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ABSTRACT 
 
 

Based on recent advances, skilled objectively-determined probabilistic forecasts 

of some weather phenomena may be provided to operational decision-makers.  Objective 

probabilistic forecasts that are generated from ensemble prediction systems (EPS) are 

attractive as a forecast methodology for Department of Defense (DoD) applications for 

three reasons: first, atmospheric scientists understand that the atmosphere has a limit of 

predictability, which means that traditional deterministic forecasts lack important 

uncertainty information;  second, it has been demonstrated that quantifying uncertainty 

may improve a weather forecast user’s ability to make a better decision based on their 

own utility function, which translates to better operational risk management (ORM) for 

the DoD; and finally, progress points towards a future with machine-to-machine warfare.  

These assertions are examined by applying probabilistic forecasts from an ensemble-

based aircraft-scale turbulence forecast system to several cases and scenarios.  Results 

clearly demonstrate the advantage of using ensemble-based probabilistic forecasts versus 

deterministic forecasts.  Additionally, application of ensemble-based probabilistic 

forecast information to DoD operations is shown to be possible through its ORM 

programs.  Specifically, air refueling scenarios are identified that demonstrate the 

integration of probabilistic turbulence forecast guidance into the U.S. Air Force ORM 

process. 
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I. INTRODUCTION  

Similar to their civilian counterparts, military meteorologists are concerned with 

delivering accurate and useful forecasts to their respective customers.  Military forecast 

users have particular mission requirements, and therefore require different types of 

forecasts.  A United States Air Force meteorologist tailors a general weather forecast to a 

particular weapons platform to optimize weapons payloads and to plan for possible 

exploitation of weather events.  To provide these types of forecasts, forecasters are 

embedded in units that are at the “tip of the spear.”  A goal of integrating weather 

personnel into operating units is to ensure that “decision-grade environmental 

information for supported units” (Air Force Instruction 15-128, 2005) is incorporated into 

the decision-making process.   Unfortunately, many of the forecast methods employed by 

forecasters are based on a subjective assessment of a deterministic forecast.  In some 

cases, probabilistic forecasts may better inform decision-makers, as they convey some 

measure of uncertainty in the forecast.  More than deterministic forecasts, probabilistic 

forecasts will help Air Force Weather (AFW) provide “decision-grade” information to 

the customer.  Based on recent advances, skilled objectively-determined probabilistic 

forecasts of some weather phenomena may be provided to operational decision-makers.    

Objective probabilistic forecasts that are generated from ensemble prediction 

systems (EPS) are attractive as a forecast methodology for Department of Defense (DoD) 

applications for three reasons: i) Atmospheric scientists understand that the atmosphere 

has a limit of predictability, which means that traditional deterministic forecasts lack 

important uncertainty information (Wilks 2006; Anthes 1986; Lewis 2005);  ii), It has 

been demonstrated that quantifying uncertainty may improve a weather forecast user’s 

ability to make a better decision based on their own utility function (Zhu et al. 2002), 

which could translate to better operational risk management for the Air Force; and iii), 

Progress points towards a future with machine-to-machine warfare. Machine-to-machine 

warfare will require data from many sources, which includes atmospheric variables. 

Traditional deterministic forecasts will likely be inadequate for future advanced dynamic 

decision-making models that likely will be inherent in advanced weapon systems.  

Therefore, skilled probabilistic forecasts of atmospheric phenomena that impact military 
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operations will be necessary.  The value of the human forecaster cannot be overstated 

(Brooks and Doswell 1993), but a balance between automated machine forecasts and 

human forecasts will be needed.  Also recently, the need for probabilistic forecasts has 

been outlined in the draft Plan for the Joint Ensemble Forecast System (F. Eckel, 2005, 

personal communication).  Therefore, it is hypothesized that advancements in the area of 

computers, meteorology, decision theory, statistics, and weapon systems can lead to a 

transformation in the way military meteorologists provide forecast information for 

military applications.   

The three main objectives of this thesis are to:  (1) create an ensemble-based 

turbulence forecast system capable of producing forecast probability for air turbulence 

that impacts flight operations, (2) to demonstrate the advantages of providing forecasts 

based on probability of occurrence over traditional deterministic forecasts, and (3) to 

demonstrate the integration of probabilistic turbulence forecast information into the Air 

Force decision-making process.   

 This thesis has been organized into seven chapters:  Introduction (Chapter I), 

Background, Methodology, Results chapters, and Conclusion.  The Background chapter 

(Chapter II) is subdivided into three main sections that review background literature and 

documentation for Ensemble Prediction Systems, Weather Risk Management (WRM), 

and Aircraft-Scale Turbulence.  These topics are further subdivided to introduce certain 

ideas and theories basic to understanding how to create and implement an EPS capable of 

producing reliable forecasts of aircraft-scale turbulence.  The Methodology (Chapter III) 

Chapter discusses the proposed turbulence forecasting method.  Three Results chapters 

correspond to the three main thesis objectives.  The first results chapter (Chapter IV) 

explicitly describes the ETFS design and setup.  The second results chapter (Chapter V) 

details the techniques and results for the second thesis objective (i.e., demonstrating the 

advantages of probabilistic forecast information versus deterministic forecast 

information).  Chapter VI addresses the third thesis objective (i.e., integrating 

probabilistic forecast information into Air Force decision-making process).  Finally, 

conclusions and recommendations are made in the Conclusion chapter (Chapter VII).  
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II. BACKGROUND 

A basic understanding of meteorology (with emphasis in numerical weather 

prediction), decision theory, statistics, and military weapons systems is important to 

understand the complex problem of applying ensemble forecast products to DoD 

operations.  Background will be explicitly given on ensemble forecasting, weather risk 

management, and air turbulence.  It is assumed the reader will have some basic 

understanding of statistics and military weapon systems.   

 

A. ENSEMBLE PREDICTION SYSTEMS 

1. History and General Assumptions About Atmospheric Predictability 
According to Wilks (2006), “forecasting would be… easy and meteorology 

boring” if the atmosphere were constant or strictly periodic, because describing it 

mathematically would be easy.  The atmosphere is neither constant nor strictly periodic.  

Based on the literature, a consensus is developing when considering atmospheric 

uncertainty.  First, “dynamical chaos,” as defined by Lorenz (1963), is inherent to the 

atmospheric system (i.e. atmospheric non-linear, dynamic equations are highly sensitive 

to initial conditions) and so even if the models had perfect physics and dynamics, there 

would still be uncertainty in the forecasts (Wilks 2006).  Second, models do not have 

perfect dynamics and physics and therefore there exists some model error that increases 

atmospheric forecast uncertainty (Wilks 2006; Anthes 1986).  Wilks (2006) asserts, 

“deterministic forecasts of future atmospheric behavior will always be uncertain, and 

probabilistic methods will always be needed to adequately describe that behavior.” 

The most accurate approach to providing probabilistic forecast data would be to 

use stochastic dynamic prediction.  One would apply the deterministic equations, those 

equations that define the laws governing the atmosphere, to the initial condition 

probability distributions describing the uncertainty in the initial state of the atmosphere.  

The process would yield forecasts that are probability distributions of the future state of 

the atmosphere (Wilks 2006).    In theory, the stochastic-dynamic prediction approach is 

appealing.  Practically, the current sets of equations used to define the atmospheric laws 
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are inadequate.  Additionally, representing the millions of dimensions for the phase state 

of an atmospheric system would require extreme amounts of computing power. 

A more practical approach is to approximate the pure stochastic approach with an 

EPS.  Initially stochastic-dynamic prediction was conducted using Monte Carlo methods 

suggested by Esptein and Leith (Lewis 2005).  Monte Carlo methods assume a known 

randomly sampled probability density function (PDF) (Lewis 2005).  However, 

operationally derived perturbations are produced through singular vector or breeding 

vectors, which are not random (Lewis 2005).  The need for using ensemble methods was 

generated by the inherent sampling problem with Monte Carlo methods (Lewis 2005).  

Lewis (2005) notes, “…it remains to be determined the most appropriate way to perturb 

the models...”  Much work is being done to improve how EPS systems perturb ensemble 

members.   

Kalnay (2003) points out that ensembles primarily differ in how they generate 

initial perturbations.  She classified the methods as, “those that have random initial 

perturbations and those where the perturbations depend on the dynamics of the 

underlying flow.”  Monte Carlo methods are in the first class and bred and singular 

vectors are in the second class.  The methods in the second class rely on the “errors of the 

day.”  She notes that multi-model (models from different operational centers) and multi-

data assimilation techniques are promising methods as well. 

 2. Basic EPS Design and Variations 
An EPS is designed to account for two areas of uncertainty:  initial condition 

uncertainty and model uncertainty (error).  Essentially, an EPS may have: 1) ensemble 

members that vary initial conditions/boundary conditions (ICs/BCs); 2) ensemble 

members that vary by model-related errors (i.e., different numerical schemes, 

parameterization, etc.); or 3) members that combine both methods (Toth and Vannitsem 

2005).  

Initially, ensemble prediction systems produced forecasts by only varying ICs.  

This method of producing ensembles became widely accepted at many national weather 

centers across the world and still remains the primary method for at least two global 

ensembles: the National Centers for Environmental Protection (NCEP) Ensemble and the 
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European Centre for Medium-range Forecasting (ECMWF) Ensemble.  The NCEP 

ensemble and the ECMWF ensembles differ in how they perturb initial conditions.  The 

NCEP ensemble uses a bred vector method and the ECMWF ensemble uses a singular 

vector approach (Kalnay 2003).  Perturbing only the ICs is valid if model-related errors 

do not dominate the final error fields (Toth et al., 1997).  The Canadian Meteorological 

Centre (CMC) EPS takes into account the IC and model-related error.  In addition to 

having perturbed observations, some of the 16 members of the ensemble have different 

physics packages.  The CMC EPS also has perturbed boundary conditions “such as sea 

surface temperature, albedo and roughness length” [CMC Website Available online at: 

http://weatheroffice.ec.gc.ca/ensemble/index_e.html (Current as of June 17, 2005)].    

Eckel and Mass (2005) have also delineated methods and terminology associated 

with ensemble prediction systems.  They use “multi-analysis” to describe an ensemble 

system with varied ICs (and lateral boundary conditions for mesoscale ensembles).  

Varied surface boundary conditions (SBCs) could also be lumped under the multi-

analysis classification, but are often model-dependent.  They note that two methods have 

emerged to account for model error.  The first method, called model diversity, consists of 

two techniques.  The first technique, called multi-model, utilizes completely different 

models to cause ensemble members to have different model attractors.  The second 

technique, called varied-model, uses the same model, but with “…varied combinations of 

model physics and/or perturbed parameterization.”  The second method described by 

Eckel and Mass (2005) is called stochastic physics, in which random errors are added to 

the evolving solution during the model integration.  A variety of strategies and methods 

have been developed to account for IC and model uncertainty.  The development of 

ensemble prediction systems will continue to improve as better methods for stochastic- 

dynamic forecasting are found and integrated into numerical weather prediction (NWP). 

3. Types of Ensemble Products/Graphics 
The methods with which stochastic data are conveyed to a forecaster or forecast 

user will affect how well the ensemble forecast data are incorporated into the decision-

making process.  A good review of the known methods for displaying ensemble forecast 

data can be found in the University Corporation for Atmospheric Research (UCAR) 

website under Cooperative Program for Operational Meteorology, Education and 
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Training (COMET) program training module titled: “Ensemble Forecasting Explained” 

(UCAR 2005c).  The document describes three basic types of ensemble forecast 

products:  mean with spread, spaghetti chart, and probabilistic product types.  The three 

product types show the “middleness and spread”, “the probability distribution of 

ensemble forecasts,” and “the probability of exceeding specific thresholds,” respectively 

(UCAR 2005c). 

a. Mean and Spread 
This type of product is the most compact and easiest to interpret of the 

three ensemble product types.  The mean is the average of all ensemble members and the 

spread is the standard deviation of the ensemble members, which assumes a Gaussian 

distribution.  This type of product can be used to quickly ascertain the uncertainty of the 

forecast.  If the product indicates a high spread (high standard deviation) then there is 

more uncertainty in the forecast (UCAR 2005c).  The mean and spread product is not 

good for guiding a forecaster’s conceptual model, because the mean of the ensemble 

members is much smoother than a single ensemble member.  The smoothing effect could 

“smooth-out” important atmospheric features needed for proper meteorological forecasts. 

b. Spaghetti 
The spaghetti type of ensemble forecast product displays all ensemble 

members on one product, or the distribution of the members.  This product can be 

beneficial for a quick look at where the members are in agreement or disagreement, but 

can become very confusing with many ensemble members.  Only an incomplete 

assessment of the probability distribution can be determined from the spaghetti chart 

(UCAR 2005c). 

c. Probabilistic 
UCAR (2005c) illustrated two types of probabilistic ensemble forecast 

products, “the most likely event” and “the probability of exceedance” products/graphics.  

For example, the “most likely event” product can be used to distinguish precipitation type 

or turbulence intensity.  The ensemble data would need to be post-processed through an 

algorithm specifically designed for a particular weather element forecast, such as 

precipitation type or turbulence intensity.  The “most likely event” product could hide 

other events with nearly the same likelihood of occurrence.  The “probability of 
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exceedance” product is good for determining the likelihood of exceeding warning 

thresholds.  Both types of probability products do not convey the full probability 

distribution and may hide other possible solutions that may impact the forecast user 

(UCAR 2005c). 

 

B. WEATHER RISK MANAGEMENT 
A primary motivation for a probabilistic forecast approach is that it can couple 

uncertainty data with the risk tolerance of weather forecast users.  As noted by Zhu et al. 

(2002), “Quantifying forecast uncertainty with an ensemble approach can improve the 

user’s bottom line.”  Weather is an important factor in decision-making for many 

organizations and individuals.  Often these organizations and individuals, hereafter called 

forecast users, would prefer to have advanced warning of weather phenomena (i.e., a 

weather forecast).  The methods in which forecast users choose to integrate these data 

into their decision-making process vary and generally depend on the forecast user’s 

sensitivity to weather elements.   

Forecast users choose to react to a weather forecast based on two factors.  First, 

the forecast user examines their own sensitivity to the weather phenomena with reference 

to a utility function.  This may be subjectively or objectively determined, plus it may be 

in less quantifiable terms, such as life and safety.  Second, the forecast user subjectively 

determines whether or not to trust the forecast based on their own ‘fuzzy’ interpretation 

of the certainty expressed by the forecast or forecaster.  For an Air Force meteorologist, 

that means a pilot receiving an aviation forecast will look the forecaster in the eyes and 

say “Are you really certain about the forecast?”  If the forecaster blinks, then the pilot 

knows the forecaster does not have high confidence in his or her forecast.  Wilks (2006) 

explains that before a forecaster should report a “subjective degree of uncertainty as part 

of a forecast,” a forecaster needs internally to develop a subjective probability 

distribution of their uncertainty.  A reasonable estimation of objective forecast certainty 

can be given with a well-designed EPS.  This uncertainty information should be 

incorporated into the decision-making process in terms of forecast probability of 

occurrence. 
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1. Cost/Loss Analysis and Economic Value 
For weather forecasts to be effective, they must provide some economic value, 

save lives, enhance quality of life, or provide some benefit to the forecast user based on 

their utility functions.  The study of weather forecasts with respect to economic value has 

been the subject of economists, meteorologists, and decision theorists for some time.  

Despite the obvious connection between weather and economics, Palmer (2002) notes 

that there is a difference in the way that weather forecasts are assessed by model 

developers and forecast customers,  “root-mean square error of 500 hPa height on the one 

hand; pounds, euros, or dollars saved on the other.”   

Zhu et al. (2002) demonstrate the economic value of ensemble forecasts versus 

the traditional deterministic forecast.  They believe an essential question to presenting 

any new method is does the new method provide higher quality guidance than the 

existing method?  With ensembles, they demonstrated that the answer is yes, particularly 

at longer forecast intervals.  The authors performed a detailed analysis of economic value 

versus cost/lost ratio (C-L ratio) and relative operating characteristics versus lead time for 

500mb heights.  They noted that beyond a 4-day lead time, the lower horizontal 

resolution T62 model ensemble outperformed the higher horizontal resolution control 

model.  Both model formulations had similar computational costs.  They concluded that 

for most users the ensemble offers more economic value than a single deterministic 

control forecast.   

Both Zhu et al. (2002) and Palmer (2002) suggest that if a user’s exposure to risk 

can be quantified and related to their risk tolerance, then better (more economical) 

decisions can be made.  This is demonstrated by the following example from Palmer 

(2002).  If a traditional deterministic 5-day forecast indicated benign conditions that does 

not mean there is not a chance of severe weather.  If that deterministic forecast was all 

that was provided to make a decision on whether or not to tow an oil-rig to a site, a 

rational decision would be to proceed.  If the EPS predicted a 20% chance of severe 

weather, the decision makers would then consider the cost of keeping the ship in port 

(waiting for favorable weather conditions) to the loss associated with an oil rig in-tow 

during a storm (i.e., cost-loss ratio). 



9 

Zhu et al. (2002) and others have demonstrated that ensembles are valuable tools 

for decision-making.  The intrinsic value of ensemble prediction systems is the ability to 

ascertain some level of uncertainty.  The above business logic relies on the subtle 

assumption that the EPS operates as a pure stochastic-dynamic model and that its 

forecasts encompass truth.  Obviously, this is not true because models do have errors in 

their numerics, dynamics, physics, etc. and we are unable to sample the true PDF that 

represents the initial conditions.  Additionally, the added benefit of ensembles is not 

immediately clear, unless one knows the forecast user’s C-L ratio.  The C-L ratio is often 

difficult to determine for many DoD forecast users.  Instead, forecast users make decision 

based on a more qualitative assessment through operational risk management (ORM). 

2. Operational Risk Management  
An economic argument for the use of probabilistic forecast information may not 

be sufficient for military planners.  Certainly, military planners do want to save money, 

but sometimes saving lives or mission success is more important than the “bottom line.”  

Fortunately, the advantage of using a C-L analysis does not need to be confined to 

monetary values.  One could describe C and L in terms of benefits and risks.    For 

example, military planners balance risk with mission priority.  In order for probabilistic 

forecast information to be accepted by DoD decision-makers, it must be integrated into 

the ORM decision-making process. 

U.S. Air Force operational risk management guidelines and tools are defined in 

Air Force Pamphlet 90-902 (AFPAM 90-902).  The introduction states that, “All US Air 

Force missions and our daily routines involve risk.”  In response, U.S. Air Force sub-

communities further develop specific ORM worksheets and tools to aide in making 

operational decisions.  “The USAF aim is to increase mission success while reducing the 

risk to personnel and resources to the lowest practical level in both on- and off-duty 

environments” (AFPAM 90-902).  ORM is a way of life in the U.S. Air Force. 

The military is very similar to its civilian business counterparts in that its goals 

are to preserve its people and assets.  However, the two communities differ in their end 

goal.  Ultimately, the military seeks to maximize its combat capability (AFPAM 90-902) 

and businesses seek to maximize their profits.  The risk management goals of the U.S. 

Air Force can be found in Figure 1.  Other DoD components follow similar ORM 
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guidelines and goals.  In addition to the goals of ORM, there are four main principles to 

include: 1) accept no unnecessary risk, 2) make decisions at the appropriate level, 3) 

accept risk when benefits outweigh the cost, 4) integrate ORM into Air Force doctrine at 

all levels (AFPAM 90-902).   

 
Figure 1.   U.S. Air Force Risk Management Goals (from AFPAM 90-902). 

 

Every mission and function of the U.S. Air Force has its own unique set of risks.  

Historically, Air Force Weather has only produced deterministic forecasts, which do not 

convey forecast certainty.  This important missing information is potentially useful in 

light of the U.S. Air Force’s guiding ORM goals and principles.  Probabilistic forecasts 

provide the missing uncertainty information.  Probabilistic forecast give the forecast user 

another tool to mitigate risk to the level necessary for their unique set of characteristics.  

Ensemble-based probabilistic forecasts can be effectively applied to a variety of DoD 

operations by integrating the probabilistic forecasts into the ORM process.  

 

C. AIRCRAFT-SCALE TURBULENCE 

1. The Phenomena 
Atmospheric turbulence is a critical micro-to-mesoscale weather element that 

affects aviation-related activities in all stages of flight from takeoff to landing.  Scientists 

and researchers have made considerable efforts to better understand, observe, and 

forecast turbulence.  In this thesis, it is hypothesized that ensemble forecasting can 

improve turbulence forecasting and minimize the effects of turbulence on aviation.  
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However, significant integration of ensemble-based forecast probability of occurrence of 

turbulence into the aviation decision-making process will be necessary for substantial 

impact.  A sufficient understanding of turbulence and how it is observed is helpful, if not 

critical, for any turbulence forecasting method.  

Air turbulence impacts both military and civilian aviation, sometimes even 

causing fatalities (Ellrod and Knapp 1992).  Air turbulence that affects military aviation 

will be addressed in this thesis.  Although, similar effects may be felt in civilian aviation, 

the effects of air turbulence on civilian aviation will not be specifically addressed in this 

thesis.    The effects of air turbulence on military aviation are mission-dependent.  For 

example, air turbulence can cause aircraft that are conducting air refueling missions to 

reroute, change altitude, or loiter to find military operating areas that are unaffected by air 

turbulence.  Air turbulence affects other mission types (e.g., cross-ocean transports, 

shuttle, etc.), as well.  Finally, air turbulence adds another element of risk into an 

operational risk management formula.  Rerouting and loitering due to air turbulence and 

flying through air turbulence can increase fuel expenses (Ellrod and Knapp 1992) and 

increases mission times at the expense of the DoD budget and U.S. national security.  

Improvements in air turbulence observing and forecasting are needed to positively affect 

the “bottom line” of the DoD budget and positively affect national security and 

operational risk management.   

MacCready (1964) defines turbulence as “…motions at various intensities and 

scales in three dimensions…” and that “all the statistical properties of atmospheric 

turbulence can be related to one parameter, ε, a dissipation rate of turbulent energy.”  He 

further explains that, fortunately, the inertial sub-range of ε includes the gusts that affect 

aircraft (aircraft fatigue problems and the human “feel” of turbulence).  Ideally, NWP 

models would directly forecast turbulence.  Unfortunately, the horizontal and vertical 

resolution required to do this for aircraft-scale turbulence remains too high for current 

NWP models.  Instead, diagnostics have been developed to calculate turbulence intensity 

or likelihood of turbulence.  Essentially, the diagnostics are algorithms or indices that 

parameterize turbulence for an entire grid space.  A problem with these diagnostics is that 

they do not account for all types of turbulence.  A diagnostic that is designed for clear-air 

turbulence may not work for mountain-wave turbulence or convection-related turbulence.  
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To appropriately forecast turbulence, all methods of turbulence generation should be 

taken into account (frontogenesis, convection, orography, etc.).  The issue of 

appropriately forecasting turbulence will be discussed later. 

2. Observing Air Turbulence 
Observing air turbulence that impacts flight operations is challenging.  Air 

turbulence is of small enough scale to require an observing system with very high 

horizontal and vertical resolution (probably less than one kilometer horizontal resolution) 

for the phenomena to be observed accurately.  Until recently, most turbulence data were 

provided via subjective verbal pilot reports (PIREPS) at the discretion of the aircrew, 

which has made PIREPS a difficult tool to use for the verification of turbulence 

(Cornman et al 1995; Schwartz 1996; Tebaldi et al. 2002).  Therefore, more objective 

automated turbulence measurements from aircraft are a welcome observing tool for 

atmospheric researchers and operational meteorologists alike.  As reported in the 

National Center for Atmospheric Research (NCAR) Research Application Programs 

(RAP) 2004 Annual Report, automated turbulence measurements from aircraft, in 

combination with Doppler ground-based radar, are being developed as a method for 

clear-air turbulence observing and nowcasting (UCAR 2005b).   

a. Automated Aircraft Turbulence Measurements 
The Global Systems Division of the Earth System Research Laboratory 

(ESRL/GSD), formerly Forecast Systems Laboratory (FSL), has taken a lead role in 

providing automated meteorological reports from commercial aircraft to atmospheric 

researchers and to government operational forecasters.  Recently, ESRL/GSD added 

automated turbulence data to the other weather data on their unofficial (not operational) 

website http://acweb.fsl.noaa.gov/ (ESRL/GSD 2005a; ESRL/GSD 2005b).  

 Automated weather reports from commercial aircraft have been 

assimilated into NWP models for over a decade.  More recently, these data have been 

provided to forecasters and other users through ESRL/GSD’s website, although the data 

were proprietary.  ESRL/GSD’s users are bound by an agreement not to release the data 

real-time to non-participating airlines.  The data can only be used by government 

forecasters, such as National Oceanic and Atmospheric Administration (NOAA), and 
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cannot be released to airlines that do not participate in the Aircraft Communication 

Addressing and Reporting System (ACARS, ESRL/GSD  2005a).  

The automated turbulence measurements by aircraft are estimates of a 

form of ε, which is MacCready’s proposed universal turbulence standardization 

technique.  It is quantitatively based on atmospheric turbulence, as opposed to the 

qualitative and aircraft-dependent turbulence a pilot may “feel” (MacCready 1964).  In 

his paper, MacCready defines eddy dissipation rate (EDR) as “the rate at which the 

turbulence energy is converted into heat for steady turbulence.”  He stated that an eddy 

dissipation rate can be measured independently of aircraft type or speed.  Eddy 

dissipation rate can be measured by detecting “…the small longitudinal (or lateral) 

velocity turbulent fluctuation…” (MacCready 1964).  

According to the 2003 NCAR RAP Annual Report, the current EDR 

algorithm implemented on United Airlines aircraft estimates EDR turbulence intensity 

indirectly through vertical acceleration measurements in combination with a model of 

aircraft response to turbulence (UCAR 2005a).  A future method will be implemented 

that will estimate EDR directly by estimating the vertical component of the wind vector 

(UCAR, 2005a).  NCAR continues to conduct research sensors to better measure EDR. 

It may be possible for the eddy dissipation rate to be directly ingested into 

NWP models, which suggests a future possibility of forecasting EDR directly (AMS 

2003).  If a pilot is provided EDR data directly, he/she may be able to relate that 

information to an aircraft-dependent chart (particular to their aircraft flight 

characteristics, as well) and make a determination on how to continue their flight. 

At the time of this research, the use of automated turbulence observations 

for verification of turbulence diagnostics appears to be limited.  Tebaldi et al. (2002) used 

vertical accelerometer data “avars” only when the reports were for null.  Null reports 

were determined to be unambiguous.  They noted that reports of actual turbulence could 

have been pilot induced and not a result of actual turbulence.  Although automated 

turbulence observations were not used in this research, they would be a valuable source 

of verification data if used in future work.  
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b. PIREPS 
Schwartz (1996) provided a critical review of the use of PIREPS 

quantitatively in developing aviation weather guidance products.  In his review, he noted 

that the difficulties and inadequacies of using PIREPS alone for verification of aviation 

forecasting techniques are numerous.  He reviewed several articles detailing different 

aviation forecasting techniques.  One researcher noted that his particular forecasting 

method gives the probability of the reporting of clear air turbulence (CAT), not the 

probability of CAT.  Schwartz (1996) noted that this problem doesn’t render the 

techniques useless, just that PIREPS are not ideal for verification.  He further commented 

that, “Familiar classic statistical measures of performance for forecasting algorithms, 

such as the false alarm ratio, probability of detection, and threat scores, have limited 

applicability when poorly observed data are used.”  There are other problems associated 

with the “nonconformity to the regulations” and “non-standardization” of reporting by 

pilots (Schwartz 1996). Despite the disadvantages of using PIREPS for the verification of 

turbulence forecasting techniques, few other better options are currently available to 

researchers and operational meteorologists.  Automated turbulence observations, 

however, from aircraft will enhance the available PIREP database.   

3. Forecasting Air Turbulence 
No single universal method is employed by operational aviation forecast centers 

and DoD meteorologists for automated or manual forecasts of aircraft-scale turbulence.  

Most centers still provide some form of traditional human turbulence forecasts.  This 

subsection on forecasting air turbulence will highlight several of the ways current 

operational centers and meteorologists forecast aircraft-scale turbulence, as well as 

mention a few general turbulence indices that are easily employed during post-processing 

to create automated turbulence forecasts.   

a. Turbulence Diagnostics 
Over the last 50 years, many methods have been proposed to forecast air 

turbulence.  Only some of the methods that deal with clear-air turbulence (CAT) will be 

discussed here.  Tebaldi et al. (2002) reviewed many of the turbulence diagnostics 

developed over the years, and some of the known turbulence diagnostic methods are 

listed here: 
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• Vertical wind shear 

• Horizontal wind shear 

• Richardson number 

• Turbulence Kinetic Energy (TKE) 

• Colson-Panofsky index 

• Ellrod indices 

• Enlich empirical wind index 

• Brown’s index  

• Reap MOSS predictors 

• Dutton’s empirical index. 

A complete list (in detail, with equations) can be found in Tebaldi et al. 

(2002).  Each method of forecasting turbulence varies in approach.  Some methods 

consider vertical wind shear, horizontal wind shear, stability, and/or vorticity.  They 

compared the performance of the different indices with the same dataset and found that 

some of the indices consistently performed poorly, and therefore suggested disregarding 

those indices.  Although, the TKE preformed best, they concluded that “indices 

considered in isolation are not very informative, and that a multidimensional approach 

performs better in predicting CAT” (Tebaldi et al 2002).  In addition to examining the 

index approaches individually, they applied different multivariate techniques to predict 

turbulence and found that the multivariate model “borrows strength across the different 

predictors” (Tebaldi et al. 2002).  A pseudo-multivariate approach in conjunction with an 

EPS will be proposed later as a possible method for forecasting the probability of 

occurrence of turbulence. 

A diagnostic that uses spatial structure functions of model variables (such 

as velocity fields and temperature) to estimate small-scale turbulence has been proposed 

by Frehlich and Sharman (2004).  This method seems promising because of the ability to 

use model output to accurately represent small-scale turbulence at sub-model grid scales.  

The method also promises to positively contribute to building a climatology of turbulence 

(Frehlich and Sharman 2004).   
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b. Aviation Weather Center (AWC) 
An automated product produced by RAP, which is available as a nowcast 

and forecast product through the AWC and distributed through the Aviation Digital Data 

Service (ADDS) website [Available online at: http://adds.aviationweather. 

noaa.gov/turbulence/], is called Graphical Turbulence Guidance (GTG).  The GTG 

product appropriately weights the forecast with PIREPS.  EDR data reported 

automatically from aircraft are being introduced into the process (UCAR, 2005b).  RAP 

NCAR scientists are encouraged with the new diagnostic developed by Frehlich and 

Sharman (2004), since it can produce model-derived EDR fields (UCAR 2005b). 

c  Air Force Weather (AFW) 
Within AFW, several methods exist by which turbulence forecasts are 

generated and disseminated.  AFW operates with a forecast-funnel approach using three 

levels (ideally, higher-level forecasts guiding lower-level forecasts):  the strategic level, 

the operational level, and the tactical level.  Strategic-level forecasts are created at the Air 

Force Weather Agency (AFWA) at Offutt Air Force Base (AFB), Nebraska (Air Force 

Instruction 15-128, 2005).  Operational-level forecasts are created at operational weather 

squadrons (OWSs) throughout the world (i.e., regional hubs).  Tactical-level forecasts are 

issued at the base level by combat weather teams (CWTs).  Each level issues their own 

forecasts based on their area of concern and their operational level.  The strategic-level 

forecasts normally are global or hemispheric in nature and are typically automated model 

guidance issued from the modeling branch at AFWA.  OWSs issue forecasts for their 

specific region (e.g., traditional human graphic charts).  Finally, CWTs issue forecast to 

the war fighter (e.g., pilot) in the form of a written one page text forecast describing 

where they will experience turbulence on their mission.  CWTs also have various ways of 

giving weather briefings tailored to their specific customer.  Some of the regional charts 

produced by the OWSs are often included in the pilot weather briefing. 

Turbulence forecast products are issued in a similar manner from each of 

the three levels of operation.  At the strategic level, AFWA produces automated upper-

level turbulence forecast guidance (note Figure 2) based on post-processed MM5 output 

using the second version of Ellrod’s objective CAT turbulence index, as defined in Ellrod 

and Knapp (1992) (G. Brooks, 2005, personal communication).  Additionally, AFWA 
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produces low-level turbulence forecast guidance based on post-processed MM5 output 

using an AFWA modified version of the Panofsky index (G. Brooks, 2005, personal 

communication).  Operational-level forecasts of turbulence are generally traditional 

human forecasts in regional chart form.  The forecasters at the OWS who produce the 

turbulence forecast are trained to use model guidance, rules-of-thumb (ROTs) from the 

Air Force Weather Agency Technical Note 98-002, and local standard operating 

procedures (SOPs).  The ROTs are generally based on studies from the 1960s that were 

based on synoptic factors.  Therefore, OWS turbulence forecasts are subjective in nature 

(note Figure 3).  Finally, CWTs produce tailored text turbulence forecasts to pilots (Flight 

Weather Briefing – note Figure 4) and may attach a copy of the regional turbulence 

forecast chart produced by the OWS.  CWTs provide subjective human forecasts that are 

tailored to the mission requirements of the customer.   

 

 
 
 

Figure 2.   Example AFWA Model-Derived Turbulence Forecast (from JAAWIN 2005). 
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Figure 3.   Example OWS Human Turbulence Chart (from Barksdale OWS 2005). 
 
 

 
 
 

Figure 4.   Example Flight Weather Briefing (from DD175-1 2005). 
 
 

d. Short-Range Ensemble Forecasting System (SREF) Aviation 
Project  

Under the sponsorship of the Federal Aviation Administration (FAA) the 

NCEP began the SREF Aviation Project to provide mesoscale probabilistic forecast 

information to the aviation world (Zhou et al. 2004).  Forecast probability of turbulence 

occurrence is one of the many experimental forecast probability products created by the 

SREF Aviation Project.  These products employ the simple Ellrod turbulence diagnostic 

index (Zhou et al. 2004), which is easy to use in conjunction with probability of 



19 

exceedance type ensemble forecast products.  Zhou et al. (2004) note that verification of 

aviation-related parameters has yet to occur because of the difficulties applying their 

current deterministic verification tools to probabilistic forecasts. 
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III. METHODOLOGY 

Using the previous background research as a foundation, it is hypothesized that a 

well-designed ETFS based on existing EPSs [e.g., NCEP’s Global Forecast System 

(GFS) ensemble, U.S. Navy’s Operational Global Atmospheric Prediction System 

(NOGAPS) ensemble, etc.] would improve AFW’s ability to forecast air turbulence, 

maximize cost effectiveness, and positively affect U.S. national security by increasing 

mission effectiveness. 

A well-designed EPS captures analysis uncertainty and model uncertainty.  For an 

ETFS to capture analysis uncertainty, it will obviously need to be multi-analysis.  To 

capture model uncertainty, it will need to be varied-model (varied turbulence diagnostics) 

and possibly multi-model (varied core model).  Tebaldi et al, (2002) indicated that some 

turbulence diagnostic methods yield better results than others, so calibrated (weighted) 

ensemble members would be required for a skilled ensemble.  Weighting factors could be 

based on how well the particular members have performed over some period of time.  

Different ensemble members could be based on different turbulence diagnostics.  

However, Tebaldi et al. (2002) mention that there could be a problem of calibrating the 

different diagnostic methods because of the difficulty of verifying air turbulence.  A 

possible solution may be to use the EDR fields defined by spatial structure functions, as 

defined by Frehlich and Sharman (2004) to estimate the climatology and for predicting 

small-scale turbulence below the model grid scale.  An effective ETFS would also 

forecast more than one type of turbulence (i.e., mountain wave turbulence, convective 

turbulence, etc.).   

To benefit from the power of a well-designed ETFS, methods for integrating 

ETFS probabilistic output (note Figure 5) into the AF decision-making process need to be 

created to convey uncertainty information to the forecast user in an effective and 

beneficial manner.  At some point, the following questions need to be answered: “When 

in the decision-making process is probabilistic information most needed? When is it most 

effective? How should it be conveyed? If the forecast users have an automated decision-

making process, how can we incorporate stochastic forecasts into the process?”  
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Interestingly, Dutton (1980) had already asserted that forecasts of CAT must be stated in 

terms of probability to convey “maximum possible information to the user.” 

To answer some of these questions, the author created a rudimentary ETFS based 

on GFS ensemble output and Ellrod’s Turbulence Index to apply to real world AF 

scenarios.  Figure 5 is an example stochastic turbulence forecast product produced by the 

ETFS created for this thesis.  Figure 5 represents the forecast probability of moderate to 

severe turbulence for the layer 30,000 ft to 39,000 feet.  Warm colors represent a high 

probability of moderate to severe turbulence for the given layer represented in the figure.  

Cool colors represent lower probabilities of moderate to severe turbulence. 

 
Figure 5.   Example Turbulence Probability of Occurrence from ETFS. 
 

The following three chapters report the techniques used and the results obtained 

for the three main objectives of this thesis.  Recall, the three main objectives of this thesis 

are to:  (1) create an ensemble-based turbulence forecast system capable of producing 

forecast probability for air turbulence that impacts flight operations, (2) to demonstrate 
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the advantages of providing forecasts based on probability of occurrence over traditional 

deterministic forecasts, and (3) to demonstrate the integration of probabilistic turbulence 

forecast information into the Air Force decision-making process.   
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IV. AN ENSEMBLE-BASED TURBULENCE FORECAST SYSTEM 
(ETFS)  

Many considerations must be weighed when designing an EPS.  Assumptions 

about initial condition uncertainty and dynamic or physics uncertainty are primary 

‘theoretical’ drivers behind many EPS design choices.  However, there are many practical 

and technical limitations that must be taken in to account when designing an EPS system.  

For example, a perfect ensemble would need an infinite number of ensemble members, 

but practically only a discrete number of ensemble members can be created due to limited 

computer resources.  Other conflicts between theoretical motivations and practical 

limitations will be described later in this section.  All programming for this ETFS and 

thesis were conducted in Matlab. 

In this study, the ETFS will be used as a tool to produce forecast probability of 

occurrence of moderate to severe aircraft scale turbulence.  The forecast probability 

created by the ETFS will be used to demonstrate the advantages of using forecast 

probability over deterministic forecasts in decision-making.   

 

A. GLOBAL FORECAST SYSTEM (GFS) ENSEMBLE 
The GFS ensemble model output available from NCEP’s file transfer protocol 

(FTP) servers, which is available in gridded binary (GRIB) format, serves as the basis for 

producing ensemble-based aircraft-scale turbulence forecasts.  The goal of a good EPS is 

to produce a reasonable random sample of the real distribution.  NCEP uses the breeding 

method to create individual ensemble members. 

 

B. TURBULENCE DIAGNOSTIC 
The turbulence diagnostic is based on the Ellrod turbulence index (Ellrod and 

Knapp 1992).  This method was chosen for its ease of implementation and because NCEP 

and AFWA have used this diagnostic with model output with some success over the last 

decade or so.  Ellrod and Knapp (1992) describe their method as “an objective clear-air 

turbulence forecasting technique.”  However, as mentioned in the background section, 

using a single turbulence diagnostic may not be as informative as using a multivariate 
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approach.  Thus, it should be understood that using the Ellrod turbulence diagnostic alone 

forces the ETFS to be rudimentary, at best.   

The Ellrod index was developed with the backdrop of turbulence studies 

conducted from the 1950s to the 1980s.  Many of the studies in the 1950s and 1960s 

focused on CAT and found that the principal mechanism responsible for CAT was 

Kelvin-Helmholtz instability (KHI) (Ellrod and Knapp, 1992).  They noted that “KHI 

occurs when vertical wind shear within a stable layer exceeds a critical value.”  In 

addition, they commented that the Richardson number (Ri) has also been used, but fails 

to be operationally useful.  Forecast offices first attempted to forecast turbulence by 

determining synoptic and mesoscale conditions favorable for turbulence (Ellrod and 

Knapp, 1992).  Early on, it was noted that aircraft scale turbulence is on too small a scale 

to be resolvable by numerical weather prediction models.  This continues to be a problem 

today.  Synoptic and mesoscale flow patterns were empirically related to patterns of the 

occurrence of CAT in order to compensate for the inability to directly forecast 

turbulence.   

The physical basis for the Ellrod index is based on a Petterssen equation for 

frontogenetic intensity.  Ellrod and Knapp (1992) note that frontogenesis increases 

vertical wind shear, which increases the likelihood of CAT occurrence.  However, 

Ellrod’s turbulence index has a strong dependence on the product of both deformation 

(DEF) and vertical wind shear (VWS).  Both DEF and VWS can be simply calculated by 

the using u and v wind-component forecasts.  Ellrod and Knapp (1992) found that the 

product of VWS and DEF resulted in a higher correlation to the occurrence of CAT than 

DEF alone.  Ellrod and Knapp (1992) define VWS as a rapid change in wind speed 

and/or direction with height.  The following equation is used to define VWS: 

z
vuVWS

∆
∆+∆

=
2/122 )(          (1) 

∆z is the layer thickness.  Refer to the pressure column in Table 4 for upper and lower 

bounds of each layer by pressure.  The calculated geopotential height for the given 

pressure and grid point was used for actual calculations.  ∆u and ∆v are the difference 

between wind speeds for u and v, respectively.  Both ∆u and ∆v were calculated at a 



27 

middle layer between the upper and lower pressure level bounds.  For example, for the 

200 to 300 mb layer (Layer 1 from Table 4), ∆u and ∆v were calculated at the 250 mb 

level. 

Ellrod and Knapp (1992) define deformation as “a property of a fluid that 

transforms a circular-shaped area of fluid to an elliptical shape.”  DEF is defined as: 

 

2/122 )( DSHDSTDEF +=        (2) 

 

where DST is the stretching deformation and DSH is the shearing deformation.  They are 

defined as: 
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Ellrod and Knapp (1992) define two versions of their index, TI1 and TI2.  In equation 

form, they are: 

 

TI1 = VWS X DEF          (5) 

TI2 = VWS X [DEF + CVG]            (6) 

They state that convergence (CVG), “a compaction of a fluid caused by the confluence of 

streamlines and/or deceleration of air parcels,” contributes to frontogenesis.  CVG is 

negative divergence and is defined as 
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uCVG

.        (7) 



28 

In addition, they noted that strong subsidence causes turbulence in some cases.  

TI2 was chosen for this research, since AFWA currently uses this index for its automated 

turbulence forecasts based on the MM5 (G. Brooks, 2005, personal communication).  The 

above equations were applied by using a finite differencing approach during post-

processing on grids from GFS ensemble members.   

Unfortunately, the Ellrod turbulence indices (and turbulence indices, in general) 

are difficult to verify.  As noted earlier, PIREPS are not adequate for verifying 

turbulence.  Automated turbulence observations help enhance the existing PIREP 

database, but may not be sufficient for verifying turbulence diagnostics.  Before use as a 

skillful turbulence forecasting method, the Ellrod indices require calibration.  Ellrod and 

Knapp (1992) note that their indices are model-dependent.  Since the Ellrod indices are 

applied with model output on different grid resolutions, results may vary between models 

with different grid resolution.  To the author’s knowledge there haven’t been any studies 

done to demonstrate the usability of the index at different resolutions.  One must realize 

that using this index on even high-resolution grids is still only parameterizing aircraft 

scale turbulence, not directly calculating the phenomena. 

Despite the inadequacies of the current turbulence observing network, some level 

of validity may be ascertained from the data.  Ellrod and Knapp (1992) subjectively 

determined intensity thresholds (e.g., light, moderate, severe, etc.). 

 

C. ELLROD INDEX THRESHOLD CALIBRATION 

1. Overview 
Aircraft turbulence of moderate or greater can significantly impact flight safety 

and is of the most concern to aviators.  Moderate turbulence is classified as “unsecured 

objects are dislodged; occupants feel definite strains against seat belts and shoulder 

straps” (Schwartz 1996).  Severe turbulence is defined as “occupants thrown violently 

against seat belts; momentary loss of aircraft control; unsecured objects are tossed about 

(Schwartz 1996).  Table 1 relates turbulence intensities to a numerical value, which is 

reported in communication circuits and recorded in databases (Schwartz 1996).  Using a 

turbulence diagnostic without first calibrating the threshold values for a given model and 

grid setup could lead to misleading forecasts of turbulence.  The goal of this analysis is to 
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determine, for the chosen period of time, the most appropriate Ellrod TI2 index threshold 

with which to forecast moderate or greater turbulence forecasts.  This was done through 

the use of a few basic accuracy and utility measurements.  The index value chosen, after 

reviewing the outcome of the results from this research, is not meant to be a permanent 

value for use outside of this thesis.  The value was chosen only for use in demonstrating 

the utility of the probabilistic forecast.  The reader will recall from the Background 

chapter that TI index value is model-dependent and maybe seasonally dependent as well. 

 

Value Intensity 
0 None 
1 Light 
2 Light-Moderate 
3 Moderate 
4 Moderate-Severe 
5 Severe 
6 Severe-Extreme 
7 Extreme 
9 Missing 

 
Table 1. Numerical Value Assigned to PIREPS (after Table 1, Schwartz 1996) 

 

2. Ellrod and Knapp’s Approach 
Ellrod and Knapp (1992) chose to verify TI1 and TI2 by examining four issues:  

event statistics, a Canadian validation study, threat scores, and frequency distributions.  

For event statistics, Ellrod and Knapp (1992) verified their two indices, which were used 

with different models (TI1-NCEP models and TI2-AFWA model) separately.  They 

verified TI1 subjectively by comparing forecast CAT “events” with PIREPS during a six 

hour window (three hours on either side of the analysis time).  They defined an “event” 

as “an area of index values greater than the threshold for the particular numerical model 

being evaluated.”  They required at least two reports of moderate or greater intensity 

turbulence inside the threshold index contour.  If no reports were found within the 

threshold contour, the area was not verified.  Ellrod and Knapp (1992) used reports from 

20, 000 to 35,000 feet to verify forecasts created by the NCEP models of a 300 to 400 mb 

layer.  They verified TI2 High Resolution Analysis System (HIRAS) output with 

manually derived Northern Hemispheric turbulence analyses produced by forecasters.  
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The areas produced by both the TI2 HIRAS and human subjective turbulence forecasts 

were compared.  Areas with at least one-third overlap of the TI2 and forecaster derived 

areas were considered “hits.” 

Ellrod and Knapp (1992) also examined a Canadian validation study, which 

evaluated the effectiveness of the Ellrod Index versus an index called the Empirical 

Index.  They noted that the Ellrod Index had an overall success rate similar to the 

Empirical Index, but had a slightly better false-alarm rate (FAR as defined by Ellrod and 

Knapp 1992). 

Since the probability of detection (POD) and FAR used by Ellrod and Knapp 

(1992) only provide some information about forecast system reliability, they examined 

the index using a measurement called the threat score.  The sporadic nature of turbulence 

and the under-sampled nature of turbulence observations mean that the threat score is a 

better measurement to use than some other measurements. 

Ellrod and Knapp (1992) also collected frequency distribution statistics for events 

by CAT intensity versus index values over grid points from the AVN model of the time.  

Using those statistics they were able to choose the best index value for detecting 

moderate or greater turbulence.  Each model setup used in the Ellrod and Knapp (1992) 

study required different TI index threshold values for turbulence intensity.  For example, 

the AFWA model required a threshold of TI 8 for MDT turbulence, 4 for NCEP’s NGM, 

and 2 for NCEP’s AVN.  The different threshold levels for each model demonstrate the 

Ellrod Index’s variability between models. 

3. Approach 
To choose an appropriate threshold value for generating a probabilistic forecast, 

an objective process was implemented by which deterministic-based analyses (00 hour 

forecasts) of TI2 (Equation 6 - the second Ellrod turbulence index, which includes CVG) 

were created from 13 days in September 2005 (specifically 14-24 September and 29-30 

September).  These dates were chosen based on data availability.  Thresholds of TI2 >1, 

1.5, 2, 3, 4, 4.5, 5, 5.5, 6, 7, 8, and 9 were analyzed.  The analyses were compared to 

PIREPS inside a six hour window (three hours on either side of the analysis time).  For 
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this thesis, effort was made to take a similar but not identical approach to calibration as 

Ellrod and Knapp (1992). 

Departing from Ellrod and Knapp’s verification methods, this present study 

objectively determined verification statistics for the TI2 by using the following methods.  

The PIREP database was subdivided into two subsets.  Those PIREPS with numerical 

intensity values of three or greater (see Table 1) were considered observed YES for 

moderate or greater turbulence and PIREPS with values less than three were considered 

observed NO for moderate or greater turbulence.  Only PIREPS from 30, 000 to 39,000 

feet were used to compare with turbulence forecasts of a layer from 30,000 to 39,000 

feet.  Turbulence forecasts (00 hour forecast) were created for each grid point over the 

entire globe.  PIREPS were adjusted to the nearest grid point by rounding the latitude and 

longitude of the PIREP location to the nearest degree.  Only grid points where PIREPS 

were reported were considered in the verification statistics.  Grid points with forecasts 

and no PIREPS were not verified.  Figure 6 is an example of how the PIREPS would look 

if overlaid onto the analysis of Ellrod TI>5.  The circles represent null reports or reports 

of turbulence 2 or less from Table 1. 

Ideally, PIREPS associated with thunderstorms would have been discarded, since 

the Ellrod turbulence diagnostic theoretically only identifies CAT and not convective 

related turbulence.  This was not done in the determination of an index threshold, 

therefore thunderstorm contamination may have produced error in the verification results.  

An additional source of error will come as a result of automating the calculations for 

verification statistics.  One single null report needed to be introduced into the PIREPS 

dataset on September 17, 2005 for computer programming reasons.  This additional null 

report will impact the observed NO column (b or d from Table 2, depending on whether 

or not the event was forecast) of the contingency tables and any verification statistics 

using the particular observed NO value, but will likely only impact the values slightly 

since there are so many null reports. 
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Figure 6.   Example Plot of PIREPS overlaid with Ellrod TI2>5 shaded in gray (Circles are 

null reports). 

 

4. Statistical Measures Used 
A contingency table of absolute frequencies using (Wilks 2006) was setup for the 

results generated analyzing this issue (see Table 2).  It is important to note that many 

different authors define statistics derived from contingency tables differently.  For 

example, Ellrod and Knapp (1992) defined probability of detection (POD) and false-

alarm ratio (FAR) differently than Wilks (2006).  Ellrod and Knapp (1992) based their 

definitions from Weiss (1977).  Using the Table 2, their equations would be defined as: 

cda
daPOD
++

+
=

        (8) 

bda
bFAR
++

= .        (9) 
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The previous definitions are different from the POD and FAR defined by Wilks (2006) 

and from the FAR defined by Zhu et al. (2002).  Using the contingency table (Table 2), 

Wilks (2006) defined POD and FAR (from equations 7.7 and 7.8) as: 

ca
aPOD
+

=          (10) 

ba
bFAR
+

=  .        (11) 

Zhu et al. (2002) defines FAR as: 

db
bFAR
+

=  .        (12) 

As one can see, definitions of accuracy measurements differ among authors, therefore the 

equations in Table 3 will serve as definitions for accuracy and utility measurements in 

this thesis.   

 

 

 Observed 

 Yes No 

Yes a b 

Fo
re

ca
st

 

No c d 

 

Table 2. Sample Contingency Table (after Fig 7.1, Wilks 2006). 
 

The most basic accuracy measurement is the hit rate (HR) defined in Table 3.  

This measurement simply describes the proportion of correct forecasts when considering 

n forecasting occasions (Wilks 2006).  The best possible hit rate is one and the worst is 

zero.  The HR (eq. 17) will not be very helpful for this data analysis since there are a 

large number correct NO forecasts (reports of turbulence area a rare event).  Another 

accuracy measure is the POD (eq. 14), which is “the likelihood that the event would be 
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forecast, given that it occurred” (Wilks 2006).  A perfect forecast yields a one and a poor 

forecast yields a zero.  If one is not concerned with the FAR (eq. 15), then the POD is a 

sufficient accuracy measurement.  Most forecast users are interested in both the POD and 

FAR.  A POD too low and a FAR too high are generally not acceptable.  The FAR is 

simply the proportion of false alarms to total forecasts.  To balance the POD and FAR 

other accuracy measurements and skill scores should be considered when analyzing a 

forecast system’s performance.  The TS (eq. 16) is one such accuracy measurement.  The 

TS is a good measurement for when there are a large number of correct NO forecasts, 

since it does not account for them.  The TS is the proportion of correct YES forecasts to 

the “total number of occasions on which the event was forecast and/or observed” (Wilks 

2006).  Bias indicates whether the forecast system overforecasts (B>1) or underforecasts 

(B<1) a phenomena and is based on the total YES forecasts versus the total YES 

observations. 

Another good measurement for skill is the Heidke Skill Score (HSS).  The HSS 

uses the HR as the basic accuracy measure for the forecast system, but then compares the 

forecast system accuracy with the accuracy that could be achieved by random forecasts.  

Heidke Skill Scores of zero indicate the forecast system is equivalent to random 

forecasts, perfect forecasts receive a one, and a score less than zero implies the forecast 

system is worse than random forecasts (Wilks 2006). 

The ZFAR and ZHR defined in Table 3 will be used to create a Relative 

Operating Characteristics (ROC) diagram plot.  These plots help indicate whether or not a 

forecast system has the ability to distinguish between events and non-events (Zhu et al. 

2002).  The ROC area (ROCA) is used as a summary measure defined as the area 

between the point representing the system (ZFAR, ZHR), (0,0), and (1,1).  Zhu et al. 

(2002) went further to describe the ROC area-based skill score (ROCS) as (from eq. 8, 

Zhu et al.): 

)5.0(2 −= ROCAROCS .       (13) 

The ROCS indicates the overall utility of the forecast system (Zhu et al. 2002).  Larger 

values indicate more utility.   
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  Equation Name and Source Equation 

Probability of Detection  

(Wilks 2006) 
ca

aPOD
+

=      (14) 

False-alarm Ratio 

 (Wilks 2006) 
ba

bFAR
+

=      (15) 

Threat Score (TS)  

(Wilks 2006) 
cba

aTS
++

=      (16) 

Hit Rate (HR)  

(adapted from Wilks 2006) 
n

daHR +
= , where dcban +++=      

(17) 

Bias  

(Wilks 2006) 
ca
baB

+
+

=      (18) 

Heidke Skill Score (HSS) 

 (Wilks 2006) 
))(())((

)(2
dbbadcca

bcadHSS
+++++

−
=    (19)

Zhu Hit Rate (ZHR) 

(Zhu et al. 2002, also known as POD by 

Wilks 2006) 

ca
aZHR
+

=      (20) 

Zhu False-alarm Ratio (ZFAR) 

(Zhu et al. 2002) 
db

bZFAR
+

=      (21) 

 
Table 3. Table of Equations – Accuracy and Utility Measurements for Forecast 

Verification. 

 

5. Results for Turbulence Index Threshold Calibration 
Analysis of the performance of the Ellrod index (TI2) at several thresholds was 

conducted for a short period of time (14-24 and 29-30 September 2005).  Overall, the 
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results suggest that a threshold near approximately TI2 > 5 indicates the most accuracy 

and utility for the ETFS setup (refer to Methodology chapter for ETFS setup details).   

a. Accuracy Measurements 
The POD and FAR (Table 3) indicate a decreasing POD and FAR with 

increasing TI2 threshold values (Figure 7).  As the TI2 threshold increases, the 

geographic area of TI2 decreases.  Since POD does not account for observed NO 

situations, the likelihood of detecting observed events decreases as the area decreases. 

The FAR decreases as a result of the decreasing TI2 area (i.e., decreasing sensitivity).  

These results do not provide a clear indication of which TI2 threshold is most reliable. 
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Figure 7.   POD and FAR vs. TI2 Threshold Value. 

 

The HR (Table 3) increases with TI2 threshold.  The increase occurs as a 

result of increased number of observed NO cases, which increases the number of correct 

forecasts (Figure 8).  That is, as the TI threshold coverage area decreases with increasing 

threshold, the number of observed NO/forecast NO cases increases.  Because of the large 

number of null reports, the hit rate does not assess reliability well. 
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Hit Rate vs. TI2 Threshold Value
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Figure 8.   Hit Rate vs. TI2 Threshold Value 

 
b. Utility Measurements 
The TS, HSS, and Bias (Table 3) distinguished a best performing 

turbulence index threshold compared to the accuracy measurements in the preceding sub-

section.  A TI2 threshold of five has the highest TS and HSS (Figure 9).  Therefore, an 

area inside the TI2 > 5 contour yields the highest TS and HSS.  The TS is like a hit rate, 

when correct NO forecasts are removed from consideration (Wilks 2006).  The positive 

HSS indicates that the forecast system is most skillful when using a threshold value of 

>5.  Figure 10 is a plot of TS and Bias versus TI2 Threshold Value.  The most unbiased 

TI2 threshold value is 5.5, with a Bias value of 1.078 (Refer to Appendix B).  The Bias 

for TI2 threshold value 5 is 1.411.  Both threshold values indicate a tendency to 

overforecast the event.   
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Threat Score and Heidke Skill Score vs. TI2 Threshold Value
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Figure 9.   Threat Score and Heidke Skill Score vs. TI2 Threshold Value 

 

Threat Score and Bias vs. TI2 Threshold Value
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Figure 10.   Threat Score and Bias vs. TI2 Threshold Value 

 

The largest ROCA occurs with TI2 thresholds three and five (Figure 11), 

therefore the forecast system set to TI2 thresholds of three and five exhibit the best ability 

to distinguish between conditions under which a certain event does or does not occur.  
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Values closest to the upper-left corner indicate more utility.  Figure 12 is a plot of ROCA 

and ROCS.  Higher values indicate more utility than those thresholds with lower values.  

It can be seen that there are two maxima near a TI2 threshold value 3 and 4.5 to 5.   
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Figure 11.   ROC Diagram Plot for Threshold Determination 
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Figure 12.   ROCA and ROCS versus TI2 Threshold Value Plot 
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c. Summary 
As a result of the above analysis, a threshold of TI2 > 5 was chosen as the 

best TI2 threshold to use for the ETFS.  First, TI2 > 5 had the highest TS and HSS score 

out of all of the thresholds.  That means that TI2 > 5 forecasts the highest proportion of 

correct forecasts after correct NO forecasts are removed.  In addition, it means that the 

threshold TI2 > 5 is the most skillful when compared to random forecasts as the reference 

forecast.  While the Bias at TI2 > 5 is slightly above one (preferably Bias=1), it is 

relatively close compared to most other thresholds.  Finally, Figure 12 illustrates that TI2 

> 5 is a second maxima for being able to best distinguish between events and non-events. 

 

D. GENERATING FORECAST PROBABILITY 
Once the various ensemble members are generated from an EPS, there are several 

methods for generating forecast probability (FP) from those ensemble members.  All 

examples in this sub-section will be explained with the understanding that a hypothetical 

EPS produces 10 ensemble members that provide turbulence measures (40 ensemble 

members were used in the actual experiment, however, 10 are used in this subsection for 

illustrative purposes).  

 Perhaps the most basic method for generating FP is what Eckel (1998, 2003) 

called the democratic voting method.  With this method, each ensemble member gets an 

equal vote.  For example, if a single threshold were used, such as the turbulence 

diagnostic TI > 4, the number of members that exceed this threshold would be divided by 

the total number of ensemble members to yield a FP.  Unfortunately, the democratic 

voting method does not properly account for FP.  The democratic voting method does not 

account for a small amount of probability in partial bins.  This weakness eliminates 

important forecast probability detail.  Figure 13a illustrates the democratic voting 

method.  Using the assumptions in the example, the democratic voting method generates 

a FP = 6/10 = 0.6.  

 If the uniform ranks method is performed on the same set of ensemble members, 

the FP = 0.6061.  The uniform ranks method assumes that there is a uniform probability 

distribution of the ensemble members, with each member being equally likely.   With the 

uniform ranks method, an additional fraction of a rank probability bin must be taken into 
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account (see Figure 13b).  This is done by linearly interpolating the distance between the 

threshold and the ensemble values on either side.  The probability of that additional bin 

fraction is given by Eckel (1998; 2003): 

1
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−
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xVTP .      (26) 

Here, T is the threshold value, V is the verification value, xi is the value of the ensemble 

member with rank i, xi+1 is the value of the ensemble member of i+1, and RPi+1 is the 

amount of the probability of the verification rank i+1 (that is  RPi+1=1/(n+1)).  For the 

uniform ranks method the following equation is used for FP: 

))1/()(#)( +>+<<= nTofmembersxVTPFP i ,     (27) 

where n is the number of ensemble members.   Eckel (1998, 2003) adapted the uniform 

ranks method from Hamill and Colucci (1997). 

Eckel (2003) noted that the democratic voting method pushes FP to extreme 

values, such that high FP is overestimated and low FP is underestimated. Further, he 

demonstrated that low sampling exaggerates the problem.  Weighted ranks (or calibrated) 

is a better method for generating FP than the uniform ranks method (Eckel 1998; 2003).  

In this research, calibration is not explicitly defined, so only the uniform ranks method 

has been employed. 
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Figure 13.   Calculating Forecast Probability: a) Democratic Voting Method and b) 

Uniform Ranks Method (after Figure 38 & 39, Eckel 2003) 

 

Another advantage of the uniform ranks method over the democratic voting 

method occurs with extreme forecast probability (if all members are above or below the 

threshold).  For example, if all members exceed the threshold, say 10 out of 10 ensemble 

members have a TI2>4, then the democratic voting method would yield a forecast 

probability of 100% (see Figure 15).  Alternatively, if none of the members exceed the 

given threshold, the democratic voting method would yield a FP of 0%.  Eckel (1998, 

2003) explains that the Gumbel distribution in (Wilks 2006) can be used to characterize 

extreme-value data.  In our case, the Gumbel CDF is used to calculate low probability 

situations (see Figure 14).  The Gumbel distribution is best used for right tail situations, 

since the distribution is skewed to the right.  The Gumbel CDF (Wilks 2006) is:  
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The estimation equations for the Gumbel distribution are (Wilks 2006): 

π
β 6ˆ s
=

         (29) 

βγξ ˆˆ −= x          (30) 

57721.0=γ . (Euler’s Constant) 

To find the FP of a low probability situation, the following equation, adapted from Eckel 

(1998; 2003), is used: 
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Note that in Figure 14 there is no ensemble value to the right of the last bin to use 

to calculate the probability.  The Gumbel distribution is assumed to find a theoretical 

value on the right.  Equation 31 is very similar to equation 26.  The estimation equations 

must be evaluated using the sample data available.  For the example in Figure 14, using 

the method of moments β = 0.681511 and ζ = 2.686625, where x = 3.08 and s = 

0.874071.  The Gumbel CDF probability for the threshold is F(T) and F(x10) is Gumbel 

CDF probability for the last ensemble member value.  Finally, P(T<V) = 0.079387.  

Assuming a probability distribution function for extreme value produces more realistic 

forecast probability, as in this case where FP = 7.9% as opposed to 0% using democratic 

voting method.  
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Figure 14.   Calculating Forecast Probability with Low Probability Situations – Using 

the Gumbel CDF (after Figure 38 & 39, Eckel 2003) 

 

Extreme high forecast probability situations (all ensemble members higher than 

threshold) must also be addressed by assuming a theoretical distribution (see Figure 15).  

A reverse Gumbel would work in our case, since the Ellrod index does produce some 

negative values.  However, negative values tend to produce little to no turbulence (Ellrod 

and Knapp 1992).  Therefore, the following distribution (from Eckel 2003) was chosen as 

for the extreme high probability situations: 
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In Figure 15, the democratic voting method would generate a forecast probability of 

100%.  If one were to assume the PDF given by equation 32, the forecast probability 
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would be 0.953455 or 95.3%.  An additional 10/11 must be added to the value generated 

by equation 32 for final probability in a high probability situation. 

 
Figure 15.   Calculating Forecast Probability with High Probability Situations - Using 

Equation 14 (after Figure 38 & 39, Eckel 2003). 

 

E. GENERATING 40 ENSEMBLE MEMBERS USING LAGGED-AVERAGE 
FORECASTING 

The NCEP GFS ensemble model generates 10 ensemble members at 00Z, 06Z, 

12Z and 18Z and one member control forecast.  The ten members are generated by 

defining five sets of positive and negative perturbations of the model control.  To 

increase the number of ensemble members available to the ETFS, lagged-average 

forecasting was employed to generate a total of 40 ensemble members.  The control run 

was not included as one of the 40 members of the ETFS.  The ten positive and negative 

perturbation members were included from 00Z, 06Z, 12Z, and 18Z to create forecasts 

ranging from 00 hr to 72 hour forecasts.  Lagged-average forecasting has been 

demonstrated as a viable and possibly better method than Monte Carlo methods for 

generating additional ensemble members (Kalnay 2003).  Lagged-average forecasting 

involves using forecasts from previous model runs to increase the number of ensemble 
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members in an EPS.  The older forecasts (forecasts from previous model runs) should be 

weighted according to their expected error.  The statistics required to estimate weights 

according to the “age” of the ensemble are difficult to obtain (Kalnay 2003).  A strong 

advantage of lagged-average forecasting over other methods, is that the forecasts are 

already available for use.  No additional computer time is needed for ensemble members 

introduced through this method.  Unfortunately, lagged-average forecasting without 

appropriate weighting factors may lead the old forecasts to negatively taint the ensemble 

average.  Weighting of forecasts by “age” was not done for this research, due to the 

difficulty of obtaining appropriate weights for older forecasts.  Each member will be 

weighted equally.  Refer to the tables in Appendix B for details on how the lagged- 

average forecasting was actually setup for this research. 

 

F. FINAL PRODUCTS 
The final products of the ETFS are global (1.0 gridded) forecasts of the 

probability of occurrence of moderate or greater aircraft-scale turbulence produced in 

five different layers, based on U.S. standard atmosphere heights and pressures.  Table 4 

defines the levels generated by the ETFS.  Figure 5 is an example of a Layer-1 24-h 

forecast.  Forecasts for 06, 12, 18, 24, 30, 36, 48, 54, and 72 hours were made for each 

layer.  Recall, Figure 5 is an example of a probabilistic turbulence forecast product from 

the ETFS.  Figure 5 represents the forecast probability of moderate to severe turbulence 

for the layer 30,000 ft to 39,000 feet.  Warm colors represent a high probability of 

moderate to severe turbulence for the given layer represented in the figure.  Cool colors 

represent lower probabilities of moderate to severe turbulence.  These prototype forecast 

products are now utilized to demonstrate the value of probabilistic forecasts over 

traditional deterministic forecasts (Chapter V) and to illustrate the integration of 

probabilistic forecast information with Air Force decision-making (Chapter VI). 
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Layer Pressure Height (mb) Geopotential Height (kft) 

1 200 to 300 30 to 39 

2 250 to 350 26.5 to 34 

3 300 to 400 23.5 to 30 

4 350 to 450 21 to 26.5 

5 400 to 500 18.5 to 23.5 

 

Table 4. Table of Forecast Probability Vertical Layers Generated by the ETFS 
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V. COMPARISON OF PROBABILISTIC VERSUS 
DETERMINISTIC AIRCRAFT-SCALE TURBULENCE FORECAST 

SYSTEMS  

A. OVERVIEW 
This section will demonstrate the economic advantage of using probabilistic 

forecasts versus deterministic forecasts of aircraft-scale turbulence.  The analysis was 

conducted by performing cost-loss analysis similar to that which was conducted by Zhu 

et al. (2002) and also similar to that discussed by Wilks (2006).  As discussed in the 

Chapter II, Zhu et al. (2002) clearly demonstrated the economic advantage of using 

forecast probability information versus deterministic forecast information; however, 

instead of using 500 hPa as the meteorological variable, the Ellrod Turbulence Index TI2 

was chosen for thesis context.   

Zhu et al. (2002) notes that forecast users “either do, or do not take action” 

regarding their response to a weather forecast.  Either way, the forecast user’s action or 

inaction leads to an expense related to protection, loss or no expense at all.  Table 5 is a 

simple contingency table that relates the expense to hit, misses, false-alarms, and correct 

rejection.  The table here uses similar variables as Zhu et al. (2002).   
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 Observed 

 Yes No 

Yes 

 

Hit (h) 

Mitigated loss 

( uLC + ) 

False Alarm (f) 

Cost (C) 

Fo
re

ca
st

 

 

No Miss (m) 

Loss 

( up LLL += ) 

Lu ignored 

Correct Rejection (c) 

No Cost (N) 

 

Table 5. Simple Contingency Table Relating Expenses of Action or Inaction.  Lu is an 
unprotectable loss and Lp is a protectable loss (after Table 1, Zhu et al. 2002) 

 

B. COST/LOSS ANALYSIS 
The cost-loss analysis methods used in this thesis are similar to those methods 

used in (Zhu et al. 2002; Murphy et al. 1985; and Wilks 2006).  Table 5 is a simple table 

that accounts for costs and losses accumulated due to forecast user’s action or inaction.  

The cost, C, refers to the cost incurred for protection, Lu refers to an unprotectable loss, 

Lp refers to a loss that can be protected against, and N refers to no cost.  When there is a 

hit, the user’s protection prevents a loss (L) from occurring, but incurs a cost of 

protecting (C) and an unprotectable cost (Lu).  Unprotectable loss, Lu, will be ignored, in 

this thesis. For a false alarm, the user only incurs a cost of protection (C).  For a miss, the 

user incurs the cost of a loss (L), which includes the protectable loss and unprotectable 

loss.  And for a correct rejection, no cost is incurred (N).  The assumption is that the cost 

of protection is less than a loss (i.e. C<L).  A C/L user will react to forecast information 

when the probability forecast of an event occurring exceeds their particular C-L ratio.  

Meaningful C-L ratios are bounded by zero and one (i.e. 0<C/L<1) (Wilks 2006).  If the 

C-L ratio were not bounded by zero and one, the protective action offers no potential 
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advantages for values beyond the bounds.  Further complexity can be added to the table 

to address more sophisticated requirements. 

Ultimately, the goal of cost-loss analysis is to determine the economic value of 

one forecast system over another to see which forecast system provides the best utility for 

a user.  Typically this is done by first calculating the expected expense of each forecast 

system, Ef, the expected expense using climate alone as a forecasting tool, Ec, and the 

expected expense of using a perfect forecast system, Ep.  Expected expense is the 

“probability-weighted average costs and losses” (Wilks 2006).  Once these values have 

been determined, the economic value of a forecast system can be calculated for each 

system.  The equations for expected expense for a forecast system and a perfect forecast 

system can be found in Table 6.  The expected expense for using climate alone is defined 

as (adapted from eq. 2, Zhu et al. 2002): 

[ ]CoLMinoLE puc ,+=        (33) 

Unfortunately, a good turbulence climatology is a luxury not afforded for this 

thesis work.  Therefore, where the expected expense of the climate, Ec, is typically used, 

another baseline will be used.  The new baseline is based on never protecting.  For 

example, an aviator would simply ignore forecasts of moderate or greater turbulence.  

Therefore, for each occurrence of a moderate or greater turbulence event (Observed YES, 

y), the aviator would incur a loss, L.  Realistically, there is not a good climatology for 

aircraft-scale turbulence, so never protecting would be a viable option as a baseline 

expense to a user. The new baseline expected expense is defined as: 

yLEb = .         (34) 

For a forecast system to be useful, its expected expense should be less than the baseline 

expected expense and therefore have more relative economic value.   
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Equation Name and Source Equation 

Expected Expense of Forecast System 

(adapted from eq. 1, Zhu et al. 2002) 

)()( pf LmfCChE ++=  

(35) 

Expected Expense Using No-Protection 

Baseline (instead of Climate) 

yLEb =  

(36) 

Expected Expense of a Perfect Forecast 

System 

(adapted from eq. 3, Zhu et al. 2002) 

)(CoE p =  

(37) 

Economic Value  

(adapted from eq. 4, Zhu et al. 2002) pb

fb

EE
EE

V
−

−
=  

(38) 

 
Table 6. Table of Equations for Cost/Loss Analysis 

 

Relative economic value (equation 38) is a value that relates the expected expense 

for a baseline measurement, the forecast system and a perfect forecast system.  A value of 

1 is the maximum value, which represents a perfect forecast system.  A value of zero 

indicates that the forecast system is no more valuable than using baseline alone (which 

would be never protecting).  Finally, a negative value indicates that the forecast system 

actually costs more money than never protecting.  Equation 38 is a modified version of 

the economic value equation used by Zhu et al. (2002).  The results using the new 

equation appear slightly different than the results in Zhu et al. (2002).   

 

C. EXPERIMENTAL SETUP 
To only test the hypothesis that making decisions with probabilistic forecast 

information over traditional deterministic forecast information is better economically, 

several factors needed to be addressed and assumptions made.  First, there was a need to 

eliminate various problems associated with turbulence verification.  Since PIREPS alone 
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may not have provided enough valid observations to support the analysis, a single 

negative perturbation member’s analysis (00hr forecasts) from a future model run is used 

as truth.  For example, a 48-hour forecast generated on September 14, 2005 would match 

up with an analysis on September 16, 2005.  By using the analysis as a truth, cost-loss 

analysis was conducted at every grid point.  Using the analysis as truth probably 

artificially produces better or worse verification results than could be realistically 

obtained using existing turbulence observations systems.  Therefore, any comparisons of 

verification results using analysis as truth versus using an observation system may not be 

a fair comparison. Secondly, the Ellrod Turbulence Index TI2 was used for turbulence 

calculations for the probabilistic forecast system, the deterministic forecast system, and 

the analysis (truth).  For purposes of studying Objective 2 only, it is assumed that the 

Ellrod Turbulence Index forecasts turbulence accurately.  The limitations of the Ellrod 

Turbulence Index are understood and were outlined in the background section, so they 

will not be addressed here. This experiment was setup only to test the effect of using 

probabilistic forecast information versus deterministic forecast data for aircraft-scale 

turbulence using cost-loss analysis and economic value measurements.  

 Truly, the Ellrod Index is nothing more than a diagnostic applied during pos-

processing, so the results gained in this section should be consistent with the results 

generated reported in Zhu et al. (2002).  For robustness, four case studies were created to 

examine the second objective.  Table 7 relates important information about each case 

study.  Due to data availability, only forecasts of 24 and 48 hours were analyzed for the 

September case studies.  An additional 72 hour forecast was analyzed for the November 

case studies. 

Only one turbulence layer was used for the calculations (Level 1 – 200 to 300 

mb).  Each grid point was treated as a separate forecast opportunity.  Contingency table 

data were collected for each day during the case study time period.  The expected 

expense was calculated for the ETFS (System A - probabilistic) and a single ensemble 

member (System B - deterministic) forecast system.  The expected expense for a perfect 

forecast system and not protecting were also calculated for each day.  The mean 

(average) expected expense for each system or baseline was calculated for all the days in 

the time period of the case study for C-L ratio’s 0.05-0.95, every 5%.  Finally, the 
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economic value of both System A and B were calculated from their respective mean 

expected expense for the given forecast period.   

 

 

Case Study 

 

Time 

Period 

 

Geographic 

Coverage 

Event 

Opportunities 

per forecast 

(# of grid points) 

1  14-22 September 05 Global 65,160 

2 14-22 September 05 30N to 55N 9,360 

3 1-13 November 05 Global 65,160 

4 1-13 November 05 30N to 55N 9,360 

 

Table 7. Case Studies 
 

D. RESULTS OF COST/LOSS ANALYSIS  

1. Overview 

To examine Objective 2, three types of plots were created for each case study;  i) 

a plot of expected expense of the forecast systems (System A – probabilistic and System 

B - deterministic) vs. C-L ratio; ii) relative economic value of the forecast systems vs. C-

L ratio;  and iii) a ROC plot for each forecast system.  

 Hypothesis tests were conducted to determine if the difference between means of 

the two independent samples of expected expense values for each forecast system were 

statistically significant.  The population standard deviations were unknown but treated 

equally.  A two-sample student’s t test (Anderson and Finn 1996) was used and defined 

as: 

21

21

11
nn

s

xxt

p

stat

+

−
=  (39) 
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with f degrees of freedom defined as 

221 −+= nnf . (40) 

Sp is defined as the pooled standard deviation for both samples.  A two-tailed hypothesis 

test (α=.05) was conducted with the following null and alternative hypotheses: 

H0:  Mean Ef of System A (Probabilistic) = Mean Ef of System B (Deterministic) 

and 

H1:  Mean Ef of System A (Probabilistic) ≠ Mean Ef of System B (Deterministic), 

respectively.  Detailed hypothesis testing results can be found in Appendix C.  In 

Appendix C, note that for some C-L ratios the difference in means are not statistically 

significant, meaning that we cannot reject the null hypothesis that for some C-L ratio 

there may not be any measurable value of one forecast system over another.   

For each case, the construction of the economic value vs. C-L ratio figures within 

this thesis differ from that of Zhu et al. (2002) for extreme low probability events.  The 

difference occurs as a result of the separate methods by which forecast probabilities were 

calculated.   Recall for the ETFS a probability distribution based on Eckel (1998, 2003) is 

used to determine ‘far right’ values in extreme low probability forecasts in the uniform 

ranks method.  This apparent difference is visible in the economic value figures at low C-

L ratios.  Zhu et al. (2002) notes that their low negative values for the ensemble at a very 

low C-L ratio are due to the small size of the ensemble.  It should also be noted that the 

figures for each case study and those in Zhu et al. (2002) do not include C-L ratio end 

points 0.0 and 1.0.  A C-L ratio of zero would imply that it costs nothing to protect.  

Therefore, a rational user would always protect and never incur a loss.  On the other 

hand, a C-L ratio 1.0 or higher would imply that it costs as much or more to protect than 

the expense incurred due to a total loss.  A rational forecast user would never protect if 

their C-L ratio were greater than or equal to 1.0.  The previous statements about the 

extreme C-L ratios remain true for both deterministic and probabilistic forecast systems.  

Only values between, but not including 0.0 and 1.0 are meaningful in this C-L analysis. 

 

 



56 

2. Case 1  

At 24 hours the difference in means of expected expenses for System A 

(probabilistic) and System B (deterministic) are not statistically significant for C-L ratios 

of 0.15 to 0.6 (Appendix C).  This is evident in Figure 16a as the expected expense values 

for System A and System B are nearly equal for those C-L ratios.  Box and whisker plots 

are used to visualize the expected expense values for each forecast system.  The 

rectangular portion of the box plot represents the middle 50% of the expected expense 

values for the particular time period.  The whiskers are defined by 1.5 times the range of 

the middle 50% of the data.  The line going through the box represents the median.  

Outliers are plotted as asterisks outside of whisker plots.  At 48 hours the null hypothesis 

cannot be rejected at C-L ratios 0.15 to 0.5 (Appendix C).  As anticipated, by 48 hours 

the expected expense for System A is less expensive relative to System B for more C-L 

ratios than it was for 24 hour forecasts.    Furthermore, the expected expense values for 

System A differ markedly from System B for C-L ratios greater than 0.5 (Figure 16b).   

For both 24-h (Figure 17a) and 48-h (Figure 17b) forecasts, there is little relative 

economic value of System A over system B for C-L ratios (less than 0.15).  However, for 

many forecast users with high and low C-L ratios, System A has significantly more 

economic value than System B.   At both forecast times, there is a marked difference in 

the economic values at C-L ratios higher than 0.6. 

The ROC diagrams (Figure 18) demonstrate a clear advantage of probabilistic 

forecasts over deterministic forecasts.  Because probabilistic forecast systems provide 

multiple decision levels, it is possible to plot a line that represents multiple comparisons 

of hit rate to false alarms (ZHR and ZFAR, as defined in Table 3).  Deterministic 

forecasts, which only provide one decision-level are represented by the respective value 

for each forecast interval.  The continuous nature of probabilistic forecasts increases the 

ROCA.  Note that to calculate ROCA for a single deterministic forecast one would draw 

a triangle between vertices (0,0), the deterministic point, and (1,1).  A triangle defined by 

those vertices would yield a smaller ROCA than the ROCA under the ROC curve for the 

probabilistic forecast system.  It is important to note that ROC diagram plots indicate the 

potential skill of a forecast system that would only be achieved if the forecasts were 

correctly calibrated (Wilks 2006). 
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 a)             b) 

Figure 16.   The expected expense value plots for Case 1 at (a) 24 hour and (b) 48 
hours.  The probabilistic model (System A) is defined by the unshaded box plots, 
the deterministic model (System B) is defined by the blue shaded box plots, and 
the median expected expense of not protecting is defined by the red dashed line. 

 
 

 

           a)        b) 

Figure 17.   Economic value vs. C-L ratio plots for Case 1 of the probabilistic model 
(System A -blue solid line) and the deterministic model (System B – red dashed 

line) for (a) 24 hour and (b) 48 hour forecasts. 
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         a)          b) 

Figure 18.   The ROC diagrams for Case 1, at (a) 24 hour and (b) 48 hour.  The 
probabilistic system A is defined by the solid black line and the deterministic 

system is represented by the red star. 
 

3. Case 2 

Case Study 2 was limited to 30 N to 55N, to focus on the influences from the 

polar-front jet stream.  This case study includes the same timeframe as Case 1.   

Hypothesis testing revealed that the expected expense from System A and System B may 

be the same for or C-L ratios 0.2 to 0.55 for 24 hour forecasts (Appendix C).  For 48 hour 

forecasts, there is likely no difference in forecast system expected expenses for C-L ratios 

0.15 to 0.65.  Exactly why the system expected expenses are not clearly different at more 

C-L ratios is unknown.  Figure 19 illustrates the expected expense for each forecast 

system at different C-L ratios for Case 2.  As in Case 1, for C-L ratios where the null 

hypothesis cannot be rejected, the expected expense for System A and System B at 24 

(Figure 19a) and 48 (Figure 19b) hours are very similar. 

At 24 hours (Figure 20a) and 48 hours (Figure 20b), there is little relative 

economic value of System A over system B for C-L ratios 0.20-0.55.  However, for many 

forecast users with high and low C-L ratios, System A has significantly more economic 

value than System B.   Unlike Case 1 where increased forecast time showed an increase 

number of possible forecast users (with respect to C-L ratio), it cannot be said with 

certainty that more forecast users (in terms of C-L ratios) will benefit at 48 hours than 24 
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hours.  Clearly, System A has more relative economic value than System B at C/L ratios 

higher than 0.65 and less than 0.15 at both 24 and 48 hours. Figure 21 demonstrates the 

inherent increase in utility that probabilistic forecasts have over deterministic forecasts.  

Probabilistic forecast systems have more utility because more forecast users can take 

advantage of the multiple decision levels.   

 

 

             a)                            b) 

Figure 19.   The expected expense value plots for Case 2 at (a) 24 hour and (b) 48 
hours.  The probabilistic model (System A) is defined by the unshaded box plots, 
the deterministic model (System B) is defined by the blue shaded box plots, and 
the median expected expense of not protecting is defined by the red dashed line. 
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         a)                                                                          b) 

Figure 20.    Economic value vs. C-L ratio plots for Case 2 of the probabilistic 
model (System A -blue solid line) and the deterministic model (System B – red 

dashed line) for (a) 24 hour and (b) 48 hour forecasts. 
 

 

 

          a)      b) 

Figure 21.   The ROC diagrams for Case 2, at (a) 24 hour and (b) 48 hour.  The 
probabilistic system A is defined by the solid black line and the deterministic 

system is represented by the red star. 
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4. Case 3 

Case 3 and Case 4 include an analysis of a 72-h forecast and consist of a 

November dataset (refer to Table 7).  At 24 hours, the difference in the mean of expected 

expenses for System A (probabilistic) and System B (deterministic) are not statistically 

significant for C-L ratios of 0.2 to 0.5.  At 48 hours, the null hypothesis cannot be 

rejected for C-L ratios 0.2 to 0.4.  At 72 hours, the null hypothesis cannot be rejected for 

C-L ratios 0.25 to 0.3.  As anticipated, by 72 hours the expected expense for System A is 

less expensive relative to System B for nearly all forecast users classified by C-L ratio.  

Figure 22 illustrates the expected expense for each forecast system at different C-L ratios 

for Case 3.  Close examination reveals that the expected expense for System A and 

System B are very similar for C-L ratios where the null hypothesis cannot be rejected. 

Figure 23 shows how that there is little relative economic value of System A over 

system B for some C-L ratios (i.e. 24 hour forecast C-L ratios of 0.2-0.5).  However, for 

many forecast users with high and low C-L ratios, System A has significantly more 

economic value than System B.   By 48 hours, System A begins to break away from 

System B.  By 72 hours, System A has more relative economic value than System B for 

most forecast users based on C-L ratios.   Figure 24 demonstrates the inherent increase in 

utility that probabilistic forecasts have over deterministic forecasts.  Probabilistic forecast 

systems have more utility because more forecast users can take advantage of the multiple 

decision levels.   
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a)      b) 

 

           c)  

Figure 22.   The expected expense value plots for Case 3 at (a) 24 hour, (b) 48 hours, 
and (c) 72 hours.  The probabilistic model (System A) is defined by the unshaded 
box plots, the deterministic model (System B) is defined by the blue shaded box 
plots, and the median expected expense of not protecting is defined by the red 

dashed line. 
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         a)      b) 

 

         c) 

Figure 23.    Economic value vs. C-L ratio plots for Case 3 of the probabilistic 
model (System A -blue solid line) and the deterministic model (System B – red 

dashed line) for (a) 24 hour, (b) 48 hour forecasts, and (c) 72 hour forecasts. 
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a)      b) 

 

             c) 

Figure 24.   The ROC diagrams for Case 3, at (a) 24 hour, (b) 48 hour, and (c) 72 hour 
forecasts.  The probabilistic system A is defined by the solid black line and the 

deterministic system is represented by the red star. 
 

5. Case 4 
Case Study 4 was limited to 30 N to 55 N to focus on the influences from the 

polar-front jet stream.  At 24 hours, the difference in the mean of expected expenses for 

System A (probabilistic) and System B (deterministic) were not statistically significant 

for C-L ratios of 0.25 to 0.55 (Appendix C).  At 48 hours, the null hypothesis cannot be 

rejected for C-L ratios 0.25 to 0.4.    At 72 hours, the null hypothesis cannot be rejected 

for a C-L ratio of 0.25.  Figure 25 illustrates the expected expense for each forecast 

system at different C-L ratios for Case 4.   
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At 24 hours (Figure 26a) there is little relative economic value of System A over 

system B for C-L ratios 0.25-0.55.  However, for many forecast users with high and low 

C-L ratios, System A has significantly more economic value than System B.   By 48 

hours (Figure 26b), the value of System A begins to increase over the value of System B.  

By 72 hours (Figure 26c), System A has more relative economic value than System B for 

most forecast users based on C-L ratios.  Again, Figure 27 demonstrates the inherent 

increase in utility that probabilistic forecasts have over deterministic forecasts.  

Probabilistic forecast systems have more utility because more forecast users can take 

advantage of the multiple decision levels.   
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a)       b) 

 

            c) 

Figure 25.   The expected expense value plots for Case 4 at (a) 24 hour, (b) 48 hours, 
and (c) 72 hours.  The probabilistic model (System A) is defined by the unshaded 
box plots, the deterministic model (System B) is defined by the blue shaded box 
plots, and the median expected expense of not protecting is defined by the red 

dashed line. 
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   a)                 b) 

 

         c) 

Figure 26.    Economic value vs. C-L ratio plots for Case 4 of the probabilistic 
model (System A -blue solid line) and the deterministic model (System B – red 

dashed line) for (a) 24 hour, (b) 48 hour, and (c) 72 hour forecasts. 
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a)      b) 

 

            c) 

Figure 27.   The ROC diagrams for Case 4, at (a) 24 hour, (b) 48 hour, and (c) 72 hour 
forecasts.  The probabilistic system A is defined by the solid black line and the 

deterministic system is represented by the red star. 

 

6. Summary 
As expected, the results generated for Objective 2 are generally consistent with 

the results in Zhu et al. (2002).  The analysis demonstrates that more rational forecast 

users classified by C-L ratio will benefit from forecast System A (probabilistic) than 

forecast System B (deterministic) for 24 to 72 hour forecasts.  The relative benefit 

increases with increased forecast times.  At 24 hours, System A could not be shown to 

have more relative economic value than System B for forecast users with C-L ratios from 

approximately 0.15 to 0.6.  However, System A had more relative economic value for 
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users with C-L ratios less than 0.15 and greater than 0.6.  Overall, more forecast users 

(more C-L ratios) were able to benefit from 48 hour and 72 hour forecasts.  Cases 1, 3, 

and 4 demonstrated an increasing relative economic value of System A over system B 

with increased forecast time.  However, with Case 2 increased relative economic value 

with forecast time could not be determined with statistical certainty. 
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VI. INTEGRATING PROBABILISTIC TURBULENCE 
FORECAST INFORMATION INTO THE AIR FORCE DECISION-

MAKING PROCESS 

A. OVERVIEW 
Background research and the results from this thesis demonstrate that overall 

probabilistic forecast systems have more relative economic value than deterministic 

forecast systems for some forecast users with respect to their C-L ratio.  Demonstrations 

were conducted with the assumption that forecast users were always willing to act on the 

basis of expected monetary value.  The results suggest that there is economic advantage 

for the forecast user to employ reliable probabilistic forecast information over 

deterministic forecast information.  Some users, based on C-L ratio, realize little or no 

gain from using probabilistic forecast information over deterministic forecast 

information.  However, those forecast users are limited to a small range of C-L ratios and 

these results depend on forecast length.  

Generally, the forecast user should understand their C-L ratio to react 

appropriately to a probabilistic forecast.  However, often times a forecast user’s C-L ratio 

is not immediately apparent without major effort.  In addition, some forecast users’ C-L 

ratios are influenced by priority, risk, and other intangible variables, which cannot be 

easily quantified.  For many civilian applications, a strictly economic approach may be 

used, but for military applications there are often other non-monetary factors too difficult 

to characterize in terms of money, which influence the forecast user’s ability to accept 

meteorological risks.  A conceptual method, that considers operational risk management 

and mission priority, is proposed as an alternative to quantitatively defining C and L.    

Scenarios built around the Air Force function of air refueling are analyzed.  Air 

refueling is a critical operational function accomplished by the U.S. Air Force to maintain 

Air and Space Superiority and is defined as  “…the in-flight transfer of fuel between 

tanker and receiver aircraft” (AFDD1, 2003).  Air refueling (AR) significantly enhances 

the U.S. Air Force’s ability to complete other missions critical to maintain national 

security.  They include missions such as: “nuclear operations support, global strike, 

airbridge support, aircraft deployment, theater support, and special operations support” 
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(AFDD1, 2003).  The scenarios are designed to demonstrate the use of probabilistic 

turbulence forecasts as tools for reducing risk while conducting the important Air Force 

Air and Space Function air refueling.   

 

B. CHARACTERIZING THE FORECAST USER 

1. Defining C and L by Traditional Means   

Scenarios are defined relative to a forecast user who is a mission commander of a 

KC-135 tanker, which is capable of air refueling.  Characterizing the forecast user is 

difficult and can become complex quickly.   

Recall, C is the cost the forecast user incurs as a result of protecting due to a 

forecast event (in this case, the forecast of moderate or greater aircraft-scale turbulence).  

The loss, L, is associated with not protecting when a weather event occurs.  For idealized 

situations, C and L are defined and fixed for a forecast user.  Unfortunately, that is not the 

case for the AR community.  An understanding of air refueling missions is essential to 

appropriately characterize the forecast user based on the C-L ratio.  Each air refueling 

mission has its own unique expense characteristics, so C and L are mission dependent.   

An intelligent pilot will avoid a total loss by altering their mission profile.  

Typically, if the forecast user encounters unforecast moderate or severe turbulence in an 

AR track, anecdotal evidence suggests they will alter the mission profile by changing 

altitudes, offsetting geographically, extending their track, or canceling the mission (Lt. 

Col. B. Davis, 2006, personal communication).  The mission alterations are listed in 

decreasing order of likelihood.  Occasionally, aircraft scale turbulence does contribute to 

aircraft mishaps (damage to aircraft or people), which would contribute to a loss, L.  One 

might think that L should include the total loss of the aircraft or aircraft mishap expenses. 

However, a large majority of the time, a large loss is unlikely because the forecast user 

will alter the mission before a large loss occurs.   

Instead of using the aircraft and mishaps in the total loss, the forecast user 

probably use the expenses associated with altering the mission as the loss value.  Mission 

expense is a function of time, M(t), which includes aircraft maintenance, fuel, personnel 

costs, etc.  In such cases, the expenses incurred as a result of the mission alteration will 
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be a function of time, as well.  The cost, C, would be defined as the expenses associated 

with the forecast user performing the altered mission minus the expenses of the original 

mission had the forecast user performed the original mission.  For example, if a forecast 

user had planned to fly to an altitude of 39k feet to conduct an AR mission, but 

unforecast moderate to severe turbulence prohibited the forecast user from using the area, 

they may choose to alter their mission profile.  Perhaps, they took the time to find an 

altitude with sufficiently calm air.  Suppose they found sufficiently calm air at 32k feet.  

There would be an increase in flight time, which would increase mission related 

expenses. An altered mission, Ma, would increase the total mission time, which would be 

greater than the original mission expense Mo.  Instead, had the forecast user chosen to fly 

to 32k feet initially, this preferred mission would have been less expensive because the 

mission time would be less.  The preferred mission is denoted as Mp.  It becomes 

apparent that mission expenses are dynamic and are nearly incalculable for realistic air 

refueling scenarios.  In a real situation, an AR forecast user will not be able to perform 

detailed analysis to define their C-L ratio in terms of their mission expenses.  

Additionally, AR forecast users do not make decisions on preserving assets alone.  

Instead they make decision by balancing mission priority with operational risk 

management. 

2. Defining C and L through Operational Risk Management and 
Mission Priority  

ORM has become an institutionalized way of thinking in the U.S. Air Force 

(AFPAM 90-902).  Most flying communities are required to assess their operations risk 

through the use of worksheets or checklists.  Appendix D contains figures of an example 

worksheet used by the 101st Air Refueling Wing (Maine Air National Guard).  While the 

exact methods by which aircrew throughout the U.S. Air Force assess risk differ, all 

methods combine for an overall risk level for the mission.  The overall risk level includes 

human factors, such as aircrew stress, fatigue, experience, etc.  In addition, mission 

complexity, tactics, weather, and mission priority contribute to the overall risk level.  

Some risk factors cannot be mitigated or lowered due to their characteristics.  For 

example, typically the mission priority is dictated by higher authority and is unable to be 

changed.  Also, only certain aircrew may be available for a mission due to uncontrollable 

reasons.   
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The example ORM worksheet allows the aircrew to total their overall risk level 

into points.  The score ranges from 0 to 215.  Scores from 0 to 49 are deemed low risk, 

scores of 50 to 80 are cautioned, and a risk score of 81 or more is considered high risk.  

Individual risk factors are weighted by their potential impact to the mission.  For 

example, moderate turbulence or moderate icing in-route contributes 15 points to the 

overall risk level.  Fortunately, unlike some risk factors some weather mission impacts 

can possibly be mitigated through probabilistic forecasts.  For example, if an overall 

mission risk level is 81 the worksheet requires the aircrew to attempt to reduce their risk 

level.  Risk mitigation could be accomplished by changing altitudes, flight path, etc. to 

avoid areas where weather impacts have a higher forecast probability or the probabilistic 

forecast may indicate that the certainty of the forecast event is low enough to lower the 

overall risk score.  With a deterministic forecast, the forecast user is required to evaluate 

risk points based on the worst case scenario.  Alternatively, if a forecast user is highly 

sensitive to a weather impact they may want to avoid areas where there is even a small 

chance of the weather event occurring.  Such weather event certainties are not available 

through deterministic forecasts.  Generally, aircrew do not cancel a mission because of 

in-route weather (Lt. Col. B. Davis, 2006, personal communication), especially if the 

mission is of high enough priority.  The second page of the ORM worksheet (Appendix 

D) lists mission priority levels. The aircrew will attempt to mitigate the weather risk by 

performing some action to avoid a loss.  Probabilistic forecasts can help them mitigate 

the weather risk. 

In the ORM framework, the C-L ratio should be thought of in non-monetary units.  

The C and L should be thought of as functions of money, risk and mission priority.   

Mission priority is valued higher than mission risk.  In Figure 28, C can be though of as 

an average cost of protecting that is held constant. Realistically C is mission dependent.  

In the figure, L adjusts based on mission priority and overall mission risk.  Figure 28 is a 

conceptual look at how a C-L ratio in an ORM framework works.  Since the C-L ratio for 

military forecast users is dependent on the qualitative values of risk and mission priority, 

it is difficult to know exactly where each scenario lies on the C-L ratio scale.  However, it 

is possible to know approximately where each scenario is with respect to the other 

scenarios.  Figure 28 assumes that the aircrew will avoid a loss if unforecast turbulence is 
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encountered.  Unfortunately, sometimes the aircraft mishaps do occur (not accounted for 

in the Figure 28 or the scenarios). Four scenarios were devised to demonstrate how one 

would effectively mitigate risk with a probabilistic forecast of aircraft-scale turbulence.   

 

 
 

Figure 28.   C-L ratio vs. Overall ORM Risk Level low, medium and high priority 
missions (Scenario 1 – High Priority/Low Overall Risk, Scenario 2 – High 

Priority/High Overall Risk, Scenario 3 – Low Priority/Low Overall Risk, Scenario 
4 – Low Priority/High Overall Risk). 

 

C. RESULTS 

1. Risk Mitigation  

a. Scenario 1 – High Priority/Low Overall Risk 
Scenario 1 is an example of a forecast user characterized with a high 

mission priority and a low overall risk level according to their ORM framework.  Figure 

29 lists possible mission characteristics for a high priority/low overall risk scenario.  

Figure 30 illustrates example probabilistic and deterministic forecasts and how they may 
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look in such a scenario.  In this scenario, when the forecast user relies on a deterministic 

forecast they initially fly to an alternate AR track to accomplish the mission.  Given the 

high priority of the mission, it is logical that the forecast user would want to complete the 

mission even if that meant a slight delay.  For the traditional deterministic forecast 

scenario, the forecast user chose to ignore the forecast and attempted the AR.  The AR 

was accomplished but caused a mission delay and incurred additional mission expenses.  

For the future probabilistic forecast the forecast user chose to go to an AR track with less 

probability of moderate to severe turbulence.  Unfortunately, the forecast user 

encountered mission impacting turbulence at this alternate location.  Additional expenses 

were incurred as a result of needing to find calm air.  This scenario illustrates that 

probabilistic forecast will not eliminate false alarms and misses.  The C-L ratio for 

Scenario 1 (see Figure 28) should be in the bottom half of the C-L ratio spectrum.  A high 

priority mission positively contributes to the L value, thus causing C/L to decrease.   
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Figure 29.   Scenario 1 – Description. 
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Figure 30.   Scenario 1 – Probabilistic and Deterministic Forecasts. 

 

b. Scenario 2 – High Priority/High Overall Risk 
Scenario 2 is an example of a forecast user characterized with a high 

mission priority and a high overall risk level according to their ORM framework.  Figure 

31 lists possible mission characteristics for a high priority and high risk mission.  Figure 

32 illustrates example deterministic and probabilistic forecasts for a scenario and where 

the AR tracks might be located for the given scenario.  In the traditional deterministic 

forecast scenario, the forecast user decides to use the original AR track because moderate 

or greater turbulence is not forecast for that track.  The traditional deterministic forecast 

lacks important uncertainty information.  For example, the human forecaster who made 

the turbulence forecast might have thought that there was a slight chance for turbulence at 

the original AR track location, but did not communicate that to the CWT forecaster who 

prepared the pilot’s weather brief.  In turn, the CWT forecaster never relayed any 
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certainty information to the pilot.  In the future probabilistic scenario, all parties involved 

would have been put on alert that the model indicates a reasonable chance for moderate 

or greater turbulence.  In the future probabilistic scenario, the pilot was able to choose a 

location that better suited his tolerance for risk given his mission priority.  Of all possible 

scenarios, a high mission priority and high overall risk scenario would likely result in the 

lowest C-L ratio.  This occurs because high mission priority and high risk contribute 

positively to L, which decreases C-L.  Since Scenario 2 forecast users have such a low C-

L, they should react to forecasts when there is even a slight chance of an event occurring 

(Figure 28). 

 

 

 

Figure 31.   Scenario 2 – Description. 
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Figure 32.   Scenario 2 – Probabilistic and Deterministic Forecasts. 

 

c. Scenario 3 – Low Priority/Low Overall Risk 
Scenario 3 is an example of a forecast user characterized with a low 

mission priority and a low overall risk level according to their ORM framework.  Figure 

33 lists possible mission characteristics for a low priority and low risk mission.  Figure 34 

illustrates example deterministic and probabilistic forecasts for a scenario and where the 

AR tracks might be located for the given scenario.  In the traditional deterministic 

forecast scenario, the forecast user chose to fly to an alternate AR track instead of 

attempting the original AR track where MDT turbulence was forecast.  The decision 

incurred additional mission related expenses.  With the future probabilistic forecast 

scenario the forecast user chose to try the original AR track anyhow, because the low 

mission priority and low risk meant that they would not lose much by trying the original 

AR track.  It happened that only light turbulence was encountered at the original AR 
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track.  No additional expenses were incurred.  Scenario 3 users would have a high C-L 

ratio compared to all other scenarios, meaning that they should choose to react to 

forecasts with high event certainty (Figure 28). 

 

 

Figure 33.   Scenario 3 – Description. 
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Figure 34.   Scenario 3 – Probabilistic and Deterministic Forecasts. 
 

d. Scenario 4 – Low Priority/High Overall Risk 
Scenario 4 is an example of a forecast user characterized with a low 

mission priority and a low overall risk level according to their ORM framework.  Figure 

35 lists possible mission characteristics for a low priority and high risk mission.  Figure 

36 illustrates example deterministic and probabilistic forecasts for a scenario and where 

the AR tracks might be located for the given scenario.  In the traditional deterministic 

forecast scenario, the forecast user chose to fly to the alternate AR track because 

moderate turbulence was forecast.  The future probabilistic forecast scenario forecast user 

also chose to fly to the alternate AR track, but was able to make the decision based on 

forecast certainty and their particular mission priority and risk level.  This scenario 

demonstrates that in some cases, the results from using a deterministic forecast and 

probabilistic forecast may be the same.  The C-L ratio for Scenario 4 forecast users will 
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be higher than Scenario 2 forecast users, because mission priority significantly 

contributes to the L for Scenario 2 forecast users (Figure 28). 

 
Figure 35.   Scenario 4 – Description. 
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Figure 36.   Scenario 4 – Probabilistic and Deterministic Forecasts. 

 

2. Summary 
The previous scenarios demonstrate a few possible outcomes from using both a 

probabilistic forecast system and a deterministic forecast system.  They do not represent 

all possible situations or outcomes and should only be taken as examples.  The scenarios 

demonstrate realistic potential benefits to using stochastic forecasts over deterministic 

forecasts.  For many military forecast users, it is difficult to quantify their C-L ratio.  By 

applying Figure 28 to the scenarios, one is able to see a qualitative relationship between 

C-L ratio, mission priority and mission risk.  C and L do not need to reflect only 

monetary values and may reflect other non-quantifiable values such as mission priority 

and mission risk.  Stochastic forecasts do not eliminate false alarms or misses, but they 

have been demonstrated to have more utility than deterministic forecasts (i.e., Objective 

2). 
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VII. CONCLUSION 

A. FINAL REMARKS 
The three objectives of this thesis were to: (1) create an ensemble-based 

turbulence forecast system capable producing forecast probability for air turbulence that 

impacts flight operations for this thesis, (2), to demonstrate the advantages of providing 

forecasts based on probability of occurrence over traditional deterministic forecasts (3) 

and to integrate probabilistic turbulence forecast information into the Air Force decision-

making process.   

The creation of the ETFS required an understanding of several scientific 

disciplines, to include:  meteorology (aircraft-scale turbulence), statistics and probability, 

and numerical weather prediction.  A well-designed ensemble prediction system should 

account for initial condition uncertainty and model error.  In this thesis GFS ensemble 

members were chosen for their availability and better methods for accounting initial 

condition uncertainty may be available for an operational ETFS.  Additionally, limited 

ensemble members from the GFS (5 positive and 5 negative perturbations), required a 

lagged-average forecasting approach to create more than 10 ensemble members.  A 

version of the Ellrod Turbulence Index was used to post-process atmospheric variables 

from the 40 ensemble members to generate turbulence forecasts for each grid point over 

the globe.  The uniform ranks method was used to calculate forecast probability.  A better 

method, called weighted ranks (calibrated ensemble members), is suggested for future 

ETFS work.  The ETFS designed in this thesis was sufficient for the purposes of 

exploring the second and third objectives.   

Zhu et al. (2002) and others have demonstrated how ensemble-based probabilistic 

forecasts have greater utility than deterministic forecasts.  Thesis results support their 

assertions and clearly demonstrate the overall advantage of using ensemble-based 

probabilistic forecasts versus deterministic forecasts, in the long run.  An ETFS was 

created to examine their assertions.  The probabilistic forecast system (System A) 

provided more value than the deterministic forecast system (System B) to forecast users 

with high and low C-L ratios.  Forecast users with a low middle-range C-L ratio did not 
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benefit more from System A than System B in short-range forecasts.  Those users do 

begin to see some advantages at later forecast times. 

Finally, scenarios were created to demonstrate how the integration of stochastic 

forecast guidance into the Air Force decision-making process might be accomplished.  

Statisticians and decision-theorists know that decision-makers who act on the basis of an 

expected monetary value for the long-run will have the largest savings at the end.  

Military planners and decision-makers may not explicitly state this as an assumption in 

their decision-making.  However, military planners and decision-makers do implicitly 

make decisions in this manner.  Unfortunately, military planners and decision-makers do 

not necessarily speak the same language.  For example, military decision-makers do not 

necessarily keep account of their C and L in directly quantifiable or monetary terms.  

Instead, the U.S. Air Force prefers to operate with a culture defined by Operational Risk 

Management and mission priority.  In this thesis, the C-L ratio used by statisticians and 

meteorologists was related to mission priority and operational risk level (Figure 28).  A 

qualitative understanding of the relationship between C-L ratio and mission priority and 

risk is essential for the DoD to integrate and apply ensemble-based probabilistic forecasts 

into its operations. 

 

B. SUGGESTIONS FOR FUTURE RESEARCH 

A more robust and reliable ETFS should be fielded for operational testing.  This 

can be accomplished by employing more sophisticated techniques to generate ensemble 

members, to include: using higher resolution model output, using a varied-model 

technique (Eckel and Mass 2005), calibrating ensemble members, and creating a strong 

verification system for turbulence that takes advantage of new turbulence observation 

techniques.  The varied-model technique implies using multiple diagnostic methods for 

diagnosing turbulence and weighting those ensemble members according to how well 

they perform.  Additionally, a working group of DoD meteorologists, aviators and 

operations analysts needs to be established to appropriately address integrating 

probabilistic forecasts into DoD operations.  A broad view of the decision process should 

be considered when integrating stochastic or deterministic weather information into 

operations.   
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APPENDIX A:  LAGGED-AVERAGE FORECASTING TABLE 

The tables in this appendix detail how the lagged average forecasting was handled 

for the ETFS.  Each ensemble run will be considered to have a run time of 18Z.  

Ensemble members based on 00Z, 06Z, and 12Z are used to increase the number of 

ensemble members in the ETFS.  For example, for a 06-h forecast from an 18Z ensemble 

run, the forecast time for the old runs will be 24 hr, 18 hr, and 12 hr forecast for 00Z, 

06Z, and 12Z runs respectively.  All model runs are on the same day. 

 

Run Time (Z) Forecast Hour 

18 06 

12 12 

06 18 

 

 

6 Hour Ensemble Forecast 

 

00 24 

Run Time (Z) Forecast Hour 

18 12 

12 18 

06 24 

 

 

12 Hour Ensemble Forecast 

 

00 30 

Run Time (Z) Forecast Hour 

18 18 

12 24 

06 30 

 

 

18 Hour Ensemble Forecast 

 

00 36 
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Run Time (Z) Forecast Hour 

18 24 

12 30 

06 36 

 

 

24 Hour Ensemble Forecast 

 

00 42 

Run Time (Z) Forecast Hour 

18 30 

12 36 

06 42 

 

 

30 Hour Ensemble Forecast 

 

00 48 

Run Time (Z) Forecast Hour 

18 36 

12 42 

06 48 

 

 

36 Hour Ensemble Forecast 

 

00 54 

Run Time (Z) Forecast Hour 

18 48 

12 54 

06 60 

 

 

48 Hour Ensemble Forecast 

 

00 66 
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Run Time (Z) Forecast Hour 

18 54 

12 60 

06 66 

 

 

54 Hour Ensemble Forecast 

 

00 72 

Run Time (Z) Forecast Hour 

18 72 

12 78 

06 84 

 

 

72 Hour Ensemble Forecast 

 

00 90 
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APPENDIX B:  ELLROD INDEX THRESHOLD CALIBRATION   

Appendix B contains contingency tables and other data used in analysis for 

Objective 1 to generate results for determining which Ellrod turbulence diagnostic 

threshold to use for Objective 2 analysis.  The POD, TS, HR, FAR, Bias, HSS, Zhu HR, 

and Zhu FAR used in this section refer to the definitions outlined in Table 3. 

 
TI>1 Results 
 
              Observed Yes   Observed No  
Forecast Yes   32           394  
Forecast No    19           313 
 
n = 758 
 
POD = 0.627451    FAR = 0.924883 
TS = 0.071910     Bias = 8.352941 
HR = 0.455145     HSS = 0.015906 

 
TI>1_5 Results 
 
              Observed Yes   Observed No  
Forecast Yes   30           302  
Forecast No    21           405 
 
n = 758 
 
POD = 0.588235    FAR = 0.909639 
TS = 0.084986     Bias = 6.509804 
HR = 0.573879     HSS = 0.151849 

 
TI>2 Results 
 
              Observed Yes   Observed No  
Forecast Yes   27           222  
Forecast No    24           485 
 
n = 758 
 
POD = 0.529412    FAR = 0.891566 
TS = 0.098901     Bias = 4.882353 
HR = 0.675462     HSS = 0.076900 
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TI>3 Results 
 
              Observed Yes   Observed No  
Forecast Yes   21           127  
Forecast No    30           580 
 
n = 758 
 
POD = 0.411765    FAR = 0.858108 
TS = 0.117978     Bias = 2.901961 
HR = 0.792876     HSS = 0.123319 

 
TI>4 Results 
 
              Observed Yes   Observed No  
Forecast Yes   16            82  
Forecast No    35           625 
 
n = 758 
 
POD = 0.313725    FAR = 0.836735 
TS = 0.120301     Bias = 1.921569 
HR = 0.845646     HSS = 0.138519 

 
TI>4_5 Results 
 
              Observed Yes   Observed No  
Forecast Yes   16            70  
Forecast No    35           637 
 
n = 758 
 
POD = 0.313725    FAR = 0.813953 
TS = 0.132231     Bias = 1.686275 
HR = 0.861478     HSS = 0.151849 

 
TI>5 Results 
 
              Observed Yes   Observed No  
Forecast Yes   15            57  
Forecast No    36           650 
 
n = 758 
 
POD = 0.294118    FAR = 0.791667 
TS = 0.138889     Bias = 1.411765 
HR = 0.877309     HSS = 0.179253 
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TI>5_5 Results 
 
              Observed Yes   Observed No  
Forecast Yes   11            44  
Forecast No    40           663 
 
n = 758 
 
POD = 0.215686    FAR = 0.800000 
TS = 0.115789     Bias = 1.078431 
HR = 0.889182     HSS = 0.151849 

 
TI>6 Results 
 
              Observed Yes   Observed No  
Forecast Yes   10            34  
Forecast No    41           673 
 
n = 758 
 
POD = 0.196078    FAR = 0.772727 
TS = 0.117647     Bias = 0.862745 
HR = 0.901055     HSS = 0.158052 

 
TI>7 Results 
 
              Observed Yes   Observed No  
Forecast Yes    7            22  
Forecast No    44           685 
 
n = 758 
 
POD = 0.137255    FAR = 0.758621 
TS = 0.095890     Bias = 0.568627 
HR = 0.912929     HSS = 0.132693 

 
TI>8 Results 
 
              Observed Yes   Observed No  
Forecast Yes    7            16  
Forecast No    44           691 
 
n = 758 
 
POD = 0.137255    FAR = 0.695652 
TS = 0.104478     Bias = 0.450980 
HR = 0.920844     HSS = 0.153797 
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TI>9 Results 
 
              Observed Yes   Observed No  
Forecast Yes    6            10  
Forecast No    45           697 
 
n = 758 
 
POD = 0.117647    FAR = 0.625000 
TS = 0.098361     Bias = 0.313725 
HR = 0.927441     HSS = 0.151849 

 

TI > POD FAR TS Bias Wilks HR HSS Zhu HR 
Zhu 
FAR 

1 0.627451 0.924888 0.07191 8.352941 0.455145 0.015906 0.627 0.557
1.5 0.588235 0.909639 0.084986 6.509804 0.573879 0.151849 0.5882 0.427

2 0.529412 0.891566 0.098901 4.882353 0.675462 0.0769 0.529 0.314
3 0.411765 0.858108 0.117978 2.901961 0.792876 0.123319 0.4117 0.1796
4 0.313725 0.836735 0.120301 1.921569 0.845646 0.138519 0.3137 0.11598

4.5 0.313725 0.813953 0.132231 1.686275 0.861478 0.151185 0.3137 0.099
5 0.294118 0.791667 0.138889 1.411765 0.877309 0.179253 0.294 0.0806

5.5 0.215686 0.8 0.115789 1.078431 0.889182 0.151849 0.217 0.0622
6 0.196078 0.772727 0.117647 0.862745 0.901055 0.158052 0.1961 0.048
7 0.137255 0.758621 0.09589 0.568627 0.912929 0.132693 0.13725 0.0311
8 0.137255 0.695652 0.104478 0.45098 0.920844 0.153797 0.13725 0.0226
9 0.117647 0.625 0.098361 0.313725 0.927441 0.151849 0.1176 0.01414

 

TI > ROCA ROCS 
1 0.535 0.07 

1.5 0.5806 0.1612 
2 0.6075 0.215 
3 0.61605 0.2321 
4 0.59886 0.19772 

4.5 0.60735 0.2147 
5 0.6067 0.2134 

5.5 0.5774 0.1548 
6 0.57405 0.1481 
7 0.553075 0.10615 
8 0.557325 0.11465 
9 0.55173 0.10346 
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APPENDIX C:  HYPOTHESIS TESTING RESULTS 

Detailed hypothesis testing results for Objective 2. 

CASE 1 
September Hypothesis Testing Results for Global 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.05) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0210 and -0.0119 
Tstat = -7.7254  df = 16.0000  sd = 0.0045 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.1) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0010  
CI are -0.0143 and -0.0044 
Tstat = -4.0017  df = 16.0000  sd = 0.0050 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.15) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.0690  
CI are -0.0105 and 0.0004 
Tstat = -1.9493  df = 16.0000  sd = 0.0055 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.2) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.4187  
CI are -0.0082 and 0.0036 
Tstat = -0.8301  df = 16.0000  sd = 0.0059 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.25) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 1.0000  
CI are -0.0063 and 0.0063 
Tstat = 0.0000  df = 16.0000  sd = 0.0063 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.3) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.9388  
CI are -0.0068 and 0.0063 
Tstat = -0.0780  df = 16.0000  sd = 0.0066 
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**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.35) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.9615  
CI are -0.0069 and 0.0066 
Tstat = -0.0491  df = 16.0000  sd = 0.0067 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.4) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.8652  
CI are -0.0074 and 0.0063 
Tstat = -0.1725  df = 16.0000  sd = 0.0069 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.45) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.6554  
CI are -0.0085 and 0.0055 
Tstat = -0.4547  df = 16.0000  sd = 0.0070 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.5) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.4121  
CI are -0.0100 and 0.0043 
Tstat = -0.8422  df = 16.0000  sd = 0.0071 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.55) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.2168  
CI are -0.0116 and 0.0029 
Tstat = -1.2858  df = 16.0000  sd = 0.0072 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.6) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.1047  
CI are -0.0133 and 0.0014 
Tstat = -1.7203  df = 16.0000  sd = 0.0074 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.65) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0414  
CI are -0.0152 and -0.0003 
Tstat = -2.2171  df = 16.0000  sd = 0.0074 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.7) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0156  
CI are -0.0172 and -0.0021 
Tstat = -2.7040  df = 16.0000  sd = 0.0076 
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**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.75) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0051  
CI are -0.0193 and -0.0040 
Tstat = -3.2448  df = 16.0000  sd = 0.0076 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.8) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0017  
CI are -0.0215 and -0.0060 
Tstat = -3.7760  df = 16.0000  sd = 0.0077 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.85) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0005  
CI are -0.0238 and -0.0081 
Tstat = -4.3215  df = 16.0000  sd = 0.0078 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.9) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0002  
CI are -0.0262 and -0.0103 
Tstat = -4.8819  df = 16.0000  sd = 0.0079 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.95) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0001  
CI are -0.0286 and -0.0126 
Tstat = -5.4319  df = 16.0000  sd = 0.0080 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.05) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0242 and -0.0140 
Tstat = -7.9199  df = 16.0000  sd = 0.0051 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.1) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0013  
CI are -0.0164 and -0.0048 
Tstat = -3.8927  df = 16.0000  sd = 0.0058 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.15) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.0570  
CI are -0.0122 and 0.0002 
Tstat = -2.0508  df = 16.0000  sd = 0.0062 
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**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.2) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.2155  
CI are -0.0105 and 0.0026 
Tstat = -1.2896  df = 16.0000  sd = 0.0065 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.25) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 1.0000  
CI are -0.0067 and 0.0067 
Tstat = 0.0000  df = 16.0000  sd = 0.0067 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.3) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.4421  
CI are -0.0095 and 0.0043 
Tstat = -0.7883  df = 16.0000  sd = 0.0069 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.35) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.4144  
CI are -0.0099 and 0.0043 
Tstat = -0.8379  df = 16.0000  sd = 0.0071 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.4) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.3047  
CI are -0.0109 and 0.0036 
Tstat = -1.0603  df = 16.0000  sd = 0.0073 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.45) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.1861  
CI are -0.0124 and 0.0026 
Tstat = -1.3814  df = 16.0000  sd = 0.0075 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.5) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.0888  
CI are -0.0140 and 0.0011 
Tstat = -1.8122  df = 16.0000  sd = 0.0075 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.55) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0386  
CI are -0.0156 and -0.0005 
Tstat = -2.2532  df = 16.0000  sd = 0.0076 
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**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.6) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0153  
CI are -0.0174 and -0.0021 
Tstat = -2.7134  df = 16.0000  sd = 0.0076 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.65) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0060  
CI are -0.0193 and -0.0038 
Tstat = -3.1630  df = 16.0000  sd = 0.0078 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.7) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0021  
CI are -0.0213 and -0.0057 
Tstat = -3.6579  df = 16.0000  sd = 0.0078 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.75) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0008  
CI are -0.0233 and -0.0075 
Tstat = -4.1384  df = 16.0000  sd = 0.0079 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.8) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0003  
CI are -0.0254 and -0.0095 
Tstat = -4.6276  df = 16.0000  sd = 0.0080 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.85) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0001  
CI are -0.0277 and -0.0115 
Tstat = -5.1183  df = 16.0000  sd = 0.0081 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.9) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0300 and -0.0135 
Tstat = -5.5965  df = 16.0000  sd = 0.0082 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.95) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0323 and -0.0156 
Tstat = -6.0539  df = 16.0000  sd = 0.0084 
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CASE 2 
September Hypothesis Testing Results for 30Nto55N 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.05) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0254 and -0.0170 
Tstat = -10.7395  df = 16.0000  sd = 0.0042 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.1) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0175 and -0.0078 
Tstat = -5.5262  df = 16.0000  sd = 0.0049 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.15) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0091  
CI are -0.0129 and -0.0021 
Tstat = -2.9656  df = 16.0000  sd = 0.0054 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.2) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.2071  
CI are -0.0101 and 0.0024 
Tstat = -1.3147  df = 16.0000  sd = 0.0062 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.25) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 1.0000  
CI are -0.0065 and 0.0065 
Tstat = 0.0000  df = 16.0000  sd = 0.0065 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.3) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.5275  
CI are -0.0093 and 0.0050 
Tstat = -0.6459  df = 16.0000  sd = 0.0072 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.35) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.4925  
CI are -0.0102 and 0.0051 
Tstat = -0.7025  df = 16.0000  sd = 0.0077 
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**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.4) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.4090  
CI are -0.0115 and 0.0049 
Tstat = -0.8478  df = 16.0000  sd = 0.0082 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.45) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.2646  
CI are -0.0131 and 0.0039 
Tstat = -1.1561  df = 16.0000  sd = 0.0085 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.5) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.1440  
CI are -0.0153 and 0.0024 
Tstat = -1.5364  df = 16.0000  sd = 0.0089 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.55) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.0691  
CI are -0.0173 and 0.0007 
Tstat = -1.9483  df = 16.0000  sd = 0.0090 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.6) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0321  
CI are -0.0197 and -0.0010 
Tstat = -2.3476  df = 16.0000  sd = 0.0093 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.65) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0125  
CI are -0.0223 and -0.0031 
Tstat = -2.8146  df = 16.0000  sd = 0.0096 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.7) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0054  
CI are -0.0247 and -0.0051 
Tstat = -3.2135  df = 16.0000  sd = 0.0098 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.75) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0022  
CI are -0.0274 and -0.0072 
Tstat = -3.6391  df = 16.0000  sd = 0.0101 
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**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.8) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0009  
CI are -0.0301 and -0.0095 
Tstat = -4.0667  df = 16.0000  sd = 0.0103 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.85) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0004  
CI are -0.0329 and -0.0118 
Tstat = -4.4869  df = 16.0000  sd = 0.0106 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.9) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0001  
CI are -0.0359 and -0.0144 
Tstat = -4.9577  df = 16.0000  sd = 0.0108 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.95) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0001  
CI are -0.0388 and -0.0170 
Tstat = -5.4165  df = 16.0000  sd = 0.0109 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.05) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0340 and -0.0191 
Tstat = -7.5138  df = 16.0000  sd = 0.0075 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.1) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0041  
CI are -0.0240 and -0.0054 
Tstat = -3.3438  df = 16.0000  sd = 0.0093 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.15) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.1151  
CI are -0.0196 and 0.0024 
Tstat = -1.6661  df = 16.0000  sd = 0.0110 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.2) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.3009  
CI are -0.0184 and 0.0061 
Tstat = -1.0690  df = 16.0000  sd = 0.0122 
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**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.25) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 1.0000  
CI are -0.0139 and 0.0139 
Tstat = 0.0000  df = 16.0000  sd = 0.0139 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.3) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.4588  
CI are -0.0187 and 0.0088 
Tstat = -0.7592  df = 16.0000  sd = 0.0138 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.35) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.4313  
CI are -0.0199 and 0.0089 
Tstat = -0.8073  df = 16.0000  sd = 0.0144 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.4) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.3776  
CI are -0.0214 and 0.0086 
Tstat = -0.9075  df = 16.0000  sd = 0.0150 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.45) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.2953  
CI are -0.0235 and 0.0076 
Tstat = -1.0820  df = 16.0000  sd = 0.0155 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.5) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.2153  
CI are -0.0259 and 0.0063 
Tstat = -1.2904  df = 16.0000  sd = 0.0161 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.55) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.1484  
CI are -0.0283 and 0.0047 
Tstat = -1.5185  df = 16.0000  sd = 0.0165 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.6) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.0955  
CI are -0.0310 and 0.0028 
Tstat = -1.7715  df = 16.0000  sd = 0.0169 
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**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.65) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.0610  
CI are -0.0338 and 0.0009 
Tstat = -2.0156  df = 16.0000  sd = 0.0173 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.7) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0347  
CI are -0.0367 and -0.0016 
Tstat = -2.3081  df = 16.0000  sd = 0.0176 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.75) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0208  
CI are -0.0397 and -0.0038 
Tstat = -2.5638  df = 16.0000  sd = 0.0180 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.8) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0119  
CI are -0.0428 and -0.0062 
Tstat = -2.8389  df = 16.0000  sd = 0.0183 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.85) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0071  
CI are -0.0459 and -0.0085 
Tstat = -3.0843  df = 16.0000  sd = 0.0187 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.9) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0041  
CI are -0.0490 and -0.0110 
Tstat = -3.3516  df = 16.0000  sd = 0.0190 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.95) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0025  
CI are -0.0521 and -0.0134 
Tstat = -3.5870  df = 16.0000  sd = 0.0194 
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CASE 3 
November Hypothesis Testing Results for Global 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.05) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0182 and -0.0121 
Tstat = -10.3500  df = 24.0000  sd = 0.0037 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.1) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0121 and -0.0054 
Tstat = -5.4277  df = 24.0000  sd = 0.0041 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.15) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0099  
CI are -0.0084 and -0.0013 
Tstat = -2.7992  df = 24.0000  sd = 0.0044 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.2) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.1765  
CI are -0.0062 and 0.0012 
Tstat = -1.3927  df = 24.0000  sd = 0.0046 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.25) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 1.0000  
CI are -0.0038 and 0.0038 
Tstat = 0.0000  df = 24.0000  sd = 0.0047 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.3) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.6319  
CI are -0.0048 and 0.0030 
Tstat = -0.4852  df = 24.0000  sd = 0.0048 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.35) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.6209  
CI are -0.0049 and 0.0030 
Tstat = -0.5011  df = 24.0000  sd = 0.0049 
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**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.4) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.4457  
CI are -0.0056 and 0.0025 
Tstat = -0.7753  df = 24.0000  sd = 0.0050 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.45) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.2348  
CI are -0.0066 and 0.0017 
Tstat = -1.2187  df = 24.0000  sd = 0.0051 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.5) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.0897  
CI are -0.0078 and 0.0006 
Tstat = -1.7685  df = 24.0000  sd = 0.0052 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.55) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0233  
CI are -0.0093 and -0.0007 
Tstat = -2.4222  df = 24.0000  sd = 0.0053 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.6) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0042  
CI are -0.0111 and -0.0023 
Tstat = -3.1646  df = 24.0000  sd = 0.0054 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.65) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0006  
CI are -0.0130 and -0.0041 
Tstat = -3.9473  df = 24.0000  sd = 0.0055 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.7) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0001  
CI are -0.0150 and -0.0060 
Tstat = -4.8081  df = 24.0000  sd = 0.0056 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.75) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0172 and -0.0080 
Tstat = -5.6889  df = 24.0000  sd = 0.0056 
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**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.8) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0194 and -0.0102 
Tstat = -6.6273  df = 24.0000  sd = 0.0057 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.85) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0217 and -0.0124 
Tstat = -7.5309  df = 24.0000  sd = 0.0058 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.9) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0241 and -0.0146 
Tstat = -8.4293  df = 24.0000  sd = 0.0059 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.95) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0266 and -0.0170 
Tstat = -9.2934  df = 24.0000  sd = 0.0060 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.05) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0216 and -0.0140 
Tstat = -9.6655  df = 24.0000  sd = 0.0047 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.1) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0142 and -0.0062 
Tstat = -5.2383  df = 24.0000  sd = 0.0050 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.15) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0052  
CI are -0.0104 and -0.0020 
Tstat = -3.0705  df = 24.0000  sd = 0.0052 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.2) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.0584  
CI are -0.0086 and 0.0002 
Tstat = -1.9876  df = 24.0000  sd = 0.0054 
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**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.25) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 1.0000  
CI are -0.0044 and 0.0044 
Tstat = 0.0000  df = 24.0000  sd = 0.0054 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.3) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.1715  
CI are -0.0078 and 0.0015 
Tstat = -1.4094  df = 24.0000  sd = 0.0057 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.35) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.1244  
CI are -0.0085 and 0.0011 
Tstat = -1.5925  df = 24.0000  sd = 0.0059 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.4) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.0726  
CI are -0.0094 and 0.0004 
Tstat = -1.8778  df = 24.0000  sd = 0.0061 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.45) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0312  
CI are -0.0105 and -0.0005 
Tstat = -2.2890  df = 24.0000  sd = 0.0062 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.5) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0092  
CI are -0.0120 and -0.0019 
Tstat = -2.8330  df = 24.0000  sd = 0.0062 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.55) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0022  
CI are -0.0136 and -0.0034 
Tstat = -3.4304  df = 24.0000  sd = 0.0063 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.6) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0005  
CI are -0.0153 and -0.0049 
Tstat = -4.0199  df = 24.0000  sd = 0.0064 
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**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.65) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0001  
CI are -0.0172 and -0.0067 
Tstat = -4.6823  df = 24.0000  sd = 0.0065 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.7) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0192 and -0.0085 
Tstat = -5.3618  df = 24.0000  sd = 0.0066 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.75) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0213 and -0.0104 
Tstat = -6.0302  df = 24.0000  sd = 0.0067 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.8) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0234 and -0.0124 
Tstat = -6.6859  df = 24.0000  sd = 0.0068 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.85) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0255 and -0.0143 
Tstat = -7.3371  df = 24.0000  sd = 0.0069 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.9) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0277 and -0.0163 
Tstat = -7.9833  df = 24.0000  sd = 0.0070 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.95) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0300 and -0.0184 
Tstat = -8.6211  df = 24.0000  sd = 0.0071 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.05) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0225 and -0.0147 
Tstat = -9.8306  df = 24.0000  sd = 0.0048 
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**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.1) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0144 and -0.0061 
Tstat = -5.1269  df = 24.0000  sd = 0.0051 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.15) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0052  
CI are -0.0110 and -0.0022 
Tstat = -3.0727  df = 24.0000  sd = 0.0054 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.2) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0397  
CI are -0.0095 and -0.0002 
Tstat = -2.1747  df = 24.0000  sd = 0.0057 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.25) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 1.0000  
CI are -0.0049 and 0.0049 
Tstat = 0.0000  df = 24.0000  sd = 0.0060 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.3) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.0790  
CI are -0.0089 and 0.0005 
Tstat = -1.8344  df = 24.0000  sd = 0.0058 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.35) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0431  
CI are -0.0096 and -0.0002 
Tstat = -2.1363  df = 24.0000  sd = 0.0058 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.4) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0163  
CI are -0.0108 and -0.0012 
Tstat = -2.5840  df = 24.0000  sd = 0.0059 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.45) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0050  
CI are -0.0123 and -0.0025 
Tstat = -3.0939  df = 24.0000  sd = 0.0061 
 



111 

**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.5) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0013  
CI are -0.0138 and -0.0038 
Tstat = -3.6486  df = 24.0000  sd = 0.0062 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.55) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0003  
CI are -0.0155 and -0.0054 
Tstat = -4.2933  df = 24.0000  sd = 0.0062 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.6) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0174 and -0.0072 
Tstat = -4.9578  df = 24.0000  sd = 0.0063 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.65) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0193 and -0.0089 
Tstat = -5.5892  df = 24.0000  sd = 0.0064 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.7) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0212 and -0.0107 
Tstat = -6.2500  df = 24.0000  sd = 0.0065 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.75) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0232 and -0.0125 
Tstat = -6.8923  df = 24.0000  sd = 0.0066 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.8) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0253 and -0.0144 
Tstat = -7.5434  df = 24.0000  sd = 0.0067 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.85) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0273 and -0.0163 
Tstat = -8.1653  df = 24.0000  sd = 0.0068 
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**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.9) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0293 and -0.0182 
Tstat = -8.7599  df = 24.0000  sd = 0.0069 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.95) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0314 and -0.0200 
Tstat = -9.3368  df = 24.0000  sd = 0.0070 
 

CASE 4 
November Hypothesis Testing Results for 30Nto55N 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.05) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0305 and -0.0230 
Tstat = -14.7270  df = 24.0000  sd = 0.0046 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.1) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0212 and -0.0126 
Tstat = -8.0903  df = 24.0000  sd = 0.0053 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.15) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0001  
CI are -0.0154 and -0.0058 
Tstat = -4.5142  df = 24.0000  sd = 0.0060 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.2) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0203  
CI are -0.0122 and -0.0011 
Tstat = -2.4865  df = 24.0000  sd = 0.0068 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.25) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 1.0000  
CI are -0.0060 and 0.0060 
Tstat = 0.0000  df = 24.0000  sd = 0.0074 
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**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.3) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.2671  
CI are -0.0098 and 0.0028 
Tstat = -1.1361  df = 24.0000  sd = 0.0078 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.35) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.3422  
CI are -0.0097 and 0.0035 
Tstat = -0.9691  df = 24.0000  sd = 0.0082 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.4) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.3595  
CI are -0.0101 and 0.0038 
Tstat = -0.9341  df = 24.0000  sd = 0.0086 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.45) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.2569  
CI are -0.0114 and 0.0032 
Tstat = -1.1613  df = 24.0000  sd = 0.0090 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.5) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.1503  
CI are -0.0131 and 0.0021 
Tstat = -1.4859  df = 24.0000  sd = 0.0094 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.55) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.0736  
CI are -0.0150 and 0.0007 
Tstat = -1.8706  df = 24.0000  sd = 0.0097 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.6) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0286  
CI are -0.0175 and -0.0011 
Tstat = -2.3293  df = 24.0000  sd = 0.0102 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.65) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0083  
CI are -0.0204 and -0.0034 
Tstat = -2.8793  df = 24.0000  sd = 0.0105 
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**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.7) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0020  
CI are -0.0237 and -0.0060 
Tstat = -3.4615  df = 24.0000  sd = 0.0109 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.75) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0004  
CI are -0.0273 and -0.0090 
Tstat = -4.0868  df = 24.0000  sd = 0.0113 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.8) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0001  
CI are -0.0310 and -0.0119 
Tstat = -4.6522  df = 24.0000  sd = 0.0118 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.85) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0348 and -0.0151 
Tstat = -5.2474  df = 24.0000  sd = 0.0121 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.9) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0390 and -0.0186 
Tstat = -5.8465  df = 24.0000  sd = 0.0126 
**************************************************** 
24 hour forecast (Cost-Loss Ratio = 0.95) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0433 and -0.0223 
Tstat = -6.4582  df = 24.0000  sd = 0.0129 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.05) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0366 and -0.0267 
Tstat = -13.2238  df = 24.0000  sd = 0.0061 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.1) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0251 and -0.0147 
Tstat = -7.9282  df = 24.0000  sd = 0.0064 
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**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.15) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0001  
CI are -0.0189 and -0.0076 
Tstat = -4.8309  df = 24.0000  sd = 0.0070 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.2) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0038  
CI are -0.0155 and -0.0034 
Tstat = -3.1990  df = 24.0000  sd = 0.0075 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.25) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 1.0000  
CI are -0.0064 and 0.0064 
Tstat = 0.0000  df = 24.0000  sd = 0.0079 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.3) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.0976  
CI are -0.0128 and 0.0011 
Tstat = -1.7240  df = 24.0000  sd = 0.0086 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.35) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.1099  
CI are -0.0130 and 0.0014 
Tstat = -1.6601  df = 24.0000  sd = 0.0089 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.4) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 0.0819  
CI are -0.0140 and 0.0009 
Tstat = -1.8162  df = 24.0000  sd = 0.0092 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.45) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0390  
CI are -0.0159 and -0.0004 
Tstat = -2.1840  df = 24.0000  sd = 0.0095 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.5) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0118  
CI are -0.0182 and -0.0025 
Tstat = -2.7253  df = 24.0000  sd = 0.0097 
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**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.55) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0028  
CI are -0.0210 and -0.0049 
Tstat = -3.3320  df = 24.0000  sd = 0.0099 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.6) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0006  
CI are -0.0239 and -0.0074 
Tstat = -3.9303  df = 24.0000  sd = 0.0101 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.65) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0001  
CI are -0.0269 and -0.0103 
Tstat = -4.6021  df = 24.0000  sd = 0.0103 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.7) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0304 and -0.0134 
Tstat = -5.3048  df = 24.0000  sd = 0.0105 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.75) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0339 and -0.0165 
Tstat = -5.9635  df = 24.0000  sd = 0.0108 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.8) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0375 and -0.0197 
Tstat = -6.6438  df = 24.0000  sd = 0.0110 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.85) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0413 and -0.0231 
Tstat = -7.3080  df = 24.0000  sd = 0.0112 
**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.9) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0452 and -0.0266 
Tstat = -7.9659  df = 24.0000  sd = 0.0115 
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**************************************************** 
48 hour forecast (Cost-Loss Ratio = 0.95) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0493 and -0.0303 
Tstat = -8.6474  df = 24.0000  sd = 0.0117 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.05) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0410 and -0.0317 
Tstat = -16.2411  df = 24.0000  sd = 0.0057 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.1) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0271 and -0.0168 
Tstat = -8.8459  df = 24.0000  sd = 0.0063 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.15) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0206 and -0.0095 
Tstat = -5.5929  df = 24.0000  sd = 0.0069 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.2) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0007  
CI are -0.0170 and -0.0052 
Tstat = -3.8602  df = 24.0000  sd = 0.0073 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.25) 
H = 0 (Cannot Reject Null Hypothesis) 
The sample means may not be significantly different (.05 Level). 
Significance (P-value) = 1.0000  
CI are -0.0067 and 0.0067 
Tstat = 0.0000  df = 24.0000  sd = 0.0083 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.3) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0290  
CI are -0.0146 and -0.0009 
Tstat = -2.3231  df = 24.0000  sd = 0.0085 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.35) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0315  
CI are -0.0152 and -0.0008 
Tstat = -2.2835  df = 24.0000  sd = 0.0089 
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**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.4) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0214  
CI are -0.0167 and -0.0015 
Tstat = -2.4620  df = 24.0000  sd = 0.0094 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.45) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0086  
CI are -0.0188 and -0.0030 
Tstat = -2.8640  df = 24.0000  sd = 0.0097 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.5) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0029  
CI are -0.0213 and -0.0050 
Tstat = -3.3196  df = 24.0000  sd = 0.0101 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.55) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0005  
CI are -0.0244 and -0.0078 
Tstat = -4.0141  df = 24.0000  sd = 0.0102 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.6) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0001  
CI are -0.0278 and -0.0109 
Tstat = -4.7484  df = 24.0000  sd = 0.0104 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.65) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0312 and -0.0139 
Tstat = -5.3965  df = 24.0000  sd = 0.0106 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.7) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0347 and -0.0171 
Tstat = -6.0549  df = 24.0000  sd = 0.0109 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.75) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0385 and -0.0203 
Tstat = -6.6949  df = 24.0000  sd = 0.0112 
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**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.8) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0422 and -0.0236 
Tstat = -7.2886  df = 24.0000  sd = 0.0115 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.85) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0461 and -0.0269 
Tstat = -7.8640  df = 24.0000  sd = 0.0118 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.9) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0500 and -0.0303 
Tstat = -8.4006  df = 24.0000  sd = 0.0122 
**************************************************** 
72 hour forecast (Cost-Loss Ratio = 0.95) 
H = 1 (Reject Null Hypothesis) 
The sample means are significantly different (.05 Level). 
Significance (P-value) = 0.0000  
CI are -0.0539 and -0.0336 
Tstat = -8.8863  df = 24.0000  sd = 0.0125 
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APPENDIX D:  EXAMPLE ORM WORKSHEETS 

Appendix D consists of figures of pages (Figures 37 and 38) of an ORM worksheet from 

the 101 ARW from the Maine Air National Guard (Lt. Col. Andrew Marshall, 2005, 

personal communication). 



122 

 
 

Figure 37.   ORM Worksheet Page 1. 
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Figure 38.   ORM Worksheet Page 2. 
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