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control design methods are presented, both using linear quadratic techniques with integral

augmentation, and are implemented in tracking control studies. The first approach focuses

on setpoint tracking control, whereas in the second, a regulator design approach is taken.

The effectiveness of each control design is demonstrated in simulation on the full nonlinear
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Nomenclature, States and Inputs

States Inputs

Vt Vehicle velocity δe Control surface deflection

α Angle-of-attack ∆T0 Total temperature change across combustor

Q Pitch rate Ad Diffuser area ratio

h Altitude xd Cowl lip position

θ Pitch angle

ηi Generalized elastic coordinates

η̇i Time derivatives of the elastic coordinates

Table 1. Definitions of the states and inputs

I. Introduction

Air-breathing hypersonic vehicles may represent a more cost efficient way to launch small satellites or
other vehicles into low earth orbit (LEO) than expendable rockets. With this type of aircraft, quick response
and global strike capabilities for Air Force missions will be more practical. The recent success of NASA’s
X-43A scramjet powered airplane in flight testing has affirmed the feasibility of this technology. Still, much
work remains before air-breathing technology can move from the drawing board to a permanent home in the
skies.

Control of air-breathing hypersonic vehicles is a significant challenge because of the strong interaction
between the aerodynamic and propulsive effects. As a matter of fact, the peculiar characteristic of air-
breathing hypersonic vehicles is the strong interaction between the airframe and the engine dynamics.1–3

Moreover, a substantial coupling exists between the engine thrust and the pitching moment. The vehicle’s
unique design results in non-conventional aircraft modes; the short period and phugoid are not defined in
the traditional sense and the system response appears to be dominated by the altitude dynamics, which
is only weakly controllable. The aircraft model is characterized by critically stable internal dynamics, and
is statically unstable. Additionally, the body must be considered as a flexible structure due to its length,
relative slenderness, and light weight. The elastic modes cause changes in the aerodynamic forces and
moments of the vehicle. As a result, vehicles of this kind are notoriously difficult systems to control.

Due to the enormous complexity of the dynamics, only models of the longitudinal dynamics of air-
breathing hypersonic vehicles have been developed and used for control design. There have been several
attempts to address the challenges of model development and control of air-breathing hypersonic vehi-
cles,1,2, 4–7 with a few concerted efforts to incorporate guidance and control.8–10 In the cited references,
linearized models of the vehicle dynamics have been considered for control design, with the noticeable excep-
tion of Tournes et al.,9 where nonlinear variable structure control has been adopted. On the other hand, for
hypersonic vehicle models with conventional actuation and negligible flexibility, the use of nonlinear control
system design methodologies is more common.11–14

In this paper, we present some results on the development of linear controllers for the novel air-breathing
hypersonic vehicle model developed by Bolender and Doman.3 As opposite to the model developed by
Chavez and Schmidt,5,15 which resort to Newtonian impact theory, Bolender and Doman have employed
compressible flow theory to determine the pressures and shock angles, resulting in a possibly more accurate
and substantially more complex model. Figure 1 provides a schematic of the geometry for this generic vehicle.
A Simulink version of the model developed by Bolender and Doman3 has become an integral part of this
study. The Simulink model incorporates the equations of motion and the engine/aerodynamics. With such a
structure, one gains access to all the Simulink tools such as the numerical linearizing function linmod, used
here to attain a linearized model of the vehicle around a certain trim condition. Because virtually the entire
system is implemented in the Simulink block environment, most sub-calculations, such as pressures, are
accessible directly from Simulink. Finally, it should be noted that Simulink provides an excellent platform
for controller development and was therefore used for this study with the nonlinear model implemented for
all simulations.

Since linear control techniques are employed in this preliminary study, a linearized model is obtained
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Figure 1. Vehicle Geometry for Hypersonic Air-breathing Vehicle3

for the nonlinear system at a specified trim condition, so that control can be designed for a region in a
neighborhood of the operating point. The main goal of this study is to determine feasibility of linear control
methods via designs on linearized models, for the generic nonlinear model. Extensions of the control system
design would naturally involve gain scheduling around several trim conditions of interest. The trim condition
used in this paper is given in Table 2. Controlled outputs for this problem are the angle-of-attack, the vehicle
velocity, and the altitude of the vehicle. Since to achieve tracking it is necessary to have at least as many
inputs as there are outputs to track,16 a minimum of three control inputs is required in the case considered
here. The control inputs are the control surface deflection (elevator), the total temperature change across
the combustor, and the diffuser area ratio. The cowl door position xd, is also available as a control input but
it has kept fixed in this study, because early testing did not prove it as effective as the previously mentioned
ones. The considered inputs provide control authority over the forces and moments associated with the
nonlinear model. For example, the elevator deflection mainly affects the pitching moment as well as the lift
and drag of the vehicle, though to a lesser extent it affects the other forces as well. Clearly, the temperature
change across the combustor and the diffuser area ratio will mostly affect thrust.

In this work, two design methodologies are utilized for tracking control. For the first, an LQR controller
is developed directly; for the second one, the tracking problem is cast into a regulation problem, to which
LQR design can be applied. The linear quadratic regulator approach results in an optimal choice of system
gains, accounting for the coupling inherent to the system, according to some cost criterion. While LQR
design ensures a certain degree of robustness for the stability of the closed loop system in the presence of
parametric uncertainties (even when applied to the nonlinear model), integral control is required to obtain
zero steady state error with respect to constant setpoint tracking in the presence of model uncertainties.
With integral action combined into the overall system, the feedback and feedforward gains for state feedback
can be specified easily via LQR design. Similarly, an integrator can also be added to the regulator setup to
achieve the same purpose.

The organization of this paper is as follows: In section II the system is defined with an outline of the
control objectives and performance objectives. Then, in Section III a setpoint tracking controller is developed,
followed by a regulator-type controller in Section IV. Simulation results on the nonlinear model are presented
and discussed for both controllers in Section V. Finally, we draw some conclusions in Section VI.
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II. Problem Formulation

The longitudinal dynamics for the vehicle model shown in Figure 1, as given in Bolender and Doman,3

is described by the following nonlinear equations

V̇t =
1

m
(T cosα−D) − g sin(θ − α)

α̇ =
1

mVt

(−T sinα− L) +Q+
g

Vt

cos(θ − α)

IyyQ̇ = M + ψ̃1η̈1 + ψ̃2η̈2

ḣ = Vt sin(θ − α)

θ̇ = Q

k1η̈1 = −2ζ1ω1η̇1 − ω2
1η1 +N1 − ψ̃1

M

Iyy

− ψ̃2ψ̃1η̈1

Iyy

k2η̈2 = −2ζ2ω2η̇2 − ω2
2η2 +N2 − ψ̃2

M

Iyy

− ψ̃1ψ̃2η̈2

Iyy

,

where T , L,D,Ni are the thrust, lift, drag, and generalized elastic forces respectively, M is the pitching
moment about the y-axis, Iyy is the moment of inertia, ζi, ωi are the damping coefficients and natural
frequencies of the elastic modes. Furthermore,

k1 = 1 +
ψ̃1

Iyy

k2 = 1 +
ψ̃2

Iyy

ψ̃1 =

∫ 0

−Lf

m̂fξφf (ξ)dξ

ψ̃2 =

∫ La

0

m̂aξφa(ξ)dξ,

where m̂f , m̂a are the mass densities of the forebody and aftbody respectively and φf , φa are the mode
shapes for the forebody and aftbody respectively. These equations assume a two cantilever model that is
constrained at its origin so that the coupling cannot be ignored. Since only coupling between the pitch and
flexible modes are considered in the flexible structure, the equations are more complex than if a free-free
beam was used to approximate the structure. The states and inputs listed in Table 1 affect the forces and
moment in these equations in a complex nonlinear way. The reader is referred to Bolender and Doman3 for
further details.

A linearized model about a trim condition of the nonlinear vehicle dynamics described by the equations
above, was developed using numerical methods. The linearized equations read as

ẋp = Apxp +Bpup

yp = Cpxp

zp = Hpxp, (1)

where xp ∈ R
9 is the state of the plant, up ∈ R

3 is the control input, yp ∈ R
9 the output available for

feedback, and zp = (Vt α h)T is the performance output to be regulated to a desired reference command.
The state xp, the input up, and the output zp in (1) are all deviations of the corresponding trajectories of
the non-linear system from the trim condition. The states and inputs are arranged in the same order as
they are given in Table 1. The detailed expression of the plant matrices Ap ∈ R

9×9, Bp ∈ R
9×3, Cp = I9×9

will not be explicitly given here for brevity. Since the only control inputs used in the case we consider here
are δe, ∆T0, and Ad, the fourth input xd is fixed at its trim state and does not appear in the input vector.
The linear controllers are designed on the basis of the linearized model, and their performance evaluated
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by means of computer simulations on the full-scale nonlinear model. The desired outcome is to have the
performance output of the system track a reference input, r(t) ∈ R

3, which is assumed to have a constant
steady state value.

For added model accuracy, a simple model of actuator dynamics has been added to the plant model. The
actuator dynamics are modelled as

ẋδ = Aδxδ +Bδuδ,

where

Aδ =




−20 0 0

0 −10 0

0 0 −10


 , Bδ =




20 0 0

0 10 0

0 0 10


 ,

xδ =




xδe

x∆T0

xAd


 , uδ =




uδe

u∆T0

uAd


 .

The parameters of the actuator model are chosen to approximate values for real actuators. The actuator
dynamics are appended to (1) as follows

ẋ1 = A1x1 +B1u1

y1 = C1x1

z1 = H1x1,

(2)

where

A1 =

(
Ap Bp

0 Aδ

)
, B1 =

(
0

Bδ

)
, H1 =

(
Hp 0

)
,

C1 = I12×12, x1 =

(
xp

xδ

)
, u1 = uδ.

This allows the actuator states to be taken into account in the control system design. Therefore, the actuator
bandwidth limitations are included in the controller design, but the presence of input saturations were not
taken directly into account for this study. However, the results of closed loop simulations on the full nonlinear
model show that reasonable responses can be generated well within the limitations that would be imposed
on the actuators through a careful selection of the weighting matrices of the LQR design.

A. Control Objectives

The objective is to control the angle of attack, velocity, and altitude of the vehicle to a reference command
representing a desired deviation from a given trim state, using as control inputs the control surface deflection,
total temperature change across the combustor, and the diffuser area ratio. This will be done by designing
full-state feedback controllers to achieve setpoint regulation in the neighborhood of a trim condition. This is
obviously the first step towards the more ambitious goal of designing a gain scheduling controller by output
feedback, since it may not be possible to measure all of the states of the system. Two different control
methodologies will be employed:

• LQ design with implicit model following and integral augmentation.

• Regulator theory with model following and integral augmentation.

B. Performance Objectives

The final performance objective is to achieve a simultaneous setpoint tracking of the angle of attack (α),
velocity (Vt), and altitude (h) without the actuators violating their position constraints. Control limitations
were not included explicitly in the controller design but were considered in the tuning process. For the flight
condition in this study the control limitations are as follows: the diffuser area ratio must satisfy Ad ∈ (0, 1),
the temperature change ∆T0 should be approximately less than 3000 deg R of the trim value, while the
surface deflection must satisfy δe ∈ (−30◦, 30◦).
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III. Setpoint Tracking Control

A. Integral Augmentation

It is desirable to include integral control into the state feedback to eliminate the steady state error. By
augmenting the system with the integral error it is possible to let the LQR routine choose the value of
the integral gain automatically. The advantage of adding the integrators is that it eliminates the need to
determine the DC gain of the closed-loop system which would be difficult because of the uncertainty in the
model. Let the error of the system (2) be given by the difference between the reference command r(t) and
the performance output z(t), that is,

e1 = r −H1x1.

Then, let the integral error be given by,

x2 =

∫ t

0

e1(τ)dτ

and append the error dynamics to the system (2), to obtain

(
ẋ1

ẋ2

)
=

(
A1 0

−H1 0

)(
x1

x2

)
+

(
B1

0

)
u+

(
0

I

)
r.

Letting x = col(x1, x2), we write the above system as

ẋ = Ax+Bu+Gr, (3)

with obvious meaning of the matrices A, B, and G. The new error for the system (3) can then be defined as

e =

(
r −H1x1

x2

)
= Mr +Hx, (4)

where

M =

(
I

0

)
H =

(
−H1 0

0 I

)
.

B. LQ Optimal Control

The control design problem is to find a linear optimal tracking controller to minimize the cost function

J =
1

2

∫
∞

0

(
eTQe+ uTRu

)
dt,

subject to (3), where Q = QT ≥ 0, R = RT > 0. By direct substitution we get,

J =
1

2

∫
∞

0

(
xTHTQHx+ 2rTMTQHx+ rTMTQMr + uTRu

)
dt. (5)

Using the standard methodology, outlined for example in Bryson,17 we arrive at the following differential
equations

Ṗ = −PA−ATP −HTQH + PBR−1BTP (6)

ġ = (PBR−1BT −AT )g − (HTQM + PG)r. (7)

Equation (6) is the standard Riccati equation, while equation (7) is an auxiliary vector equation that defines
the feedforward gain. It can be verified that (A,B) is stabilizable and (A,

√
Q) is detectable, therefore there

exist a unique steady state solution (Ṗ = 0) to equation (6), obtained by means of the associated algebraic
Riccati equation (ARE),18 whose solution will be denoted by Pss. Assuming that we want to achieve perfect
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tracking of r(t) at its constant steady state value rss, then the following equation gives the steady state
solution for g in the form

gss = (PssBR
−1BT −AT )−1(HTQM + PssG)rss.

We can now write the control law as

u = −Kxx−Krr,

where

Kx = R−1BTPss (8)

Kr = R−1BT (PssBR
−1BT −AT )−1(HTQM + PssG). (9)

Finally, we can write the closed loop system as

ẋ = (A−BKx)x+ (G−BKr)r.

Once the ARE is solved, then the optimal gains can be computed from (8) and (9). The problem now
becomes how to choose Q and R so that a good response is obtained without exceeding the bandwidth and
position limitations of the actuators. The position limits for the control effectors were imposed qualitatively,
they were not explicitly included in the optimal control problem. It is worth noting that the gain computed
in (8) and (9) are optimal only in steady state. In particular, the feedforward gain provides perfect tracking
only when r(t) = rss.

C. Implicit Model Following (IMF) Method

It is very difficult to tune the weighting matrices to achieve an acceptable response for all the performance
outputs while at the same time keeping the control effectors within their limits. In classical control, certain
responses can be specified and sometimes achieved by deciding what damping ratio, overshoot, settling time,
etc. are desired. While it is not straightforward to do so using LQR, it is possible to devise a methodology
for picking the LQR weighting matrices in a simple and effective way. Using the implicit model following
method, as described in Stevens and Lewis,19 it is possible to make the selection of the weighting matrices
more intuitive. This is done by first specifying a desired reference model for the error e in (4) as the solution
of the autonomous differential equation

ėm = Amem,

where the matrix Am specifies the desired dynamics for the error to follow. For instance, a desired convergence
ratio for the error e(t) can be selected a priori choosing the eigenvalues of Am correspondingly, and the matrix
Am can be chosen either diagonal or block diagonal to enforce decoupling among selected components of
e(t). Define the model following error as

eρ = ė−Ame, (10)

where ė is the derivative of the actual error. The model following error can then be used in a performance
index as it is desirable to bring this error to zero. The following performance index penalizes the model
following error and the inputs

Jρ =
1

2

∫
∞

0

(
eT
ρQmeρ + uTRmu

)
dt. (11)

The tunable design parameters are Am ∈ R
6×6, Qm ∈ R

6×6, and Rm ∈ R
3×3. It is worth noting that

although a selection of weighting matrices Qm and Rm is still required in (11), this problem is considerably
simpler than the original one. First, the dimension of Qm is smaller than the dimension of Q, and the matrix
Am can be chosen diagonal as discussed above. Recalling that the reference input is constant at steady state
(step input), we approximate the time derivative of the error e(t) by

ė = Hẋ. (12)
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Substituting (4) and (12) into (10)

eρ = Hẋ−Ame

= HAx+HBu+HGr −AmMr −AHx

= (HA−AmH)x+HBu+ (HG−AmM)r.

In our case, it can be shown that HB = 0, thus the error takes the form

eρ = M̄r + H̄x, (13)

where

M̄ = HG−AmM, H̄ = HA−AmH.

Substituting (13) in equation (11) results in a performance index of the same form as equation (5) given in
the previous section. For this case,

J =
1

2

∫
∞

0

(
xT H̄TQmH̄x+ 2rT M̄TQmH̄x+ rT M̄TQmM̄r + uTRmu

)
dt.

Therefore, the derivation of the optimal gains given in the previous section still holds. The ARE resulting
from (6), (8), and (9) can be solved using M̄ , H̄, A, B, and G.

IV. Regulator Controller Design

A. Regulator

In this section, a second approach to the tracking problem will be pursued. It involves casting the tracking
problem into a regulation problem and then designing a stabilizing controller using LQR techniques. The
advantage to this approach lies in the fact that the feedforward control that is obtained guarantees regulation
for a time varying reference, r(t), as opposed to the previous method. Assume the reference is generated by
the following autonomous system,

ṙf = Srf

r = Cfrf ,

where rf ∈ R
nf , S ∈ R

nf×nf , all the eigenvalues of the matrix S have non-positive real part. It can be
verified that, for the linearized vehicle model under consideration and for the specific structure of the matrix
S discussed in the next section, there exist matrices Π ∈ R

12×nf , Γ ∈ R
3×nf that solve the Francis equation

ΠS = A1Π +B1Γ

0 = H1Π − Cf ,

where A1, B1 and H1 are described in (2). By inspection, the mappings xss = Πrf and uss = Γrf define
respectively the steady state trajectories for the state and the input of (2) which are compatible with the
condition e1 = 0.

Letting

x̃1 = Πrf − x1

ũ = Γrf − u,
(14)

and substituting (14) into (2), an equation for the dynamics of x̃ is derived, in the form

˙̃x1 = A1x̃1 +B1ũ

e1 = H1x̃1.
(15)

The system (15) describes the dynamics of the tracking error. Note that (15) is independent of the actual
reference inputs and that the tracking problem has been cast into a stabilization problem for the origin x̃ = 0
of (15). The Francis equation has a unique solution provided that the matrix20,21

(
A1 − λI B1

−H1 0

)

8 of 14

American Institute of Aeronautics and Astronautics



has full rank for any λ which is an eigenvalue of S. This condition, which states that no eigenvalue of S
should be a transmission zero of the plant, can always be enforced by a proper selection of the matrix S.
Furthermore, the integral of the error can be included to (15) by first defining ˙̃x2 = −e1 and then appending
x̃2 to the system (

˙̃x1

˙̃x2

)
=

(
A1 0

−H1 0

)(
x̃1

x̃2

)
+

(
B1

0

)
ũ.

Letting x̃ = col(x̃1, x̃2) the equation above can be written as follows using the previously defined matrices

˙̃x = Ax̃+Bũ

e = −Hx̃.
(16)

The tracking problem has now been simplified into a standard regulator problem, that is, that of regulating
x̃ to 0.

B. IMF Applied to the Regulator

Consider again the system (16). We will apply the standard LQR, full state feedback control to this system.
As in Section III, it is desirable to simplify the tuning process of choosing the weighting matrices Q and R

by applying the implicit model following method. We start by defining the performance index (11), where
eρ is defined in (10), and the error e is defined by the second equation in (16). After simple algebraic
manipulations, we obtain the expression of the performance index as

Jρ =
1

2

∫
∞

0

(
x̃TQρx̃+ 2x̃TWρu+ uTRρu

)
dt,

where

Qρ = (HA−AmH)TQm(HA−AmH)

Wρ = (HA−AmH)TQmHB

Rρ = BTHTQmHB +Rm.

Since in our case HB = 0, the above expressions are simplified into Wρ = 0, Rρ = Rm, and

Jρ =
1

2

∫
∞

0

(
x̃TQρx̃+ uTRρu

)
dt.

This problem can be solved using a conventional LQR algorithm provided that Qρ = QT
ρ ≥ 0, Rρ = RT

ρ > 0,

(A,B) is stabilizable and that (A,
√
Qρ ) is detectable. The tunable design parameters are Am ∈ R

6×6,
Qm ∈ R

6×6, Rρ ∈ R
3×3, and S ∈ R

nf×nf which defines the exosystem. We assume that S is tunable because
in our case it is the state space realization of a step reference and a tunable second order command shaping
filter. The solution will be of the form

ũ = −Kρx̃,

which as expected, does not contain a feedforward component per se, since we are merely implementing state
feedback on system (16). However, after substituting with (14) we see that the actual control input can be
written as a combination of feedback and feedforward terms as follows

u = Γr +Kρx̃ = Γr −Kρ

(
x1 − Πr

−x̃2

)
.

V. Simulation Results for the Nonlinear System

To test the effectiveness of each controller developed in this study, its performance has been evaluated
in simulation on the Simulink model discussed in the introduction. To implement a linear controller on a
nonlinear model the trim state values must be subtracted from the states of the nonlinear model and the
inputs are fed by the outputs of the linear controller with the trim condition added.
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A. Filtering the Reference Input

The components of the input reference vector have been chosen as step inputs, filtered by three decoupled
2nd order command shaping filters of the following form

G(s) =
ω2

n

s2 + 2ζωns+ ω2
n

,

where ζ is the damping coefficient and ωn is the natural frequency of the filter. While the filter dynamics
were not included in the design of the setpoint tracking controller, they were explicitly incorporated into the
regulator design. By writing the command reference filters in state space, a state space representation of the
reference generator as an exosystem can be formulated as follows

S =




0 0 0

0 0 I3×3

Ω2
n −Ω2

n −2ΞΩn




Cf =
(

03×3 I3×3 03×3

)
,

where Ωn and Ξ are real 3×3 diagonal matrices that define the natural frequencies and damping ratios of
the command reference filters respectively (see the Appendix), and the initial value of the first three states
define the amplitude of the reference command in steady state. A block diagrams for each controller is given
in Figure 2 and Figure 3 respectively.

B. Simulation Parameters and Results

The performance objective is to achieve a simultaneous set point tracking of the following steady state
deviations from the trim state: 1◦ for α, 1000 ft/s for Vt, and 10000 ft for h, which are reasonable requirements
for a vehicle of this type. The steady state demand on the outputs place a physical restriction on the transient
response of the vehicle. For example, it would be physically impossible for the aircraft to gain 10000 ft in
altitude over a short time interval. Therefore, the criteria of the transient response, such as rise time, settling
time, and overshoot, were determined a priori to provide reasonable physical results. Using simple G-force
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calculations it was determined that a desirable response should have a settling time of approximately 1.3 sec
for α, 102 sec for VT , and 60 sec for h with as little overshoot as reasonably possible for the given step sizes.
This criteria proved too difficult to be satisfied without exceeding the physical limitations for the actuators.
If an anti-windup scheme were added to the controllers this might be possible but no input saturation was
considered in the design of the controllers in this study. As previously discussed, these limitations were
only taken into consideration during the tuning process, it was therefore decided to relax the criteria by
tuning the exosystem, i.e. the step reference input filter. The results in Figure 4, show that both controllers
produce inputs within the given limitations and give a slightly faster response then the filtered reference
without considerable overshoot. The settling times of the reference inputs are as follows: 3.6 sec for α, 166
sec for VT , and 117 sec for h. These are very reasonable results considering that we are not using saturations
in our controllers, as well as the fact that we are using a linearized model for the controller design and are
moving considerably away from the trim condition. The trim condition is given in Table 2.

States: Inputs:

Vt [ft/s] 7846.4 δ [rad] 0.13716

α [rad] 0.034217 ∆T0 [deg R] 484.49

Q [rad/s] 0 Ad 0.35005

h [ft] 85000 xd [ft] 7.0967

θ [rad] 0.034217

η1 1.6105

η̇1 0

η2 1.4582

η̇1 0

Table 2. Trim condition

It should be kept in mind that tuning the weighting matrices of the LQR problem for both controllers
can vastly alter the resulting performance. For both control methods, it was possible to obtain a selection of
the weighting matrices that produced satisfactory performance with respect to the outlined design criteria
(see Appendix), which is clearly illustrated in Figure 4. The results shown in this figure describe several
differences between the two control approaches. The regulator approach incorporates the reference filter in
the controller design, where the setpoint tracking approach does not. This allows the regulator approach
to achieve a much tighter tracking of the reference input during transient. This effect can be seen in the
simulation results. The transient behavior of the actuators differ between the two control methods. This
results from a difference in the way the feedforward gain is calculated for each method. Despite these
differences, both controllers provide asymptotic tracking with no significant overshoot or steady state error.

VI. Conclusions

For a nonlinear model of a generic air-breathing hypersonic vehicle, it is a difficult task to achieve tracking
with zero steady state error, and still retain favorable responses when commanding Vt, α, and h at the same
time. The results demonstrated in this paper show that satisfactory responses are possible with linear
controllers in a neighborhood of a trim condition. The design methodology proposed in this paper reposes
upon variations of LQR design with integral augmentation. While bandwidth or amplitude limitations are
not explicitly accounted for in the controller design, it is possible to tune the controller parameters so that
the inputs remain feasible. Further investigation is needed to determine the region of validity of the linear
controllers when applied to the nonlinear model, although their effectiveness is guaranteed at least in a
neighborhood of the trim condition. A study of this kind is needed to implement a gain scheduling control
scheme that encompasses the entire flight envelope. Future work will address more directly the issues of
hard constraints on the control inputs, as well as output feedback design.

11 of 14

American Institute of Aeronautics and Astronautics



0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

800

900

1000

1100

ft/
se

c

Time, sec

V
t
 − reference

V
t
 − Regulator

V
t
 − Set point tracking

(a) Vt response

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

ft

Time, sec

h − reference
h − Regulator
h − Set point tracking

(b) Altitude response

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

de
g

Time, sec

α − reference
α − Regulator
α − Set point tracking

(c) Angle-of-attack response

0 50 100 150 200 250 300
−5

0

5

de
g

δ
e
 − Regulator

δ
e
 − Set point tracking

0 50 100 150 200 250 300
−2000

0

2000

4000

de
gR

∆ T
0
 − Regulator

∆ T
0
 − Set point tracking

0 50 100 150 200 250 300

−0.2

0

0.2

0.4

0.6

Time, sec

[ ]

Ad − Regulator
Ad − Set point tracking

(d) Control Inputs

Figure 4. Performance outputs and control inputs to the non-linear plant shown as deviations from trim

condition applying the two control methods separately.
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Appendix: Tuning Parameters and Computed Gains

A. Set Point Tracking Control Approach

Ωn = diag( 3 0.035 0.05 )

Ξ = diag( 1.5 1 1 )

Am = diag( −300 −3.5 −5 −3 −0.035 −0.05 )

Qm = diag( 1e + 005 10 10 1e + 010 10 1 )

Rm = diag( 1e + 006 0.05 1e + 007 )

Kx =


-3.84e-005 -156 -21.4 -0.00145 -22.1 0.0366 0.00294 . . .

42 -8.96e+005 9.83e+003 43.9 8.88e+005 1.83 -1.55 . . .

-0.00223 -108 1.75 0.00392 109 -0.000221 -0.000273 . . .

. . . -0.00162 -0.000136 1 5.31e-006 -0.109 299 3.24e-007 4.53e-006

. . . -0.115 -0.115 53.1 0.0569 313 7.82e+004 -0.389 -0.138

. . . 1.01e-006 -1.63e-005 -0.00543 1.56e-006 0.0457 6.58 2.16e-005 -1.24e-005




Kr =




178 4.19e − 005 0.00144

2.61e + 004 −41.8 −44

18.3 0.00235 −0.00397




B. Regulator Approach

Ωn = diag( 3 0.035 0.05 )

Ξ = diag( 1.5 1 1 )

Am = diag( −60 −0.35 −0.5 −930 −0.35 −0.5 )

Qm = diag( 100 4 0.0001 2e + 003 8 0.005 )

Rm = diag( 200 2 2e + 005 )

Π =


0 0 0 0 1 0 3.36e-015 0 0

-2.13e-015 8.38e-022 -2.03e-021 1 -1.57e-016 -1.93e-018 -2.06e-015 -7.49e-018 -5.66e-020

-2.34e-014 -9.18e-021 3.19e-007 3.91e-014 -1.65e-017 -3.19e-007 1 -1.55e-016 -1.27e-005

0 0 0 0 0 1 4.66e-013 0 0

-1.6e-015 8.38e-022 -2.03e-021 1 -1.57e-016 -1.93e-018 -2.6e-015 -7.49e-018 0.000127

-4.34 -1.35e-009 1.68e-008 29.9 0.000304 -7.29e-005 4.42 -6.45e-007 -3.39e-007

39.7 -7.9e-010 -8.47e-010 -39.7 7.9e-010 8.47e-010 -9.88 0.000304 -7.28e-005

-60 -4.9e-008 3.15e-005 76.6 0.000194 -7.82e-005 61.1 0.0214 -0.00117

550 2.62e-005 -2.92e-006 -550 -2.62e-005 2.92e-006 -474 -0.0013 3.87e-005

-3.66 -2.17e-010 7.44e-006 2.3 -1.31e-005 -3.01e-006 3.66 -0.00132 -0.000303

-1.09e+004 3.34e-007 0.0746 -60.1 -0.117 -0.0268 1.09e+004 140 -2.41

32.5 -1.76e-010 7.2e-005 -51 -0.000116 -2.97e-005 -32.5 -0.00997 -0.00292




Γ =


-2.01 -8.08e-008 7.4e-006 0.649 -1.3e-005 -2.97e-006 2.13 -0.00131 -0.000302

-1.11e+003 0.0171 0.074 -9.84e+003 -0.134 -0.0262 1.08e+003 139 -2.39

3.29 -1.22e-006 7.12e-005 -21.8 -0.000114 -2.89e-005 -8.35 -0.00991 -0.00289



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Kρ =


-0.0238 -585 -78.5 -0.00194 -94.2 0.111 0.0111 . . .

13.9 -2.29e+004 -127 0.197 2.29e+004 0.00985 0.026 . . .

-0.00489 -61.7 1.08 0.00106 62 -6.4e-005 -0.00017 . . .

. . . -0.0288 0.000648 6.18 -0.000159 -0.361 -2.94e+003 -0.00126 -0.000152

. . . 0.00149 0.00266 -0.00796 0.00991 -0.179 -1.1e+003 0.659 0.00843

. . . -3.17e-006 -1.16e-005 -0.000181 -1.79e-006 0.0288 -4.74 -0.00075 7.43e-005



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