Aug-04 140 4 2.06 22-Aug-02 170 9 4.63 8-Jul-02 120 10 5.15
27-Aug-04 150 5 2.57 29-Sep-02 170 7 3.60 9-Jul-02 145 16 8.23

2-Sep-04 145 4 2.06 19-Sep-02 180 7 3.60 29-Jul-02 230 10 5.15
19-May-05 165 5 2.57 24-Jun-03 130 7 3.60 30-Jul-02 220 12 6.18
8-May-05 235 2 1.03 26-Jun-03 160 8 4.12 10-Aug-02 120 12 6.18

28-May-05 255 5 2.57 6-Jul-03 125 7 3.60 15-Aug-02 160 11 5.66
6-Jun-05 120 2 1.03 9-Jul-03 140 7 3.60 16-Aug-02 155 12 6.18
8-Jul-05 150 3 1.54 7-Jul-03 180 7 3.60 14-Aug-02 210 11 5.66

17-Aug-05 225 4 2.06 12-Jul-03 250 9 4.63 12-Sep-02 160 10 5.15
24-Aug-05 195 2 1.03 25-Jul-03 205 10 5.15 20-Sep-02 145 17 8.75

27-Jul-03 220 9 4.63 21-Sep-02 145 13 6.69
28-Aug-03 165 6 3.09 30-Sep-02 125 12 6.18
2-Aug-03 250 6 3.09 9-May-03 205 21 10.81
3-Aug-03 235 8 4.12 10-May-03 215 17 8.75
8-Aug-03 220 6 3.09 17-May-03 195 11 5.66

18-Aug-03 240 9 4.63 11-Jun-03 185 14 7.21
2-Sep-03 145 9 4.63 12-Jun-03 185 14 7.21
3-Sep-03 145 6 3.09 14-Jun-03 205 15 7.72
5-Sep-03 155 9 4.63 15-Jun-03 195 11 5.66

27-Sep-03 250 9 4.63 10-Jul-03 225 12 6.18
10-May-04 145 8 4.12 11-Jul-03 240 14 7.21
18-May-04 165 6 3.09 13-Jul-03 225 13 6.69
22-May-04 210 7 3.60 25-Jul-03 205 10 5.15
17-Jun-04 140 6 3.09 31-Jul-03 250 12 6.18
9-Jun-04 195 7 3.60 29-Aug-03 160 17 8.75

10-Jun-04 255 6 3.09 31-Aug-03 135 15 7.72
28-Jun-04 235 7 3.60 11-Aug-03 240 13 6.69
30-Jun-04 200 8 4.12 1-Sep-03 140 15 7.72
31-Jul-04 125 7 3.60 13-Sep-03 160 12 6.18

15-Aug-04 200 6 3.09 12-May-04 145 12 6.18
16-Aug-04 230 8 4.12 14-May-04 145 28 14.41
20-Aug-04 205 7 3.60 17-May-04 135 12 6.18
29-Sep-04 235 7 3.60 1-May-04 195 16 8.23
30-Sep-04 210 8 4.12 9-May-04 205 12 6.18
14-May-05 135 11 5.66 23-May-04 220 11 5.66
17-May-05 155 6 3.09 24-May-04 235 11 5.66
10-May-05 250 9 4.63 29-May-04 255 12 6.18

9-Jun-05 170 8 4.12 6-Jun-04 255 14 7.21
5-Jun-05 205 8 4.12 11-Jun-04 250 11 5.66
17-Jul-05 155 9 4.63 21-Jun-04 195 11 5.66
18-Jul-05 120 9 4.63 24-Jun-04 225 11 5.66
20-Jul-05 130 6 3.09 25-Jun-04 210 14 7.21
25-Jul-05 120 7 3.60 26-Jun-04 255 14 7.21

ONSHORE
120-255 (0-3 m/s) 120-255 (> 5 m/s)120-255 (3-5 m/s)
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12-Jul-05 210 9 4.63 27-Jun-04 245 12 6.18
14-Jul-05 240 8 4.12 30-Jul-04 140 12 6.18
8-Aug-05 185 8 4.12 1-Jul-04 245 10 5.15

11-Aug-05 255 9 4.63 3-Jul-04 225 11 5.66
12-Aug-05 250 9 4.63 4-Jul-04 250 13 6.69
18-Aug-05 240 6 3.09 5-Jul-04 245 12 6.18
19-Aug-05 255 6 3.09 9-Jul-04 220 11 5.66
30-Sep-05 155 8 4.12 18-Aug-04 245 13 6.69
29-Sep-05 215 7 3.60 13-Sep-04 125 14 7.21

17-Sep-04 255 30 15.44
12-May-05 125 14 7.21
14-May-05 135 11 5.66
18-May-05 160 10 5.15
23-May-05 250 12 6.18
27-Jun-05 120 10 5.15

9-Jul-05 135 13 6.69
16-Jul-05 165 15 7.72
3-Jul-05 250 18 9.26
4-Jul-05 240 11 5.66

13-Jul-05 250 10 5.15
28-Aug-05 130 24 12.35

# DAYS AVG AVG AVG # DAYS AVG AVG AVG # DAYS AVG AVG AVG
38 185 3.87 1.99 80 189 7.56 3.89 92 192 13.32 6.85  
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APPENDIX D – COAST PARALLEL EASTERLY COMPOSITE 
DATES 

 

Date Direction Kts m /s Date Direction Kts m /s
15-M ay-05 90 6 3.09 2-M ay-01 105 10 5.15
19-Sep-01 115 6 3.09 5-M ay-01 95 10 5.15
12-Jun-02 85 9 4.63 23-Aug-01 105 10 5.15
12-Aug-02 100 8 4.12 28-Sep-01 75 11 5.66
29-Jul-04 95 7 3.60 25-M ay-02 80 10 5.15
22-M ay-05 110 9 4.63 29-M ay-02 80 11 5.66
24-Jun-05 100 9 4.63 23-M ay-02 105 12 6.18

5-Jun-02 110 10 5.15
31-Aug-02 115 13 6.69
10-Sep-03 75 10 5.15
16-Sep-03 80 11 5.66
20-Sep-03 110 11 5.66
26-Aug-04 85 11 5.66
3-Sep-04 80 11 5.66
4-M ay-05 110 10 5.15
21-Jun-05 100 10 5.15
25-Aug-05 80 10 5.15
11-Sep-05 75 10 5.15
12-Sep-05 85 10 5.15
20-Sep-05 75 12 6.18

# DAYS AVG AVG AVG # DAYS AVG AVG AVG
7 99 7.71 3.97 20 91 10.65 5.48

Date Direction Kts m /s Date Direction Kts m /s
1-M ay-01 95 17 8.75 13-Sep-01 90 27 13.90
3-M ay-01 115 16 8.23 6-Sep-02 115 24 12.35
4-M ay-01 90 14 7.21 7-Sep-02 105 22 11.32
7-M ay-01 105 14 7.21 8-Sep-02 95 26 13.38
8-M ay-01 110 17 8.75 14-Aug-03 75 26 13.38
9-M ay-01 105 14 7.21 7-Aug-04 90 27 13.90
18-Jun-01 80 16 8.23 19-Sep-04 90 19 9.78
16-Jul-01 75 14 7.21 21-Sep-04 80 31 15.95
15-Jul-01 95 14 7.21 22-Sep-04 100 30 15.44
2-Aug-01 115 17 8.75 23-Sep-04 110 22 11.32
15-M ay-02 80 14 7.21 25-Jun-05 75 19 9.78
10-Jun-02 85 15 7.72 26-Aug-05 90 23 11.84
9-Jun-02 105 14 7.21 5-Sep-05 80 24 12.35
11-Jun-02 105 17 8.75
8-Aug-02 75 14 7.21
9-Aug-02 80 16 8.23
4-Aug-02 95 14 7.21
11-Aug-02 105 14 7.21
9-Sep-02 90 14 7.21
15-Aug-03 95 16 8.23
24-Sep-03 100 16 8.23
12-Sep-04 95 15 7.72
20-Jun-05 85 16 8.23
25-Aug-05 80 10 5.15
4-Sep-05 80 17 8.75
21-Sep-05 100 17 8.75

# DAYS AVG AVG AVG # DAYS AVG AVG AVG
26 94 15.08 7.76 13 92 24.62 12.67

75-119(7-9 m /s) 75-119(>12 m /s)

CO AST PARALLEL EASTERLY
75-119 (3-5 m /s) 75-119(5-7 m /s)
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APPENDIX E – COAST PARALLEL WESTERLY COMPOSITE 
DATES 

Date Direction Kts m/s Date Direction Kts m/s Date Direction Kts m/s
24-Aug-01 270 4 2.06 22-Jul-02 265 7 3.60 2-Jun-01 270 19 9.78
17-Sep-01 260 4 2.06 23-Jul-02 280 7 3.60 15-Jun-01 275 12 6.18
16-Jun-02 280 4 2.06 9-Jun-03 260 9 4.63 6-Jul-01 270 11 5.66
23-Aug-02 270 3 1.54 27-Jun-03 270 7 3.60 11-Aug-01 270 12 6.18
28-Aug-02 285 4 2.06 28-Jul-03 275 7 3.60 15-Jul-02 280 16 8.23
25-May-03 260 3 1.54 5-May-04 265 6 3.09 31-Jul-02 285 13 6.69
22-Jun-03 285 2 1.03 4-Jun-04 280 8 4.12 24-Aug-02 260 11 5.66
18-Jul-03 260 1 0.51 12-Jun-04 265 8 4.12 28-Sep-02 270 11 5.66
25-May-04 265 5 2.57 19-Jun-04 285 6 3.09 12-May-03 280 13 6.69
21-May-04 275 3 1.54 29-Aug-04 260 7 3.60 30-May-03 275 11 5.66
16-Aug-05 273 5 2.57 17-Aug-04 279 6 3.09 19-Jun-03 260 13 6.69
17-Sep-05 260 3 1.54 10-Aug-05 275 8 4.12 21-Jul-03 260 11 5.66

14-Aug-05 270 7 3.60 22-Jul-03 260 18 9.26
30-Jul-03 265 14 7.21
20-Jul-03 285 12 6.18
19-Aug-03 265 10 5.15
5-Aug-03 275 16 8.23
26-May-04 265 18 9.26
27-May-04 265 18 9.26
28-May-04 260 24 12.35
16-Jul-04 260 14 7.21
7-Jul-04 270 10 5.15
22-Aug-04 265 12 6.18
5-Aug-04 270 14 7.21
19-Aug-04 280 12 6.18
31-Aug-05 260 15 7.72
13-Aug-05 280 11 5.66
1-Sep-05 270 14 7.21

# DAYS AVG AVG AVG # DAYS AVG AVG AVG # DAYS AVG AVG AVG
12 270 3.42 1.76 13 271 7.15 3.68 28 270 13.75 7.08

256-289 (0-3 m/s) 256-289 (3-5 m/s) 256-289 (> 5 m/s)
COAST PARALLEL WESTERLY
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