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ABSTRACT 
 
 
 
During a forensic investigation of a computer system, the ability to retrieve 

volatile information can be of critical importance.  The contents of RAM could reveal 

malicious code running on the system that has been deleted from the hard drive or, better 

yet, that was never resident on the hard drive at all.  RAM can also provide the programs 

most recently run and files most recently opened in the system.  However, due to the 

nature of modern operating systems, these programs and files are not typically stored 

contiguously—which makes most retrieval efforts of files larger than one page size futile.  

To date, analysis of RAM images has been largely restricted to searching for ASCII 

string content, which typically only yields text information such as document fragments, 

passwords or scripts.   

This thesis explores the memory management structures in a SUSE Linux system 

(kernel version 2.6.13-15) to make sense out of the chaos in RAM and facilitate the 

retrieval of files/programs larger than one page size.  The analysis includes methods for 

incorporating swap space information for files that may not reside completely within 

physical memory.  

The results of this thesis will become the basis of later research efforts in RAM 

forensics.  This includes the creation of tools that will provide forensic analysts with a 

clear map of what is resident in the volatile memory of a system. 
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I. INTRODUCTION 

Computer-aided crime has been a significant problem for industry in recent years.  

The FBI estimated the financial losses related to computer incidents in the United States 

at 67.2 billion for the year 2005 [Ref. 10].  These incidents included (but were not limited 

to): viruses, worms, financial fraud, network intrusion, and the sabotage of data or 

networks.  Computer crime has also posed a threat to national security.  Credit card 

information stolen from compromised systems might have been used to fund terrorist 

activities [Ref. 11].  As criminals become more adept at breaking laws through the use of 

computers, law enforcement agents must hone their ability to investigate these types of 

cases.  Computer Forensics can be used to establish who committed the crime and to 

reconstruct how the crime was executed. 

One specific branch of forensics gaining momentum concerns itself with RAM 

analysis.  Traditionally, when a forensic investigation is performed on a computer of 

interest, one of the first things done is to gather any volatile information that can be 

gleamed from the victim system.  Sometimes this includes making a copy of the system’s 

RAM content, which is analyzed with simple searches for ASCII or Unicode string 

content because few tools exist and few people are trained to perform a more in-depth 

analysis of the memory dump [Ref. 1].   

Some of the key pieces of volatile information that a forensic analyst is looking 

for are the currently running processes of a system and the files most recently used.  An 

educated investigation of a RAM dump could yield this information.  Some might ask 

why it is a good idea to use such a technique if there are programs available (such as ps1) 

that will enumerate running processes.  The answer is that these programs can be 

subverted if the system they are running on is compromised with a loadable kernel 

module rootkit—a piece of malware that can manipulate the execution of system 

commands [Ref. 1].  In addition, advanced malware techniques allow for the injection of  

 

 

 
1 The program ps lists currently running processes in a Linux system. 
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malicious code directly into running processes such that no new process is visible to 

standard tools.  A forensic exploration of physical memory can look at kernel structures 

directly and, consequently see through any such deceptions.  

Recent worms, including SQL Slammer and Code Red, do not write any data to 

disk [Ref. 12].  All data remains in physical memory.  This renders standard disk 

forensics useless and becomes yet another reason why thoroughly inspecting RAM is a 

growing necessity.  It may be the only way to directly detect the presence of malware and 

give an investigator an opportunity to retrieve full and accurate information from a 

compromised system.  

A. RAM FORENSICS BACKGROUND 
The field of computer forensics is young.  The FBI created a Computer Analysis 

and Response team (CART) in 1984—which did not become fully functional until 

1991—to supplement its well-established investigation protocols for terrorism and 

violent crime [Ref. 2].  Since then, other public and private organizations have followed 

suit and now, twenty-one years later, forensics is beginning to take shape.   

Within the forensics community, a large share of attention has been paid to 

analyzing non-volatile media such as hard drives or storage peripherals.  More recently 

the rise of networks has created an interest in the study of network-based evidence as 

well.  Both of these subjects have existing, extensive bodies of knowledge—as 

exemplified by [Ref. 1] and [Ref. 7].  This is not the case for RAM analysis.  The 

analysis of volatile memory is such a young area, in fact, that one is hard pressed to find 

more than one paper directly addressing analysis of Linux RAM contents.  As an 

example of the lack of attention to this critical need, the popular book Incident Response 

& Computer Forensics [Ref. 1] devotes 7 lines of coverage to RAM analysis in a twenty-

two-page chapter devoted to live data collection from Unix systems. 

RAM analysis, like all other forensic endeavors, is concerned with the retrieval of 

information that can serve as evidence in criminal investigations.  More specifically, it is 

the attempt to use memory management structures in computers as maps to extract files 

and executables resident in a computer’s physical memory. These files/executables can 

be used to prove that a crime has transpired or to trace how it came to pass.  The 
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usefulness of this type of investigation lies in the fact that any information found in RAM 

is known to have been recently running on the victim system.  Additionally, volatile 

memory examination can stand up to conventional attempts at thwarting forensic 

efforts—such as function hooking [Ref. 3]—which is a way to attach a chosen function to 

the normal flow of control in a computer system.  For example, if a rootkit has hooked 

itself into the Linux kernel and is intercepting calls to ps, it can exclude whatever process 

it wants to hide from the returned list of processes. 

B. PURPOSE OF STUDY 
The immediate purpose of this research is to discover what forensic techniques 

can be used effectively on the physical memory of a SUSE Linux system running the new 

2.6 kernel.  Some techniques for volatile memory forensics have been developed for the 

2.4 kernel [Ref. 3] but they have not yet been tested in the new version of the Linux 

kernel—in which some of the fundamental structures involved in memory management 

have been modified. 

The more general goal of this research is to improve the methods of analyzing 

RAM dumps.  Currently, the typical way to analyze physical memory on a computer is to 

run a string search on the entire memory image in the hopes of finding information such 

as passwords, the cleartext of a recently typed encrypted message, or the contents of a file 

[Ref. 1].  Unfortunately, during this type of search, valuable context information is lost.  

For example, it becomes impossible to determine whether recovered string fragments 

represent the contents of executable files, data files, or runtime program data.  This is an 

unsophisticated “stab in the dark” type of analysis that can only yield a small amount of 

useful information—an unfortunate result when the contents of physical memory are a 

rich source of forensic evidence.  As criminals become more adept at creating malware 

that can elude current methods of digital forensic investigation, forensics methods must 

evolve to meet the challenge.  When the author of a piece of malware decides to design it 

to reside exclusively in physical memory—and thereby evade any hard drive 

investigation—the forensic analyst must have a way to detect it.  The goal of this research 

is to provide the basis for the development of tools that the forensic analyst can use in a 

detailed analysis of Linux kernel 2.6 memory images. 
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C. THESIS ORGANIZATION 
This paper will present forensic techniques, including a few proof-of-concept Perl 

scripts, which will facilitate the development of a tool that will be able to extract files and 

executables stored in a computer’s physical memory.  Chapter II will detail the structures 

that are involved in Linux memory management and their relationship.  This chapter will 

also outline some of the essential calculations and concepts that play a part in the analysis 

of RAM images later in the paper.  Chapter III will discuss the current state of RAM 

forensics.  Chapter IV will provide a description of the analysis performed on a SUSE 

Linux system running the 2.6.13-15 kernel.   

The analysis consists of two parts.  The first is placing specific files in memory, 

imaging the memory, and seeing if the file in question can be retrieved.  The second is to 

see what other useful information can be extracted from the memory image using data 

from swap space.  The main thrust of Chapter IV is to verify whether forensic techniques 

developed for the 2.4 Kernel [Ref. 3] are applicable to the 2.6 Kernel and to see if any 

supplementary techniques can be discovered for this new Kernel.  Chapter V will 

summarize the results of this thesis and problems encountered along the way.  

Additionally, the chapter will describe what future work can be performed in the field of 

RAM forensics. 
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II. BACKGROUND 

This section describes all of the major components of the Linux virtual memory 

management system.  A short description of each component is provided—as are the 

locations of the corresponding definitions in the Linux source code.  The base directory 

location assumed throughout is /usr/src/Linux-2.6.13-15.  This was the default location 

created by the SUSE 10 distribution used in this thesis, which can be downloaded at the 

following url: http://en.opensuse.org/Welcome_to_openSUSE.org.  Please note that 

depending on the version of the Linux kernel used, the version number will vary. 

A. PARAMETERS OF INVESTIGATION 
The research conducted in this paper was performed on a SUSE 10 system 

running Linux kernel version 2.6.13-15.  The system resided in a Dell Dimension 4400 

computer with 512 MB of RAM and an Intel Pentium 4 running at 2.0 GHz.  All of the 

programming was done in Perl version 5.8.7—except for a small c program used to aid in 

the analysis of swap space.  The amount of RAM was deliberately chosen to ease the 

burden of translating from virtual to physical memory addresses by avoiding high 

memory (> 896 MB) translations.  Use of high memory would not allow for the simple 

memory conversion scheme outlined in section C of this chapter.  Additional tools used 

during the course of this research are as outlined below. 

1. Source Navigator 5.1.4  
This program was run on Mac OS X 10.4.3 through X11.  It was downloaded 

using DarwinPorts (http://darwinports.opendarwin.org/getdp).  Source Navigator is a 

source code analysis tool that provided a quick way to search through the sizable kernel 

code for items of interest. 

2. Gcalc 5.6.31 
This is a calculator included in SUSE 10.  It was used for converting decimal 

numbers to hexadecimal numbers and vice versa.  It was also used for arithmetic in both 

bases.  These calculations were useful when adding offsets to the beginning of a struct to 

find certain values and pointers within that struct. 

 

 

http://en.opensuse.org/Welcome_to_openSUSE.org
http://darwinports.opendarwin.org/getdp


6 

3. DD (Part of Coreutils 5.3.0) 
This tool version was included in SUSE 10.  In the simplest of terms, it copies 

data from one place to another.  In the context of this thesis, it was used to create all the 

images of RAM and swap.  The full documentation for dd can be found at 

http://www.hmug.org/man/1/dd.php. 

4. GHex 2.8.1 
This hex editor is included in SUSE 10.  All the analysis of images created for 

this thesis was done using this tool.  Substantial image files, as large as 400 MB, slowed 

the program down while being opened, but GHex responded quickly after that initial step. 

5. Memory (Part of KDE 3.4.2 Level “b”) 
This tool is included in SUSE 10 as part of the KDE installation and can be run 

with the command “kcmshell memory” from a terminal window.  It was used as a way to 

assure that data was being written to the swap space in response to the large memory 

demands made by heap.c [Appendix A].   

6. Kate Editor 2.4.1 
This editor is included in SUSE 10.  It was used to write all of the code involved 

in this thesis.  A helpful feature of this editor was that it allows a user to open multiple 

files and navigate back and forth through them in a single window with a forward and 

back arrow like a web browser. 

B. MEMORY MANAGEMENT STRUCTURES 

1. The Big Picture 
Linux implements virtual memory management through a series of C data 

structures that are interrelated as shown in Figure 1 [Ref. 4]. 

http://www.hmug.org/man/1/dd.php


task _struct task _struct task _struct

next

prev prevprev

next next

prev

mm _struct mm _struct mm _struct

next

mmlist mmlistmmlist mmlist

mm mm mm

vm _area _struct vm_area _structvm_next

mmap vm _mm vm_mm

filevm_file vm_file

dentry

inode

address _space

Page descriptor

f_dentry

d_inode

i_mapping

mapping /
page _tree

Page descriptorPage descriptor

mapping /
page _tree

mapping /
page _tree

i_dentry

host

 
Figure 1.   Overview of Memory Management Structures. (From Ref. 3) 

 
2. Task Struct 
The kernel creates a task_struct for every process running on a computer at any 

given time.  It is defined in /usr/src/linux-2.6.13-15/linux/sched.h and holds a wealth of 

information about the current state of each process [Ref. 3].  For the purposes of this 

7 
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thesis, the relevant information contained in each task_struct are the following: a pointer 

to the mm_struct, the process id (pid) of the program, and the executable name.  The 

reader should note that kernel threads have NULL mm_struct pointers because they do 

not need this kernel structure to exist [Ref. 6].  The offsets of the elements used during 

this research—measured from the beginning of this struct—are shown in Table 1.  These 

offsets allow an investigator to find the location of the elements easily when viewing the 

struct in a hex dump.  A developer can also use these offsets to create a program that 

parses this struct. 

 
Data Type Element Offset 

struct mm_struct* mm 0x78 

pid_t pid 0x9C 

char[] comm (executable name) 0x1A4 

Table 1. Elements of task_struct 
 
3. MM Struct 
This structure describes a process’ address space and, as such, there is only one 

mm_struct per process.  In the case of userspace threads, one mm_struct is shared by all 

of them.  The pgd member of this struct holds a pointer to the page global directory of the 

process.  This is the pathway to all the pages owned by a process—even those that are in 

swap space.  The mm-struct also outlines the start and end addresses of memory sections 

such as code, data, and the heap.  It is defined in /usr/src/linux-2.6.13-15/linux/sched.h. 

The offsets of the elements used during this research—measured from the beginning of 

this struct—are shown in Table 2. 

 
Data Type Element Offset 

struct vm_area_struct* mmap 0x00 

pgd_t* pgd 0x20 

Table 2. Elements of mm_struct 
 
4. VM Area Struct 
A process typically only uses small portions of the memory allocated to it and, in 

order to reconcile this fact, the vm_area_struct is used.  It contains a start and end address 
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for the memory area it describes as well as the access permissions for that area.  An 

example of such a memory region is a read-only library loaded into the address space or 

the process heap [Ref. 6].  The vm_struct is defined in /usr/src/linux-2.6.13-

15/linux/mm.h. The offsets of the elements used during this research—measured from the 

beginning of this struct—are shown in Table 3. 

 
Data Type Element Offset 

struct mm_struct* vm_mm 0x00 

struct file* vm_file 0x4C 

struct vm_set (where i_mmap 
pointer from address_space 

points to) 

0x28 

Table 3. Elements of vm_area_struct 
 
5. File Struct 
If a memory region represents a file, then the vm_file field of the corresponding 

vm_area_struct will point to a file struct.  The file struct is outlined at /usr/src/linux-

2.6.13-15/linux/fs.h.  It contains information about the interaction between a process and 

an open file and is only in kernel memory while a process accesses the file in question 

[Ref. 4].  This struct includes a pointer to the file operations available to that particular 

process and a pointer to the filesystem containing the file.  Other interesting data that can 

be gleamed from this structure is the user’s UID and the file pointer [Ref. 4].  The offset 

of the element used during this research—measured from the beginning of the struct—is 

shown in Table 4. 

 
Data Types Element Offset 

struct dentry* f_dentry 0x08 

Table 4. Elements of File Struct 
 
6. Dentry Struct 
These structures are created by the Linux virtual file system for every directory 

used in memory [Ref. 4].  For instance, if a user looks up the file “document.txt” in the 

path /home/Ted, then three dentry objects will be created: one for / (root), one for home, 

and one for Ted.  The declaration of dentry structure can be found in /usr/src/linux-



10 

2.6.13-15/linux/dcache.h.  It holds information like the name of its related file.  A pointer 

to the name is held in the d_name element—which usually points to the d_iname element 

further down in the dentry struct if the name is short enough.  If the name is long enough, 

the d_name element will point to a location with sufficient space. The offsets of the 

elements used during this research—measured from the beginning of this struct—are 

shown in Table 5. 

 
Data Type Element Offset 

struct inode* d_inode 0x08 

unsigned char d_iname (name of assoc. file) 0x64 

Table 5. Elements of Dentry Struct 
 
7. Inode Struct 
All the information required by the filesystem to manipulate a file can be found in 

this structure [Ref. 4].  The inode definition can be found in /usr/src/linux-2.6.13-

15/linux/fs.h.  The information in this struct includes: the number of the inode, the uid of 

the file, the length of the file in bytes, the last access time, the last write time, and the last 

inode change time. The offsets of the elements used during this research—measured from 

the beginning of this struct—are shown in Table 6. 

 
Data Type Element Offset 

struct address_space* i_mapping 0x9C 

Table 6. Elements of Inode Struct 
 
8. Address Space Struct 
The address_space struct can be found at /usr/src/linux-2.6.13-15/linux/fs.h and is 

created by the kernel for every memory mapped file [Ref. 3].  Some of the information of 

interest here is a radix tree with links to all the pages belonging to this particular file 

(page_tree element) and the total number of pages owned by the file.  In Kernel 2.4 it 

used to hold doubly linked lists of clean, dirty, and locked pages.  However, none of these 

lists exist in kernel 2.6. The offsets of the elements used during this research—measured 

from the beginning of this struct—are shown in Table 7. 
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Data Type Element Offset 

struct inode* host  0x00 

struct radix_tree _root page_tree  0x04 

struct prio_tree_root i_mmap (pointer to 

vm_area_struct) 

0x14 

unsigned long nrpages (number of pages 

owned 

0x28 

Table 7. Elements of address_space Struct 
 
9. Page Struct 
This is the page descriptor structure that holds information relevant to individual 

pages of a file.  The information found here that is of most relevance for this thesis is the 

index element which holds the offset within the mapping of the file.  For instance, if it is 

the second page of a file, the index field will hold the number one (because the indices 

begin at 0).  In the 2.4 kernel, the virtual field held the virtual address of the page being 

described.  In kernel 2.6, this is an optional field that is only required when a computer 

has high memory—more than 896 MB of RAM—to hold the dynamically assigned 

virtual address. The offsets of the elements used during this research—measured from the 

beginning of this struct—are shown in Table 8. 

 
Data Types Element Offset 

struct address_space* mapping  0x10 

pgoff_t index (offset within mapping) 0x14 

Table 8. Elements of Page Struct 
 
10. Memory Map 
All page descriptors are part of the mem_map array, which is typically stored at 

address 0x1000000 [Ref. 6].  The size of each page descriptor on the system used in this 

paper is 0x20 bytes so, by beginning at 0x1000000 and incrementing by 0x20, it is 

possible to traverse the entirety of this array from one page descriptor to another. 

 

 



C. USEFUL CALCULATIONS 

1. Virtual to Physical Memory Conversion for Kernel Addresses 
All pointers encountered in the structures described above will contain virtual 

addresses and, since this paper examines physical memory dumps, these addresses must 

be converted to their physical equivalent.  For example, if an investigator examines the 

host element of the address_space object (which points to an inode), s/he must be able to 

derive the corresponding address in the memory dump to determine where to look.  This 

translation is accomplished by subtracting the constant PAGE_OFFSET—hex value 

0xC0000000 in x86 hardware—from the virtual address [Ref. 6].  This means that the 

kernel virtual address 0xC1234567 is, in reality, physical address 0x01234567.  The 

reason behind this conversion is that the virtual address space in the typical x86 machine 

is 4 GB and the topmost Gigabyte is assigned to the kernel [Ref. 6].  This upper Gigabyte 

begins at 0xC0000000.  So physical memory begins at virtual address 0xC0000000, 

which is equivalent to physical memory address 0x00000000.  This memory layout can 

be seen in Figure 2. 

 

Direct Mapping to Physical 
Addresses

Linear Address Space (4 GB)

PAGE_OFFSET
(0xC0000000 )

Process Address Space

Address 0 Address 232

 
Figure 2.   Mapping from Linear/Virtual Address Space to Physical Addresses 

 
2. Page Frame to Page Descriptor Conversion 
An investigator might want to find the page descriptor associated with a certain 

page frame.  For example, if the investigator searches physical memory and finds a page 

frame that matches the signature for a known computer worm, s/he will want to find any 

related page frames.  One way to do that is to find that page’s page descriptor, follow the 

mapping pointer to the corresponding address_space struct, and read all the pages that 

have page descriptors in the radix tree (see Chapter IV, Section B, Subsection 3).  The 

following equation will convert a page frame address to its related page descriptor 

address: 
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[(Page Frame Addr. >> PAGE_SHIFT) x Page Desc. Size] + mem_map start 

PAGE_SHIFT is typically 12 bits—the shift is equivalent to dividing by the size 

of a page frame (0x1000 bytes).  As discussed above, mem_map begins at 0x1000000 

and the size of a page descriptor in the system used for this paper is 0x20 bytes.  The 

page frame address is meant to be a physical address. 

3. Page Descriptor to Page Frame Conversion 
An investigator might also want to find the page frame associated with a certain 

page descriptor.  In the example in subsection 2 above, when the investigator wants to 

look at the page frames associated with the page descriptors found in the radix tree, s/he 

could use the following equation: 

[(Page Desc. Addr. – mem_map start) / Page Desc. Size] << PAGE_SHIFT 

As the inverse of the previous equation, the PAGE_SHIFT in this case is 

equivalent to multiplying by the size of a page frame.  The variables and constants for 

this equation are the same as the equation in subsection 2 above.  The page descriptor 

address is meant to be a physical address. 

D. PAGE TABLES 
The standard way for the Linux operating system to translate between virtual and 

physical addresses is to use paging.  Paging is a way to break down a virtual address into 

sections, each representing an offset into a table that is a part of a different level of 

indirection.  Earlier versions of the Linux kernel made three levels of indirection 

available—even though most systems only required two.  The third level was only used 

in conjunction with a special feature in the x86 architecture called Physical Address 

Extension that allows a system to address 64 GB of physical memory.  However, in order 

to provide compatibility with new 64-bit architectures, a need arose to accommodate a 

greater amount of memory.  Beginning in kernel 2.6.11 there are now four levels of 

indirection used in Linux systems: Page Global Directory (PGD), Page Upper Directory 

(PUD), Page Middle Directory (PMD), and Page Table Entry (PTE).  PGD’s are tables 

that point to PUD’s, which are tables that point to PMD’s, which are tables that point to 

PTE’s, which point to the final level of page tables, which point directly at page frames.  

This sequence is illustrated in Figure 3. 



For 32-bit systems without Physical Address Extension Linux sets the length of 

the upper and middle directory fields to zero.  Collapsing both of those page tables to one 

entry and keeping them in the chain of pointers maintains compatibility with 64-bit 

systems.  

 

Global Directory Upper Directory Middle Directory Table Offset

cr3  
or 

mm_struct ->pgd 

+ pgd_t

pud_t+

pmd _t+

pte _t+

Page+

 
Figure 3.   Page Table Function. (From Ref. 5) 

 
E. SWAP SPACE 

In order to expand the address space that is effectively usable by a process and to 

expand the amount of dynamic RAM, modern operating systems use the method known 

as swapping [Ref. 4].  Technically, swapping is the practice of transferring a whole 

process address space to disk, but modern operating systems only transfer portions of a 

process’ address space to backing storage when the amount of free physical memory 

becomes scarce.  In Linux systems this typically shows up in the form of a hard disk 

partition devoted to this task, but swap areas can be stored in files as well.  A Linux 

system can have as many as 32 swap areas as defined by the MAX_SWAPFILES 

constant [Ref. 6].  The system used in this paper makes use of the hard disk partition 

method. 

Only certain types of data are eligible to be placed in swap space.  They are as 

follows (Ref. 4): 

• Pages that belong to an anonymous memory region of a process.  In other 
words, a region of a process that does not map a file on disk. 
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• Modified pages belonging to a private memory mapping of a process.  
Private memory mapping is when a process associates a memory region to 
a portion of a file on disk or on a block device—the private part means 



that it only reads from this mapping; there is no writing.  The process can 
still modify these pages even if they are read only.  However, the modified 
pages cannot be written back to the disk or block device they belong to. 

• Pages belonging to an inter-process communication shared memory 
region. 

1. Swap Area Descriptor 
Every swap area is described by a swap_info_struct—which is defined in 

/usr/src/linux-2.6.13-15/linux/swap.h.  This structure contains a pointer to the swap area 

(either partition or file) and information including the size of the swap area, the number 

of usable pages, and a pointer to the swap map.  There is a statically declared array called 

swap_info that holds all of the existing swap_info_struct objects in a system. 

2. Swap Map 
The swap_map array is an array of counters representing page slots in the swap 

area.  There is an array element for every page slot in the corresponding swap area and 

the counter represents the number of processes using the page in that particular page slot.  

If the counter that represents a certain slot contains the number SWAP_MAP_BAD (32, 

768), then it is an indication that the slot is defective. 

3. How the Pieces Fit Together 
The following figure illustrates how all the pieces in the management of swap 

space are related. 

 

swap _info _struct

swap _info _struct

swap _info _struct

swap _info _struct

swap _info _struct

swap _info _struct

swap _info _struct

swap _info

0 3 32,768 5 2 4

swap _device
or

swap _file

swap _map

Page Slots Belonging to Swap Space

Counters Representing Page Slots

 

Figure 4.   Swap Space Function. (From Ref. 4) 
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F. IMAGING RAM IN LINUX 
The tool used to image physical memory and swap space throughout the course of 

this thesis was dd.  This is a simple and powerful command line tool included in Linux 

distributions that can be used to copy the standard input to the standard output [Ref. 15].  

To create an image of RAM, the directory /dev/mem was copied to a file.  This directory 

represents RAM and, as such, when it was copied, so were the contents of memory.  The 

actual command used looked like this: 

“dd if=/dev/mem of=whole_mem.img bs=1” 

The “if” operand defines an input file and the “of” operand defines an output file.  The 

output file for this particular run of dd is “whole_mem.img”.  The “bs” operand sets the 

block size to n bytes—in this case n is equal to one.   

Images of swap space were taken using a similar set up.  One of the differences is 

that the swap space, as it was set up for this thesis, was represented by the /dev/hda3—the 

third hard disk partition.  The other difference is the use of the “count” operand.  It 

specifies the number of input blocks to copy.  The actual command used looked like this: 

“dd if=/dev/hda3 of=swap_space2.img bs=1 count=245760000” 
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III. CURRENT STATE OF RAM FORENSICS 

Ram forensics is a blossoming field and, as such, has not yet reached maturity.  In 

fact, it can be safely said that this field is in its infancy stage.  Documents such as [Ref. 7] 

and [Ref. 8] describe the collection procedure for volatile memory in the most general of 

terms.  They both agree that an investigator handling an incident should begin by 

collecting volatile data, which includes physical memory.  Unfortunately, they don’t 

specify how an investigator should approach the analysis of a system’s memory.  A list in 

[Ref. 8] mentions some useful programs such as ps that can be used to extract volatile 

data from a system.  One incident response text [Ref. 1] only goes as far as mentioning 

that few people go further than running a string search of a memory image. 

The most recent of the documents referenced in the above paragraph is [Ref. 6] 

which was written in 2004.  In March of 2005, a man by the name of Mariusz Burdach 

released a paper [Ref. 3] providing a more in-depth look at the forensic analysis of 

physical memory of a Linux system.  Burdach later presented [Ref. 9] at Black Hat 

Federal in 2006—which was largely a re-telling of his previous paper with some 

additional information regarding Windows physical memory forensics.  He has 

developed tools based on the principles outlined in his works that are available at 

http://forensic.seccure.net.  The only problem at this time is that the focus has been on the 

Linux 2.4 kernel and, since this kernel was superseded by the next stable release version 

(2.6) in 2004, the focus needs to shift to the newer kernel.  The 2.6 kernel has changed 

aspects of its virtual memory management that must be explored to determine if the same 

techniques that worked on kernel 2.4 remain effective. 

One aspect of the slides he presented that was an improvement over the paper was 

Burdach’s explanation of the relationship between page table entries and swap space.  He 

explains that when a page is swapped out, its page table slot will be filled with a pointer 

to swap space.  He also mentions that the way to know that a page table entry is an index 

to a swapped out page is to check that the least-significant bit is cleared.  This is true, but 

it is not always the case.  Bit 0 (the least-significant bit) corresponds to the 

_PAGE_PRESENT flag so it would make sense to assume that if it is cleared, the page is 

not present in memory.  The missing piece of information is that bit 7 corresponds to the 

http://forensic.seccure.net
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_PAGE_PROTNONE flag.  When a memory region must be protected from user space 

processes this bit is set and bit 0 is cleared [Ref. 6].  This means that the page is present, 

just not accessible.  A programmer must keep this case in mind when determining if a 

page table entry contains a swap space index or not. 

On the Windows side, the latest demonstrations of physical memory forensics 

techniques can be found in the solutions to the 2005 Memory Analysis Challenge 

presented by the Digital Forensic Research Workshop website [Refs. 13, 14].  Some of 

the theory discussed by the two winning answers can be applied to a Linux investigation 

and some cannot.  The following paragraphs address the application of windows forensic 

theory to Linux. 

To begin with, both answers looked at all the processes listed in the doubly linked 

eprocess list to create a printout of all the processes running on the system.  This is 

equivalent to walking the task_struct list shown in Figures 1 and 6 to enumerate all 

running processes on a Linux system.  The files representing each process were recovered 

and compared to known versions of those programs to check their integrity.  In this way, 

a few suspicious processes were found.  Using the radix tree structure (Chapter IV, 

section B, subsection 3) to rebuild process files could allow an investigator to use this 

method in a Linux environment. 

The second response also went one step further in that it searched windows 

objects such as the handle tables—which contain references to their owning process—to 

make sure that there were no hidden processes.  This is because a technique known as 

Direct Kernel Object Manipulation could unlink a process from the eprocess list to avoid 

detection through a simple walk of that table.  An analogous technique in Linux to verify 

if a task_struct has been unlinked from the doubly linked list of task_structs could begin 

by enumerating all mm_structs.  An investigator could then see if, after checking the list 

of task_structs, there are any mm_structs that are not accounted for.  The difficulty here 

would be that there is no pointer from a mm_struct to its parent task_struct so the search 

for the corresponding task_struct would require a heuristic approach. 

Another technique discussed in the second answer to the challenge was the search 

of segment descriptor information through objects such as the Global Descriptor Table 

and the Local Descriptor Table.  Suspect entries in these tables could reveal the presence 
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of a kernel function hook.  This is a way to insert a function of choice between the kernel 

and user space processes to filter unwanted information flow to user processes.  It is a 

good way to hide processes and/or files from programs that would otherwise detect their 

presence.  These techniques work in a Windows environment because Windows uses 

segmentation.  However, since Linux does not use segmentation, gathering GDT or LDT 

data would be of no use to an investigator examining a Linux system. 

The final two methods used in the forensics challenge were checking MAC times 

and performing string searches for known malware strings.  The MAC times provided 

information about when a suspicious executable file was opened and, consequently, the 

probable time that the attack against the target system began.  The inode struct in a Linux 

system has this information available.  Finally, the string search would be possible in a 

Linux environment because performing such a search is not OS specific. 
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IV. ANALYSIS 

A OVERVIEW 
The next few sections go through specific examples of how to perform certain 

analysis methods on the physical memory of a Linux system.  However, this section 

offers the reader a blueprint of those methods so that s/he can better understand them 

when they are explained in detail. 

The first method allows an investigator to enumerate all of the processes present 

in physical memory.  This function is accomplished by traversing the doubly linked list 

of task_structs shown in Figures 1 and 6. The steps required are as follows:  

1. Find the address of init_task—the first element in the list—from the 
system’s symbol table. 

2. Go to that address and retrieve the desired information from the elements 
of the init_task struct—it is of type task_struct.  For example, the name of 
the process represented by the task struct can be found in the char array 
called comm at offset 0x1A4 from its first byte. 

3. Find the task element of init task because it contains the pointer to the next 
task_struct in the list and follow the pointer. 

4. Gather required information again—keep in mind that offsets are not from 
the beginning, but from the task element now (see next section). 

5. Follow these pointers and gather information until the pointers wrap 
around to init_task. 

The next method is rebuilding a file.  The next section provides a couple of ways 

to do this.  The first requires searching the mem_map array and gathering pages into bins 

according to their parent address_space struct.  This is not an efficient operation, but it 

can rebuild just about any file in physical memory.  The second method uses a radix tree 

structure found in the address_space struct to rebuild a file that represents a process.  In 

other words, if you run the program “prog”, then this method finds the file from which 

“prog” was run.  Here are the steps required for the second method (since the first was 

easily summarized above): 

1. Traverse pointers illustrated in Figure 1 from a task_struct down to it’s 
corresponding address_space struct. 
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2. Find the page_tree element of the address_space struct.  Then find its third 
member, which is a pointer to a root node.  Traverse the tree as shown in 
subsection 3 of the next section. 

3. Convert all the page descriptors found in the radix tree into page frame 
numbers. 

4. The page frame numbers are in order.  Copy them in order into the same 
file. 

Finally, swap space analysis is incorporated.  This is useful when the method 

described above does not work because certain pages belonging to the file were swapped 

out.  The necessary steps are: 

1. Follow mm pointer from task_struct to mm_struct. 

2. Follow pgd pointer in mm_struct to pgd. 

3. Each pointer in the pgd goes to a page table.  Follow these links to page 
tables and search the page tables until you find the group of pointers to the 
pages referenced by the radix tree—it is assumed that an analysis of the 
radix tree was already performed. 

4. Once those pages are found, look at the adjacent pointers in that particular 
page table.  If some of those addresses look like indices into swap space—
bits 0 and 7 are cleared—then look in the appropriate swap space page slot 
for the needed page. 

B. PHYSICAL MEMORY 

1. Traversing task_struct Linked List 
Figure 1 shows that the topmost virtual memory structure is the task_struct.  Since 

this is the most general structure, it is where the analysis of physical memory begins. The 

doubly linked list of task_structs can provide the names of every process currently 

running in a system just like the Linux ps command.  However, the advantage of this 

method over ps is the fact that it is immune to the manipulation of a rootkit because it 

does not rely on the target system’s kernel.  This list of task_structs is anchored by a 

special task_struct named init_task that can be found through the address listed in the 

kernel symbol table.  The symbol table contains the addresses of many important 

structures that the kernel needs to access and it resides in /boot/System.map-2.6.13-15.8-

default.  The reader should note that systems running other versions of the kernel would 

have different values than 2.6.13-15.8.  For example, System.map-2.6.11-default could be 

the symbol table name for a system running the 2.6.11 version of the kernel. 



Using the command “cat /boot/System.map-2.6.13-15.8-default | grep init_task”, 

provided a list that included the address of init_task.  This output can be seen in Figure 5. 

 

 
Figure 5.   Finding Address of init_task 

 
The address of init_task can be seen at the bottom of the list as 0xC034DB80.  

The command  

“dd if=/dev/mem of=task_struct.img bs=1 count=200 skip=3464064” 

outputs 200 bytes from the address at which init_task resides.  The value used in the skip 

parameter is merely the transformation of 0xc034DB80 to a physical address 0x34DB80 

and finally to a decimal number.  Any virtual address used in the context of a dd 

command must go through the same transformation.  Also, the value of 200 in the count 

parameter was chosen arbitrarily to cover enough of the task_struct to see its tasks 

element, ie, it is greater than or equal to sizeof(task_struct). 

The tasks element of a task_struct is of type list_head, which means that it is 

made up of a next and prev pointer.  The next pointer for the init_task structure was 

found 0x60 bytes from the beginning of the struct and contained the value 0xDFE01AA0.  

Dd was again used to carve memory from this address, after which it became apparent 

that the first word of data did not look like the beginning of a task_struct.  More 

specifically, it looked like an address (a pointer) instead of a typical number of type long 

because it was a value above 0xC0000000.  The reason why this value looked suspicious 

was that no typical number of type long was ever found to be above 0xC0000000 during 

the course of this research.  This incongruence was caused by the fact that the next and 

prev pointers in task elements of task_structs point to the task elements of the next and 
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previous task_structs in the doubly linked list.  In other words, the linked list goes from 

task element to task element, not from task element to the beginning of the next (or 

previous) task_struct.  The prev element of this task_struct pointed, as expected, to 

address 0xC034DBE0, which is the address of the task element of init_task. 

Repeating this exercise, I found that the prev element of the next task_struct in the 

list contained the address 0xDFE01AA0—the address of the second task_struct in the 

list.  The layout of the links can be seen in Figure 6.  Note that it is a doubly linked list 

so, at a certain point, it will wrap around and the next element of a task_struct will 

contain the address of the next element of init_task.  Likewise, the prev element of 

init_task will point to the next element of that “last” task_struct. 

 

Next

Prev

Next

Prev

init _task task _struct

Next

Prev

task _struct

 
Figure 6.   Doubly Linked Task List 

 
Once the traversal of the task_struct list was mastered, a Perl script was developed 

to enumerate all tasks in a physical memory dump and output their executable name, pid, 

pointer to associated mm_struct, and the pointer to the next task_struct.  Appendix A 

contains the code for this script under the name find_task.pl. 

2. Rebuilding File 

A simple jpeg image of Waldo—the character from the “Where’s Waldo?” series 

of children’s books—served as a way to test the reconstruction of a file from information 

found in the mem_map array.  The test began by noting the first 8 bytes of each page to 

use as a signature that could be searched for in an image of physical memory.  Only four 

such signatures had to be written down because the length of the file was four pages.  
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Then, while having the waldo.jpeg file open in a file viewer, a RAM image was obtained 

utilizing dd.  The resulting memory image was opened in a hex editor so that the 

signatures could be used to find each page that made up the image.  The idea behind the 

signatures was to provide a way to recognize the pages in memory and work backwards 

to find their corresponding address_space struct.  A couple of false positives were easily 

filtered because they were not found at 4K boundaries where the beginnings of pages 

should be found.  Pages should be found at addresses that are multiples of 0x1000 (one 

page size).  For instance, a signature found at physical address 0x4935184 could not be 

one of the image’s pages.  The real one was actually found at physical address 

0x509C000. The rest of the search yielded the data presented in Table 1. 

 
Page Number Physical Address 

1 0x509C000 

2 0x4405000 

3 0xBE79000 

4 0x5D2A000 

Table 9. Pages Found in Image 
 

These physical addresses were turned into page descriptor addresses using the 

calculation covered in section C of the Background chapter.  Analyzing each descriptor’s 

index element—which is 0x14 bytes from the beginning of the page descriptor and refers 

to the page offset within the mapping—reaffirmed the fact that the pages were in correct 

order.  The page descriptor addresses corresponding to each page and their indices are 

outlined in Table 2. 

 
Page Number Page Descriptor Address Index 

1 0x10A1380 0 

2 0x10880A0 1 

3 0x117CF20 2 

4 0x10BA540 3 

Table 10. Page Descriptors and Indices 
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A piece of information proving that these pages were part of a cohesive section of 

memory representing an image was found in the mapping element of their page 

descriptors.  The mapping element was found at 0x10 bytes from the beginning of each 

page descriptor and contained the address to the same parent address_space struct.  All of 

these pages belonged to the address_space struct found at virtual address 0xC6D3E3B4 

(physical address 0x6D3E3B4).  A Perl script was developed to take in the virtual 

address of an address_space struct and print out all the pages, in order, that belong to it.  

Parsing all the pages in the mem_map array and seeing which ones have a mapping field 

that matches the input address is the method used to perform this task.  Appendix A 

contains the code for this script under the name find_waldo.pl.  

However, a typical forensic investigation would not begin with a search for a 

particular address_space object in memory because the investigator would not initially 

know what address_space struct to look for.  The ideal thing for an investigator to do 

would be to walk the whole mem_map array and group pages in bins according to the 

address_space that owns them.  Once this was done, the investigator would possess every 

file existing in memory—provided that none of that file’s pages were swapped out. 

To find the name of the waldo.jpeg file in memory it was necessary to follow the 

host pointer from the address_space struct to the related inode, and then the i_dentry 

pointer from the inode struct to the dentry struct.  The host pointer is the very first word 

in the inode struct.  In other words, it can be found at offset 0x0 from the beginning of the 

address_space struct.  The i_dentry pointer in the inode struct was at offset 0x18 and was 

found to point to the d_alias element of the dentry struct.  At a location 0x30 bytes ahead 

of d_alias, the d_iname element held the name of the image file: waldo.jpeg.  The 

structure of these links is illustrated in Figure 7. 
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Figure 7.   Pointer Structure from address_space to dentry 

 
3. Radix Tree Structure 
While noting some of the differences between the address_space struct in kernel 

2.4 and kernel 2.6, a new addition was found: the radix tree.  This structure is rooted at 

the page_tree element of the address_space struct.  A radix tree is made up of a root, and 

a series of nodes.  The root element, defined in /usr/src/linux-2.6.13-15/linux/radix-tree.h, 

consists of the following: 

struct radix_tree_root { 

unsigned int    height; 

int    gfp_mask; 

struct radix_tree_node  *rnode; 

}; 

The node element, defined in /usr/src/linux-2.6.13-15/linux/radix-tree.c, consists of the 

following: 
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Struct radix_tree_node { 

Unsigned int  count; 

Void  *slots[RADIX_TREE_MAP_SIZE]; 

Unsigned long tags[RADIX_TREE_TAGS][RADIX_TREE_TAG_LONGS]; 

}; 

The traversal process for this structure, using the same memory image as in 

section 2, began with the address_space struct related to the Waldo.jpeg file at physical 

address 0x6D3E3B4.  The page_tree element was found 0x4 bytes into the address_space 

struct.  It had a height value of one and an rnode pointer with a value of 0xC531D034.  

Following this pointer to physical address 0x531D034 yielded a radix_tree_node with a 

count value of 4—which was followed by the virtual addresses of all four page 

descriptors associated with the Waldo file in correct ascending order.  It should be noted 

that the total number of pages owned by this particular address space was known to be 

four and that this number was derived from the nrpages element of the address_space 

struct at offset 0x30.  This traversal seemed to suggest that the height element of the 

radix_tree_root struct was responsible for the number of indirection steps needed.  In 

addition, it suggested that the count element of the radix_tree_node element outlines how 

many pointers must be followed.  This relationship is illustrated in Figure 8. 
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Figure 8.   Radix Tree Structure 

 
An analysis of radix trees was later conducted with another address_space struct 

in the same memory image to confirm these conclusions.  The new address_space struct 

was located at physical address 0x1F064E44 and had a page_tree height value of two.  

The rnode link of the page_tree element pointed to the virtual address 0xDF0307C0.  

This node had links to 5 other nodes that, in turn, had links to numerous page descriptors.  

Since the height of the tree was two, there were two levels of indirection: one from the 
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primary nodes to secondary nodes and one from secondary nodes to page descriptors.  

The total number of pages was listed in the address_space struct as 287.  This coincided 

with the number of page descriptor links in the radix tree because the first four links from 

the primary node had pointers to 0x40 page descriptors while the fifth link from the 

primary node had pointers to 0x1F page descriptors.  Summing these yields 4 x 0x40 + 

0x1F = 0x11F = 28710.  This scheme is shown in Figure 9. 
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These are all 
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Figure 9.   Structure of Second Radix Tree Explored 
 

With this information, the general structure of radix trees was discovered.  The 

height value in a root node controls the levels of indirection and the count value in a node 

is equal to the number of addresses—either pointers to other nodes or to page 

descriptors—contained in the slots array. 

C. SWAP 
Section E of the Background chapter gave an overview of the reasons behind 

using swap space and the structures that comprise it.  In the following, a more in depth 
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discussion will provide a way to use this repository of data to complement the analysis of 

physical memory outlined in section A.  The idea is that if an investigator can analyze the 

page tables belonging to a process, s/he will be able to retrieve any pages that have been 

swapped out to swap space.  This is made possible by the fact that the kernel always 

leaves an index into swap space—actually the swap_map array—as a placeholder for a 

page frame that has been swapped.  The format of this index entry can be seen in Figure 

11. 

One of the experiments performed for this thesis involved using the C program 

heap.c (Appendix A).  This code was written to place 400MB worth of pages with 

predetermined signatures in the program’s heap space.  The idea was that such a large 

space requirement would force the kernel to put some of those heap pages in swap space.  

The 64 bit signatures were structured to provide a program’s pid and the page number.  A 

page would be filled with a repeating pattern of the signature so that the hex dumps of the 

pages would be meaningful and easy to recognize. The exact structure of the signatures is 

shown in Figure 10.  This program provided a foundation for the analysis that follows.  

 

3FC2 BEEF ABCD 0001

pid

Signature
(never changes ) page #

Signature
(never changes )

 
Figure 10.   Signature Used in heap.c 

 
An image of both memory and swap space was taken using dd while heap.c ran.   

The count number for the swap image command—245760000—was calculated after 

noticing that around 19% of swap space (1 GB) was being used by heap.c.  The count 

number above is around 23% of swap space to be on the safe side.  It should be noted that 

page slots in swap space can be assumed to fill from the front of the available space 

because the kernel tries to store pages in contiguous slots to reduce disk seek time during 

swap space access [Ref. 4].  Using the Perl script find_task.pl (Appendix A) to enumerate 

all the processes from the image file yielded the address of heap.c executable’s 

task_struct.  The following table outlines the complete tracing of this process: 

30 



31 

Structure Address (Physical) 

task_struct 0xB45A590 

mm_struct 0x11335300 

vm_area_struct 0xB55BBCC 

File 0xB56D680 

Dentry 0x132DAA6C 

Inode 0x132D64EC 

address_space 0x132D658C 

Table 11. Tracing of Heap Process 
 

Using the radix tree structure from the address_space struct to enumerate all pages 

belonging to this address space yielded only one page at physical address 0xBBA7000.  

This meant that any page table present in memory that was related to the heap process 

would have an entry with that address.  Since the last three hex digits of a page table 

entry are flags, the value to search RAM for was either 0x0BBA7*** or 0xCBBA7*** 

(the virtual equivalent)—where the asterisks represent wildcards.  This search was 

performed with the help of the find_pattern.pl script (Appendix A) using the following 

commands: 

perl find_pattern.pl 0bba7… (for physical address) 

perl find_pattern.pl cbba7… (for virtual address) 

The first search yielded 8 hits, while the second search yielded none.  This result 

suggested that the values in page tables represent physical rather than virtual addresses. 

An inspection of the mm_struct revealed that the pgd pointer contained the 

address 0xB338000. The value 0xBE55067 was found at offset 0x80 into the pgd.  It did 

not look like it was a virtual address, that is, it was not a number above PAGE_OFFSET 

(0xC0000000).  This meant that it was a physical address—which correlated with the 

results of the image search above.  Since the least significant bit of this number is set, the 

page is resident in memory and, therefore, the pointer could be followed to a page frame 

at 0xBE55000 because the last three hex digits are flag values.  The values 0xBBA7025 

and 0x1113C00 where found at offset 0x120 in this page frame.  The first of these values 

is equivalent to page frame 0xBBA7000, which was the same page frame found through 



the radix tree traversal above.  The correlation was strong enough to determine that the 

pgd actually pointed to a page table that contained page frames belonging to the heap 

process. The second value looked like a swap space index entry of type swap_entry_t, 

which is illustrated in Figure 11.  The entry had bit’s 0 and 7 cleared, so it was not in 

physical memory.  The offset into the swap_map array was 0x1113C. 

 

Index w /in swap _map Index w /in swap _info

Bits 31 -8 Bits 6-1

Bit 0 = PRESENT flag

Bit 7 = PROTNONE flag  
Figure 11.   swap_entry_t layout (After Ref. 6) 

 
Unfortunately, the image of swap space was not large enough to be able to include the 

index found above and, consequently, the swap page slot could not be confirmed to be a 

part of the heap process.  Nonetheless, it is very likely that this was the case. 

Another round of RAM and swap space images was then created to recreate the 

results found above.  The size of the swap space image specified in the count field of the 

dd command was increased to 429,496,673—roughly 40% of the entire swap space—to 

avoid another situation where the index into swap was beyond the bounds of the image.  

In the new image, following the heap executable links from task_struct to mm_struct to 

find the pgd pointer and, finally, to the page table yielded two addresses.  The first 

address corresponded to the page descriptor address found through the radix tree in the 

address_space struct.  The second page was, unfortunately, not a swap_entry_t value.  It 

was actually a match for the first half of the first page in the heap executable, which 

suggests that it was a page captured in transition during the imaging process.  This is the 

type of problem that arises from capturing an image from the same system that the 

imaging tool is running on.  Running the process at the highest priority level could have 

mitigated this type of problem.  Unfortunately, this change could not have completely 

stopped the process scheduler or, for that matter, the constant changes that the kernel 

makes to physical memory over time. 
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A further look into the pgd of the heap process revealed that there were 3 different 

areas of pointers.  The first was the single pointer that was traced in the previous 

paragraph.  The second and third areas held approximately 100 pointers each.  Following 

some of these links to the corresponding page tables proved that they were pointers to 

page frames filled with either ELF binary code—possibly libraries—or values allocated 

to the heap by the heap executable.  This suggests that the pgd is not a solid block of 

pointers and that any gaps are inconsequential.  The heap tracing in this new image can 

be seen in Table 12. 

 
Structure Address (Physical) 

task_struct 0x113D3590 

mm_struct 0x176C9300 

vm_area_struct 0x1E608A14 

File 0x5A36980 

Dentry 0x525B494 

Inode 0x14BC69F4 

address_space 0x14BC6A94 

Table 12. Second Heap Process Trace 
 
The integration of swap space data was made evident by tracing from the pgd to a 

page table that contained a mix of swap space indices and page frame addresses.  The 

page frame was at address 0xF00000 and two of its pointers had the values 0xF2C200 

and 0xF1C047.  The first value indicated that the page was not in memory because bits 0 

and 7 were not set.  This meant that 0xF2C200 was actually referring to the swap map 

index 0xF2C2 and, consequently, the page slot at swap address 0xF2C2000.  The second 

value had bit 0 set, so it was resident in physical memory.  These two pointers sat next to 

one another in the page table so they had to point to consecutive pages.  When the page 

values—from the heap.c signatures—were checked for both programs they were 

consecutive.  The page slot from swap space had a page value of 0xA2CF, while the page 

frame in physical memory had a page value of 0xA2D0.  A page missing in RAM was 

therefore successfully retrieved from swap space.  The tracing is shown in Figure 12. 

 



mm _struct
0x176 C9300

pgd
0x1C0E3000

Page Table
0xF00000

Page Frame
0xF1C000

Page Slot 
0xF2C2000Swap Space

 
Figure 12.   Tracing of Pages in Swap 
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V. CONCLUSION 

A. SUMMARY 
The memory management changes in the new 2.6 Linux Kernel have not 

adversely affected the forensics techniques developed for the 2.4 kernel.  In fact, the 

introduction of the radix tree in the address_space struct made the enumeration of all the 

pages belonging to an address space much easier and more efficient.  The discovery of 

data belonging to a process inside swap space is possible—as shown in the previous 

chapter—and should add value to the full exploration of processes that reside in physical 

memory.  The techniques outlined in this paper, or programs based on them should now 

be integrated into any in-depth forensic analysis of a computer system.  

There is a new breed of malware based on the concept that physical memory is 

largely out of the hands of an examiner.  The effects of this insidious software can be 

mitigated by the application of the findings in this paper. However, unless these analysis 

techniques are properly automated, many investigators will shy away from performing 

detailed analysis of physical memory and potentially miss many pieces of evidence vital 

to such an investigation. 

B. PROBLEMS 
Throughout the course of the analysis, a few problems were encountered.  The 

first presented itself in the early stages of project development when the assumption was 

made that kernel space addresses had a range from 0xC0000000 to 0xCFFFFFFF—when 

it is actually from 0xC0000000 to 0xFFFFFFFF.  This made many of the pointers used in 

the linking of memory management structures seem invalid and caused confusion as to 

how these structures were linked. 

Another issue that consumed a great deal of time was related to the page tables 

belonging to a process.  Much of the integration of swap space data depended on finding 

page tables so that the swap indices could be used to find the missing page in swap space.  

However, the pgd contained addresses that did not look like virtual addresses and that 

were not in one solid block.  Previous addresses found in other structures had always 

been virtual kernel addresses (> 0xC0000000) and consecutive if they were part of a list 

of pointers.  These two factors contributed to the belief that the pgd pointer was either not 
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pointing to the correct location, or that the pgd was full of garbage.  It was not until the 

addresses in the pgd were taken at face value as physical addresses that the page table 

structure began to unfold. 

A third problem arose when the interconnection of memory management 

structures was being analyzed.  When there was a pointer from one structure to another, it 

was erroneously assumed that the pointer would always point to the beginning of that 

structure.  This created some situations in which the pointer from one structure did not 

seem to point to another.  An example of this fact is the doubly linked task_struct list. 

The links from one task_struct to another connect at the tasks element of one struct to the 

tasks element of another.  This element is at offset 0x60 from the beginning of a 

task_struct.  Looking at a task_struct at offset 0x60 and thinking it should look like the 

beginning of it would obviously lead someone to think it was not a task_struct. 

A final problem was inherent in the way that the experimentation for this thesis 

was carried out.  Due to budget and time constraints, the methodology used during the 

analysis of memory was completely software based.  This meant that, as images of RAM 

and swap space were being collected, memory was constantly changing.  The programs 

doing the imaging, heap.c, and typical kernel processes were constantly changing the 

landscape of memory over time.  The best option would have been to pursue a hardware 

based method for imaging physical memory that would minimize any software/kernel 

interference.  One such method would be to include a card in the systems PCI slot that 

could image memory at the flip of a switch [Ref. 12].  In lieu of imaging hardware, dd 

could have been satically linked and executed from a CD.  However, since there was no 

concern over the images’ validity in a court of law, it was deemed acceptable to run these 

commands from the target system.   

The only artifact of these issues that was ever encountered arose during the final 

analysis of the heap process in the previous chapter.  The first step in the tracing was to 

run the find_task.pl script to enumerate all the processes in ram and find the value of their 

corresponding task_struct.  When it was run, the heap process did not appear.  Further 

investigation revealed that if the links from the first task_struct—known as swapper— 
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were followed backwards, the heap process would be found.  The doubly linked list read 

differently if the links were followed in one direction than in another.  The list was 

caught at a moment of transition. 

C. FUTURE WORK 
The most obvious extension to the work in this paper would be to write a tool that 

could automate the techniques discussed.  This work would include the fine-tuning of the 

concepts presented here so that they can be translated into the specific language of a 

program.  Such a tool would be a powerful asset to an investigator because tracing hex 

dumps is not something that many investigators will want to do.  That is, the exploration 

of physical memory would often be skipped in the absence of a good tool to do automate 

it elegantly and efficiently.   

Another future focus of research would be to perform similar analyses on systems 

with different characteristics.  This could take the form of research on other operating 

systems such as Windows or Solaris.  It could also take the form of research on systems 

running on non-x86 platforms such as PowerPC or 64-bit systems.  Systems with more 

than 896MB of physical memory should be explored as well.  Unraveling the process of 

translating virtual addresses in ZONE_HIGHMEM to physical addresses and back would 

be very useful as the number of systems with memory in excess of this limit is increasing 

daily. 
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APPENDIX.  SOURCE CODE 

This appendix includes all of the Perl scripts that were developed throughout the 

project to aid in the analysis of physical memory and swap space.  A small c program is 

also included, which was used to force swap space to contain a series of pages that I 

tagged to ease their retrieval in hex dump analysis. 

A. FIND_WALDO.PL 
#!/usr/local/bin/perl 
#This is a program that will take in the virtual address of 
#an address_struct object and output all the pages (in order) 
#that are owned by that particular address_space struct.  
use strict; 
use utils; 
 
#------------------------------------------------------------- 
#Declare Variables 
#------------------------------------------------------------- 
my $file;   #Image file to look into 
my $address;  #Address input from commandline 
my $user_in;  #User input 
my $length;   #Length of address_space address 
 
#------------------------------------------------------------- 
#Get Inputs 
#------------------------------------------------------------- 
 
#Get dump file from user 
$user_in = shift  
or die “User did not input anything.  Error found”; 
#Make sure that the input matches the correct format. 
#If -f is found, then continue 
if($user_in eq “-f”) 
{ 
#Advance input 
$user_in = shift; 
  
#If the value of input is in line with a flag 
#name or empty, then kill program 
if($user_in eq “-p” or $user_in eq “”) 
 { 
die “Name of file to be searched is invalid. Error found”; 
 } 
 
#Save string after -f in dump_file variable 
$file = $user_in; 
 
#Advance input 
$user_in = shift; 
 
#If a -p is found, then continue 
if($user_in eq “-a”) 
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 { 
#Advance input 
$address = shift; 
   
#If the address is empty then kill program 
if($address eq “”) 
  { 
die “There is no address specified.  Error found”; 
  } 
   
 } 
#Otherwise kill program 
else 
 { 
die “No pattern flag -a is specified. Error found”; 
 } 
} 
#Otherwise kill program 
else 
{ 
die “User did not use -f flag. Error found”; 
} 
 
#------------------------------------------------------------- 
#Body 
#------------------------------------------------------------- 
#Make sure that the input is 8 bytes.  I check 
#for 8 bytes because a pattern like 3a5d3876 looks 
#like 8 bytes on the surface, but as it is stored 
#in memory, it is really 4 bytes because it is in 
#hex and each digit only needs 4 bits to be 
#represented 
$length = length($address); 
 
#If it’s not correct length exit program 
($length == 8) or die “The address input should be 8 bytes, not 
$length. Found”; 
#If it is not a valid hex number, then exit program. 
#The period character is allowed as wildcard. 
($address =~ m/[(a-f|A-F|0-9|\.)]{8}/) or  
die “The input is not a valid hex number. Found”; 
#Change any hex letters to lowercase to prepare pattern 
#for later matches with data from memory that is read 
#in as lowercase 
$address =~ tr/[A-Z]/[a-z]/; 
#Use find all pages matching this address space 
Utils::find_address_space($file, $address); 

 

 

B. FIND_PATTERN.PL 
#!/usr/local/bin/perl 
#This program attempts to find a 4 byte pattern 
#from a file of choice.  Any hits will be stored 
#in an array. 
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use strict; 
use utils; 
 
#--------------------------------------------------------- 
#Declare variables 
#--------------------------------------------------------- 
my $length;   #This is the length of the input 
    #and later the file (in bytes) 
my $file;   #File to be searched 
my $read;   #Value read from file 
my $address = 0;  #Address where to read next value 
    #from 
my $pattern;    #4 byte pattern from commandline 
my $user_in;  #User input 
my @hits;   #Array of matches to pattern 
 
#--------------------------------------------------------- 
#Get Inputs 
#--------------------------------------------------------- 
#Get dump file from user 
$user_in = shift  
or die “User did not input anything.  Error found”; 
#Make sure that the input matches the correct format. 
#If -f is found, then continue 
if($user_in eq “-f”) 
{ 
#Advance input 
$user_in = shift; 
  
#If the value of input is in line with a flag 
#name or empty, then kill program 
if($user_in eq “-p” or $user_in eq “”) 
 { 
die “Name of file to be searched is invalid.  Error found”; 
 } 
 
#Save string after -f in dump_file variable 
$file = $user_in; 
 
#Advance input 
$user_in = shift; 
 
#If a -p is found, then continue 
if($user_in eq “-p”) 
 { 
#Advance input 
$pattern = shift; 
   
 } 
#Otherwise kill program 
else 
 { 
die “No pattern flag (-p) is specified. Error found”; 
 } 
} 
#Otherwise kill program 
else 
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{ 
die “User did not use -f flag. Error found”; 
} 
 
#--------------------------------------------------------- 
#Body 
#--------------------------------------------------------- 
#Make sure that the input is 8 bytes.  I check 
#for 8 bytes because a pattern like 3a5d3876 looks 
#like 8 bytes on the surface, but as it is stored 
#in memory, it is really 4 bytes because it is in 
#hex and each digit only needs 4 bits to be 
#represented 
$length = length($pattern); 
 
#If it’s not correct length exit program 
($length == 8) or die “The pattern input should be 8 bytes, not 
$length. Found”; 
#If it is not a valid hex number, then exit program. 
#The period character is allowed as wildcard. 
($pattern =~ m/[(a-f|A-F|0-9|\.)]{8}/) or  
die “The input is not a valid hex number. Found”; 
#Change any hex letters to lowercase to prepare pattern 
#for later matches with data from memory that is read 
#in as lowercase 
$pattern =~ tr/[A-Z]/[a-z]/; 
#Open file in question 
open(FILE, $file) or die “Memory image file could not be opened.  Error 
found “; 
print “Opened the file: $file \n”; 
#Find out the size of the file 
$length = -s $file; 
 
#Divide length by four to turn it from bytes to words 
#(4 bytes = word). This will control the # of times 
#memory will have to be read to traverse the whole 
#file 
$length = $length/4; 
 
for(my $i=0; $i<$length; $i++) 
{ 
#print “Length in hex: $length\n”; 
$read = Utils::read_val(*FILE, $address); 
if($read =~ m/$pattern/) 
 { 
print “MATCH PATTERN at Address: $address\n”; 
#Add to hit array 
push(@hits, $address); 
 } 
#print “READ: $read\n”; 
#Increment address by four bytes (a word) 
#It is interpreted as hex when the addition 
#happens and then turned into hex once again 
#in preparation for the read_val function. 
$address = hex($address) + 4; 
$address = sprintf “%08x”, $address;  
} 
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foreach $length (@hits) 
{ 
print “Address: $length\n”; 
} 
 
#Calculate length of the array to output 
$length = $#hits + 1; 
print “Number of hits found: $length\n”; 
 
#Close the file  
close(FILE); 
 

C. FIND_SIGNATURES.PL 
#!/usr/bin/perl 
#This is a program that will retrieve signatures from each page 
#of a file in a Suse 10 Linux machine.  The signatures will be  
#12 bytes long and be choosen from the middle of each page to  
#reduce conflicts that might arise from pages having similar  
#beginnings or ends. 
use strict; 
use POSIX qw(ceil floor); #Adds floor and ceiling functions 
 
#------------------------------------------------------------------- 
#Declare variables 
#------------------------------------------------------------------ 
my @sigs;   #Signatures lifted from file to search 
my $sig;   #One of the signatures in @sigs 
my $out_file;   #Name of the file that will hold 
signatures 
my $user_in;   #User input 
my $in_file;   #Name of the file that signatures will be 
    #extracted from 
 
#------------------------------------------------------------------- 
#Declare variables 
#------------------------------------------------------------------- 
#Get dump file from user 
$user_in = shift  
or die “User did not input anything.  Error found”; 
#Make sure that the input matches the correct format. 
#If -f is found, then continue 
if($user_in eq “-i”) 
{ 
#Advance input 
$user_in = shift; 
  
#If the value of input is in line with a flag 
#name or empty, then continue 
if($user_in eq “-o” or $user_in eq “”) 
 { 
die “Input file name is invalid.  Error found”; 
 } 
 
#Save string after -i in dump_file variable 
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$in_file = $user_in; 
 
#Advance input 
$user_in = shift; 
 
#If a -o is found, then continue 
if($user_in eq “-o”) 
 { 
#Advance input 
$user_in = shift; 
   
#If the output file name is there, then 
#put input value in dir variable 
if($user_in ne “”) 
  { 
$out_file = $user_in; 
  } 
#Otherwise kill program 
else 
  { 
die “Output file name is missing. Error found”; 
  } 
 } 
else 
 { 
die “The -o flag is missing. Error found”; 
 } 
} 
#Otherwise kill program 
else 
{ 
die “User did not use -i flag. Error found”; 
} 
 
#------------------------------------------------------------------- 
#Body 
#------------------------------------------------------------------- 
#Extract signatures from each page of a file 
@sigs = get_signatures($in_file); 
 
$sig = @sigs[$#sigs]; 
#The offset within the last page that the 
#signature was taken from 
print “Offset where signature in\nlast page of file comes from:   
$sig\n”; 
 
#Open the output file for writing 
open(OUT, “>$out_file”); 
 
foreach $sig (@sigs){ 
#print ”Page Sig: $sig\n”; 
#Write signature to file 
syswrite(OUT, $sig, 27); 
 
#Write newline char to file 
syswrite(OUT, “\n”, 1); 
} 
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#Close the output file 
close(OUT); 
 
#This function retrieves a specified number of hex  
#bytes from a file and returns them as one variable 
sub read_bytes 
{ 
  
 #---------------------------------------------------------------- 
#Read in arguments 
 #---------------------------------------------------------------- 
 my $bytes = shift;  #Number of bytes to read from file 
 my $handle = shift;  #File handle of file to be parsed 
      #(file should already be open) 
  
 #---------------------------------------------------------------- 
#Declare variables 
 #---------------------------------------------------------------- 
 
 my $extracted_bytes = “; #extracte bytes from file 
 my $read_in;   #byte read in from file 
 my $v = 0;    #Verbose flag 
 
 #---------------------------------------------------------------- 
#Body 
 #---------------------------------------------------------------- 
  
#Output number of bytes choosen by caller  
if($v==1){print “The number of bytes to read is: $bytes\n”;} 
#Read in $bytes number of bytes 
for(my $j=0; $j<$bytes; $j++) 
 { 
#Read in a byte 
sysread($handle, $read_in, 1); 
   
#Change signature into hex 
$read_in = sprintf “%02x”, ord($read_in); 
#Append byte to extracted_bytes 
$extracted_bytes = $extracted_bytes.$read_in; 
 
 } 
  
return $extracted_bytes; 
} 
 
#This function extracts signatures from each page of a file. 
#They are taken from the middle of each page (0x500 into the 
#page).  The last page is different, however, because it is  
#seldom full.  For that page the signature comes from the  
#middle of the space that the file actually uses. 
sub get_signatures 
{ 
 #----------------------------------------------------------------
--- 
#Declare variables 
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 #----------------------------------------------------------------
--- 
 my $input_file;     #The file that will be 
scanned 
 my @sig_array;     #Array of signatures 
 my $file_size;     #Size of the file 
 my $total_pages;    #Number of pages required by 
       #file 
 my $full_pages;     #Number of filled pages 
used 
       #by file 
 my $left_over;     #Number of bytes 
actually used 
       #in the last page of the file 
 my $index = 0x500;    #Index into the file 
 my $signature;     #Signature 
 my $i;      #Loop index 
 my $v = 1;     #Verbose flag 
  
 #---------------------------------------------------------------- 
#Get Inputs 
 #---------------------------------------------------------------- 
$input_file = shift; 
 
 #---------------------------------------------------------------- 
#Body 
 #---------------------------------------------------------------- 
#Open the file to be scanned 
open(SCANFILE, $input_file)  
or die “Signature file $input_file could not be opened. 

Error found”; 
#Get the size of the file to calculate how many pages 
#are required 
$file_size = -s $input_file; 
if($v==1){print “The file size is:   $file_size\n”;} 
#Find the number of bytes used in the last page of the file.  #First I 
divide file size by 4096 (page size) and then strip #decimal part 
(floor function).  $full_pages = floor($file_size / 4096); 
if($v==1){print “Full pages used:   $full_pages\n”;} 
#Now we subtract the file size by the number of bytes that 
#are required to fill the number of pages found above 
$left_over = $file_size - ($full_pages * 4096); 
if($v==1){print “The left over is:   $left_over\n”;} 
#Divide this number (which is in bytes) by 4096 and take 
#the ceiling function of that result to get the number 
#of pages the file takes up 
$total_pages = ceil($file_size / 4096); 
if($v==1){print “Pages required by file:   $total_pages\n”;} 
#Extract 12 byte signatures from all full pages 
for($i=0; $i<$full_pages; $i++) 
 { 
#print “INDEX: $index\n”; 
#Go to the correct index in the file 
seek(SCANFILE, $index, 0); 
  
#Read 12 bytes from the file 
$signature = read_bytes(12, *SCANFILE); 
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#Save page signature in array 
@sig_array[$i] = $signature; 
  
#Empty signature for the before the next  
#signature is read 
$signature = “; 
#Update the index 
$index = $index + 0x1000; 
 } 
  
#Figure out the last page index for extracting  
#the signature.  First step is to figure out 
#the base index of the last page 
$index = ($full_pages * 4096); 
  
#Print out the base index of the last page 
if($v==1){print “Base index of last page:  $index\n”;} 
#Now we add half the number of bytes used in the 
#last page (the floor function is used in case this 
#division has a decimal component) 
$index = $index + floor($left_over / 2); 
 
#Print out the index used for the last page in the file 
if($v==1){print “Last page index:   $index\n”;} 
#Go to the index calculated for the last page 
seek(SCANFILE, $index, 0); 
#Read the signature 
$signature = read_bytes(12, *SCANFILE); 
  
#Place it in the last array element 
@sig_array[$i] = $signature; 
  
#Change index value to be the index within a page 
#not index within a whole file.  The remainder 
#of the division of the index value by the size 
#of a page will yield this value. 
$index = $index % 4096;  
 
#Add the index used for the last page to the 
#last element of the signature array 
@sig_array[$i + 1] = $index; 
 
#Close file to be scanned 
close(SCANFILE); 
 
#Return the array of signatures 
return @sig_array; 
} 
 

D. MATCH_SIGNATURES.PL 
#!/usr/bin/perl 
#This is a program that will look for pages in a file that match 
#the signatures in a signature file.  Both files are specified 
#by the user. 
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use strict; 
use POSIX qw(ceil floor); #Adds floor and ceiling functions 
 
#------------------------------------------------------------------- 
#Declare variables 
#------------------------------------------------------------------- 
my @sigs;   #Array of signatures 
my $sig;   #A particular signature 
my $last_index;  #The index used in the signature of the 

#last 
    #page 
my $length;   #Length of sigs array 
my $v = 0;   #Verbose mode flag 
my $base;   #Base value where the search of consecutive 

#pages 
    #will begin. 
my $in_file;  #File that will be parsed for matching pages 
my $sig_file;  #File that holds a list of signatures to look 

#for 
my $file_size;  #Size of above file 
my $user_in;  #User input 
 
#------------------------------------------------------------------- 
#Get Inputs 
#------------------------------------------------------------------- 
#Get dump file from user 
$user_in = shift  
or die “User did not input anything.  Error found”; 
#Make sure that the input matches the correct format. 
#If -f is found, then continue 
if($user_in eq “-f”) 
{ 
#Advance input 
$user_in = shift; 
  
#If the value of input is in line with a flag 
#name or empty, then kill program 
if($user_in eq “-m” or $user_in eq “”) 
 { 
die “Name of file to be parsed is invalid.  Error found”; 
 } 
 
#Save string after -f in dump_file variable 
$in_file = $user_in; 
 
#Advance input 
$user_in = shift; 
 
#If a -m is found, then continue 
if($user_in eq “-m”) 
 { 
#Advance input 
$user_in = shift; 
   
#If the output file name is there, then 
#put input value in dir variable 
if($user_in ne “”) 
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  { 
$sig_file = $user_in; 
  } 
#Otherwise kill program 
else 
  { 
die “Signature database file name is missing. Error 

found”; 
  } 
 } 
else 
 { 
die “The -m flag is missing. Error found”; 
 } 
} 
#Otherwise kill program 
else 
{ 
die “User did not use -f flag. Error found”; 
} 
 
#------------------------------------------------------------------- 
#Body 
#------------------------------------------------------------------- 
 
#Extract signatures from each page of a file 
@sigs = get_sigs($sig_file); 
 
#Get length of array received from get_signatures 
$length = scalar @sigs; 
if($v==0){print “LENGTH OF ARRAY: $length\n”;} 
 
#Save the index where the last pages signature 
#was extracted 
$last_index = @sigs[$length -1];  
if($v==1){print “Last index: $last_index\n”;} 
 
#Remove the last page index from the end of the 
#signature array 
pop(@sigs); 
 
foreach $sig (@sigs){ 
#print ”Page Sig: $sig\n”; 
} 
  
#Make base value zero 
$base = 0; 
 
#Open file to find matches in 
open(MATCH, $in_file); 
 
#Get the size of the input file to determine when 
#to stop looping through pages 
$file_size = -s $in_file; 
print “SIZE: $file_size\n”; 
 
#While the base address is smaller than the size  
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#of the file, try to match signatures 
while($base < $file_size) 
{ 
if($v==1){print “Base is $base\n”;} 
match_against_signatures($base, *MATCH, $last_index, @sigs); 
$base = $base + 4096; 
} 
 
#close file to find matches in 
close(MATCH); 
 
sub get_sigs 
{ 
 #---------------------------------------------------------------- 
#Read in arguments 
 #---------------------------------------------------------------- 
my $in_file = shift; #A file holding a list of signatures 
 
 #---------------------------------------------------------------- 
#Declare variables 
 #---------------------------------------------------------------- 
 my $signature;  #An individual signature in $in_file 
 my @sigs;   #Signature array built from $in_file 
 my $i=0;   #Index of @sigs array 
 
 #---------------------------------------------------------------- 
#Body 
 #---------------------------------------------------------------- 
  
#Open the signature file 
open(FILE, $in_file); 
 
while($signature = <FILE>) 
 { 
#Take newline off of $signature 
chomp($signature); 
 
#Save signature in respective place in @sigs array 
@sigs[$i] = $signature; 
$i++; 
 } 
 
#Close signature file 
close(FILE); 
 
#Return built array 
return @sigs; 
} 
 
#This function receives the address in an open file 
#where a page begins and attemps to match that page 
#to one of an array of signatures. 
sub match_against_signatures 
{ 
 #---------------------------------------------------------------- 
#Read in arguments 
 #---------------------------------------------------------------- 
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 my $base_addr = shift;  #Address where page begins in file 
 my $handle = shift;  #File handle of file to be parsed 
      #(file should already be open) 
 my $last_page = shift;  #The index of where to look for the 
      #signature of the last page 
 my @signatures = @_;  #Array of signatures to look for 
  
 #---------------------------------------------------------------- 
#Declare variables 
 #---------------------------------------------------------------- 
 
 my $sig_beg;   #signature read in from beginnig of 
      #page 
 my $sig_last;    #signature read in from the 
      #index in $last_page 
 my $v = 0;    #Verbose flag 
 
 #---------------------------------------------------------------- 
#Body 
 #---------------------------------------------------------------- 
if($v==1){  
print “base: $base_addr\nhandle: $handle\n”; 
print “last: $last_page\nSignatures: @signatures\n”; 
 } 
 
#Go to the correct place in the file 
seek($handle, $base + 0x500, 0); 
 
#Get signature from beginning of the page 
$sig_beg = read_bytes(12, $handle);  
 
#Go to the correct place in the file 
seek($handle, $base + $last_page, 0); 
 
#Get the signature from the index $last_page 
#index to check if this page is the last page 
#in the file 
$sig_last = read_bytes(12, $handle); 
 
#Print out both signatures 
if($v==1){print “First sig: $sig_beg\nSecond sig: $sig_last\n”;} 
#See if any of the two signatures extracted from the 
#page match those in the signatures array 
for (my $i=0; $i <= $#signatures; $i++) 
 { 
if($signatures[$i] =~ m/($sig_beg|$sig_last)/) 
  { 
print “MATCH PAGE $i\n”; 
  } 
 } 
} 
 
#This function retrieves a specified number of hex  
#bytes from a file and returns them as one variable 
sub read_bytes 
{ 
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 #---------------------------------------------------------------- 
#Read in arguments 
 #---------------------------------------------------------------- 
 my $bytes = shift;  #Number of bytes to read from file 
 my $handle = shift;  #File handle of file to be parsed 
      #(file should already be open) 
  
 #---------------------------------------------------------------- 
#Declare variables 
 #---------------------------------------------------------------- 
 
 my $extracted_bytes = “; #extracte bytes from file 
 my $read_in;   #byte read in from file 
 my $v = 0;    #Verbose flag 
 
 #---------------------------------------------------------------- 
#Body 
 #---------------------------------------------------------------- 
  
#Output number of bytes choosen by caller  
if($v==1){print “The number of bytes to read is: $bytes\n”;} 
#Read in $bytes number of bytes 
for(my $j=0; $j<$bytes; $j++) 
 { 
#Read in a byte 
sysread($handle, $read_in, 1); 
   
#Change signature into hex 
$read_in = sprintf “%02x”, ord($read_in); 
#Append byte to extracted_bytes 
$extracted_bytes = $extracted_bytes.$read_in; 
 
 } 
  
return $extracted_bytes; 
} 
 

E. FIND_TASK.PL 
#!/usr/local/bin/perl 
#This is a program that will attempt to enumerate task names  
#and pids from a RAM dump in a SUSE 10 Linux machine.  It 
#will be able to follow the links forward or backwards depending 
#on the user input. 
use strict; 
 
#----------------------------------------------------------------------
--- 
#Declare variables 
#----------------------------------------------------------------------
--- 
 
my $dump_file;    #Input file being used (default 
value) 
my $user_in;    #User input 
my $input;    #The input from commands run below 
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my $address_command;   #Stores the command to get the 
address 
     #of init_task 
my $init_task;    #Address of init_task 
my @point;    #Array containing next and prev pointers 
my $dir = 0;    #Direction of the enumeration 0 is  
#following next pointers and 1 is following 
#prev pointers 
my $v = 0;    #Flag that controls verbose mode 
 
#----------------------------------------------------------------------
--- 
#Get Inputs 
#----------------------------------------------------------------------
--- 
#Get dump file from user 
$user_in = shift  
or die “User did not input anything.  Error found”; 
#Make sure that the input matches the correct format. 
#If -f is found, then continue 
if($user_in eq “-f”) 
{ 
#Advance input 
$user_in = shift; 
  
#If the value of input is in line with a flag 
#name or empty, then kill program 
if($user_in eq “-d”  or $user_in eq “”) 
 { 
die “Image file name is invalid.  Error found”; 
 } 
 
#Save string after -f in dump_file variable 
$dump_file = $user_in; 
 
#Advance input 
$user_in = shift; 
 
#If a -d is found, then continue 
if($user_in eq “-d”) 
 { 
#Advance input 
$user_in = shift; 
   
#If the direction value is 0 or 1, then 
#put input value in dir variable 
if($user_in eq “0” or $user_in eq “1”) 
  { 
$dir = $user_in; 
  } 
#Otherwise kill program 
else 
  { 
die “Direction value is invalid. Error found”; 
  } 
 } 
} 
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#Otherwise kill program 
else 
{ 
die “User did not use -f flag. Error found”; 
} 
 
#---------------------------------------------------------------------- 
#Body 
#---------------------------------------------------------------------- 
#Open the image of memory that you want to analyze 
open(DUMP,$dump_file) or die “Memory image file could not be opened.  
Error found”; 
print “Opened the file: $dump_file \n”; 
#Use a filehandle and pipe to parse through the output of this command 
open(OUT, “ls /boot |”); 
#Go through every line of the output 
while(<OUT>) 
{ 
#If a line matches the system map pattern then save it into input 
if($_ =~ m/System.map*/){ 
$input = $_; 
 } 
} 
 
#Take the newline out of the input variable 
chomp $input; 
 
print “Looking in \”$input\” for init_task address.\n”; 
#Now get the address of init_task using the System.map file 
$address_command = “cat /boot/$input | grep \”D init_task\””; 
#Save the output of the address command into init_address 
$init_task = ‘$address_command‘; 
#Take the newline out of the init_address variable 
chomp $init_task; 
 
#Extract the address from init_address 
$init_task =~ m/(([0-9]|[a-fA-F])*)\s/; 
$init_task = $1; 
 
#Turn init_address into a physical address (subract 0xC0000000) 
$init_task = hex($init_task) - 0xC0000000; 
#Add 0x60 to make it point to the tasks member of the task_struct 
#which is required by enumerate_task $init_task = $init_task + 0x60; 
#Initialize next_task to init_task 
@point[$dir] = $init_task; 
 
#Traverse the task_struct linked list and get information from 
#each one.  This “for” loop caps the number of processes at 250 
#in the case that the “if” statement below is never entered. 
for(my $i;$i<250;$i++) 
{ 
#Enumerate information from task_struct 
@point = enumerate_task(@point[$dir]); 
  
#Convert pointer to decimal for enumerate_task function 
@point[$dir] = hex(@point[$dir]); 
#If the next task address is equal to the first one in the 
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#list (the address of the tasks member of init_task) then 
#break the loop.  This is basically looking for the  
#wrap around of the linked list so that it can stop looping. 
if(@point[$dir] =~ m/$init_task/) 
 { 
last; 
 } 
 
} 
 
#Close the output pipe 
close(OUT); 
 
#Close the image of memory that you analyzed 
close(DUMP); 
 
#This function goes to the offset specified in the input 
#(which should be in hex) and returns a word (4 bytes) at 
#that location. The file it searches should be open when 
#this function is called. 
sub read_val 
{ 
 #--------------------------------------------------------------- 
#Read in arguments 
 #---------------------------------------------------------------- 
my $handle = shift; 
my $contents = shift; 
 
#This intereprets the hex number as a decimal to use in seek 
$contents = hex($contents); 
if($v==1){print “Address seen by read_val is: $contents\n”}; 
 
 #---------------------------------------------------------------- 
#Declare variables 
 #---------------------------------------------------------------- 
#The reason behind splitting the input is that I needed to 

#rearrange the order of the bytes from the way they exist in 
#memory—which is backwards.  For example, the word AB123456 in 
#memory is really the hex number 563412AB. 

 my $input_byte_1;   #First byte of the input 
 my $input_byte_2;   #Second byte  of the input 
 my $input_byte_3;   #Third byte of the input 
 my $input_byte_4;   #Fourth byte of the input 
  
 my $hx;    #Hexidecimal version of the above  
      #inputs 
 
 #---------------------------------------------------------------- 
#Body 
 #---------------------------------------------------------------- 
#Go to the correct offset in image file and read selected bytes 
seek($handle, $contents, 0); 
sysread($handle, $input_byte_4, 1); 
sysread($handle, $input_byte_3, 1); 
sysread($handle, $input_byte_2, 1); 
sysread($handle, $input_byte_1, 1); 
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#Rearrange the bytes and assemble them into hex 
$hx = sprintf “%02x”, ord($input_byte_1); 
$hx = $hx.sprintf “%02x”, ord($input_byte_2); 
$hx = $hx.sprintf “%02x”, ord($input_byte_3); 
$hx = $hx.sprintf “%02x”, ord($input_byte_4); 
  
if($v == 1) {print “Result of read_val function is: $hx\n”}; 
return $hx; 
} 
 
#This function arranges the output from read_val into ascii 
#letters for the executable name garnered from a task_struct 
sub ascii_ize 
{ 
 #---------------------------------------------------------------- 
#Read in arguments 
 #---------------------------------------------------------------- 
my $characters = shift; 
if($v==1){print “Input into ascii_ize is: $characters\n”;} 
 
 #---------------------------------------------------------------- 
#Declare variables 
 #---------------------------------------------------------------- 
#Each letter in the name must be converted into ascii 

#individually and rearranged.  Thus the 16 variables for the 
#typical 16 character maximum in executable names in a 
#task_struct. They are arranged into 4 words that will be ordered 
#from 1 to 4.  Within the words, however, there needs to be a 
#reversal of the order.  This is due to the fact that strings are 
#stored in the opposite direction of all numbers and pointers. 

my $word1; 
my $word2; 
my $word3; 
my $word4; 
  
 my $whole_name;  #The fully constructed name of the 

#executable 
 #---------------------------------------------------------------- 
#Body 
 #---------------------------------------------------------------- 
#Convert name to ascii in the correct order 
$characters =~ m/(........)(........)(........)(........)/; 
$word1 = ascii_ize_word($1); 
$word2 = ascii_ize_word($2); 
$word3 = ascii_ize_word($3); 
$word4 = ascii_ize_word($4); 
 
#Assemble all the words into the whole_name 
$whole_name = $word1.$word2.$word3.$word4; 
 
#Strip any non alphanumeric characters out 
$whole_name =~ tr/a-zA-Z0-9\./ /cs; 
return $whole_name; 
  
  
} 
 



57 

#This function takes a word output from read_val and reverses the order 
#while translating the hex characters into ascii to make the string 
#readable 
sub ascii_ize_word 
{ 
 #---------------------------------------------------------------- 
#Read in arguments 
 #---------------------------------------------------------------- 
my $characters = shift; 
 
 #---------------------------------------------------------------- 
#Declare variables 
 #---------------------------------------------------------------- 
#Each letter in the name must be converted into ascii 

#individually and rearranged. 
my $word_4; 
my $word_3; 
my $word_2; 
my $word_1; 
 my $whole_name;  #The fully constructed name of the 

#executable 
 #---------------------------------------------------------------- 
#Body 
 #--------------------------------------------------------------- 
#Convert name to ascii in the correct order 
$characters =~ m/(..)(..)(..)(..)/; 
$word_4 = hex($1); 
$word_3 = hex($2); 
$word_2 = hex($3); 
$word_1 = hex($4); 
  
#Change each letter to ascii 
$word_4 = chr($word_4); 
$word_3 = chr($word_3); 
$word_2 = chr($word_2); 
$word_1 = chr($word_1); 
 
#Construct name 
$whole_name = $word_1.$word_2.$word_3.$word_4; 
  
return $whole_name; 
 
} 
 
#This function receives the address of the tasks member of a  
#task struct and enumerates the name of the process, its pid,  
#the link to the next task struct, and the link to its associated 
#mm_struct.  It also outputs the first word that is retrieved from 
#the address pointed to by the pgd member of the mm_struct  
#associated with the task struct. The input should be a decimal  
#number. The handle of the dump file is global in this file so it can 
#be used without passing below. 
sub enumerate_task 
{ 
 #---------------------------------------------------------------- 
#Read in arguments 
 #---------------------------------------------------------------- 
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my $init_address = shift; 
#Print address passed in to enumerate_task 
if($v==1){print “Address passed into enumerate_task: 

$init_address\n”;} 
 #---------------------------------------------------------------- 
#Declare variables 
 #---------------------------------------------------------------- 
 my $next;    #Pointer to the next task struct 
 my $prev;    #Pointer to the prev task struct 
 my $pid;    #Pid of the task struct in question 
 my $part_name;   #Partial name before it’s assembled 

#below 
 my $name;    #Name of the process represented by 

#the 
      #task struct 
 my $mm;    #Pointer to mm_struct from 

#task_struct 
 my $pgd = ‘NULL POINTER’; #Content of the address pointed to 

#by pgd 
      #member of mm_struct 
 my @ret;    #array with next and prev addresses 
      #inside that will be returned 
 
 #---------------------------------------------------------------- 
#Body 
 #---------------------------------------------------------------- 
#Derive other addresses from init_address 
$next = $init_address; 
$prev = $init_address + 0x4;  
$mm = $init_address + 0x18; 
$pid = $init_address + 0x3C; 
$name = $init_address + 0x144; 
  
#Turn addresses into hex numbers (in preparation for read_val 

#function) 
$next = sprintf “%08x”, $next; 
$prev = sprintf ”%08x”, $prev; 
$mm = sprintf ”%08x”, $mm; 
$pid = sprintf “%08x”, $pid; 
$name = sprintf “%08x”, $name; 
  
#Read the values at all of these addresses 
$next = read_val(*DUMP, $next); 
$prev = read_val(*DUMP, $prev);  
$mm = read_val(*DUMP, $mm);  
$pid = read_val(*DUMP, $pid); 
 
#Convert mm to decimal in preparation for computation of pgd 
#address. 
$mm = hex($mm); 
if($mm != 0){ 
#Compute address of pgd (0x20 from beginning) and turn  
#it into a physical address (subtract 0xC0000000)  
$pgd = $mm + 0x20 - 0xC0000000; 
$pgd = sprintf “%08x”, $pgd; 
if($v==1){print “Address of pgd within mm_struct: $pgd\n”;} 
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#Read the address pointed to by pgd 
$pgd = read_val(*DUMP, $pgd); 
if($v==1){print “Value of pgd: $pgd\n”;}  
 
#Convert addres to physical address 
$pgd = hex($pgd) - 0xC0000000; 
 
#Convert the result to hex again for read_val function 
$pgd = sprintf “%08x”, $pgd; 
#Read the value stored at the address pointed to by pgd 
$pgd = read_val(*DUMP, $pgd); 
if($v==1){print “Value in address pointed to by pgd: 

$pgd\n”;} 
 } 
 
#Print out PID if verbose it turned on  
if($v==1){print “Extracted PID is: $pid\n”;} 
  
#For name we have to read 4 words because that is the maximum 

#length 
#of an executable name in a task_struct 
$part_name = read_val(*DUMP, $name); 
#Read three more times to complete the 16 bytes that must be read 
for(my $i=0;$i < 3;$i++) 
 { 
#Calculate the next address to look read in (4 bytes ahead) 
$name = hex($name) + 4; 
$name = sprintf “%08x”, $name; 
   
#Read in and append to existing partial name 
$part_name = $part_name.read_val(*DUMP, $name); 
 } 
  
#Put the contents of part_name into name 
$name = $part_name; 
  
#Convert name to ascii in the correct order 
$name = ascii_ize($name); 
 
#Turn next, prev and mm into physical addresses  
#(subract 0xC0000000) 
$next = hex($next) - 0xC0000000; 
$prev = hex($prev) - 0xC0000000; 
  
#If mm is not equal to zero, then convert to a physical address 
if($mm != 0){ 
$mm = $mm - 0xC0000000; 
 } 
 
#Convert variable next to a hex value again  
$next = sprintf “%08x”, $next; 
$prev = sprintf “%08x”, $prev; 
$mm = sprintf “%08x”, $mm; 
 
#Convert variable pid to a decimal number 
$pid = hex($pid); 
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#Print out all the information garnered from task_struct 
print “--------------------------------------------\n”; 
 print “Executable name is:             $name\n”; 
 print “The pid of the executable is:   $pid\n”; 
 print “The next task_struct is at:     $next\n”; 
print “The previous task_struct is at: $prev\n”; 
print “The associated mm_struct is at: $mm\n”; 
print “Value pointed to by pgd:        $pgd\n”; 
print “--------------------------------------------\n”; 
#Assemble the return array 
@ret[0] = $next; 
@ret[1] = $prev; 
 
return @ret; 
 
} 
 

F. ENUM_ADD_SPACE.PL 
#!/usr/local/bin/perl 
#This is a program that will enumerate all the different 
#Address_space objects found in a memory dump 
use strict; 
use utils; 
 
#------------------------------------------------------------------- 
#Declare variables 
#------------------------------------------------------------------- 
my @addresses;   #Array of addresses found in dump file 
my $addr_ref = \@addresses; #Pointer to the array of addresses 
my @clean_addrs;   #The version of addresses array without 
     #NULL entries or repitition 
my $addr;    #A single addr space address 
my $dump_file;   #Memory image file to be searched for 
my $out_file;   #File to send all addr space addresses to 
my $user_in;   #User input 
 
#------------------------------------------------------------------- 
#Read in arguments 
#------------------------------------------------------------------- 
#Get dump file from user 
$user_in = shift  
or die “User did not input anything.  Error found”; 
#Make sure that the input matches the correct format. 
#If -f is found, then continue 
if($user_in eq “-f”) 
{ 
#Advance input 
$user_in = shift; 
  
#If the value of input is in line with a flag 
#name or empty, then continue 
if($user_in eq “-o” or $user_in eq “”) 
 { 
die “Memory image file name is invalid.  Error found”; 
 } 



61 

 
#Save string after -i in dump_file variable 
$dump_file = $user_in; 
 
#Advance input 
$user_in = shift; 
 
#If a -o is found, then continue 
if($user_in eq “-o”) 
 { 
#Advance input 
$user_in = shift; 
   
#If the output file name is there, then 
#put input value in dir variable 
if($user_in ne “”) 
  { 
$out_file = $user_in; 
  } 
#Otherwise kill program 
else 
  { 
die “Output file name is missing. Error found”; 
  } 
 } 
else 
 { 
die “The -o flag is missing. Error found”; 
 } 
} 
#Otherwise kill program 
else 
{ 
die “User did not use -f flag. Error found”; 
} 
 
#------------------------------------------------------------------- 
#Body 
#------------------------------------------------------------------- 
#Traverse al page descriptors and run enum_addr_space 
#on them all 
Utils::traverse_page_desc($dump_file, \&enum_addr_space, $addr_ref); 
print “Done with initial printing!\n”; 
#Remove zero elements and repeating elements from 
#addresses array 
@clean_addrs = clean_array(@addresses); 
 
#Open out file for writing 
open(FILE, “>$out_file”); 
 
#Output the clean_addrs array to an output file 
foreach $addr (@clean_addrs) 
{ 
#Write out to file 
print FILE “$addr\n”; 
print “$addr\n”; 
} 
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#Close output file 
close(FILE); 
 
#This function takes in an array and returns a version 
#of that array without 0 values or repetition 
sub clean_array 
{ 
 #---------------------------------------------------------------- 
#Read in arguments 
 #---------------------------------------------------------------- 
my @old_array = @_;  #Array to clean up 
 
 #---------------------------------------------------------------- 
#Declare variables 
 #---------------------------------------------------------------- 
 my @new_array;   #Cleaned up array 
 my $old_element;   #An element of the old array 
 my $new_element;   #An element of the new array 
 my $add_old = 1;   #Flag for adding/not adding an 
      #element to the new array 
 my $v = 0;    #Verbose flag 
 
 #---------------------------------------------------------------- 
#Body 
 #---------------------------------------------------------------- 
#Add the element from old array to new array only if 
#it is not equal to zero or is already in the new array 
foreach $old_element (@old_array) 
{#print “old element: $old_element\n”; 
#If the element is not zero then check if 
#the element is in new array. 
if(!($old_element =~ m/00000000/)) 
{#print “not zero\n”; 
#Check if element is in new array 
foreach $new_element (@new_array) 
{#print “compare to : $new_element\n”; 
if($old_element =~ m/$new_element/) 
{#print “MATCH\n”; 
$add_old = 0; 
last; 
    } 
   }    
    
#If the old element did not appear in 
#new array, then add it 
if($add_old == 1)  
   { 
push(@new_array, $old_element); 
if($v == 1){print “Added: $old_element\n”;} 
   } 
    
#Reset flag 
$add_old = 1; 
  } 
 } 
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#Return new array 
return @new_array;  
  
} 
 
#This function enumerates all the different address_space objects 
#by searching all links from page descriptors and outputs them 
#to a file 
sub enum_addr_space 
{ 
 #---------------------------------------------------------------- 
#Read in arguments 
 #---------------------------------------------------------------- 
 my $base = shift;  #Base address of page descriptor 
 my $file = shift;  #Pointer to memory file 
 my $ref = shift;  #Pointer to array where results 
     #should be stored 
   
 #---------------------------------------------------------------- 
#Declare variables 
 #---------------------------------------------------------------- 
 my $offset = 0x10; #Offset where mapping (addr. Space 

#pointer) 
     #can be found; 
 my $location;  #Address get addr. space pointer from 
 my $address;  #Address of the address_space object 

#found 
 
 #---------------------------------------------------------------- 
#Body 
 #---------------------------------------------------------------- 
#Calculate the address to retrieve pointer from 
$location = $base + $offset; 
#Turn location into a hex number 
$location = sprintf “%08x”, $location; 
 
#Read pointer contents and save them to address variable 
$address = Utils::read_val($file, $location); 
#Write result into array 
push(@$ref, $address); 
  
} 
 

G. UTILS.PM 
package      Utils; 
use strict; 
 
#This function creates a formatted output outlining what address_space  
#address was looked for in a particular run of the program. 
sub heading 
{ 
 #---------------------------------------------------------------- 
#Read in arguments 
 #---------------------------------------------------------------- 
my $add_space = shift; 
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print “\n\n”; 
print “******************************************************\n”; 
print “The following pages all have descriptors that point to the 
same\n”; 
print “address_space object.  This address is:\n\n”; 
print “                           $add_space \n”; 
print “******************************************************\n”; 
} 
 
#This function takes in the address of a particular Address_space 
#object and find all the page descriptors and pages associated with 
#those objects in a memory dump 
sub find_address_space 
{ 
 #---------------------------------------------------------------- 
#Declare variables 
 #---------------------------------------------------------------- 
 my $index;    #The position of a page w/ respect 
      #to other pages of same address 
      #space 
 my $page_desc;   #Address of page descriptor 
 my $page_address;   #Page fram address 
 my @answers;   #Array of lines from an input file 
 my $in_file = ‘match.txt’; #Input file with page addresses and 
      #indices 
 my $dump_file;   #Memory dump file to look into 
 my $line;    #individual line in answers array 
 my $address;   #Address_space to look for 
  
 #---------------------------------------------------------------- 
#Get Inputs 
 #---------------------------------------------------------------- 
$dump_file = shift; 
$address = shift; 
  
 #---------------------------------------------------------------- 
#Body 
 #---------------------------------------------------------------- 
  
#Traverse the page descriptors and perform get_match_info  
#on each one 
traverse_page_desc($dump_file, \&get_match_info, $address); 
#Open the file used by get_match_info to  
#output results 
open(FILE, $in_file); 
 
#Read in needed info into an array in the  
#order dictated by index value of file (1st

#element of each line. 
while(<FILE>) 
 { 
$_ =~ m/(.+)\s(.+)\s(.+)\n/; 
$index = $1; 
$page_desc = $2; 
$page_address = $3; 
   
#Store lines into answers array by their index 
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@answers[$index] = “Page $index is at $page_address w/ descriptor at 
$page_desc\n”; 
 } 
  
#Print out pages found in order 
foreach $line (@answers) 
 { 
print “$line”; 
 } 
 
#Close the file 
close(FILE); 
 
#Remove the input file because it is no longer needed 
system “rm $in_file”; 
 
} 
 
#This function traverses the mem_map array and calls a function 
#provided by the caller (through a pointer) at every page encountered. 
#It passes the current page descriptor address to the function passed 
#in. 
sub traverse_page_desc 
{ 
 #---------------------------------------------------------------- 
#Read in arguments 
 #---------------------------------------------------------------- 
 my $dump_file = @_[0];  #The name of the file to look in 
 my $function = @_[1];  #Pointer to function to perform as 
      #the mem_map array is traversed 
 my @arguments = @_[2..$#_]; #Array of arguments inteded for 
      #funct pointed to by the above 
      #argument 
  
 #---------------------------------------------------------------- 
#Declare variables 
 #---------------------------------------------------------------- 
 my $mem_map = 0x1000000; #The physical address marking the 
      #beginning of the mem_map page desc 
      #array 
 my $offset = 0x0;   #Offset for loop that controls 
      #traversing the mem_map page desc 
      #array 
 my $location;   #The current address being seen in 
      #the loop 
 my $upper_limit = 0x20000; #Controls number of times the 
      #traversal loop will run 
 my $v=0;    #Verbose flag 
 
 #---------------------------------------------------------------- 
#Body 
 #---------------------------------------------------------------- 
#Open the image of memory that you want to analyze 
open(DUMP,$dump_file)  
or die “Memory image file $dump_file could not be opened. 
Error found”; 
print “Opened the file: $dump_file \n”; 
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#Loop through page descriptor entries and apply passed function 
#The loop stops at 0x20000 which is the value I calculated for 
#the number of page descriptors needed to cover 512 MB of mem. 
for(my $i=0; $i<$upper_limit; $i++) 
 { 
if($v==1){print “The offset is: $offset\n”}; 
#Calculate the current page address in physical memory 
$location = $mem_map + $offset; 
#perform function passed with function pointer 
$function->($location, *DUMP, @arguments); 
#Offset grows with loop 
$offset = $offset + 0x20;  
 } 
  
#Close dump file 
close(DUMP); 
} 
 
 
#This function takes in the address of a page descriptor and an address 
#to match to.  If the address to match to is the same as the one held 
#in the address_space pointer in the page descriptor, then we have a 
#match and the page information is written to a file 
sub get_match_info 
{ 
 #---------------------------------------------------------------- 
#Read in arguments 
 #---------------------------------------------------------------- 
 my $location = shift;  #The address of a page descriptor 
 my $file = shift;   #Pointer to file to look in 
 my $add_space = shift;  #The address to match to 
 
 #---------------------------------------------------------------- 
#Declare variables 
 #---------------------------------------------------------------- 
 my $hex_out;   #Hexadecimal output from read_val  
      #function 
 my $page_desc;   #Address of the page descriptor 
 my $page_address;   #Address of page that corresponds  
      #to page descriptor 
 my $index;    #Index of the page in question 
 my $mem_map_element_size = 0x20; #Size of a page descriptor 
 my $index_offset = 0x14;  #Offset where index resides 
in page  
      #descriptor 
 my $mem_map = 0x1000000; #Physical address of mem_map 16MB 
 my $out_file = ‘match.txt’; #File to write matches to. 
 my $v=0;    #Verbose flag 
 
 #---------------------------------------------------------------- 
#Body 
 #---------------------------------------------------------------- 
#Change the whole address to upper case 
$add_space =~ tr/[a-z]/[A-Z]/; 
 
#Retrieve the value of the current page descriptor’s pointer 
#to the address_space struct that owns it.  The 0x10 is the  
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#offset into the page descriptor where the actual pointer is 
#found. 
$location = $location + 0x10; 
#Turn location into a hex number 
$location = sprintf “%08x”, $location; 
 
if($v==1){print “The value sent in to read_val: $location\n”}; 
#Retrieve address_space pointer from dump file 
$hex_out = read_val($file, $location); 
if($v==1){print “The value returned from the read_val function: 
$hex_out\n”}; 
#Change the output to all upper case for the comparison 
$hex_out =~ tr/[a-z]/[A-Z]/; 
#Compare the result to the address passed in in the parameter 
if($hex_out =~ m/$add_space/) 
 {  
#Calculate the actual page descriptor address and interpret it 
#as hex 
$page_desc = hex($location) - 0x10; 
$page_desc = sprintf « %08x », $page_desc; 
 
#Calculate the page address in memory from the page 
#descriptor address.  The equation is: 
#((page_desc_address - mem_map_address)/0x20) << PAGE_SHIFT  
$page_address = (hex($page_desc) - $mem_map); 
$page_address = $page_address/$mem_map_element_size; 
$page_address = $page_address << 12; 
$page_address = sprintf “%08x”, $page_address; 
#Retrieve the address where the index of the page is stored 
$location = (hex($page_desc) + $index_offset); 
$location = sprintf “%08x”,$location; 
#Read the index of the page in question 
$index = read_val($file, $location); 
 
#Open out file for appending 
open(FILE, “>>$out_file”); 
   
#Write out to file 
print FILE “$index $page_desc $page_address\n”; 
if($v==1){print “MATCH at 0x$location, PAGE_DESC at 
0x$page_desc, “;}  
if($v==1){print “PAGE at 0x$page_address, INDEX is 
$index\n”;} 
#Close output file 
close(FILE); 
  
 } 
 
} 
 
#This function goes to the offset specified in the input 
#(which should be in hex) and returns a word (4 bytes) at 
#that location. The file it searches should be open when 
#this function is called. 
sub read_val 
{ 
 #---------------------------------------------------------------- 
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my $handle = shift; 

#Read in arguments 
 #---------------------------------------------------------------- 

my $contents = shift; 
 
#This intereprets the hex number as a decimal to use in seek 
$contents = hex($contents); 
my $v=0; 
if($v==1){print “Address seen by read_val is: $contents\n”}; 
 
 #---------------------------------------------------------------- 
#Declare variables 
 #---------------------------------------------------------------- 
#The reason behind splitting the input is that I needed to 
#rearrange the order of the bytes from the way they exist in 
#memory—which is backwards.  For example, the word AB123456 in 
#memory is really the hex number 563412AB. 
 my $input_byte_1;   #First byte of the input 
 my $input_byte_2;   #Second byte  of the input 
 my $input_byte_3;   #Third byte of the input 
 my $input_byte_4;   #Fourth byte of the input 
  
 my $hx;    #Hexidecimal version of the above  
      #inputs 
 
 #---------------------------------------------------------------- 
#Body 
 #---------------------------------------------------------------- 
#Go to the correct offset in image file and read selected bytes 
seek($handle, $contents, 0); 
sysread($handle, $input_byte_4, 1); 
sysread($handle, $input_byte_3, 1); 
sysread($handle, $input_byte_2, 1); 
sysread($handle, $input_byte_1, 1); 
  
#Rearrange the bytes and assemble them into hex 
$hx = sprintf “%02x”, ord($input_byte_1); 
$hx = $hx.sprintf “%02x”, ord($input_byte_2); 
$hx = $hx.sprintf “%02x”, ord($input_byte_3); 
$hx = $hx.sprintf “%02x”, ord($input_byte_4); 
  
if($v == 1) {print “Result of read_val function is: $hx\n”}; 
return $hx; 
} 
 
1; 
H. HEAP.C 
/*heap.c 
*by: Jorge Urrea 
*2/15/2006 
 * 
*This program asks for 400MB of heap space and then 
*proceeds to fill it with signatures of the form  
*pid|BEEF|ABCD|page#. This is done to allow for an  
*easy determination of what process wrote the page and 
*what number page it is in the scheme through hex  
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*inspection. 
*/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <sys/types.h> 
#include <unistd.h> 
 
int main(){ 
//Declare variables 
 int pid;  //The pid of this process 
 int *mem;  //Pointer to heap allocated by malloc 
 int *mem2;  //Pointer that advances through heap 
 int cat;  //Variable to concatenate values in 
 int page_count = 0; //The page number being added to heap 
 int i;   //For loop iteration control 
 
//Get pid 
pid = getpid(); 
 
printf(“The pid of this process is: %d\n”, pid); 
//Allocate heap space 
mem = malloc(419430400); 
 
//Initialize mem2 to mem 
mem2 = mem; 
 
printf(“Mem 1 is: %d, Mem 2 is: %d\n”, mem, mem2); 
//Loop the placing of bytes in heap.  The number 
//of iterations will fill up the whole space  
//allocated. 
for(i=0; i<52428800; i++){ 
 
//Assemble word to put into heap 
cat = pid; 
cat = cat << 16; 
cat = cat | 0xBEEF; 
   
//Put it into the heap 
*mem2 = cat; 
 
//Advance mem2 4 bytes 
mem2 = mem2 + 1; 
 
//If the sequence has been repeated 512 times, then 
//increment the page count (512 x 8 bytes per loop = 
//4096).  The modulo operation is to account for 
//indexing at zero.  That is, if you want to change 
//a page every 4 iterations you actually want iterations  
//0-3 to be page 0, iterations 4-7 to be page 1, etc. 
if((i%512 == 511)){ 
page_count++; 
  } 
 
//Assemble second word to put in heap 
cat = 0xABCD; 
cat = cat << 16; 
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cat = cat | page_count; 
 
//Put it into the heap 
*mem2 = cat; 
   
//Advance mem2 4 bytes 
mem2 = mem2 + 1; 
 } 
  
//Create an endless loop to maintain the persistance of  
//This program 
while(1){ 
 } 
  
//Free the space allocated 
free(mem); 
 
return 0; 
} 
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