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ABSTRACT 

Military aircraft maintenance methods are moving from practices based on hard-

time inspection and replacement intervals to one of Condition Based Maintenance 

(CBM).  CBM allows the ability to forego scheduled maintenance on components or 

systems that are not in need of maintenance or replacement.  CBM reduces maintenance 

efforts and component replacement and increases readiness and safety. 

Goodrich Corporation has developed the Integrated Mechanical Diagnostics 

Health and Usage Management System (IMD-HUMS) to support CBM in helicopters.  

Great benefits in several maintenance practices, readiness and safety have already been 

realized by the UH-60L helicopter military unit equipped with the IMD-HUMS system.   

The total potential of the system, for the components observed by the IMD-

HUMS, however, has not yet been achieved.  The IMD-HUMS gathers an enormous 

amount of data on the condition of these components and systems.  The meaning and full 

potential of all this data has not yet been fully realized because to date, this data has never 

been coupled with corresponding maintenance data.  

The purpose of this research is to conduct and document statistical analysis of 

IMD-HUMS produced data with corresponding maintenance data of observed component 

failures.  Statistical applications of logistic regression and classification trees are explored 

to predict failures.  The approaches used in the exploration of the IMD-HUMS 

acquisition data sets are based on sixty electrical generators from thirty aircraft, six of 

which displayed degradation or failure and hence required maintenance actions.  This 

approach is promising.  With it we accurately predict two previously undocumented 

failures. 
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EXECUTIVE SUMMARY 

Military aircraft maintenance methods are moving from practices based on hard-

time inspection and replacement intervals to one of Condition Based Maintenance 

(CBM).  The latter practice allows the ability to forego scheduled maintenance on 

components or systems which have reached their high times but are not in need of 

maintenance or replacement.  Benefits of CBM are the minimization of maintenance 

efforts and component replacement along with an increase in readiness and safety. 

Goodrich Corporation has developed the Integrated Mechanical Diagnostics 

Health and Usage Management System (IMD-HUMS) for the practices of CBM in 

helicopters.  Great benefits have already been realized by the using UH-60L helicopter 

military unit with the IMD-HUMS system in regards to several maintenance practices, 

readiness, and safety.   

The total potential of the system, in regards to these benefits for the multiple 

components observed by the IMD-HUMS, however, is not yet achieved.  The IMD-

HUMS gathers a great deal of pertinent, important data on the condition of multiple 

components and systems, but the meaning and full potential of all this data is not yet fully 

realized.  

The purpose of this research is to conduct and document the statistical analysis of 

IMD-HUMS produced data.  Statistical applications of logistic regression and random 

forest of classification trees are explored.  The approaches used in the exploration of the 

IMD-HUMS acquisition data sets are based on six electrical generators which displayed 

degradation or failure—and hence required maintenance actions—compared with sixty 

others which did not.  This thesis focuses on using the combination of resulting vibratory 

patterns and maintenance records from one type of component, the electrical generator of 

the UH-60L helicopter, to forecast the need for maintenance.  Data acquired from the 

IMD-HUMS will be used in an attempt to understand and predict health predictions of 

the UH-60L electrical generator, and in hopes of gaining insights in developing 

component health predictions from IMD-HUMS data for other components.  



 xviii

This thesis discusses how the resulting predicted health classifications compare to 

how each of the generators are currently classified.  In this process, some surprising cases 

of generator health classification are uncovered.  One generator, which was wrongly 

presumed to be bad and, similarly, another generator, which was wrongly assumed to be 

good, were predicted correctly by this study's classification scheme.  The thesis 

demonstrates that  two different models—logistic regression and random forest of 

classification trees—can be fit using IMD-HUMS data collected with known cases of 

failed generators and properly operating generators.  These models can predict the overall 

state of a UH-60L electrical generator.  
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I. INTRODUCTION 

There are over 12,000 aircraft in the U.S. military's inventory, with nearly 2,400 

in the Navy and Marine Corps (International Institute for Strategic Studies, 2005).  In 

Fiscal Year 2005, Congress obligated over 5.29 billion dollars toward the operation and 

maintenance of these Naval aircraft, with 1.08 billion dollars of this money obligated 

strictly to intermediate and depot-level maintenance (Office of the Undersecretary of 

Defense, 2005).   

To put these operation and maintenance costs into perspective, consider that 

flying a single CH-53E helicopter for one flight hour costs $14,000 and requires 44 

maintenance man-hours (http://www.aviationtoday.com, Nov 2005).  A solution to these 

high costs may be found through the services' concerted efforts to move away from a 

scheduled maintenance approach toward a combination of scheduled and condition based 

maintenance (CBM).  In fact, this has been mandated as the Department of Defense 

(DoD) required strategy to improve aircraft supportability (DoD Instruction 5000.2, May 

2003).  For helicopters, this means monitoring the conditions of the mechanical 

components, which account for 70% of maintenance costs (Ruben & Rossi, 2003).   

Monitoring of these components is best accomplished through the collection of 

these components' vibratory patterns.  Goodrich Corporation has developed the Integrated 

Mechanical Diagnostics Health and Usage Management System (IMD-HUMS) which 

collects and analyzes a helicopter component's vibrations for use in CBM.  The system 

has been installed and operational for over two years in 30 U.S. Army UH-60L 

helicopters.  This provides the opportunity, for the first time, to investigate data produced 

by IMD-HUMS installed in a large fleet of operational helicopters, rather than data from 

test stand mounted fault-induced components or test-bed aircraft.   

The IMD-HUMS is worthy of study because major economic, operational and 

safety benefits can be realized by incorporating such CBM systems into aircraft 

maintenance practices.  This thesis focuses on using the combination of resulting 

vibratory patterns and maintenance records from one type of component, the electrical 



 2

generator, to forecast the need for maintenance.  The data is explored and analyzed using 

statistical approaches in hopes of gaining insights in developing component health 

predictions from IMD-HUMS data. 

 

A. LITERATURE REVIEW 
Numerous papers describe the IMD-HUMS; however, very little work concerns 

specific analysis of operational helicopter vibratory patterns, and even less focuses on 

relating changes in the vibratory patterns to actual operational maintenance events.  

The "Systems Users Manual for IMD-HUMS" (U.S. Army Publication, 2005) and 

the "P3I VPU/DTD Software Requirements Specifications" (Goodrich Publication, 2001) 

provide the basic terminology, concept of operations, and an explanation of the physical 

measurements regarding the IMD-HUMS.  Understanding the physics behind the 

vibratory patterns is essential for predicting component health. 

Various papers and briefs written primarily by employees of Goodrich 

Corporation and the IMD-HUMS Program Managers Office provide an overview of the 

uses and issues concerning the IMD-HUMS.  Hess, Duke and Kogut (2005) provide a 

good overview of the development history, terms, functionality, and potential of the 

IMD-HUMS.  The master’s thesis by Revor (2004) uses discrete event simulation backed 

by Naval Aviation Logistics Analysis (NALDA) databases to investigate the cost benefits 

of incorporating the IMD-HUMS into helicopter rotor track and balance maintenance 

actions.  Revor's simulation supports the idea that using the IMD-HUMS will decrease 

costs and maintenance efforts. 

Several Goodrich papers also discuss the mathematical concepts and algorithmic 

inner workings of the IMD-HUMS in detail.  These papers provide insight into the 

complexity and potential of the system; for example, see Bechhoefer and Power (2002) 

and Hochmann (2004).  The latter paper addresses the issue of variability among 

vibratory pattern observations which originate from seemingly identical operating 

conditions. 
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The master’s thesis by Elyurek (2003) presents empirical studies of vibratory 

patterns.  Elyurek (2003) uses Box-Jenkins time series modeling with regression to 

determine vibration thresholds for gear fault identification.  Elyurek's study is based on 

operational data produced by a test IMD-HUMS installed CH-53 helicopter.  He 

concludes that his model could not match the required negligible alarm rate due to the 

small sample size available.   

Only recently has it been possible to look at vibratory patterns matched with 

corresponding operational maintenance events.  Wright (2005) investigates several cases 

of maintenance discrepancy detections made by the 30 UH-60L helicopters with IMD-

HUMS installed.  In three particular cases, the IMD-HUMS data indicated that the 

generator was about to fail before it actually did.  The paper explains the subsequent 

investigation and facts concerning these generators.  The apparent relationship between 

changes in vibratory patterns and the failed generators described by Wright provides the 

motivation for choosing UH-60L generators for this study.  In addition, the paper 

discusses processes developed to incorporate the IMD-HUMS data into beneficial 

maintenance practices.  

 

B. RESEARCH FOCUS 
With the exception of Wright's paper there are no published works that 

empirically relate vibratory patterns to documented operational maintenance events.  The 

full potential of CBM using IMD-HUMS in particular has not yet been fully realized.  

The objective of CBM is to know, from the data collected by sensor readings, when a 

component or system needs replacement or maintenance.  A simple analogy to CBM is 

when a medical doctor observes a person’s temperature, blood pressure and heart rate.  

The readings could mean many different things under different circumstances, but an 

experienced doctor would be able tell if that person is of good health or not, and 

specifically what medical actions to take.  Now, imagine the first time in history a doctor 

listened to a heart beat.  He knew this information was important and could explain a 

great deal concerning a patient's health, but everything the patient's heart beat can tell the 

doctor was not yet known. This is where we are now with much of the data resulting from 



 4

the IMD-HUMS.  The IMD-HUMS data tells the user something about each monitored 

component’s health and future health, but exactly what it tells is deserving of study.   

This issue is addressed in this thesis.  Data acquired from a CBM-based system 

(the IMD-HUMS) will be used in an attempt to understand and predict the state, 

condition and performance of a component (the UH-60L electrical generator). 

The UH-60L electrical generators were chosen for study for two reasons.  First, 

during the two years the helicopters were installed with IMD-HUMS there were six 

generators which needed to be removed from operations for some reason of fault, and 

there were 60 generators deemed to be working properly.  This provides a data set in 

which generators could be classified as "bad" (removed for some fault) and "good" 

(working properly).  Second, the electrical generators are relatively simple components to 

study when compared to aircraft engines or transmissions.  The generators have fewer 

moving parts which produce vibrations and are much less likely to be affected by factors 

such as flight regime or torque settings.    

 

C. APPROACH 
This thesis's approach for assessing the generators' health is somewhat different 

than the current method of health assessment used with the IMD-HUMS.  Currently a 

component's overall health assessment is assessed by using a Health Indicator (HI) for 

that component.  Each component HI is computed from a subset of IMD-HUMS 

vibratory readings known as Condition Indicators (CI).  A component's HI is a statistic 

which summarizes when the CI corresponding to that component have unusual values 

compared to the historical distributions of these CI.  The CI readings are just from 

specific parts within the component itself.  For instance, the generator's health is 

monitored by the HI computed from CI originating from the generator's shaft.  Rather 

than attempt to supplant the current method by using different CI or by changing how the 

HI are computed from the CI, the approach used in this thesis augments the current 

method. 

First, to assess generator health a broader set of CI are used.  Not only are CI 

originating from the generator shaft vibratory patterns used, but CI from the vibratory 
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patterns of the nearby supporting gear and bearing are also used.  Second, for the UH-

60L generators, there are two years of empirical IMD-HUMS data along with 

corresponding maintenance records for 30 aircraft, each with two generators.  This data 

set should be large enough to contain examples of the most common failure modes from 

generators along with their corresponding vibratory patterns.  The data set also contains 

examples of healthy generators along with their vibratory patterns.  A classification 

scheme is developed based on these examples of good and bad generators and their 

vibratory patterns as measured by the approximately 170 CI related to the generator shaft, 

bearing and gear. 

The classification scheme uses a logistic regression fit to the data which estimates 

the probability of the generator being bad as a function of the CI.  This logistic regression 

fit does not explicitly take into account the time series nature of CI readings.  Therefore, 

as a basis for classification, a loess smoother of the probabilities predicted over time by 

the logistic regression is used.  To test the predictive ability of the classification scheme, 

the generator data is divided into two sets: a training set and an experimental set.  Only 

the training set is used in the logistic regression fit.  The classification scheme is then 

tested on the experimental data which contains a bad generator, several good generators, 

and generators of questionable health. 

 

D. OUTLINE OF STUDY 
Chapter II gives the background needed to understand this study.  In particular it 

provides an overview of CBM, IMD-HUMS, the UH-60L helicopter and its electrical 

generators.  This chapter also provides fundamental knowledge concerning the CI and HI 

used in this study.  This is important because the data set of flight regimes and vibratory 

patterns for 30 aircraft over two years of operation is very large.  It contains both a large 

number of variables and a large number of records.   

Chapter III describes the data set and how it is partitioned into the training and 

experimental sets.  The vibratory patterns and flight regime data are also studied for both 

good and bad generators in the training set.  This analysis chapter begins with graphical 
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exploration to investigate differences in the training data among the good and bad 

generators, as well as differences among just the bad generators. 

In the second part of the analysis, a parametric model, logistic regression 

(Montgomery, 2001), is fit to the training data.  As a check of the estimated probabilities 

of the generator being bad, a nonparametric model, a random forest of classification trees 

(Berk, 2005), is also fit to the training data.  These two models give respectively an 

estimated probability of a generator being bad and a classification of a generator being 

bad or good for each acquisition. 

In Chapter IV the logistic regression and random forest classifiers are applied to 

each of the generators used in the study.  The probabilities of being predicted bad from 

the logistic regression are plotted over time and then smoothed.  These smoothed versions 

are used to classify each generator in the training and experimental data set as good or 

bad.  The end of the chapter carefully discusses how these predicted classifications 

compare to how each of the generators are actually classified.  In this process, some 

surprising cases of generator health classification are uncovered.  One generator which 

was wrongly presumed to be bad and conversely another generator which was wrongly 

assumed to be good were classified correctly by this study's approach. 

Conclusions and recommendations for further study are given in the final chapter. 
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II. BACKGROUND: SYSTEMS AND CONCEPTS 

This section introduces and explains the concepts of scheduled maintenance, 

CBM and vibration analysis.  A description and the principles of operation of the IMD-

HUMS are given because this system acquires, manipulates and stores the data.  A brief 

description of the UH-60L helicopter, its electrical generators and supporting components 

is included since they are the source of the studied data.  

  

A. AIRCRAFT MAINTENANCE CONCEPTS 
There are two very different concepts in the way military aircraft maintenance is 

performed.  The first, scheduled maintenance, uses traditional methods based upon time 

of usage.  The other is CBM, which is heavily dependant upon vibration monitoring and 

diagnostics. 

 

1. Scheduled Maintenance 
Currently, the maintenance upon most military aircraft is performed under the 

concept of scheduled maintenance or the idea of Time Before Overhaul (TBO).  One of 

two cases occurs which result in a required maintenance action.  A component or system 

noticeably fails, or is operating in a noticeably degraded mode in which case it is replaced 

or fixed; or the component or system reaches a pre-determined amount of usage at which 

time it is replaced or inspected.  The inspections or replacements are based upon set hard-

times of usage.  For examples, there may be a requirement for a phase inspection after 

100 hours of pilot logged flight time, transmission and engine replacement after a specific 

number of flight hours, jet engine power tests after a designated number of usage hours, 

or replacement of the tail-hook on a carrier-based aircraft after a specific number of traps.  

The number of flight hours or usage until required maintenance is determined by design 

engineers based upon the probability of when the component is most likely to fail and the 

severity of the consequences of its failure.  These usage intervals are historically and 

purposefully set to be in a conservative to extremely conservative range.  The greater the 
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severity of the consequence of failure, the more conservative the required inspection or 

replacement time becomes.  Design engineers will set an inspection interval or 

replacement time that ensures the component is inspected several times or replaced 

before the expected failure (Rotor & Wing Magazine, April 2005).  For instance, if the 

bearings on a helicopter's rotor head system are expected to fail or to wear to an 

unacceptable level after 500 flight hours, the design engineers may dictate a phase 

inspection where the bearings are disassembled and inspected every 100 hours, and then 

replaced regardless of condition by 300 hours.  An aspect of the scheduled TBO 

maintenance concept is that, as the name implies, maintenance actions are tied to time.  

Maintenance planners must adhere to dictated usage limits. Sometimes there is a window 

of time, an allowable plus or minus percentage of usage, permitting some flexibility in 

planning.  The counting and tracking of usage is critical in scheduled TBO maintenance. 

While the scheduled or TBO concept of maintenance practices has served the 

military well over many years, the concept has several inherent drawbacks.  The first is 

that a preponderance of inspections or replacements are conducted on perfectly 

functioning components only because the usage time dictates so.  If maintenance actions 

were performed only when a component was known to be in a state of unacceptable 

degradation or definitively failing, a great deal of time, effort and costs could be saved.  

Many inspections could be eliminated and perfectly functioning parts could remain in 

operation until they were known to be in one of the above-mentioned states.  Another 

drawback of scheduled TBO is that it is rarely based on the history of the components.  

Using the prior example of the bearings in a helicopter's rotor system, if sufficient data 

had been collected which indicate that only 1 in 1000 bearings had degraded by the 500 

flight hour TBO, perhaps an inspection interval of every 400 hours could produce the 

same or better safety and readiness levels with a savings in time, maintenance effort and 

costs.  "Historical data" is rarely incorporated into the scheduled TBO maintenance 

concept. 
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2. Condition Based Maintenance 
A different approach to the performance of aircraft maintenance is CBM.  The 

underlying concept of CBM is to perform aircraft maintenance only when monitoring 

sensors indicate that maintenance is needed or will be needed on a component or system.  

Maintenance planners and maintenance actions are not tied to the counting and tracking 

of usage; rather the focus is on a component's state or condition.  Monitoring sensors 

collect and record status and performance data of specific components while in use.  

From this data the actual condition, or state, of the components is then inferred for the 

user.  This provides the ability to forego scheduled maintenance on components or 

systems which have reached their high times but are still functioning properly.  Likewise, 

the user can specifically identify a failed or degraded component before its scheduled 

inspection and take immediate corrective maintenance action.  Additionally, if a 

maintenance planner is alerted to the fact that a component is degrading, or that its 

performance is lessening although still operating at an acceptable level, the planner is 

afforded greater flexibility in the scheduling of maintenance.  The maintainer not only 

understands that the component is wearing, but also, perhaps, at what rate and from that 

fact can choose the time of a required maintenance action. 

In summary, the goal of the move to CBM is to rapidly and accurately identify 

faults in order to eliminate time-consuming inspections and unnecessary component 

replacements.  Potential benefits of CBM are the minimization of maintenance efforts 

and component replacement along with an increase in readiness and safety.  Thus, the 

CBM concept has the potential to eliminate the shortfalls of scheduled TBO maintenance. 

Cases of success have already been demonstrated by the IMD-HUMS operating in 

the 30 UH-60L helicopters.  For example the system was able to determine the cause of a 

persistent buzz felt by aircrew during flight. For 400 flight hours prior to the installation 

of the IMD-HUMS the buzz had been unidentifiable.  After IMD-HUMS installation the 

source of the vibrations was isolated to the electrical generator.  Upon removal of the 

generator the spline adapter was found to be severely worn.  Replacement of the adapter 

eliminated the buzz.  Other benefits have been realized in regard to several maintenance 

practices, readiness, and safety.  During the thesis experience tour in which the system 
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was demonstrated to the authors, maintainers expressed that when using the system the 

process of both "main rotor track and balance" and "tail rotor vibes" had become much 

simpler, quicker and reliable with respect to maintenance requirements.  For more 

successful applications of the CBM concept refer to Collacott (1979) which lists case 

studies and resulting benefits of CBM in the shipping, mining, production, nuclear power 

and aviation industries.  For a better understanding of the DoD strategy and issues of 

CBM see Butcher (2000).  This report addresses the benefits and rewards the military 

services are reaping through CBM as well as issues concerning further implementation of 

CBM.  The IMD-HUMS is one of the key CBM programs case studied in the report.  

 

B. IMD-HUMS  
 

1. Purpose  
"...in the 22 years I've been in the Army, this is the best program as far as going 

from reactive to pro-active maintenance..."  Sergeant First Class Reeve, Delta Co, 4th Bn, 

101st AVN Div, 7 June 2005.  

Coming from one of the maintainers of the 30 US Army UH-60L helicopters with 

IMD-HUMS, this quote by SFC Reeve lends credence to the potential and worth of the 

IMD-HUMS.  The US Army plans to install the IMD-HUMS on all of its UH-60M 

helicopters.  In addition, the system has been purchased by the US Navy for installation 

into CH-53E helicopters. The Navy is also considering installation of this system on the 

H-60, UH-1, AH-1, and V-22 aircraft (NAVAIR e-mail, 8 July 2005).  Goodrich 

Corporation began development of the IMD-HUMS to perform CBM on helicopters in 

1997 under the auspices of the DoD Commercial Operations & Support Savings Initiative 

(COSSI). The underlying purpose of the IMD-HUMS is to improve flight readiness and 

safety, with the added bonus of savings in maintenance effort, time and costs. (Hess, 

2001)  

The IMD-HUMS provides automated equipment usage tracking for life-limited 

components, from entry into service until retirement.  The usage tracking is used not only 

in the continuation of scheduled TBO maintenance practices, but also for determining 
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accurate component lifetimes and for developing component fault prediction models.   

Instrumentation aboard the aircraft collects usage data during aircraft operations, which is 

then applied to life-limited components currently installed on the aircraft (IMD-HUMS 

User Manual, 2005).  With IMD-HUMS component usage times are automatically 

counted and tracked for TBO; previously this process was conducted manually.  Most 

important, usage times may be computed from any number of variables, including time 

spent in various flight regimes.  It stands to reason that components of aircraft which fly 

mostly straight and level and take off and land at improved airfields wear more slowly 

than components on aircraft that are used for high-stress maneuvers in harsh 

environments, like, for example, the deserts of Iraq.  The IMD-HUMS tracks these 

regimes, and, through study, users may be able to determine what components wear, 

under what regimes and at what rate.  Through this capability, flight readiness and safety 

are enhanced through the early identification of degraded components (IMD-HUMS User 

Manual, 2005). 

 

2. Concept of Operations 
The IMD-HUMS provides an automated capability to monitor, diagnose and track 

usage for many components of a helicopter.  Sensors of the IMD-HUMS which are 

installed on the helicopters collect data during flight operations.  The initial acquired 

measurements are physical in nature: motion, rates of motion, and forces.  An acquisition 

is the record of a specific set of these measurements over a fixed period of time.  For each 

acquisition, the IMD-HUMS manipulates these readings through proprietary algorithms 

to compute CI, and from these, HI for each component. The CI are values which depict a 

certain aspect of a component's state and are calculated from the raw data of physical 

measurements.  The CI are aggregated to produce a components health indication (HI). 

This collection of CI and HI for each acquisition is then used for maintenance 

diagnostics. 

The two main sub-systems of the IMD-HUMS are the On-Board System (OBS) 

and the Ground Station System (GSS).  The OBS is physically located on the helicopter 

and is comprised of a cockpit display unit (CDU), a data transfer unit (DTU) and data 
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transfer memory unit (DTMU), a remote data concentrator (RDC), a main processor unit 

(MPU), two junction boxes (JB1/JB2), 30 accelerometers, a main and tail rotor magnetic 

RPM sensors, a main rotor blade tracker, and engine output shaft optical tachometers.  

The GSS is external to the helicopter, runs on a PC and is comprised of the computer 

hardware and software that reads and processes the data collected from the OBS. (Figure 

1) (IMD-HUMS User Manual, 2005) 

 

Figure 1.   The Components of the IMD-HUMS (from System Users Manual for 
IMD-HUMS)  
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A helicopter component in operation results in an associated vibration.  Each of 

the many components of an operating helicopter produces vibrations.  It is these 

vibrations of which the IMD-HUMS takes readings.  IMD-HUMS data collection begins 

at the various aircraft sensors.  For instance, the sensors used for data collection from the 

electrical generators are accelerometers; they are located on the transmission accessory 

gear box modules, one for each of the two generators (Figure 2).  These accelerometers 

are used to measure the specific vibrations which come from all the internal components 

such as gears, shafts and bearings throughout the transmission accessory gear box 

module, not just the electrical generators.  Data collected by the accelerometers is then 

sent directly to the MPU for processing. 

 

 

Figure 2.   Location of IMD-HUMS Accelerometers on UH-60L Helicopter (from 
System Users Manual for IMD-HUMS) 

 
 

The MPU is located in the aircraft's transition section avionics bay.  It is the brain 

of the OBS portion of the IMD-HUMS.  The MPU receives data from the accelerometers 

and performs the following tasks: conversion of analog data into digital data; recognition 

of flight regime and determination of regime duration; conversion of data into CI; 
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recognition of vibration exceedances; and the storage of data for transfer to the DTU.  

After the data has been processed by the MPU, the resulting outputs are referred to as 

acquisitions (IMD-HUMS User Manual, 2005).  This data is in raw data file (rdf) format. 

The Ground Station System consists of all the software and hardware associated 

with the analysis of the acquisitions not located on the helicopter.  Once the acquisitions 

are downloaded from a DTMU, this data and all other data from all flights of all aircraft 

using the IMD-HUMS are available for analysis.  The GSS will automatically generate 

some of the required maintenance actions resulting from an IMD-HUMS equipped 

aircraft's flight (IMD-HUMS User Manual, 2005). 

 

C. UH-60L HELICOPTER AND ELECTRICAL GENERATORS 
The UH-60L (Blackhawk) (Figure 3) is a twin turbine engine, single rotor, semi-

monocoque fuselage helicopter. The primary mission capability of the helicopter is 

tactical transport of troops, supplies and equipment.  Secondary missions include training, 

mobilization, development of new and improved concepts, and support of disaster relief.  

The US Army alone has over 1,900 H-60 helicopters in its inventory (International 

Institute for Strategic Studies, 2005).  The incorporation of IMD-HUMS into the H-60 

fleet is a major financial investment with great implications concerning the maintenance 

practices of these helicopters.  
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Figure 3.   UH-60L Blackhawk Helicopter (from Operators Manual for UH-60L 
Helicopter) 

 
 

There are two electrical generators in each UH-60L helicopter (Figure 4).  They 

are mounted on and driven by the transmission accessory gear box module.  Each is 

capable of supplying the total helicopter power requirements (Operators Manual for UH-

60L Helicopter, 2003).  Main components associated with the electrical generators are as 

follows: the spur gear located in the accessory transmission model which transfers the 

rotational power to rotate the generator shaft, the bearings which support and stabilize the 

generator shaft, and the generator shaft itself which rotates along with mounted brushes 

to produce electricity.  
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Figure 4.   UH-60L Generator (after Intermediate Maintenance Repair and Special 
Tools List for UH-60L) 

 

 

D. PHYSICS OF VIBRATIONS AND EXPLANATION OF TERMS 
This section provides an overview of the basic physical concepts, terms and tools 

used in CBM and specifically the IMD-HUMS.  These concepts are used to describe the 

important CI computed by IMD-HUMS and used in this thesis.  Also explained is how 

these CI are used to assess the health of a component. 
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1. IMD-HUMS and Mechanical Vibrations 
An oscillation is the variation, usually with time, of the magnitude of a quantity 

with respect to a specified reference when the magnitude is alternately greater and 

smaller than the reference (Harris, 2002).  A vibration is an oscillation where the varying 

quantity is the parameter that defines the motion of mechanical system (Harris, 2002).  It 

is the vibrations from operating components which the IMD-HUMS acquire for analysis.  

A rotating high-speed engine shaft, a main transmission gear turning, and a main tail 

rotor blade rotating, twisting, and flapping in multiple directions all produce some type of 

vibration.  The gears, shafts and bearings of the UH-60L generators, which are the 

components chosen for this study, also produce vibrations when in operation. 

The IMD-HUMS uses accelerometers, also known as pezio-electric transducers, 

to measure mechanical vibrations.  Specifically they measure changes in the rate of speed 

of displacement, or acceleration, of a component in a particular direction.  

Accelerometers convert physical acceleration into analog electrical voltages.  These 

accelerations oscillate over time hence the resulting motion is a vibration (Collacott, 

1979). 

The peak-to-peak (P2P) value of a vibrating quantity is the algebraic difference 

between the extremes of the quantity (Harris, 2002).  The IMD-HUMS considers the 

peak-to-peak value of vibrations because this value tends to increase when vibrating 

components begin to fail. 

The term envelope (Env) refers to the fact that the background signals are 

removed from a vibration leaving only the portion of the vibration which is to be focused 

upon or analyzed (Harris, 2002).  The IMD-HUMS will extract the envelope signal for 

some of its outputs. 

Probability Density Function (pdf) and kurtosis are statistical concepts applied to 

vibration analysis. All vibrations have a characteristic pdf which characterizes the 

probability of a specific instantaneous vibration occurring.  Vibrations of good operating 

components usually have pdfs with a bell-shaped curve.  Deviations from the bell-shaped 

curve can be used to indicate failing or degrading components.  The fourth moment, or 
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kurtosis, of the curve is best suited to capture these deviations.  This approach has been 

particularly useful in the vibration analysis of bearings (Rao, 2004). 

The term meshing is used to define the working contact or the fitting together and 

interactions of gears.  Meshing of gears results in vibrations which the IMD-HUMS 

measures. 

 

2. Condition Indicators and Health Indicators 
Condition Indicator/Indication(s) (CI) and Health Indicator/Indication(s) (HI) are 

terms developed by Goodrich Corporation.  The CI are variables computed by IMD-

HUMS from the raw vibratory data.  They are used as a measure of a component's state at 

the time of acquisition.  There are several types of CI.  The important CI used in this 

study are described in the following paragraphs.  Up to eight different CI are used by the 

IMD-HUMS to calculate a value which summarizes a component's overall state, known 

as a HI.  For each specific component there is a proprietary algorithm developed by 

Goodrich Corporation which determines exactly how its HI is computed.  HI are scaled to 

have values between 0 and 1.  During the time period in which data is collected, a HI 

value between 0.0 and 0.32 is normal (operating fine), between 0.33 and 0.66 is called a 

warning, and between 0.67 and 1.0 is called an alarm (software changes subsequent to the 

data collection period have resulted in changes to the HI scale). 

Shaft Order 1 (SO1) is a measurement used to detect dynamic imbalances and 

shaft misalignment with supporting structures (usually bearings) of a shaft.  It has 

dimensions of distance per unit time, measured in IPS (inches per second).  A single 

oscillation in the resulting vibration occurs (order 1) for each complete shaft revolution 

when an imbalance and/or misalignment exists.  These imbalances and misalignments are 

a result of wearing and degrading shafts and bearings (Harris, 2002). 

Shaft Order 2 (SO2), like SO1, is a measure used in detecting shaft misalignment 

with supporting structures in a shaft.  It has dimensions of distance per unit time, 

measured in IPS.  Two oscillations in the resulting vibration (order 2) for each complete 

shaft revolution results when a misalignment exists (Harris, 2002). 
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Residual Peak-to-Peak (Res_P2P) is a measurement of displacement (distance 

dimension) in a vibration.  The term "residual" speaks to the fact that the strong tones are 

first removed from the vibration leaving only the portion of the peak-to-peak 

displacement which results from regularly existing background vibration (Harris 2002, 

P3I VPU/DTD Software Requirements Specifications, 2001). 

The ball energy measurement results from defects of a spinning ball bearing.  This 

measurement is used to detect defects or wear in the bearings and is in the dimensions of 

force, distance and time (Rao, 2004). 

Envelope peak-to-peak (Env.P2P) is a measure of the periodic impulses due to 

bearing defects.  Background signals within the vibration are first removed from the 

vibration, leaving only the portion of the vibration which best depicts the bearing defect.  

Envelope peak-to-peak is in the dimension of distance (Rao, 2004). 

Envelope Kurtosis (Env.Kurtosis) is a measurement of how the periodic impulses 

due to bearing defects affect the curve of the pdf of the bearings' total vibration.  Kurtosis 

measures the thickness of the tails of the distribution of bearing vibrations after the 

background signals have been removed (Harris, 2002). 

Envelope Distributed Fault (Env.DF) is a dimensionless ratio of the standard 

deviations of the envelope data (data after background signals are removed) and all raw 

data (the total vibration).  This measurement is used in the analysis of bearing defects.  

The term "distributed" refers to the fact that all possible directions of displacement are 

considered in this measurement (Harris, 2002). 

Gear Distributed Fault (GDF) is a dimensionless measurement resulting from the 

ratio of unexplained and explainable variances of a vibration resulting from the meshing 

of gears.  It is believed that this measurement is an indication of gear teeth wear and 

cracks (Harris, 2002). 
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The G2-1 measurement is a result of an algorithm which considers the average 

peak-to-peak and energy output of a vibration resulting from the meshing of gears.  It is 

used in the analysis of gears.  The term was developed by Goodrich Corporation and the 

algorithm which determines its value is proprietary (P3I VPU/DTD Software 

Requirements Specifications, 2001). 

Gear Misalignment 1 (GearMis_1) is a dimensionless measurement resulting from 

the ratio of the energies of the vibrations produced when gears mesh (Harris, 2002).  
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III. DATA ANALYSIS 

This section details the process of data analysis for this thesis.  It begins with an 

explanation and description of the data and how the data are partitioned into a training 

data set and an experimental data set.  Next, for the training data a brief graphical 

exploration of the differences between good and bad generators as well as differences 

among bad generators is given.  The remainder of the chapter deals with variable 

selection and the fitting of the logistic regression and forest of trees models.  

 

A. DATA  

 

1. Data Collection 
The authors first visited the US Army unit conducting the operational test of the 

IMD-HUMS.  The soldiers of this unit, 4th Regiment 101st AVN Division, are the 

operators and maintainers of the 30 UH-60L helicopters which have IMD-HUMS 

installed.  During the ten-day visit the components and concept of operations of the 

system were explained, the operation of the system was witnessed, and the IMD-HUMS 

data output was shown.  The authors were permitted to fly aboard one of the helicopters 

during which time the data collection process from beginning to end was demonstrated 

and explained in detail.  The soldiers then explained the unit-level data analysis and 

maintenance practices which result from these data collections.  They also provided 

several specific cases of successful implementation of the system and cases of interest for 

possible study.  Of particular interest were six electrical generators which have been 

replaced for cause.  The IMD-HUMS data concerning these replaced generators provided 

an opportunity to determine whether the data can predict the cause and/or need for 

generator replacement.   

In the two years of IMD-HUMS use in the 30 UH-60L helicopters, data has been 

collected on 66 different electrical generators. In these two years six generators were 

removed from operations for some reason of fault; the remaining 60 generators were 
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deemed to be working properly.  Where available, pre-fault data, maintenance records 

and photographs were used to explain the circumstances of the faulted generators.  

Photographs show that some of the faulted generators had worn or totally broken 

components.  In addition, the maintenance history of each of these faulted generators was 

investigated.  Table 1 provides a summary of the cases of each of these six faulted 

generators.  The failure of two of the generators, numbers 9 and 33, were detected during 

operation by a generator warning light.  Faults in the remaining four generators, numbers 

22, 31, 53 and 56, did not trigger the generator warning light.  However each of the four 

generators had unusually high SO1 readings upon removal.  Three of these generators, 

numbers 22, 31 and 53, showed evidence of fault or wear.  The removal of generator 

number 56 resulted from the case of an identifiable buzz explained earlier in Chapter II. 
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Table 1. Confirmed Bad Generators 
 

Confirmed Bad Generators 
Aircraft / 

Side 
Generator 

# Reported Comments 

450 Left 9 

 
# 1 generator failed during shutdown upon APU 
generator coming on during start; replaced #1 
generator  1 

829 Left 33 
 
# 1 generator bad; replaced generator 1 

518 Left 22 

SO1 near 2 IPS so replaced Spline Adapter Coupler 
during next scheduled maintenance.  Evidence of 
wear and possible improper installation.  SO1 
returned to .05 IPS after replacement. 2 

549 Left 31 

Replaced Spline Adapter Coupler due to SO1 at 3 
IPS.  Adapter severly worn and two 1 inch cracks 
found.  IPS still high after Adapter replacement so 
generator also replaced. 2 

515 Right 53 

While getting modified with IMD-HUMS, vibration 
was noted, found to have SO1 at 3 IPS.  Adapter 
Coupler was replaced (had some wear) and SO1 
vibrations dropped below .05 IPS. 2 

518 Left 56 
3 Jan 04 Mosul: had a weird buzz on left-hand side 
ceiling, isolated to generator (found to have SO1 
over 4 IPS).  Generator and coupling replaced. 2 

Source: 
1  Maintenance Records 
2  Johnny Wright and Ground Station Team,  IMD-HUMS Fault Detections, 
Goodrich Corporation.  Draft 5/25/2005 (Ver 117) 
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2. Data Description   
More than 60GB of data, which consists of acquisition data for all the helicopters' 

monitored components, was sent to NPS in rdf format.  The data readings concerning all 

the generator shaft, spur gear and bearing were then extracted and converted to column 

separated value (csv) format for data exploration and analysis.  Each IMD-HUMS 

acquisition concerning the shaft, spur gear and bearings of a generator results in 169 

variables.  The 169 variables are listed in Appendix A.   

 

 

X169 

 

Figure 5.   Example of the IMD-HUMS Data in CSV Format 

 

Each generator is assigned a number, 1 through 66, for ease of identification and 

data manipulation.  These numbers were then incorporated into the data set.  Among the 

169 variables recorded for each acquisition are the Health Indicators for the gear, bearing 

and shaft.  Some generators had acquisitions which numbered in the tens, others in the 

hundreds, and others in the thousands.  In total, for all 66 generators, there are 36,743 

separate data acquisitions from the two-year period during which the IMD-HUMS were 
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installed.  Two generators, numbers 23 and 34, were removed because these two 

generators have less than 20 acquisitions during their time of operation, leaving data from 

64 generators. 

The data set is divided into two separate groups; the "training" set to be used to 

develop models which predict whether a generator is faulty or not based on CI, and an 

"experimental" set used to test how well these models actually predict whether a 

generator is faulty or not.   

 

3. Training Data Set 
Each generator in the training set is assigned a binary value of 1 or 0 to classify 

their known state.  The value of one is given to the generators removed for fault, 

henceforth referred to as bad generators.  The value of zero is given to the generators not 

removed, referred to as good generators.   

A complication of this binary classification system is that there may be bad 

generators, ones which will eventually fail, classified as good because their faulty 

condition has not yet been identified.  The large number of good generators included in 

the training set serves as protection from these errors, diminishing the influence of any 

incorrectly classified generators.  This is a critical assumption in the analysis.  The fact 

that each generator is assigned a state of 0 (good) or 1 (bad) does not mean these 

generators are actually in the assigned state.  The assigned state of 0 (good) or 1 (bad) is 

based strictly upon whether a generator was removed for fault or not.  A generator with 

an undetected fault would be assigned a state of 0 (good).  Likewise a generator which 

was replaced for a reason of fault and assigned a state of 1 (bad) could actually have been 

mechanically good; perhaps the electrical contacts or wiring could have had a short-

circuit.  This is the reason the authors investigated the circumstances and maintenance 

actions of each of the replaced generators. 
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The training set consists of data from 52 of the 64 generators.  Five of the training 

set generators had been taken off their helicopters for fault and are classified as bad; the 

remaining 47 training set generators had no known faults throughout their data history 

and are classified as good.  

Only CI computed in the last 20 acquisitions of each generator of the training set 

were used in the development of the prediction models.  This is because the faulted 

generators, classified as bad, most likely were not bad throughout their entire two-year 

history.  By restricting analysis to the last 20 acquisitions the risk of including 

observations from bad generators gathered before the fault occurred is reduced.  The 

choice of 20 acquisitions is a judgment call made by the authors after inspecting the 

general trend of CI and HI.  This reduced the training set to a total of 1040 acquisitions. 

  

4. Experimental Data Set 
The experimental set consists of data from the remaining 12 generators.  One 

generator, number 33, was taken off its helicopter for fault and the remaining 11 

generators in the experimental set worked properly throughout their data history.  

However, six of these 11 generators were put on what the users called the "watch list,” 

the list of generators with questionable status (Table 2).  The watch list consists of 

generators which show generator shaft CI or HI values which indicate that perhaps these 

generators are beginning to degrade.  Two of the generators, numbers 30 and 21, are 

considered to be in a priority status due to shaft order 1 (SO1) readings above 2.0 IPS.  

The other four watch-list generators have SO1 readings above 1.5 IPS.  These generators 

are included in the experimental set to make a final determination of their status using the 

prediction model. 

The five remaining good generators in the experimental data were on the opposite 

side of the four watch list generators and the one faulty generator.  
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Table 2. Generator Watch List 
 

Generator Watch List 
Aircraft / 

Side 
Generator 

# 
Shaft Order 1 Vibrations (IPS) 

As of 5/27/2005   RTH (Rotor Turn Hours) 
545 Left 30 reached 2.3 IPS and is increasing at 2.2 IPS per 100 RTH 

516 Left 21 reached 2.5 IPS and is increasing at 0.5 IPS per 100 RTH 

441 Left 6 reached 1.5 IPS and increasing at 0.4 IPS per 100 RTH 

516 Right 55 reached 1.78 IPS and is increasing at 0.1 IPS per 100 RTH 

493 Right 48 reached 1.85 IPS and is not increasing 

519 Left 24 reached 1.55 IPS and is increasing at less than 0.1 IPS per 
100 RTH 

Source:  Harrison Chin, Dave Green, Eric Mayhew, Johnny Wright, Generator Shaft 
Analysis: Expanded Survey Including  #441, #515, #516, #518, #519 and #545, 
Goodrich Corporation, Draft 5/27/2005 (Ver 3) 
  

 

B. GRAPHICAL ANALYSIS  
Projection Pursuit (Hastie, Tibshirani & Friedman, 2001) implemented by the 

statistical software Ggobi, is used to gain a visual perspective of the relationship among 

the variables.  Ggobi plots two-dimensional projections of multi-dimensional data.  The 

projection pursuit algorithm numerically searches for two-dimensional projections which 

maximize one of several possible measures of interest.  These projections are displayed 

graphically and the plot is continually updated as the algorithm pursues “optimal” 

projections.  The display is interactive, and Ggobi allows the user to stop the display and 

manually change the projection at any point.  By using projection pursuit several insights 

are gained concerning the data. 

Projection Pursuit is first used to study the five bad generators from the training 

set.  Five variables, the CI: SO1, SO2, Env.P2P, GearMis_1, and Ball Energy, from the 

169 variables relating to generators are used as input variables.  The SO1 and SO2 

variables are accepted common indications for shaft conditional state.  The remaining 

three variables are used to address the conditional state of the gears and bearings.   
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# 53

# 9 

# 56 

# 22 

# 31 

 
 

Figure 6.   Ggobi Dispaly - Clusters of Bad Generators 
 
 

Figure 6 shows the Ggobi graphical display of the projection of these five 

variables for the five bad generators of the training set.  The figure shows that four of the 

five bad generators form single clusters.  Only one of the generators, number 53, forms 

two clusters, one in the upper right of the display, the other in the lower left of the 

display.  From this display, one might be tempted to propose that the two clusters 

represent two different time periods.  However, this is not the case. 
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Let 1y  and 2y  be the linear functions of the five CI computed by Ggobi in Figure 

6.  Further, consistent with Figure 6, let 

4x ≡  SO1 

5x ≡  SO2 

6x ≡  Env.P2P 

7x ≡  GearMis_1 

8x ≡  Ball Energy. 
Then 1y  and 2y  can be computed as 

5 6 84
1 0.140 0.703 0.016 0.697

4.81 0.39 4.08 0.05
x x xxy ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞= × + × + × − ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

5 6 7 84
2 0.963 0.037 0.206 0.08 0.152

4.81 0.39 4.08 65.36 0.05
x x x xxy ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞= × − × − × − × + ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 
Plotting 1y  and 2y  in acquisition time sequence, Figure 7 clearly shows that the 1y  and 

2y  values of generator number 53 oscillates between the two groups depicted in Figure 6 
over time. 

Ggobi y1 and y2
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Figure 7.   Variability of Generator Number 53  
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Ggobi is also used to investigate clustering of generators classified as good and 

bad.  The five same CI are again used as input variables. The resulting display, Figure 8, 

shows a definite difference in grouping of variables between most of the good generators 

(light grey dots if viewed in the non-color copy or yellow dots if viewed in the color 

copy) and the bad generators (dark grey dots if viewed in the non-color copy or purple if 

viewed in the color copy).  However, one bad generator, number 9, seems to be clustered 

with the good generators.   

 

#9 

 

 

Figure 8.   Ggobi Display - Light gray (yellow) dots are good generators, dark gray 
(purple) dots are bad generators 
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C. INITIAL VARIABLE SELECTION PROCESS 

With 169 variables initially in the training data set, we reduced the number of 

potential predictors based upon an understanding of the IMD-HUMS, the physical 

operation of the helicopter and generators, and the vibrations they produce.  This variable 

reduction is necessary when fitting parametric models such as logistic regression.  It is 

also desirable but not strictly required when using certain data mining techniques. The 

169 variables include the HI for the shaft, gear and bearing.  The current practice is to 

rely heavily upon the HI of the generator shaft to assess the overall health of the 

generator.  A single model incorporating acquisitions from all three components, 

however, might better detect other modes of fault or degradation.   

The classification models are based on variables that describe the state of the 

three main components involved in the operation of the generator: the generator's shaft, 

supporting bearings and supporting spur gear.  The authors believe doing so explains the 

overall state of the generator better than separately tracking and assessing each 

component's HI.  

The first step in variable reduction is to eliminate any variables which do not 

originate from, or directly address, one of these three components and their physics of 

operation.  For example, consider torque (a measure of power output) readings of each 

engine at the time of acquisition.  Once up and running, the electrical generators turn at a 

nearly constant speed, under a nearly constant force, regardless of engine torque.  The 

transient run-up time to generator rotational speed is minimal.  Therefore the engine 

torque readings are eliminated as possible predictors.  Explained another way, changes in 

engine torque are not expected to result in significant changes of generator speed or 

forces.  The same reasoning is applied to eliminate other variables.  For example, 

acquisition date/time, aircraft tail number, airspeed, main rotor speed, outside air 

temperature, main gear box temperature, and flight regime are all eliminated. 

It seems this reasoning should also be applied in determining whether position of 

the generator (left or right side of the helicopter) should be included as a variable.  The 

left and right generators are identical and interchangeable in all physical aspects.  The 

only distinction between them is their name "left" or "right" given by the side of the 
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helicopter they are installed on.  However, graphical analysis of certain CI, particularly 

Residual Peak-to-Peak, show clear differences in both mean and variance of these values 

between left and right generators. (Figure 9). 
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Figure 9.   Dot Plot of the Residual Peak-to-Peak CI for Each Generator 

 

The differences may be caused by slight variations in the way that complicated 

vibrations are transmitted from the accelerometer to the MPU.  While the variables 

indicating left or right side of aircraft is not explicitly included in the analysis, the 

left/right position is implicitly captured with variables such as residual peak-to-peak and 

envelope distributed fault. 
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Another method of eliminating variables is to drop any redundant or nearly 

redundant variables.  For instance, shaft orders one, two, three and one-half are all 

calculated in three different scales: IPS, OBS, and G forces.  Each is a constant multiple 

of the other.  Thus the shaft order readings in the scale of IPS were kept while the others 

were dropped.  Normalized versions of the variables ball energy, cage energy, inner race 

energy, outer race energy and total bearing energy were also dropped since non-

normalized readings for each of these exist in the data set. 

By eliminating redundant variables and those not directly involved with the 

generator shaft, gear and bearing, the 169 variables were reduced to 65 variables.  

Appendix A is a listing of all 169 variables with the 65 remaining variables highlighted. 

However, redundancies still exist among the remaining variables.  For example, 

computation of the sample correlations between the 65 predictor variables gives 16 pairs 

of variables with sample correlations greater than 90%.  These high correlations are an 

indication of multicollinearity among the predictors. In addition, the principle 

components of the standardized variables (Hastie, Tibshirani & Friedman, 2001) indicate 

that the first 10 principle components account for 68% of the variability of the 65 

variables (Figure 10). Over 95% of the variability can be captured with 34 components. 

This confirms our suspicion that generator condition can be captured in fewer dimensions 

than the current data set.  Figure 10 shows the percentage of variance captured in the first 

ten principle components of the 65 standardized predictor variables. 
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Figure 10.   Variance Captured in First Ten Components of Data Set Containing 65 
Predictor Variables 
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Table 3. Pairwise Sample Correlations 

 

CI CORRELATION CLASSIFICATION 

SHAFT ORDER 2 0.690 STRONG 

SHAFT ORDER 1 0.654 MEDIUM 

SHAFT ORDER 3 0.491 MEDIUM 

ENVELOPE PEAK TO PEAK 0.376 MEDIUM 

GEAR DISTRIBUTED FAULT -0.305 WEAK 

BASE ENERGY 0.275 WEAK 

BALL ENERGY 0.252 WEAK 

BEARING ENERGY 0.197 WEAK 

 

Pairwise sample correlations of the 65 predictors with the binary response 

variable indicating good or bad are also computed.  Of these, the variables with the 

highest correlation are given in Table 3.  Correlations from 0.0 to 0.33 are classified as 

weak, correlations from 0.34 to .66 are classified as medium, and correlations from 0.67 

to 1.00 are classified as strong. 

This analysis of correlation provides indications of useful variables for the 

models.  They are shaft orders 1, 2 and 3 which result from vibrations of the generator 

shaft, and in the case of shaft order 1 from the bearings also.  Shaft order 2 has the 

strongest correlation with the response variable of all 65 predictors.  Shaft orders 1 and 3 

have the next highest correlations, classified as medium. Envelope Peak-to-Peak which 

result from vibrations of the bearings shows the next highest correlation, also classified as 

medium.  The remaining predicators have differing measures of weak correlation with 

respect to the response. 

 

 



 36

D. LOGISTIC REGRESSION MODEL 

Let n = 1,040 be the total number of observations in the training data set; and let 

iY , 1, 2,3,...,i n= , represent the binary random variable indicating whether the thi  

observation comes from a bad generator ( 1iY = ) or a good generator ( 0iY = ).  The 

logistic regression model assumes that iY  are independent Bernoulli variables with 

( )1i iP Yπ = =  for 1, 2,3...,i n= .  In addition the logistic regression model "links" iπ  to 

the observed values of the k  predictors for the thi  observation 1 2 3, , ,...,i i i ikx x x x  as 

follows:   

0 1 1ln ...
1

i
i k ik

i

x xπ β β β
π

⎛ ⎞
= + + +⎜ ⎟−⎝ ⎠

  1, 2,3,...,i n= ,   

where 0 1 2, , ,..., kβ β β β  are the 1k +  parameters or coefficients to be estimated. 

The benefit of using logistic regression in the model is it can be used to estimate 

π , the probability that the observation comes from a bad generator rather than a good 

generator. 

There is one assumption for logistic regression which our application of the model 

violates heavily.  Logistic regression requires that the iY  be independent of one another.  

Time-series collections, and the method of classifying an entire generator, not each 

individual acquisition, as good or bad create an unusual dependency between acquisitions 

within each generator.  To fit the models, the last 20 acquisitions from each generator in 

the training set are used, thus violating independent sampling.  For instance, a single 

worn or damaged ball bearing wears more and more with continued operation.  Further 

acquisitions depicting more wear and damage will result.  Therefore the state of a 

component is dependent upon its past state.  However, here logistic regression is used to 

compute summary statistics rather than for inference.  Thus the real proof of the utility of 

using this approach lies in how well it predicts problems in the generators in both the 

training and experimental data sets. 
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Two approaches are used to fit the logistic regression model.  The first method 

creates a compact model which has no correlation or left/right generator issues; however, 

the second method is chosen for the final model due to better performance. 

The first method forces inclusion of shaft, gear, and bearing CI.  Three logistic 

regression models are fit: one with CI originating only from the bearings, another with CI 

originating only from the gear, and still another with CI originating only from the shaft.  

Backwards elimination is used to select variables for each of these models, i.e. the CI 

with the greatest p-value is eliminated from the model at each step of the backwards 

elimination procedure.  The end result is 20 variables for the bearings, 14 variables for 

the gear and 5 variables for the shaft.  The purpose of fitting separate models based on CI 

from the three separate components is to ensure that potential predictors for each 

component are included in the final model.  These three sets of variables are then 

combined, and another logistic regression model is fit using backwards elimination for 

variable selection.  With each logistic regression printout Null Deviance (ND) minus 

Residual Deviance (RD) is considered.  In logistic regression fits where all modeling 

assumptions such as independence apply, a small RD is desired but not at the expense of 

an over-fit model.  Including all or too many of the potential variables would result in 

over-fitting; the resulting model would predict the training data set very well but would 

include unnecessary variables and may not be usable for predictions on other data.  

This process gives a model with only five predictors: SO1, SO2, GearMis_1, Ball 

Energy, and Env.P2P.  These CI have low pairwise correlation and the variable indicating 

left/right generator is not needed, but the performance compared to the final model is 

inferior (Table 4). 
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Table 4. Comparison of Logit Model Performance 
 

Model Logit Model Fitting Criteria 

Over Fit 
65 variables 

Null Deviance: 658.4219 on 1039 degrees of freedom 
 
Residual Deviance: 0 on 974 degrees of freedom 

  

Under Fit 
5 variables 

Null Deviance: 658.4219 on 1039 degrees of freedom 
 
Residual Deviance: 213.6768 on 1034 degrees of freedom 

  

 
Final Model 
10 variables 

(fitted with 
generator # 7 
classified as bad, 
explained in 
Results Chapter) 

Null Deviance: 743.8645 on 1039 degrees of freedom 
 
Residual Deviance: 77.71993 on 1029 degrees of freedom 

Chi-
Square 

degrees of 
freedom 

Significance 
Likelihood 
Ratio Test 

666.145 10 .000 

  

 

The second logistic regression model was fit by the following process.  We begin 

with the 65 variables determined after initial variable elimination.  Further elimination of 

redundant or similar variables led to the removal of 16 bearing and 2 gear predictors.  

These variables were eliminated because the pool of predictors included other variables 

derived from the same vibration, differing only from the dropped variables by the 

algorithm from which they are derived.  For instance, the gear variable "AM kurtosis" is 

dropped because "derivative AM kurtosis" is also present.   

A logistic regression model was then fit in Clementine using the 47 variables left 

in the predictor pool. Backwards elimination was again used to eliminate variables 

further, leaving 12 CI.  At this point the classification error rate of the model was also 

monitored so as to choose the final number of predictor variables in a backwards-

stepwise fashion.  Variables continued to be eliminated from the model as long as the 
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misclassification rate stayed low.  When the output shows an increase in the 

misclassification rate, the last eliminated variable is re-installed in the model and that 

model is deemed best.  Using this method, "Envelope Crest Factor" and "Shaft Order 3" 

were eliminated resulting in a final logistic regression model with an overall correct 

classification rate of 99%, and only one observation from a bad generator classified as 

good. 

 

Table 5. Logit Model Classification Rate 
 

Classification 
Predicted 

Observed 
0 (bad) 1 (good) Percent 

Correct 
0  (bad) 919 1 99.9% 
1 (good) 9 111 92.5% 

Overall Percentage 89.2% 10.8% 99.0% 
  

Table 6. Logit Model Fitting Information  
 

 
 

Model Fitting Information  
Model Fitting Criteria Likelihood Ratio Tests 

Model  -2 Log Likelihood  Chi-Square df  Sig.  
Intercept Only 743.864          

Final  77.720 666.145 10 .000 
Goodness-of-Fit  

   Chi-Square df Sig. 
Pearson 6525.330 1029 .000 
Deviance 77.720 1029 1.000 

Pseudo R-Square 
Cox and Snell .473 

Nagelkerke .926 
McFadden  .896 
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Table 7. Logit Model Likelihood Ratio Tests 
 

Likelihood Ratio Tests  
Model Fitting Criteria  Likelihood Ratio Tests 

Effect  
-2 Log Likelihood of 

Reduced Model  Chi-Square  df  Sig. 

Intercept  119.540 41.820 1 .000 
Shaft Order 1 (IPS)  145.015 67.295 1 .000 
Shaft Order 2 (IPS)  144.412 66.692 1 .000 

Gear Distributed Fault  138.842 61.122 1 .000 
G2-1  80.286 2.566 1 .109 

Residual Peak to Peak  141.611 63.891 1 .000 
Gear Misalignment 1  94.404 16.684 1 .000 

Ball Energy  78.850 1.130 1 .288 
Envelope Peak to Peak  184.416 106.696 1 .000 

Envelope Kurtosis  117.695 39.975 1 .000 
Envelope Distributed 

Fault  79.924 2.204 1 .138 

The chi-square statistic is the difference in -2 log-likelihoods between the final 
model and a reduced model. The reduced model is formed by omitting an effect 
from the final model. The null hypothesis is that all parameters of that effect are 0.   
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Table 8. Logit Model Parameter Estimates 
 

   B  Std. Error Wald  df Sig. 
      

Intercept  37.010 7.225 26.242 1 .000 
Shaft Order 1 (IPS)  -9.369 2.025 21.407 1 .000 
Shaft Order 2 (IPS)  -98.357 20.245 23.603 1 .000 

Gear Distributed Fault  -39.442 8.025 24.153 1 .000 
G2-1  .019 .013 2.370 1 .124 

Residual Peak to Peak  1.004 .207 23.473 1 .000 
Gear Misalignment 1  .189 .054 12.223 1 .000 

Ball Energy  -96.958 124.581 .606 1 .436 
Envelope Peak to Peak  -6.652 1.244 28.571 1 .000 

Envelope Kurtosis  3.979 .975 16.653 1 .000 
Envelope Distributed Fault 61.703 44.512 1.922 1 .166 

 

E. TREE MODELS 

Due to the large number of possible predictor variables (CI) available in the data 

set, a nonparametric, data mining approach is used to augment and check the predictions 

of the logistic regression model.  We use a procedure based on Classification and 

Regression Trees (CART) developed by Breiman, Friedman, Olshen and Stone in 1984.  

CART searches all predictors in a data set, making a split in each predictor which reduces 

variability of the dependent variable to the minimum within the resulting subsets.  This 

creates two leaves, each of which can be split again.  This continues until a minimum 

threshold is reached.   

The tree-fitting process provides information about predictor importance as well 

as a decent prediction.  However, it is vulnerable to over-fitting and thus requires cross-

validation and pruning (limiting the number of splits).  Figure 11 shows the un-pruned 

classification tree created from the last 20 acquisitions of each generator in the training 

set.  The 65 CI determined by initial variable elimination are used to fit this tree.  

Appendix F displays the remaining S-Plus training set classification tree output. 
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|Shaft.Order.1..IPS.<1.72485

G2.1<38.5724

Base.Energy<0.655714

Gear.Misalignment.3<-41.7041

G2.3<65.3999

Half.Shaft.Order..IPS.<0.284577

G

G

B B

G B B

 

Figure 11.   S-Plus Classification Tree using Training Set.  The inequality above each 
split corresponds to the left branch.  At each leaf "G" indicates a leaf with a higher 
proportion of good generators and similarly "B" indicates a leaf with a higher proportion 
of bad generators.  

 
 

Classification trees are an intuitive way to see how the data can be split into 

subsets capable of predicting the dependant variable.  However, their accuracy is not 

always satisfactory.  Leo Breiman introduced the concept of aggregating many different 

trees and allowing them to each “vote” on their prediction of the dependant variable 

(Berk, 2005).  Different aggregation methods have been developed which create the 

multiple trees, or forests, in different ways.  Bagging builds trees on many bootstrap 

samples.  Boosting is a more complicated method which first seeks out errors while re-

sampling from original data in order to focus on the marginal boundaries.  Accurate trees 

are then given more weight to their vote; this process creates predictions with excellent 

misclassification rates.  Here, the random forests method is used as a nonparametric cross 

check to the logistic regression model because it builds new trees by randomly choosing a 
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subset of predictor variables each time.  Pruning is not required as the aggregated voting 

process protects against over-fitting.  This algorithm is ideal for the large IMD-HUMS 

data set.  Five hundred trees are fitted to the last 20 acquisitions from each generator in 

the training set and allowed to vote using the random Forest function in the R statistical 

environment.  The resulting misclassification rate is 0.00673. 

The forest model is then used to predict the entire training set (misclassification 

rate 0.01420) as well as the experimental set (see Results section).  One drawback to the 

random forest is its “black box” nature which restricts insight into how predictions are 

made, although variable importance is obtainable. 
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IV. RESULTS 

In the final phase of the study, for both the training and experimental data we 

compare the status of the generators to the estimated probability of being a bad generator 

based on the logistic regression model and the classification of being bad or good based 

on the forest of trees.  In addition, we track the three HI (the HI for the shaft, gear, and 

bearing) provided by IMD-HUMS. 

Only the last 20 acquisitions for each generator are used to construct the logistic 

regression and forest of trees models.  As a check of these methods, probabilities of bad 

are estimated for each acquisition in the entire two-year period for which IMD-HUMS 

data is available.  As an example of how we compare results, consider generator number 

43.  Generator number 43 is in the training set and classified as a good generator.  The 

plot of estimated probability of bad (circular dots) based on logistic regression and 

classification of being good (0) or bad (1) (triangles) based on forest of trees is given in 

Figure 12.  
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Figure 12.   Generator Number 43: Plot of Estimated Probability of Bad from the 

Logistic Regression Model and the Classification of Being Good (0) or Bad (1) from the 
Forest of Trees Model for the Entire Two-Year Acquisition Period  

 

 

Notice that the estimates of the probability of being bad based on the logistic 

regression vary from acquisition to acquisition, even rising above 0.5, but for the most 

part are small with the majority of estimates below 0.1.  For this generator the forest of 

trees classifies the generator as good for every acquisition. 

To see the trends in the estimated probabilities from the logistic regression more 

clearly, in Figure 13 we superimpose a smooth nonparametric fit of the estimated 

probabilities using a loess smoother (Montgomery, 2001).  At each acquisition, the loess 

smoother fits a weighted regression using only the nearest neighbors to that acquisition.  
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The number of nearest neighbors used is governed by the span, or proportion of total 

number of observations in the data set.  The larger the span, the more extensive the 

smoothing.  For most generators, the loess fit with a span of .3 gives a smooth estimate of 

probability of bad which can in turn be used to predict the generator status. However, 

loess fits with a span of .3 for generators numbers 7, 53, and 56 are not smooth; thus 

cross-validation is used to automatically set span parameters between .3 and .5.  This 

cross validation is implemented by default when using the S-Plus function.  For 

consistency, all graphs of the training set generator predictions in the remainder of the 

chapter are all shown with the S-Plus "auto" span parameter.  Experimental set generator 

predictions are all shown with a .3 span parameter.  Figure 13 shows the loess fit for 

generator number 43.  For this generator, the loess fit is a straight line at zero.  Thus, the 

logistic regression results indicate that the generator should be classified as good. 

 

 

 

Figure 13.   Generator Number 43: Plot of Estimated Probability of Bad from the 
Logistic Regression Model with Smoothing and the Classification of Being Good (0) or 
Bad (1) from the Forest of Trees Model for the Entire Two-Year Acquisition Period  
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Analogous to the health indicators, we use the loess smooth of the estimated 

probabilities to indicate that a generator is good, or assign a strong, moderate, or weak 

classification to a generator that is bad.  When the loess fits have values greater than .66, 

then we say that the logistic regression strongly indicates the generator as bad.  When the 

loess fit has estimated fits greater than .33 but smaller than .66, we say that the logistic 

regression moderately indicates the generator as bad.  A value between 0 and .33 shows a 

weak indication, and a straight loess fit line of 0 indicates good.  A summary of the 

results is given in Table 9 for the training data and special cases are discussed in detail in 

this chapter. 

 

Table 9. Classification of Training Set Generators Based On the Logistic 
Regression Fit.  (>.66 - 1.0 Strong, >.33 - .66 Moderate, >0.0 - .33 Weak, 0.0 Good)  

 

Logit Predictions  Prior 
Classification Good Weak Moderate Strong Total 

Good 40 6 0 0 46 
Bad 0 0 1 5 6* 

     52 
*  includes additional generator discovered during model formulation 
  

 The rule used for the results of the forest of trees is a majority of 1.0 predictions is 

a strong classification and a minority of 1.0 predictions is a moderate classification. 

 

A. RESULTS FOR GENERATORS IN THE TRAINING SET 
After fitting the logistic regression model and forest of trees to the last 20 

acquisitions of each generator in the training set, the models are used to predict generator 

state throughout the entire two-year period in which the training set was collected.  This 

serves as additional validation of the models, as well as providing additional information 

about behavior of the faulty generators.  Appendix B provides an overview, while 

subsequent subsections cover specific findings for generators in the training set. 
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1. Four Bad Generators: Numbers 22, 31, 53, 56 

Of the 52 generators in the training set five are classified as bad.  Four of these 

(numbers 22, 31, 53, 56) are similar in that they have high SO1 CI.  For all four of these, 

the generator was determined to be faulty upon inspection.  Figures 12 and 13 provide an 

example of the plot for a good generator.  In contrast, Figure 14 shows the corresponding 

plots for the four generators from the training set for which damage was found upon 

inspection.  It is not surprising that both the logistic regression and forest of trees models 

classify generators with proven damage as bad, since these generators were used for 

model fitting and their CI have values which form clusters separated from the values of 

the CI from the rest of the training set(see Figure 6).  In particular, these generators have 

high SO1 and SO2 CI compared to the good generators in the training set.  Generator 

number 53 is unusual in the amount of variation present between acquisitions, shown on 

the next page in Figure 14.  There may be something different about the failure mode for 

this generator, but no clear-cut, specific cause has been identified, which accounts for this 

variation and is a phenomenon worthy of study. 
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Figure 14.   Generators Numbers 22, 31, 53, 56: Plot of Estimated Probability of Bad 
from the Logistic Regression Model with Smoothing and the Classification of Being 
Good (0) or Bad (1) from the Forest of Trees Model for the Entire Two-Year Acquisition 
Period  

 

2. Generator Number 9   

Generator number 9 is classified as a bad generator because of an actual failure.  

During operation the helicopter did not receive electrical power from this generator 

resulting in the illumination of a generator-fail warning light.  After replacing the 
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generator with a new one the problem went away.  Both the logistic regression and forest 

of trees models classify the number 9 generator as bad, but not strongly (see Figure 15).  

These results are consistent with the plot in Figure 6 which shows that generator number 

9 is not easily distinguished from the good generators.  The figure depicts good generator 

data points (light grey dots if viewed in the non-color copy or yellow dots if viewed in 

the color copy) and bad generator data points (light grey dots if viewed in the non-color 

copy or purple dots if viewed in the color copy) using five important CI as variable 

inputs.  The dark grey dots intermingled with the good generator data points are primarily 

from generator number 9.  This raises the question: Was the generator failure merely 

electrical in nature (such as an electrical short-circuit) and not mechanical and therefore 

undetectable by the IMD-HUMS CI? This generator may be classified as bad in the 

logistic regression and forest of trees models only because it is in the training set and was 

used to build both the logistic regression and forest of trees models.  Perhaps it is 

detected in the logistic and forest of trees models due to over-fitting as a result of its 

binary bad classification.  
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Figure 15.   Generator Number 9: Plot of Estimated Probability of Bad from the 
Logistic Regression Model with Smoothing and the Classification of Being Good (0) or 
Bad (1) from the Forest of Trees Model for the Entire Two-Year Acquisition Period  

 

For generator number 9 there are some acquisitions for which the bearing HI is in 

the warning range, but these warnings are present on many good generators.  To justify 

inclusion of generator number 9 on the bad generator list, two mini-experiments are 

performed.  In the first, the data is perturbed by giving a binary classification of good (0) 

to generator number 9 and fitting a new logistic regression model.  Alarmingly, generator 

number 9 is then predicted to be a perfectly good generator.  In this modified data the 

only bad generators are the four generators with high SO1 CI (numbers 22, 31, 53, 56).  

In the second mini-experiment, the data is then perturbed further by giving a binary 

classification of bad (1) to a perfectly good generator, generator number 26.  The new 
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logistic regression model gives estimates of being bad to this good (classified bad) 

generator no higher than .3, yet now gives estimates of probabilities to generator number 

9 (still classified as good) values in the .5 to .95 range.  This suggests generator number 9 

is not a case of a good generator misclassified as a bad generator.  Therefore generator 

number 9 is retained as a bad generator and is an important element of the logistic and 

forest of trees model.  The mode of failure of generator number 9 may be different from 

the other failure modes and unique to the data set. 

 

3. Generator Initially Classified as Good 
One generator initially classified as good in the training set is detected by the 

logistic regression model as being misclassified.  For generator  number 7 the logistic 

model gives strong estimates of being bad (values of 1.0, much stronger than generator 

number 9) and then rapidly drops off to estimates of being good (values of 0.0) around 

July 2005, see Figures 16.  Figure 17 plots in EXCEL the three IMD-HUMS produced 

health indicators and depicts the dramatic change from a bad conditional state to a good 

conditional state for generator number 7.  
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Figure 16.   Generator Number 7: Plot of Estimated Probability of Bad from the 
Logistic Regression Model with Smoothing and the Classification of Being Good (0) or 
Bad (1) from the Forest of Trees Model for the Entire Two-Year Acquisition Period  
 

 
Generator #7 : Bearing HI Indicates Bad then Decreases Due to 

Maintenance Action

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 100 200 300 400 500

Acquisition Number

IM
D-

H
U

M
S

 H
I V

al
ue

Shaft HI
Gear HI
Bearing HI

 Bearing 
HI Drop 

 
Figure 17.   Generator Number 7: EXCEL Plot of IMD-HUMS Produced Shaft, Gear 

and Bearing HI (note the change from bad to good HI) 
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The generator also had strong bearing HI indications which drop off at the same 

time as the logistic regression model.  Based on these results Goodrich Corporation re-

examined the records for generator number 7 and confirmed that the accessory gearbox, 

which houses the gear and bearing for the generator, had been replaced on the aircraft 

(Bechhoefer, 2005).  The model has properly predicted a generator to be in an unhealthy 

condition, and likewise predicts the post-maintenance health as good.  The pre-

maintenance acquisitions of generator number 7 were then reclassified as bad and the 

logistic regression model was refitted.  The null deviance increased from 658.42 to 

743.86.  The residual deviance decreased slightly from 77.76 to 77.72.  The final forest of 

trees model is then also refit including generator number 7 as a bad generator. 

 

4. Loess Smoothing and “Weak” or "Scattered" Logistic Regression 
Predictions goes under Loess 

The CI's behavior is complex and highly variable in nature.  Spikes which are not 

easily linked to a specific cause can occur; further it is difficult to determine the 

periodicity.  This complex behavior can be seen in varying degrees on many generators 

and it affects HI calculations and logistic regression predictions.  The forest of trees 

appears more robust to these fluctuations than the logistic regression, possibly due to its 

repetitive re-sampling and voting process.  To avoid high false alarm rates, loess 

smoothing is performed on the logistic regression using S-Plus (smoothing parameter 0.3 

or auto-default for the training set, 0.3 for the experimental set). Generator logistic 

prediction results are considered bad if their loess curve ever moves above .33 with 

anything over .66 being considered a strong prediction.  A “weak” prediction occurs 

when there are enough spikes to pull the loess curve above zero.  A “scattered” 

classification occurs when there are one or more spikes before the loess smoothes them 

down to zero.  Figure 18 shows examples of "weak" and "scattered" logistic regression 

examples. 
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Figure 18.   Generators Numbers 2 and 18: Examples of "Scattered" and "Weak" Logit 

Plots of Estimated Probability of Bad from the Logistic Regression Model with 
Smoothing and the Classification of Being Good (0) or Bad (1) from the Forest of Trees 
Model for the Entire Two-Year Acquisition Period  

 
 
5. Good Generators 

There are only three classified good generators with any bad (1) forest of trees 

predictions (numbers 10, 39, 65).  These few bad predictions are sporadic and each time 

they are accompanied by weak or scattered logit predictions as depicted in Figure 19.  

However, with the loess smoother applied the logistic regression model classifies these 

three generators strictly as good. 
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Figure 19.   Generator Number 39: Example of Sporadic Forest of Trees Predictions, 

Plot of Estimated Probability of Bad from the Logistic Regression Model with Smoothing 
and the Classification of Being Good (0) or Bad (1) from the Forest of Trees Model for 
the Entire Two-Year Acquisition Period  

 

B. RESULTS FOR GENERATORS IN THE EXPERIMENTAL SET 

With generator number 7 reclassified as bad prior to its maintenance and with 

both models refit with this reclassification the logistic regression and forest of trees 

models are applied to the experimental set.  A summary of the logit results is given in 

Table 10. 
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Table 10. Classification of Experimental Set Generators Based On the Logistic 
Regression Fit.  (>.66 - 1.0 Strong, >.33 - .66 Moderate, >0.0 - .33 Weak, 0.0 Good) 

 

Logit Predictions  Prior 
Classification Good Weak Moderate Strong Total 

Good 4 0 0 1 5 
Bad   1* 0 0 0 1 

Watch List 2 2 1 1 6 
*generator #33 removed due to generator caution light  
   no IMD-HUMS indications or model predictions of being bad 12 
  

 

 

1. Classified Generators 
The lone experimental generator classified as bad, number 33, taken off the 

aircraft due to a generator caution light has no logistic regression or forest of trees 

predictions of bad condition as well as no HI warnings (Appendix C).  Thus evidence 

points to the cause of failure to be strictly electrical, such as a short-circuit. 

Of the five generators classified as good (numbers 15, 40, 58, 64, 66) in the 

experimental data set, four show no bad predictions made by either the logistic regression 

or forest of trees models.  Generator number 15 shows a highly unusual and fairly strong 

logistic regression result comparable to generator number 30 of the experimental data set 

and generator number 9 of the training set.  However, those generators also show bad 

predictions with forest of trees and at least some HI warnings.  Generator number 15 has 

no bad predictions from the forest of trees model. (Figure 20). 
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Figure 20.   Generator Number 15 (Aircraft 9326493, Left): Plot of Estimated 

Probability of Bad from the Logistic Regression Model with Smoothing and the 
Classification of Being Good (0) or Bad (1) from the Forest of Trees Model for the Entire 
Two-Year Acquisition Period 

 

A request was sent to the users for additional information concerning the current 

state of this generator and whether any maintenance had been performed.  A detailed 

inspection of maintenance records indicates that indeed the generator had been replaced 

during a major maintenance reset in October 2004.  This coincides directly with the drop 

from strong to weak logit prediction.  The logit model has again properly identified a 

generator in bad condition. 
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2. Unclassified "Watch List" Generators 

The logistic regression and forest of trees models are then used to predict the 

status of the generators of questionable status (watch list) in the experimental data set.  

The summary table and a complete set of result graphs are given in Appendix C. 

 Generator Number 30, which has shaft HI alarms, is predicted as bad fairly 

strongly by both the logistic regression and forest of trees models.  This generator is 

unusual due to the sharp increase in both the predicted probability of bad and the number 

of instances of bad classification that occurs while shifting into alarm status (Figure 21).  

 
Figure 21.   Generator Number 30 (Aircraft 9426545, Left): Plot of Estimated 

Probability of Bad from the Logistic Regression Model with Smoothing and the 
Classification of Being Good (0) or Bad (1) from the Forest of Trees Model for the Entire 
Two-Year Acquisition Period 
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Generators Numbers 21 and 48 have shaft HI alarms predicted fairly strongly with 

the forest of trees model and weakly with the loess smoothed logistic regression model 

(Figure 22).  The high variability of these generators keeps the loess curve from climbing, 

but such high variance can be a symptom of impending failure.  Therefore the subjective 

assessment is made that these are indeed bad generators.  

 

 
Figure 22.   Generator Numbers 21 and 48: Plot of Estimated Probability of Bad from 

the Logistic Regression Model with Smoothing and the Classification of Being Good (0) 
or Bad (1) from the Forest of Trees Model for the Entire Two-Year Acquisition Period 
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Generator number 55 had medium predictions from both the logistic regression 

and the forest of trees models (Figure 23).  Interestingly, the logistic regression model 

shows an improvement in the generator's state while the forest of trees model predicts a 

bad state only sporadically toward the latter portion of the acquisitions.  This shows that 

the models indeed function differently, even though they tend to agree with each other.   

 

Figure 23.   Generator Number 55: Plot of Estimated Probability of Bad from the 
Logistic Regression Model with Smoothing and the Classification of Being Good (0) or 
Bad (1) from the Forest of Trees Model for the Entire Two-Year Acquisition Period   
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Generator number 6 and generator 24 are on the watch list but are not predicted 

bad by the logistic regression or forest of trees models.  Notably, generator number 24 

does have some sporadic logit predictions as seen in Figure 24.  The subjective 

assessment is that they are not bad enough to warrant replacement. 

 

 

Figure 24.   Generator Number 24: Plot of Estimated Probability of Bad from the 
Logistic Regression Model with Smoothing and the Classification of Being Good (0) or 
Bad (1) from the Forest of Trees Model for the Entire Two-Year Acquisition Period 
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V. CONCLUSION 

This thesis demonstrates that a logistic regression model which predicts the 

overall state of a UH-60L electrical generator can be fit using IMD-HUMS data collected 

with known cases of failed generators and properly operating generators. Generator status 

serves as the dependent, binary response variable.  The independent predictor variables 

can be chosen using correlation with the dependent variable, backwards elimination using 

p-values, and classification rates.  The model is refined by incorporating new failures as 

they occur into the data set and refitting to produce a more sensitive and accurate 

prediction model.  This results in an accurate picture of a "bad" generator and generators 

susceptible to failure. 

A random forest of trees was also created as a nonparametric augmentation to the 

prediction effort.  It serves to quickly and automatically sample combinations of the 

predictors, aggregating votes in order to make accurate predictions which are fairly 

robust to false alarms.  A single classification or regression tree can be created as a 

parallel effort in understanding the important predictors, helping during variable selection 

for a logistic regression model. 

 

A. APPLICATIONS 
Due to the highly variable nature of the predictor values, this model has lower 

success predicting states with just one acquisition.  In addition, this type of model may 

not be able to predict failures of types not included in the model building.  As data is 

accrued, these previously unobserved failure modes should become increasingly rare.  No 

effort is recommended to supplant any current algorithms currently on board the aircraft.  

Its greatest value may be in the picture it creates of how an at-risk mechanical component 

behaves.  This technique is easily transferable to other components on the helicopter as 

well as to other, completely different, platforms.  The beauty of these models and the 

process of deriving them is that the relatively accurate state pictures they produce are 

attained with minimal effort, time and expense.  Requirements are only an understanding 

of the system and data set, off-the-shelf statistical software and a computer.   
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Concurrent with data collection, the development of component prediction models 

of importance, for example for transmissions or engines, could be initiated.  The selection 

of pertinent CI predictors should start using not only an understanding of the system's 

mechanics and vibrations but also the incorporation of parametric and nonparametric 

statistical approaches.  As more data, including component failures, is collected the 

models are refined.  The use of Ggobi in detecting different failure modes is a particularly 

simple and quick way to investigate the IMD-HUMS data.  These real-data based models, 

which are easily derived, are pertinent in the move toward Condition Based Maintenance. 

For instance, periodically a serious defect is found on one or more single-type 

aircraft resulting in a grounding of the fleet.   ASAM, SoFM and IRAC messages dictate 

specific inspections or corrective maintenance actions which must be accomplished on 

each aircraft prior to the resumption of flight operations.  The time required to fulfill the 

requirements of these messages severely impacts both real-world and training operations.  

In the move toward CBM, this dual logistic regression and forest of trees process could 

be used to focus initial inspection efforts on only those aircraft whose “picture” 

resembles the problem aircraft.  The other aircraft could continue operations and get 

inspected at the next convenient maintenance period.   

Another practical application of this process is to reduce data collection 

requirements of the onboard system.  Important predictor variables which continually 

show up in logistic regression and forest of trees models would be retained while 

variables which never show importance become candidates for removal.  This would free 

up valuable memory space in the onboard system. 

 

B. RECOMMENDATIONS FOR FURTHER STUDY  
Aspects critical to the development of better component health prediction models 

are the incorporation of variance within the multiple CI, concise variable selection, and 

time-series trends. 

It is known that an increase in CI variability overtime is an indication of 

deteriorating component health, but the thresholds between normality and abnormality of 
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variance for the many CI has not yet been determined.  The large data sets now being 

produced by IMD-HUMS can be used to estimate the variance of the CI.   

Further analysis of variable selection in component health prediction models is 

also worthy of more attention.  If the number of CI can be definitively limited to a few 

very effective predictors the "curse of multi-dimensionality" can be eliminated and 

component health distributions can be estimated accurately. 

The multiple acquisitions over time for each CI can be used for trend analysis.  

Rates of change in the CI values incorporated in the prediction models could ultimately 

be used in accurately estimating available component lifetime. The loess smoothing used 

in the logistic regression model serves as a primitive attempt to account for trends.  

However, the data provides potential to use time series information in a much more 

effective manner.  Further study of the time series relationships may illuminate factors 

which cause the seemingly random oscillations in CI. 

The further study of variability and trends could help in addressing the great deal 

of noise present in the data. Random data spikes complicate the setting of thresholds and 

the development of accurate, real-time state prediction algorithms.  In the logistic 

regression model, this created the need for loess smoothing.  While the random forest of 

trees is more robust to false alarms caused by certain spikes, the Type II error rates are 

not known and the model may be too insensitive. 

Ideally, the best of models would determine from a single acquisition a 

component's state and the remaining lifetime of use.  The development of such models 

require further study in understanding the distribution of failures for each component, 

variability within and among CI, and trending of CI over time.  
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APPENDIX A IMD-HUMS SHAFT, GEAR AND BEARING CI 

Each IMD-HUMS acquisition concerning the shaft, spur gear and bearings of a 

generator results in the reading of the 169 variables listed here.  The response variables 

and the generator number are added for this study.  The subset of 65 potential predictors 

remaining after initial variable elimination are highlighted in grey.  

 

RESPONSE 
status 
status binary 
 
SHAFT CI  
Component Name- shaft 
Date_Time 
ah.Tail 
GEN Number 
Torque 
Airspeed 
Main Rotor Speed 
OAT 
MGBTEMP 
Regime 
OpIdx 
OpRTR 
OpNPH 
RTRUSG 
NPH 
Health 
PriRAW 
SecRAW 
COMP 
SENS 
Eng1Torque 
Eng2Torque 
DQ 
XAXIS 
Shaft Order 1 (IPS) 
Shaft Order 2 (IPS) 
 
 
 

 
 
Shaft Order 3 (IPS) 
Half Shaft Order (IPS) 
Shaft Order 1 (OBS) 
Shaft Order 2 (OBS) 
Shaft Order 3 (OBS) 
RecomputedHealthIndicator 
Shaft Order 1 (g) 
Shaft Order 2 (g) 
Shaft Order 3 (g) 
Half Shaft Order (g) 
Half Shaft Order (OBS) 
Sig Avg Peak to Peak 
Sig Avg RMS 
Health Indicator 
Sig Avg Crest Factor 
Sig Avg Skewness 
Sig Avg Kurtosis 
Sig Avg Fifth Moment 
Sig Avg Sixth Moment 
Residual Peak to Peak 
Residual RMS  
Residual Crest Factor 
Residual Skewness 
Residual Kurtosis 
Residual Fifth Moment 
Residual Sixth Moment 
Sig Avg L1 
EO Peak to Peak 
EO RMS 
EO Crest Factor 
EO Skewness 
EO Kurtosis 
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EO Fifth Moment 
EO Sixth Moment 
Gear Distributed Fault 
Resample Rate 
MeasuredShaft Speed Phase Kurtosis 
EO L1 
Total Torque 
Airspeed 
Main Rotor Speed 
Engine1GasTurbineSpeed 
Engine1PowerTurbineSpeed 
Engine1Torque 
Engine2GasTurbineSpeed 
Engine2PowerTurbineSpeed 
Engine2Torque 
 
GEAR CI 
Date_Time 
Tail 
Name-gear 
Health 
PriRAW 
SecRAW 
COMP 
SENS 
DQ 
XAXIS 
Residual Kurtosis 
Residual RMS 
Sideband Mod 1 
Narrowband CrestFactor 
Gear Distributed Fault 
G2-1 
Residual Peak to Peak 
RecomputedHealthIndicator 
Sig Avg Peak to Peak 
Sig Avg Kurtosis 
Sig Avg RMS 
Residual Skewness 
Residual Crest Factor 
Residual Fifth Moment 
Residual Sixth Moment 
Gear Misalignment 1 
Sideband Mod 2 
sm_3 AS Sideband Mod 3 

Health Indicator 
Gear Misalignment 2 
Gear Misalignment 3 
Narrowband RMS 
Narrowband Peak to Peak   
Narrowband Skewness 
Narrowband Kurtosis 
Narrowband FifthMoment 
Narrowband Sixth Moment 
Instantaneous Frequency 
CSM 
AM Kurtosis 
Derivative AM Kurtosis 
FM Kurtosis 
Derivative FM Kurtosis 
FM Peak to Peak 
G2-2 
G2-3 
 
BEARING CI 
Date.Time 
ah.Tail 
BearingName 
BearingPart 
Health 
PriRAW 
SecRAW 
COMP 
brg.Priority 
DQ 
XAXIS 
Ball Energy (Norm) 
Cage Energy (Norm) 
Inner Race Energy (Norm) 
Outer Race Energy (Norm) 
Bearing Energy 15k-20k 
Total Bearing Energy (Norm) 
Envelope RMS 
Recomputed Health Indicator 
Ball Energy 
Cage Energy 
Inner Race Energy 
Outer Race Energy 
Total Bearing Energy 
Envelope Peak to Peak 
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Envelope Crest Factor 
Envelope Skewness 
Envelope Kurtosis 
Envelope Fifth Moment 
Envelope Sixth Moment 
Health Indicator 
Envelope Distributed Fault 
Tone Energy 
Base Energy 
Ball Mod Cage 
Inner Race Mod Ball 
Inner Race Mod Cage 
Inner Race Mod Outer 

Outer Race Mod Ball 
Outer Race Mod Cage 
TotalBearingCoupling Energy 
Ball Mod Shaft 
Cage Mod Shaft 
Inner Race Mod Shaft 
Outer Race Mod Shaft 
TotalShaft-Bearing Coupling 
Ball Spin Ratio 
Cage Ratio 
Inner Race Ratio 
Outer Race Ratio 
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APPENDIX B TRAINING SET RESULTS SUMMARY 

Appendices B and C give the complete logistic regression and Random Forest of 

Classification Trees results.  Appendices D and E give a complete set of IMD-HUMS HI 

for comparison.  Note the change in the method of shaft HI computation around October 

2004. 

 

status binary 
Bd   denotes generators with proven faults (bad) 
Gd   denotes generators without proven faults (good) 

 

HI : Health Indication provided by IMD-HUMS 
on-board algorithms  

S   shaft warning      (SS  denotes alarm status) 
G   gear warning 
B   bearing warning  (BB  denotes alarm status) 

 

Logit 
strong   loess smoothed values over 0.66 

moderate   loess smoothed values over 0.33 
weak   loess smoothed values between 0 and 0.33 

scattered   logit spikes of 1.0 that do not pull loess curve above 0 
 

Forest 
strong   majority of classifications are 1.0 (bad) 

moderate   minority of classifications are 1.0 (bad) 
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Helicopter 
Tail 

Number 
Generator 

Side Status 
Generator 
Number  

HI 
S,G,B Logit Forest 

9126351 Left Gd 1  G   
9226432 Left Gd 2  BB   
9226435 Left Gd 3     
9226438 Left Gd 4     
9226439 Left Gd 5     
9226443 Left Gd,Bd 7  G,B strong strong 
9226446 Left Gd 8     
9226450 Left Gd 10  B weak moderate 
9226453 Left Gd 11  S   
9226455 Left Gd 12  G,B   
9326477 Left Gd 13     
9326485 Left Gd 14  G   
9326500 Left Gd 16     
9326506 Left Gd 17  B   
9326507 Left Gd 18  S,B weak  
9326509 Left Gd 19   weak  
9326515 Left Gd 20     
9326524 Left Gd 25  B   
9326530 Left Gd 26     
9426533 Left Gd 27  B   
9426534 Left Gd 28  S,G,B weak  
9426537 Left Gd 29  G,B weak  
9426549 Left Gd 32  G   
9126351 Right Gd 35     
9226432 Right Gd 36     
9226435 Right Gd 37  S   
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Helicopter 
Tail 

Number 
Generator 

Side Status 
Generator 
Number  

HI 
S,G,B Logit Forest 

9226438 Right Gd 38     
9226439 Right Gd 39  SS,G,B scattered moderate 
9226443 Right Gd 41  G,B scattered  
9226446 Right Gd 42     
9226450 Right Gd 43  G,BB   
9226453 Right Gd 44  B   
9226455 Right Gd 45  G,B   
9326477 Right Gd 46     
9326485 Right Gd 47  G,BB   
9326500 Right Gd 49  S,G   
9326506 Right Gd 50  G   
9326507 Right Gd 51  B   
9326509 Right Gd 52  G   
9326515 Right Gd 54  G   
9326518 Right Gd 57     
9326524 Right Gd 59  S,G,B   
9326530 Right Gd 60  G   
9426533 Right Gd 61  G   
9426534 Right Gd 62   weak  
9426537 Right Gd 63  S,G   
9426549 Right Gd 65  SS,G scattered moderate 
9226450 Left Bd 9  B moderate moderate 
9326518 Left Bd 22  SS strong strong 
9426549 Left Bd 31  SS strong strong 
9326515 Right Bd 53  SS strong strong 
9326518 Right Bd 56  SS strong strong 

  

 

 

 

 

 

 

 

 

 

 



76 

  

 

 

Plots of Estimated Probability of Bad from the Logistic Regression Model with 

Smoothing and the Classification of Being Good (0) or Bad (1) from the Forest of Trees 

Model for the Entire Two-Year Acquisition Period 
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Plots of Estimated Probability of Bad from the Logistic Regression Model with 

Smoothing and the Classification of Being Good (0) or Bad (1) from the Forest of Trees 

Model for the Entire Two-Year Acquisition Period 
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Plots of Estimated Probability of Bad from the Logistic Regression Model with 

Smoothing and the Classification of Being Good (0) or Bad (1) from the Forest of Trees 

Model for the Entire Two-Year Acquisition Period 
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Plots of Estimated Probability of Bad from the Logistic Regression Model with 

Smoothing and the Classification of Being Good (0) or Bad (1) from the Forest of Trees 

Model for the Entire Two-Year Acquisition Period 

 

 

Oct Jan Apr Jul Oct Jan Apr Jul

Oct Jan Apr Jul Oct Jan Apr Jul

2003 - 2005

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

GEN: 22 GEN: 23

GEN: 25 GEN: 26

GEN: 27 GEN: 28



80 

 
Plots of Estimated Probability of Bad from the Logistic Regression Model with 

Smoothing and the Classification of Being Good (0) or Bad (1) from the Forest of Trees 

Model for the Entire Two-Year Acquisition Period 
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Plots of Estimated Probability of Bad from the Logistic Regression Model with 

Smoothing and the Classification of Being Good (0) or Bad (1) from the Forest of Trees 

Model for the Entire Two-Year Acquisition Period 
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Plots of Estimated Probability of Bad from the Logistic Regression Model with 

Smoothing and the Classification of Being Good (0) or Bad (1) from the Forest of Trees 

Model for the Entire Two-Year Acquisition Period 
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Plots of Estimated Probability of Bad from the Logistic Regression Model with 

Smoothing and the Classification of Being Good (0) or Bad (1) from the Forest of Trees 

Model for the Entire Two-Year Acquisition Period 
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Plots of Estimated Probability of Bad from the Logistic Regression Model with 

Smoothing and the Classification of Being Good (0) or Bad (1) from the Forest of Trees 

Model for the Entire Two-Year Acquisition Period 
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APPENDIX C EXPERIMENTAL SET RESULTS SUMMARY 

Helicopter 
Tail 

Number 
Generator 

Side Status 
Generator 
Number  

HI 
S,G,B Logit Forest 

9226441 Left watchlist 6  G   
9326493 Left Gd 15   strong  
9326516 Left watchlist 21  SS weak strong 
9326519 Left watchlist 24  S   
9426545 Left watchlist 30  SS strong strong 
9926829 Left Bd 33     
9926441 Right Gd 40  S   
9326493 Right watchlist 48  SS,G weak strong 
9326516 Right watchlist 55  S,G moderate moderate
9326519 Right Gd 58  B   
9426545 Right Gd 64  S   
9926829 Right Gd 66  G   
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Plots of Estimated Probability of Bad from the Logistic Regression Model with 

Smoothing and the Classification of Being Good (0) or Bad (1) from the Forest of Trees 

Model for the Entire Two-Year Acquisition Period 
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Plots of Estimated Probability of Bad from the Logistic Regression Model with 

Smoothing and the Classification of Being Good (0) or Bad (1) from the Forest of Trees 

Model for the Entire Two-Year Acquisition Period 
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APPENDIX D TRAINING SET HI 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Oct Jan Apr Jul Oct Jan Apr Jul

Oct Jan Apr Jul Oct Jan Apr Jul

2003 - 2005

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

GEN: 1 GEN: 2

GEN: 3 GEN: 4

GEN: 5 GEN: 7

Shaft.Health
Gear.Health
Bearing.Health

Oct Jan Apr Jul Oct Jan Apr Jul

Oct Jan Apr Jul Oct Jan Apr Jul

2003 - 2005

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

GEN: 8 GEN: 9

GEN: 10 GEN: 11

GEN: 12 GEN: 13

Shaft.Health
Gear.Health
Bearing.Health



90 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Oct Jan Apr Jul Oct Jan Apr Jul

Oct Jan Apr Jul Oct Jan Apr Jul

2003 - 2005

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

GEN: 14 GEN: 16

GEN: 17 GEN: 18

GEN: 19 GEN: 20

Shaft.Health
Gear.Health
Bearing.Health

Oct Jan Apr Jul Oct Jan Apr Jul

Oct Jan Apr Jul Oct Jan Apr Jul

2003 - 2005

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

GEN: 22 GEN: 23

GEN: 25 GEN: 26

GEN: 27 GEN: 28

Shaft.Health
Gear.Health
Bearing.Health



91 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Oct Jan Apr Jul Oct Jan Apr Jul

Oct Jan Apr Jul Oct Jan Apr Jul

2003 - 2005

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

GEN: 29 GEN: 31

GEN: 32 GEN: 34

GEN: 35 GEN: 36

Shaft.Health
Gear.Health
Bearing.Health

Oct Jan Apr Jul Oct Jan Apr Jul

Oct Jan Apr Jul Oct Jan Apr Jul

2003 - 2005

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

GEN: 37 GEN: 38

GEN: 39 GEN: 41

GEN: 42 GEN: 43

Shaft.Health
Gear.Health
Bearing.Health



92 

 

 

 

 

 

 

Oct Jan Apr Jul Oct Jan Apr Jul

Oct Jan Apr Jul Oct Jan Apr Jul

2003 - 2005

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

GEN: 44 GEN: 45

GEN: 46 GEN: 47

GEN: 49 GEN: 50

Shaft.Health
Gear.Health
Bearing.Health

Oct Jan Apr Jul Oct Jan Apr Jul

Oct Jan Apr Jul Oct Jan Apr Jul

2003 - 2005

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

GEN: 51 GEN: 52

GEN: 53 GEN: 54

GEN: 56 GEN: 57

Shaft.Health
Gear.Health
Bearing.Health



93 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Oct Jan Apr Jul Oct Jan Apr Jul

Oct Jan Apr Jul Oct Jan Apr Jul

2003 - 2005

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

GEN: 59 GEN: 60

GEN: 61 GEN: 62

GEN: 63 GEN: 65

Shaft.Health
Gear.Health
Bearing.Health



94 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



95 

APPENDIX E EXPERIMENTAL SET HI 
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APPENDIX F TRAINING SET CLASSIFICATION TREE 

*** Tree Model *** 
 
Classification tree: 
tree(formula = status ~ Shaft.Order.1..IPS. + Shaft.Order.2..IPS. +  
 Shaft.Order.3..IPS. + Half.Shaft.Order..IPS. + Gear.Distributed.Fault + 
 Residual.Kurtosis + Residual.RMS + Sideband.Mod.1 +  
 Narrowband.CrestFactor + G2.1 + Residual.Peak.to.Peak +  
 Sig.Avg.Peak.to.Peak + Sig.Avg.Kurtosis + Sig.Avg.RMS +  
 Residual.Skewness + Residual.Crest.Factor + Residual.Fifth.Moment + 
 Residual.Sixth.Moment + Gear.Misalignment.1 + sm.3.AS.Sideband.Mod.3 + 
 Gear.Misalignment.2 + Gear.Misalignment.3 + Narrowband.RMS +  
 Narrowband.Peak.to.Peak + Narrowband.Skewness + Narrowband.Kurtosis + 
 Narrowband.FifthMoment + Narrowband.Sixth.Moment +  
 Instantaneous.Frequency + CSM + AM.Kurtosis + Derivative.AM.Kurtosis + 
 FM.Kurtosis + Derivative.FM.Kurtosis + FM.Peak.to.Peak + G2.2 + G2.3 + 
 Bearing.Energy.15k.20k + Envelope.RMS + Ball.Energy + Cage.Energy + 
 Inner.Race.Energy + Outer.Race.Energy + Total.Bearing.Energy +  
 Envelope.Peak.to.Peak + Envelope.Crest.Factor + Envelope.Skewness + 
 Envelope.Kurtosis + Envelope.Fifth.Moment + Envelope.Sixth.Moment + 
 Envelope.Distributed.Fault + Tone.Energy + Base.Energy +  
 Ball.Mod.Cage. + Inner.Race.Mod.Ball + Inner.Race.Mod.Cage +  
 Inner.Race.Mod.Outer + Outer.Race.Mod.Ball + Outer.Race.Mod.Cage + 
 Total.Bearing.Coupling.Energy + Ball.Mod.Shaft + Cage.Mod.Shaft. + 
 Inner.Race.Mod.Shaft + Outer.Race.Mod.Shaft +  
 Total.Shaft.Bearing.Coupling, data = CGDNtrainingCUT.65, na.action =  
 na.exclude, mincut = 5, minsize = 10, mindev = 0.01) 
Variables actually used in tree construction: 
[1] "Shaft.Order.1..IPS."    "G2.1"                   "Base.Energy"            
[4] "Gear.Misalignment.3"    "G2.3"                   "Half.Shaft.Order..IPS." 
Number of terminal nodes:  7  
Residual mean deviance:  0.01577 = 16.29 / 1033  
Misclassification error rate: 0.004808 = 5 / 1040  
node), split, n, deviance, yval, (yprob) 
      * denotes terminal node 
 
 1) root 1040 658.400 G ( 0.09615 0.90380 )   
   2) Shaft.Order.1..IPS.<1.72485 970 281.300 G ( 0.03299 0.96700 )   
     4) G2.1<38.5724 200 175.900 G ( 0.16000 0.84000 )   
       8) Base.Energy<0.655714 154   0.000 G ( 0.00000 1.00000 ) * 
       9) Base.Energy>0.655714 46  56.530 B ( 0.69570 0.30430 )   
        18) Gear.Misalignment.3<-41.7041 11   0.000 G ( 0.00000 1.00000 ) * 
        19) Gear.Misalignment.3>-41.7041 35  20.480 B ( 0.91430 0.08571 )   
          38) G2.3<65.3999 7   9.561 B ( 0.57140 0.42860 ) * 
          39) G2.3>65.3999 28   0.000 B ( 1.00000 0.00000 ) * 
     5) G2.1>38.5724 770   0.000 G ( 0.00000 1.00000 ) * 
   3) Shaft.Order.1..IPS.>1.72485 70  18.160 B ( 0.97140 0.02857 )   
     6) Half.Shaft.Order..IPS.<0.284577 65   0.000 B ( 1.00000 0.00000 ) * 
     7) Half.Shaft.Order..IPS.>0.284577 5   6.730 B ( 0.60000 0.40000 ) *  
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