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I. Overview 
Real-time image processing underpins many civil and military applications such as telescopic monitoring of 
celestial bodies in night sky, infrared surveillance, security and traffic monitoring and medical imaging. 
Finding a real-time solution for these tasks is nontrivial. High-resolution images can significantly slow down 
the processing rate, whereas data processing becomes difficult and time-consuming if the objects are of low 
contrast and cluttered. Many applications also impose constraints on the physical size, power requirement and 
cost of the solution. Moreover, in many situations the solution must be capable of reconfiguration and/or 
modification, which precludes dedicated hardware. For these reasons, real-time, high-resolution image 
processing remains an open problem in spite of intense effort spanning many decades.  
 
Recently, spatially extended nonlinear dynamical systems (SENDSs) have been proposed for applications to 
image processing. This strategy stems from the similarity between the partial differential equation (PDEs) 
currently used for image processing in computer vision and those in optics to describe dynamics and 
complexity of spatially extended nonlinear systems. The intrinsic parallelism of optical systems has the 
potential for increased processing speed towards real-time and high-resolution operation.  
 
This project has studied the novel spatiotemporal phenomena in a SENDS for the development of a radically 
new image processing methodology. This report comprises two parts for different applications: i) target 
detection and tracking and ii) wave-front sensing and image recovery, both are based essentially on the same 
principle of nonlinear information processing using SENDSs.  
 
This document contains earlier results from the previous 3 interim report as well as new research results over 
the last 3 months. 
 
II. Programme of Work 
 
PART ONE: Target Detection and Tracking 
 
1.1 Introduction 
This work will demonstrate that optical systems may provide a real-time solution for image processing. We 
show that this possibility has come about through profound and radically new understanding of pattern 
formation and complexity in spatially extended nonlinear dynamical systems (SENDSs), which is now a 
major branch of nonlinear science. In optics, these pattern-forming systems are described by PDEs of similar 
form to those currently used for computer based image analysis. It follows therefore that SENDSs may be 
used for image processing based on the same PDE approach as described above. The critical point here is that 
an optical SENDS is an analogue device with massive parallelism and high speed, so capable of performing 
PDE processing in real time. As one example, we here focus on a novel approach of hybrid optoelectronic 
image processing, which offers unprecedented system flexibility and capability for real-time image 
processing. 
 
1.2 Theoretical Model 
Figure 1 shows the schematic of a SENDS, which can 
be implemented using opto-electronic architecture. The 
phase of the coherent input beam is modulated as it 
transmits through the phase spatial light modulator 
(SLM). The input beam then experiences a free-space 
propagation and is recorded on a photo-array for 
subsequent nonlinearity and spatial spectral filtering 
(electronic signal processing) before it is fed back to 
the SLM. The depth of the phase modulations is the 
sum of those induced by the (electronic) signal 
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intensities formed in the feedback loop, ),(),( tItu c rr γ≡  and by the external images registered by the 
camera, ),(),( tIt img rr γφ ≡ where r is the transverse radius vector, t the time, and the proportionality constant 

γ controls the depth of phase modulations. The dynamics of the phase modulation in the 
feedback loop is described by the equation 

)],()[,( tItu c rr

( ) ( ) ( ) ( tKwtuDtu
t

tu ,,,,
FB

2
0 rrrr

+∇=+
∂

∂
⊥τ )                                                  (1) 

where 0τ is the characteristic time determined by the iterating rate (frame upgrading) in the feedback loop and 
K the feedback gain coefficient which has incorporated γ . The feedback signal is a convolution integral of a 
nonlinear function and a low-pass spatial filter h(r) of super-Gaussian shape 

with power 

))1(4exp(2)( 2−−=Φ dd II
α and a cut-off frequency . Here (r, t) = |A(r, z = L, t)|  is the intensity distribution 

registered at the photo-array and normalized by a half of the maximum value of the input intensity . The 
equation describing the input laser beam propagating over the distance L from the SLM to the photo-array is 
given as 

cutq dI 2

0I
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−                                 (2) 

with the boundary condition  
( ) ( ) ( )[ ttiuAtzA ,,exp,0, 0 rrr φ+== ],            (3) 

where A is the amplitude of the incident optical wave. Equations (1-3) represent the mathematical model of 
the hybrid nonlinear system with control parameters , K, and L. 

0

0I
 
1.3 Numerical simulation of detection of small moving objects 

To demonstrate the capability of the model for detection of small moving targets, we have first numerically 
integrated Eqs.(1)-(3). Throughout our simulations we fix the cut-off frequency 0cut qq π=  and the power 

 for the low-pass super-Gaussian spatial filter.  For the analysis of the system’s performance we use 
both statistically homogeneous and isotropic random functions, 

8=α
( )rb , as a background image.  Specifically, 

we exploit the Gaussian model for the random function’s spatial power spectrum , i.e. ( )qG
( ) ( )22

0 2exp bqqGqG −= ,  

where  is the characteristic spatial spectrum width.  Example realisations of random functions bq ( )rb  
corresponding to the spectrum for two different values of  are shown in Fig.2(a) and (d). As seen, in the 

input images having a background of Gaussian spectrum of width 
bq

025.0 qqb π= , the contribution of high 

spatial frequencies is more pronounced than that with 0225.0 qqb π= .  To create the input image stream 

, we superimpose a single realisation of the random function ( tI ,img r ) ( )rb  with a small object of Gaussian 
profile on a zero background moving with the constant velocity , i.e.: v
 

( ) ( ) ( )[ ]{ }2
tg

2
tgtgimg 2exp, dtabtI rrrr −−+= ,   (4) 

where  is the radius vector in the transverse plane, r ( ) tt vrr +′= tgtg  the coordinate of the centre of the 

moving object,  the initial coordinate of the centre of the object,  the width of the object and  the 

amplitude of the object.  The amplitude  is chosen in such a way that it does not exceed the maximum 
tgr′ tgd tga

tga
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amplitude of the background function .  The width of the moving object  is inversely proportional to 

the characteristic spatial spectrum width of the object, 

( )rb tgd

tgtg 1 qd = , that is assumed to be equal to 

0tg 25.0 qq π= . The speed of the moving object is assumed to be equal to a one-pixel shift in both  and x
y  directions in the transverse plane between successive frames. The output image for observation is the 

intensity distribution registered at the photo-array, ( )tI d ,r .  To estimate the effectiveness of nonlinear 
filtering by the system, we compare the output intensity with and without feedback by fixing the feedback 
gain coefficient K at  and 0 , as shown in figure 2. It clearly shows that the background is much smoother 
in the presence of feedback for the both case, indicating strong performance of noise reduction. The moving-
object detection efficiency can be quantitatively estimated using the visibility function , defined as 

2−

( )tR

                                                                         ( ) ( ) ( )
( )t

tItItR dd

σ
−

=
tg

,                  (5) 

 
FIG. 2  Real-time detection of small moving object on Gaussian background image.  (a) and (d) are snapshots 
of the input image stream  with ( 0, )=trimgI 0225.0 qqb π=  and 025.0 qqb π= , respectively; the 

direction of motion of the object with 0tg 25.0 qq π=  is indicated by arrows.  The traces (b, e) and (c, f) are 
snapshots of the output images ( 04, )τ=tI d r  in the system without ( 0=K ) and with ( 2−=K ) feedback, 
respectively.  The value of the driving intensity  is fixed at . 0I 5.0
 

where ( ) ( ) ( )[ ]∫ −=σ rr 22tg ,1 dtItI
S

t dd  is the feedback intensity variance averaged over the image frame 

area,  the intensity value corresponding to the centre point of the moving target and ( )tI d
tg ( )tI d  the feedback 

intensity averaged over the image frame area . We have found that our system increases the visibility of the 
object by five times in this case study.   

S
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1.4 Dynamics of localised state 
We further investigate the dynamics of localised state in the SENDS and study its feasibility for target 

tracking. Fig. 3 (a) shows the dependence of the amplitude of LSs, obtained numerically, on the gain 

parameter K  for a set of two values of the driving intensity .  The corresponding time duration needed for 

the formation of LSs is depicted in Fig.3(b). The time has been estimated for the amplitude of an LS to attain 

90% of its full value.  As seen from Fig.3 (b), it has a maximum at a certain value of 

0I

K  for a given .  This 

value indicates a boundary between linear and nonlinear growth of spatial perturbations leading to the 

formation of the LS and for convenience can be defined as the threshold value of 

0I

K  for the formation of the 

LS.  As seen from the figure, above this threshold (the maximum point), the time duration for the formation of  

 
FIG.3.  The amplitude of LS (a) and time formation of LS (b) dependences on gain parameter K  for 

two different values of driving intensity . The linear operation regions for  and  are 

shadowed by 10% and 20% black, respectively. 

0I 9.00 =I 95.00 =I

 

the LS decreases with the increase of K .  This dependence gives us a possibility to control the dynamics of 
the system. Importantly, we find that in general the time required for background depression in the SENDS is 
much shorter than that for the formation of LSs. As such background noise can be depressed before LSs are 
formed in real target. The conclusion will be tested in the next phase of the programme. 
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1.5 Target detection and tracking 
The work above has demonstrated that the SENDS has a stationary solution that minimizes the amplitude of 
the phase modulations. This solution can be used for background noise suppression. For moving objects in 
images a stationary state can not be reached and as a result these objects are “transparent” in the system. This 
leads to image enhancement of moving objects. The efficiency of suppression/enhancement of 
stationary/moving features in images are also spatial-frequency dependent, which leads to both space and  
time domain image processing. Along with these useful features, the system has a unique solution of localized 
states as it is a spatio-temporal dynamical system. The localized state can be controlled to track small moving 
objects. We have identified three critical features of LS’s for the proposed tracking task. Firstly, LS formation 
has a threshold characteristic. Secondly, the time duration required for LS formation is generally considerably 
longer than that required for background suppression. The difference of these two time scales is critically 
important since cluttered background and nuisance objects can be first suppressed so that localized structures 
are excited only on the targets. Thirdly, the localized structures excited on the targets can move with the 
targets and so track their trajectories.  
 
These three criteria have been demonstrated through a case study. As shown in Fig.4(a), the external image 
stream is based on a real scene of clouds at sunset, comprising as seen complex (static) spatial distributions of 
different scales. Two moving objects are added by computer; a fast-moving and small-size target and slow-
moving and large-size nuisance object, both of them have comparable brightness with the background. We 
show that both the nuisance object and background are suppressed in the output of the system at the time of 
one round trip time, thus enhancing the contrast of the real target. After the suppression, only the target 
exceeds the threshold thus exciting a 
localized structure at its location. The 
threshold can be controlled by varying the 
parameter of the system. Fig.4(b) shows a 
snapshot of the processed image stream at 
the time of three round trip time when the 
cluttered background is suppressed and an 
LS is growing on the target. We have 
observed two different dynamical behaviors 
of the localized structure in the presence of 
a moving target; a single LS moving along 
with the target or a sequence of localized spots [Fig. 4(c)] at moving target locations, both tracking the 
trajectory. The two operation modes correspond to targets of slow and fast speed, respectively, and can be 
selected and controlled by choosing a suitable time constant of the system. In this case study, the target 
visibility is further enhanced by ten times by using the localized structure. 

Fig.4. Simulation of detection and tracking of a small moving 
targets by use of LSs. 

 
1.6 Image edge enhancement 
The theoretical model described above has been further developed to include an interferometer arm in the 
feedback loop for image edge enhancement. An intensity image under investigation is imported to the system 
as phase modulation (phase image) via a second SLM, the depth of which can be controlled by the system. 
The feedback signal is the sum of the intensity from the interferometer and that after free-space propagation in 
the basic model. The capability of the system for edge enhancement was first investigated by M. A. Vorontsov 
at US Army Research Lab (J. Opt. B Quant. Semi. Opt. 1, R1(1999)) . Fig.5 gives the simulation results. The 
image on the left is an infrared image input to the system, whereas the two on the right are the output. The 
latter are stationary state solutions of the system under different parameter conditions and show both edge 
enhancement and segmentation of different image parts. 
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oration with QinetiQ Limited (UK), we have investigated this system for a potentially important 
application. QinetiQ has been developing a real time correlation system for automatic target 
n and identification (ATRI) for the last 10 years.  The correlator is similar to the classic VanderLugt 
, but the input Fourier transform is performed electronically rather than optically. This novel 
lus-digital” architecture fully exploits the complementary benefits of optical and digital signal 
s and results in a more compact and rugged structure than the VanderLugt correlator. The correlation 
ed by comparing the pre-installed templates with input images, so-called template matching. A 
n peak produced as a result of this process indicates the position of the target (or targets) in the 
he peak intensity shows the level of similarity between the target and the template. However, when 
t is viewed against a cluttered background the correlation peak height is reduced significantly. In 
ations, the correlation peak may “compete” with false peaks that may result from non-important 
resent in the scene. The system will then be in danger of missing a positive identification or 
 a large number of false identifications. In light of this an option is to minimise/remove the 
 effect of the background and to enhance the features of interest in the images. For this purpose we 
 our system as an image pre-processor for the correlator. Fig.6 shows a F16 aircraft and its edge 

 image. The correlator shows an improved performance of target recognition when the edge 
ent image is used.  We have further investigated images in more challenging environments with 
Fig.7 shows a column of tanks in battle-field environment. The correlator is required to recognize 
ific model in real time or quasi real time. However, on close inspection, these tanks have poorly 

dges. It seems to be a property of human visual system that we can see edges where in fact there are 
re is a smooth blend from the tanks to the background when one examines the pixels closely). We 
ormed a first test of the image using our system, images in the middle and on the right of Fig.7 are 
t in different parameter conditions. A general improvement of image contrast is observed. A test 
se images is currently being undertaken at QinetiQ. The results from the test will be fed back for 
stem improvement. 

5 Edge enhancement and segmentation. Image on the left is an infrared input image and the two 
e middle and right are the output of the system. 

6 Image ed

 

ge enhancement .  F16 aircraft (left) and its processed image (right)  
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Fig.7 edge enhancement operation. Original (left) and processed images (middle and right). Improvement 
of image contrast is observed. 

ART TWO: Wavefront Sensing and Image Recovery 

.1 Introduction 
he Zernike filter has over the last few years been investigated in a feedback loop for high-resolution 
avefront sensing and control. Such adaptive systems were shown to be capable of compensating static phase 
istortion, with rapid convergence in a few iterations. In the meanwhile, nonlinear dynamical systems were 
roposed for real-time motion detection for its self-suppression of static background and enhancement of the 
ontrast of moving objects. Here we study an adaptive Zernike dynamics feedback system by combining the 
apabilities of the Zernike wave front sensor with nonlinear dynamical systems for wave-front phasing. For an 

portant application, we investigate such a system for phasing of a large telescope. Segmentation is 
onsidered as the most promising option for primary mirrors of more than 10m in diameter, but the 
egmentation of a primary mirror brings about specific problems associated with segment misalignment, such 
s piston, tip-tilt, etc. Phasing of these segmented surfaces therefore becomes a critical task for such a giant 
lescope. We show that our system can make use of a dynamical adaptation processing, which separate 

static) misalignment of a segmented mirror from dynamical atmospheric turbulence.  

.2 System model 
he Zernike filter was first proposed in 1955 for wavefront sensing by introducing a π/2 phase shift to the 
ero spatial frequency of an input light. The integration of the Zernike filter with an adaptive feedback system 
as led to new applications such as high-resolution wavefront compensation without the requirement of 
avefront reconstruction. Recently, SLM has been used as a new means for realising the Zernike filter, which 
rings high resolution with flexibility, leading to different forms of Zernike filters. Among them is the 
ifferential Zernike filter, its output, 

],),(),(sin[|)(|)(2

)],(),([
2
1),(

00

)()(

∆−+

−= −+

trvtrutArA

trItrItr diffdiffdiff         (6) 

f which has been shown to be proportional to the Stehl ratio gradient. The filter can be realised by using a 
ontrollable phase shift switching between ± π/2, which offers a means for implementing direct-control 
daptive optical systems by use of the gradient-flow optimisation paradigm.  
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Fig. 8. Schematic of adaptive Zernike dynamical feedback system; the input phase v  comprises error from misalignment 
mirror, , and distortion from atmospheric turbulence, ; a snap shot of them are show in (a) and (b); (c) shows the 

relationship between  and 
mv av

)(n
au αK ; σ  represents the standard deviation of . )(n

au
 
Fig. 8 shows the schematic of the adaptive Zernike dynamical feedback system, which comprises a phase 
spatial light modulator (SLM) as wavefront corrector and a differential Zernike filter as wavefront sensor, the 
two are coupled by a feedback loop. The system has  previously been used  for direct wave-front correction of 
a single image. In this study we will develop it for a different application for phasing of a static wave-front 
distortion in the presence of turbulence. Here the SLM introduces a phase modulation  to the distorted 
input wave , where  is the phase distortion inside the telescope aperture, 
comprising both static misalignment of the segmented mirrors, , and time-dependent atmospheric 
turbulence, , i.e., 

),( tru
)],(exp[)(),( 0 trivrAtrAin = ),( trv

)(rvm

),( trva ),()(),( trvrvtrv am += . The corrected wave 
 is used as the input to the wavefront sensor. The output intensity 

 from the sensor is then used to control the phase modulation  on the SLM. The system 
performance dynamics can be written in a continuously distributed model as, 

)]},(),([exp{)(),( 0 trvtruirAtrAout +=
),( trI diff ),( tru
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0

2 ututrKItrud
t

tru
diff −−−∇=

∂
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where rdtruStu ∫−= 21 ),()(  is the phase averaged over the aperture area S;  is a desirable value for 0u

)(tu ; , d K , and µ  are coefficients. The discrete-time iteration equation, 
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ji
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diffji
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ji
n

ji
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may be used to described Eq.7, where  is the iteration number. ,...3,2,1=n
 
2.3 Small signal analysis 
The capability of Eq.8 for phasing of a segmented mirror in the presence of strong atmospheric turbulence lies 
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in its dynamical nature: compensation occurs only to signals whose dynamics is slower than that of the 
system. This can be understood by the following analysis in the weak signal limit. For simplicity we assume 

 and 0=d 0=µ , for which Eq.8 becomes: 
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Here  is assumed. In the weak signal limit,0)1( =u vv ≈)sin( , so Eq.6 can be expressed as a linear sum of the 
contributions from the static and dynamical phase modulations  
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where , , )()()( )()()( rururu n
a

n
m

n += )()()( )()()( rvrvrv n
a

n
m

n += ||2 00 AA=α  and ∆  in Eq.6 is set to 0. 
Combining (9) and (10) leads to two equations that describes separately the feedback signals due to 
misalignment and atmospheric turbulence, 
                                                                                                                (11) )(]1)1[()()1( rvKru m
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Eq.11 gives the known result in the absence of atmospheric turbulence; for 1<αK ,  accumulates with 

the increase of the number of iteration and eventually converges to 

)(n
mu

mv− . However,  behaves differently. 
When the interval between successive iterations is longer than the correlation time of atmospheric turbulence, 

 is uncorrelated between different steps and does not accumulate in the way as  does. In this case, 

the contribution to  in Eq.(12) comes mainly from the last few terms in the polynomial, the number of 
terms that should be included depend on the values of 

)(n
au

)(n
av )(n

au )(n
mu

)(n
au

)1(<αK . We have calculated Eq.12 for different 
values of αK  for sufficiently large n, in which  is generated by the Kolmogorov model with the Fried 

parameter of 0.2m and varies randomly at every iteration. The normalised standard deviation of , 

)(n
av

)(n
au

0
* /σσσ = , where 0σ  is the standard deviation of the atmospheric distortion  averaged over time, is 

shown to increases monotonically with the increase of 

)(n
av

αK , as given in Fig.9(a). The total phase signal in the 
feedback loop is  for sufficiently large . Therefore,  can be regarded as the retrieved 

phase of the misaligned mirror on a noise background. If 

)()( n
am

n uvu +−= n )(n
au

αK  is chosen to be sufficiently small, the noise is 
also smaller compared with the retrieved signal. In a practical system, α is usually fixed and K  can be varied 
as the electronic gain parameter. However, K also controls the convergent rate of the system, larger K results 
in faster convergence. So a balance between weak noise level and convergent rate should be considered in 
practical applications. 
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Fig.9 (a) The standard deviation ( RSσ ) of the retrieved signal, , against the actual misalignment, , as a function 

of the iteration number; solid curve corresponds to 

)(nu mv
π4.0±  amplitude variation for both the misalignment, , and 

atmospheric turbulence ; dash curve is the averaged 
mv

av RSσ  over many iterations; dotted curve corresponds to RSσ  in 

the absence of atmospheric turbulence. The feedback gain is set to be 75.0=K . (b) RSσ  for different feedback gains; 

 (solid),  (dash), and varying75.0=K 1.0=K K (dot) : 0.75 for n<20 and 0.1 for n>20. 
 
2.4 Numerical simulations 
Now we study the performance of the system in the case of arbitrary input phase amplitude by directly 
iterating Eq.8. Our numerical findings support the above results under the weak signal approximation. Again, 
atmospheric turbulence is generated using the Kolmogorov model and varies randomly at every iteration. The 
wavefront tilt, which can be removed by other techniques, is neglected in our simulation. The mirror 
misalignment signal is computed using a 169-hexagon formation, each of which has a random piston and tip-
tilt. A snap shot of the two signals is shown in Fig.8(b) and (c). Fig. 9 shows the simulation result for which a 
peak-to-valley amplitude of 0.8π is used for both  and . The difference between the retrieved 

and original phase is measured by the standard deviation, 

),( trvm ),( trva

∑ +−+= 2)]()[( mmRS vuvuσ . When the 

signal is perfectly recovered, . Here the term (mvu −= mvu + ) is used to compensate a trivial constant shift. 

As shown in Fig.9, 01.0<RSσ  is achieved for  iterations in the absence of atmospheric turbulence. 
When the turbulence is included, 

20~

RSσ  fluctuates around 1.0=RSσ , which shows a good recovery by 
compared with 45.0=σ  for the original signal, which corresponds to RSσ  at n=0. The presence of 
turbulence at this level does not appear to change the convergent rate of the system.  To reduce the level of 
random fluctuation we can average  over many iterations after the convergence has been achieved, i.e., )(nu

∑
=−

>=<
n

mi

iu
mn

u )(1
. We obtain 03.0=RSσ  after m=1000. Fig.9 (b) shows the effects of feedback K  on 

RSσ . In general, with increase of K, the convergence rate increases, but so does the noise level caused by the 
atmospheric turbulence.  To achieve fast convergence rate and high quality recovery at the same time, we can 
vary K during the iteration processing; an example is given in which it is reduced from K=0.75 to 0.1 after the 
convergence is achieved. 
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Fig.10 (a) standard deviation >< 'RSσ  versus different atmospheric turbulence amplitude (peak-to-valley), 

(circle) and 0.75 (asterisk). (b) The number of iterations needed for convergence versus atmospheric turbulence 
amplitude for (circle) and 0.75 (asterisk). The curves with cross corresponds to the results the Zernike filter 
with  pixel phase shift around the centre and for 

3.0=K
3.0=K

55× 75.0=K . 
 
In a practical telescope system, atmospheric phase distortion increases with the diameter of the telescope 
aperture. For a segmented primary mirror with 8-10m diameter, the misalignment error is in the range of 4π 
peak-to-valley value whereas the atmospheric phase distortion is about 8π in the absence of tilt. We have 
examined the performance of the system for a fixed π4 phase misalignment, which corresponds to the 
standard deviation 24.2=σ , with varying atmospheric amplitudes from 0 to π8 . The results are evaluated 

by the standard deviation ∑ +−+= 2)]'()'[(' mmRS vuvuσ , where  represents the phase image 

unwrapped from u . The phase wrap occurs because of the sine function in the Zernike filter. As 

'u
'RSσ  

fluctuates for each realisation, which is shown by the error bars in Fig.10(a), we average the results over 1000 
iterations after the convergence of the system to obtain >< 'RSσ . Fig.10 (a) shows a monotonic increase of 

>< 'RSσ  with the atmospheric turbulence amplitudes for both feedback coefficients and 0.3. 
Consistent with the weak signal analysis, we find that 

75.0=K
>< 'RSσ  is smaller for smaller values of K. As shown 

in this Fig.10(a), the standard deviation >< 'RSσ  is less than 20% of that of the misalignment for the 
atmospheric turbulence up to π8 , which indicates a good image recovery for the atmospheric turbulence 
amplitudes up to 2 times of that of the misalignment error. Fig.10(b) shows a monotonic increase of the 
numbers of iterations required for the system convergence with the atmospheric turbulence amplitudes. The 
increase is shown to be more dramatic when the atmospheric amplitude is greater than that of the 
misalignment error. Fig 10(b) also shows that a larger number of iteration is needed for larger feedback 
coefficient K, which also agrees with the weak signal analysis. Fig.11(a) is an example of a π4  misalignment 
phase error whereas Fig,11 (b) is  the retrieved phase image in the presence of π8 atmospheric turbulence. A 
clear correspondence between the two images confirms the capability of the system. 

 
 
Fig. 11(a) The input phase distortion of a segmented mirror and (b) retrieved phase image. Here the peak-to-valley 
amplitude is 4π for the misalignment  and 8π for atmospheric turbulence. 

 12



 
The slow convergence of the retrieved images in the case of large atmospheric turbulence amplitudes may 
cause problems for the application of our system to a large aperture telescope. When the atmospheric 
amplitude increases, the incoming images comprise more and more high spatial frequency components, which 
in turn reduces the probability of a bright speckle in the centre of the spectral plane. Consequently, the 
Zernike outputs for 2/π±  phase shift, and , become less different, which reduces the effect of the 
differential Zernike filter, leading to slower convergence. To overcome this problem, we have studied the 
system by enlarging the phase shift region in the spectral plane. Fig.10 gives the numerical results using the 
differential Zernike filter with phase shift of 

)(+
dI )(−

dI

55×  pixels centred at the zero spectral component. As shown in 
Fig.10(b), the convergence rate is significantly increased, especially for larger atmospheric amplitudes where 
the increase is of two orders of magnitude. However, the standard deviation >< 'RSσ  using such a Zernike 
filter reveals a new feature, as shown in Fig.10(a). While >< 'RSσ  is similar to that obtained by the 
conventional Zernike filter for relatively large atmospheric amplitudes, it behaves very differently when the 
amplitudes are below the value of around π. This is because when the atmospheric amplitudes are low the 
incoming images comprise mainly the static misalignment. This leads to the build-up of a considerable 
amount of low spatial frequency components (slope effect) in the retrieved phase images by the Zernike filter 
with  pixels, which results in the increase of 55× >< 'RSσ  in the small atmospheric amplitude region. When 
the images comprise a significant portion of dynamical component, the slope effect becomes less prominent 
and the results for the two cases with different pixel numbers are essentially the same. This study shows that 
we can choose Zernike filter with different pixels to achieve both good quality phase image recovery and fast 
convergence rate. The detailed analysis of this work will be presented in a separate report.  
 
In conclusion, we have in part two studied an adaptive Zernike dynamical feedback system and shown by 
analysis and simulation that it provides an effective means to measure segment misalignment error in the 
presence of strong atmospheric turbulence. This system may be implemented in an optoelectronic device, 
which would provide a practical method for phasing of segmented mirror and other applications. 
 
III. Future Work 
 
This project has provided a solid base for the theory of SENDSs for nonlinear optical/optoelectronic image 
processing and has shown through analysis and modelling that SENDSs can be used for two key applications 
in both military and civil areas. Based on these results we are currently looking for further support from 
government agencies and industry from which lab demonstrations can be carried out.  
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