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ABSTRACT 

 Low back pain (LBP) and work-related musculoskeletal disorders 

(WMSDs) can lead to employee absenteeism, sick leave, and permanent 

disability.  Over the years, much work has been done in examining physical 

exposure to ergonomic risks.  The current research presents a new approach for 

assessing WMSD risk during lifting related tasks that combines traditional 

observational methods with video recording methods.  One particular application 

area, the Future Combat System Medical Evacuation Vehicle (FCS MV-E) 

mockup, was chosen to illustrate the use of a two-dimensional motion capture 

system. Combat medics (MOS 91W) who perform casualty evacuation under 

stressful battlefield conditions may be at risk for musculoskeletal injuries, which 

would reduce their ability to perform their job.  The objective of this study is to 

demonstrate the use of video motion technology for posture analysis of team 

lifting and loading tasks.  The results contribute to a determination of whether 

combat medics are at risk for WMSD due to awkward postures involved in the 

evacuation of litter casualties. Based on lessons learned from the current study, 

recommendations are offered to guide further research in motion analysis of 

manual material handling tasks. 
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EXECUTIVE SUMMARY 

Biomechanical and epidemiological studies have identified the association 

of work-related musculoskeletal disorders (WMSDs) and low back disorder (LBD) 

with manual materials handling (MMH) and lifting demands.  Researchers have 

used a variety of techniques to investigate physical exposure to WMSD risks; 

ranging from paper-and-pen based observational methods to self-report 

assessments.  However, very little research has used video motion capture 

techniques to observe posture of MMH team tasks.  A particular design in 

progress was chosen to demonstrate the use of this technology to evaluate 

potentially harmful postures.   

The United States Army has developed a transformation program known 

as the Future Combat System (FCS) as a step towards meeting the objective of 

fielding a Future Force by the end of this decade.  This program is a joint 

networked “system of systems” that uses advanced communications and 

technologies to integrate the soldier with “families” of manned and unmanned 

platforms and sensors.  Among these families of vehicles is the Medical and 

Evacuation Vehicle (MedEvac), which has two interchangeable modules - the 

evacuation vehicle (MV-E) and the treatment vehicle (MV-T).  Human factors 

research is necessary at this stage of the design process, especially with the 

Army’s initiative towards reduced manning in future systems.  It is hypothesized 

that combat medics (MOS 91W) who perform casualty evacuation tasks are at 

risk for musculoskeletal injuries.  The aims of this thesis are (i) to demonstrate a 

novel approach for assessing musculoskeletal risk by using a motion capture 

system in a military environment, (ii) to identify and describe the most physically 

demanding tasks and task elements performed by the medical crew, (iii) to 

evaluate the postures that personnel employ while conducting evacuation of litter 

casualties, (iv) to recommend a methodology to investigate postural risk of lifting 

related tasks, and (v) to address ergonomic issues in team lifting, and (vi) to 

recommend ergonomic design interventions for the MV-E litter lift system.  A 
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postural analysis of the litter loading process using 2-person and 3-person teams 

was accomplished by task simulations in the MV-E mockup.  Participants were 

asked to load the maximum capacity for the MV-E to simulate a worst case 

scenario.  Therefore, the two teams replicated the evacuation of four litter 

casualties.  In addition, a medic served as a subject matter expert (SME) and 

facilitated the litter-bearers while performing the loading exercise.  During task 

simulation, a video recording system was used to analyze the postures used to 

perform the loading task.  Using a 2-D motion capture system, the loading 

postures were analyzed and compared with generally accepted ergonomic and 

biomechanical principles.  Estimates of the probability of injury associated in 

performing the litter loading tasks were generated by measuring trunk 

characteristics such as trunk angles and trunk acceleration as well as workplace 

characteristics such as the height of the load at the origin and destination of lift. 
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I. INTRODUCTION  

A. BACKGROUND  
1. Medical Evacuation Vehicle 
The United States Army has a vision of fielding a Future Force by the end 

of this decade.  In order to achieve this objective, the Army has developed a 

transformation program known as the Future Combat Systems (FCS).  This 

program is a joint networked “system of systems” that uses advanced 

communications and technologies to integrate the soldier with “families” of 

manned and unmanned platforms and sensors (see Figure 1).  A soldier linked to 

these platforms and sensors will have access to data that enable levels of joint 

connectivity, situational awareness and understanding, and synchronized 

operations that were not achievable in the past.  In January 2003, the U.S. Army 

Defense Advanced Research Projects Agency (DARPA) granted an award to 

Lead Systems Integrator (LSI), Boeing/SAIC to form an Integrated Design Team 

for the Manned Ground Vehicle portion of the FCS program.  BAE Systems 

(formerly United Defense Limited Partnership, UDLP) and General Dynamics 

Land Systems, along with the LSI, together form the Integrated Design Team.   

Among the family of vehicles BAE is responsible for developing and 

building is the Medical and Evacuation Vehicle (MedEvac).  The FCS Medical 

Vehicle has two interchangeable mission modules- the evacuation vehicle (MV-

E) and the treatment vehicle (MV-T).  The MV-E is designed to enable trauma 

specialists, maneuvering with combat forces, to be closer to the casualty’s point-

of-injury and is used for casualty evacuation.  It provides a means of transporting 

the wounded out of harm’s way to a battalion aid station (BAS).  The three- 

person crew; a vehicle commander, medical attendant, and a driver, are all 

medically trained staff in the military occupational specialty (MOS) 91W 

Healthcare Specialist.  The MV-E is capable of carrying up to six ambulatory 

casualties, or an arrangement of three litter casualties, three ambulatory 

casualties, and one medic workstation.  An automatic litter lift system to be 

installed in this vehicle is a design feature uniquely different from predecessor 
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vehicles.  The litter lift system is used to load and unload casualties into the 

Medical Evacuation vehicle and has the capability to carry three litter casualties 

and converts to accommodate three ambulatory casualties. 

 

Figure 1.   Future Combat System (FCS) family of vehicles (From Global Security, 
2005) 

 

 

2. Manual Materials Handling and Work-related Musculoskeletal 
Disorders 

Musculoskeletal disorders (MSDs) represent a wide range of disorders to 

include a group of conditions that involve the nerves, tendons, muscles, and 

supporting structures such as intervertebral discs.  MSDs can differ in severity 

from mild periodic symptoms to severe chronic and debilitating conditions 

(National Institute for Occupational Safety and Health [NIOSH], 1997).  Repetitive 

strain injuries (RSIs), cumulative trauma disorders (CTDs), and overuse 

syndromes are other terms used for MSDs.  Work-related musculoskeletal 

disorders (WMSDs) are MSDs caused or intensified by the work environment.  

Some examples of WMSDs are carpal tunnel syndrome, tendonitis, epicondylitis, 
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trigger finger, and low back pain.  Certain characteristics of the work setting have 

been associated with injury and are referred to as risk factors.  Primary task 

physical characteristics include awkward posture, forceful exertions, repetitive 

motions, contact stress, and duration.  Environmental characteristics, which 

involve the interaction between the worker and the work environment, include 

extreme temperatures, whole body vibration, noise, and lighting (Ergoweb, 

2005).  Scientific literature has recognized all of these risk factors as important 

contributors to MSDs. 

Low back pain (LBP) is one of the most common and most costly WMSD 

and the prevalence of low back pain has become a major concern for industry 

(Andersson, 1981; Spengler, Bigos, Martin, Zeh, Fisher, & Nachemson, 1986; 

Waters, Putz-Anderson & Baron, 1998).  Jobs that entail lifting, lowering, 

pushing, pulling, carrying and holding are often called manual material handling 

(MMH).  Even with the development of state-of-the art production mechanisms 

and modern technology, many occupations still require MMH activities.  The 

Bureau of Labor and Statistics (BLS) reported in 1994 that approximately 

705,800 injury and illness cases involving days away from work resulted from 

overexertion and repetitive motion (as cited in Bernard, 1997).  Specifically, 

367,424 injuries were due to overexertion in lifting; 65% affected the back.  

Another 93,325 injuries were due to overexertion in pushing or pulling objects; 

52% affected the back.  In addition, 68,992 injuries were due to overexertion in 

holding, carrying, or turning objects; 58% affected the back (as cited in Bernard, 

1997).  Marras (2000) found that low back disorders account for approximately 

16 – 19% of all worker compensation claims, but 33 – 41% of the total cost of all 

work compensation costs.  Studies have indicated that back injury claims are 

commonly associated with lifting and MMH activities (Bigos, Spengler, Martin, 

Zeh, Fisher, & Nachemson, 1986) and estimates of annual costs for back claims 

have been as high as US$100 Billion.  Risks involved in MMH tasks occur in a 

wide variety of areas in the public sector including hospitals, nursing homes, 

manufacturing facilities, and in the military.  Researchers of the U.S. Army Center 

for Health Promotion and Preventative Medicine (USACHPPM) were a part of a 
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project aimed at identifying the most physically demanding critical tasks 

performed by soldiers in MOS 63 B, light wheeled vehicle mechanic.  The report 

describes the term, physically demanding, as the subjective sensation of physical 

exertion, which can be related to muscular strength, endurance and power, 

aerobic capacity, posture, and force requirements (Lopez, Chervak, & Adika, 

2001).  During Desert Storm/Shield, soft-tissue musculoskeletal disorders 

accounted for 34% of overall injuries, and from 1991 to 1994 63% of U.S. Navy 

disability cases were resultant of orthopedic or musculoskeletal conditions (as 

cited in Lopez et al., 2001). 
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Table 1.   Examples of Musculoskeletal Disorders (From Health Care Health and 
Safety Association of Ontario, 2003) 
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3. Video and Computer-based Methods for Ergonomic and 
Biomechanical Analysis 

Ergonomic assessment of physical exposures to WMSD risks requires 

careful attention to detail and time consuming evaluations.  This process can be 

facilitated through the application of appropriate equipment and computer 

software.  Computer technology can be used in several ways to enhance 

biomechanical and ergonomic assessments of workstations and jobs.  The 

Center for Ergonomics at the University of Michigan has developed the 3D Static 

Strength Prediction Program™ (3DSSPP) which estimates the muscle strength 

requirements needed to perform a specified manual material handling task 

(University of Michigan, 2005).  The computer program also provides estimates 

of static lumbar disc compression force and moments at the L5/S1 disc.  These 

estimates of biomechanical loads can then be compared to baseline values that 

define various levels of physical stress or risk (Waters et al., 1998).  The 

ErgoMaster® is a suite of ergonomic analysis software modules from NexGen 

Ergonomics Inc.  The Lift Analyst provides tools, such as the Revised NIOSH 

Lifting Equation, to evaluate and document materials handling activities and 

perform biomechanical predictions for the lower back.  The Posture Analyst is 

another module that uses tools to include Anthropometric Survey and RULA 

(Rapid Upper Limb Assessment), to evaluate an individual’s posture as it 

pertains to range of motion, biomechanics, and anthropometrics (NexGen 

Ergonomics, 2005). 

The computer system used in the present research was the PEAK Motus® 

System developed by Vicon Motion Systems, Inc.  This is a two-dimensional (2-

D) video-based motion recording and analysis system and was acquired for 

research use by the Human Systems Integration Laboratory (HSIL) of the Naval 

Postgraduate School.  This computer-aided system functions as a direct posture 

measurement and motion measurement system.  Data are acquired by using 

special digital cameras integrated with infrared light sources.  The positions of 

reflective body markers are registered by the camera and the positions of the 

markers are calculated for each time interval of the event.  A video-based 
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technology such as PEAK Motus® can be used for assessing human-machine 

interaction (for example ingress and egress), quantifying repetitive motions, and 

testing workstation designs.  Lowe (2004) examined the accuracy of 

ergonomists’ estimates of elbow and shoulder posture by comparing direct 

observation with a video-based motion reconstruction system.  The basis of 

comparison was posture variables derived from the kinematic measurements 

with the PEAK Motus® system and posture variables from the ergonomists’ 

estimates.   

 
B. PROBLEM STATEMENT 

Few published studies have investigated computer-aided observational 

posture analysis in relation to the risks of developing WMSDs.  Little research 

has been done to analyze the postures of dynamic movements required in team 

lifting and placement (loading) tasks using video-based technology.  There is 

also a need for more research that measures motions of the upper and lower 

extremities in the real work environment.  Lifting studies typically examine a 

simple task such as to lift a box and place it on a predetermined height and the 

studies are performed in a controlled laboratory environment.  Therefore, the 

current study demonstrates the use of the 2-D PEAK Motus® System to analyze 

postures of FCS MV-E personnel performing litter casualty loading tasks.   

The present analysis is especially necessary because a vehicle 

specifically designed for the Army combat medic has never previously existed.  

Human factors and ergonomic assessments are necessary to understand and 

evaluate the tasks that medics must perform and their ability to safely and 

effectively perform those tasks.  In addition, the Item Specification for the FCS 

MV-E states that the “vehicle shall carry three personnel” (Boeing, 2005) and the 

FM 8-10-6 states that a three-man squad is required to load and unload the 

ambulance” (Department of the Army, 2000).  Yet the Operational Requirements 

Document (ORD) for FCS platforms states that “FCS Manned Systems must be 

operable by a 2-man crew - a driver and a vehicle commander” (Unit of Action 

Maneuver Battle Lab [UAMBL], 2005).  Since the Army Transformation is 
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towards a lighter Army and reduced manning, this analysis also will assess the 

crew performing loading tasks under these two different manning conditions. 

 

C. OBJECTIVES 
The main objectives of the thesis are: 

1. To demonstrate a novel approach for assessing musculoskeletal 

risk by using a video motion capture system in a military environment 

2. To identify and describe the most physically demanding tasks and 

task elements performed by the medical crew 

3. To evaluate the postures that personnel employ while conducting 

evacuation of litter casualties 

4. To recommend methodologies to investigate postural risk of lifting 

related tasks 

5. To address ergonomic issues in team lifting, and recommend 

ergonomic design interventions for the MV-E litter lift system 

 
D. RATIONALE 

Ergonomics is the field of study that applies scientific principles to the 

design and operation of work systems in which humans interact with machines, 

equipment, and tools with the aim of maximizing productivity and minimizing 

worker fatigue, exposure to hazards, and discomfort.  Essentially ergonomics fits 

the job to the worker, not the worker to the job.  This is exactly the focus of 

Human Systems Integration (HSI) which designs systems around the human.  

The current study has relevance to at least three of the seven domains as 

defined by the Department of Defense Instruction 5000.2- Manpower, Personnel, 

and Training (MPT), Human Factors Engineering (HFE), Safety and 

Occupational Health, Personnel Survivability, and Habitability. 
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1. Human Factors Engineering 
This thesis evaluates the litter loading aspect of the system design of the 

Army’s future medical vehicle.  For the first time, a vehicle is being specifically 

designed to support the tasks of combat medics.  Predecessor vehicles were 

typically crudely retrofitted to accommodate the transport of casualty victims and 

the performance of emergency treatment procedures.  These systems therefore 

did not have efficient human-machine interface design.  The physical interfaces 

of the new litter lift system were evaluated in this study to promote effective 

human performance capabilities such as safe egress and ingress, loading 

maneuvers, and team lifting techniques.  This study also addressed the 

compatibility of design with ergonomics and biomechanical criteria.  Specific 

postures were analyzed to reduce the physical workload imposed on the medics.  

2. Manpower, Personnel & Training 
A physical task analysis was performed to ensure that the personnel 

assigned to medical MOS are capable of doing required tasks.  This issue is 

particularly important given the reduced manning initiative in the Army.  The MV-

E is currently assigned as a three-person crew (driver, commander, and medic 

assistant).  If reduced to a two-person crew, the physical tasks of loading litter 

patients become accentuated, especially in combat situations.  The study 

addressed personnel selection and classification, operational strength, and 

training concepts. 

3. Safety and Occupational Health 
From a review of the literature, LBP and WMSDs lead to employee 

absenteeism, sick leave, and permanent disability.  Concern is on the rise in the 

Department of Defense regarding military readiness and deployability, especially 

since great attention has been directed towards national security over recent 

years.  It is hypothesized that combat medics (MOS 91W) who perform casualty 

evacuation are at risk for musculoskeletal injuries, which would reduce their job 

performance capability.  The study addresses safety and health hazards induced 

by the design of the litter lift system of the MV-E including WMSDs and physical 

fatigue. 
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E. LITERATURE REVIEW 
1. Assessment of Work-related Musculoskeletal Risks 

a. Task Analysis Methods 
The ground vehicles portion of FCS is a critical component of the 

Army’s transformation program and immediate design work has begun to meet 

the Army’s schedule of fielding the first FCS unit in fiscal 2008.  Therefore, there 

is a need to assess the requirements of the Manned Ground Vehicle variants, 

develop preliminary designs, and identify the components and subcomponents 

which will be common to all vehicle variants.  Among these assessments 

includes a physical task analysis (or may be referred to as a physical demands 

analysis [PDA]) of the MedEvac.  A task analysis can be defined as the study of 

what an operator (or team of operators) is required to do, in terms of actions to 

achieve a system goal (Kirwan and Ainsworth, 1992).  An ergonomic approach to 

task analysis goes beyond the scope of traditional methods by evaluating, step-

by-step, the way the human operator interacts with the machine, product, 

system, and work environment (Montante, 1994).   

Task analyses are commonly used when designing systems.  By 

performing a task analysis early in the system design process, the user’s 

capabilities and limitations can be incorporated into the design of the workspace, 

equipment, procedures, and training.  A systematic examination of the medical 

crew’s physical tasks and daily activities is needed in order to identify controllable 

or preventable sources of injury.  This study will focus on the physical tasks 

involved in the evacuation of combat casualty litter patients for the FCS MV-E.  

By means of personal interviews with soldiers in the MOS 91W, the most 

frequently performed strenuous tasks have been identified.  Essential tasks that 

must be performed within the MOS 91 W job description, and topics included in 

this analysis, are strength, mobility, environmental, and work organization 

demands (Health Care Health & Safety Association of Ontario, 2003).  Strength 

demands explore manual lifting, pulling/pushing, carrying, handling, 

fingering/gripping and reaching (Bos, Kuijer, & Frings-Dresen, 2002).  The 

demands of mobility consist of describing the sitting, standing, walking, running, 
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climbing, balancing, bending and stooping required of the worker.  Environmental 

demands include work features such as indoor/outdoor, hot/cold, vibration, noise, 

dust, and confined spaces.  Lastly, work organization demands involve shift 

work, individual and teamwork (Bos et al., 2002; Ergoweb, 2005). 

b. Posture-based Methods 
A range of methods exist for assessing exposure to risks 

associated with work-related musculoskeletal disorders.  These assessments 

also reveal parts of a job or tasks within a job that may be hazardous.  Li and 

Buckle (1999) provide an overview of existing posture-based techniques that can 

be used within the assessment of physical workload and associated exposure to 

work-related musculoskeletal risks.  The review includes observational methods, 

instrumental or direct methods, self-reporting, and other psychophysiological 

methods. 

(1) Observational Methods.  The earliest observational 

methods recorded human postures by way of paper and pen dating back to the 

seventeenth century.  The Ovako Oy Steel Company later developed the Ovako 

Working Posture Analysing System (OWAS) which describes movements around 

the body as being a bending, a rotation, an elevation, or a position type of 

movement.  The OWAS is a rather simple technique since the recording 

procedures requires only a few seconds and can be used in conjunction with a 

random schedule of observations to obtain a summary description of posture (Li 

& Buckle, 1999).  The Rapid Entire Body Assessment (REBA) has been found to 

be a practical tool especially for evaluating active, non-sedentary tasks where 

postures are dynamic or gross changes in position occur.  A posture or activity is 

selected and body alignment is scored using diagrams.  Then the activity is 

combined with a load score. This assessment also provides suggestions with 

action levels for ergonomic interventions.  Going a step further, a method that 

has shown sensitivity to the change in exposure before and after an ergonomic 

intervention is the Quick Exposure Check (QEC) system developed by Li and 

Buckle (as cited in Li & Buckle, 1999).  The QEC assesses the effectiveness of 

whether a workplace or job redesign has reduced the risk exposure level for 
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potential WMSDs.  In recent years, videotaping and computer-aided 

observational methods have become widely used to avoid observer bias.  For 

example, 2-D or 3-D motion systems record body posture and movement in two- 

or three-dimensional planes through a video-recording system.  The advantages 

of such systems are that several joint segment movements can be recorded 

simultaneously for different tasks and data analysis is simplified with the help of 

advanced software.   

(2) Direct Methods.  Direct methods of posture 

assessment have been done manually with hand-held devices (e.g. goniometer 

or inclinometer) or continuously with electric equipment.  Several studies have 

been done using a device called a Lumbar Motion Monitor (LMM) which 

measures the motion in the lumbar and thoracic sections of the spine.  One  

study described the working postures and forces applied as firefighting crews 

performing paramedic functions (FF/P) performed simulated transport tasks 

(Lavender, Conrad, Reichelt, Meyer & Johnson, 2000).  Using the most 

frequently performed strenuous emergency rescue tasks identified in a survey, 

ten two-person teams of FF/P were videotaped while performing tasks bed to 

stretcher transfer, stretcher to gurney transfer, and three stair descent tasks.  

The most extreme postures were shown to occur during the “initial lift” portion of 

the transport of a patient down the stairs using a backboard.  In the “initial lift”, 

the board was lifted from the floor to waist level which resulted in the trunk being 

maximally flexed, elbows fully extended, and knees flexed approximately 90°.  In 

other analysis of fire fighters, 49% of overexertion related injuries had a specific 

cause of lifting and 42% of the injuries with a cause of overexertion affected the 

lower back (Walton, Conrad, Furner & Samo, 2003). 

Combining observational methods with direct recording 

methods is a growing trend among body motion studies.  This approach was  

applied to a study where maintenance workers were observed performing 60 

minutes of dynamic and static work.  Observational recordings were used to 

calculate the average percentage of time spent with the trunk in a bent position 

during a normal workday (Burdorf, Derksen, Naaktgeboren, & van Riel, 1992).  
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Significant correlations between direct observation and continuous measurement 

(rs1 = 0.62 and rs2 = 0.57).  However, large differences were found between the 

data for individual subjects.  The researchers assume that the cause of these 

differences may be from less precision via direct observation if trunk movements 

are “concentrated in the critical range around the borderline of 20° 

flexion/extension” (Burdorf et al., 1992).  Applying different definitions of angles 

of trunk bending is offered as an alternative explanation.  A study performed by 

the Army Research Institute of Environmental Medicine (USARIEM) specifically 

investigated how a harness would improve soldier performance during and after 

litter carrying.  By simulating a mass casualty task and a removal from a remote 

site, a repeated measures design was used to determine differences in harness 

use, team size, and gender (Rice, Sharp, Tharion & Williamson, 2000).   

(3) Self-Reporting Methods.  This type of assessment 

involves detailed subjective and performance-based measurement. This 

methodology is the most common due to the ease of use and face validity.  

Rating scales, questionnaires, body maps, interviews, and checklists are all 

examples of this form of investigation.  Some researchers rely solely on 

subjective perceptions while others maintain that the self-report approach has 

insufficient validity and reliability (Li & Buckle, 1999). 

(4) Other Methods.   

(a) Psychophysical Methods. 

The psychophysical approach takes into consideration the human 

response to work tasks and is based on widespread scientific examination of MMH tasks 

to determine safe lifting weights.  Snook and Ciriello lead the way in this method by 

giving participants control over the weight being lifted in order to identify an individual’s 

length of time to sustain work without becoming strained, unusually tired, weak or out of 

breadth (as cited in Townley, Hair, & Strong, 2005).  The data used in these trials 

yielded tables of maximum acceptable weight of load (MAWL) – commonly referred to as 

the “Snook Tables” -  for both male and female workers.    

(b) Biomechanical Methods.  To consider the mechanics of the 

muscular activity and the effect of different stresses on the body during work tasks, 
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biomechanical methods have often been employed.  This type of approach is key since it 

considers the physical characteristics of the user (e.g. height and weight), load 

(magnitude and force acting on each hand), and posture (the positioning of major body 

joints and segments).  For example, a study analyzed how well and to what degree of 

exposure five trunk motion and workplace factors were associated with an increase risk 

of low back disorder (LBD) documented three-dimensional angular position, velocity, and 

acceleration characteristics of the lumbar spine (Marras et al., 1995).  Results of the 

study indicated that trunk velocity was the strongest predictor among the trunk motion 

factors.  Trunk velocity characteristics (in each of the cardinal planes) were often more 

predictive of LBD than position, range of motion, or acceleration.  Studies have also 

suggested that there is an increase in lumbar stress when lifting objects near the floor 

(Chaffin, Andersson, & Martin, 1999).  Townley et al. (2005) quantified lifting hazards by 

using a two-dimensional biomechanical model to determine the compressive and shear 

forces exerted on the spine.  The model was also used for extreme posture positions.  

However, several important assumptions were made when using this 2D method 

including: minimal trunk rotation while performing the tasks, low task duration and 

frequency. 

 
F. LIMITATIONS 

The current study does have certain factors that may restrict the 

application of the results.  First, due to structural capability of the MV-E mockup 

at the time of data collection, the litter lift teams loaded empty litters without any 

simulated load.  The simulation environment was incapable of withstanding 

appropriate weight on the loading trays.  Second, the electrical mechanism of the 

litter lift system had not been installed, so participants were not able to fold the 

loading trays in the stow position nor lower or raise the upper litter tray to the 

load and ready position respectively.  However, in a worst case scenario, litter 

casualty victims would be loaded on the upper tray from the ready position.  

Another limitation of the mockup was that the metal braces on the frame 

prevented the litter to be slid easily onto the tray.  Also, civilians were used to 

perform the task simulation due to time limitations and the nonavailability of 

soldier participants. 



15 

II. METHODOLOGY 

A. PARTICIPANTS 
A total of five people (3 males, 2 females) were recruited to participate in 

this study.  Two of the individuals were U.S. Army soldiers and one had a Military 

Occupational Specialty (MOS) 91W Combat Health Specialist.  The remaining 

participants did not have any prior enlisted military experience and were not 

trained in casualty evacuation procedures.  In addition, the 91W medic also 

served as a subject matter expert (SME) during this study.  Prior to participation, 

all volunteers were briefed on the objectives of the study, the tasks they would 

perform, procedures, and their right to withdraw at any time.  The two soldiers 

were dressed in their Army uniforms while the rest of the participants had civilian 

clothing. 

 

B. APPARATUS 
The simulation environment for this study was a plywood vehicle mock-up 

of the FCS MV-E located at BAE Systems in Santa Clara, CA.  It must be noted 

that the mock-up used in this study was a work-in-progress.  Also due to 

construction limitations of plywood, there was a 5-inch step at the base of the 

entrance to the vehicle.  Participants used a standard NATO Decontaminable 

litter, which has been developed to replace the canvas litters currently in use 

among military units.  The new litter is similar to the basic components of the 

canvas collapsible litter which includes: two straight, rigid, lightweight aluminum 

poles; a fabric cover; and four wooden handles attached to the poles 

(Department of the Army, 2000).  The major difference is that the 

decontaminable litter is made of a monofilament polypropylene that has high 

tensile strength and low elasticity.  The fabric does not absorb liquid chemical 

agents, is not degraded by decontaminating solutions, and the carrying handles 

are adjustable to allow for litter bearers’ comfort (USACHPPM Tech Guide, 

2002).  Due to limited structural capability of the current mockup to withstand 
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appropriate weight, the litters did not have a simulated load.  Instead, empty 

litters were used. 

During each task simulation, digital video data were recorded.  The video 

was later analyzed using the (2-D) motion capture PEAK Motus® Software 

version 8.4 developed by Vicon Motion Systems, Inc.  The video camera used 

was a Panasonic PV-GS55 Digital Palmcorder® MultiCam™ Camcorder. 

 

C. TASK ANALYSIS 
Soldiers with MOS 91 W health care specialists have a variety of duties to 

perform.  Given the complexity of their tasks and the fact that tasks change 

depending on operational situation, it is difficult to define all medics’ tasks.  

Several phases were required in order to identify tasks that expose medics to 

ergonomic risks.  The first phase may be referred to as a descriptive phase, 

which involved collection and review of critical task documents for the MOS 91 

W.  A general understanding of all jobs performed by these specialists was 

achieved and physical requirements to accomplish the tasks were reviewed.  The 

next phase involved conducting interviews and questionnaires.  Discussions with 

SMEs captured clear descriptions of physically strenuous job tasks and 

associated roles.   This task analysis procedure also involved accompanying 

BAE employees to Fort Sam Houston, Texas where interviews were conducted 

with MOS 91W soldiers to identify the most frequently performed, physically 

strenuous activities performed during medical evacuations (see Appendix B).  

This information gathered was used to structure the focus of this study. 

The scope of this study was limited to the loading tasks involved within 

evacuating litter casualty victims.  The focus was on the medical evacuation 

tasks, which is task step number 2 part C according to the ARTEP for the 

Medical Platoon (Army Training and Evaluation Program [ARTEP], 2002).  A 

section of this ARTEP is displayed in Table 10 of Appendix A (note that this is 

one continuous table).  The tasks were broken down into sub-tasks (refer to 
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Table 2).  The investigator then analyzed each task to determine the postural 

demands of each task element. 

 

Table 2.   Task sequence 

Task 
Number 

Task Sub-tasks 

1 Load Sponson Litter Lift and carry litter and approach ramp 
  Begin ramp ascent 
  Load litter 
   
2 Load Upper Litter Slide out litter tray 
  Lift and carry litter to vehicle 
  Begin ramp ascent 
  Load litter 
  Slide in litter tray 
   
3 Load Bottom Litter Slide out litter tray 
  Lift and carry litter to vehicle 
  Begin ramp ascent 
  Load litter 
  Slide in litter tray 
   
4 Load Middle Litter Slide out litter tray 
  Lift and carry litter to vehicle 
  Begin ramp ascent 
  Load litter 
  Slide in litter tray 
   

  

 

D. STUDY DESIGN AND PROCEDURES 
For this study an assessment of the litter loading process using 2-person 

and 3-person teams was accomplished by task simulations in the FCS MV-E 

mockup.  Only the loading process was analyzed since that is the most critical 

component in casualty evacuation from the battlefield.  The FCS MV-E is 

currently assigned as a 3-person crew.  The analyst was informed that this job is 

not normally performed by the MV-E crew since assistance is typically at the 

casualty pickup site.  Yet, with the ongoing initiative from the Army to reduce 

manning, this vehicle may become a 2-person crew.  It is important to assess the 
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ability of the two different manning levels to perform the job adequately and 

without increased risk of injury.  Participants loaded the maximum capacity for 

the MV-E in order to simulate a worst case scenario – i.e., two teams executed 

the evacuation of four litter casualties.  The video data were collected with team 

size at two levels (a 2-person team and a 3-person team), and the height of the 

load at the destination of lift had four levels (sponson, upper, bottom, middle).  

The destination height refers to the location of loading each litter into the vehicle.  

The video data analysis provided measures of trunk motion characteristics and 

horizontal lift distance.  Trunk motion characteristics consisted of trunk angle, 

trunk velocity, and trunk acceleration.  The maximum horizontal distance of the 

load from the spine also was measured. 

1. Video Data Collection 
When using a motion capture system, the most ideal and efficient camera 

views must be decided.  The best optical views are especially important to 

establish when 2-D software is used to analyze postures.  The motion that was 

captured was restricted to a plane, i.e. the motion of the participants was 

perpendicular to the optical axis.  In this case, three different camera views were 

used to capture as many of the postures as possible - rear of the vehicle 

mockup, side view of the ramp, and front of the vehicle mockup.  Thus, the 

participants repeated most of the tasks from each different camera view.  Prior to 

camera setup, some preliminary actions were taken to ensure that the mockup 

environment was ready.  For example, the mockup was moved away from any 

wall or obstruction in order to allow ample room for entry and exit into the vehicle.  

The study occurred over a two-day period.  Participants were randomly 

assigned to one of two teams: a 3-person team (Team ALPHA) or a 2-person 

team (Team BRAVO).  Data were collected for Team ALPHA on Day 1 and for 

Team BRAVO on Day 2.  Before data collection began, volunteers were briefed 

on the objectives of the study, the tasks that they would be asked to perform, 

procedures for completing the tasks, and the freedom to withdraw at any time. 

First, participants were first assigned roles in each litter lift team.  The “Head” role 

referred to the location of the head a casualty victim on the litter and the “Foot” 
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role referred to the where the feet of a casualty victim on the litter would be 

located (refer to Table 3).  It is standard operating procedure, according to Army 

doctrine, to load the litter casualties head first (Department of the Army, 2000).  

Participants in Team ALPHA at the head of the litter used a one-hand hold to 

carry the litter; while both members of Team BRAVO used a two-handed lift 

technique.  Reflective markers were placed on each participant.  See Table 4 for 

participant summary information. 

Table 3.   Summary of participant duty roles 
 Participant’s Role Description 
Team ALPHA Head 1 Located at the head of 

the litter on the right side 
 Head 2 Located at the head of 

the litter on the left side 
 Foot Located at the rear of the 

litter 
Team BRAVO Head Located at the head of 

the litter 
 Foot Located at the rear of the 

litter 

 

Table 4.   Participant summary data 
 Participant 

Number 
Participant’s 
Role 

Gender Height (m) Weight 
(kg) 

Team 
ALPHA 

1 Head 1 Female 1.73 90.72 

 2 Head 2 Female 1.63 56.70 
 3 Foot Male 1.82 117.93 
Team 
BRAVO 

4 Head Male 1.88 95.25 

 5 Foot Male 1.63 79.38 
 

Each team was given the opportunity to do a practice trial of loading each litter 

location (sponson, upper, bottom, and middle). 

The maximum horizontal distance was a workplace characteristic that was 

measured for each participant performing each task.  A tape measure was used 

to calculate the furthest distance of the load (the litter in this case) from the 

participant’s trunk.  Finally, each participant completed a brief questionnaire 
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about the physical demands and postural constraints for each task in the 

simulation. 

 

2. Posture Classification 
As mentioned earlier, the evidence from epidemiological studies suggests 

that posture plays a significant role in the development of WMSDs.  A video 

motion capture technique was used to better understand the effects of body 

posture on the major joints of the musculoskeletal system.  By using this 

approach, the human operator was first videotaped performing the task and then 

the investigator observed a replay of the videotape.  The postures adopted by the 

medical crew in the task simulation were carefully analyzed on an individual 

basis and determined by the position of the trunk, upper limb, and neck 

according to the micropostural classification system developed by W. Monroe 

Keyserling (Keyserling, 1986).  This classification system provides a simple 

method for analyzing jobs to identify awkward postures that may lead to LBD or 

other WMSDs.  No tasks in the simulation were performed while seated, 

therefore only the posture classification for standing workers was used.  The 

trunk is considered to deviate from the neutral upright posture and be at risk of 

injury if it is extended, flexed, bent, or twisted more than 20° (as cited in 

Keyserling, 1986).  Specifically, mild trunk flexion occurs when trunk angle is 

between 20° and 45°; while severe trunk flexion is when the trunk angle is 

greater than 45° (see Figure 2).  Unlike the OWAS, Keyserling’s posture 

classification system independently describes the left and right shoulders.  The 

shoulder is considered to deviate from neutral when it is flexed or abducted more 

than 45°.  Classifications by Genaidy et al. also agree that the lower back is a 

severely flexed when the angle measured is greater than 45° (as cited in 

Genaidy, Al-Shedi & Karwowski, 1994). 
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Figure 2.   Posture classification (From Keyserling, 1986) 
 

 

The postures for each member in both teams were carefully examined 

using the captured video clip.  With the capability of PEAK Motus® it is possible 

to analyze movements of body segments on a frame by frame basis.  Included in  

the results section of this study, are descriptions of the lower back postures, 
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shoulder, and arm movements which deviated from the neutral position while 

performing the task simulation. 
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III. RESULTS AND DISCUSSION 

A. ANALYTICAL APPROACH 
1. Postural Analysis 
The postural data were extracted from the videotapes using the PEAK 

Motus® software.  Each of the four tasks was reviewed to obtain bi-planar 

postural data for the trunk, shoulders, and neck.  However, due to 2-D software 

limitations and difficulty to track markers that were unseen, only trunk-to-vertical 

angles in the saggital plane were used for the majority of data analysis.  Although 

lateral bending of the trunk and rotation of the trunk did occur, the current 

equipment and vehicle mockup configuration did not allow for this data to be 

captured accurately. 

 

2. Summarizing Results 
Table 5 indicates whether or not there was available trunk angle data 

present to be used in data analysis.  The decision was made based on whether 

the motion needed to perform each task was within a two-dimensional plane and 

markers remained in the field of view throughout the motion. 

Table 5.   Summary of available data for task simulation 
 Task 1 - 

Sponson
Task 2 - 
Upper

Task 3 - 
Bottom

Task 4 - 
Middle

ALPHA Head 1 no yes yes yes
3 person team Head 2 yes yes yes yes

Foot no no no no

BRAVO Head no yes yes yes
2 person team Foot yes no no no  

Due to the limiting factors previously discussed, exploratory data analysis 

was the best way to summarize this set of data.  There was not sufficient data to 

conclusively quantify the risk of developing musculoskeletal injury based on 

posture analysis.  Specifically, rankings of trunk velocity and trunk acceleration 

were not done since there appears to be no standard by which to classify values.  

After the video data were processed, PEAK Motus® provided 2-D angular trunk 
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velocity and 2-D angular trunk acceleration for each individual performing a 

particular task.  However, there was no statistical analysis performed regarding 

trunk velocity or trunk acceleration for the task simulation.  As shown in Table 5, 

there was not enough available data to make statistically sound comparisons 

between the two teams.  Also there was inadequate data across tasks for 

statistical comparisons within subjects.   

Measures of central tendency and measures of spread were evaluated for 

the ranks of severe trunk angles in Team Alpha and Team Bravo.  The Mann-

Whitney U non-parametric test was to analyze the postural data and to determine 

significance of trunk angle severity for both teams.  

 

B. RESULTS 
1. Task Analysis 
The results of the task analysis performed are presented in Table 6.  Refer 

to Appendix A for more information on medical evacuation jobs. 
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Table 6.   FCS MV-E physical task analysis for loading litter casualties 

Ambulance Squad, Medical Platoon
FCS Medical Evacuation Vehicle (MV-E) Loading Task Analysis

Ground Ambulance Evacuation Support Tasks

Task Step # Task Summary Activity
Postural 

Characteristics
2 Ambulance team evacuates patients

2.1
Loads the ambulance by loading litter patients and 
assisting the ambulatory patients

2.1.1 Determine ambulance load capacities

2.1.2 Determine the loading sequence

2.1.3 Load sponson litter casualty

2.1.3.1 Lift and carry litter from pickup point

squatting, 
kneeling, one-
hand and two-
hand holds

trunk & knee 
flexion, shoulder 
abduction, power 
hand grip

Approach and climb ramp

raising leg 
10.35 m from 
floor, walking 
on inclining 
surface, body 
rotation and 
hand-off

knee and ankle 
flexion, raised 
shoulders, trunk 
rotation

Place litter on right hand side sponson

reaching 
forward with 
both arms, 
bending 
forward to 
place litter

trunk flexion, 
shoulder flexion & 
abduction

2.1.4 Load upper litter casualty

Slide upper tray to ready position

pulling tray 
towards upper 
body

wrist extension, 
forearm supination

Lift and carry litter from pickup point

squatting, 
kneeling, one-
hand and two-
hand holds

trunk & knee 
flexion, shoulder 
abduction & 
extension, power 
hand grip

Approach and climb ramp

raising leg 
10.35 m from 
floor, walking 
on inclining 
surface, body 
rotation and 
hand-off

knee and ankle 
flexion, raised 
shoulders, trunk 
rotation

Place litter on upper tray

reaching 
forward with 
both arms, 
raising hands 
above 
shoulder 
height

shoulder abduction 
& flexion, elbow 
flexion, wrist 
extension

Slide upper tray to stow position

pushing tray 
away from 
upper body

wrist extension, 
forearm pronation  
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Table 6 cont.  FCS MV-E physical task analysis for loading litter casualties 

Ambulance Squad, Medical Platoon
FCS Medical Evacuation Vehicle (MV-E) Loading Task Analysis

Ground Ambulance Evacuation Support Tasks

Task Step # Task Summary Activity
Postural 

Characteristics
2.1.5 Load bottom litter casualty

Slide bottom tray to ready position

bending from 
waist to pull 
tray out

wrist extension, 
forearm supination, 
trunk flexion

Lift and carry litter from pickup point

squatting, 
kneeling, one-
hand and two-
hand holds

trunk & knee 
flexion, shoulder 
abduction & 
extension, power 
hand grip

Approach and climb ramp

raising leg 
10.35 m from 
floor, walking 
on inclining 
surface, body 
rotation and 
hand-off

knee and ankle 
flexion, raised 
shoulders, trunk 
rotation

Place litter on bottom tray

reaching 
forward with 
both arms, 
back bent 
forward

wrist extension, 
forearm supination, 
neck extension, 
trunk flexion

Slide bottom tray to stow position

bending from 
waist to push 
tray in

wrist extension, 
forearm pronation, 
trunk flexion

2.1.6 Load middle litter casualty

Slide middle tray to ready position

back slightly 
bent to pull 
tray out

wrist extension, 
forearm supination

Lift and carry litter from pickup point

squatting, 
kneeling, one-
hand and two-
hand holds

trunk & knee 
flexion, shoulder 
abduction & 
extension, power 
hand grip

Approach and climb ramp

raising leg 
10.35 m from 
floor, walking 
on inclining 
surface, body 
rotation and 
hand-off

knee and ankle 
flexion, raised 
shoulders, trunk 
rotation

Place litter on middle tray

reaching 
forward with 
both arms, 
back bent 
forward

shoulder abduction 
& flexion, elbow 
flexion, wrist 
extension

Slide middle tray to stow position

back slightly 
bent to push 
tray in

mild trunk flexion, 
wrist extension, 
forearm pronation  
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2. Video Data Summary Results 
The results are the summary statistics of the raw data provided by PEAK 

Motus® (see Figure 3).  For Task 1, the only available data is for the Head 2 

member of the 3-person team and the Foot member of the 2-person team.  The 

average trunk angles for both teams exceed 45 degrees, which according to 

Keyserling’s posture classification system, are classified in the severe trunk 

posture classification (Keyserling, 1986). 

Task 2 did not appear to expose the participants of both teams to severe 

trunk postures.  Two individuals in the 3-person team assumed an average trunk 

angle less than 45 degrees and one individual in the 2-person team had an 

average trunk angle of only 1.4 degrees.  The Head member of Team Bravo also 

appeared to have slight trunk extension while loading the litter on the top frame 

(minimum trunk angle = -4.3 degrees).   

Team members appeared to assume the greatest degree of trunk flexion 

while performing Task 3.  The Head 1 member of Team Alpha had an average 

trunk angle of 113 degrees which greatly exceeds neutral standing trunk posture.  

The Head 2 member of Team Alpha and the Head member of Team Bravo both 

assumed average trunk postures that are within the severe trunk posture 

classification (57° and 85° respectively). 

For Task 4, participants in the 3-person team loading the middle frame 

had severe trunk angles (with averages of 56 and 63 degrees), while one 

individual of the 2-person team did not assume a trunk angle of greater than 45 

degrees while performing this task. 
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Figure 3.   Summary statistics for each task 

Summary Statistics of Trunk Angles*
TASK 1: Sponson

Head1 Head2 Foot Head Foot
Minimum --- 31.81 --- --- 67.70
Maximum --- 79.43 --- --- 82.85
Average --- 62.88 --- --- 77.19
Standard Deviation --- 13.26 --- --- 4.70

TASK 2: Top

Head1 Head2 Foot Head Foot
Minimum 15.68 5.24 --- -4.35 ---
Maximum 18.05 47.51 --- 8.64 ---
Average 17.24 26.41 --- 1.37 ---
Standard Deviation 0.63 12.29 --- 3.12 ---

TASK 3: Bottom

Head1 Head2 Foot Head Foot
Minimum 100.56 6.22 --- 79.70 ---
Maximum 126.24 84.23 --- 86.67 ---
Average 112.80 57.04 --- 85.33 ---
Standard Deviation 7.33 20.50 --- 1.87 ---

TASK 4: Middle

Head1 Head2 Foot Head Foot
Minimum 43.81 45.53 --- 4.38 ---
Maximum 61.24 75.38 --- 39.64 ---
Average 55.50 63.27 --- 16.57 ---
Standard Deviation 3.94 5.71 --- 9.27 ---

---  =  No Data Available
* All values are trunk to vertical angle

Team ALPHA Team BRAVO

Team ALPHA Team BRAVO

Team ALPHA Team BRAVO

Team ALPHA Team BRAVO
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3. Proportion of Severe Trunk Angles 
The data were also summarized using proportion of severe trunk angles 

for each participant performing each task.  This proportion was calculated by 

dividing the number of severe trunk angles by the total number of data points.  

Figure 4 shows the resulting individual proportions for each task. 

 

Figure 4.   Percentage of severe trunk angles for each task 

Summary of Proportion of Severe Trunk Angles*

TASK 1: Sponson

Head1 Head2 Foot Head Foot
Ranks --- 81.30% --- --- 100%

TASK 2: Top

Head1 Head2 Foot Head Foot
Ranks 0% 1.31% --- 0% ---

TASK 3: Bottom

Head1 Head2 Foot Head Foot
Ranks 100% 80% --- 100% ---

TASK 4: Middle

Head1 Head2 Foot Head Foot
Ranks 99.60% 100% --- 0% ---

---  =  No Data Available
* All values are trunk to vertical angle

Team ALPHA Team BRAVO

Team ALPHA Team BRAVO

Team ALPHA Team BRAVO

Team ALPHA Team BRAVO

 

 

4. Maximum Horizontal Distance 
The maximum horizontal distance of the litter from each participant’s trunk 

was measured in all tasks.  Table 7, shows the values for the furthest distance of 

the litter for each individual team member while performing each task.  As 
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evidenced in Figure 5 below, individuals in the 2-person team had higher 

distances than members of the 3-person team for all tasks. 

Table 7.   Maximum horizontal distances for each task (inches) 

Task 1 - 
Sponson

Task 2 - 
Upper

Task 3 - 
Bottom

Task 4 - 
Middle

ALPHA Head 1 47.0 31.0 44.5 42.0
3 person team Head 2 25.0 26.5 39.3 33.5

Foot 36.0 27.3 34.5 22.0

BRAVO Head 40.0 35.0 40.0 34.0
2 person team Foot 49.0 39.0 46.0 37.0  

 

Figure 5.   Boxplot of maximum horizontal distance (inches) 
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The postures for each member in both teams were carefully examined 

using the captured video clip.  With the capability of PEAK Motus® it is possible 

to analyze movements of body segments on a frame by frame basis.  Below is a 
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description of the lower back postures, shoulder, and arm movements which 

deviated from the neutral position while performing the task simulation. 

 

5. Task 1 Sponson Litter Loading Postures 
Awkward trunk postures occurred for the Head 2 team member of Team 

Alpha while performing each task.  For example, loading the Sponson (Figure 6) 

resulted in trunk flexion and elbow flexion.  It was observed that the litter was 

loaded with the lower arm supinated which did allow for minimal wrist extension.  

The degree of back forward bending (approximately 79°) at this point of 

performing the task, placed the crew member at risk for back injury since the 

angle exceeded 45° (see Figure 7). 

 

Figure 6.   Head 2 sponson loading- video capture (l) and spatial model (r) 

 

 

Figure 7.   Head 2 peak trunk angle while loading sponson 
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Figure 8 shows forward trunk flexion for the Foot member of Team Bravo 

while performing this task.  The shoulders of the participant were slightly 

abducted and extended as he leaned forward to place the litter in the vehicle.  

 

Figure 8.   Team Bravo Foot sponson loading 
 

 

 

6. Task 2 Upper Litter Loading Postures 
Figure 9 shows the Head 1 member of Team Alpha loading the upper 

frame and assuming a slight trunk flexion at the start of litter placement on the 

frame.  The photo also captures the shoulder flexion that the crew member 

assumed to reach across the frame to grasp the litter handle. 

 

Figure 9.   Head 1 upper loading 
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The posture that was repeatedly observed for the Foot team member of 

both teams was shoulder and wrist extension (see Figure 10).  This occurred 

when the participants raised their arms above shoulder height to load the litter on 

the upper frame.  Figures 11 and 13 also show shoulder abduction when loading 

the litter onto the metal frame before sliding into place.  An accompanying graph 

(Figure 12) illustrates the shoulder angles that occurred throughout Task 2.  A 

vertical marker was drawn to indicate the peak shoulder angles (left shoulder ≈ 

69° and right shoulder ≈ 66°).  According to Keyserling’s standard classification 

system, these are mild shoulder abduction postures (Keyserling, 1986). 

 

Figure 10.   Team Alpha and Team Bravo Foot members loading upper litter 

 

 

 

Figure 11.   Foot upper loading- video capture (l) and spatial model (r) 
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Figure 12.   Team Alpha Foot peak shoulder angles while loading upper litter 

  

 

 

Figure 13.   Team Bravo Foot shoulder abduction while loading upper litter 

 

The crew members must enter the vehicle to load the litters via a ramp.  

The Figure 14 is provided to show an example of the considerable step-up 

required to enter the vehicle. 
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Figure 14.   Team Bravo Foot stepping up on ramp while loading upper litter 

 

Another awkward body posture observed was when the Head member of 

Team Bravo prepared to place the litter onto the upper frame.  In the 2-person 

team, the individual at the head of the litter always entered the vehicle face-

forward while holding the litter behind the back with both hands on the handles.  

Once the litter bearer stepped inside the vehicle, he stopped to turn around and 

face the direction of the litter.  Therefore, rotation occurred about the long axis of 

the trunk.  He briefly placed one litter handle on his lower back and turned 

around to grab the other litter handle (see Figures 15 and 16) .  This maneuver 

was not observed during the Team Alpha’s loading tasks since there was another 

person present to hand over the litter. 

 

Figure 15.   Team Bravo Head awkward maneuver while loading upper litter 

 

 



36 

Figure 16.   Team Bravo Head trunk rotation while loading upper litter 

 

 

7. Task 3 Bottom Litter Loading Postures 
The most extreme posture for the Head 1 member of Team Alpha 

occurred while loading the litter on the bottom frame (see Figure 17).  In this 

posture, the maximum horizontal distance of 45 inches was achieved and the 

greatest flexion of the back occurred.  The participant reached across the bottom 

frame to properly set the litter onto the loading tray.  One factor that may have 

contributed to this awkward posture was that the bottom frame was on the floor 

and material handling motions that occur below knee height maximize the 

horizontal distance resulting in greater compression on the L5/S1 disc (Chaffin et 

al., 1999).  A squatting position may reduce this postural risk; however the shape 

and size of the load and the limited space available in the vehicle make squatting 

difficult.  

Figure 17.   Head 1 loading bottom litter 
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The accompanying graph (Figure 18) indicates the peak trunk angle 

achieved while performing the bottom loading task (approximately 125°).  Figures 

19 and 20 are graphs of angular trunk velocity and angular trunk acceleration 

(respectively) while Head 1 performed Task 3.   

 

Figure 18.   Head 1 peak trunk angle while loading bottom litter 

 

 

 

Figure 19.   Head 1 angular trunk velocity while loading bottom litter 
 

 
 

Figure 20.   Head 1 angular trunk acceleration while loading bottom litter 
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The implications of angular trunk velocity and acceleration are unknown.  

Specifically, it is not certain whether higher trunk velocities and accelerations 

lead to low back injuries.  Nonetheless, Table 8 reports the angular trunk velocity 

and acceleration for Head 1 while loading the bottom litter. 

 

Table 8.   Summary statistics for Head 1 loading bottom litter (deg/sec and deg/sec2) 
 Trunk Velocity Trunk Acceleration 
Minimum -58.29 -3546.41 

 
Maximum 24.06 1397.66 

 
Average -1.08 -10.36 

 
Standard deviation 11.03 306.28 

 
  

 
The Head team member in Team Bravo also assumed severe trunk 

flexion while loading the litter onto the bottom frame (Figures 21 and 22).  

However, it was observed that instead of using both handles and reaching across 

the frame to place the load, the participant holds the litter from the middle.  The 

angular trunk velocities and angular trunk accelerations were provided for this 

task (Figures 23 and 24) and are summarized in Table 9. 

 

Figure 21.   Head loading bottom litter 
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Figure 22.   Head peak trunk flexion loading bottom frame 

 

 

Figure 23.   Head angular trunk velocity while loading bottom litter 

 

 

 

Figure 24.   Head angular trunk acceleration while loading bottom litter 
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Table 9.   Summary statistics for Head loading bottom litter (deg/sec and deg/sec2) 

 Trunk Velocity Trunk Acceleration 
Minimum -56.57 

 
-3469.66 

 
Maximum 101.45 

 
7911.94 

 
Average -0.01 

 
41.73 

 
Standard deviation 16.89 

 
881.83 

 
  

The Head 2 team member of Team Alpha also assumed trunk postures 

that exceeded 45 degrees while loading the litter on the bottom frame (see 

Figures 25 and 26). 

 

Figure 25.   Head 2 loading bottom litter 

 

 

Figure 26.   Head 2 peak trunk angle while loading bottom litter 
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One of the most extreme trunk postures observed for Team Bravo was 

when the participant at the Head stepped into the vehicle, placed the litter on the 

door of the vehicle, turned around and then proceeded to load the litter on the 

bottom frame (Figure 27).  This maneuver is necessary because there is not 

another person available to hand-off the load. 

 

Figure 27.   Head preparing to load bottom litter 

 

Eventhough the results were not able to quantitatively show data for the 

Foot member for most of Team Bravo, Figure 28 does show that trunk flexion did 

occur while performing this task simulation.   It was observed that the participant 

assumed severe trunk flexion while loading the bottom and middle frames.  By 

analyzing the video frames, the analyst assumes that the degree of trunk flexion 

during these tasks exceeded 45 degrees. 
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Figure 28.   Foot loading bottom litter 

 

 

8. Task 4 Middle Litter Loading Postures 
Figure 29 clearly shows trunk flexion and shoulder extension while loading 

the middle frame.  The participant held both handles while loading, requiring an 

extended reach across the frame, which then caused the lower back to bend 

forward.  

Figure 29.   Head 1 loading middle litter 

 

 

Figure 30 illustrates similar lower back flexion and shoulder extension to the 

Head 1 individual of Team Alpha. 
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Figure 30.   Head loading middle litter 
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IV. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 
The postures observed in this study do expose crew members of the FCS 

MV-E to work-related musculoskeletal risks, particularly low back pain.  The high 

risk postures were found especially while the subjects were loading litters on the 

bottom frame.   Due to the design of the current study, using a 2-D software 

analysis package, and other limitations previously discussed, data are not 

available for each team member performing all tasks.  Thus, inferential statistical 

analyses were not possible regarding the relative degree of posture severity of 

the 2-person and 3-person teams. 

 

B. RECOMMENDATIONS 
The current study served as a demonstration of a new approach to 

assessing ergonomic risk of manual material handling tasks.  Below are several 

guidelines and suggestions regarding experimental design, methodology and 

approach to data analysis. 

 First, a 3-dimensional motion capture software system is 

recommended.  While analyzing a dynamic task such lifting and 

loading with more than one person involved, it is difficult to 

adequately capture all motions involved for each individual.  The 2-

D system restricted the use of trunk twisting motions, movement 

toward and from the camera, and motions that occur outside of the 

2-D plane. 

 When setting up cameras for data collection, ensure that the 

movements are captured in the entire camera field of view. 

 Task events should be timed so that they are of approximately 

equal duration.   However, the researcher must weigh that 

advantage against realistic simulation of the task as it is performed 

in an operational environment. 
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 When recruiting participants, use all combat medics with adequate 

experience performing litter casualty evacuations in the field.  Also, 

experimental conditions should be as close as possible to the real 

environment.  For example, medics should wear appropriate 

clothing and have gear and equipment such as helmet, body armor, 

and medical aid bag.  This will enable human-system interface 

issues to be fully evaluated.  Civilian participants may not  perform 

the tasks as the medics would do in the field; the practice trials may 

not be adequate to learn coordination and hand-off skills that are 

necessary in loading litters in a team. 

 A more detailed categorization of trunk postures is recommended.  

Instead of using two categories of trunk posture- severe or not 

severe- incorporate mild flexion and other categories according to 

the posture classification that specifically describe the level of 

severity. 

 Analyze which tasks are performed better (i.e. less extreme 

postures) with a team size of two and which are better with a team 

size of three.  For example, is loading the Sponson better with a 2-

person team instead of a 3-person team, while loading the Bottom 

is better with a 3-person team?  

 Suggested Research Question: Is there a difference in trunk 

postures for a 2-person team versus a 3-person team? 

 Suggested Null Hypothesis:  The distribution of severe trunk 

postures is the same for 2-person and 3-person teams. 

 Suggested Alternate Hypothesis:  The distribution of severe trunk 

postures for a 2-person team is different from the distribution for a 

3-person team. 

 In designing the experiment, allow participants to perform tasks in 

both a 2-person and 3-person team so that the performance of the 



47 

team member can be compared (a within-subjects design).  

Multiple replications of each task are recommended. 

 

C. IMPLICATIONS FOR FUTURE RESEARCH 
More research is needed that quantifies risk for upper extremities (to 

include shoulder, elbow, and wrist) and lower extremities other than the trunk.  

Total posture analysis of the body is needed while performing high-risk tasks.  

Predictive models have been developed as a way to project the degree of risk 

involved when performing a task.  However, most predictive equations are based 

on lifting strength; minimal work has been done in developing predictive models 

based on posture.  Also, further work is necessary in predicting risk of WMSDs 

by using trunk angular velocity and trunk angular acceleration.  The review of 

literature found no accepted basis for establishing safe trunk velocity and 

acceleration while performing MMH tasks.  Studies have used trunk velocity and 

trunk acceleration as factors to include in models, but an agreed hazardous 

range has not been identified.  This study attempted to go beyond the traditional 

Revised NIOSH lifting equation to quantify lifting hazards and is also among the 

first to explore the area of posture analysis for MMH tasks involving teams.  This 

study has demonstrated that use of a video motion capture system is an effective 

tool in the assessment of ergonomic risks of jobs such as MMH tasks.  A video-

based system is especially suitable for measuring human motion of team-

oriented tasks.  By using a video motion analysis system, joint segments of the 

body can be simultaneously recorded for operators performing different tasks.  

Another benefit of recording posture and body movement through a video-

recording system is the analysis of trunk and upper extremity angular changes, 

velocities and accelerations.  The work presented in this study impacts 

musculoskeletal injury prevention and prompts follow-on research applying these 

postural measurement techniques. 
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APPENDIX A.  GROUND AMBULANCE EVACUATION SUPPORT 
TASKS 

Army soldiers in MOS 91 W are referred to as health care specialists.  

They are primarily responsible for providing emergency medical treatment, 

limited primary care and health protection and evacuation from a point of injury or 

illness.  When Army physicians are not available, the health care specialist is 

authorized to provide basic and emergency medical treatment to injured or 

wounded soldiers (www.goarmy.com, retrieved November 2005).  Although there 

is no civilian occupation that is directly equivalent to MOS 91W, emergency 

medical technicians and paramedics make use of the skills developed through 

MOS 91W training and experience.  Some of the duties as a health care 

specialist include: taking patients’ temperature, pulse and blood pressure; 

assisting with outpatient and inpatient care, administering emergency medical 

treatment to battlefield casualties; and recording patients’ medical histories.  This 

thesis focuses on the function of Medical Evacuation which is the systematic 

evacuation of sick, injured, or wounded soldiers.  Medical evacuation 

encompasses – collecting the wounded for evacuation, sorting or triage, 

providing an evacuation mode, providing medical care, and anticipating 

complications and being ready and capable to perform emergency medical 

interventions (Army Field Manual 8-10-6, 2000).  According Army Field Manual 8-

10-6, en route care medical care has three major goals- (i) ensure patients are 

properly prepared by providing essential care prior to evacuation, (ii) ensure the 

medical evacuation system is able to transport/evacuate critically ill or injured 

patients on any available mode of transportation, and (iii) preserve or retain 

forward deployed medical personnel.  Given the time-sensitive nature of treating 

critically injured soldiers and the need for an expedient field evacuation system, 

the FCS MV-E was designed.  This vehicle allows health care specialists, 

maneuvering with combat forces, to be closer to the casualty’s point-of-injury and 

is used for casualty evacuation.  Table 10 below describes the individual steps 

medics are required to perform in the evacuation of casualty victims. 
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Table 10.    Ground ambulance evacuation support tasks (After ARTEP 17-236-12-
MTP) 
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APPENDIX B. PHYSICAL TASK ANALYSIS QUESTIONNAIRE 

Evaluation of the Physical Tasks Performed by FCS Medical Evacuation 
(MedEvac) Vehicle Medics 

 
QUESTIONNAIRE 

 
Please respond to the following questions.  This questionnaire is designed to evaluate the 
physical tasks that medics must perform and the workspace in which these tasks must be 
completed.  Based on your experience, provide clear and concise answers to each item 
below.  The information you provide will strictly be used for research purposes. 
 
Participant #:          Date:        

Start Time:          End Time:        
 
Participant Information 
 
Age (yrs):        

MOS:        

Rank:        

Time in Military:        

Time on Active Duty:        

Time since Last Deployment:        

Dominant Hand:        
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Indicate the types of Army vehicles you have experience with and number of 
years/months in each: 
 

Vehicle Name # of Years 

 M113 (2 man crew)  

 Stryker   

 Bradley (1 medic, 6-7 
soldiers) 

 

 Hummv 
 996 
 997 
 998 

 
 
 

 Dusenhalf  

 LMTV (2 man crew)  

 M577 (4-5 man crew)  

 Other – FLA (2 man crew)  

 
 
The goals of this questionnaire include: 

 To identify the tasks contents performed by MedEvac crew 
 To identify the frequency and duration of performing these tasks 
 To identify problems areas relating to medics’ physical tasks 
 To determine the tasks that are most physically demanding as indicated by 

SMEs 
 To identify the task element(s) that make each task physically demanding 
 To determine human task performance- performance time & error rate 
 To determine which tasks are to be simulated 

 
 
Area of focus:  Physical tasks performed by medical crew 
 
Scenario:  Mission: Medical Evacuation Support for Combat Forces in the Offense or 
Defense.  There are 3 Litter Casualties and 1 Ambulatory Casualty.  Recover wounded 
soldiers for transport to Battalion Aid Station. 
Condition:  Medics will load wounded soldier on to litter/sked 4- man litter carry  
Task:  Load wounded soldier onto litter or sked and carry to medical evacuation vehicle 
on flat terrain. 
Equipment:  Full Combat Load 
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Part 1.   Medics’ Tasks and Physical Workload 
 
1.  Rate the following tasks (see attached list) 
 
 
  Task:____________________________________________________ Task Number: ___ ___ ___ ___        
       
FREQUENCY 
How often is this task performed.  Once every ____? (CHECK ONE): 
 1 min 

A 
5 min 

B 
10 min 

C 
30 min 

D 
1 hour 

E 
2 hours 

F 
Few hours 

G 
○ ○ ○ ○ ○ ○ ○ 

 
DURATION 
How long does it normally take to perform this task? (CHECK ONE): 

Less than 1 
min 
A 

1 min – 5 min 
 

B 

6  – 10 min 
 

C 

11 – 15 min 
 

D 

16 – 30 min 
 

E 

31 – 1 hour 
 

F 

More than 1 
hour 

G 
○ ○ ○ ○ ○ ○ ○ 

 
PHYSICAL EXERTION 
How would you describe the physical effort required for this task?   (CHECK ONE): 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
No 

exertion 
at all 

Extremely 
light 

 Very 
light 

 Light  Somewhat 
hard 

 Hard  Very 
hard 

 Extremely 
hard 

Maximal 
exertion 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
 
 
Rate the task on all of these 
factors using this 1 – 7 scale.     
 
 
Factors: 
Muscular 
strength 

Explosive 
strength 

Muscular 
endurance 

Flexibility Coordination Balance Safety 
concerns 

Mission 
criticality 

Overall 
difficulty 

         
 

2.  At what point of continual work do you feel that the physical workload hinders 
optimal performance? (Give a range of time) 
  
 
3.  How often do the medics actually carry litters? 

 All of the time 
 Majority of the time (~ 60 – 75%) 
 Half of the time (50%) 
 Rarely 
 Never 

 
4.  From casualty pickup point to where the vehicle is stopped, what is the typical litter 
lift distance? 
 Shortest Distance:        

 Furthest Distance:       
 
 

extremely 
low 

low somewhat 
low 

moderate somewhat 
high 

high extremely 
high 

1 2 3 4 5 6 7 
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5.  What is the shortest amount of time that you were actively taking care of a patient? 
      
 
6.  What is the longest amount of time that you were actively taking care of a patient? 
      
 
7.  In regards to the physical tasks, what are the common errors made by medics? 
      
 
 What are the source(s) of those errors? 
      
 
 
Part 2.  Medic Training 
 
8.  How often do you perform a litter lift as you were trained? 

 All of the time 
 A little more than half of the time 
 Half of the time 
 Less than half of the time 
 Never 

 
9.  Think about the physical tasks you must perform- 
 

What area of your training do you feel you’re most proficient in the field? 
      
What area of your training do you feel you’re least proficient in the field? 

       
 
 
Part 3.  Medics’ Equipment 
 
 
10.  What is the most gear worn while carrying a litter? (List items) 
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11.  What is the most gear worn while taking care of patients in the back of the vehicle? 
(List items) 
      
 
 
 
 
12.  From the Medical Equipment Set (MES) list, what items are taken to the casualty 
point (not including the litter)? 
      
 
 
 
 
 
13.  What are other critical equipment? 
      
 
 
 
Part 4.  Medical Evacuation Vehicle & Interior Design 
 
 
14.  Describe the environmental conditions inside the vehicle. (Rate on Scale from 1 to 7; 
1 = most comfortable to perform tasks, 7 = least comfortable to perform tasks) 
 

 Temperature 
 Ventilation 
 Lighting 
 Noise 
 Vibration 

 
 
 
15.  Which design features of the vehicle allow for the most amount of physical stress for 
the medic crew? 
      
 
 
 
16.  Which design features of the vehicle allow for the least amount of physical stress for 
the medic crew? 
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