

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

AN ANALYSIS OF LINUX RAM FORENSICS

by

Jorge Mario Urrea

March 2006

 Thesis Advisor: Chris Eagle
 Second Reader: George Dinolt

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: An Analysis of Linux RAM Forensics
6. AUTHOR(S) Urrea, Jorge Mario

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
During a forensic investigation of a computer system, the ability to retrieve volatile information can be of

critical importance. The contents of RAM could reveal malicious code running on the system that has been
deleted from the hard drive or, better yet, that was never resident on the hard drive at all. RAM can also provide
the programs most recently run and files most recently opened in the system. However, due to the nature of
modern operating systems, these programs and files are not typically stored contiguously—which makes most
retrieval efforts of files larger than one page size futile. To date, analysis of RAM images has been largely
restricted to searching for ASCII string content, which typically only yields text information such as document
fragments, passwords or scripts.

This thesis explores the memory management structures in a SUSE Linux system (kernel version 2.6.13-
15) to make sense out of the chaos in RAM and facilitate the retrieval of files/programs larger than one page size.
The analysis includes methods for incorporating swap space information for files that may not reside completely
within physical memory.

The results of this thesis will become the basis of later research efforts in RAM forensics. This includes
the creation of tools that will provide forensic analysts with a clear map of what is resident in the volatile memory
of a system.

15. NUMBER OF
PAGES

89

14. SUBJECT TERMS
Computer Forensics, Physical Memory Analysis, RAM Analysis, Volatile Memory

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

AN ANALYSIS OF LINUX RAM FORENSICS

Jorge M. Urrea
Civilian, Federal Cyber Corps

B.S., California Polytechnic State University, 2003

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2006

Author: Jorge Mario Urrea

Approved by: Christopher S. Eagle

Thesis Advisor

George Dinolt
Second Reader

Peter J. Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

During a forensic investigation of a computer system, the ability to retrieve

volatile information can be of critical importance. The contents of RAM could reveal

malicious code running on the system that has been deleted from the hard drive or, better

yet, that was never resident on the hard drive at all. RAM can also provide the programs

most recently run and files most recently opened in the system. However, due to the

nature of modern operating systems, these programs and files are not typically stored

contiguously—which makes most retrieval efforts of files larger than one page size futile.

To date, analysis of RAM images has been largely restricted to searching for ASCII

string content, which typically only yields text information such as document fragments,

passwords or scripts.

This thesis explores the memory management structures in a SUSE Linux system

(kernel version 2.6.13-15) to make sense out of the chaos in RAM and facilitate the

retrieval of files/programs larger than one page size. The analysis includes methods for

incorporating swap space information for files that may not reside completely within

physical memory.

The results of this thesis will become the basis of later research efforts in RAM

forensics. This includes the creation of tools that will provide forensic analysts with a

clear map of what is resident in the volatile memory of a system.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. RAM FORENSICS BACKGROUND..2
B. PURPOSE OF STUDY..3
C. THESIS ORGANIZATION..4

II. BACKGROUND ..5
A. PARAMETERS OF INVESTIGATION ...5

1. Source Navigator 5.1.4...5
2. Gcalc 5.6.31...5
3. DD (Part of Coreutils 5.3.0) ..6
4. GHex 2.8.1...6
5. Memory (Part of KDE 3.4.2 Level “b”) ...6
6. Kate Editor 2.4.1 ..6

B. MEMORY MANAGEMENT STRUCTURES ...6
1. The Big Picture...6
2. Task Struct ...7
3. MM Struct ..8
4. VM Area Struct..8
5. File Struct ...9
6. Dentry Struct..9
7. Inode Struct ..10
8. Address Space Struct...10
9. Page Struct..11
10. Memory Map..11

C. USEFUL CALCULATIONS...12
1. Virtual to Physical Memory Conversion for Kernel Addresses12
2. Page Frame to Page Descriptor Conversion....................................12
3. Page Descriptor to Page Frame Conversion....................................13

D. PAGE TABLES..13
E. SWAP SPACE..14

1. Swap Area Descriptor..15
F. IMAGING RAM IN LINUX...16

III. CURRENT STATE OF RAM FORENSICS...17

IV. ANALYSIS ...21
A OVERVIEW...21
B. PHYSICAL MEMORY...22

1. Traversing task_struct Linked List..22
2. Rebuilding File ...24
3. Radix Tree Structure...27

C. SWAP..29

 viii

V. CONCLUSION ..35
A. SUMMARY ..35
B. PROBLEMS ...35
C. FUTURE WORK...37

APPENDIX. SOURCE CODE...39
A. FIND_WALDO.PL ..39
B. FIND_PATTERN.PL...40
C. FIND_SIGNATURES.PL..43
D. MATCH_SIGNATURES.PL ..47
E. FIND_TASK.PL...52
F. ENUM_ADD_SPACE.PL ...60
G. UTILS.PM ..63
H. HEAP.C...68

LIST OF REFERENCES..71

INITIAL DISTRIBUTION LIST ...73

 ix

LIST OF FIGURES

Figure 1. Overview of Memory Management Structures. (From Ref. 3)7
Figure 2. Mapping from Linear/Virtual Address Space to Physical Addresses..............12
Figure 3. Page Table Function. (From Ref. 5) ..14
Figure 4. Swap Space Function. (From Ref. 4)...15
Figure 5. Finding Address of init_task..23
Figure 6. Doubly Linked Task List ...24
Figure 7. Pointer Structure from address_space to dentry ..27
Figure 8. Radix Tree Structure ..28
Figure 9. Structure of Second Radix Tree Explored ...29
Figure 10. Signature Used in heap.c..30
Figure 11. swap_entry_t layout (After Ref. 6) ..32
Figure 12. Tracing of Pages in Swap ..34

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Elements of task_struct ..8
Table 2. Elements of mm_struct ..8
Table 3. Elements of vm_area_struct...9
Table 4. Elements of File Struct...9
Table 5. Elements of Dentry Struct..10
Table 6. Elements of Inode Struct..10
Table 7. Elements of address_space Struct..11
Table 8. Elements of Page Struct ...11
Table 9. Pages Found in Image..25
Table 10. Page Descriptors and Indices ...25
Table 11. Tracing of Heap Process ..31
Table 12. Second Heap Process Trace ...33

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

I would like to thank LCDR Chris Eagle, USN, Retired for providing the idea for

this thesis and for discussing problems and offering great advice throughout the whole

process.

I would also like to thank Dr. George Dinolt for his input and constructive

criticism because it helped improve my technical writing and, therefore, any reader’s

comprehension of this thesis.

This material is based upon work supported by the National Science Foundation

under Grant No DUE-0114018 and by the Office of Naval Research. I would like to

thank the National Science Foundation and the Office of Naval Research for their

contributions. Any opinions, findings, and conclusions or recommendations expressed in

this material are those of the author and do not necessarily reflect the views of the

National Science Foundation or of the Office of Naval Research.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

Computer-aided crime has been a significant problem for industry in recent years.

The FBI estimated the financial losses related to computer incidents in the United States

at 67.2 billion for the year 2005 [Ref. 10]. These incidents included (but were not limited

to): viruses, worms, financial fraud, network intrusion, and the sabotage of data or

networks. Computer crime has also posed a threat to national security. Credit card

information stolen from compromised systems might have been used to fund terrorist

activities [Ref. 11]. As criminals become more adept at breaking laws through the use of

computers, law enforcement agents must hone their ability to investigate these types of

cases. Computer Forensics can be used to establish who committed the crime and to

reconstruct how the crime was executed.

One specific branch of forensics gaining momentum concerns itself with RAM

analysis. Traditionally, when a forensic investigation is performed on a computer of

interest, one of the first things done is to gather any volatile information that can be

gleamed from the victim system. Sometimes this includes making a copy of the system’s

RAM content, which is analyzed with simple searches for ASCII or Unicode string

content because few tools exist and few people are trained to perform a more in-depth

analysis of the memory dump [Ref. 1].

Some of the key pieces of volatile information that a forensic analyst is looking

for are the currently running processes of a system and the files most recently used. An

educated investigation of a RAM dump could yield this information. Some might ask

why it is a good idea to use such a technique if there are programs available (such as ps1)

that will enumerate running processes. The answer is that these programs can be

subverted if the system they are running on is compromised with a loadable kernel

module rootkit—a piece of malware that can manipulate the execution of system

commands [Ref. 1]. In addition, advanced malware techniques allow for the injection of

1 The program ps lists currently running processes in a Linux system.

2

malicious code directly into running processes such that no new process is visible to

standard tools. A forensic exploration of physical memory can look at kernel structures

directly and, consequently see through any such deceptions.

Recent worms, including SQL Slammer and Code Red, do not write any data to

disk [Ref. 12]. All data remains in physical memory. This renders standard disk

forensics useless and becomes yet another reason why thoroughly inspecting RAM is a

growing necessity. It may be the only way to directly detect the presence of malware and

give an investigator an opportunity to retrieve full and accurate information from a

compromised system.

A. RAM FORENSICS BACKGROUND
The field of computer forensics is young. The FBI created a Computer Analysis

and Response team (CART) in 1984—which did not become fully functional until

1991—to supplement its well-established investigation protocols for terrorism and

violent crime [Ref. 2]. Since then, other public and private organizations have followed

suit and now, twenty-one years later, forensics is beginning to take shape.

Within the forensics community, a large share of attention has been paid to

analyzing non-volatile media such as hard drives or storage peripherals. More recently

the rise of networks has created an interest in the study of network-based evidence as

well. Both of these subjects have existing, extensive bodies of knowledge—as

exemplified by [Ref. 1] and [Ref. 7]. This is not the case for RAM analysis. The

analysis of volatile memory is such a young area, in fact, that one is hard pressed to find

more than one paper directly addressing analysis of Linux RAM contents. As an

example of the lack of attention to this critical need, the popular book Incident Response

& Computer Forensics [Ref. 1] devotes 7 lines of coverage to RAM analysis in a twenty-

two-page chapter devoted to live data collection from Unix systems.

RAM analysis, like all other forensic endeavors, is concerned with the retrieval of

information that can serve as evidence in criminal investigations. More specifically, it is

the attempt to use memory management structures in computers as maps to extract files

and executables resident in a computer’s physical memory. These files/executables can

be used to prove that a crime has transpired or to trace how it came to pass. The

3

usefulness of this type of investigation lies in the fact that any information found in RAM

is known to have been recently running on the victim system. Additionally, volatile

memory examination can stand up to conventional attempts at thwarting forensic

efforts—such as function hooking [Ref. 3]—which is a way to attach a chosen function to

the normal flow of control in a computer system. For example, if a rootkit has hooked

itself into the Linux kernel and is intercepting calls to ps, it can exclude whatever process

it wants to hide from the returned list of processes.

B. PURPOSE OF STUDY
The immediate purpose of this research is to discover what forensic techniques

can be used effectively on the physical memory of a SUSE Linux system running the new

2.6 kernel. Some techniques for volatile memory forensics have been developed for the

2.4 kernel [Ref. 3] but they have not yet been tested in the new version of the Linux

kernel—in which some of the fundamental structures involved in memory management

have been modified.

The more general goal of this research is to improve the methods of analyzing

RAM dumps. Currently, the typical way to analyze physical memory on a computer is to

run a string search on the entire memory image in the hopes of finding information such

as passwords, the cleartext of a recently typed encrypted message, or the contents of a file

[Ref. 1]. Unfortunately, during this type of search, valuable context information is lost.

For example, it becomes impossible to determine whether recovered string fragments

represent the contents of executable files, data files, or runtime program data. This is an

unsophisticated “stab in the dark” type of analysis that can only yield a small amount of

useful information—an unfortunate result when the contents of physical memory are a

rich source of forensic evidence. As criminals become more adept at creating malware

that can elude current methods of digital forensic investigation, forensics methods must

evolve to meet the challenge. When the author of a piece of malware decides to design it

to reside exclusively in physical memory—and thereby evade any hard drive

investigation—the forensic analyst must have a way to detect it. The goal of this research

is to provide the basis for the development of tools that the forensic analyst can use in a

detailed analysis of Linux kernel 2.6 memory images.

4

C. THESIS ORGANIZATION
This paper will present forensic techniques, including a few proof-of-concept Perl

scripts, which will facilitate the development of a tool that will be able to extract files and

executables stored in a computer’s physical memory. Chapter II will detail the structures

that are involved in Linux memory management and their relationship. This chapter will

also outline some of the essential calculations and concepts that play a part in the analysis

of RAM images later in the paper. Chapter III will discuss the current state of RAM

forensics. Chapter IV will provide a description of the analysis performed on a SUSE

Linux system running the 2.6.13-15 kernel.

The analysis consists of two parts. The first is placing specific files in memory,

imaging the memory, and seeing if the file in question can be retrieved. The second is to

see what other useful information can be extracted from the memory image using data

from swap space. The main thrust of Chapter IV is to verify whether forensic techniques

developed for the 2.4 Kernel [Ref. 3] are applicable to the 2.6 Kernel and to see if any

supplementary techniques can be discovered for this new Kernel. Chapter V will

summarize the results of this thesis and problems encountered along the way.

Additionally, the chapter will describe what future work can be performed in the field of

RAM forensics.

5

II. BACKGROUND

This section describes all of the major components of the Linux virtual memory

management system. A short description of each component is provided—as are the

locations of the corresponding definitions in the Linux source code. The base directory

location assumed throughout is /usr/src/Linux-2.6.13-15. This was the default location

created by the SUSE 10 distribution used in this thesis, which can be downloaded at the

following url: http://en.opensuse.org/Welcome_to_openSUSE.org. Please note that

depending on the version of the Linux kernel used, the version number will vary.

A. PARAMETERS OF INVESTIGATION
The research conducted in this paper was performed on a SUSE 10 system

running Linux kernel version 2.6.13-15. The system resided in a Dell Dimension 4400

computer with 512 MB of RAM and an Intel Pentium 4 running at 2.0 GHz. All of the

programming was done in Perl version 5.8.7—except for a small c program used to aid in

the analysis of swap space. The amount of RAM was deliberately chosen to ease the

burden of translating from virtual to physical memory addresses by avoiding high

memory (> 896 MB) translations. Use of high memory would not allow for the simple

memory conversion scheme outlined in section C of this chapter. Additional tools used

during the course of this research are as outlined below.

1. Source Navigator 5.1.4
This program was run on Mac OS X 10.4.3 through X11. It was downloaded

using DarwinPorts (http://darwinports.opendarwin.org/getdp). Source Navigator is a

source code analysis tool that provided a quick way to search through the sizable kernel

code for items of interest.

2. Gcalc 5.6.31
This is a calculator included in SUSE 10. It was used for converting decimal

numbers to hexadecimal numbers and vice versa. It was also used for arithmetic in both

bases. These calculations were useful when adding offsets to the beginning of a struct to

find certain values and pointers within that struct.

http://en.opensuse.org/Welcome_to_openSUSE.org
http://darwinports.opendarwin.org/getdp

6

3. DD (Part of Coreutils 5.3.0)
This tool version was included in SUSE 10. In the simplest of terms, it copies

data from one place to another. In the context of this thesis, it was used to create all the

images of RAM and swap. The full documentation for dd can be found at

http://www.hmug.org/man/1/dd.php.

4. GHex 2.8.1
This hex editor is included in SUSE 10. All the analysis of images created for

this thesis was done using this tool. Substantial image files, as large as 400 MB, slowed

the program down while being opened, but GHex responded quickly after that initial step.

5. Memory (Part of KDE 3.4.2 Level “b”)
This tool is included in SUSE 10 as part of the KDE installation and can be run

with the command “kcmshell memory” from a terminal window. It was used as a way to

assure that data was being written to the swap space in response to the large memory

demands made by heap.c [Appendix A].

6. Kate Editor 2.4.1
This editor is included in SUSE 10. It was used to write all of the code involved

in this thesis. A helpful feature of this editor was that it allows a user to open multiple

files and navigate back and forth through them in a single window with a forward and

back arrow like a web browser.

B. MEMORY MANAGEMENT STRUCTURES

1. The Big Picture
Linux implements virtual memory management through a series of C data

structures that are interrelated as shown in Figure 1 [Ref. 4].

http://www.hmug.org/man/1/dd.php

task _struct task _struct task _struct

next

prev prevprev

next next

prev

mm _struct mm _struct mm _struct

next

mmlist mmlistmmlist mmlist

mm mm mm

vm _area _struct vm_area _structvm_next

mmap vm _mm vm_mm

filevm_file vm_file

dentry

inode

address _space

Page descriptor

f_dentry

d_inode

i_mapping

mapping /
page _tree

Page descriptorPage descriptor

mapping /
page _tree

mapping /
page _tree

i_dentry

host

Figure 1. Overview of Memory Management Structures. (From Ref. 3)

2. Task Struct
The kernel creates a task_struct for every process running on a computer at any

given time. It is defined in /usr/src/linux-2.6.13-15/linux/sched.h and holds a wealth of

information about the current state of each process [Ref. 3]. For the purposes of this

7

8

thesis, the relevant information contained in each task_struct are the following: a pointer

to the mm_struct, the process id (pid) of the program, and the executable name. The

reader should note that kernel threads have NULL mm_struct pointers because they do

not need this kernel structure to exist [Ref. 6]. The offsets of the elements used during

this research—measured from the beginning of this struct—are shown in Table 1. These

offsets allow an investigator to find the location of the elements easily when viewing the

struct in a hex dump. A developer can also use these offsets to create a program that

parses this struct.

Data Type Element Offset

struct mm_struct* mm 0x78

pid_t pid 0x9C

char[] comm (executable name) 0x1A4

Table 1. Elements of task_struct

3. MM Struct
This structure describes a process’ address space and, as such, there is only one

mm_struct per process. In the case of userspace threads, one mm_struct is shared by all

of them. The pgd member of this struct holds a pointer to the page global directory of the

process. This is the pathway to all the pages owned by a process—even those that are in

swap space. The mm-struct also outlines the start and end addresses of memory sections

such as code, data, and the heap. It is defined in /usr/src/linux-2.6.13-15/linux/sched.h.

The offsets of the elements used during this research—measured from the beginning of

this struct—are shown in Table 2.

Data Type Element Offset

struct vm_area_struct* mmap 0x00

pgd_t* pgd 0x20

Table 2. Elements of mm_struct

4. VM Area Struct
A process typically only uses small portions of the memory allocated to it and, in

order to reconcile this fact, the vm_area_struct is used. It contains a start and end address

9

for the memory area it describes as well as the access permissions for that area. An

example of such a memory region is a read-only library loaded into the address space or

the process heap [Ref. 6]. The vm_struct is defined in /usr/src/linux-2.6.13-

15/linux/mm.h. The offsets of the elements used during this research—measured from the

beginning of this struct—are shown in Table 3.

Data Type Element Offset

struct mm_struct* vm_mm 0x00

struct file* vm_file 0x4C

struct vm_set (where i_mmap
pointer from address_space

points to)

0x28

Table 3. Elements of vm_area_struct

5. File Struct
If a memory region represents a file, then the vm_file field of the corresponding

vm_area_struct will point to a file struct. The file struct is outlined at /usr/src/linux-

2.6.13-15/linux/fs.h. It contains information about the interaction between a process and

an open file and is only in kernel memory while a process accesses the file in question

[Ref. 4]. This struct includes a pointer to the file operations available to that particular

process and a pointer to the filesystem containing the file. Other interesting data that can

be gleamed from this structure is the user’s UID and the file pointer [Ref. 4]. The offset

of the element used during this research—measured from the beginning of the struct—is

shown in Table 4.

Data Types Element Offset

struct dentry* f_dentry 0x08

Table 4. Elements of File Struct

6. Dentry Struct
These structures are created by the Linux virtual file system for every directory

used in memory [Ref. 4]. For instance, if a user looks up the file “document.txt” in the

path /home/Ted, then three dentry objects will be created: one for / (root), one for home,

and one for Ted. The declaration of dentry structure can be found in /usr/src/linux-

10

2.6.13-15/linux/dcache.h. It holds information like the name of its related file. A pointer

to the name is held in the d_name element—which usually points to the d_iname element

further down in the dentry struct if the name is short enough. If the name is long enough,

the d_name element will point to a location with sufficient space. The offsets of the

elements used during this research—measured from the beginning of this struct—are

shown in Table 5.

Data Type Element Offset

struct inode* d_inode 0x08

unsigned char d_iname (name of assoc. file) 0x64

Table 5. Elements of Dentry Struct

7. Inode Struct
All the information required by the filesystem to manipulate a file can be found in

this structure [Ref. 4]. The inode definition can be found in /usr/src/linux-2.6.13-

15/linux/fs.h. The information in this struct includes: the number of the inode, the uid of

the file, the length of the file in bytes, the last access time, the last write time, and the last

inode change time. The offsets of the elements used during this research—measured from

the beginning of this struct—are shown in Table 6.

Data Type Element Offset

struct address_space* i_mapping 0x9C

Table 6. Elements of Inode Struct

8. Address Space Struct
The address_space struct can be found at /usr/src/linux-2.6.13-15/linux/fs.h and is

created by the kernel for every memory mapped file [Ref. 3]. Some of the information of

interest here is a radix tree with links to all the pages belonging to this particular file

(page_tree element) and the total number of pages owned by the file. In Kernel 2.4 it

used to hold doubly linked lists of clean, dirty, and locked pages. However, none of these

lists exist in kernel 2.6. The offsets of the elements used during this research—measured

from the beginning of this struct—are shown in Table 7.

11

Data Type Element Offset

struct inode* host 0x00

struct radix_tree _root page_tree 0x04

struct prio_tree_root i_mmap (pointer to

vm_area_struct)

0x14

unsigned long nrpages (number of pages

owned

0x28

Table 7. Elements of address_space Struct

9. Page Struct
This is the page descriptor structure that holds information relevant to individual

pages of a file. The information found here that is of most relevance for this thesis is the

index element which holds the offset within the mapping of the file. For instance, if it is

the second page of a file, the index field will hold the number one (because the indices

begin at 0). In the 2.4 kernel, the virtual field held the virtual address of the page being

described. In kernel 2.6, this is an optional field that is only required when a computer

has high memory—more than 896 MB of RAM—to hold the dynamically assigned

virtual address. The offsets of the elements used during this research—measured from the

beginning of this struct—are shown in Table 8.

Data Types Element Offset

struct address_space* mapping 0x10

pgoff_t index (offset within mapping) 0x14

Table 8. Elements of Page Struct

10. Memory Map
All page descriptors are part of the mem_map array, which is typically stored at

address 0x1000000 [Ref. 6]. The size of each page descriptor on the system used in this

paper is 0x20 bytes so, by beginning at 0x1000000 and incrementing by 0x20, it is

possible to traverse the entirety of this array from one page descriptor to another.

C. USEFUL CALCULATIONS

1. Virtual to Physical Memory Conversion for Kernel Addresses
All pointers encountered in the structures described above will contain virtual

addresses and, since this paper examines physical memory dumps, these addresses must

be converted to their physical equivalent. For example, if an investigator examines the

host element of the address_space object (which points to an inode), s/he must be able to

derive the corresponding address in the memory dump to determine where to look. This

translation is accomplished by subtracting the constant PAGE_OFFSET—hex value

0xC0000000 in x86 hardware—from the virtual address [Ref. 6]. This means that the

kernel virtual address 0xC1234567 is, in reality, physical address 0x01234567. The

reason behind this conversion is that the virtual address space in the typical x86 machine

is 4 GB and the topmost Gigabyte is assigned to the kernel [Ref. 6]. This upper Gigabyte

begins at 0xC0000000. So physical memory begins at virtual address 0xC0000000,

which is equivalent to physical memory address 0x00000000. This memory layout can

be seen in Figure 2.

Direct Mapping to Physical
Addresses

Linear Address Space (4 GB)

PAGE_OFFSET
(0xC0000000)

Process Address Space

Address 0 Address 232

Figure 2. Mapping from Linear/Virtual Address Space to Physical Addresses

2. Page Frame to Page Descriptor Conversion
An investigator might want to find the page descriptor associated with a certain

page frame. For example, if the investigator searches physical memory and finds a page

frame that matches the signature for a known computer worm, s/he will want to find any

related page frames. One way to do that is to find that page’s page descriptor, follow the

mapping pointer to the corresponding address_space struct, and read all the pages that

have page descriptors in the radix tree (see Chapter IV, Section B, Subsection 3). The

following equation will convert a page frame address to its related page descriptor

address:

12

13

[(Page Frame Addr. >> PAGE_SHIFT) x Page Desc. Size] + mem_map start

PAGE_SHIFT is typically 12 bits—the shift is equivalent to dividing by the size

of a page frame (0x1000 bytes). As discussed above, mem_map begins at 0x1000000

and the size of a page descriptor in the system used for this paper is 0x20 bytes. The

page frame address is meant to be a physical address.

3. Page Descriptor to Page Frame Conversion
An investigator might also want to find the page frame associated with a certain

page descriptor. In the example in subsection 2 above, when the investigator wants to

look at the page frames associated with the page descriptors found in the radix tree, s/he

could use the following equation:

[(Page Desc. Addr. – mem_map start) / Page Desc. Size] << PAGE_SHIFT

As the inverse of the previous equation, the PAGE_SHIFT in this case is

equivalent to multiplying by the size of a page frame. The variables and constants for

this equation are the same as the equation in subsection 2 above. The page descriptor

address is meant to be a physical address.

D. PAGE TABLES
The standard way for the Linux operating system to translate between virtual and

physical addresses is to use paging. Paging is a way to break down a virtual address into

sections, each representing an offset into a table that is a part of a different level of

indirection. Earlier versions of the Linux kernel made three levels of indirection

available—even though most systems only required two. The third level was only used

in conjunction with a special feature in the x86 architecture called Physical Address

Extension that allows a system to address 64 GB of physical memory. However, in order

to provide compatibility with new 64-bit architectures, a need arose to accommodate a

greater amount of memory. Beginning in kernel 2.6.11 there are now four levels of

indirection used in Linux systems: Page Global Directory (PGD), Page Upper Directory

(PUD), Page Middle Directory (PMD), and Page Table Entry (PTE). PGD’s are tables

that point to PUD’s, which are tables that point to PMD’s, which are tables that point to

PTE’s, which point to the final level of page tables, which point directly at page frames.

This sequence is illustrated in Figure 3.

For 32-bit systems without Physical Address Extension Linux sets the length of

the upper and middle directory fields to zero. Collapsing both of those page tables to one

entry and keeping them in the chain of pointers maintains compatibility with 64-bit

systems.

Global Directory Upper Directory Middle Directory Table Offset

cr3
or

mm_struct ->pgd

+ pgd_t

pud_t+

pmd _t+

pte _t+

Page+

Figure 3. Page Table Function. (From Ref. 5)

E. SWAP SPACE

In order to expand the address space that is effectively usable by a process and to

expand the amount of dynamic RAM, modern operating systems use the method known

as swapping [Ref. 4]. Technically, swapping is the practice of transferring a whole

process address space to disk, but modern operating systems only transfer portions of a

process’ address space to backing storage when the amount of free physical memory

becomes scarce. In Linux systems this typically shows up in the form of a hard disk

partition devoted to this task, but swap areas can be stored in files as well. A Linux

system can have as many as 32 swap areas as defined by the MAX_SWAPFILES

constant [Ref. 6]. The system used in this paper makes use of the hard disk partition

method.

Only certain types of data are eligible to be placed in swap space. They are as

follows (Ref. 4):

• Pages that belong to an anonymous memory region of a process. In other
words, a region of a process that does not map a file on disk.

14

• Modified pages belonging to a private memory mapping of a process.
Private memory mapping is when a process associates a memory region to
a portion of a file on disk or on a block device—the private part means

that it only reads from this mapping; there is no writing. The process can
still modify these pages even if they are read only. However, the modified
pages cannot be written back to the disk or block device they belong to.

• Pages belonging to an inter-process communication shared memory
region.

1. Swap Area Descriptor
Every swap area is described by a swap_info_struct—which is defined in

/usr/src/linux-2.6.13-15/linux/swap.h. This structure contains a pointer to the swap area

(either partition or file) and information including the size of the swap area, the number

of usable pages, and a pointer to the swap map. There is a statically declared array called

swap_info that holds all of the existing swap_info_struct objects in a system.

2. Swap Map
The swap_map array is an array of counters representing page slots in the swap

area. There is an array element for every page slot in the corresponding swap area and

the counter represents the number of processes using the page in that particular page slot.

If the counter that represents a certain slot contains the number SWAP_MAP_BAD (32,

768), then it is an indication that the slot is defective.

3. How the Pieces Fit Together
The following figure illustrates how all the pieces in the management of swap

space are related.

swap _info _struct

swap _info _struct

swap _info _struct

swap _info _struct

swap _info _struct

swap _info _struct

swap _info _struct

swap _info

0 3 32,768 5 2 4

swap _device
or

swap _file

swap _map

Page Slots Belonging to Swap Space

Counters Representing Page Slots

Figure 4. Swap Space Function. (From Ref. 4)

15

16

F. IMAGING RAM IN LINUX
The tool used to image physical memory and swap space throughout the course of

this thesis was dd. This is a simple and powerful command line tool included in Linux

distributions that can be used to copy the standard input to the standard output [Ref. 15].

To create an image of RAM, the directory /dev/mem was copied to a file. This directory

represents RAM and, as such, when it was copied, so were the contents of memory. The

actual command used looked like this:

“dd if=/dev/mem of=whole_mem.img bs=1”

The “if” operand defines an input file and the “of” operand defines an output file. The

output file for this particular run of dd is “whole_mem.img”. The “bs” operand sets the

block size to n bytes—in this case n is equal to one.

Images of swap space were taken using a similar set up. One of the differences is

that the swap space, as it was set up for this thesis, was represented by the /dev/hda3—the

third hard disk partition. The other difference is the use of the “count” operand. It

specifies the number of input blocks to copy. The actual command used looked like this:

“dd if=/dev/hda3 of=swap_space2.img bs=1 count=245760000”

17

III. CURRENT STATE OF RAM FORENSICS

Ram forensics is a blossoming field and, as such, has not yet reached maturity. In

fact, it can be safely said that this field is in its infancy stage. Documents such as [Ref. 7]

and [Ref. 8] describe the collection procedure for volatile memory in the most general of

terms. They both agree that an investigator handling an incident should begin by

collecting volatile data, which includes physical memory. Unfortunately, they don’t

specify how an investigator should approach the analysis of a system’s memory. A list in

[Ref. 8] mentions some useful programs such as ps that can be used to extract volatile

data from a system. One incident response text [Ref. 1] only goes as far as mentioning

that few people go further than running a string search of a memory image.

The most recent of the documents referenced in the above paragraph is [Ref. 6]

which was written in 2004. In March of 2005, a man by the name of Mariusz Burdach

released a paper [Ref. 3] providing a more in-depth look at the forensic analysis of

physical memory of a Linux system. Burdach later presented [Ref. 9] at Black Hat

Federal in 2006—which was largely a re-telling of his previous paper with some

additional information regarding Windows physical memory forensics. He has

developed tools based on the principles outlined in his works that are available at

http://forensic.seccure.net. The only problem at this time is that the focus has been on the

Linux 2.4 kernel and, since this kernel was superseded by the next stable release version

(2.6) in 2004, the focus needs to shift to the newer kernel. The 2.6 kernel has changed

aspects of its virtual memory management that must be explored to determine if the same

techniques that worked on kernel 2.4 remain effective.

One aspect of the slides he presented that was an improvement over the paper was

Burdach’s explanation of the relationship between page table entries and swap space. He

explains that when a page is swapped out, its page table slot will be filled with a pointer

to swap space. He also mentions that the way to know that a page table entry is an index

to a swapped out page is to check that the least-significant bit is cleared. This is true, but

it is not always the case. Bit 0 (the least-significant bit) corresponds to the

_PAGE_PRESENT flag so it would make sense to assume that if it is cleared, the page is

not present in memory. The missing piece of information is that bit 7 corresponds to the

http://forensic.seccure.net

18

_PAGE_PROTNONE flag. When a memory region must be protected from user space

processes this bit is set and bit 0 is cleared [Ref. 6]. This means that the page is present,

just not accessible. A programmer must keep this case in mind when determining if a

page table entry contains a swap space index or not.

On the Windows side, the latest demonstrations of physical memory forensics

techniques can be found in the solutions to the 2005 Memory Analysis Challenge

presented by the Digital Forensic Research Workshop website [Refs. 13, 14]. Some of

the theory discussed by the two winning answers can be applied to a Linux investigation

and some cannot. The following paragraphs address the application of windows forensic

theory to Linux.

To begin with, both answers looked at all the processes listed in the doubly linked

eprocess list to create a printout of all the processes running on the system. This is

equivalent to walking the task_struct list shown in Figures 1 and 6 to enumerate all

running processes on a Linux system. The files representing each process were recovered

and compared to known versions of those programs to check their integrity. In this way,

a few suspicious processes were found. Using the radix tree structure (Chapter IV,

section B, subsection 3) to rebuild process files could allow an investigator to use this

method in a Linux environment.

The second response also went one step further in that it searched windows

objects such as the handle tables—which contain references to their owning process—to

make sure that there were no hidden processes. This is because a technique known as

Direct Kernel Object Manipulation could unlink a process from the eprocess list to avoid

detection through a simple walk of that table. An analogous technique in Linux to verify

if a task_struct has been unlinked from the doubly linked list of task_structs could begin

by enumerating all mm_structs. An investigator could then see if, after checking the list

of task_structs, there are any mm_structs that are not accounted for. The difficulty here

would be that there is no pointer from a mm_struct to its parent task_struct so the search

for the corresponding task_struct would require a heuristic approach.

Another technique discussed in the second answer to the challenge was the search

of segment descriptor information through objects such as the Global Descriptor Table

and the Local Descriptor Table. Suspect entries in these tables could reveal the presence

19

of a kernel function hook. This is a way to insert a function of choice between the kernel

and user space processes to filter unwanted information flow to user processes. It is a

good way to hide processes and/or files from programs that would otherwise detect their

presence. These techniques work in a Windows environment because Windows uses

segmentation. However, since Linux does not use segmentation, gathering GDT or LDT

data would be of no use to an investigator examining a Linux system.

The final two methods used in the forensics challenge were checking MAC times

and performing string searches for known malware strings. The MAC times provided

information about when a suspicious executable file was opened and, consequently, the

probable time that the attack against the target system began. The inode struct in a Linux

system has this information available. Finally, the string search would be possible in a

Linux environment because performing such a search is not OS specific.

20

THIS PAGE INTENTIONALLY LEFT BLANK

21

IV. ANALYSIS

A OVERVIEW
The next few sections go through specific examples of how to perform certain

analysis methods on the physical memory of a Linux system. However, this section

offers the reader a blueprint of those methods so that s/he can better understand them

when they are explained in detail.

The first method allows an investigator to enumerate all of the processes present

in physical memory. This function is accomplished by traversing the doubly linked list

of task_structs shown in Figures 1 and 6. The steps required are as follows:

1. Find the address of init_task—the first element in the list—from the
system’s symbol table.

2. Go to that address and retrieve the desired information from the elements
of the init_task struct—it is of type task_struct. For example, the name of
the process represented by the task struct can be found in the char array
called comm at offset 0x1A4 from its first byte.

3. Find the task element of init task because it contains the pointer to the next
task_struct in the list and follow the pointer.

4. Gather required information again—keep in mind that offsets are not from
the beginning, but from the task element now (see next section).

5. Follow these pointers and gather information until the pointers wrap
around to init_task.

The next method is rebuilding a file. The next section provides a couple of ways

to do this. The first requires searching the mem_map array and gathering pages into bins

according to their parent address_space struct. This is not an efficient operation, but it

can rebuild just about any file in physical memory. The second method uses a radix tree

structure found in the address_space struct to rebuild a file that represents a process. In

other words, if you run the program “prog”, then this method finds the file from which

“prog” was run. Here are the steps required for the second method (since the first was

easily summarized above):

1. Traverse pointers illustrated in Figure 1 from a task_struct down to it’s
corresponding address_space struct.

22

2. Find the page_tree element of the address_space struct. Then find its third
member, which is a pointer to a root node. Traverse the tree as shown in
subsection 3 of the next section.

3. Convert all the page descriptors found in the radix tree into page frame
numbers.

4. The page frame numbers are in order. Copy them in order into the same
file.

Finally, swap space analysis is incorporated. This is useful when the method

described above does not work because certain pages belonging to the file were swapped

out. The necessary steps are:

1. Follow mm pointer from task_struct to mm_struct.

2. Follow pgd pointer in mm_struct to pgd.

3. Each pointer in the pgd goes to a page table. Follow these links to page
tables and search the page tables until you find the group of pointers to the
pages referenced by the radix tree—it is assumed that an analysis of the
radix tree was already performed.

4. Once those pages are found, look at the adjacent pointers in that particular
page table. If some of those addresses look like indices into swap space—
bits 0 and 7 are cleared—then look in the appropriate swap space page slot
for the needed page.

B. PHYSICAL MEMORY

1. Traversing task_struct Linked List
Figure 1 shows that the topmost virtual memory structure is the task_struct. Since

this is the most general structure, it is where the analysis of physical memory begins. The

doubly linked list of task_structs can provide the names of every process currently

running in a system just like the Linux ps command. However, the advantage of this

method over ps is the fact that it is immune to the manipulation of a rootkit because it

does not rely on the target system’s kernel. This list of task_structs is anchored by a

special task_struct named init_task that can be found through the address listed in the

kernel symbol table. The symbol table contains the addresses of many important

structures that the kernel needs to access and it resides in /boot/System.map-2.6.13-15.8-

default. The reader should note that systems running other versions of the kernel would

have different values than 2.6.13-15.8. For example, System.map-2.6.11-default could be

the symbol table name for a system running the 2.6.11 version of the kernel.

Using the command “cat /boot/System.map-2.6.13-15.8-default | grep init_task”,

provided a list that included the address of init_task. This output can be seen in Figure 5.

Figure 5. Finding Address of init_task

The address of init_task can be seen at the bottom of the list as 0xC034DB80.

The command

“dd if=/dev/mem of=task_struct.img bs=1 count=200 skip=3464064”

outputs 200 bytes from the address at which init_task resides. The value used in the skip

parameter is merely the transformation of 0xc034DB80 to a physical address 0x34DB80

and finally to a decimal number. Any virtual address used in the context of a dd

command must go through the same transformation. Also, the value of 200 in the count

parameter was chosen arbitrarily to cover enough of the task_struct to see its tasks

element, ie, it is greater than or equal to sizeof(task_struct).

The tasks element of a task_struct is of type list_head, which means that it is

made up of a next and prev pointer. The next pointer for the init_task structure was

found 0x60 bytes from the beginning of the struct and contained the value 0xDFE01AA0.

Dd was again used to carve memory from this address, after which it became apparent

that the first word of data did not look like the beginning of a task_struct. More

specifically, it looked like an address (a pointer) instead of a typical number of type long

because it was a value above 0xC0000000. The reason why this value looked suspicious

was that no typical number of type long was ever found to be above 0xC0000000 during

the course of this research. This incongruence was caused by the fact that the next and

prev pointers in task elements of task_structs point to the task elements of the next and

23

previous task_structs in the doubly linked list. In other words, the linked list goes from

task element to task element, not from task element to the beginning of the next (or

previous) task_struct. The prev element of this task_struct pointed, as expected, to

address 0xC034DBE0, which is the address of the task element of init_task.

Repeating this exercise, I found that the prev element of the next task_struct in the

list contained the address 0xDFE01AA0—the address of the second task_struct in the

list. The layout of the links can be seen in Figure 6. Note that it is a doubly linked list

so, at a certain point, it will wrap around and the next element of a task_struct will

contain the address of the next element of init_task. Likewise, the prev element of

init_task will point to the next element of that “last” task_struct.

Next

Prev

Next

Prev

init _task task _struct

Next

Prev

task _struct

Figure 6. Doubly Linked Task List

Once the traversal of the task_struct list was mastered, a Perl script was developed

to enumerate all tasks in a physical memory dump and output their executable name, pid,

pointer to associated mm_struct, and the pointer to the next task_struct. Appendix A

contains the code for this script under the name find_task.pl.

2. Rebuilding File

A simple jpeg image of Waldo—the character from the “Where’s Waldo?” series

of children’s books—served as a way to test the reconstruction of a file from information

found in the mem_map array. The test began by noting the first 8 bytes of each page to

use as a signature that could be searched for in an image of physical memory. Only four

such signatures had to be written down because the length of the file was four pages.

24

25

Then, while having the waldo.jpeg file open in a file viewer, a RAM image was obtained

utilizing dd. The resulting memory image was opened in a hex editor so that the

signatures could be used to find each page that made up the image. The idea behind the

signatures was to provide a way to recognize the pages in memory and work backwards

to find their corresponding address_space struct. A couple of false positives were easily

filtered because they were not found at 4K boundaries where the beginnings of pages

should be found. Pages should be found at addresses that are multiples of 0x1000 (one

page size). For instance, a signature found at physical address 0x4935184 could not be

one of the image’s pages. The real one was actually found at physical address

0x509C000. The rest of the search yielded the data presented in Table 1.

Page Number Physical Address

1 0x509C000

2 0x4405000

3 0xBE79000

4 0x5D2A000

Table 9. Pages Found in Image

These physical addresses were turned into page descriptor addresses using the

calculation covered in section C of the Background chapter. Analyzing each descriptor’s

index element—which is 0x14 bytes from the beginning of the page descriptor and refers

to the page offset within the mapping—reaffirmed the fact that the pages were in correct

order. The page descriptor addresses corresponding to each page and their indices are

outlined in Table 2.

Page Number Page Descriptor Address Index

1 0x10A1380 0

2 0x10880A0 1

3 0x117CF20 2

4 0x10BA540 3

Table 10. Page Descriptors and Indices

26

A piece of information proving that these pages were part of a cohesive section of

memory representing an image was found in the mapping element of their page

descriptors. The mapping element was found at 0x10 bytes from the beginning of each

page descriptor and contained the address to the same parent address_space struct. All of

these pages belonged to the address_space struct found at virtual address 0xC6D3E3B4

(physical address 0x6D3E3B4). A Perl script was developed to take in the virtual

address of an address_space struct and print out all the pages, in order, that belong to it.

Parsing all the pages in the mem_map array and seeing which ones have a mapping field

that matches the input address is the method used to perform this task. Appendix A

contains the code for this script under the name find_waldo.pl.

However, a typical forensic investigation would not begin with a search for a

particular address_space object in memory because the investigator would not initially

know what address_space struct to look for. The ideal thing for an investigator to do

would be to walk the whole mem_map array and group pages in bins according to the

address_space that owns them. Once this was done, the investigator would possess every

file existing in memory—provided that none of that file’s pages were swapped out.

To find the name of the waldo.jpeg file in memory it was necessary to follow the

host pointer from the address_space struct to the related inode, and then the i_dentry

pointer from the inode struct to the dentry struct. The host pointer is the very first word

in the inode struct. In other words, it can be found at offset 0x0 from the beginning of the

address_space struct. The i_dentry pointer in the inode struct was at offset 0x18 and was

found to point to the d_alias element of the dentry struct. At a location 0x30 bytes ahead

of d_alias, the d_iname element held the name of the image file: waldo.jpeg. The

structure of these links is illustrated in Figure 7.

address _space

inode

dentry

host

i_dentry

d_alias

Points to 0xC6D3E314

Points to 0xCA505 B28

Figure 7. Pointer Structure from address_space to dentry

3. Radix Tree Structure
While noting some of the differences between the address_space struct in kernel

2.4 and kernel 2.6, a new addition was found: the radix tree. This structure is rooted at

the page_tree element of the address_space struct. A radix tree is made up of a root, and

a series of nodes. The root element, defined in /usr/src/linux-2.6.13-15/linux/radix-tree.h,

consists of the following:

struct radix_tree_root {

unsigned int height;

int gfp_mask;

struct radix_tree_node *rnode;

};

The node element, defined in /usr/src/linux-2.6.13-15/linux/radix-tree.c, consists of the

following:

27

Struct radix_tree_node {

Unsigned int count;

Void *slots[RADIX_TREE_MAP_SIZE];

Unsigned long tags[RADIX_TREE_TAGS][RADIX_TREE_TAG_LONGS];

};

The traversal process for this structure, using the same memory image as in

section 2, began with the address_space struct related to the Waldo.jpeg file at physical

address 0x6D3E3B4. The page_tree element was found 0x4 bytes into the address_space

struct. It had a height value of one and an rnode pointer with a value of 0xC531D034.

Following this pointer to physical address 0x531D034 yielded a radix_tree_node with a

count value of 4—which was followed by the virtual addresses of all four page

descriptors associated with the Waldo file in correct ascending order. It should be noted

that the total number of pages owned by this particular address space was known to be

four and that this number was derived from the nrpages element of the address_space

struct at offset 0x30. This traversal seemed to suggest that the height element of the

radix_tree_root struct was responsible for the number of indirection steps needed. In

addition, it suggested that the count element of the radix_tree_node element outlines how

many pointers must be followed. This relationship is illustrated in Figure 8.

hostheight = 0x1

gfp _mask = 0x20

rnode = 0xC531 D034

page _tree

offset 0x4

offset 0x8

offset 0xC

page _tree
expanded view address _space

count = 0x4

slots

tags = 0x0

radix _tree _node

0xC10A 1380

0xC10880 A0

0xC117 CF20

0xC10 BA540

slots array
expanded view

offset 0xC

offset 0x8

offset 0x4

offset 0x10

Offsets from beginning of
address _space

Offsets from beginning of
radix _tree _node

Figure 8. Radix Tree Structure

An analysis of radix trees was later conducted with another address_space struct

in the same memory image to confirm these conclusions. The new address_space struct

was located at physical address 0x1F064E44 and had a page_tree height value of two.

The rnode link of the page_tree element pointed to the virtual address 0xDF0307C0.

This node had links to 5 other nodes that, in turn, had links to numerous page descriptors.

Since the height of the tree was two, there were two levels of indirection: one from the

28

primary nodes to secondary nodes and one from secondary nodes to page descriptors.

The total number of pages was listed in the address_space struct as 287. This coincided

with the number of page descriptor links in the radix tree because the first four links from

the primary node had pointers to 0x40 page descriptors while the fifth link from the

primary node had pointers to 0x1F page descriptors. Summing these yields 4 x 0x40 +

0x1F = 0x11F = 28710. This scheme is shown in Figure 9.

height = 0x2

gfp _mask = 0x20

rnode = 0xDF 0307 C0

count = 0x5

slots

tags = 0x0

count = 0x40

0xDF0306 AC

0xDF 0308 D4

0xDF0309 E8

0xDF030 AFC

0xDF 03 D598

count = 0x40 count = 0x40 count = 0x1Fcount = 0x40

Slots (0x40 links to
page descriptors)

tags = 0x0 tags = 0x0 tags = 0x0 tags = 0x0 tags = 0x0

Slots (0x40 links to
page descriptors)

Slots (0x40 links to
page descriptors)

Slots (0x40 links to
page descriptors)

Slots (0x1F links to
page descriptors)

address _space

radix _tree _node
slots array

expanded view

These are all
radix _tree _nodes

Figure 9. Structure of Second Radix Tree Explored

With this information, the general structure of radix trees was discovered. The

height value in a root node controls the levels of indirection and the count value in a node

is equal to the number of addresses—either pointers to other nodes or to page

descriptors—contained in the slots array.

C. SWAP
Section E of the Background chapter gave an overview of the reasons behind

using swap space and the structures that comprise it. In the following, a more in depth

29

discussion will provide a way to use this repository of data to complement the analysis of

physical memory outlined in section A. The idea is that if an investigator can analyze the

page tables belonging to a process, s/he will be able to retrieve any pages that have been

swapped out to swap space. This is made possible by the fact that the kernel always

leaves an index into swap space—actually the swap_map array—as a placeholder for a

page frame that has been swapped. The format of this index entry can be seen in Figure

11.

One of the experiments performed for this thesis involved using the C program

heap.c (Appendix A). This code was written to place 400MB worth of pages with

predetermined signatures in the program’s heap space. The idea was that such a large

space requirement would force the kernel to put some of those heap pages in swap space.

The 64 bit signatures were structured to provide a program’s pid and the page number. A

page would be filled with a repeating pattern of the signature so that the hex dumps of the

pages would be meaningful and easy to recognize. The exact structure of the signatures is

shown in Figure 10. This program provided a foundation for the analysis that follows.

3FC2 BEEF ABCD 0001

pid

Signature
(never changes) page #

Signature
(never changes)

Figure 10. Signature Used in heap.c

An image of both memory and swap space was taken using dd while heap.c ran.

The count number for the swap image command—245760000—was calculated after

noticing that around 19% of swap space (1 GB) was being used by heap.c. The count

number above is around 23% of swap space to be on the safe side. It should be noted that

page slots in swap space can be assumed to fill from the front of the available space

because the kernel tries to store pages in contiguous slots to reduce disk seek time during

swap space access [Ref. 4]. Using the Perl script find_task.pl (Appendix A) to enumerate

all the processes from the image file yielded the address of heap.c executable’s

task_struct. The following table outlines the complete tracing of this process:

30

31

Structure Address (Physical)

task_struct 0xB45A590

mm_struct 0x11335300

vm_area_struct 0xB55BBCC

File 0xB56D680

Dentry 0x132DAA6C

Inode 0x132D64EC

address_space 0x132D658C

Table 11. Tracing of Heap Process

Using the radix tree structure from the address_space struct to enumerate all pages

belonging to this address space yielded only one page at physical address 0xBBA7000.

This meant that any page table present in memory that was related to the heap process

would have an entry with that address. Since the last three hex digits of a page table

entry are flags, the value to search RAM for was either 0x0BBA7*** or 0xCBBA7***

(the virtual equivalent)—where the asterisks represent wildcards. This search was

performed with the help of the find_pattern.pl script (Appendix A) using the following

commands:

perl find_pattern.pl 0bba7… (for physical address)

perl find_pattern.pl cbba7… (for virtual address)

The first search yielded 8 hits, while the second search yielded none. This result

suggested that the values in page tables represent physical rather than virtual addresses.

An inspection of the mm_struct revealed that the pgd pointer contained the

address 0xB338000. The value 0xBE55067 was found at offset 0x80 into the pgd. It did

not look like it was a virtual address, that is, it was not a number above PAGE_OFFSET

(0xC0000000). This meant that it was a physical address—which correlated with the

results of the image search above. Since the least significant bit of this number is set, the

page is resident in memory and, therefore, the pointer could be followed to a page frame

at 0xBE55000 because the last three hex digits are flag values. The values 0xBBA7025

and 0x1113C00 where found at offset 0x120 in this page frame. The first of these values

is equivalent to page frame 0xBBA7000, which was the same page frame found through

the radix tree traversal above. The correlation was strong enough to determine that the

pgd actually pointed to a page table that contained page frames belonging to the heap

process. The second value looked like a swap space index entry of type swap_entry_t,

which is illustrated in Figure 11. The entry had bit’s 0 and 7 cleared, so it was not in

physical memory. The offset into the swap_map array was 0x1113C.

Index w /in swap _map Index w /in swap _info

Bits 31 -8 Bits 6-1

Bit 0 = PRESENT flag

Bit 7 = PROTNONE flag
Figure 11. swap_entry_t layout (After Ref. 6)

Unfortunately, the image of swap space was not large enough to be able to include the

index found above and, consequently, the swap page slot could not be confirmed to be a

part of the heap process. Nonetheless, it is very likely that this was the case.

Another round of RAM and swap space images was then created to recreate the

results found above. The size of the swap space image specified in the count field of the

dd command was increased to 429,496,673—roughly 40% of the entire swap space—to

avoid another situation where the index into swap was beyond the bounds of the image.

In the new image, following the heap executable links from task_struct to mm_struct to

find the pgd pointer and, finally, to the page table yielded two addresses. The first

address corresponded to the page descriptor address found through the radix tree in the

address_space struct. The second page was, unfortunately, not a swap_entry_t value. It

was actually a match for the first half of the first page in the heap executable, which

suggests that it was a page captured in transition during the imaging process. This is the

type of problem that arises from capturing an image from the same system that the

imaging tool is running on. Running the process at the highest priority level could have

mitigated this type of problem. Unfortunately, this change could not have completely

stopped the process scheduler or, for that matter, the constant changes that the kernel

makes to physical memory over time.

32

33

A further look into the pgd of the heap process revealed that there were 3 different

areas of pointers. The first was the single pointer that was traced in the previous

paragraph. The second and third areas held approximately 100 pointers each. Following

some of these links to the corresponding page tables proved that they were pointers to

page frames filled with either ELF binary code—possibly libraries—or values allocated

to the heap by the heap executable. This suggests that the pgd is not a solid block of

pointers and that any gaps are inconsequential. The heap tracing in this new image can

be seen in Table 12.

Structure Address (Physical)

task_struct 0x113D3590

mm_struct 0x176C9300

vm_area_struct 0x1E608A14

File 0x5A36980

Dentry 0x525B494

Inode 0x14BC69F4

address_space 0x14BC6A94

Table 12. Second Heap Process Trace

The integration of swap space data was made evident by tracing from the pgd to a

page table that contained a mix of swap space indices and page frame addresses. The

page frame was at address 0xF00000 and two of its pointers had the values 0xF2C200

and 0xF1C047. The first value indicated that the page was not in memory because bits 0

and 7 were not set. This meant that 0xF2C200 was actually referring to the swap map

index 0xF2C2 and, consequently, the page slot at swap address 0xF2C2000. The second

value had bit 0 set, so it was resident in physical memory. These two pointers sat next to

one another in the page table so they had to point to consecutive pages. When the page

values—from the heap.c signatures—were checked for both programs they were

consecutive. The page slot from swap space had a page value of 0xA2CF, while the page

frame in physical memory had a page value of 0xA2D0. A page missing in RAM was

therefore successfully retrieved from swap space. The tracing is shown in Figure 12.

mm _struct
0x176 C9300

pgd
0x1C0E3000

Page Table
0xF00000

Page Frame
0xF1C000

Page Slot
0xF2C2000Swap Space

Figure 12. Tracing of Pages in Swap

34

35

V. CONCLUSION

A. SUMMARY
The memory management changes in the new 2.6 Linux Kernel have not

adversely affected the forensics techniques developed for the 2.4 kernel. In fact, the

introduction of the radix tree in the address_space struct made the enumeration of all the

pages belonging to an address space much easier and more efficient. The discovery of

data belonging to a process inside swap space is possible—as shown in the previous

chapter—and should add value to the full exploration of processes that reside in physical

memory. The techniques outlined in this paper, or programs based on them should now

be integrated into any in-depth forensic analysis of a computer system.

There is a new breed of malware based on the concept that physical memory is

largely out of the hands of an examiner. The effects of this insidious software can be

mitigated by the application of the findings in this paper. However, unless these analysis

techniques are properly automated, many investigators will shy away from performing

detailed analysis of physical memory and potentially miss many pieces of evidence vital

to such an investigation.

B. PROBLEMS
Throughout the course of the analysis, a few problems were encountered. The

first presented itself in the early stages of project development when the assumption was

made that kernel space addresses had a range from 0xC0000000 to 0xCFFFFFFF—when

it is actually from 0xC0000000 to 0xFFFFFFFF. This made many of the pointers used in

the linking of memory management structures seem invalid and caused confusion as to

how these structures were linked.

Another issue that consumed a great deal of time was related to the page tables

belonging to a process. Much of the integration of swap space data depended on finding

page tables so that the swap indices could be used to find the missing page in swap space.

However, the pgd contained addresses that did not look like virtual addresses and that

were not in one solid block. Previous addresses found in other structures had always

been virtual kernel addresses (> 0xC0000000) and consecutive if they were part of a list

of pointers. These two factors contributed to the belief that the pgd pointer was either not

36

pointing to the correct location, or that the pgd was full of garbage. It was not until the

addresses in the pgd were taken at face value as physical addresses that the page table

structure began to unfold.

A third problem arose when the interconnection of memory management

structures was being analyzed. When there was a pointer from one structure to another, it

was erroneously assumed that the pointer would always point to the beginning of that

structure. This created some situations in which the pointer from one structure did not

seem to point to another. An example of this fact is the doubly linked task_struct list.

The links from one task_struct to another connect at the tasks element of one struct to the

tasks element of another. This element is at offset 0x60 from the beginning of a

task_struct. Looking at a task_struct at offset 0x60 and thinking it should look like the

beginning of it would obviously lead someone to think it was not a task_struct.

A final problem was inherent in the way that the experimentation for this thesis

was carried out. Due to budget and time constraints, the methodology used during the

analysis of memory was completely software based. This meant that, as images of RAM

and swap space were being collected, memory was constantly changing. The programs

doing the imaging, heap.c, and typical kernel processes were constantly changing the

landscape of memory over time. The best option would have been to pursue a hardware

based method for imaging physical memory that would minimize any software/kernel

interference. One such method would be to include a card in the systems PCI slot that

could image memory at the flip of a switch [Ref. 12]. In lieu of imaging hardware, dd

could have been satically linked and executed from a CD. However, since there was no

concern over the images’ validity in a court of law, it was deemed acceptable to run these

commands from the target system.

The only artifact of these issues that was ever encountered arose during the final

analysis of the heap process in the previous chapter. The first step in the tracing was to

run the find_task.pl script to enumerate all the processes in ram and find the value of their

corresponding task_struct. When it was run, the heap process did not appear. Further

investigation revealed that if the links from the first task_struct—known as swapper—

37

were followed backwards, the heap process would be found. The doubly linked list read

differently if the links were followed in one direction than in another. The list was

caught at a moment of transition.

C. FUTURE WORK
The most obvious extension to the work in this paper would be to write a tool that

could automate the techniques discussed. This work would include the fine-tuning of the

concepts presented here so that they can be translated into the specific language of a

program. Such a tool would be a powerful asset to an investigator because tracing hex

dumps is not something that many investigators will want to do. That is, the exploration

of physical memory would often be skipped in the absence of a good tool to do automate

it elegantly and efficiently.

Another future focus of research would be to perform similar analyses on systems

with different characteristics. This could take the form of research on other operating

systems such as Windows or Solaris. It could also take the form of research on systems

running on non-x86 platforms such as PowerPC or 64-bit systems. Systems with more

than 896MB of physical memory should be explored as well. Unraveling the process of

translating virtual addresses in ZONE_HIGHMEM to physical addresses and back would

be very useful as the number of systems with memory in excess of this limit is increasing

daily.

38

THIS PAGE INTENTIONALLY LEFT BLANK

39

APPENDIX. SOURCE CODE

This appendix includes all of the Perl scripts that were developed throughout the

project to aid in the analysis of physical memory and swap space. A small c program is

also included, which was used to force swap space to contain a series of pages that I

tagged to ease their retrieval in hex dump analysis.

A. FIND_WALDO.PL
#!/usr/local/bin/perl
#This is a program that will take in the virtual address of
#an address_struct object and output all the pages (in order)
#that are owned by that particular address_space struct.
use strict;
use utils;

#---
#Declare Variables
#---
my $file; #Image file to look into
my $address; #Address input from commandline
my $user_in; #User input
my $length; #Length of address_space address

#---
#Get Inputs
#---

#Get dump file from user
$user_in = shift
or die “User did not input anything. Error found”;
#Make sure that the input matches the correct format.
#If -f is found, then continue
if($user_in eq “-f”)
{
#Advance input
$user_in = shift;

#If the value of input is in line with a flag
#name or empty, then kill program
if($user_in eq “-p” or $user_in eq “”)
 {
die “Name of file to be searched is invalid. Error found”;
 }

#Save string after -f in dump_file variable
$file = $user_in;

#Advance input
$user_in = shift;

#If a -p is found, then continue
if($user_in eq “-a”)

40

 {
#Advance input
$address = shift;

#If the address is empty then kill program
if($address eq “”)
 {
die “There is no address specified. Error found”;
 }

 }
#Otherwise kill program
else
 {
die “No pattern flag -a is specified. Error found”;
 }
}
#Otherwise kill program
else
{
die “User did not use -f flag. Error found”;
}

#---
#Body
#---
#Make sure that the input is 8 bytes. I check
#for 8 bytes because a pattern like 3a5d3876 looks
#like 8 bytes on the surface, but as it is stored
#in memory, it is really 4 bytes because it is in
#hex and each digit only needs 4 bits to be
#represented
$length = length($address);

#If it’s not correct length exit program
($length == 8) or die “The address input should be 8 bytes, not
$length. Found”;
#If it is not a valid hex number, then exit program.
#The period character is allowed as wildcard.
($address =~ m/[(a-f|A-F|0-9|\.)]{8}/) or
die “The input is not a valid hex number. Found”;
#Change any hex letters to lowercase to prepare pattern
#for later matches with data from memory that is read
#in as lowercase
$address =~ tr/[A-Z]/[a-z]/;
#Use find all pages matching this address space
Utils::find_address_space($file, $address);

B. FIND_PATTERN.PL
#!/usr/local/bin/perl
#This program attempts to find a 4 byte pattern
#from a file of choice. Any hits will be stored
#in an array.

41

use strict;
use utils;

#---
#Declare variables
#---
my $length; #This is the length of the input
 #and later the file (in bytes)
my $file; #File to be searched
my $read; #Value read from file
my $address = 0; #Address where to read next value
 #from
my $pattern; #4 byte pattern from commandline
my $user_in; #User input
my @hits; #Array of matches to pattern

#---
#Get Inputs
#---
#Get dump file from user
$user_in = shift
or die “User did not input anything. Error found”;
#Make sure that the input matches the correct format.
#If -f is found, then continue
if($user_in eq “-f”)
{
#Advance input
$user_in = shift;

#If the value of input is in line with a flag
#name or empty, then kill program
if($user_in eq “-p” or $user_in eq “”)
 {
die “Name of file to be searched is invalid. Error found”;
 }

#Save string after -f in dump_file variable
$file = $user_in;

#Advance input
$user_in = shift;

#If a -p is found, then continue
if($user_in eq “-p”)
 {
#Advance input
$pattern = shift;

 }
#Otherwise kill program
else
 {
die “No pattern flag (-p) is specified. Error found”;
 }
}
#Otherwise kill program
else

42

{
die “User did not use -f flag. Error found”;
}

#---
#Body
#---
#Make sure that the input is 8 bytes. I check
#for 8 bytes because a pattern like 3a5d3876 looks
#like 8 bytes on the surface, but as it is stored
#in memory, it is really 4 bytes because it is in
#hex and each digit only needs 4 bits to be
#represented
$length = length($pattern);

#If it’s not correct length exit program
($length == 8) or die “The pattern input should be 8 bytes, not
$length. Found”;
#If it is not a valid hex number, then exit program.
#The period character is allowed as wildcard.
($pattern =~ m/[(a-f|A-F|0-9|\.)]{8}/) or
die “The input is not a valid hex number. Found”;
#Change any hex letters to lowercase to prepare pattern
#for later matches with data from memory that is read
#in as lowercase
$pattern =~ tr/[A-Z]/[a-z]/;
#Open file in question
open(FILE, $file) or die “Memory image file could not be opened. Error
found “;
print “Opened the file: $file \n”;
#Find out the size of the file
$length = -s $file;

#Divide length by four to turn it from bytes to words
#(4 bytes = word). This will control the # of times
#memory will have to be read to traverse the whole
#file
$length = $length/4;

for(my $i=0; $i<$length; $i++)
{
#print “Length in hex: $length\n”;
$read = Utils::read_val(*FILE, $address);
if($read =~ m/$pattern/)
 {
print “MATCH PATTERN at Address: $address\n”;
#Add to hit array
push(@hits, $address);
 }
#print “READ: $read\n”;
#Increment address by four bytes (a word)
#It is interpreted as hex when the addition
#happens and then turned into hex once again
#in preparation for the read_val function.
$address = hex($address) + 4;
$address = sprintf “%08x”, $address;
}

43

foreach $length (@hits)
{
print “Address: $length\n”;
}

#Calculate length of the array to output
$length = $#hits + 1;
print “Number of hits found: $length\n”;

#Close the file
close(FILE);

C. FIND_SIGNATURES.PL
#!/usr/bin/perl
#This is a program that will retrieve signatures from each page
#of a file in a Suse 10 Linux machine. The signatures will be
#12 bytes long and be choosen from the middle of each page to
#reduce conflicts that might arise from pages having similar
#beginnings or ends.
use strict;
use POSIX qw(ceil floor); #Adds floor and ceiling functions

#---
#Declare variables
#--
my @sigs; #Signatures lifted from file to search
my $sig; #One of the signatures in @sigs
my $out_file; #Name of the file that will hold
signatures
my $user_in; #User input
my $in_file; #Name of the file that signatures will be
 #extracted from

#---
#Declare variables
#---
#Get dump file from user
$user_in = shift
or die “User did not input anything. Error found”;
#Make sure that the input matches the correct format.
#If -f is found, then continue
if($user_in eq “-i”)
{
#Advance input
$user_in = shift;

#If the value of input is in line with a flag
#name or empty, then continue
if($user_in eq “-o” or $user_in eq “”)
 {
die “Input file name is invalid. Error found”;
 }

#Save string after -i in dump_file variable

44

$in_file = $user_in;

#Advance input
$user_in = shift;

#If a -o is found, then continue
if($user_in eq “-o”)
 {
#Advance input
$user_in = shift;

#If the output file name is there, then
#put input value in dir variable
if($user_in ne “”)
 {
$out_file = $user_in;
 }
#Otherwise kill program
else
 {
die “Output file name is missing. Error found”;
 }
 }
else
 {
die “The -o flag is missing. Error found”;
 }
}
#Otherwise kill program
else
{
die “User did not use -i flag. Error found”;
}

#---
#Body
#---
#Extract signatures from each page of a file
@sigs = get_signatures($in_file);

$sig = @sigs[$#sigs];
#The offset within the last page that the
#signature was taken from
print “Offset where signature in\nlast page of file comes from:
$sig\n”;

#Open the output file for writing
open(OUT, “>$out_file”);

foreach $sig (@sigs){
#print ”Page Sig: $sig\n”;
#Write signature to file
syswrite(OUT, $sig, 27);

#Write newline char to file
syswrite(OUT, “\n”, 1);
}

45

#Close the output file
close(OUT);

#This function retrieves a specified number of hex
#bytes from a file and returns them as one variable
sub read_bytes
{

 #--
#Read in arguments
 #--
 my $bytes = shift; #Number of bytes to read from file
 my $handle = shift; #File handle of file to be parsed
 #(file should already be open)

 #--
#Declare variables
 #--

 my $extracted_bytes = “; #extracte bytes from file
 my $read_in; #byte read in from file
 my $v = 0; #Verbose flag

 #--
#Body
 #--

#Output number of bytes choosen by caller
if($v==1){print “The number of bytes to read is: $bytes\n”;}
#Read in $bytes number of bytes
for(my $j=0; $j<$bytes; $j++)
 {
#Read in a byte
sysread($handle, $read_in, 1);

#Change signature into hex
$read_in = sprintf “%02x”, ord($read_in);
#Append byte to extracted_bytes
$extracted_bytes = $extracted_bytes.$read_in;

 }

return $extracted_bytes;
}

#This function extracts signatures from each page of a file.
#They are taken from the middle of each page (0x500 into the
#page). The last page is different, however, because it is
#seldom full. For that page the signature comes from the
#middle of the space that the file actually uses.
sub get_signatures
{
 #--

#Declare variables

46

 #--

 my $input_file; #The file that will be
scanned
 my @sig_array; #Array of signatures
 my $file_size; #Size of the file
 my $total_pages; #Number of pages required by
 #file
 my $full_pages; #Number of filled pages
used
 #by file
 my $left_over; #Number of bytes
actually used
 #in the last page of the file
 my $index = 0x500; #Index into the file
 my $signature; #Signature
 my $i; #Loop index
 my $v = 1; #Verbose flag

 #--
#Get Inputs
 #--
$input_file = shift;

 #--
#Body
 #--
#Open the file to be scanned
open(SCANFILE, $input_file)
or die “Signature file $input_file could not be opened.

Error found”;
#Get the size of the file to calculate how many pages
#are required
$file_size = -s $input_file;
if($v==1){print “The file size is: $file_size\n”;}
#Find the number of bytes used in the last page of the file. #First I
divide file size by 4096 (page size) and then strip #decimal part
(floor function). $full_pages = floor($file_size / 4096);
if($v==1){print “Full pages used: $full_pages\n”;}
#Now we subtract the file size by the number of bytes that
#are required to fill the number of pages found above
$left_over = $file_size - ($full_pages * 4096);
if($v==1){print “The left over is: $left_over\n”;}
#Divide this number (which is in bytes) by 4096 and take
#the ceiling function of that result to get the number
#of pages the file takes up
$total_pages = ceil($file_size / 4096);
if($v==1){print “Pages required by file: $total_pages\n”;}
#Extract 12 byte signatures from all full pages
for($i=0; $i<$full_pages; $i++)
 {
#print “INDEX: $index\n”;
#Go to the correct index in the file
seek(SCANFILE, $index, 0);

#Read 12 bytes from the file
$signature = read_bytes(12, *SCANFILE);

47

#Save page signature in array
@sig_array[$i] = $signature;

#Empty signature for the before the next
#signature is read
$signature = “;
#Update the index
$index = $index + 0x1000;
 }

#Figure out the last page index for extracting
#the signature. First step is to figure out
#the base index of the last page
$index = ($full_pages * 4096);

#Print out the base index of the last page
if($v==1){print “Base index of last page: $index\n”;}
#Now we add half the number of bytes used in the
#last page (the floor function is used in case this
#division has a decimal component)
$index = $index + floor($left_over / 2);

#Print out the index used for the last page in the file
if($v==1){print “Last page index: $index\n”;}
#Go to the index calculated for the last page
seek(SCANFILE, $index, 0);
#Read the signature
$signature = read_bytes(12, *SCANFILE);

#Place it in the last array element
@sig_array[$i] = $signature;

#Change index value to be the index within a page
#not index within a whole file. The remainder
#of the division of the index value by the size
#of a page will yield this value.
$index = $index % 4096;

#Add the index used for the last page to the
#last element of the signature array
@sig_array[$i + 1] = $index;

#Close file to be scanned
close(SCANFILE);

#Return the array of signatures
return @sig_array;
}

D. MATCH_SIGNATURES.PL
#!/usr/bin/perl
#This is a program that will look for pages in a file that match
#the signatures in a signature file. Both files are specified
#by the user.

48

use strict;
use POSIX qw(ceil floor); #Adds floor and ceiling functions

#---
#Declare variables
#---
my @sigs; #Array of signatures
my $sig; #A particular signature
my $last_index; #The index used in the signature of the

#last
 #page
my $length; #Length of sigs array
my $v = 0; #Verbose mode flag
my $base; #Base value where the search of consecutive

#pages
 #will begin.
my $in_file; #File that will be parsed for matching pages
my $sig_file; #File that holds a list of signatures to look

#for
my $file_size; #Size of above file
my $user_in; #User input

#---
#Get Inputs
#---
#Get dump file from user
$user_in = shift
or die “User did not input anything. Error found”;
#Make sure that the input matches the correct format.
#If -f is found, then continue
if($user_in eq “-f”)
{
#Advance input
$user_in = shift;

#If the value of input is in line with a flag
#name or empty, then kill program
if($user_in eq “-m” or $user_in eq “”)
 {
die “Name of file to be parsed is invalid. Error found”;
 }

#Save string after -f in dump_file variable
$in_file = $user_in;

#Advance input
$user_in = shift;

#If a -m is found, then continue
if($user_in eq “-m”)
 {
#Advance input
$user_in = shift;

#If the output file name is there, then
#put input value in dir variable
if($user_in ne “”)

49

 {
$sig_file = $user_in;
 }
#Otherwise kill program
else
 {
die “Signature database file name is missing. Error

found”;
 }
 }
else
 {
die “The -m flag is missing. Error found”;
 }
}
#Otherwise kill program
else
{
die “User did not use -f flag. Error found”;
}

#---
#Body
#---

#Extract signatures from each page of a file
@sigs = get_sigs($sig_file);

#Get length of array received from get_signatures
$length = scalar @sigs;
if($v==0){print “LENGTH OF ARRAY: $length\n”;}

#Save the index where the last pages signature
#was extracted
$last_index = @sigs[$length -1];
if($v==1){print “Last index: $last_index\n”;}

#Remove the last page index from the end of the
#signature array
pop(@sigs);

foreach $sig (@sigs){
#print ”Page Sig: $sig\n”;
}

#Make base value zero
$base = 0;

#Open file to find matches in
open(MATCH, $in_file);

#Get the size of the input file to determine when
#to stop looping through pages
$file_size = -s $in_file;
print “SIZE: $file_size\n”;

#While the base address is smaller than the size

50

#of the file, try to match signatures
while($base < $file_size)
{
if($v==1){print “Base is $base\n”;}
match_against_signatures($base, *MATCH, $last_index, @sigs);
$base = $base + 4096;
}

#close file to find matches in
close(MATCH);

sub get_sigs
{
 #--
#Read in arguments
 #--
my $in_file = shift; #A file holding a list of signatures

 #--
#Declare variables
 #--
 my $signature; #An individual signature in $in_file
 my @sigs; #Signature array built from $in_file
 my $i=0; #Index of @sigs array

 #--
#Body
 #--

#Open the signature file
open(FILE, $in_file);

while($signature = <FILE>)
 {
#Take newline off of $signature
chomp($signature);

#Save signature in respective place in @sigs array
@sigs[$i] = $signature;
$i++;
 }

#Close signature file
close(FILE);

#Return built array
return @sigs;
}

#This function receives the address in an open file
#where a page begins and attemps to match that page
#to one of an array of signatures.
sub match_against_signatures
{
 #--
#Read in arguments
 #--

51

 my $base_addr = shift; #Address where page begins in file
 my $handle = shift; #File handle of file to be parsed
 #(file should already be open)
 my $last_page = shift; #The index of where to look for the
 #signature of the last page
 my @signatures = @_; #Array of signatures to look for

 #--
#Declare variables
 #--

 my $sig_beg; #signature read in from beginnig of
 #page
 my $sig_last; #signature read in from the
 #index in $last_page
 my $v = 0; #Verbose flag

 #--
#Body
 #--
if($v==1){
print “base: $base_addr\nhandle: $handle\n”;
print “last: $last_page\nSignatures: @signatures\n”;
 }

#Go to the correct place in the file
seek($handle, $base + 0x500, 0);

#Get signature from beginning of the page
$sig_beg = read_bytes(12, $handle);

#Go to the correct place in the file
seek($handle, $base + $last_page, 0);

#Get the signature from the index $last_page
#index to check if this page is the last page
#in the file
$sig_last = read_bytes(12, $handle);

#Print out both signatures
if($v==1){print “First sig: $sig_beg\nSecond sig: $sig_last\n”;}
#See if any of the two signatures extracted from the
#page match those in the signatures array
for (my $i=0; $i <= $#signatures; $i++)
 {
if($signatures[$i] =~ m/($sig_beg|$sig_last)/)
 {
print “MATCH PAGE $i\n”;
 }
 }
}

#This function retrieves a specified number of hex
#bytes from a file and returns them as one variable
sub read_bytes
{

52

 #--
#Read in arguments
 #--
 my $bytes = shift; #Number of bytes to read from file
 my $handle = shift; #File handle of file to be parsed
 #(file should already be open)

 #--
#Declare variables
 #--

 my $extracted_bytes = “; #extracte bytes from file
 my $read_in; #byte read in from file
 my $v = 0; #Verbose flag

 #--
#Body
 #--

#Output number of bytes choosen by caller
if($v==1){print “The number of bytes to read is: $bytes\n”;}
#Read in $bytes number of bytes
for(my $j=0; $j<$bytes; $j++)
 {
#Read in a byte
sysread($handle, $read_in, 1);

#Change signature into hex
$read_in = sprintf “%02x”, ord($read_in);
#Append byte to extracted_bytes
$extracted_bytes = $extracted_bytes.$read_in;

 }

return $extracted_bytes;
}

E. FIND_TASK.PL
#!/usr/local/bin/perl
#This is a program that will attempt to enumerate task names
#and pids from a RAM dump in a SUSE 10 Linux machine. It
#will be able to follow the links forward or backwards depending
#on the user input.
use strict;

#--

#Declare variables
#--

my $dump_file; #Input file being used (default
value)
my $user_in; #User input
my $input; #The input from commands run below

53

my $address_command; #Stores the command to get the
address
 #of init_task
my $init_task; #Address of init_task
my @point; #Array containing next and prev pointers
my $dir = 0; #Direction of the enumeration 0 is
#following next pointers and 1 is following
#prev pointers
my $v = 0; #Flag that controls verbose mode

#--

#Get Inputs
#--

#Get dump file from user
$user_in = shift
or die “User did not input anything. Error found”;
#Make sure that the input matches the correct format.
#If -f is found, then continue
if($user_in eq “-f”)
{
#Advance input
$user_in = shift;

#If the value of input is in line with a flag
#name or empty, then kill program
if($user_in eq “-d” or $user_in eq “”)
 {
die “Image file name is invalid. Error found”;
 }

#Save string after -f in dump_file variable
$dump_file = $user_in;

#Advance input
$user_in = shift;

#If a -d is found, then continue
if($user_in eq “-d”)
 {
#Advance input
$user_in = shift;

#If the direction value is 0 or 1, then
#put input value in dir variable
if($user_in eq “0” or $user_in eq “1”)
 {
$dir = $user_in;
 }
#Otherwise kill program
else
 {
die “Direction value is invalid. Error found”;
 }
 }
}

54

#Otherwise kill program
else
{
die “User did not use -f flag. Error found”;
}

#--
#Body
#--
#Open the image of memory that you want to analyze
open(DUMP,$dump_file) or die “Memory image file could not be opened.
Error found”;
print “Opened the file: $dump_file \n”;
#Use a filehandle and pipe to parse through the output of this command
open(OUT, “ls /boot |”);
#Go through every line of the output
while(<OUT>)
{
#If a line matches the system map pattern then save it into input
if($_ =~ m/System.map*/){
$input = $_;
 }
}

#Take the newline out of the input variable
chomp $input;

print “Looking in \”$input\” for init_task address.\n”;
#Now get the address of init_task using the System.map file
$address_command = “cat /boot/$input | grep \”D init_task\””;
#Save the output of the address command into init_address
$init_task = ‘$address_command‘;
#Take the newline out of the init_address variable
chomp $init_task;

#Extract the address from init_address
$init_task =~ m/(([0-9]|[a-fA-F])*)\s/;
$init_task = $1;

#Turn init_address into a physical address (subract 0xC0000000)
$init_task = hex($init_task) - 0xC0000000;
#Add 0x60 to make it point to the tasks member of the task_struct
#which is required by enumerate_task $init_task = $init_task + 0x60;
#Initialize next_task to init_task
@point[$dir] = $init_task;

#Traverse the task_struct linked list and get information from
#each one. This “for” loop caps the number of processes at 250
#in the case that the “if” statement below is never entered.
for(my $i;$i<250;$i++)
{
#Enumerate information from task_struct
@point = enumerate_task(@point[$dir]);

#Convert pointer to decimal for enumerate_task function
@point[$dir] = hex(@point[$dir]);
#If the next task address is equal to the first one in the

55

#list (the address of the tasks member of init_task) then
#break the loop. This is basically looking for the
#wrap around of the linked list so that it can stop looping.
if(@point[$dir] =~ m/$init_task/)
 {
last;
 }

}

#Close the output pipe
close(OUT);

#Close the image of memory that you analyzed
close(DUMP);

#This function goes to the offset specified in the input
#(which should be in hex) and returns a word (4 bytes) at
#that location. The file it searches should be open when
#this function is called.
sub read_val
{
 #---
#Read in arguments
 #--
my $handle = shift;
my $contents = shift;

#This intereprets the hex number as a decimal to use in seek
$contents = hex($contents);
if($v==1){print “Address seen by read_val is: $contents\n”};

 #--
#Declare variables
 #--
#The reason behind splitting the input is that I needed to

#rearrange the order of the bytes from the way they exist in
#memory—which is backwards. For example, the word AB123456 in
#memory is really the hex number 563412AB.

 my $input_byte_1; #First byte of the input
 my $input_byte_2; #Second byte of the input
 my $input_byte_3; #Third byte of the input
 my $input_byte_4; #Fourth byte of the input

 my $hx; #Hexidecimal version of the above
 #inputs

 #--
#Body
 #--
#Go to the correct offset in image file and read selected bytes
seek($handle, $contents, 0);
sysread($handle, $input_byte_4, 1);
sysread($handle, $input_byte_3, 1);
sysread($handle, $input_byte_2, 1);
sysread($handle, $input_byte_1, 1);

56

#Rearrange the bytes and assemble them into hex
$hx = sprintf “%02x”, ord($input_byte_1);
$hx = $hx.sprintf “%02x”, ord($input_byte_2);
$hx = $hx.sprintf “%02x”, ord($input_byte_3);
$hx = $hx.sprintf “%02x”, ord($input_byte_4);

if($v == 1) {print “Result of read_val function is: $hx\n”};
return $hx;
}

#This function arranges the output from read_val into ascii
#letters for the executable name garnered from a task_struct
sub ascii_ize
{
 #--
#Read in arguments
 #--
my $characters = shift;
if($v==1){print “Input into ascii_ize is: $characters\n”;}

 #--
#Declare variables
 #--
#Each letter in the name must be converted into ascii

#individually and rearranged. Thus the 16 variables for the
#typical 16 character maximum in executable names in a
#task_struct. They are arranged into 4 words that will be ordered
#from 1 to 4. Within the words, however, there needs to be a
#reversal of the order. This is due to the fact that strings are
#stored in the opposite direction of all numbers and pointers.

my $word1;
my $word2;
my $word3;
my $word4;

 my $whole_name; #The fully constructed name of the

#executable
 #--
#Body
 #--
#Convert name to ascii in the correct order
$characters =~ m/(........)(........)(........)(........)/;
$word1 = ascii_ize_word($1);
$word2 = ascii_ize_word($2);
$word3 = ascii_ize_word($3);
$word4 = ascii_ize_word($4);

#Assemble all the words into the whole_name
$whole_name = $word1.$word2.$word3.$word4;

#Strip any non alphanumeric characters out
$whole_name =~ tr/a-zA-Z0-9\./ /cs;
return $whole_name;

}

57

#This function takes a word output from read_val and reverses the order
#while translating the hex characters into ascii to make the string
#readable
sub ascii_ize_word
{
 #--
#Read in arguments
 #--
my $characters = shift;

 #--
#Declare variables
 #--
#Each letter in the name must be converted into ascii

#individually and rearranged.
my $word_4;
my $word_3;
my $word_2;
my $word_1;
 my $whole_name; #The fully constructed name of the

#executable
 #--
#Body
 #---
#Convert name to ascii in the correct order
$characters =~ m/(..)(..)(..)(..)/;
$word_4 = hex($1);
$word_3 = hex($2);
$word_2 = hex($3);
$word_1 = hex($4);

#Change each letter to ascii
$word_4 = chr($word_4);
$word_3 = chr($word_3);
$word_2 = chr($word_2);
$word_1 = chr($word_1);

#Construct name
$whole_name = $word_1.$word_2.$word_3.$word_4;

return $whole_name;

}

#This function receives the address of the tasks member of a
#task struct and enumerates the name of the process, its pid,
#the link to the next task struct, and the link to its associated
#mm_struct. It also outputs the first word that is retrieved from
#the address pointed to by the pgd member of the mm_struct
#associated with the task struct. The input should be a decimal
#number. The handle of the dump file is global in this file so it can
#be used without passing below.
sub enumerate_task
{
 #--
#Read in arguments
 #--

58

my $init_address = shift;
#Print address passed in to enumerate_task
if($v==1){print “Address passed into enumerate_task:

$init_address\n”;}
 #--
#Declare variables
 #--
 my $next; #Pointer to the next task struct
 my $prev; #Pointer to the prev task struct
 my $pid; #Pid of the task struct in question
 my $part_name; #Partial name before it’s assembled

#below
 my $name; #Name of the process represented by

#the
 #task struct
 my $mm; #Pointer to mm_struct from

#task_struct
 my $pgd = ‘NULL POINTER’; #Content of the address pointed to

#by pgd
 #member of mm_struct
 my @ret; #array with next and prev addresses
 #inside that will be returned

 #--
#Body
 #--
#Derive other addresses from init_address
$next = $init_address;
$prev = $init_address + 0x4;
$mm = $init_address + 0x18;
$pid = $init_address + 0x3C;
$name = $init_address + 0x144;

#Turn addresses into hex numbers (in preparation for read_val

#function)
$next = sprintf “%08x”, $next;
$prev = sprintf ”%08x”, $prev;
$mm = sprintf ”%08x”, $mm;
$pid = sprintf “%08x”, $pid;
$name = sprintf “%08x”, $name;

#Read the values at all of these addresses
$next = read_val(*DUMP, $next);
$prev = read_val(*DUMP, $prev);
$mm = read_val(*DUMP, $mm);
$pid = read_val(*DUMP, $pid);

#Convert mm to decimal in preparation for computation of pgd
#address.
$mm = hex($mm);
if($mm != 0){
#Compute address of pgd (0x20 from beginning) and turn
#it into a physical address (subtract 0xC0000000)
$pgd = $mm + 0x20 - 0xC0000000;
$pgd = sprintf “%08x”, $pgd;
if($v==1){print “Address of pgd within mm_struct: $pgd\n”;}

59

#Read the address pointed to by pgd
$pgd = read_val(*DUMP, $pgd);
if($v==1){print “Value of pgd: $pgd\n”;}

#Convert addres to physical address
$pgd = hex($pgd) - 0xC0000000;

#Convert the result to hex again for read_val function
$pgd = sprintf “%08x”, $pgd;
#Read the value stored at the address pointed to by pgd
$pgd = read_val(*DUMP, $pgd);
if($v==1){print “Value in address pointed to by pgd:

$pgd\n”;}
 }

#Print out PID if verbose it turned on
if($v==1){print “Extracted PID is: $pid\n”;}

#For name we have to read 4 words because that is the maximum

#length
#of an executable name in a task_struct
$part_name = read_val(*DUMP, $name);
#Read three more times to complete the 16 bytes that must be read
for(my $i=0;$i < 3;$i++)
 {
#Calculate the next address to look read in (4 bytes ahead)
$name = hex($name) + 4;
$name = sprintf “%08x”, $name;

#Read in and append to existing partial name
$part_name = $part_name.read_val(*DUMP, $name);
 }

#Put the contents of part_name into name
$name = $part_name;

#Convert name to ascii in the correct order
$name = ascii_ize($name);

#Turn next, prev and mm into physical addresses
#(subract 0xC0000000)
$next = hex($next) - 0xC0000000;
$prev = hex($prev) - 0xC0000000;

#If mm is not equal to zero, then convert to a physical address
if($mm != 0){
$mm = $mm - 0xC0000000;
 }

#Convert variable next to a hex value again
$next = sprintf “%08x”, $next;
$prev = sprintf “%08x”, $prev;
$mm = sprintf “%08x”, $mm;

#Convert variable pid to a decimal number
$pid = hex($pid);

60

#Print out all the information garnered from task_struct
print “--\n”;
 print “Executable name is: $name\n”;
 print “The pid of the executable is: $pid\n”;
 print “The next task_struct is at: $next\n”;
print “The previous task_struct is at: $prev\n”;
print “The associated mm_struct is at: $mm\n”;
print “Value pointed to by pgd: $pgd\n”;
print “--\n”;
#Assemble the return array
@ret[0] = $next;
@ret[1] = $prev;

return @ret;

}

F. ENUM_ADD_SPACE.PL
#!/usr/local/bin/perl
#This is a program that will enumerate all the different
#Address_space objects found in a memory dump
use strict;
use utils;

#---
#Declare variables
#---
my @addresses; #Array of addresses found in dump file
my $addr_ref = \@addresses; #Pointer to the array of addresses
my @clean_addrs; #The version of addresses array without
 #NULL entries or repitition
my $addr; #A single addr space address
my $dump_file; #Memory image file to be searched for
my $out_file; #File to send all addr space addresses to
my $user_in; #User input

#---
#Read in arguments
#---
#Get dump file from user
$user_in = shift
or die “User did not input anything. Error found”;
#Make sure that the input matches the correct format.
#If -f is found, then continue
if($user_in eq “-f”)
{
#Advance input
$user_in = shift;

#If the value of input is in line with a flag
#name or empty, then continue
if($user_in eq “-o” or $user_in eq “”)
 {
die “Memory image file name is invalid. Error found”;
 }

61

#Save string after -i in dump_file variable
$dump_file = $user_in;

#Advance input
$user_in = shift;

#If a -o is found, then continue
if($user_in eq “-o”)
 {
#Advance input
$user_in = shift;

#If the output file name is there, then
#put input value in dir variable
if($user_in ne “”)
 {
$out_file = $user_in;
 }
#Otherwise kill program
else
 {
die “Output file name is missing. Error found”;
 }
 }
else
 {
die “The -o flag is missing. Error found”;
 }
}
#Otherwise kill program
else
{
die “User did not use -f flag. Error found”;
}

#---
#Body
#---
#Traverse al page descriptors and run enum_addr_space
#on them all
Utils::traverse_page_desc($dump_file, \&enum_addr_space, $addr_ref);
print “Done with initial printing!\n”;
#Remove zero elements and repeating elements from
#addresses array
@clean_addrs = clean_array(@addresses);

#Open out file for writing
open(FILE, “>$out_file”);

#Output the clean_addrs array to an output file
foreach $addr (@clean_addrs)
{
#Write out to file
print FILE “$addr\n”;
print “$addr\n”;
}

62

#Close output file
close(FILE);

#This function takes in an array and returns a version
#of that array without 0 values or repetition
sub clean_array
{
 #--
#Read in arguments
 #--
my @old_array = @_; #Array to clean up

 #--
#Declare variables
 #--
 my @new_array; #Cleaned up array
 my $old_element; #An element of the old array
 my $new_element; #An element of the new array
 my $add_old = 1; #Flag for adding/not adding an
 #element to the new array
 my $v = 0; #Verbose flag

 #--
#Body
 #--
#Add the element from old array to new array only if
#it is not equal to zero or is already in the new array
foreach $old_element (@old_array)
{#print “old element: $old_element\n”;
#If the element is not zero then check if
#the element is in new array.
if(!($old_element =~ m/00000000/))
{#print “not zero\n”;
#Check if element is in new array
foreach $new_element (@new_array)
{#print “compare to : $new_element\n”;
if($old_element =~ m/$new_element/)
{#print “MATCH\n”;
$add_old = 0;
last;
 }
 }

#If the old element did not appear in
#new array, then add it
if($add_old == 1)
 {
push(@new_array, $old_element);
if($v == 1){print “Added: $old_element\n”;}
 }

#Reset flag
$add_old = 1;
 }
 }

63

#Return new array
return @new_array;

}

#This function enumerates all the different address_space objects
#by searching all links from page descriptors and outputs them
#to a file
sub enum_addr_space
{
 #--
#Read in arguments
 #--
 my $base = shift; #Base address of page descriptor
 my $file = shift; #Pointer to memory file
 my $ref = shift; #Pointer to array where results
 #should be stored

 #--
#Declare variables
 #--
 my $offset = 0x10; #Offset where mapping (addr. Space

#pointer)
 #can be found;
 my $location; #Address get addr. space pointer from
 my $address; #Address of the address_space object

#found

 #--
#Body
 #--
#Calculate the address to retrieve pointer from
$location = $base + $offset;
#Turn location into a hex number
$location = sprintf “%08x”, $location;

#Read pointer contents and save them to address variable
$address = Utils::read_val($file, $location);
#Write result into array
push(@$ref, $address);

}

G. UTILS.PM
package Utils;
use strict;

#This function creates a formatted output outlining what address_space
#address was looked for in a particular run of the program.
sub heading
{
 #--
#Read in arguments
 #--
my $add_space = shift;

64

print “\n\n”;
print “**\n”;
print “The following pages all have descriptors that point to the
same\n”;
print “address_space object. This address is:\n\n”;
print “ $add_space \n”;
print “**\n”;
}

#This function takes in the address of a particular Address_space
#object and find all the page descriptors and pages associated with
#those objects in a memory dump
sub find_address_space
{
 #--
#Declare variables
 #--
 my $index; #The position of a page w/ respect
 #to other pages of same address
 #space
 my $page_desc; #Address of page descriptor
 my $page_address; #Page fram address
 my @answers; #Array of lines from an input file
 my $in_file = ‘match.txt’; #Input file with page addresses and
 #indices
 my $dump_file; #Memory dump file to look into
 my $line; #individual line in answers array
 my $address; #Address_space to look for

 #--
#Get Inputs
 #--
$dump_file = shift;
$address = shift;

 #--
#Body
 #--

#Traverse the page descriptors and perform get_match_info
#on each one
traverse_page_desc($dump_file, \&get_match_info, $address);
#Open the file used by get_match_info to
#output results
open(FILE, $in_file);

#Read in needed info into an array in the
#order dictated by index value of file (1st

#element of each line.
while(<FILE>)
 {
$_ =~ m/(.+)\s(.+)\s(.+)\n/;
$index = $1;
$page_desc = $2;
$page_address = $3;

#Store lines into answers array by their index

65

@answers[$index] = “Page $index is at $page_address w/ descriptor at
$page_desc\n”;
 }

#Print out pages found in order
foreach $line (@answers)
 {
print “$line”;
 }

#Close the file
close(FILE);

#Remove the input file because it is no longer needed
system “rm $in_file”;

}

#This function traverses the mem_map array and calls a function
#provided by the caller (through a pointer) at every page encountered.
#It passes the current page descriptor address to the function passed
#in.
sub traverse_page_desc
{
 #--
#Read in arguments
 #--
 my $dump_file = @_[0]; #The name of the file to look in
 my $function = @_[1]; #Pointer to function to perform as
 #the mem_map array is traversed
 my @arguments = @_[2..$#_]; #Array of arguments inteded for
 #funct pointed to by the above
 #argument

 #--
#Declare variables
 #--
 my $mem_map = 0x1000000; #The physical address marking the
 #beginning of the mem_map page desc
 #array
 my $offset = 0x0; #Offset for loop that controls
 #traversing the mem_map page desc
 #array
 my $location; #The current address being seen in
 #the loop
 my $upper_limit = 0x20000; #Controls number of times the
 #traversal loop will run
 my $v=0; #Verbose flag

 #--
#Body
 #--
#Open the image of memory that you want to analyze
open(DUMP,$dump_file)
or die “Memory image file $dump_file could not be opened.
Error found”;
print “Opened the file: $dump_file \n”;

66

#Loop through page descriptor entries and apply passed function
#The loop stops at 0x20000 which is the value I calculated for
#the number of page descriptors needed to cover 512 MB of mem.
for(my $i=0; $i<$upper_limit; $i++)
 {
if($v==1){print “The offset is: $offset\n”};
#Calculate the current page address in physical memory
$location = $mem_map + $offset;
#perform function passed with function pointer
$function->($location, *DUMP, @arguments);
#Offset grows with loop
$offset = $offset + 0x20;
 }

#Close dump file
close(DUMP);
}

#This function takes in the address of a page descriptor and an address
#to match to. If the address to match to is the same as the one held
#in the address_space pointer in the page descriptor, then we have a
#match and the page information is written to a file
sub get_match_info
{
 #--
#Read in arguments
 #--
 my $location = shift; #The address of a page descriptor
 my $file = shift; #Pointer to file to look in
 my $add_space = shift; #The address to match to

 #--
#Declare variables
 #--
 my $hex_out; #Hexadecimal output from read_val
 #function
 my $page_desc; #Address of the page descriptor
 my $page_address; #Address of page that corresponds
 #to page descriptor
 my $index; #Index of the page in question
 my $mem_map_element_size = 0x20; #Size of a page descriptor
 my $index_offset = 0x14; #Offset where index resides
in page
 #descriptor
 my $mem_map = 0x1000000; #Physical address of mem_map 16MB
 my $out_file = ‘match.txt’; #File to write matches to.
 my $v=0; #Verbose flag

 #--
#Body
 #--
#Change the whole address to upper case
$add_space =~ tr/[a-z]/[A-Z]/;

#Retrieve the value of the current page descriptor’s pointer
#to the address_space struct that owns it. The 0x10 is the

67

#offset into the page descriptor where the actual pointer is
#found.
$location = $location + 0x10;
#Turn location into a hex number
$location = sprintf “%08x”, $location;

if($v==1){print “The value sent in to read_val: $location\n”};
#Retrieve address_space pointer from dump file
$hex_out = read_val($file, $location);
if($v==1){print “The value returned from the read_val function:
$hex_out\n”};
#Change the output to all upper case for the comparison
$hex_out =~ tr/[a-z]/[A-Z]/;
#Compare the result to the address passed in in the parameter
if($hex_out =~ m/$add_space/)
 {
#Calculate the actual page descriptor address and interpret it
#as hex
$page_desc = hex($location) - 0x10;
$page_desc = sprintf « %08x », $page_desc;

#Calculate the page address in memory from the page
#descriptor address. The equation is:
#((page_desc_address - mem_map_address)/0x20) << PAGE_SHIFT
$page_address = (hex($page_desc) - $mem_map);
$page_address = $page_address/$mem_map_element_size;
$page_address = $page_address << 12;
$page_address = sprintf “%08x”, $page_address;
#Retrieve the address where the index of the page is stored
$location = (hex($page_desc) + $index_offset);
$location = sprintf “%08x”,$location;
#Read the index of the page in question
$index = read_val($file, $location);

#Open out file for appending
open(FILE, “>>$out_file”);

#Write out to file
print FILE “$index $page_desc $page_address\n”;
if($v==1){print “MATCH at 0x$location, PAGE_DESC at
0x$page_desc, “;}
if($v==1){print “PAGE at 0x$page_address, INDEX is
$index\n”;}
#Close output file
close(FILE);

 }

}

#This function goes to the offset specified in the input
#(which should be in hex) and returns a word (4 bytes) at
#that location. The file it searches should be open when
#this function is called.
sub read_val
{
 #--

68

my $handle = shift;

#Read in arguments
 #--

my $contents = shift;

#This intereprets the hex number as a decimal to use in seek
$contents = hex($contents);
my $v=0;
if($v==1){print “Address seen by read_val is: $contents\n”};

 #--
#Declare variables
 #--
#The reason behind splitting the input is that I needed to
#rearrange the order of the bytes from the way they exist in
#memory—which is backwards. For example, the word AB123456 in
#memory is really the hex number 563412AB.
 my $input_byte_1; #First byte of the input
 my $input_byte_2; #Second byte of the input
 my $input_byte_3; #Third byte of the input
 my $input_byte_4; #Fourth byte of the input

 my $hx; #Hexidecimal version of the above
 #inputs

 #--
#Body
 #--
#Go to the correct offset in image file and read selected bytes
seek($handle, $contents, 0);
sysread($handle, $input_byte_4, 1);
sysread($handle, $input_byte_3, 1);
sysread($handle, $input_byte_2, 1);
sysread($handle, $input_byte_1, 1);

#Rearrange the bytes and assemble them into hex
$hx = sprintf “%02x”, ord($input_byte_1);
$hx = $hx.sprintf “%02x”, ord($input_byte_2);
$hx = $hx.sprintf “%02x”, ord($input_byte_3);
$hx = $hx.sprintf “%02x”, ord($input_byte_4);

if($v == 1) {print “Result of read_val function is: $hx\n”};
return $hx;
}

1;
H. HEAP.C
/*heap.c
*by: Jorge Urrea
*2/15/2006
 *
*This program asks for 400MB of heap space and then
*proceeds to fill it with signatures of the form
*pid|BEEF|ABCD|page#. This is done to allow for an
*easy determination of what process wrote the page and
*what number page it is in the scheme through hex

69

*inspection.
*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

int main(){
//Declare variables
 int pid; //The pid of this process
 int *mem; //Pointer to heap allocated by malloc
 int *mem2; //Pointer that advances through heap
 int cat; //Variable to concatenate values in
 int page_count = 0; //The page number being added to heap
 int i; //For loop iteration control

//Get pid
pid = getpid();

printf(“The pid of this process is: %d\n”, pid);
//Allocate heap space
mem = malloc(419430400);

//Initialize mem2 to mem
mem2 = mem;

printf(“Mem 1 is: %d, Mem 2 is: %d\n”, mem, mem2);
//Loop the placing of bytes in heap. The number
//of iterations will fill up the whole space
//allocated.
for(i=0; i<52428800; i++){

//Assemble word to put into heap
cat = pid;
cat = cat << 16;
cat = cat | 0xBEEF;

//Put it into the heap
*mem2 = cat;

//Advance mem2 4 bytes
mem2 = mem2 + 1;

//If the sequence has been repeated 512 times, then
//increment the page count (512 x 8 bytes per loop =
//4096). The modulo operation is to account for
//indexing at zero. That is, if you want to change
//a page every 4 iterations you actually want iterations
//0-3 to be page 0, iterations 4-7 to be page 1, etc.
if((i%512 == 511)){
page_count++;
 }

//Assemble second word to put in heap
cat = 0xABCD;
cat = cat << 16;

70

cat = cat | page_count;

//Put it into the heap
*mem2 = cat;

//Advance mem2 4 bytes
mem2 = mem2 + 1;
 }

//Create an endless loop to maintain the persistance of
//This program
while(1){
 }

//Free the space allocated
free(mem);

return 0;
}

71

LIST OF REFERENCES

[1] Prosise, Chris, and Mandia, Kevin, and Pepe, Matt. Incident Response and
Computer Forensics, Second Edition. McGraw-Hill Osborne Media, 17 July
2003.

[2] Federal Bureau of Investigation. “History of the FBI, Rise of International Crime:
1980’s,” http://www.fbi.gov/libref/historic/history/rise.htm, 2006. Last Visited:
January 2006.

[3] Burdach, Mariusz. Digital Forensics of the Physical Memory. March 2005.

[4] Bovet, Daniel P., and Cesati, Marco. Understanding the Linux Kernel (2nd
Edition). O’Reilly Media, 1 December 2002.

[5] Bovet, Daniel P., and Cesati, Marco. Understanding the Linux Kernel (3rd
Edition). O’Reilly Media, 1 November 2005.

[6] Gorman, Mel. Understanding the Linux Virtual Memory Manager (Bruce Perens
Open Source). Prentice Hall PTR, 29 April 2004.

[7] Grance, Tim, and Kent, Karen, and Kim, Brian. NIST Special Publication 800-61:
Computer Security Incident Handling Guide. January 2004.

[8] Brezinski, D., and Killalea, T. RFC 3227: Guidelines for Evidence Collection and
Archiving. February 2002.

[9] Burdach, Mariusz. “Finding Digital Evidence in Physical Memory.” 2006 Black
Hat Federal Conference. Sheraton Crystal City, Washington DC. 25 January
2006.

[10] Federal Bureau of Investigation, “2005 Computer Crime Survey Report,”
http://www.mitnicksecurity.com/media/2005%20FBI%20Computer%20Crime%2
0Survey%20Report.pdf, 18 January 2006. Last visited March 2006.

[11] Rollins, John, and Wilson, Clay “Terrorist Capabilities for Cyberattack: Overview
and Policy Issues,” http://italy.usembassy.gov/pdf/other/RL33123.pdf, 20 October
2005. Last visited March 2006.

[12] Carrier, Brian D., and Grand, Joe, “A Hardware-Based Acquisition Procedure for
Digital Investigations,” Digital Investigation Journal 1(1), http://www.computer-
tutorials.org/whitepapers.php, February 2004. Last visited March 2006.

[13] Garner, George M. Jr., and Mora, Robert-Jan “Response to Specific Questions
Posed by the DFRWS 2005 Memory Challenge,”
http://www.dfrws.org/2005/challenge/index.html. 6 August 2005. Last visited
March 2006.

http://www.fbi.gov/libref/historic/history/rise.htm
http://www.mitnicksecurity.com/media/2005%20FBI%20Computer%20Crime%20Survey%20Report.pdf
http://www.mitnicksecurity.com/media/2005%20FBI%20Computer%20Crime%20Survey%20Report.pdf
http://italy.usembassy.gov/pdf/other/RL33123.pdf
http://www.computer-tutorials.org/whitepapers.php
http://www.computer-tutorials.org/whitepapers.php
http://www.dfrws.org/2005/challenge/index.html

72

[14] Betz, Chris. “DFRWS 2005 Challenge Report,”
http://www.dfrws.org/2005/challenge/ChrisBetz-
DFRWSChallengeOverview.html. August 2005. Last visited March 2006.

[15] Linux Man Pages, “DD.” Last visited March 2006.

http://www.dfrws.org/2005/challenge/ChrisBetz-DFRWSChallengeOverview.html
http://www.dfrws.org/2005/challenge/ChrisBetz-DFRWSChallengeOverview.html

73

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Chris Eagle
Naval Postgraduate School
Monterey, California

4. Dr. George Dinolt
Naval Postgraduate School
Monterey, California

5. Dr. Cynthia Irvine
Naval Postgraduate School
Monterey, California

6. Jorge Mario Urrea
Naval Postgraduate School
Monterey, California

	I. INTRODUCTION
	A. RAM FORENSICS BACKGROUND
	B. PURPOSE OF STUDY
	C. THESIS ORGANIZATION

	II. BACKGROUND
	A. PARAMETERS OF INVESTIGATION
	1. Source Navigator 5.1.4
	2. Gcalc 5.6.31
	3. DD (Part of Coreutils 5.3.0)
	4. GHex 2.8.1
	5. Memory (Part of KDE 3.4.2 Level “b”)
	6. Kate Editor 2.4.1

	B. MEMORY MANAGEMENT STRUCTURES
	1. The Big Picture
	2. Task Struct
	3. MM Struct
	4. VM Area Struct
	5. File Struct
	6. Dentry Struct
	7. Inode Struct
	8. Address Space Struct
	9. Page Struct
	10. Memory Map

	C. USEFUL CALCULATIONS
	1. Virtual to Physical Memory Conversion for Kernel Addresse
	2. Page Frame to Page Descriptor Conversion
	3. Page Descriptor to Page Frame Conversion

	D. PAGE TABLES
	E. SWAP SPACE
	1. Swap Area Descriptor

	F. IMAGING RAM IN LINUX

	III. CURRENT STATE OF RAM FORENSICS
	IV. ANALYSIS
	A OVERVIEW
	B. PHYSICAL MEMORY
	1. Traversing task_struct Linked List
	2. Rebuilding File
	3. Radix Tree Structure

	C. SWAP

	V. CONCLUSION
	A. SUMMARY
	B. PROBLEMS
	C. FUTURE WORK

	APPENDIX. SOURCE CODE
	A. FIND_WALDO.PL
	B. FIND_PATTERN.PL
	C. FIND_SIGNATURES.PL
	D. MATCH_SIGNATURES.PL
	E. FIND_TASK.PL
	F. ENUM_ADD_SPACE.PL
	G. UTILS.PM
	H. HEAP.C

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

