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Abstract

As the control and exploitation of space becomes more important to the United
States military, a responsive spacelift capability will become essential. Responsive
spacelift could be defined as the ability to launch a vehicle within hours or days from the
time a launch order is given, instead of the weeks or months it takes currently. As the Air
Force contemplates moving toward a reusable military launch vehicle (RMLV)
capability, it faces key design and ground processing decisions that will affect the vehicle
regeneration timeline. This thesis develops a computer simulation model that mimics
RMLYV prelaunch operations—those activities that take place during vehicle integration
and launch pad operations. This simulation model can help the Air Force make RMLV
acquisition decisions by analyzing how different RMLV designs and ground processing
scenarios will affect RMLV regeneration time.

The model was developed by comparing and contrasting existing launch vehicle
processing flows to create the RMLYV prelaunch operations model. To foster confidence
in model credibility, the model was analyzed and validated by a panel of launch vehicle
experts. Model verification was accomplished via an Assertion Checking method that
compared model developer intent to actual model operation. The model was used to
conduct three experiments that analyzed how different ground processing scenarios

affected RMLYV regeneration time.
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A DISCRETE-EVENT SIMULATION MODEL FOR EVALUATING AIR FORCE

REUSABLE MILITARY LAUNCH VEHICLE PRELAUNCH OPERATIONS

l. Introduction

Background

The control and exploitation of space is becoming increasingly important for the
United States military. The Department of Defense relies heavily on capabilities
provided by space assets, so much so that a disruption of those capabilities would have
grave implications. Many of the technologies utilized during Operation Iragi Freedom
(OIF), such as global positioning system guided munitions and satellite surveillance,
depend upon the military’s uninhibited use of space. So far the military’s use of space
has not been significantly challenged, but this could change in the future. One high-
ranking Russian military official advocated the development of Russian antisatellite
weapons in a post-OlF assessment of U. S. military capability (Brown, 2004b:1). Itis
likely that U. S. space assets will become increasingly vulnerable as other nations
improve their space access capabilities.

To maintain U. S. superiority in space, the Air Force needs responsive spacelift
capability that will enable quick access to space for national defense purposes.
Responsive spacelift could be defined as the ability to launch a vehicle within hours or
days from the time a launch order is given, instead of the weeks or months it takes
currently (Brown, 2004b:2). The Air Force is using the term Operationally Responsive

Space to describe the responsive spacelift concept. Replacing or repairing damaged



satellites are key capabilities enabled by Operationally Responsive Space. Other possible
Operationally Responsive Space applications include facilitation of future space missions
such as space control, missile defense, and force application (Brown, 2004b:5).

The Air Force currently utilizes a family of expendable launch vehicles (ELV) to
meet its spacelift needs. Unfortunately, this method of space access is far from
responsive. It commonly takes weeks or even months to prepare an ELV for launch.
Furthermore, each launch is extremely expensive since all vehicle hardware is essentially
“thrown away” after each use. For example, it is estimated that each launch of the Titan
IVB ELYV cost between $350 and $450 million (Isakowitz et al, 2004:496). Launch costs
for other ELVs vary, but many are in the hundreds of millions of dollars. In an effort to
reduce launch costs, the Air Force is pursuing the development of reusable military
launch vehicles (RMLYV). Itis hoped that a fleet of RMLVs will significantly reduce
launch costs because each vehicle would be refurbished after its mission and used again.
The Air Force is currently in the research and development phase of obtaining a vehicle
with a reusable first stage and expendable second stage. This particular vehicle concept
has been termed the Hybrid Launch Vehicle (HLV S&A SOO0:1). The Hybrid Launch
Vehicle recurring flight cost goal is to reduce launch costs to 1/6 of the current ELV
launch costs (HLV S&A SOO0:4).

The only operational orbital reusable launch vehicle (RLV)* in the world is the
space shuttle. While a significant technological achievement in its own right, the shuttle

cannot be categorized as responsive spacelift. On average, it takes 126 calendar days to

! The acronym RLYV is used to refer to non-military reusable launch vehicles, like the space shuttle. RMLV
is used to refer to reusable launch vehicles used for military purposes.



regenerate the shuttle (McClesky, 2005:29). Regeneration includes all inspection,
maintenance, and servicing activities undertaken between vehicle landing and the next
vehicle launch. The Air Force wants the capability to regenerate the Hybrid Launch

Vehicle in 24 hours or less (HLV S&A SOQ:4).

Problem

It is obvious that the Air Force must design an RMLV that facilitates regeneration
times that are much shorter than the regeneration times experienced by the space shuttle.
To put it another way, the Air Force’s RMLYV fleet must experience much higher
availability levels than that of the space shuttle fleet. Availability is defined as “the
probability that a component or system is performing its required function at a given
point in time when used under stated operating conditions” (Ebeling, 2005:6).
Mathematically it can be represented by

uptime
uptime + downtime

Availability = 1)

where uptime is the amount of time spent in an operable state and downtime is the
amount of time spent in an inoperable state. Availability can be increased in several
ways. First, increases in vehicle reliability will increase availability. Reliability is
defined as “the probability of non-failure over time” (Ebeling, 2005:5). Reducing the
probability of component failure will decrease the amount of time spent on reactive
maintenance, or fixing components that break. It can also reduce the amount of time
spent on proactive maintenance, which includes inspecting or replacing components to

keep them from failing. Increases in maintainability will also increase availability.



Maintainability is defined as “the probability of repair in a given time” (Ebeling, 2005:6).
Maintainability improvements include easier access to components and increased fault
isolation capability; they generally help maintenance personnel return the vehicle to
serviceable status more quickly (Ebeling, 2005:223).

One aspect of RMLYV ground operations closely related to maintainability is
vehicle handling and servicing. Just as increases in maintainability speed up vehicle
recovery, increases in vehicle handling and servicing efficiency can decrease the amount
of time it takes to prepare a vehicle for launch. For RMLVs, handling and servicing
include vehicle transport, stage mating and payload integration, and servicing of fuel and
other fluids and gasses. These actions are often loosely spoken of as prelaunch
operations, because they follow other vehicle preparation steps and occur immediately
prior to vehicle launch. Brown divides these actions into two categories: call-up time and
launch operations. He defines call-up time as “the time required to prepare for launch,
starting with the vehicles in standby mode in a hangar and ending with the payload
integrated into the vehicle and ready for launch operations on the launch pad.” He
defines launch operations as “all activities on the launch pad beginning with propellant
and pressurant loading and ending with the engine start command” (Brown, 2004a:11).
To avoid confusion and wordiness, this thesis will use the term “prelaunch operations” to
describe the actions of payload integration, stage mating, vehicle transport, and vehicle
servicing. Prelaunch operations start when vehicle assembly (stage mating and payload
integration) begins and end when the vehicle’s engines ignite. The assumption is that at
the start of prelaunch operations, all major repairs and inspections are complete and that

apart from the prelaunch steps, the vehicle is operable. It is also assumed that the



payload and all stages are completely processed and ready for immediate assembly. The
prelaunch processing sequence is of key importance because it has the potential to add a
significant amount of time to RMLV ground operations. For the Air Force to reach its
RMLYV turn-around time goal, it must place special emphasis on utilizing efficient

prelaunch operations methods.

Research Objective
The purpose of this research is to aid the Air Force in its search for efficient
prelaunch operations by creating a discrete-event simulation model of a generic RMLV
prelaunch process. Such a model can help decision makers evaluate tradeoffs between
vehicle design alternatives and prelaunch operations efficiency. It can also give insight
into the prelaunch steps that add the most time to the prelaunch process. To guide the
research effort, the following research question is proposed:
How can the Air Force develop a discrete-event simulation model of RMLV
prelaunch operations that will aid decision makers in evaluating RMLV design
alternatives?
The research question is divided into the following investigative questions:
1. What generic functions, or sequence of actions, describe RMLYV prelaunch
operations?
2. How do these RMLYV prelaunch operation functions compare to shuttle,
aircraft, ELV, and Intercontinental Ballistic Missile (ICBM) prelaunch operation

functions?



3. What are the RMLV design drivers that will influence RMLYV prelaunch
operations, and how will these drivers affect the number, type, and duration of
RMLYV prelaunch operations activities?

4. How can these RMLYV design drivers and prelaunch operations activities be
incorporated into a discrete-event simulation model that captures a baseline
RMLYV prelaunch operations sequence?

5. What RMLYV regeneration timeline insights can be gained from running the

model using notional but plausible inputs?

Summary and Preview

This chapter provided a general overview of the need for responsive spacelift and
described the challenges to achieving responsive spacelift. A definition of prelaunch
operations was presented. The purpose for this research was discussed, along with the
overall research question and investigative questions. The following chapters will
address the answers to these questions. Chapter Il will provide an overview of general
prelaunch operations, emphasize the importance of efficient prelaunch operations, and
discuss previous launch vehicle simulation models. Chapter I11 will describe the
methodology used in this research. Chapter IV will include a description of the model
developed for this thesis along with model verification and experimental design results.

Chapter V will offer research conclusions and future research ideas.



I1. Literature Review

Introduction

This chapter will provide a more detailed background of the research problem by
explaining key terms and concepts, justifying why the problem is significant, and
discussing the research that has been accomplished to date. The first section will cover
the future spacelift objectives for both NASA and the Air Force. This will be followed
by a general discussion of prelaunch operations for current space launch systems to give
the reader a sense of the importance and extent of the problem. The next section will
include an overview of the existing research and simulation models pertaining to RLV
ground operations. The chapter will conclude with a section that will compare notional

RMLYV prelaunch operations to similar shuttle, aircraft, ELV, and ICBM activities.

Air Force and NASA Future Spacelift Objectives

To begin, it will be helpful to understand the current context of both Air Force
and NASA spacelift objectives. In January of 2004, President Bush released his new
vision for the nation’s space exploration program. The vision outlines the nation’s space
exploration goals for the next several decades and mandates a retirement of the space
shuttle by the year 2010. The space shuttle will be replaced with a new space vehicle that
will be used for manned lunar missions and eventually manned missions to Mars. To this
end, NASA is focusing its resources on development of the Crew Exploration Vehicle
(“President Bush Announces,” 2004). Crew Exploration Vehicle plans call for manned

missions beginning no later than 2011 (NASA’s Exploration Systems Architecture Study,



2005: 13). The Crew Exploration Vehicle will likely be launched via a shuttle Solid
Rocket Booster for the first stage and a yet-to-be-designed liquid fueled second stage
(NASA'’s Exploration Systems Architecture Study, 2005:42, 43).

The Air Force’s spacelift needs differ from NASA’s spacelift needs. NASA is the
“civil” space agency for the U. S. and often flies for exploratory or research purposes
according to a fixed launch schedule. In contrast, the Air Force is a military organization
requiring a spacelift capability that can quickly respond to war-time contingencies. The
Air Force is considering several uses for its future space launch capability, including
satellite replacement; intelligence, surveillance, and reconnaissance; and rapid global
strike (Wall, 2002:39). As a step towards developing a responsive spacelift capability,
Air Force Space Command initiated an Analysis of Alternatives study in March of 2003.
The purpose of the Analysis of Alternatives study was to analyze different approaches to
achieving Operationally Responsive Space and to recommend a specific acquisition
strategy for design and fielding of an Air Force responsive spacelift capability
(Dornheim, 2003:70). The Analysis of Alternatives study recommended a design
composed of both reusable and expendable elements. This design has been termed the
Hybrid Launch Vehicle. The Hybrid Launch Vehicle will be made up of a reusable first
stage and one or two expendable upper stages. The Analysis of Alternatives study chose
the Hybrid Launch Vehicle concept because it lent itself to quick turn-around times and
was generally less expensive than fully reusable or fully expendable options. The Hybrid
Launch Vehicle is currently in the concept development and demonstration planning
stage. A contract will be awarded at the end of 2007 for a Hybrid Launch Vehicle

subscale demonstrator that will undergo ground and flight tests by 2011. The actual



operational vehicle, or Hybrid Launch Vehicle Operational Spacelift (HLV OS), is

scheduled to begin operations by 2018. The Air Force will require the HLV OS to be

highly responsive, with a goal of launching a pre-integrated payload with a 24 to 48 hour

notice (Dornheim, 2005:33). Other HLV OS requirements and goals are given in Table

1.

Table 1: HLV OS Operational Requirements (HLV S&A SOO: 3)

Operational Parameter

Threshold

Objective

First Stage Turn -Around Time

48 hours

24 hours

HLV OS Recurring Flight Cost

1/3 current EELV -M
launch costs

1/6 current EELV -M
launch costs

HLV OS Initial Production Size

6 Operational First
Stages

6 Operational First
Stages

First Stage Return to Base (RTB) — Nominal Required Required

Mission

First Stage RTB - Intact Abort 50%* 90%*

Blue Suit Operators Blue Suit & Contractor | Blue Suit

HLV OS Upper Stages Production Costs $10M per unit $5M per unit

Use of Foreign Designed Critical Components Domestic Production No Foreign Designed
Required Components

Significance of RMLYV Prelaunch Operations Research

There may be a tendency to discount the importance of research that seeks to

develop timely prelaunch operations for RMLVs. It is true that most of the time spent on

vehicle regeneration will likely be spent on the maintenance functions that precede

prelaunch operations. Because of this, improving the timeliness of these maintenance

functions may have the most benefit for improving regeneration time overall. However,

this does not negate the importance of timely prelaunch operations. As demonstrated in

Figures 1 and 2, drastic improvements in the timeliness of the core maintenance functions

preceding prelaunch operations with no or little improvement in the timeliness of




prelaunch operations over existing launch systems will still leave the Air Force short of
its RMLYV regeneration goals. Furthermore, as the space community continues to
emphasize “aircraft-like” RMLV operations, RMLV prelaunch operations become
especially pertinent since such operations will by necessity differ greatly from similar
aircraft operations. The following sections attempt to illustrate the importance of
developing timely RMLYV prelaunch operations by discussing the unresponsive nature of
prelaunch operations for existing systems and by showing how RMLYV alert operations
will be especially dependent upon a rapid RMLYV prelaunch sequence.

Length of Shuttle Prelaunch Operations

The shuttle experience demonstrates how much time prelaunch operations can add
to total regeneration time. The shuttle, which is the only operational orbital RLV, takes
on average approximately 126 days to regenerate (McClesky, 2005:29). But how much
of this total time is taken up by prelaunch operations? Before answering this question, it
will be helpful to describe the actions that make up shuttle prelaunch operations. A more
detailed description of shuttle prelaunch operations is given in the “Prelaunch Operations
Comparisons” section below, and for now, a brief explanation will suffice. In the
introduction, prelaunch operations were defined generically as all actions accomplished
from vehicle integration to engine ignition. For the shuttle, this would include Vehicle
Assembly Building operations, transport to the launch pad, and launch pad operations.
The Vehicle Assembly Building is where the major vehicle components are joined
together on top of the Mobile Launch Pad. After Vehicle Assembly Building processing
is complete, the shuttle is transported via crawler transporter to the launch pad, where

final checks, crew ingress, and propellant servicing take place (Cates, 2003:89-115).

10



Historical data on shuttle VVehicle Assembly Building time and launch pad time is

displayed graphically in Figures 1 and 2.
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Figure 1: Time Spent on Shuttle Vehicle Integration in Vehicle Assembly Building
(TA Days)
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Figure 2: Time Spent on Shuttle Launch Pad Operations (TA Days)
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On average, shuttle integration in the Vehicle Assembly Building takes
approximately seven calendar days (Cates, 2003:112,113).2 Transport to the launch pad
takes approximately one day (Cates, 2003:117). The average shuttle launch pad
processing time is approximately 35 calendar days (Pad SSV TA Days). Added together,
these operations account for approximately 43 days of total shuttle regeneration time. Or
to put it another way, approximately one-third (43 days out of 126 days) of shuttle
regeneration time is taken up by prelaunch operations activities. This data clearly
demonstrates the importance of timely prelaunch operations. For the Air Force to reach
its RMLYV turn-around time goals, it must obtain a vehicle that will allow for much
quicker assembly, transport, and launch pad operations.

Length of Expendable Launch Vehicle Prelaunch Operations

Ever since the Space Shuttle Challenger accident, the military has relied
exclusively on ELVs to place payloads into orbit (Greaves, 1997:9). A wide range of
different ELVs are in operation today, but the most applicable group to our study is the
Evolved Expendable Launch Vehicle family. The Evolved Expendable Launch Vehicle
family is composed of both Delta IV and Atlas V launch vehicles. An outgrowth of older
ELV programs, the Evolved Expendable Launch Vehicle represents advances in
technology and ground operations over its predecessors and is thus the most pertinent,
up-to-date example to consider for this study.

The exorbitant costs associated with ELV launches motivated the effort to field a

more cost-effective and reliable launch capability in the mid-1990’s. The Evolved

% These seven calendar days do not include solid rocket booster stacking operations and external tank-to-
solid rocket booster connections. Solid rocket booster stacking and external tank-to-solid rocket booster
connections occur prior to the mating of the orbiter to the rest of the space shuttle vehicle and, if included,
would increase total integration time.

12



Expendable Launch Vehicle was the result of this effort. The Evolved Expendable
Launch Vehicle is truly “evolved” in the sense that both Evolved Expendable Launch
Vehicle variants, Atlas V and Delta IV, are based upon older, proven ELV technology.
The Atlas V is a Lockheed Martin product and is an outgrowth of the Atlas 11 and Atlas
I11. The Delta 1V is produced by Boeing and is based upon the Delta Il and Delta Ill
(Isakowitz et al, 1999:128). The Evolved Expendable Launch Vehicle program was
initiated with several key objectives. First, the Evolved Expendable Launch Vehicle
program was expected to preserve the capability already achieved by existing launch
systems to safely and accurately place satellites in orbit (Greaves, 1997:31). Second, the
Evolved Expendable Launch Vehicle program was designed to reduce overall recurring
launch costs by 25 to 50 percent over existing launch systems (GAO, 2004:1). Finally,
the Evolved Expendable Launch Vehicle program was expected demonstrate “operability
improvements” over older launch systems (Evolved Expendable Launch Vehicle,
2005:par. 1). The Atlas V and Delta IV launch vehicles are shown in Figures 3 and 4,
respectively. While some have questioned whether or not the Evolved Expendable
Launch Vehicle program will be able to fully demonstrate its expected cost savings
(GAO, 2004:7-9), the Evolved Expendable Launch Vehicle has successfully incorporated
ground operations changes that allow for more timely prelaunch operations. For instance,
both the Atlas V and Delta IV are designed to minimize the amount of time the vehicle
spends on the launch pad. Delta IV is integrated and tested horizontally in a horizontal
integration facility. Once all systems are verified for launch, the vehicle is transported
horizontally to the launch pad where it is erected and then integrated with its payload

(Delta IV Launch Vehicle). This is an improvement over Delta Il, its
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Figure 3: Atlas V (Atlas Launch System Mission Planner’s Guide, 2004:1-4)
predecessor, which undergoes all integration and testing while on the launch pad,
significantly increasing the duration of launch pad operations (Isakowitz et al, 2004:139).
Likewise, at the Cape Canaveral Air Force Station launch site, Atlas V undergoes all
stage and payload integration activities off the pad in a vertical integration facility and is
moved to the launch pad eight and a half hours before the scheduled launch (Centore,
2005:15). Atlas V also significantly speeded its task documentation process by
implementing an electronic documentation tool that replaces traditional paper
documentation procedures. Many launch processing tasks for Atlas V, such as propellant
loading, are accomplished automatically via a computer monitored process. Taking out

the “human element” in this way streamlines tasks and eradicates processing time
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variations associated with manual operations (Centore, 2005:12). Finally, both Evolved
Expendable Launch Vehicles employ common vehicle and payload interfaces to
standardize vehicle processing amongst the different vehicle variations (Evolved
Expendable Launch Vehicle, 2005:par. 1,3; GAO, 2004:2). An example of a prelaunch

operations schedule for Delta IV is given in Figure 5.
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Figure 5: Delta IV Medium Launch Vehicle CCAFS Projected Processing Timeline,
Time in Days (Delta IV Payload Planner’s Guide, 2000:6-34)

Figure 5 displays a typical prelaunch operations schedule for the Delta IV

Medium Launch Vehicle. Other Delta IV variations display similar schedules and

possess a prelaunch operations timeline between 17 and 24 days, depending on the

specific vehicle (Delta IV Payload Planners Guide, 2000:6-34-6-40). Figures 6 and 7

depict a typical prelaunch operations flow for Atlas V. Figure 6 depicts activities prior

to launch day, and Figure 7 shows launch day activities.
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Figure 7.4.3.6-1: Atlas V Launch Countdown - CCAFS
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The Atlas V launch team has the capability to complete the entire prelaunch
operations schedule, from the start of integration to launch, in 18 to 26 “M days,”
depending on the specific vehicle and launch requirements. One M day is equal to two
eight hour shifts. This is a significant improvement over the older Atlas models (Atlas Il
and Atlas I11), which took between 37 and 50 M days to complete the same activities
(Centore, 2005:12).

It must be noted that the schedules shown in Figures 5-7 are based upon non-
continuous operations—the technicians performing these tasks do not work around the
clock. The schedules could be shortened somewhat with 24 hour, seven-day-work-week
schedules. Such continuous operations may be more representative of future RMLV
operations. But even with this caveat, the schedules clearly demonstrate that the Air
Force must improve prelaunch operations significantly over current Evolved Expendable
Launch Vehicle prelaunch operations. Evolved Expendable Launch Vehicle
improvements have undoubtedly shortened the amount of time it takes for launch vehicle
integration and pad operations, but they still fall short of the desired ability to complete
these activities within a matter of hours.

Another ELV that warrants discussion is the Zenit 3SL. The Zenit 3SL is a
Russian-designed commercial launch vehicle that is marketed by Sea Launch, an
international, joint business venture headed by Boeing. The first Zenit 3SL launch was in
1999, but the Zenit 3SL is based upon an older version, the Zenit 2. The Zenit 2 is still
operational and is launched from the Baikonaur Cosmodrome in Kazakhstan. The Zenit
3SL is launched from a floating launch platform at a site on the equator in the Pacific

Ocean (Isakowitz et al, 2004:540-543). Zenit is known as somewhat of a benchmark for

18



efficient and timely prelaunch operations. The Russians designed the vehicle and
supporting infrastructure to facilitate quick vehicle and payload integration and rapid pad
operations. Zenit 2 undergoes vehicle and payload integration in a horizontal orientation.
The Zenit 2 and associated payload is fully integrated and tested only 91 hours after the
individual Zenit 2 stages arrive at the integration facility. Once the vehicle is integrated
and tested, it is transferred to transporter/erector railcars for transport to the launch pad.
Transport and pad operations also go quickly—Ilaunch usually occurs within 28 hours of
the vehicle leaving the integration facility. Once the vehicle reaches the pad, an
automated process completely controls the erecting of the vehicle and umbilical
connections. As soon as the vehicle lifts off the pad, the vehicle supports and
autocouplers retract into the pad where they are shielded from the exhaust. The Russians
designed the vehicles and pad so that a second launch could take place only 90 minutes
after a previous launch (Isakowitz et al, 2004:557).

The Zenit 3SL reserved many of the processing capabilities of the Zenit 2. The
main differences are that integration takes place on an Assembly and Command Ship and
that launch occurs at sea from a floating launch platform. Stage and payload integration
and associated testing takes place in a horizontal orientation on the main deck of the
Assembly and Command Ship at the Sea Launch Home Port in Long Beach, CA. After
integration is complete, the vehicle is lifted via crane onto the floating launch platform.
Once the vehicle is safely onboard, the launch platform starts its journey to the launch
site at the equator, which normally takes 10 to 12 days. Launch takes place three days
after the launch platform reaches the launch site. While in transport, the vehicle resides

in a covered hangar on the launch platform. On launch day, the vehicle is rolled to
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launch position and erected and fueled with the same automated system used for the Zenit
2 (Isakowitz et al, 2004:558). Much can be learned from Zenit prelaunch operations
methods and possibly applied to future Air Force RMLV operations. Figure 8 shows an

integrated Zenit 3SL, and Figure 9 illustrates a Zenit 3SL erected on the launch platform.
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Figure 8: Zenit 3SL (Sea Launch Image Gallery)

Some may question the credibility of comparing prelaunch operations for ELVs to
prelaunch operations for RMLVs. While RMLVs differ from ELVs in a variety of ways,
they also share many similarities, especially concerning their respective prelaunch
operations activities. Just like ELVs, RMLVs will undergo some sort of stage mating
process, at least in the foreseeable future, since single stage to orbit designs appear
unfeasible with current technology. Payload integration will more likely mirror the

Evolved Expendable Launch Vehicle concept rather than the shuttle concept.
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Figure 9: Zenit 3SL atop the Floating Launch Platform (Sea Launch Image Gallery)
Evolved Expendable Launch Vehicles use encapsulated payloads mated with common
payload interfaces, but shuttle payloads are integrated inside payload bay doors and often
necessitate significant shuttle modifications to accommodate specific payloads. These
modifications add a significant amount of time to shuttle regeneration operations
(McCleskey, 2005:41). If the Air Force’s RMLV design necessitates a vertical launch, it
must be situated vertically on the launch pad, just like an ELV. Finally, most launch pad
activities will be similar, since RMLVs will require umbilical (electrical,
communications, and propellant lines) and mechanical connections at the pad along with

vehicle tests similar to ELVSs.
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RMLYV Alert Ability and Prelaunch Operations

The simulation model built for this thesis will include only integration, transport,
and launch pad activities that take place after RMLYV inspection and repair is complete.
RMLV maintenance actions are examined via concurrent research by Pope (Pope, 2006).
Until now the reader may have assumed that prelaunch activities always begin
immediately upon the completion of RMLV maintenance (inspection and repair
activities), but this will not always be the case. The commencement of RMLYV prelaunch
operations will be directly linked to a need to launch; they may not begin until just prior
to a scheduled launch or until a need for launch arises. Current space launch systems fly
according to a fixed launch schedule that is often determined months or years in advance,
but some future RMLYV operations may be more reactive in nature. It is likely that the
Air Force will eventually keep one or more RMLVs on alert status. In fact, some authors
have compared future RMLV operations to B-52 alert operations in the Cold War era
(Brown, 2004b:5,7). These B-52s were “cocked” and completely ready to fly on a
moment’s notice. However, an RMLYV in alert status will not be able to launch as quickly
as an aircraft since it would be infeasible for it to remain for extended periods on a launch
pad completely fueled and ready to fly. It would likely have all or some prelaunch
operations activities that it must go through before it could launch. For instance, an
RMLYV on alert may still be in “pieces.” Its stages and payload may be completely
prepped and ready, waiting in a hangar. Once the launch order is given, these stages and
payload would still need to be integrated, transported to the pad, and fueled before launch

could take place. This is another reason that well-planned, efficient, and rapid prelaunch
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operations are so important. In an alert scenario, the time required to launch after the

launch order is given will directly depend upon the length of prelaunch operations.

Previous Launch Vehicle Simulation Research

Researchers have been using simulation models to analyze launch vehicle ground
operations for quite some time. However, most of these models have been built in
conjunction with NASA and focus exclusively on shuttle operations or are heavily
influenced by shuttle data. While these models are extremely useful for analyzing shuttle
operations, this thesis attempts to build a model that goes beyond the shuttle mindset and
is more useful for analyzing potential RMLYV operations.

In 1982, less than a year after the shuttle began operational service, NASA
initiated a modeling effort to analyze the feasibility of different launch schedule options.
NASA was experiencing unexpected delays in shuttle processing and wanted a tool to
help them develop a schedule that more closely reflected true regeneration capabilities.
The model developed by Wilson, Vaughan, Naylor, and VVoss was named the Shuttle
Traffic Evaluation Model (STEM) (Wilson et al, 1982:190). STEM was an early model
and suffered from lack of historical data. Although it did demonstrate that shuttle
operations would take longer than originally expected, it still estimated some
regeneration times as low as 28 work days, a capability that NASA was never able to
reach (Wilson and others, 1982:197).

Shuttle Ops is a more recent shuttle simulation model that accurately mirrors true
shuttle regeneration capability. In 1999, NASA was evaluating the feasibility of

increasing the shuttle flight rate from 7 to 15 flights per year. NASA needed to know
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which existing resources would be capable of handling the increased flight rate and
which resources would need to be supplemented. Discrete event simulation was chosen
as the tool to answer this question, due to the large number and complexity of processes
involved with shuttle regeneration. Shuttle Ops was developed in Arena software
through a joint effort between NASA and the University of Central Florida (Cates and
others, 2002: 754). The developers collected and analyzed historical data on task
completion times for shuttle ground processing activities. This data was used to fit
probability distributions that were assigned to processes within the Arena model (Cates
and others, 2002:759). The attempt to capture the myriad of activities that make up
shuttle regeneration was a significant task and resulted in nearly 1,000 Arena program
modules in the final model (Cates and others, 2002:757). The developers verified and
validated the model by comparing model output to actual historical data. They knew they
had a credible model when certain model outputs such as flight rate per year and time
spent on pad were similar to historical data from periods that mirrored the model
environment (Cates and others, 2002:760,761). Even though NASA gave up the idea of
increasing the shuttle flight rate before Shuttle Ops was completed, the tool was still used
successfully to model other scenarios such as mothballing a shuttle orbiter or closing
shuttle facilities (Cates and others, 2002: 761).

More recently, Shuttle Ops was modified to create the Manifest Assessment
Simulation Tool (MAST). MAST estimates probabilities of completing shuttle launches
according to shuttle manifests (Cates, 2005:3). A shuttle manifest is a schedule that
outlines starting and completion times for major shuttle activities, such as orbiter

maintenance, vehicle assembly, and launch pad operations. MAST has been used to
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demonstrate the low probability of achieving the planned number of shuttle launches
before shuttle retirement in 2010 (Cates, 2005:25,26).

NASA engineers also developed a simulation model that can be applied to any
type of launch vehicle. The Generic Simulation Environment for Modeling Future
Launch Operations (GEMFLO) was developed in conjunction with NASA’s Space
Launch Initiative (SLI). The SLI program studied different RLV design alternatives as a
replacement for the space shuttle. NASA developed GEMFLO to estimate flight rates
and other capabilities for competing RLV designs (Steele and others, 2002:750).
GEMFLO also runs in Arena software and utilizes a Visual Basic Graphical User
Interface (GUI) (Steele and others, 2002:751). The main benefit of GEMFLO is that it is
generic and can be used to analyze any RLV design without any model modification.
One model can be used to evaluate all vehicle designs instead of building a separate
model for each vehicle design (Steele and others, 2002:747,748). Accordingly, the model
relies upon a large amount of user inputs as to the estimates of activity process times and
other capabilities. GEMFLO takes user-inputted probability distributions and other
information and then populates the Arena model with this data (Steele and others,
2002:751). GEMFLO provides outputs such as estimates of vehicle flight rate per year
and vehicle regeneration time. The model developed for this thesis will in many ways be
similar to GEMFLO. Like GEMFLO, this prelaunch operations simulation model will be
generic. In other words, the same model will be used to analyze different vehicle designs
and different ground operation variations. However, the model developed for this thesis
differs from GEMFLO in that it breaks prelaunch operations down into more detail than

is provided in GEMFLO. The purpose of the author’s model is to analyze launch
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operations in a military environment, where a quick response to military contingencies is
necessary. Since Air Force requirements will dictate RMLV turnaround within a matter
of hours, even processes that only take a matter of minutes will be important to analyze.
GEMFLO, while a significant modeling accomplishment in its own right, does not break
higher level processes down into the smaller processes that are required for such a time-
saving analysis. This thesis seeks to break down higher level processes such as “Vehicle
Integration” and “Launch Pad Operations” into their basic components so that model
users can more accurately determine where time is being used.

Rooney and Hartong developed an Arena-based simulation model that estimates
maintenance task completion times for RMLVs. Like GEMFLO, their model also
includes a Visual Basic GUI. The user inputs vehicle design parameters, such as amount
of thermal protection system tile area and other resource and job sequencing information.
The model feeds these inputs into Arena and estimates total turnaround time and
turnaround time for specific vehicle subsystems (Rooney and Hartong, 2004:6,7). This
model does break processes down into an adequate level of detail, but processing time
distributions are heavily influenced by shuttle historical data, which may or may not
represent future RMLYV operations. This model does not include any prelaunch

operations activities (Rooney and Hartong, 2004:7).

Prelaunch Operations Comparisons
This section will compare predicted RMLYV prelaunch operations to shuttle and
ELV prelaunch operations and to similar operations for aircraft and ICBMs. This

comparison is necessary for two reasons. First, since the RMLV does not yet exist, it is
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difficult to describe its prelaunch operations sequence. However, insight into a predicted
RMLYV prelaunch operations sequence can be generated by piecing together applicable
processes from aircraft, ICBMs and other launch vehicles. Analyzing existing systems in
this way allowed the author to answer the first and second investigative questions in
Chapter 1; he constructed a RMLV prelaunch operations sequence by picking and
choosing appropriate activities from existing systems. His activity choices were guided
by the literature and the Delphi study discussed in the “Validation” section in Chapter 3.
Second, such a comparison between RMLVs and aircraft will give the reader an
appreciation for the unique challenges involved with RMLV prelaunch operations. The
RMLYV is first compared to the shuttle, then to aircraft, then to ELVs, and finally to
ICBMs.

Shuttle Comparison

Shuttle prelaunch operations include Vehicle Assembly Building operations,
transport to the launch pad, and launch pad operations. A graphical representation of the
entire shuttle regeneration process is given in Figure 10. The boxed-off portion in Figure
10 includes shuttle prelaunch operations. There are three major Flight Hardware
Elements that make up a space shuttle vehicle: the orbiter, the external tank, and a pair of
solid rocket boosters. The solid rocket boosters are built up in the Vehicle Assembly
Building and joined to the external tank upon a mobile launch platform, but for the
purposes of this paper, these activities are not included as prelaunch operations, since
they are considered preliminary steps to prepare Flight Hardware Elements for
integration (Cates et al, 2002:755,756). Prelaunch operations for the shuttle begin once

the orbiter reaches the Vehicle Assembly Building. The orbiter is attached to a large
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Figure 10: Shuttle Prelaunch Operations (Cates and others, 2002:758)
sling and lifted by a crane into its integration position, where it is then joined to the
external tank and solid rocket boosters. This process is depicted in Figure 11. At this
point, a fully integrated space shuttle vehicle is sitting in vertical position atop the mobile
launch platform.

Once integration checks are complete, a crawler/transporter is used to move the
mobile launch platform with the space shuttle vehicle to the launch pad (Cates, 2003:108-
112). Figure 12 shows the space shuttle vehicle being transported to the launch pad. The
crawler/transporter delivers and secures the mobile launch platform to the launch pad and
then drives away. Many activities take place at the launch pad before launch can occur,

and only the major activities are listed here. Umbilical connections are secured and pad
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Figure 11: Orbiter being mated to the rest of the space shuttle vehicle (Cates,
2003:111)

Figure 12: Space shuttle vehicle being transported to the launch pad (Cates,
2003:112)
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validation takes place to ensure that the mobile launch platform and space shuttle vehicle
are properly connected to the launch pad (Cates, 2003:125). Payloads that require
vertical integration are integrated on the pad. Certain hazardous operations such as the
loading of toxic hypergolic fuels and installing of ordnance are held off until the last
moment they can occur to minimize risk to personnel. Launch day events include crew
ingress and loading of the main engine propellants, liquid hydrogen and liquid oxygen,
into the external tank (Cates, 2003:115). Figure 13 depicts payload installation

operations at the launch pad.

Figure 13: Payload installation operations at the launch pad (Cates, 2003:126)
RMLYV prelaunch operations will share many similarities with shuttle prelaunch
operations, especially when it comes to the major functions that must occur. An RMLV
will require an integration phase, like the shuttle. The various RMLYV stages must be
assembled into a complete RMLV, and its payload must be attached. However, RMLV
integration will ideally be much more streamlined than shuttle integration. The shuttle is
integrated in a facility that was not originally intended for shuttle integration; this

requires delicate orbiter maneuvering between building structural supports and adds time

30



to the integration process (Vehicle Assembly Building, 1999). In addition, depending on
vehicle design, the RMLYV integration process could occur in a horizontal orientation, but
all shuttle integration takes place in a vertical orientation. There are benefits to
horizontal integration; vehicle access is easier as most tasks can be conducted at ground
level. Vehicle handling can be less complicated since stages and payload do not have to
be hoisted by crane into position. Many safety concerns are also avoided with horizontal
integration, since technicians do not have to perform integration tasks many stories above
ground level. Finally, a fully assembled RMLV will likely look very different from a
space shuttle vehicle and will thus necessitate different integration equipment and
activities. Some notional RMLYV designs are depicted in Figures 14 and 15. Since
RMLYV design is not finalized, many of the finer points of RMLYV integration are yet to
be determined. But the comparison to the shuttle offers helpful advice: RMLYV designers
should design the RMLYV with a simple, quick integration process in mind. Any design
alternatives that necessitate complicated and time-consuming integration procedures will

add unwanted time to the regeneration process.

Figure 14: Notional RMLV Design (Rooney and Hartong, 2004:8)
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Figure 15: Notional RMLYV Design (““Hybrid Launch Vehicle,” 2005:1)

RMLYV launch pad operations will likely differ from shuttle launch pad operations
in several key areas. First, the RMLV will be an unmanned vehicle, at least for the
foreseeable future, but all shuttle missions are manned. This means crew ingress and
related safety procedures will not be a concern for RMLV launch pad operations.
Second, as with integration operations, RMLV launch pad operations will ideally be
much more streamlined than shuttle launch pad operations. With the shuttle, a myriad of
umbilical connections must be attached and verified manually; RMLV connections will
hopefully be fewer and attached automatically, as is the case with the Zenit ELV.
Finally, propellant choice will likely be different for the RMLV. The shuttle uses liquid
hydrogen as a fuel and liquid oxygen as an oxidizer, but RMLV propellant combinations
will likely be either RP-1 and liquid oxygen or methane and liquid oxygen (Dornheim,
2005:34). RP-1 is a kerosene-based fuel and is non-cryogenic, which makes its storing
and handling much easier and safer than cryogenic fuels, like liquid hydrogen. RP-1
fueling can actually be done in parallel with other operations, but cryogenic fueling

cannot. Methane is a cryogenic fuel, but it may be used due to performance and cost
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benefits (Brown, 2004b:23). Hypergolic fuels like hydrazine, which are used on the
shuttle, will also ideally be avoided for RMLVs since they are toxic and dangerous to
handle (Dornheim, 2005:34). Hypergolic fuels can lengthen regeneration time since
other activities cannot be done in parallel with hypergolic fuel loading.

Aircraft Comparison

A common phrase being used within the RMLYV community is “aircraft-like
operations” (Dornheim, 2005:34). The hope is that the RMLYV sortie rate will approach
sortie rates experienced by aircraft. As already discussed, significant improvements in
RMLYV regeneration time over existing systems must be made before this will happen.
Since aircraft-like regeneration time is the goal for RMLVs, it will be helpful to compare
RMLYV prelaunch operations to similar aircraft regeneration activities to see which, if
any, RMLV prelaunch activities will prevent RMLVs from becoming truly *“aircraft-
like.”

In most cases, the military aircraft regeneration process is designed to happen
very quickly. Unlike the space shuttle, aircraft do not undergo extensive scheduled
maintenance between every sortie. Scheduled replacement of limited-life components
and major inspections and overhauls occur during aircraft “downtime,” either at the end
of the flying day or during periodic inspection time periods specifically designated for
that purpose. Of course specific requirements vary from aircraft to aircraft, but the major
events that take place between aircraft sorties include safing, inspection, repair, servicing,
and “payload” installation. Aircraft safing includes those events required to make the
aircraft safe for maintenance, such as installation of landing gear safety pins and

ordnance safety pins and grounding the aircraft to eliminate static electricity dangers.
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Aircraft inspection includes visual examination of aircraft components and structure to
look for damage or signs of impending failure. Inspection also includes operation of
certain aircraft systems to make sure they are working properly. Repair is not a certain
requirement between every sortie. Repairs only take place if the aircraft malfunctioned
during flight or if a fault is discovered during inspection. Servicing includes the loading
of certain fluids and gasses such as jet fuel, liquid oxygen, hydraulic fluid, gaseous
oxygen, and gaseous nitrogen. The type of payload installation required depends upon
the aircraft’s mission. The payload could be cargo, personnel, munitions, or sensors.

Of these five events just described, servicing and payload installation are the ones
that parallel RMLYV prelaunch operations. However, there are several key differences
between aircraft servicing and payload installation and RMLYV servicing and payload
installation. These differences make RMLV prelaunch operations more complicated and
thus more time-consuming. First, RMLVs require both fuel and oxidizer for engine
operation. The oxidizer will almost certainly be liquid oxygen (Brown, 2004b:24), which
is cryogenic, and the fuel may or may not be cryogenic. In contrast, aircraft engines
operate on kerosene-based jet fuel, which is similar to the RP-1 rocket fuel discussed
earlier. While there are safety guidelines for handling jet fuel, they are not nearly as
stringent as those required for cryogenic loading operations. No personnel are allowed
near a launch vehicle while cryogenic propellant loading is taking place, which precludes
the ability for technicians to perform parallel tasks. Additionally, cryogenic fuels cannot
be loaded far in advance of launch because too much of the fuel would “boil-off” and be
lost. Substances like oxygen, hydrogen, and methane exist as gasses at normal ambient

temperatures, so keeping them in a liquid state is difficult. This is why cryogenic loading
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operations always take place just prior to launch. Aircraft are not constrained by this
requirement, which gives them more flexibility in the timing of fueling operations. An
aircraft can be refueled days before its next sortie if necessary.

The sheer amount of fuel needed for an RMLYV launch also presents a significant
difference from aircraft. Rocket engines must consume an enormous amount of fuel to
propel a launch vehicle into orbit. For instance, the shuttle’s external tank holds 528,616
gallons of propellant (fuel and oxidizer combined) (Cates, 2003:95). Atlas V used
191,365.2 gallons of propellant (fuel and oxidizer combined), for the Pluto New Horizons
launch in January of 2006 (Andrews, 2006). In contrast, even a heavy bomber aircraft
like the B-2 holds only 22,000 gallons of fuel at its max capacity (O’Malley, 2006).
RMLVs will require significantly more fuel than aircraft, and this fact in itself adds to the
length of propellant loading time.

Attaching a payload to a launch vehicle is much more complicated than loading
bombs on aircraft. Launch vehicle payloads often come with special handling
requirements; some payloads must constantly remain in a vertical position, and most
payloads require a constant supply of conditioned air. After payload attachment,
extensive interface tests are often required to verify normal spacecraft operation and
proper payload to launch vehicle connection. Aircraft payloads, whether they are bombs,
people, or cargo, are normally not constrained by these requirements, and uploading them
can thus occur more quickly.

In addition to differences between aircraft and RMLYV servicing and payload
operations, RMLV prelaunch operations include activities not required for aircraft. First,

prior to prelaunch operations, RMLYV stages are processed separately. These stages must
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be joined, or “integrated,” to form the entire launch vehicle. This is not a consideration
for aircraft, since the entire aircraft lands in one piece and stays in one piece throughout
the regeneration process. Second, RMLVs require more ground handling than aircraft
since RMLVs must be placed on the launch pad by means external to the vehicle itself.
Individual RMLV stages must be transported to the integration facility, and then the
entire vehicle must be transported to the launch pad. Assuming a vertical takeoff with
horizontal landing configuration, the RMLV must also be erected to a vertical position on
the launch pad if it was integrated horizontally. Even though aircraft must sometimes be
towed during ground operations, they do not require such extensive handling. An aircraft
can taxi via its own engine power to the runway and then take off.

The above list of differences between RMLVs and aircraft is not exclusive, but it
does demonstrate that RMLV prelaunch operations are much more challenging than
similar aircraft activities. These additional challenges add time to RMLYV prelaunch
operations and indicate that these operations may never be truly “aircraft-like.”

ELV Comparison

RMLYV and ELV prelaunch operations will likely be similar, at least at the macro
level. However, most of the differences between RMLVs and the shuttle also apply.
Specific integration equipment and procedures will differ depending on vehicle design.
While in a vertical orientation, ELV stages are stacked on top of each other, but RMLV
stages may be joined differently. In a vertical orientation, most RMLV notional designs
depict RMLYV stages stacked side by side instead of on top of each other (see Figures 14

and 15).
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ICBM Comparison

ICBMs and RMLVs perform different missions, but they possess enough
similarities to make their comparison worthwhile. RMLVs will put payloads into orbit,
but ICBMs release their payloads without putting them into orbit. However, both
vehicles are propelled by powerful rocket engines and can reach comparable top speeds.
ICBMs also require integration of stages and payload like an RMLV.

The Minuteman 111 is the best example of current ICBM operations as all other

ICBMs have been retired. It is depicted in Figure 16.
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Figure 16: Minuteman 111 (ICBM Familiarization, 2001:60)

37



The Minuteman 111 has the ability to deliver multiple warheads to independent
targets. It consists of three solid propellant stages collectively termed the “downstage,” a
post boost control system for payload maneuvering after downstage separation, and a
reentry system which houses the payload, or warheads (ICBM Familiarization, 2001:60).
These components must be integrated to form a fully functional ICBM.

Minuteman 111 assembly takes place in a missile silo in a vertical orientation. The

downstage is the first piece lowered into the silo by a Transporter Erector (see Figure 17).

- ™ - L

Figure 17: Transporter Erector (LGM 30 Minuteman I111)
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The downstage is always lowered as a single piece; even though it is made of three
stages, these stages are never separated except at depot (Pope, 2005). Once the
downstage is secured, the post boost control system is lowered and mated with the
downstage. Finally, the reentry system is lowered and mated to the post boost control
system (see Figure 18). Mating connections between the ICBM components are
relatively simple, consisting of a row of screws around the circumference of the missile
and several cannon plugs (Pope, 2005). Only two silo to missile umbilical connections

need to be made (Pope, 2005).

Figure 18: Minuteman I11 Reentry System Install (LGM 30 Minuteman I11)
Many of the handling and processing characteristics of the Minuteman I11 stem
from ICBM alert requirements. Since the ICBM mission necessitates the maximum
amount of missiles in operational status, eliminating unnecessary maintenance and
handling time is important. Several Minuteman 111 features offer suggestions for possible
time-saving measures for RMLV prelaunch operations. First, since the downstage

remains in one piece, each of the three solid propellant stages do not need to be integrated

39



separately. Likewise, any RMLV assembly that can be done ahead of time should be.
For example, an RMLYV on alert should be as fully assembled or as “pre-integrated” as
possible to decrease the amount of assembly required after a launch command is given.
An RMLV’s lower and upper stage(s) could be pre-integrated with only the payload left
to attach. Or perhaps the payload and upper stage(s) may be pre-integrated, with only the
lower stage left to attach.

The identical nature of each Minuteman I11 reentry system provides another
advantage. ICBM payload to missile interfaces are standardized (Pope, 2005);
technicians do not have to configure each missile to adapt to different payload
connections since each payload attaches in the same way. This facilitates timely payload
integration since it negates specialized and time-consuming missile reconfigurations and
allows missile maintainers to become very proficient at one set of payload integration
procedures. RMLVs will be able to avoid extensive shuttle-like payload modifications to
the extent that future RMLYV payload interfaces can be standardized like ICBM payload
interfaces. This may be more difficult for RMLVs since their payloads will vary greatly
from mission to mission, but payload interfaces must be as simple and as standardized as
possible to minimize payload integration time.

ICBM integration operations illustrate the disadvantages of vertical integration.
Much of the time spent on ICBM integration is directly related to the requirements
associated with working on a missile in a vertical orientation. Access to a missile
standing upright in a silo is difficult. Several silo access doors allow access to limited
areas of the missile. The only way to access most missile areas is by using an elevator

workcage, a two-person structure suspended by cable from a winch positioned at the silo
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opening (see Figure 19). A work environment like this increases risk of injury and adds
time to the overall operation. Workers must don safety harnesses and secure themselves
to lanyards to keep them from falling. In addition, all tools used by the workers must be
attached to lanyards to prevent the tools from falling and damaging the missile (ICBM
Familiarization, 2001:77-79). An elevator workcage will likely not be necessary for a
vertically integrated RMLYV, since launch vehicle vertical integration facilities utilize
extensive scaffolding assembled around the vehicle. However, the other disadvantages of

vertical integration cannot be avoided unless the vehicle is integrated horizontally.

Figure 19: Technicians Working from Elevator Workcage (LGM 30 Minuteman I11)
There are several differences between ICBMs and RMLVs that may never allow
RMLYVs to be as responsive as ICBMs. First, since the Minuteman I11 uses solid
propellants for its downstage, propellant loading immediately prior to launch is not
necessary. Earlier ICBM versions used liquid propellants, but this concept was
abandoned since propellant loading could not take place until immediately prior to launch
(Neufeld, 1990:203, 233, 237). Liquid propellant loading lengthened the response time

for ICBMs. Since RMLVs will almost certainly use liquid propellants (Brown,
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2004h:21-25), propellant loading immediately prior to launch will always be a necessity.
Second, an ICBM on alert always has its payload attached, but this may not be the case
for RMLVs. Inan RMLYV alert scenario, the type of payload required may not be known
in advance, which means that payload integration must take place prior to launch. This
will lengthen RMLYV response time, as previously discussed. Finally, an ICBM remains
on alert in its silo, which is its launch site. RMLVs will probably not remain on alert on a
launch pad since this would tie up the launch pad and would require the construction of
additional launch pads for scheduled launches. Since launch pad construction and
associated support equipment is so expensive, an alert RMLYV would likely remain off the
launch pad and be moved to the launch pad at launch time. The time required for

transport to the launch pad will also lengthen RLMYV response.

Summary

This chapter provided the reader with a background of the research problem and
discussed the significance of the problem. The first section covered future spacelift
objectives for both NASA and the Air Force. The next section discussed the
unresponsive nature of current space launch systems. This was followed by an overview
of the existing research pertaining to launch vehicle ground operations simulation. The
chapter concluded with a comparison of RMLYV prelaunch operations to shuttle, aircraft,
ELV, and ICBM prelaunch operations. The next chapter will outline the methodology

used in this research.
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I11. Methodology

Introduction

This chapter explains the methodology used to develop a RMLYV prelaunch
operations simulation model. The first section will reiterate the need for such a model
and explain how such a simulation model will be useful for decision makers. The second

section will describe the specific steps undertaken to develop this model.

Applicability of Discrete Event Simulation to the Research Problem

The purpose of this thesis is to create a tool that will help Air Force decision
makers analyze different RMLV design and operational concept alternatives. The tool
created will be a discrete event simulation model that will evaluate how different RMLV
configurations will affect prelaunch operations flow. This particular research effort is
complementary to concurrent maintenance modeling efforts by Pope (Pope, 2006) for the
Air Force Research Laboratory Air Vehicles Directorate (AFRL/VA). The simulation
model developed for this thesis only covers prelaunch operations, but it was joined with
Pope’s model to create a larger model that covers both maintenance and prelaunch
operations. The combined maintenance and prelaunch operations model is called the
Maintenance, Integration, and Launch Pad Operations Simulation and Test (MILePOST).

The Air Force is in the early stages of its RMLV program. This early stage is
especially critical for future program success since leaders are now making decisions
about RMLV design and ground operations that will determine how quickly RMLV

regeneration can take place. Researchers and leaders need to know how their decisions
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will affect the amount of time and resources that will be needed to maintain a fleet of
RMLVs. Discrete event simulation is an appropriate and useful tool for such a problem.

“A simulation is the imitation of the operation of a real-world process or system
over time” (Banks and others, 2005:3). More specifically, discrete event simulation is
“the modeling of systems in which the state variable changes only at a discrete set of
points in time” (Banks and others, 2005:13). If the system being simulated is RMLV
operations, the system will be a discrete system; the state of the system will change at
discrete points in time, not continuously. For instance, the state of RMLV operations
changes when an RMLV launches, and this change happens at a discrete point in time.

Simulation is not an appropriate methodology for every research problem, but it
will be especially useful for analyzing RMLYV operations for the following reasons. First,
simulation is a useful tool for situations in which direct experimentation with the real-
world system is not feasible. This is certainly the case with RMLYV operations as the
RMLYV does not yet exist. Second, simulation is fitting for analyzing extremely complex
systems. If a system or process is simple, with few variables and few interactions
amongst those variables, then a problem or question associated with that system can often
be solved by common sense or direct mathematical computations. RMLV operations
however, represent very complex systems due to the myriad of resources and processes
involved. In such a situation, a simulation model developed and run on a computer is the
only feasible way to analyze the system. Third, simulation models allow users to adjust
system flow and system inputs for the purpose of seeing how the overall system will react
to such adjustments. An RMLYV simulation model would thus allow users to change

RMLYV design variables and different ground processing options to see how these
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changes would affect RMLYV regeneration time. Finally, the information gathered and
knowledge gained in building a simulation model are invaluable assets in themselves.
Simulation model builders often gain fresh insights and more in-depth knowledge about
the system under investigation. Such a byproduct will be useful to those involved with

developing the Air Force’s concept of RMLYV operations.

Model Development

Banks et al. describe a 12-step process to building a simulation model (see Figure
20) (Banks and others, 2005:15). These steps are meant to apply to any model building
effort and provide a framework for describing the steps undertaken to develop the model
for this thesis. The upper half of the schematic (Steps 1-7) in Figure 20 depicts the model
building and validation and verification phase. Steps 1-7 represent the effort undertaken
to build, validate, and verify a model for AFRL use. The lower half of the schematic
(steps 8 through 12) refers to the actual use of a model to analyze a system and make
decisions about that system. Since analyzing RMLV maintenance and prelaunch
operations together is of more value than simply analyzing prelaunch operations alone,
Steps 8 through 12 were applied to MILePOST. The 12-step modeling process as it

applies to this thesis is described in the following section.
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Figure 20: The 12 Steps in a Simulation Study (Banks and others, 2005:15)

The 12-Step Modeling Process

Step 1: Problem Formulation

In this first step a clear understanding of the research problem is formulated to
guide the entire modeling effort (Banks and others, 2005:14). The Air Force is in the
early phases of its RMLV program and needs information on how RMLYV design and

different processing flow options will affect RMLV operations.
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Step 2: Setting of Objectives and Overall Project Plan

The second step involves setting goals for model development and use (Banks and
others, 2005, 14). The goal of this research is to provide AFRL/VA with a tool it can use
to analyze RMLYV prelaunch operations.

Step 3: Model Conceptualization

This is perhaps one of the most critical steps of model formulation. It is at this
point that the underlying framework or the overall “flow” of the model is developed.
Model conceptualization involves “an ability to abstract the essential features of a
problem, to select and modify basic assumptions that characterize the system, and then to
enrich and elaborate the model until a useful approximation results” (Banks and others,
2005:14). Model-building is an iterative procedure; a modeler first develops a simple
representation of the system under consideration and then builds upon and refines that
simple representation until it suitably captures the real-world workings of the system.
The author built his model in this way by analyzing prelaunch operations sequences for
existing launch systems and combining this knowledge with best estimates of what a
RMLYV prelaunch operations sequence will include. The author started with a simple
conceptual network of basic RMLYV prelaunch operations events and then added more
detail to that network as more knowledge was gained.

Step 4: Data Collection

Traditionally this step refers to collecting historical data on how the system has
performed or functioned over time. The modeler fits probability distributions to this data
and then uses those distributions within the simulation model (Banks and others, 2005,

16). For instance, Cates et al. describe the collection of data on shuttle solid rocket
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booster stacking completion times for their Shuttle Ops model. A distribution was fit to
this data, and the distribution was put into Shuttle Ops. Each time the model simulated a
solid rocket booster stacking operation, it would “pull” random variables from that
distribution (Cates and others, 2002:758-760). This research did not involve this type of
data collection since there is no such RMLYV data to collect. The author did, however,
collect a large amount of data on prelaunch operations flows for existing launch systems.
As discussed above, these systems’ prelaunch operations flows were analyzed and
compared to gain an understanding of what a RMLYV prelaunch operations flow will look
like. By combining this data with the few estimated RMLYV prelaunch operations flows
that already existed in the literature, a credible model of RMLV prelaunch operations was
developed. The prelaunch operations flows for the following space launch systems were
analyzed for this research: shuttle, Atlas V, Delta IV, and Zenit 3SL. The shuttle was
chosen because it is the only operational orbital RLV in the world. Atlas V and Delta IV
were chosen because they are recent additions to the U.S. launch vehicle fleet and
represent the most advanced concept of prelaunch operations. The Zenit 3SL was chosen
because it was originally designed for quick prelaunch operations. In addition, as
discussed in chapter two, RMLYV prelaunch operations were also compared to similar
operations for aircraft and ICBMs to see how activities pertaining to these systems may
apply to RMLV prelaunch operations.

In addition, the author collected preliminary RMLYV prelaunch operations activity
duration estimates that were used to populate and run the model. Since no real-world
RMLYV historical data exists, duration estimates were obtained from similar activities

performed on other launch vehicles, aircraft, and ICBMs. For example, the estimated
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duration for the model process entitled “Leak Check Propellant Umbilicals” was based
upon the similar Atlas V process, which takes about five minutes (Centore, 2005). The
author gathered estimates for each activity in the model and then built a triangular
distribution around each estimate. Using the triangular distribution allows for variability
in model output in contrast to constant values, which produce only deterministic output.
It also mimics the stochastic nature of the real world by producing process times from a
distribution characterized by a minimum, most likely, and maximum value. Each
estimated process duration obtained from other real-world systems became the process’s
most likely value. The minimum value was obtained by subtracting 10 percent from the
most likely value, and the maximum value was obtained by adding 40 percent to the most
likely value. For instance, in the example above, the estimated value for the duration of
an umbilical connection leak check is five minutes. This means that the most likely value
used in the model for an umbilical connection leak check is 5 minutes, while the
minimum and maximum values are 4.5 minutes and 7 minutes, respectively. The author
chose the 10 percent and 40 percent figures based upon his own aircraft maintenance
experience, which confirms that it is more likely for a ground processing task to take a
longer amount of time than its most likely duration than it is for the task to take a shorter
amount of time. The final model required the formulation of 39 triangular distributions.
See Appendix C for the complete list.

Step 5: Model Translation

This step refers to translating the conceptual model into a computer model. In

this step, the model developer builds the computer code required by the simulation
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software of choice (Banks and others, 2005, 16). This model was built in Arena
computer simulation software.

Step 6: Verification

Verification is “the process of determining that a model and its resultant
simulation ... accurately represent both what is required and what the [model] developer
says will be built ... in accordance with those requirements” (Defense Modeling and
Simulation Office, 1996: 1-5). A verified model will allow entities to flow through the
model network in a logical fashion, as the model developer intended. Additionally,
statistical output from a verified model will respond predictably to input changes (Banks
and others, 2005:354,356).

Verification for this research involved a series of tests that assessed the logical
flow of entities through the model. The model controls entity flow via a series of
decision nodes. Each decision node can be described as a “switch” that directs entities
down one of two or more subsequent paths. The verification tests ensured that the
decision nodes were working correctly. The author used a dynamic verification
technique to test the decision nodes. The Department of Defense Verification,
Validation, and Accreditation Recommended Practices Guide defines a dynamic
technique as a technique that requires “model execution” (Defense Modeling and
Simulation Office, 1996:4-12). In other words, a dynamic test is carried out by actually
running the model and then observing its behavior. This is in contrast to a static
technique, which assesses model design apart from model execution (Defense Modeling

and Simulation Office, 1996:4-7).
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The specific dynamic verification technique used to verify this model was the
Assertion Checking method. Assertion Checking is defined as “a verification technique
that checks what is happening against what the modeler assumes is happening to guard
against potential errors” (Defense Modeling and Simulation Office, 1996:4-13). The
modeler assumption in this case is that the model’s decision nodes control entity flow
through the model as the author intended. To test this assumption, the author placed
record modules after each decision node within the model. These record modules kept
track of how each decision node controlled entity flow during model execution. The
Assertion Checking tests compared expected record module values with actual record
module values after each simulation run. A set of matching expected and actual record
module values confirmed that the decision nodes were controlling entity flow properly.
The Assertion Checking results are discussed in detail in Chapter 4.

Step 7: Validation

The model validation process “ensures that a simulation conforms to a specified
level of accuracy when its outputs are compared to some aspect of the real world”
(Defense Modeling and Simulation Office, 1996:1-5). In other words, a validated model
is a model that accurately imitates the real world system under investigation. Model
validation is commonly performed by comparing model output data to real world data.
For instance, the Shuttle Ops model was validated by comparing model estimates of
annual launch rates to actual historical launch rate data and showing that the rates were
similar (Cates and others, 2002:760-761). However, since no historical RMLV data
exists, the model was validated via the Delphi method, which the Department of Defense

Verification, Validation, and Accreditation Recommended Practices Guide categorizes as
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an “informal validation technique.” Informal validation techniques “rely heavily on
human reasoning and subjectivity without stringent mathematical formalism” (Defense
Modeling and Simulation Office, 1996:4-1). The fact that informal techniques do not
rely upon stringent mathematical analysis does not render them ineffective or inferior.
On the contrary, informal techniques such as the one utilized for this thesis, when applied
with the proper structure and guidelines, are considered acceptable and very useful for
model validation (Defense Modeling and Simulation Office, 1996:1-8).

The Delphi method may be broadly defined as “an exercise in group
communication among a panel of geographically dispersed experts” (The Delphi
Method:par. 6). It often used to facilitate group decision making or to elicit expert
opinion from a group of people on a certain topic. The Delphi method is especially
useful when members of the group are physically distant or when the dynamics of a
group meeting would stifle free thinking and open contribution from all members. The
Delphi method is usually characterized by two or more rounds of questionnaires that are
sent to the Delphi participants. Each participant is free to answer the questionnaire on his
or her own time (within the time constraints of the study). Once each participant
responds, a moderator distributes all responses to each group member. Individual
responses and opinions usually remain anonymous. Once the group members review the
first round of collected responses, they submit a second set of responses. Participants
may or may not change their opinions based upon responses collected in the first round.
Some Delphi studies continue to elicit responses until the group members come to some

sort of consensus, but this is not always the aim of the study (Turoff and Hiltz:2-7).
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The Delphi panel that participated in the review of this model was made up of 15
members from various organizations within the Air Force and NASA. Member names
will not be listed here to protect the participants’ anonymity, but the panel was made up
of well-qualified individuals who possessed a wealth of knowledge concerning launch
vehicle ground operations. Most of the participants came from AFRL/VA, but there was
also representation from Aeronautical Systems Center, NASA, and Air Force Space
Command. Receiving input from these experts greatly aided the author in the
development of his model for a variety of reasons. First, since the author had limited
experience in the area of launch vehicle ground operations, the panel corrected his
mistakes and filled in the gaps that were present in his limited knowledge base. Second,
having such a wide variety of launch vehicle experts from several government
organizations allowed the author to leverage the different experiences of the panel
members. Responses from differing viewpoints facilitated a broader understanding of
RMLYV ground operations and allowed the author to consider the full spectrum of launch
vehicle processing possibilities. Overall, the Delphi panel greatly contributed to the
model’s credibility. In the absence of traditional model validation procedures, the Delphi
panel ensured that the model was a legitimate representation of future RMLV prelaunch
operations.

The Delphi study proceeded as follows. First, a panel of experts was chosen by
the author and approved by AFRL/VA. Next, a visual flow diagram of the model
network was sent to the panel. The model was built in Arena computer simulation
software, but the simulation model itself was not sent to the panel because limited

familiarity with the software would have made the model difficult to interpret. Instead, a

53



simplified representation of the model for panel review was created in Microsoft Visio
software. This gave panel members an easy-to-read format while not sacrificing any
details that were important to the model’s operation. After the panel members reviewed
the flow diagram, they submitted suggestions for improvement to the author. The author
then compiled the responses and made changes to the model where there was consensus
amongst the group members. The author then submitted the initial responses to the entire
group along with the updated model, which effectively ended the first round and started
the second. A total of three rounds were completed, each round containing a submission
of the most updated model to the group members and a collection of their responses. The
Delphi study was terminated after three rounds because the author concluded that
continuing the study would not result in any more substantial input from the panel. Three
rounds allowed each panel member to say all he or she desired to say and to comment on
responses from other panel members. All panel member responses from each of the three
rounds are included in Appendix A.

Step 8: Experimental Design

In the experimental design step, the modeler sets up the experimental framework
that will be used to compare system alternatives (Banks and others, 2005:16, 17). The
main purpose of this thesis was to build, verify, and validate a simulation model that
AFRL can use to evaluate RMLYV design and ground processing alternatives. However,
the author also set up his own experimental design that compared several different
RMLYV prelaunch operations processing options. The author’s experimental design
serves two purposes. First, it provides AFRL/VA and other Air Force decision-makers

with preliminary insights into how different decisions will affect RMLV prelaunch
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operations. Second, it demonstrates the model’s capability for comparing other decisions
in the future.

To make the preliminary insights more valuable, the experimental design was
applied to MILePOST, the combined maintenance and prelaunch operations model. Each
experiment compared two different processing options to see how the options affected
RMLYV regeneration time. For example, an experiment could analyze how an optional
time-consuming activity (say, Activity X) affected model output. The experiment would
run the model with the activity included and then run the model again without the activity
included. Average regeneration time from both runs would be compared using the
following hypothesis test:

Ho: Average regeneration time with Activity X — Average regeneration time

without Activity X =0

Ha: Average regeneration time with Activity X — Average regeneration time

without Activity X >0
If the null hypothesis were rejected in this case, one could conclude that removing
Activity X would decrease average regeneration time.

Step 9: Production Runs and Analysis

This step involves the actual execution of the experimental design. The model is
run and output is analyzed in accordance with the experimental design (Banks and others,
2005:17). Regeneration time for each experiment was compared by developing a
confidence interval around the difference in average regeneration time. The results of the
statistical tests used to analyze RMLV ground processing alternatives are discussed in

Chapter 4.
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Step 10: More Runs?

At this step the modeler determines whether more analysis is needed, and, if so,
develops additional experimental designs as necessary (Banks and others, 2005:17).
AFRL/VA, the recipient of this model, will carry out this step as it deems appropriate.

Step 11: Documentation and Reporting

Once a modeler has built a model and used that model to gain insight into some
system or problem, he or she will usually present the findings to those who will use the
findings to make some sort of decision or decisions. Documenting and reporting involves
compiling those findings and presenting them in a format that is appropriate for the
intended audience. For this model, the completion of this step is satisfied mainly by the
writing of this thesis (Banks and others, 2005:17). However, detailed documentation was
also embedded within the model code to aid follow-on modelers in the use and
modification of the model.

Step 12: Implementation

The objective of most simulation studies is not the creation of the model itself;
rather, the end goal of most simulations is to use the information provided by the
simulation to make some sort of decision and then implement that decision in the real-
world system (Banks and others, 2005:17, 18). So it is in this case; the model was
created to provide Air Force decision-makers with information to guide them in their
RMLYV design decisions. It is the hope of this author that this modeling effort and future
efforts like it will help guide the Air Force as it progresses through the RMLV acquisition

phase.
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Summary

Chapter 3 outlined the methodology used to complete the author’s research. The
first section reiterated the purpose of this research and demonstrated the applicability of
computer simulation to the research problem. The second section discussed the method
that was used to develop the author’s simulation model. The following chapter describes
the simulation model and covers the results of the model verification tests and

experimental design.
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IV. Results and Analysis

Introduction
This chapter begins with a description of the model created for this thesis and then
discusses the results of the model verification process. The chapter concludes with a

discussion of the experimental design that was applied to the model.

Model Description

The author built his model in Arena computer simulation software. The model
breaks the prelaunch operations process into some detail and possesses approximately
160 Arena modules. Many of the launch vehicle simulation models discussed in the
“Previous Launch Vehicle Simulation Research” section in Chapter 2 simulate a higher
level of launch vehicle operations. They do this by rolling up many smaller activities to
create a larger process that encompasses all of the smaller activities. This means that a
process, such as launch pad operations, in one of these models may be represented by a
single module and distribution, while in the author’s model, this upper-level process is
broken down into the many activities that comprise it. The author did this to direct
attention to the specific activities that will have to be analyzed as the Air Force
contemplates RMLYV design and time-saving alternatives.

In addition to creating the model itself, the author used VBA code to develop a
graphical user interface that simplifies user inputs to the model. The graphical user
interface is not necessary for model operation, but it was added to make the model more

user-friendly. Without the graphical user interface, users would be required to input
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information directly into the Arena modules, which requires a working knowledge of the
Arena software. However, it is likely that not all future users of the model will be
familiar with Arena software. The graphical user interface circumvents this problem by
allowing the user to complete all inputs using standard, familiar user forms. The VBA
code transfers the user’s inputs to the Arena model and prepares the model for execution
per the user’s instructions. The graphical user interface also responds to user inputs
itself, directing the user to the appropriate questions depending upon user choices. An
example of one of the graphical user interface user forms is given in Figure 21.

Appendix B includes the entire set of graphical user interface user forms.

(OT) Other tasks, vehicle integration facility

This form gathers user inputs that describe final tasks within the integration fadlity, such as hypergolic fuel loading, ordnance install, and vehide transport preparations.
Will hypergolic fuels be required?
OT-07 Prepare for vehide transport to pad | Hotis
o1 ¢~ hypergalic fuels required ™ Hyperaolic fuels not required | ﬂ| ﬂ
Click on the appropriate location for hypergolic fueling. Hypergolic fuels can .
|lbe loaded now, in the integration fadlity, or later, on the launch pad. e;rh‘i.élse Attach vehide transporter to the | 1 ﬂ| Hours ﬂ
OT-02 - Load hypers in integration  Load hypers on launch pad 0OT-09 Transport vehide to launch pad | 1 j| Hours j
fadility
(OT-03 Time to load hypergaolic fuels 1 L“ Hours ﬂ
Will ordnance be required?
OT-0% ¢ ordnance required " Ordnance not required
Click on the appropriate location for ordnance installation. Ordnance can be
llinstalled now, in the integration fadility, or later, on the launch pad.
o705 ¢ Install ordnance in " Install ordnance on launch pad
integration fadlity
OT-06 Time to install ordnance 1 L“ Hours ﬂ
Previous Next
Main Help

Figure 21: Graphical user interface user form example
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The model represents RMLV processes that will occur in the future and as such
simulates a real-world system that does not yet exist. The uncertainty associated with the
activities that will one day be involved in RMLV prelaunch operations requires a generic
modeling approach. A generic simulation model is a model that can accurately represent
more than one real-world system. A benefit of generic models is that they can be applied
to many different situations, which precludes the necessity of creating a separate model
for every situation. This also makes generic models especially fitting for comparing
system design alternatives (Steele and others, 2002: 747, 748). The model created for
this thesis is a generic model in that it can be applied to many different RMLV design
alternatives. The user decides which RMLYV processing options to analyze and the model
adjusts to accurately represent the user-defined RMLYV specifications.

The model is currently configured to allow only one entity to flow through the
model per replication. Each replication then, represents one complete prelaunch
operations cycle for a single entity. Each entity represents a RMLYV mission, not the
vehicle itself. In other words, each entity represents a requirement to launch an RMLV
mission. Each mission entity seizes resources (such as a first stage, maintenance hangar,
or launch pad) as it proceeds through the prelaunch operations sequence. The author is
indebted to the GEMFLO (a model discussed in the “Previous Launch Vehicle
Simulation Research” section in Chapter 2) developers for the mission entity idea (Steele
and others, 2002: 751).

Even though the model is generic and adapts to many different RMLV processing
options, it does make some basic assumptions. The model assumes a reusable first stage

and expendable second stage to match the Hybrid Launch Vehicle concept (see the “Air
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Force and NASA Future Spacelift Objectives” section in Chapter 2). It also assumes that
liquid fuels will be used in both stages and that the vehicle will be unmanned.

Figures 22-29 depict model network layout and address the fourth investigative
question in Chapter 1 by detailing how RMLYV design decisions and prelaunch activities
were incorporated into the simulation model. Due to model size, the Arena model itself
cannot be shown here. However, the figures that follow accurately represent the layout
of the actual Arena model. These diagrams are similar to what the model validation
Delphi study members received during the model review process (see the “Step 7:
Validation” section in Chapter 3). Due to the generic nature of the model, some of the
diagrams are bypassed, depending on what RMLV processing decisions the user makes.
Each ending path in each diagram terminates with a connector symbol that tells the reader
which figure comes next in the sequence, if that path was chosen. Figure 22 provides a
key to the modules used in Figures 23-29. All other figures are self-explanatory, except
for Figure 23, which represents preintegration activities. Preintegration refers to joining
the payload to the second stage before the second stage is attached to the first stage.
Preintegration assumes that vehicle design and ground support equipment facilitate
attaching the preintegrated second stage and payload to the first stage as a single piece. If
vehicle design prohibits this, then payload integration will happen in the traditional
fashion, after the second stage is mated to the first stage. Preintegration occurs in parallel
with maintenance activities in MILePOST and has the potential to save time during
regeneration because payload integration activities are complete before prelaunch
operations even start. This assumes that preintegration time will not exceed the time

required for RMLYV maintenance.
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1 ¢

Create Maodule: The starting point of the
entire diagram.

Process Module: An action occurs that
takes a certain amount of time.

Decision Module: A decision is made that
determines the route to follow.

Separate Module: Indicates the start of
parallel processes. The diagram path
“splits” at this point, and the processes in
each path occur simultanecusly,

Module Key

[

" ) Submodel 1

b

x
igure #

Figure 22: Module Key
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Batch Module: Indicates the end of parallel
processes. All processes prior to this
module must be complete before the next
process can occur.

Submodel Module: Used to provide a clear
overview of the entire diagram. Each
submodel is a grouping of other modules,
for organization purposes.

Connector: Indicates where the path
connects on a separate page.

Dispose Module: The ending point of the
entire diagram.



Preintegration

+J RMLV Maintenance

RMLY \ Start parallel

regeneration process
start ’
End parallel

: " Make Make
:::%nzg“astage | mechanical [y electical j— almt:I pay;w
connections connections ntegration
gheck

Prelntegratlon allowed

@J
Preintegration not allowed—————

Prelmegratlon refers to joining the payload to the
second stage before the second stage is - . . o
attached to the first stage,  Preintegration NOTE: !f pre melg ration is
assumes that vehicle design and ground support allowed, it occurs in parallel
equipment facilitate aitaching the preintegrated with RMLY maintenance
second stage and payload to the first stage as a
single piece. If vehicle design prohibits this, then {Pope, 2006).
payioad integration will happen in the traditienal
fashion, after the second stage |s mated to the
first stage.

Figure 23: Preintegration
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Vehicle Integration
Preliminary Considerations

Vehicle assembly can
take place either on the
launch pad (Delta I1) or
in a separate
integration facility
{Atlas V, shuttle).

B
Move \ Figure 25
vehicleto |
launch pad
‘ehicle in C
integration ——————————_¥es w1 Figure 26,
facility?

No

vehicle to
integration

The vehicle could be
integrated in the same
place that maintenance
ar storage took place.

If integration will take
place in a separate
facility, then the vehicle
must be transported
there.

Figure 24: Vehicle integration preliminary decisions
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No preintegration

Vehicle Integration
Integrate on pad.

Preintegration refers to joining the payload
to the second stage before the second
stage is attached to the 1st stage. With

preintegration, only one "attachment”
needs to be made—between the 1st stage

and the preintegrated 2™ stage and
payload. In other words, the 2™ stage and
payload would be mated to the 1% stage as

a single piece. If preintegration did not
occur, integration will follow the traditional
sequence: 1% stage to 2m stage and then
payload to 1% and 2™ stage.

L

Attach
Attach i e nd Make Make
2™ stage and payload . Erect and handling Position 2 : ;

. handling — " fiture t0 2@ || stagaipaviaad | Mechanical electrical

preintegrated fixture to HLY sl stage/payload Agapayioa connections connections
Aftach Altach Erect and Make Make 1%, 2™ stage
handling Er?lzt aﬂi‘u’ |—| ﬂxl:snd:}n%m | position 2 || mechanical §—| electrcal | integration
fixture to HLV [PLELLED] [ stage connections connections check
Attach I ;
i . Make Make Entire vehicle

r?:ndlin g i;l‘:;::jlgn mechanical electrical integration

equipmegrl'lt P connections connections chiack

Figure 25: On-pad integration operations
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With prelniegratlnn, the 2™ stage and payload would be
mated to the 1% stage as a single piece. If preintegration did
not occur, integration will follow the traditional sequence: 1%

stage to 2™ stage and then payload to 1% and 2™ stage.

Vehicle Integration
Integrate off pad.

If the vahicle is being assamblad vertically,
it is assumed that it is being assembled on
a Mobile Launch Platform (MLF).

handling Erect andl Attach handling Erect and Make Make
fixture to 1% || position 1 | fidureto 2™ || posiion 22 || mechanical |—| electrical |
eintegration? 2™ gtage and =t stage on MLP stage/payload stage/payload connections connections
payload preintegrate rE———
T —— integration |
Altac = " check
equipment o Position/align Make Make
2" stage’ | 2ndstage! |— || mechanical |——| electrical
a payload connections connections
Mo preintegration
[ Affach | Aftac
rizontal ; Erect and el Erect and Make Make
. handlimg P el handling et ~ . N
O — vertical —Verticalfm(| o o1 | Position 1 | fixture to 2 J—1| Position z ——| mechanical |——| electrical —
agration stage an MLP stage connaclions conneclions
stage stage
-W Position aﬂnd Make
; - ndling — align 2" mechanical
Horizog®! equipment to ;?aga connactions
b2 slage
ar
Attach
stage o Make Make
integration ::I:*Uﬁi"ndg | aliom payiand f—| mechanical electrical
cheack equipment connections connactons
Pad
Load Load [l Trans
o port D
P —yes—m=|| hypergolic Install clossouts and Attach r .
> hy?ﬁ;?{;u"c fue| —Yes—» ordnance h transport transporter ve';';:': ik Figure 27
‘_Ereparations
- Mo

Hypergaolic fueling
operations, if required, could
happen now o on pad.

Ordnance, if required, could
be installed now or on the
launch pad.

Figure 26: Off-pad integration operations
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The transportation system
may or may not contain the
eracting mechanism. If not,
it will have 1o be attached to \
the wehicle at this point.

Launch Pad Operations for
vehicle not integrated on pad

i

E
Figure 28

3 Erect Vehicle
ertical or ) Altach allad) and secure to
harzantal ——harizontal—me| erecting —yes—=||  erecling launch
integration?, chanis mechanism platform
-
vertical
Position MLP
on launch
pad
T AmEch | B
; = Make MMake -
stall payloa payload Lift and align 7 ; Vehicle
—_— Y] : mechanical elecirical ;
on pad? “"‘F‘“"”g payiced connactions connections Infearation
equipment check
A No

If payload was not installed
in integration facility, it will
nead o be Installed now.

Figure 27: Initial launch pad operations for vehicle integrated off pad
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Umbilical connections will aither be extensive
or simple. There are several options/
combinations. If umbilical connections ocour
automatically during the erecting sequence
(Zenit 3SL), or If they were made In parallel
with on-pad integration operations (Figure 25},
then nothing happens here (route 3). If
elecirical and comm lines are not disconnected
prior to transport (Atlas V), then these
connections do not need to be made at the
pad, and only propellant connections need to
be made (route 2}. If electrical and comm lines
are disconnected before franspor (shuttle),
then these connections will need to be made at
the pad, along with propellant connections
({route 1).

Launch Pad Operations

Propellant
connections

Electrical and
comm —
connections

Umbilical leak
B check

Verfy
electrical and
COMmIm
connectivity

22—

Propellant
connections

Umbilical

Hypergalic fusl, if required,

could be loaded here, or it

could have been loaded in
the integration facility (Figure

26).

leak check

[#5]

fuel? ~—yes—m=| hypergolic
\ / fuel

o

L o
rallel?
RP-1 fueling Sy
operations happen
here, if required.
Depending on
vehicle
requirements, RP-
1 may be loaded in
the 1* stage only
or both the 1" and
2" stage. If both
he 1.and 2 e
stage requine RP-
1, the stages may
or may not be
leaded in parallel,

1 on ly—-

Fuel RP-1
first stage

Fuel RP-1
first stage

Fuel RP-1
second stage

rdnance

Fuel RP-1
first stage

Fuel RP-1
sacond stage

on pad?

Final TPS or
Installiarmm other

:mr: ardnance Sreshieshon

Figure 28: Launch pad operations
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Ordnance, if required, could
be installed here, or it could
have been installed in the
intagration facility (Figure
26).




Stages can be filled with
propellant in parallel or
separately. In addition, fuel and
oxidizer can be lcaded in paralled
or separately. There are thres
options: Stages and fuelioxidizer
can be loaded in parallel (box 1),
Stages can be loaded in parallel,
but not fuelioxidizer (bax 2),
Meither stages nor fuelioxidizer
can be loaded in parallel (box 3).

This part of the moded will
simulate cryogenic propallant
loading. If RP-1is used (see

Figure 28), then this section of the
model will “adjust” appropriately
by bypassing stages that have

already been fusled.

Propellant
Loading

Box 1

Paraliel
Ops start

17 stage
LOX chill and
fill

Paralle!l
Ops start

1% stage fuel
chill and fill

2" stage

LOX chill and
fill

2" stage fuel

Parallel
Ops start

| I chill and fill

Parallel

Ops end

Parallel
Ops end

Terminal
countdown

1* stage LOX 1* stage fuel
chill and fill chill and fill
Paraliel
Ops end
2" stage
LOX chill and f—, 2 stage fusl
ne fill chill and fill
Box 3
d
17 stage LOX 2" stags 1* stage fuel 2™ stage fuel
d d——————1| chiland il chill and fill

(| chilland fill f————— LOXchillan

fill

Figure 29: Propellant loading operations
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The model represented by Figures 22-29 was developed by comparing prelaunch
operations for existing launch vehicles. Atlas V, Delta 1V, Zenit, and shuttle were the
primary systems compared for this purpose. The author noted the many different
processing options used by these systems and incorporated these options into his model.
The next seven paragraphs explain the link between the model’s key processes and the
existing systems the processes were based upon.

Figure 23 describes preintegration operations. Although different from the type
of preintegration described in this figure, the shuttle utilizes a preintegration concept as
well. The shuttle’s solid rocket boosters are assembled and attached to the external tank
before the integration of the orbiter. Once orbiter maintenance is complete, the orbiter is
integrated to the preintegrated solid rocket boosters and external tank (Cates, 2003:82-
112). This allows much of the time-consuming integration operations to be completed
before shuttle prelaunch operations (as defined by this thesis on page 27) begin.

Figure 24 depicts the integration location decision. This point in the model
responds to the user’s integration location choice and directs the entity to either on-pad or
off-pad integration operations. On-pad integration has been used by many ELVs in the
past, but both Evolved Expendable Launch Vehicles have moved toward more off-pad
integration operations. Atlas V undergoes stage and payload integration off the launch
pad in a vertical integration facility.® Delta IV undergoes stage integration off the launch
pad in a horizontal integration facility but does not integrate its payload until after it is

erected at the launch pad.

® This is true for Atlas V operations at Cape Canaveral Air Force Station, but Atlas V integration at
Vandenberg AFB takes place on the launch pad (Atlas Launch System Mission Planner’s Guide, 2004:7-
10).
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Figure 26 includes both horizontal and vertical integration operations. Vertical
integration activites (the boxed processes in Figure 26) are based upon Atlas V
integration operations. Horizontal integration activities (designated by the ovals in
Figure 26) are based upon Delta IV and Zenit integration operations.

The circled decision module in Figure 26 refers to the payload integration location
decision. Even if stage integration takes place off the launch pad, payload integration
could still take place on the launch pad, as demonstrated by Delta IV. Off-pad payload
integration is based upon the Atlas V, and on-pad payload integration (see Figure 27) is
based upon the Delta IV.

The boxed modules in Figure 27 refer to an erecting mechanism option inspired
by the Zenit 2. The Zenit 2 is transported to the launch pad on a transporter that also
includes the erecting mechanism (Isakowitz and others, 2004:557). If the erecting
mechanism is not built into the vehicle transporter, then it will have to be attached to the
vehicle once it gets to the launch pad.

Figure 28 includes three umbilical attachment options. The first option is based
upon a shuttle-like umbilical attachment process that necessitates propellant and electrical
and communication connections at the launch pad. The second option is based upon the
Atlas V, which only requires a few simple propellant connections at the launch pad.
Atlas V retains electrical and communication connectivity during transport to the launch
pad, so these attachments do not have to be reconnected once the vehicle arrives at the
launch pad (Centore, 2005). Option three is based upon the Zenit 3SL, which completes
all umbilical attachments automatically during the erection sequence (Isakowitz and

others, 2004:558).
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The boxed activities in Figure 28 represent RP-1 loading operations in either the
first stage only or the first stage and the second stage. These activities are based upon
Atlas V and Zenit operations. Atlas V uses RP-1 only in the first stage (Centore, 2005).

Zenit uses RP-1 in its first and second stage (Isakowitz and others, 2004:550).

Model Verification Results

The Assertion Checking method used to verify this model employed record
modules strategically placed throughout the model to keep track of entity behavior.
Expected record module statistics were compared with actual record module statistics to
verify that entities followed the intended path through the model. Entity flow is directed
by decision modules, which in turn are controlled by initial variable values designated via
user-defined choices in the graphical user interface. The combination of decisions the
user makes determines the path the entity will take through the model. The main purpose
of the Assertion Checking verification scheme was to ensure that entities were following
the exact path designated by the user. The decisions to be made by the user are given in
Table 2. The “Decision” column lists all the different decisions a user will make before
running the model. These decisions address the third investigative question in Chapter 1
by listing the different RMLYV “design drivers” and processing options that will have an
effect upon the number, type, and duration of RMLYV prelaunch activities. The next three
columns display the options associated with each decision. Most decisions have only two
options available, but some have three. The “Result” column uses the Excel

RANDBETWEEN function in each row to randomly make the decision. For example,
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10

11
12
13
14

15

Table 2: RMLYV design and processing decisions

Decision Option 1 Option 2 Option 3 Result

Preintegration Preintegration allowed Preintegration not allowed 2

Integration location Integrate on launch pad Integrate off launch pad 1

Off pad integration Off-pad integration in separate integration

location Off-pad integration in maintenance bay facility N/A

Integration orientation Stages integrated vertically Stages integrated horizontally N/A

Location of payload

integration Integrate payload in integration facility Integrate payload on launch pad N/A

Hypergolic fuels Hypergolic fuels not required Hypergolic fuels required 1

Hypergolic loading

location Load hypergolic fuels in integration facility |Load hypergolic fuels on launch pad N/A

Ordnance Ordnance not required Ordnance required 2

Ordnance installation

location Install ordnance in integration facility Install ordnance on launch pad 2

Erecting mechanism Mechanism attached at launch pad Mechanism part of vehicle transporter N/A
Propellant and electrical connections

Umbilicals required Propellant connections required No separate umbilical connections required 3

RP-1 Vehicle uses RP-1 Vehicle does not use RP-1 1

RP-1 in which stages Only the first stage uses RP-1 The first and second stage use RP-1 1

Parallel RP-1 operations |Stages can be loaded with RP-1 in parallel |Stages cannot be loaded with RP-1 in parallel N/A

Parallel cryogenic Fuel and oxidizer and stages can be loaded|Stages can be loaded in parallel, but not fuel [Neither stages nor fuel and oxidizer can be

operations in parallel and oxidizer loaded in parallel 2

73



for a decision with two options available, the associated cell in the “Results” column
would use the following formula:

= RANDBETWEEN(1,2) )

If the formula produces a 1, option 1 is chosen. If the formula produces a 2, option 2 is
chosen. By employing this method in each row, Excel randomly generates an entity path
in the “Results” column. Notice that some cells in the “Results” column contain “N/A.”
This is because some decisions do not need to be considered depending upon initial
decisions made earlier in the model. For instance, if the integration location decision
returns option 1 (on-pad integration) then the next three rows will return “N/A” because
they refer to off-pad integration decisions that no longer have to be made.

The author randomly generated and tested 50 separate entity paths. Tables 3 and
4 display the results of the first verification test. Table 3 denotes the specific entity path
that was tested.

Table 3: Entity path for first verification test

Decision Path

Preintegration 1
Integration location 2
Off pad integration location 2
Integration orientation 1
Location of payload integration N/A
Hypergolic fuels 2
Hypergolic loading location 1
Ordnance 1
Ordnance installation location N/A
Erecting mechanism N/A
Umbilicals 2
RP-1 2
RP-1 in which stages N/A
Parallel RP-1 operations N/A
Parallel cryogenic operations 1
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Table 4: Record module expected versus actual values

Record Modules Expected  Actual

Parallel stage and prop.
Parallel stage
Serial cryo

Preintegration 1 1
No Preintegration 0 0
Preintegration 1 0 0
No Preintegration 1 0 0
Preintegration 2 1 1
No Preintegration 2 0 0
On Pad Int 0 0
Off Pad Int 1 1
Mx Bay 0 0
Integration Facility 1 1
Vertical 1 1
Horizontal 0 0
Vertical 1 0 0
Horizontal 1 0 0
Horizontal 2 0 0
Vertical 2 1 1
PId In Int Facility 0 0
Pld On Pad 0 0
Hypers off pad 1 1
No Hypers 0 0
Hypers on pad 0 0
No Hypers 1 1 1
Ordnance off pad 0 0
No ordnance 1 1
Ordnance on pad 0 0
No ordnance 1 1 1
Attach Erect Mech 0 0
Erecting Mech Built In 0 0
No Umbilical 0 0
Prop Umbilical 1 1
Prop and Elec Umbilical 0 0
RP None 1 1
RP used 0 0
RP 1st and 2nd 0 0
RP 1st 0 0
RP Parallel 0 0
RP Serial 0 0

1 1

0 0

0 0
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Table 4 gives a list of all the record modules within the model in the “Record
Modules” column. Each record module simply counted the number of entities that
passed through it. Since the model only sends one entity through at a time, each record
module returns a value of either 1 or 0, depending on whether or not the entity passed
through that module. The “Expected” column lists the expected record module statistics
that correlate with the entity path tested, and the “Actual” column lists the actual record
module statistics after one model replication. In this case, the “Expected” and “Actual”
columns match, which means entity flow progressed through the model according to the
user’s decisions. Each of the remaining 50 entity paths that were tested resulted in
matching “Expected” and “Actual” columns.

The author determined the number of verification tests to complete by using a
Binomial Acceptance Testing Plan (Ebeling, 2005:316, 317). Although this approach is
usually used to test the reliability of physical systems such as machines, vehicles, or
components, it has applicability to the model verification tests performed for this thesis.
The purpose of the test is to demonstrate a certain system reliability with an acceptable
level of confidence. In this case, the “system” under consideration is the simulation
model. Reliability as it refers to physical systems is usually defined as “the probability of
nonfailure over time” (Ebeling, 2005: 5). As it applies to this simulation model, it could
be defined as “the probability the model will not fail for a randomly generated entity
path.” The binomial acceptance plan completes a total of n tests and observes X test
failures amongst those n tests. If R is the true model reliability for each test, X has a
binomial probability distribution with parameters n and p = (1 — R). The binomial test

plan specifies the sample size n and the maximum number of failures, r, allowed to
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confidently state that R = Ry, the desired system reliability. If X <r, then it is concluded
that R = Ry. If X>r, then it is concluded that R = R, < R;.

Due to the randomness of sampling, it is possible to come to a false conclusion
concerning the true value of R. To lower the probability of this, it is necessary to
minimize both Type I (o) and Type 1l (5) error. Type I error is the probability of
incorrectly rejecting the null hypothesis that R = R;. Type Il error is the probability of
incorrectly failing to reject the null hypothesis that R = R;. The relationship between o
and g and n and r is expressed in the following two adaptations of the binomial

probability mass function:

r

(inj(l—&)i R =1-¢g (3)

i=0

-

_z[_”j(l— R R = p @

i
The challenge is to find values for n and r that result in acceptable values of & and 5. The
acceptance plan for this model used one of the selected reliability acceptance plans given
by Ebeling (Ebeling, 2005:317). The values associated with this plan are given in Table
5.

Table 5: Selected reliability acceptance plan (Ebeling, 2005:317)

R, R, n r 1-a B
.99 .90 50 1 911 .034

This particular acceptance plan states that it can be concluded with 91.1 percent
confidence that R = .99 if there is only 0 or 1 failure out of 50 trials. For the author’s

prelaunch operations model, 50 tests resulted in O failures. As a result, the author can be

77



91.1 percent confident that R for the model =.99. As a result of this verification effort,
users can have confidence in a credible model that accurately represents the modeler’s

intentions.

Experimental Design Results

The author used model output to complete three experiments pertaining to RMLV
regeneration time. The purpose of these experiments is not to provide an exact estimate
of RMLYV regeneration time but rather to provide preliminary insights concerning several
RMLYV prelaunch operations processing options. As such, the experiments answer the
fifth investigative question in Chapter 1. The experiments were carried out using output
data from MILePOST so that the experiment results could be stated in terms of total
RMLYV regeneration time instead of just prelaunch operations time. However, the
experiments only analyzed prelaunch operations alternatives and did not explore
maintenance sensitivities, because these are addressed in concurrent research by Pope
(Pope, 2006). The following questions reflect the three experiments:

1. How does the decision concerning whether or not to allow preintegration of

the 2" stage and payload affect RMLV regeneration time?

2. How does integration location affect RMLV regeneration time?

3. How does integration orientation (vertical versus horizontal integration) affect

RMLYV regeneration time?

Each of these three questions was answered by comparing MILePOST output data
for two different processing scenarios. Output comparisons were made using a large

sample confidence interval for a difference in means. By forming a confidence interval
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around the difference between two average RMLYV regeneration times, the author was
able to conclude whether the ground processing alternative in question has an effect upon
RMLYV regeneration time. The formula for a large sample confidence interval for a

difference in means is given by

0'2 0'2
X -% )tz [2L+Z2 5
(Xl 2) az nl n2 ()

Several conditions are required for using this confidence interval to make
inferences. First, the two samples must be independently and randomly selected from
two target populations. Arena’s random number generation scheme satisfies the random
selection requirement. In comparing two RMLV processing scenarios, Arena completes
two simulation runs, and the output from one simulation run is not dependent upon output
from the other simulation run. This satisfies the independence requirement. Second,
both samples must be sufficiently large (n; > 30 and n, > 30) to guarantee that the
sampling distribution of the difference in means approximates the normal distribution
(McClave and others, 2005:483). 50 replications were simulated for each processing
scenario to meet this requirement.

The “Data Collection” section in Chapter 3 discusses how distributions were
formed to populate the model’s process modules. Appendix C contains the complete list
of distributions that were used in each of these experiments. While these distributions
represent plausible approximations for what RMLYV activity durations may be in the
future, they are still only estimates and may or may not represent future RMLV
operations. The results of the experiments below must be analyzed with this caveat in

mind.
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Experiment 1: Effect of Preintegration Decision
The null and alternative hypotheses associated with this experiment are given
below.
Ho: RMLYV average regeneration time without preintegration - RMLV average
regeneration time with preintegration = 0.
Ha: RMLV average regeneration time without preintegration - RMLYV average
regeneration time with preintegration > 0.
To test this hypothesis, two entity paths were simulated. Table 6 gives the two entity
paths that were compared. The “Preintegration” column gives the entity path that
represents RMLYV prelaunch operations with preintegration.

Table 6: Entity paths compared for the preintegration experiment

No
Decision Preintegration Preintegration
Preintegration 1 2
Integration location 2 2
Off pad integration location 2 2
Integration orientation 2 2
Location of payload
integration N/A 1
Hypergolic fuels 1 1
Hypergolic loading location N/A N/A
Ordnance 2 2
Ordnance installation
location 2 2
Erecting mechanism 1 1
Umbilicals 1 1
RP-1 1 1
RP-1 in which stages 1 1
Parallel RP-1 operations N/A N/A
Parallel cryogenic
operations 2 2
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The “No Preintegration” column gives the entity path that represents RMLV prelaunch
operations without preintegration. Notice that besides the preintegration decision, every
other decision was held constant, so that the preintegration decision could be analyzed by
itself apart from interaction from the other decisions. Table 2 shows what options are
represented by the values in the “Preintegration” and “No Preintegration” columns.
Output statistics for the two scenarios are given in Table 7.

Table 7: Preintegration experiment output statistics

) Mean Standard
Scenario Regeneration Deviation
Time (hours) (hours)
Preintegration 68.50 4.72
No Preintegration 72.33 6.59

Using Equation 5 and o = .05, the values in Table 7 result in the following confidence
interval for the difference in RMLYV mean regeneration time:
[1.59, 6.08] hours

Since this confidence interval does not contain zero, the null hypothesis is rejected. It
can be concluded with 95% confidence that preintegration does decrease RMLV mean
regeneration time for RMLV ground operations as represented by MILePOST.
Experiment 2: Effect of Integration Location Decision

The null and alternative hypotheses associated with this experiment are given
below.

Ho: RMLYV average regeneration time for integration off the launch pad - RMLV

average regeneration time for integration on the launch pad = 0.
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Ha: RMLYV average regeneration time for integration off the launch pad - RMLV

average regeneration time for integration on the launch pad > 0.
Table 8 gives the two entity paths compared for this experiment. The “Integrate on
Launch Pad” column in Table 8 gives the entity path that represents vehicle integration
on the launch pad. The “Integrate off Launch Pad” column gives the entity path that
represents vehicle integration off the launch pad. For this experiment, on-pad integration
operations, where integration by necessity occurs vertically, were compared to off-pad
integration operations that were also performed in the vertical orientation. Output
statistics for the two scenarios are given in Table 9.

Table 8: Entity paths compared for the integration location experiment

Integrate on Launch Integrate off launch
Decision Pad pad
Preintegration 1 1
Integration location 1 2
Off pad integration location N/A 2
Integration orientation N/A 1
Location of payload
integration N/A 1
Hypergolic fuels 1 1
Hypergolic loading location N/A N/A
Ordnance 2 2
Ordnance installation
location 2 2
Erecting mechanism N/A 1
Umbilicals 1 1
RP-1 1 1
RP-1 in which stages 1 1
Parallel RP-1 operations N/A N/A
Parallel cryogenic
operations 2 2
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Table 9: Integration location experiment output statistics

) Mean Standard
Scenario Regeneration Deviation
Time (hours) (hours)
Integrate on
launch pad 68.99 4.90
Integrate off
launch pad 72.77 4.61

Using Equation 5 and o = .05, the values in Table 9 result in the following confidence
interval for the difference in RMLV mean regeneration time:
[1.91, 5.64] hours

Since this confidence interval does not contain zero, the null hypothesis is rejected. It
can be concluded with 95% confidence that integration on the launch pad does decrease
RMLYV mean regeneration time for RMLV ground operations as represented by
MILePOST. This difference is primarily due to the exclusion of certain activities that are
required by off-pad integration but not by on-pad integration. For instance, if integration
takes place on the launch pad, time does not have to be spent on transportation activities
from the integration facility to the launch pad. In addition, with on-pad integration, time
does not need to be spent erecting the vehicle or securing the mobile launch platform to
the launch pad once the vehicle arrives from the integration facility. While saving time in
this way may seem attractive, it comes with a trade-off. Integrating on the launch pad
means that the launch pad resource is seized for a longer amount of time. This may not
be desirable if there are limited launch pad resources available.
Experiment 3: Effect of Integration Orientation Decision

The null and alternative hypotheses associated with this experiment are given

below.
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Ho: RMLYV average regeneration time for horizontal integration — RMLV average
regeneration time for vertical integration = 0.
Ha: RMLYV average regeneration time for horizontal integration — RMLYV average
regeneration time for vertical integration < 0.
Table 10 gives the two entity paths compared for this experiment. The “Vertical
Integration” column in Table 10 gives the entity path that represents vertical integration
off the launch pad. The “Horizontal Integration” column gives the entity path that
represents horizontal integration off the launch pad. Output statistics for the two
scenarios are given in Table 11.

Table 10: Entity paths compared for the integration orientation experiment

Decision Vertical Integration Horizontal Integration
Preintegration 2 2
Integration location 2 2
Off pad integration location 2 2
Integration orientation 1 2
Location of payload

integration 1 1
Hypergolic fuels 1 1
Hypergolic loading location N/A N/A
Ordnance 2 2
Ordnance installation

location 2 2
Erecting mechanism N/A 1
Umbilicals 1 1
RP-1 1 1
RP-1 in which stages 1 1
Parallel RP-1 operations N/A N/A
Parallel cryogenic

operations 2 2
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Table 11: Integration orientation experiment output statistics

) Mean Standard
Scenario Regeneration Deviation
Time (hours) (hours)
Vertical
Integration 75.55 6.61
Horizontal
Integration 72.33 6.59

Using Equation 5 and o = .05, the values in Table 11 result in the following confidence
interval for the difference in RMLV mean regeneration time:
[-6.56, -.63] hours

Since this confidence interval does not contain zero, the null hypothesis is rejected. It
can be concluded with 95% confidence that horizontal integration instead of vertical
integration decreases RMLV mean regeneration time for RMLV ground operations as
represented by MILePOST.
Summary

This chapter began with a description of the prelaunch operations model that was
developed for this thesis. The chapter then covered model verification results and
concluded with a description of the experimental design and associated statistical
analysis. The following chapter offers research conclusions, research limitations, and

suggestions for further study.
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V. Conclusions and Recommendations

Introduction
This chapter begins with a research summary and then offers research
conclusions. Next, research limitations are discussed. The chapter concludes with

suggestions for follow-on research.

Research Summary

The prelaunch operations model developed for this thesis is a useful tool that can
help the Air Force understand how different RMLYV design and processing decisions
affect RMLYV regeneration time. The validation and verification methods employed for
this thesis ensure that the model is a credible representation of future RMLV prelaunch
operations, based upon the knowledge and data that is currently available.

Model validation was accomplished via a Delphi study intended to elicit expert
opinion on the model conceptual flow network. 15 panel members were chosen from a
variety of organizations, including the Air Force Research Laboratory Air Vehicles
Directorate, Aeronautical Systems Center, NASA, and Air Force Space Command.
Three Delphi “rounds” were completed. In each round, a model conceptual flow diagram
was sent to the panel members, and panel member responses were collected. The author
adjusted the model network based upon the advice he received from the panel members.
The Delphi study produced many good suggestions that helped the author create a model
that accurately represents RMLV prelaunch operations, to the extent possible due to

limited knowledge about future RMLYV design.
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Model verification was accomplished via an Assertion Checking (Defense
Modeling and Simulation Office, 1996: 4-13) method that compared model developer
intent to actual model operation. 50 entity paths were randomly generated and tested in
the model. Using record modules placed throughout the model, actual entity flow was
captured and compared to intended entity flow. For all 50 tests, actual entity flow
matched intended entity flow.

This prelaunch operations simulation model can be considered a “baseline” model
that can be built upon and modified in the future. As such, it is a good starting point for
RMLYV processing analysis, but the model will only improve as more information about

future RMLV operations becomes available.

Research Conclusions

After validation and verification were complete, the model was used to evaluate
several different prelaunch operations processing options. Three experiments were
conducted. For the first experiment, RMLV operations with preintegration of the second
stage and payload were compared to RMLV operations without preintegration of the
second stage and payload. The result of the experiment supported the hypothesis that
preintegration reduces RMLYV regeneration time. The second experiment compared
integration on the launch pad to integration off the launch pad. The outcome of the
experiment suggested that on-pad integration, as opposed to off-pad integration, could
reduce RMLYV regeneration time. It must be noted that this experiment is subject to the
limitations of the model, which only allows one “mission entity” to enter the model per

replication. As such, the model in its current form does not simulate steady-state RMLV

87



operations. Under steady state RMLV operations, on-pad integration may be undesirable
because it ties up the launch pad resource for longer periods of time. The final
experiment compared vertical integration operations to horizontal integration operations.
The outcome of the experiment suggested that horizontal integration could result in
shorter regeneration times than vertical integration.

In developing the conceptual model of RMLYV prelaunch operations, the author
gained a great deal of knowledge and insight into different RMLV prelaunch processing
options, how they interact, and how they may affect regeneration time. Using this
knowledge and insight, the author developed a list of suggestions concerning RMLV
prelaunch operations:

1. Utilize a preintegration approach if possible.

Integrating the second stage with the payload while first stage maintenance is
taking place results in fewer integration activities that have to occur once maintenance is
complete. Instead of integrating the first stage with the second stage and then mating the
payload to the second stage, the preintegrated second stage and payload could be attached
to the first stage as a single piece.

2. Integrate off the launch pad if few launch pads are available.

If the number of usable launch pads is high, then RMLYV regeneration time could
be decreased by integrating on the launch pad. However, if the number of launch pads is
limited, then it may be best to integrate off the launch pad to keep launch pads free for
launch operations. If a launch pad is used for integration and launch operations, the pad

will be occupied for a longer amount of time than if it is used only for launch operations.

88



The more time a launch pad is occupied by a single vehicle, the less likely it will be that
the launch pad will be available when another vehicle needs it.
3. Integrate horizontally if possible.

With horizontal integration, vehicle access is easier, which, in theory, should
result in shorter integration times. In addition, horizontal integration is desirable because
personnel and vehicle safety is degraded with vertical integration. Extra safety
precautions need to be taken with vertical integration due to the dangers associated with
falling tools and falling personnel.

4. Avoid the use of hypergolic fuels and ordnance.

Both hypergolic fueling and ordnance installation operations increase
regeneration time significantly. In addition, their use presents additional safety hazards
for personnel.

5. Build the erecting mechanism into the vehicle transporter.

A horizontally integrated vehicle will have to be erected once it gets to the launch
pad. If the erecting mechanism is built into the transport platform, time will not have to
be taken to attach the erecting mechanism once the vehicle reaches the launch pad.

6. Streamline umbilical attachments as much as possible.

There are a variety of different umbilical alternatives that can decrease umbilical
attachment time. Whenever umbilicals are connected, proper umbilical attachment must
be verified. This means that disconnecting and reconnecting umbilical attachments
should be avoided. In addition, automated umbilical attachments can decrease umbilical

connection time. It also stands to reason that the more umbilical attachments that need to
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be made and the more complex those attachments are, the more time will be spent in
making those attachments.
7. Utilize parallel propellant loading.

Loading fuel and oxidizer in both stages simultaneously has the potential to speed
propellant loading operations. Fill rate and stage filling sequence will be influenced by
vehicle structure limitations, but outside of these requirements, parallel propellant loading
should be used to the maximum extent possible.

In addition to the seven recommendations given above, the author made several
other observations throughout the course of this research that may be of value to those
making RMLV acquisition decisions. First, the activities required for RMLV prelaunch
operations present a significant difference from aircraft operations. The differences
between RMLVs and aircraft were discussed in the “Prelaunch Operations Comparisons”
section in Chapter 2. These differences mean that it may be unrealistic to hope that
RMLYV ground processing will be as simple as aircraft ground processing. RMLVs may
never experience the quick regeneration times that aircraft experience. However, this
does not mean that the aircraft maintenance community has nothing to offer the RMLV
community. This leads to the second observation, which is that RMLYV designers and
acquisition managers could learn much from proven and efficient aircraft maintenance
practices and philosophies. A launch vehicle that requires maintenance is new territory
for the Air Force, and the RMLYV acquisition community could suffer if it lacks
maintenance experience. If the goal is to see future RMLYV sortie rates approach aircraft
sortie rates, then aircraft maintenance experience will be a valuable asset to the RMLV

acquisition and design team. The final observation is that RMLV design alone will not
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dictate the speed at which RMLVs can be regenerated. RMLYV prelaunch operations
require the use of many different types of ground support equipment, and the ease of use
and speed of operation of this equipment will have a profound effect upon RMLV
regeneration time. For example, vehicle integration will require the use of stage handling
fixtures and hoists or cranes. If this equipment operates slowly or is difficult to use, it
will slow down integration operations. The importance of ground support equipment
means that it is just as important to put thoughtful consideration into its design as it is to

put thoughtful consideration into the design of the vehicle itself.

Research Limitations

The most severe limitation of this research stems from the fact that RMLV
operations will not commence until several years into the future. This makes it extremely
difficult to determine what activities will be included in RMLYV prelaunch operations.
The model was built by analyzing existing launch vehicle processing flows and then
adjusting them to create the RMLYV prelaunch operations model. The model is generic
enough to accommodate many different processing scenarios, but the eventual RMLV
may require activities that were not anticipated. This means that the RMLV prelaunch
operations activities included in the model may or may not represent future RMLV
operations. While it is difficult to determine what activities will be included in RMLV
prelaunch operations, it is perhaps even more difficult to determine how long those
activities will take. The activity durations and associated distributions that were used to
run the model for the experiments described in Chapter 4 were estimated from similar

activities for existing launch vehicles, aircraft, and ICBMs. Until more is known about
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RMLYV design, it is impossible to know for sure how long prelaunch operations activities
will take. This means that the average regeneration times produced by the model should
not be considered to be perfect predictions of actual RMLV regeneration time.

Another limitation of the model is that it only accepts one entity per replication.
This means that only one “mission,” or one “need to launch” enters into the system per
replication. Since each mission entity enters MILePOST at the beginning of RMLV
maintenance operations, each MILePOST replication essentially represents a
regeneration timeline for a single RMLYV. In addition, the model only includes ground
processing activities and does not simulate the RMLV mission time that takes place
between RMLV launch and landing. These limitations mean that the model cannot yet
simulate steady state RMLYV operations for a fleet of RMLVs. Several model
modifications and additions are required to simulate RMLYV steady state operations.
First, RMLV mission operations, or “mission time” needs to be incorporated. Second,
the parallel processes in the model need to be adjusted to properly separate and batch
entities if there are multiple entities entering the model. Finally, resources (personnel,
equipment, facilities), which are considered unlimited in the author’s model, need to be
constrained so that multiple entities can vie for those resources. With these
modifications, the model could accommodate multiple mission entities entering the
system per some schedule, or randomly per some distribution. This would give the user a
sense of not only regeneration time, but also of the sortie rate supported by the system
and the utilization rate of resources.

Some other limitations are linked to the assumptions that were made in building

the model. For instance, the model assumes two stages—a reusable first stage and an
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expendable second stage. The model would have to be modified before it could support
analysis of any vehicle configuration other than this. The model also assumes a vertical
take off and that both stages will use liquid propellants. Finally, there are no probabilities
associated with failed activities in this model. For instance, it is assumed that if an
inspection takes place, no discrepancies are found. In addition, there is no probability
associated with a scrubbed launch. In other words, it is assumed that each launch goes
off when it was intended.

Suggestions for Future Research

There are many ways that this research can be continued. First, future researchers
could expand the model to include the entire spectrum of RMLYV operations, both on the
ground and in space. As stated in the previous section, the model only includes RMLV
operations that take place between landing and launch. Modifying the model to include
the time between launch and landing would expand the model’s capabilities. This would
allow a user to analyze steady state RMLV operations over an extended period of time.
A follow-on researcher could also add more “bells and whistles” to the model. For
instance, the researcher could add probabilities associated with a failed and passed
vehicle integration check. The model in its current form assumes that all integration
checks are completed without any problems noted.

Any research has room for improvement, and this thesis is no exception. Follow-
on researchers could take a second look at the activities included in the model to see if
any activities should be added or removed. This type of research will be especially
important as time goes on and more knowledge about RMLV operations becomes

available.
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One interesting study would use computer simulation to analyze how different
combinations of numbers of facilities, launch pads, first and second stages, and other
resources would affect regeneration time and sortie rate. This issue could be analyzed
with a completely new model that would represent only the upper-level view of RMLV
operations. The model in this thesis breaks down processes into detailed activities, but
for the follow-on research suggested, these detailed activities could be grouped together
into one module to represent the upper-level process. Different assumptions could be
made concerning durations of regeneration activities, and the simulation would show how
these different assumptions affect resource (launch pads, maintenance hangars, etc...)
utilization and sortie rate. In addition, different assumptions concerning resource
availability could be analyzed to see what effect these assumptions have upon sortie rate
and regeneration time. For instance, RMLYV operations with one maintenance hangar,
one integration facility, and one launch pad could be compared to RMLYV operations with
two maintenance hangars, two integration facilities, and two launch pads to see how the
extra resources affect regeneration time and sortie rate.

The “Research Conclusions” section in this chapter talks about the importance of
RMLYV designers and acquisition managers learning from aircraft maintenance practices.
This presents another opportunity for further research. The “Prelaunch Operations
Comparisons” section in Chapter 2 explained the difference between RMLV prelaunch
operations and corresponding aircraft operations. More research along these lines needs
to be done to analyze which philosophies, policies, and organizational structures within

the aircraft sortie generation environment will benefit future RMLYV operations. The

94



researcher pursuing this topic could look for ways that established and successful aircraft
maintenance practices could be applied to RMLV maintenance and prelaunch operations.

Finally, as more confidence is gained in the activity durations used to populate the
model, more experiments like the ones in Chapter 4 can be done. Each experiment in
Chapter 4 only analyzed one isolated processing decision apart from other decisions.
Further experiments could look at two or more processing decisions at the same time to
see how those decisions interact with each other.

To view the MILePOST code, see the thesis written by Pope (Pope, 2006).
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Appendix A: Delphi Study Documentation

Each of the three Delphi rounds completed for model validation is reproduced
here. Each round contains the model diagram that was sent to the Delphi members and
their responses for that round. To protect the participant’s anonymity, names are not
given. Each comment is preceded by an identification number that designates the
member who made the comment. The comments are categorized by the model diagram
page number the comment refers to. Page numbers are given in the bottom right-hand
corner of each page of the model diagram. Notice that the first page in each round is not
listed as page number one. This is because the model diagram was sent out together with
Pope’s maintenance model (Pope, 2006), which appeared before the prelaunch operations
model. The Delphi participants looked at RMLV maintenance and prelaunch operations
at the same time. Rounds two and three are preceded by short explanations of how the

model changed in response to the previous round’s comments.

96



Round One Model Diagram

Vehicle Integration
Preliminary Considerations

‘ehicle assembly can take
place sither on the launch
pad (Delta ll) orin a
separate integration facility
(Atlas V', shuttle).

Move G
ntegr. n i
grste o vehicle to Page 10,
launch pad

'ahicle in
integration
facility?

age 11

.’(—|
w
Y

No
VE
vehicle to
integration
The vehicle could be

integrated in the same place
that maintenance or storage
took place. If integration will
take place in a separate
facility, then the vehicle must
be transported there.

Round One, Vehicle Integration Preliminary Considerations

97

09



Prainbegraton refers to partions of sitber vehicke or payload inlegration

taking place bakore a need b |8UNch arises. Fraimegration has the
prazrsial to save ime inctha integrasian process afier a need for laurch
anges, For this model, @ s assumed shal preintegration, if any, would
Mg takan plecs during o prior io tha “wailing for nead to launch”
phase on page 9. There are o prenlegration options far inbegratdan
o pad: Firgl, the 2°° stage end payioad could be preintegrasad ard
ready 52 9o This would require andy ane “atachment’ b be mads—
batween the 1% stage and the 2 stageiaykad. The 2V stage ard
payicad woukd be mated to the Irst 53308 &5 & sNQE plece. The
=econd aption is no preintegration-the second stage must be
ntegrabed o the firs? slage ard then the paylcad musl be inegrated o

Vehicle Integration

the wehicke
mlmm/’ﬁ"/
2 stags ndpevioad || Aiach handing Eractand | _|f AgEh handing Pasition 2 cMoKe Maka elecincal
prentegrated Txiuea 1o S0% || position SO alagetpenytoad slagepaylaad Prbini g caPAectians
No praintagration
Agtach handing Erect and ke 1%, 2" siage
Aztach handl
-l o rein gnr\:g —— mﬂﬁ&asng‘u L mauretoz™ b—d posmonz? f—J| mechanical f—0d Mg:‘;ﬁé:? L inegration
stage stage cannechons chi
Enilire wehiche
Prap chsn =, "“T‘:‘ﬁ?rﬁg‘m Lift s align Has Mska elestrical il
- w
EnuipmaEnt payhsd EEE, carnecians ity
Mo

Round One, On-pad Vehicle Integration

98

ge 13

10



Thera are three preintegradan apsians herm (see
preintegration explanation on page 10).
1. The 2™ =iage and paylosd coukl be prainegrated snd
resacly b aftach b the SOV as one pieos.
2 The S04 and £ siage could be preimegrated and
watting anly for the paylinard

Vehicle Integration
Integrate off pad.

If the vehicle is being assembled
wartically, It ls assumed that £ Is being
asmembled o 3 Mabile Launch
Platform (MLP).

3. Mo prelntegration
Eract and Afiach handing Eract and Make
Anrtical—— g ’:“:“;hs:‘:";(:'\? L— | positionsow || fsurew2® &M pesion2® L | mechanical § M;:":r:':":‘"‘:‘ -
an NLP foad
nIEQIAtonT = ™ siage and o
payload preirtepeied ™
Arach handing
Attty Fosibantalgn Make .
. S—- E‘;"‘u"um;’ | | cdsupy | mechaica "‘""""'T"“‘ A
POV and 2 S — payoad conreclions Lotk
atabe preiniearated L1
Il pany
e ar o0
Arach handing kot & Adtach payload Make Make slectrical
oo sovt L 1 Postln SOME L H Ty Lha e f—| mecheriesl ||| connecions
2 stage :ﬁe on equipement L conreclicns
Ha praintagrasan
#stach paykad
Harizontal yi::':eﬂ v, Prap dasn nmmg Positionand | | m:_‘*’::hl Make alectrical
roreA? o room A it align paylead Pl cannections Ertre vahicle
check
Wi
Eract and Arach handing Eract and Make i 1", 2™ siage
"“‘::';I‘:'gg&ﬂ position 50— e o2 b — N pesionz” || mechancal | """"""‘I‘f‘"“' L | inbsgration
on MLP wtage slage conmecticns Lohneny ek
il pay rload o Aitach payload i Make .
reweron o & mom S5 —ewgml| I || raraing i i : el g
pad? requined? equipment conractions
al Prap cdean
room
#imach handing - Make T and 7 Astach payload " Make
: Positicn and . Make slecrica stage Position and . Make alecrical
| equpmentio Ll o Ll mecnanical L. | | naring L1t 7 e mechanieal  f| 1
el on 2 =iage st conraetions inegra SR o pay st conrReticns
o
‘ /’ﬁx ]
Fingl closaouts
o hypergalic Load ranance Install e tach Transpart -
ful? ves—=| ypergolc fust B, installason? cronance > ‘;":D;sml | tensponer || venksata Pan age 12

Hypergalic tualing oparations, It
required, could hapoen now o an pad,

e v o an he launch pad.

Ordrance, if required, could be:
s

Round One, Off-pad Vehicle Integration

99

11




Launch Pad Operations for
vehicle not integrated on pad

The IranaRariaton sysam may or may
nol cantiain the erecting mechanism, IF
e, 1L will hiive % be allached b the

wahiche al this paint

$hoer
ical thach
Alach erech Erect Wehick fransporter!
horizonisl —horizcniam- <L ercling r—yes g | S R0 andsacure o f—|  erecing
rao i launch plartform mechanism
L 43y Iompad |
vertical
Pasitiaan MLP
an launsh pad
Arach paykosd ; Maka ; Encire Venikia
o — e L des ——Yegag|| TP dean hardling it ansd :'I;g" rmechanical hizhe o e i Integraton
on pad? e ine Foam equipment payloa adediaiven] conneclisng ehick
Mo

inszalied now

1 paykead was no? instalied in
integration faciizy, il will nead o be

100

Round One, Launch Pad Operations for Vehicle not Integrated On Pad

|

12



UmbHical connactions wil althar be astansie
ar simgle. There are several spfions)
comiinalions. 11 umbilical connactions oseur
awamaticaly diring the eracting sequence
(Zerit 33L), or if thay ware made in parallal
wih ar-pac iInegration oparatiens (paga 10,
then nathing happens here jrouts 3). 1F
wiecirical and comim fines aie nal
dsconnected prar 1o franspart | Aslas W] n
Thesa CONREEICNG 8o At need 10 be M &
he pad, 6 anly propaliant Gonnecians
reed ko be made (ke 2. W eleciical and
ol lines ae deconmected balone ranspon
{shutzia), then these cannectians will need o
bae made al the pad, aleng with progellent
SonNBCiGns (route 1),

Launch Pad Operations

Prapelian:

confeciong

chack

Uimbidical laak

Elncirical and
samm
conrctions

Varity secirical
and canmm

cormesivity

Erapaliar:

conrecions

chack

Umbiical lzak

Lo

u
luay_“\"”—"' hypargoie fust

.../Rp_p\_,“-_ ich st

&l RF-17

>

FF-1 fusing operations
bappen here, if requied.
Depanding on venicie
requirements, RP-1 may
b beaded I dhe 1 stege
onfy of Both the 1% and
#stage. If both the 1
and ™ staga raquira
RAP-1, the stages may or
Faty it ba loaded in
paralliel

—1" oy

Fual RF-1 first
stage

no

Fued RP-1 first

sape

Fuel RP-1
smoond siage

1 Fugl RF-1 firat
stage

Fuel FP-1
smcond shage

Irrstadliam
cronance

anpacy B

Finad TPS
Inspection

Ordnarce, I required, could be
installee hera, ar & could have Beon
istaled in the inbegratian faciliy (page

1L

Round One, Launch Pad Operations

101

ane 14

13



Stages can be filled with
propellant in parallel or
separately. |n addition, fuel and
oxidizer can be loaded in lied

Launch Pad Operations
Propellant Loading

or separately. There are three Box 1
options: Stages and fuelioxidizer
can be loaded in parallel (box 1), SOV LoW chill |——| Load LOX SOV
Stages can be loaded in parallal, .
Bbut not fuelioxidizer (hax 2, Parallel pmpe"a“,:t:“d'”rg‘r
MNeither stages nor fuelloxidizer Wm‘?:{%ztﬁ; ;ﬁ]ﬂ cluj:a |
can be loaded in parallel {box 3). limitations may reguire a cerlain
This part of the model will SOV fuet chill | Load fued SOV percantage of the LOX tank to be
£ ; End Inaded before fuel loading can
Is'm:.late clf)RcP-ge;n:rc pmzallam propellant § begin. |tis possible to model
o8 ‘:g?-tl'en tlislieftin(:{a?he L such a scenanio, but it is difficult at
F:gsel wil “adist oy this paint ta include this
: SRS e LR Lasd LOX 2 complexity when we don't know
by hypasing stages ihat have :; I slage exactly what type of propellant
already been fueled. loading sequence the vehicle
design will dictate. Your
il suggestions are welcomeal
rallel?
r " atapa fual Loar fuel 2*
chil — slage
yes
paralel?
m Box 2 Terinal S5t
sov Lo chil §——— Load LOX SOV |— 1 s fuei chill [|——7] Load fusd SOV e
rallal
L stages.
Wading
2" stage LOX Load Lo 2 2% arana el Load fisel 24
il = atege B o — slage
Box 3
i ; re
|| S0V LOX ol ———| Load LOX S0V f— | sow neienin b ——| Load fuet SOV Z“my;mx I Lﬂaill;:e“ = - s;ll;: fuel | | Loag“n.;lz ]

Round One, Propellant Loading

102

14



Round One Delphi Member Responses

PAGE 9
NO COMMENTS

PAGE 10
#4 Can the upper stage and payload be mated together while the SOV is going through
it's turnaround maintenance then mate the upper stage and payload to the SOV?

#14 PREP CLEAN ROOM - this is good. Don't you have to transport the
vehicle/payload TO the clean room? This could be quite a process. (you also have this
option listed on p. 11 and p.12)

#13 Seems as though some combination of the blocks could happen here as well. Seems
to me that the only difference from the pre-integration of the payload path and the no pre-
integration path is the fact that the payload is already in the second stage on the upper
flow. Would there be a significant change in these distributions for this reason?

#13 Also, wouldn’t there be a 1% and 2" stage integration check for the pre-integration
flow? 1 think there may be some differences hare since there may be some integration
checks to the installed payload if the payload is already on the 2™ stage.

#13 Pre-integration during decision on waiting for launch - Why was the pre-integration
process not included on the flow after maintenance inspection? Are you assuming that if
the payload is not pre-integrated and the need for launch arises that the payload will
“Only” be processed on the No Pre-integration path? This is OK and you mention that
the pre-integration takes place to save time (Waiting for launch requirement and
assuming the mission ie payload requirement is known). This although precludes the
time it takes (Value-Added time?) to pre-integrate the payload into the 2™ stage. My
thought was that this may need to be included if a launch requirement came before the
payload was pre-integrated. Since the launch requirement decision is not modeled you
could assume that you know that you have sufficient time to pre-integrate the payload
before the decision to launch comes. | know this is long winded and I’m not sure if
this/these process should be modeled. | do think you should address these to see if they
should be included.

PAGE 11

#4 Very busy — can it be broken out? Bottom process — you are loading hypergolics
before ordnance install — | believe that the fuel loading should be the last thing done —
after ordnance install. Recommend doing all fueling on pad as last and final step — you
don’t want to move anything with fuels loaded. Also - the pad/payload is purged with
nitrogen (inert gas) prior to fuel load - nitrogen atmosphere is unfriendly to humans :-)

#13 Very thorough but should there be a “Clean Room” on the “Install Payload Now
Vertical integration” path?
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#11 Why are pages 10 and 11 so different? All tasks must be completed wether on pad
or off...

PAGE 12

#5 The “no” option for “Install payload on pad?” should join the other path before the
“entire vehicle integration check” module. Always perform integration check before
fueling.

PAGE 13
#4 Umbilical connections. These should be KISS — keep it simple stupid. Connections
on the Titan IV were numerous and had connections on almost every stage. These
connections get caught on the tower when you move it as well — this | know from
experience. Use a race way to carry all connections on the vehicle to one or two
concentrated connection points (similar to MMIII) with electrical, fuel, comm, etc.
connections.
PAGE 14
#4 Another note — are you going to use squibbed batteries? If you blow the battery and
don’t launch then you have to R&R the batteries = lost time.
Round Two, Model Changes

As a result of the comments received in round one, several changes were made to
the model in round two. First, a preintegration page was added (diagram on the
following page). Second, the “Vehicle Integration—Off-pad Integration” page was
changed significantly to make the model easier to follow. In addition, two “storage”

options were added to this page to account for an integrated vehicle put into storage if an

immediate launch were not necessary.
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Preintegration refers to joining
the payload to the second
stage before the second stage
is attached to the SOV.
Preintegration assumes that
vehicle design and GSE
facilitate attaching the second
stage/payload to the SOV as a
single piece. If vehicle design
prohibits this, then payload
integration will happen in the
traditional fashion, after the
second stage is mated to the

first stage (see pages 10,11).

oy Preintegration allowed—s-

P

Round Two Model Diagram

Adtach handing
ftue o
payload

Preintegration

= = =
I Agn paicad ,,.a':‘. anicel | Maka elactncal
7 ki MneChions:
with 7 stage et I connection

| 2™siage and

paykad
Integration
check

reintegration not allowed

NOTE: These events happen

in parallel with SOV

maintenance (pages 4-8).

Round Two, Preintegration
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Vehicle Integration
Preliminary Considerations

Vehicle assembly can take
place either on the launch
A pad (Delta ll) or in &

/| separate integration facility
{Atlas V, shuttle).

/
Integrate on Move G |
47 ——yes—m= vehicle to Page 10,
pad launch pad yd
no
Vehicle in
- integration |_ H

facility? Yes » Page 11,
™, #

N A

Move
L vehicle to
integration

I facility

The vehicle could be
integrated in the same place
that maintenance or storage
tock place. Ifintegration will

take place in a separate
facility, then the vehicle must
be transported there.,

Round Two, Vehicle Integration Preliminary Considerations
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Freintagration refers to joening the payload to the second stage before
ihe second stage is attached to the SOV {preintegration activites are
modeded on page 3]. Prentegration has the potertial to save time in
e irfegration pracess, snce only ane "attachment’ needs to be
a0 SOV and e 7 In cthr words,
tho 2™ stage and payload woukd be mated 1o th SOV &5 a single piece
It prisirtegration did not oceur, integrabon will fallow the tradtional
saquence. 1% stage to 2™ stege and than paylcad to 1% and 7 stage.

Vehicle Integration
Integrate on pad.

atachnanding | | eecteng | |fA0en0endig |l positon e Haky Make slectrical
focburs to SOV pastion SOV fh connections:
Mo preirdagratn
Altach handing Eroct and Maka 1%, 27 stoge
L e posinany || ooz B posionz® L mechanca 1 Mo SeneH L
stage atagn connectons ehack
Prop cloan > ﬁmd Lit and align Mals Make :I:;ﬂcal
equipmont padond connections connections
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Vehicle Integration e eyt

s«urww:;oent?mmw Integ rate Off pad Platiorm (MLP)

Erect and Altach handing Eroct and Mo
Attach handi
et iasoy ——i| sostensov | etustoz® |4 posonz* |l mechanica | —if Mekeatectical
on MLP
Entire vehiclks
chack
Astach handling
it o Postionion Makia Maka etectrical
stogel ——i| 2ndstape/ R—i mechancal —i Sraiaraley
pidoad paload COnNacons.
Mo preintegration
Erect and Altach handling Erect and Maki 3
i attach handing | | posivonsov || fetursto 2™ | postion 2% k| mechanical | momdc.:arr’: ]
op feture to SOV on MLP stage dage connecons
15 an Aftach hanaling Make
option if there i Harzorésl___ . |}l Postionand § § ooy | | Make glectical
ot an immodiste mr?zlgt.lo sign 2" stage aomcuool: COEECRore;
nadd {0 aunch
1™ and 7
stay
B o o Atachpaiood | | postionena | | oot |l mske sisctncal
cnusﬁ: pat? ."::Mt agn pavlosd CONMCtONE connactions
Reaccomplizh
[ prefight and
ooy 1¥2nd Integ.
check
Fad
Rescoomelish Load Install . [uFIDN dosnons | | Aacn | || Transpont ach1
Starage — prefight! ypergoiic el ordnance A Vehicke to Pad
wehicla intag.
check "
Hypergoic fuglng cperations, it Ordrance, it mauned, could ba
quined, could happen faw or on ped installod now or o the launch pad.
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Potition MLP
B e launch pag

Launch Pad Operations for

vehicle not integrated on pad

The transportation system may o may
not contain the emcing mechanism. If
ot it wel have o be attached o the
wehicle at this point

I pandoad was not instalied in

Integrabion facility, & will need to be

imstalled now

Prep ciean handk
i Yesw T [l
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Launch Pad Operations

Fropsilant Umibiical teak Electrical and Venty sloctrical
connections check S i
connedn iy

Umbiical connections wil sither be extensive
or smple. There are several options/

L r.m"m —
4 oo yes—i
automatically durng B erechng sequance ot Uribwcered J \/ al
[Zenit 35L], or if thay were mads in parallal e ] m.ﬂm md‘!oﬂ!
with en-pid integration operabans (page 10,
hen nothing happens hers (route 3. I
elactical and commm lines are not
disconnectivd price 1o renspon (Allas V), then
Bese connoctions donol meed 1o be made o
the pad, and enly propellant conneclions
nead o be mada (roue ) 7 elactreal and
comm lines are discormected bedore transport
{shuttie], then hese connections will need o
be made at the pad, along with propefant
connections {mute 1]

w
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Fuel RP-1 frst
g

Fussl RP-1 st
RP-1
stage

EndRP-1
Hasiing

[RP-1 fusing operations
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ng onvatice W second st PS
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and 2 stage require
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stage second stage
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1)
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Stages can be filled with
propellant in parallel or
separately, In addition, fuel and
oxidizer can be loaded in parallel

Launch Pad Operations
Propellant Loading

or separately. There are three Box 1
options: Stages and fuel/oxidizer
can be lcaded in parallel (box 1), SOV LOK chill Load LOX SOV
%m&’rumﬂ}h Z}IH' p— Parallel propellant loading
. al "
Neither stages nor fuelioxidizer oxidazer OB::‘:]‘IO:S may not be purely
can be loaded in parallel (box 3). and iiel paraliel. Forinstance, structural
limitations may require a certain
This of the model will SOV fustchil |———| Load sl SOV percentage of the LOX tank to be
sinwlalpea:mgenic propellant End loaded before fuel loading can
loading. If RP-1is used (see e Vm“" begin. Itis possible to model
page 13), then this section of the stages such a scenario, but it is difficult at
model will “adjust” appropriately oading . Ih:( p;nt“ l:r:r\':r:‘:; Ii_:l:mw
i Load LOX 2™ omplexi
by bypassing stages that have Tiaalox | teed O exactly what type of propellant
already been fueled. we — Ioading sequence the vehicle
oxidazer design will dictate. Your
and el suggestions are welcome!
2 stags fusl Loed fuol 7
e
Box 2 _ -
sovioxoll |—— tossloxsov b~ N sovmeichs || Loadusisov Sounk
Farallel ’
Hages
|aading
Pistagerox | | LosdLOXZ® 2™ stags tuel Load fusl 2
chil stege i ™1 chil =] stags
Box 3
o
Ll sovLONenl f—— Losatoxsov f— | s:m LOX Loa:;g:i - ol SOV huet chill Lowd fuel SOV 2"31;'9: Tl Loe;:'_:!
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Round Two Delphi Member Responses

PAGE 3
# 13 Will there be a clean room prep requirement for Pre-integration?

PAGE 9
NO COMMENTS

PAGE 10

#14 1 think you should keep them separate{ Two modules that we separated to prevent
confusion}. It’s possible that a buyer that wants to launch a payload could provide a
second stage with the payload already integrated. This option could account for that.
Depending on your payload, integrating it on the pad will add the task of moving the
payload to the pad and all the logistics that go along with that.

#13 The two separate vehicle erection process flows still seems redundant. If the Pre-
integration decision module is moved to before the 1%, 2" stage integration check (If this
is even needed since it is done again at the vehicle integration check) process, then the
affirmative path is directly to the Entire vehicle integration check. The negative path will
be to integrate the payload prior to the Entire vehicle integration check.

PAGE 11

#4 There is usually some type of cooled air supplied to the payload/vehicle while it sits
on the pad. It's usually air until the fueling is done and then they switch to nitrogen. The
fuel used was cryo so it may be that it is not needed for the hypergolics. The shuttle
hypergolics on the shuttle are only a fraction of the total fuel. Also - we transport the
PSREs with hypergolics in them but it's a pain.

Transporting a fully fueled vehicle to the pad is a BAD idea - to much risk. What about
the added weight of the fuel - will that make your transporter requirements unattainable.

#13 You have a vertical and a horizontal process combining into the 1% & 2" stage
integration check. Should the down stream process be considered different for payload
integration in the vertical or horizontal configuration? These were different paths on the
first iteration but now they are combined paths although there was no mention of this in
the comments for this page.

Need to extend the “No” path for Load Hypergols Decision module around Load
Hypergolic fuel process.

Global Comment on re-inspections. What happens if a problem is found during
inspections? Is there information on likelihood of occurrence? Seems that the farther
you are in the process the worse the process time might be to fix. Say the TPS is
damaged on erecting the completely integrated vehicle on the pad. How this would be
repaired might require longer delays than if the damage occurred in the maintenance
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facility. This may be beyond the scope of this effort but a processing time hit will result
if additional maintenance activities occur.

PAGE 12
NO COMMENTS

PAGE 13

#4 Keep [umbilical connections] as is- I'm probably getting into the weeds on this one :-)
#14 The connections should be simple, but they are not always simple. | would leave it
as is, and if when (if?) we ever build something the tool can be validated with correct
times and correct operations. You always have the option of zeroing out time, but | think
it would be difficult to take into account an even that did not exist in the model.

# 7 If the Final TPS Inspection done manually it should be performed before the RP-1
fueling to reduce the number of personnel near an already fueled vehicle. If the
inspection is automated this would not be required.

PAGE 14

#4 1f you use hypergolics you can work on the vehicle. If you use cryo - once you fuel
then you can't go near it. Plus with all the losses while it sits on the pad you would want
to fuel then launch as quick as possible.

| think your only limitation on parallel loading is the infrastructure (pump and pipe size)
and the vehicles ability to load multiple tanks at once (structural loading, etc.)

#14 Is there any way you can create an option to have serial or parallel propellant
loading?

Round Three, Model Changes
Only minor changes were made to the model in round three. First, a payload
clean room decision was added to the preintegration page. Second, the modules entitled
“Reaccomplish preflight and 1°/2" stage integ. check” on the “Vehicle Integration—
Integrate Off Pad” page were changed to read “Reinspection and additional maintenance”

to account for the possibility of a bad inspection requiring additional maintenance.
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Round Three Model Diagram
Preintegration

Preintegration refers to joining
the payload to the second
stage before the second stage
is attached to the HLV.
Preintegration assumes that
vehicle design and GSE
facilitate attaching the second
stage/payload to the HLV as a
single piece. If vehicle design
prohibits this, then payload
integration will happen in the
traditional fashion, after the
second stage is mated to the

first stage (see pages 10,11).

# slage and
Aitrch handin . Make
ean o Prep Clsan | ¢ T focure o 9 ||| Atignpeyiosd § _H i | __J Mokeolectiaal | §  meyd L — P £ 5
S ararliy pavinad with 2™ s1age Pren it I age

ilEgration? 2 m——Preintegration alowe roquired?

Mo

Praintegration not allowed

NOTE: These events happen
in parallel with HLV

maintenance (pages 4-8).

Round Three, Preintegration
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Vehicle Integration
Preliminary Considerations

Vehicle assembly can take
place either on the launch
A pad (Delta ll) or in &

/| separate integration facility
{Atlas V, shuttle).

/
Integrate on Move G |
47 ——yes—m= vehicle to Page 10,
pad launch pad yd
no
Vehicle in
- integration |_ H

facility? Yes » Page 11,
™, #

N A

Move
L vehicle to
integration

I facility

The vehicle could be
integrated in the same place
that maintenance or storage
tock place. Ifintegration will

take place in a separate
facility, then the vehicle must
be transported there.,

Round Three, Vehicle Integration Preliminary Considerations
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Frairtgration refers 1o joining the payioad to the second stage bafore
the second stage is the HLY chivities are
maodelid on page 3). Preirtegration has the poberdiad 1o sove tme in

the irfegralion process, since only one "altechmant” nieds to be
made—betwean e HLV and the 2™ stagepeiond. i ofer words,
the 7 slage and payload would b mated Lo the HLY 88 8 singhe piece
It preintagration did not aceur, integration will fallow the fradibonal
sequence. 1% stage to 2™ stage and then payicadio 1% and 2™ stage

Vehicle Integration
Integrate on pad.

77 stage and payiosd Asscttanding | | Eroctend | | Machhondto | || Postionz® Wi Make slectrical
preiritigraled B0t 1o HL postion HLY
Mo priréegration connections
Altach handling Erect and Make 1, 2 ctage
Attach handing Erect and WMake slectrical :
—— b fidurefto 2 R0l posiion2® f—fl mechankcal - 1
focture to HLY position HLY i conneckons 3
Prip choan = “"n‘m‘"’w’ e Lift and align IBkE Make slectrical Enti vehicle
e equpment paytoar connections L chick
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Vehicle Integration e eyt

s«urww:;oent%mmw Integ rate Off pad Platiorm (MLP)
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Launch Pad Operations for
vehicle not integrated on pad

The transportation system may o may
not contain the emcing mechanism. If
ot it wil have o be attached o the
wehicle at this point

Atach wrecting Eract Vahide transportar/

yos e o achanism and sacure to aracting
launch platiorm mechanism
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B e launch pag
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imstalled now
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Launch Pad Operations

Fropsilant Umibiical teak Electrical and Venty sloctrical
connections check S i
connedn iy

Umbiical connections wil sither be extensive
or smple. There are several options/

L r.m"m —
4 oo yes—i
automatically durng B erechng sequance ot Uribwcered J \/ al
[Zenit 35L], or if thay were mads in parallal e ] m.ﬂm md‘!oﬂ!
with en-pid integration operabans (page 10,
hen nothing happens hers (route 3. I
elactical and commm lines are not
disconnectivd price 1o renspon (Allas V), then
Bese connoctions donol meed 1o be made o
the pad, and enly propellant conneclions
nead o be mada (roue ) 7 elactreal and
comm lines are discormected bedore transport
{shuttie], then hese connections will need o
be made at the pad, along with propefant
connections {mute 1]
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Stages can be filled with
propellant in parallel or
separately, In addition, fuel and
oxidizer can be loaded in parallel

Launch Pad Operations
Propellant Loading

or separately. There are three Box 1
options: Stages and fuel/oxidizer
can be lcaded in parallel (box 1), HLV LOX ehill Load LOX HLY
sﬁﬁ&’?umﬁ}h Z}IH' p— Parallel propellant loading
. al "
Neither stages nor fuel/oxidizer oxidizer op:lr:]ho:s ma;r;ot be stfmcwm
can be loaded in parallel (box 3). and sl parallel. Forinstance, structur:
limitations may require a certain
This of the model will HLY st el |———] Load it HLY percentage of the LOX tank to be
sinwlalpea:rwgenic propellant End loaded before fuel loading can
loading. If RP-1is used (see e Vm"“" begin. Itis possible to model
page 13), then this section of the stages such a scenario, but it is difficult at
model will “adjust” appropriately oading . Ih:( p;nt“ l::rﬁ:.l::‘ li‘:l:naw
i Load LOX 2™ omplexi
ol r‘ﬂ:r“v: e — stage exactly what type of propellant
Sireacly besr fysied, e rallel loading sequence the vehicle
oxidzer design will dictate. Your
and el suggestions are welcome!
2 stags fusl Lowd fuol 7°
il S
Box 2 Terminal i
countdown anch
HLV LOX chll |———— Load LOXHLY B— N Hiv susichil J———1] Load fuel HLY
Farallel
Hages
|aading
2 stage LOX Load LOx 2 2" ctage el Load fusl 2
chil stege B chil — stage
Box 3
Ll HLvLONcha |—— LosdLoxHy f— | s Lox. g | LM:;S:‘ g HLY sl chil Lo kool HLY ——— 2“‘?r.gn‘ e — Lmsa;;' S .
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Round Three Delphi Member Responses

GENERAL COMMENTS

#14 1 don’t mean to be knit-picky here, but I think HLV makes an assumption that may
not be true. The first space operating vehicle (SOV) may or may not a hybrid. It could
be, but it also could be fully resuable or completely expendable. | thought SOV was the
best way to name the vehicle because it does not assume or imply anything except that
the vehicle can operate in space. Operationally Responsive Space Lift/Acess (ORS) does
not really denote a vehicle, but really describes a type vehicle. | would have kept it:
SOV. This is probably minor, though.

#2 From my perspective, no missing events, paths make sense, model appears sound, no
recommended changes/deletions/additions/comments.

#1 1 reviewed the model and have no additional input.

#9 | have no further comments or questions. | enjoyed participating in the development
process.

PAGE 3

#10 Several instances of using a clean room as a decision block in the payload
processing flow diagrams. If the payload is so sensitive to contamination at this stage of
the processing, then the flow diagram needs to include encapsulating the payload once
your connections have been made and verified. Encapsulated payloads require constant
monitoring and a constant supply of clean, dry, regulated air or nitrogen purge. A more
realistic approach might be to assume that the payload comes pre-serviced and
encapsulated. The Launch team is only responsible for power, comm, and mechanical
connections with no clean room required. The EELV payloads usually arrive in this
manner, hypergolic propellants are already loaded (but they do have a limited shelf life
once they are loaded (30 days??).

Model Changes Made After Third Round
As a result of the comments received in round three and modeling decisions made
by the author, several changes were made to the final model. These changes are
represented in Figures 22-29. First, the payload clean room option was removed
completely, from each page where it was used previously. Second, propellant loading
chill and fill operations were combined into a single module for each stage and propellant

combination (Figure 29). In round three, the chill and fill operations are separate
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processes for each stage and propellant combination. The author combined the chill and
fill processes because they are closely linked, and, depending on the type of chill
procedure chosen, chilling may actually occur as propellant filling begins. Finally, the
storage options were removed from the off-pad integration section (Figure 26) because
they do not fit with the purpose of the model in its current form, which is to provide a
regeneration time for a single RMLV. When the model is modified to incorporate the full

spectrum of RMLYV operations, the storage options can be reinserted.
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Appendix B: Graphical User Interface User Forms
This Appendix contains the eight graphical user interface forms that were created

to simplify user inputs.

(PI1) Preliminary Integration Considerations

This form gathers user inputs that define whether preintegration is allowed and whether integration of the 1st and 2nd stage wil take place on the launch pad or in an integration fadlity.

Will stage 2 and the payload be preintegrated? Preintegration is defined as Will stage 1 to stage 2 or stage 1 to preintegrated stage 2/payload

the integration of payload and stage 2 before stage 1is joined to stage 2. integration take place on the launch pad or off the launch pad?

A preintegrated stage 2 and payload will be joined to stage 1 as a single

piece. In this model, preintegration takes place while stage 1 maintenance PI-07 " Jaunch pad ™ offlaunch pad

is taking place.

P01 ™ Mo preintegration PI-08 For on-pad integration, time to
transport stage 1 from maintenance bay to | TRIA {27, 30, 42) L” MinuhEsL]
the launch pad |

PI-02 Attach handling fixture to payload | TRIA (27, 30, 42) L” MinubesL]

[If intzgration will happen off the launch pad, will it occur where Stage 1
maintenance took place (maintenance bay), or will it occur in a separate

PI-03 Align the payload with stage 2 | TRIA (27, 30, 42) L” MinubesL] lintegration facility?
Y e (EE " maintznance bay " integration faciity
ge payload mechanical i
e | i (18,20, 28) || minutes |
PI-05 Stage 2 to payload electrical " PI-10 For off-pad integration, time to
connections | TRIAG1S; 20,28 L” MlnuhesL] transport Stage 1 from maintenance bay to TRIA (13.5, 15, 21) L” MinuhesL]
lintegration facility

PI-06 Stage 2 to payload integration check | TRIA (27, 30, 42) L“ MinuhesL]

Previous Next

Main Help

Preliminary Integration Considerations
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This form gathers user inputs that describe on-pad integration operations.

"_OP—13 Attach crane handling fixture to

TRIA ( 54, 60, 84) ‘:j]

Minutes ‘:]

|stage 1

|OP-14 Erect and position stage 1 on the TRIA [ 108, 120, 168 Minutes
aunch pad | {108, 10,168 ) ..'_” ..'_]
OP-15 Attach crane handling fixture to the | tRpa 27, 30, 42 Minute:
;preintegrated stage 2/payload | L2702 -:j] = S-L]

loP-16 Lift and align the preintegrated stage1 TRIA (81, 90, 126) ‘:j]

|2/payload

Minutes ‘:]

OP-17 Make stage 1 to stage 2 mechanical %
|connections | TRIA (36, 40, 56) _:” Mlnl.lhes‘L]
0OP-18 Make stage 1 to stage 2 electrical z

\connections | TRIA (36, 40, 56) ‘:ﬂ Mlnubes‘L]

|OP-13 Entire vehide integration check

Will hypergolic fuels be required?

oP-20 hypergolic fuels required

TRIA (27, 30, 42) _v_]]

" Hypergolic fuels not required

iC‘Iid( on the appropriate location for hypergolic fueling. Hypergolic fuels can
|be loaded now. in the intearation fadility, or later, on the launch pad.

|oP-21 ¢ Load hypers in integration
fadiity

|OP-22 Time to load hypergolic fuels

Will ordnance be required?

OP-23 (™ Ordnance required

" Load hypers on launch pad

Minutes _v_]

| TRIA (756, 840, 1176 ) __v_]]

™ Ordnance not required

EC‘Iick on the appropriate location for ordnance installation. Ordnance can be
linstalled now, in the integration fadility, or later, on the launch pad.

¢~ Install ordnance in

OP-24 integration facility

|OP-25 Time to install ordnance

"~ Install ordnance on launch pad

Minutes ‘:]

TRIA ( 324, 360, 504) __v_]]

Previous

Minutes ‘:]

Next

Main

Help

On-pad Integration
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This form gathers user inputs that describe integration operations within an integration fadiity. This form assumes preintegration of the 2nd stage and payload.

What is the integration orientation? Harizontal or vertical?

S ™ Vertical
|low-02 Attach crane handling fixture to TRIA { 54, 60, 84 Minutes |0w-09 Attach handling fixture to TRIA { 27, 20, 42 Minutes
stage 1 | (54 60, 84) Lj] L] |preintegrated stage 2/payload | (27, 30, 42) Lj] L]

|0W-10 Position and align preintegrated

Minutes L]

o : | :
OW-03 Erect and position stage 1 on mobile I TRIA ( 108, 120, 168) Lj] Mi!‘ILItESL] \stage 2/payload with the stage 1 | TRIA (54, 60, 84) L]
lzunch platform (MLP)
|0W-11 Make stage 1 to stage 2mechanical | Tpia [ 27, 20, 42
OW-04 Attach crane handing fixture to | TRIA (27, 30, 42) L]] Minuhesll e, (27, 30,42) Lj
preintegrated stage 2/payload

Minutes L]

OwW-05 Lift and align the preintegrated
stage 2/payload

TRIA (81, 90, 126) Lj] Minutes L] g::nih:::e stage 1 to stage 2 electrical | TRIA (27, 30, 42) Lj

Minutes L]

OW-06 Make stage 1 to stage 2 mechanical i
ke stage 1to stage 2 mechanical [ Ria (36, 40, 56) L” Mlnuhesll |oW-13 Complete entire vehide integration | TRIA(27, 30, 42) Lj
|ched: Sl

connections
TRIA {36, 40, 56) Lj] MinuhesL]

TRIA (27, 30, 42) || minutes |

OW-07 Make stage 1 to stage 2 electrical
connections

|low-08 Entire vehide integration check

Previous

Minutes L]

Next

Main

Help

Off-pad Vehicle Integration, Assuming Preintegration
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form gathers user inputs that describe integration operations within an integration fadil

What is the integration orientation? Horizontal or vertical?

S0t ™ Horizontal ™ Vertical
OM-02 Attach crane handling.ﬁxh.lre to | TRIA ( 54, 60, 84) L]] Minuhesll [
stage 1 |ON-18 Position and &lign the 2nd stage with

|the 1st stage

OM-03 Erect and position stage 1on the
mobile launch platform (MLF)

TRIA ( 108, 120, 168) ﬂ] Mlnuhesﬂ

TRIA (27, 30, 42) Lj] MinutEsL]

|ON-19 Make 1st stage to 2nd stage
|mechanical connections

OM-04 Attach crane handling fixture to

stage 2
. : |ON-20 Make 1st stage to 2nd stage
ON-05 Lift and align stage 2 | TRIA (27, 30, 42) Lj] Minutes L] electrical connections
: |OM-21 1st stage to 2nd stage integration
ON-06 Make stage 1 to stage 2mechanical | pia (36, 40, 56) L” Minubesll (B
connections
ON-07 Make stage 1 to stage 2 electrical i !
el | TRIA (36, 40, 56) Lj] Minutes L] the launch pad?
ON-08 Stage 1 tostage 2integration check TRy (27, 20, 42) <[ inutes [ON-22 ™ now, integration fadiity
Will payload integration happen now, in the integration facility, or later, on |OM-25 Attach handling fixture to the
the launch pad? |payload
OM-03 1 now, integration faciity " Later, launch pad |ON-28 Position and align the payload
ON-12 Attach crane handling fixture to the | tRya (27, 30, 42) L]] Minuhesll ON-27 Make paylaad to 2nd stage
payload | e 2
\mechanical connections
OM-13 Lift and align the payload | TRIA (27, 30, 42) Lj] Minuhesll ;ON—ZBChMakE payload to 2nd stage electrical
|connections
OM-14 Make payload to stage 2mechanical | TR1a (27, 30, 42) L]] Minuhesll |OM-29 Entire vehice integration check
connections |

OM-15 Make payload to stage 2 electrical
connections

TRIA ( 18, 20, 28) Lj] MinuhesL]
TRIA (27, 30, 42) Lj] MinubesL]

OM-16 Entire vehide integration check

. This form assumes no preintegration of the 2nd stage and payload.

|oN-17 Attach handling fixture to 2nd stage l TRIA (27, 30, 42)

=

Minutes L] .

i

TRIA ( 54, 60, 84)

=l

Minutes L]

TRIA (27, 30, 42)

=l

Minutes L]

TRIA (27, 30, 42)

=l

Minutes L]

TRIA (27, 30, 42)

" Later, launch pad

=l

\will payload integration happen now, in the integration faciity, or later, on

Minutes L]

TRIA (27, 30, 42)

=l

Minutes L] .

TRIA (27, 30, 42)

Minutes ﬂ

TRIA (27, 30, 42)

Minutes L]

TRIA ( 18, 20, 28)

Minutes L]

TRIA (27, 30, 42)

Previous

Minutes L]

Next

Main

Help

Off-pad Vehicle Integration, Assuming No Preintegration
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Wil hypergolic fuels be required?
o1 ¢~ hypergolic fuels required " Hypergolic fuels not required

Click on the appropriate location for hypergolic fueling. Hypergolic fuels can

wil ordnance be required?

OT-0% ¢ ordnance required " Ordnance not required

Click on the appropriate location for ordnance installation. Ordnance can be
installed now, in the integration fadlity, or later, on the launch pad.

Install ordnance in

5 : - " Install ordnance on launch pad
integration fadility

oT-05

be loaded now, in the integration fadlity, or later, on the launch pad.
OT-02 - Load hypersin integration " Load hypers on launch pad
fadility
JlOT-03 Time to load hypergolic fuels TRIA { 756, 840, 1176) Lj] MinubesL]

OT-06 Time to install ordnance TRIA { 324, 360, 504) L]] Minuhesll

This form gathers user inputs that describe final tasks within the integration fadility, such as hypergolic fuel loading, ordnance install, and vehide transport preparations.

OT-07 Prepare for vehide transport to pad ] TRIA ( 108, 120, 168) L” Minubesj

OT-08 Attach vehide transporter to the 2
vehice ] TRIA (9, 10, 14) LJ] MlnubesLJ
OT-09 Transport vehide to launch pad ] TRIA (27, 30, 42) L” Minubesj
Previous Mext
Main Help

Other Tasks, Vehicle Integration Facility
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(IL) Initial launch pad acti

This form gathers user inputs that describe vehide erecting operations for a horizontally integrated vehide and mobile launch platform securing operations for a vertically integrated
vehide. Italso g_amers inpuits concemlng_pa_\_«load integration operations _Qf_me pa_\gload was not prewousl_}f integrated in the integration faullt_}_{_).

IIL-07 Attach the crane handling fixture to | TRIA (27, 30, 42) ‘:ﬂ Minl.mes‘:]

[the payload
TRIA (81, 90, 126) ‘:ﬂ Minutes‘:]

IL-08 Lift and align the payload

Is the vehide erecting mechanism built into the vehicle transporter?

-0z (~ erecting mechanism built erecting mechanism is a |
in to vehidle transparter £ separate device f%f;amamkf;f]ﬂ:zgﬁ 2nd stage | TRIA (27, 30, 42) __v_]] Minutes ‘:]
IL-03 Attach the erecting mechanism i | 3
g | TRIA (27, 30, 42) ‘:j] M'”'—"ES‘:] |n-10 M.ake payload to 2nd stage electrical | TRIA (27, 30, 42) ‘:j] Minuhes‘:]
| connections
IL-04 Erect the vehide and secure it to the | TRIA (27, 30, 42) _.'_” Minutesnv_] |
|{lzunch platform |IL-11 Entire vehide int=gration check? | TRIA (27, 30, 42) :_” Mintes :_1

Previous Mext

Main Help

Initial Launch Pad Activities
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Choose one of the following three umbilical connection options.

0 UMBILICAL TIME. If umbilical connections were made as a part of!
e vehide erecting sequence or along with on-pad integration
perations, no separate umbilical connections need to be made here, |

PROPELLANT COMMECTIONS ONLY. If communication and electrical

[~ connectivity was maintained with the vehide during transport
operations, then only propellant umbilical connections need to be
made.

umM-01

PROPELLANT AND ELECTRICAL COMNECTIONS. If communication and

¢~ electrical connectivity was not maintained with the vehide during
transport operations, then these connections will have to be made and
verified at the launch pad, along with propellant connections,

This form gathers user inputs that describe umbilical connection and RP fueling operations.

Will the vehide use RP as a fuel?
UM05 ¢ yehide usesRP
\Which stage(s) will use RP?
|UM-07 ¢~ pp in stage 1 only

Can RP loading of the 1st and 2nd stage happen concurrenty {in parallel),
or must one stage be filled before the other (serially)?

|umM-08

" in parallel " serially

(" Vehide does not use RP

¢ RPin stage 1and stage 2

UM-09 Fill the 1st stage with RP

UM-02 Make propellant umbilical (onnecticnSI TRIA ( 27, 30, 42)

|

Minutes ~v_] .

| TRIA ( 108, 120, 168 ) L” Minuhes‘:].

|UM-10 Fill the 2nd stage with RP | TRIA ( 54, 60, 34)

UM-03 Leak check the propellant umbilical

L | TRIA (4.5, 5,7)
connections

|

Minutes ~v_]

UM-11 How long will it take to complete any

|| minutes v |

final inspection before cryogenic propellant | 0
loading (such as final TPS inspection)? If no

UM-04 Make communication and electrical

TRIA {27, 30, 42
umbilical connections | ( )

|

Minutes ~v_] .

final inspections are required, choose the
default value, which is zero time.

UM-05 Verify communication and electrical

Ve | TRIA (27, 30, 42)
connectivity

|

Minutes ~v_]

Previous

L” Minutes LJ

Next

Main

Help

Umbilicals and RP-1 Loading Operations
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This form gathers user inputs that describe cryogenic propellant loading operations.

Choose one of the following three cryogenic propellant loading options.

STRICT SERIAL PROPELLANT LOADIMG. Loading of fuel and oxidizer

(~ and loading of stages cannot happen in parallel, i.e. LOX cannotbe
loaded into the 1st and 2nd stage at the same time, and LOX and LH2
cannot be loaded into the 1st stage at the same time.

PLO1 PARALLEL STAGE LOADING, SERIAL PROPELLANT LOADING. The 1st
and 2nd stage may be loaded in parallel, but fuel and oxidizer cannot
" be loaded in parallel, i.e. LOX may be loaded into the st and 2nd
stage at the same time, but LOX and LH2 may not be loaded at the
same time.

PARALLEL STAGE AND PROPELLANT LOADING. Stages and
" fuelfoxidizer may be loaded in parallel, i.e. both LOX and LHZ can be
loaded into the 1st and 2nd stage all at once.

PL-02 Chill and fill 1st stage LOX
PL-03 Chill and fill 2nd stage LOX
[PL-04 chill and fil 1st stage fuel

[pL-05 chill and fil 2nd stage fuel

PL-06 Length of terminal countdown

] TRIA ( 54, 60, §4)

v |f minutes |

] TRIA (27, 30, 42)

|| minutes |

| TRIA ( 54, 60, 84)

| Minubes‘:].:

| TRIA (27, 30, 42)

|| Minubes‘:].:

Previous

v |f minutes |

Main

Help

Propellant Loading
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Appendix C: Prelaunch Operations Activity Duration Distributions

All times are in minutes

Activity

Payload Vertical

Lift and align pld w/ 2nd stage (vertical)

2nd stage to pld mech connections (vertical)
2nd stage to pld electric connections (vertical)
Payload Horizontal

Align payload w/2nd stage (horizontal)

2nd stage to pld mech connections (horizontal)
2nd stage to pld electric connections (horizontal)
Payload Generic

Attach handling fixture to payload
Transport

Mave from mx bay to launch pad

Maove from mx bay to int facility

Mave from int facility to launch pad
Transport Preparations

Attach transporter

Integration Vertical

Lift and position 1st stage on pad or MLP
Lift and align 2nd stage or 2nd stage/payload
1st to 2nd mechanical connections vert

1st to 2nd electrical connections vert
Integration Horizontal

Position and align 2nd stage or 2nd stage/payload
1st to 2nd mechanical connections horiz

1st to 2nd electrical connections hariz
Integration generic

Integration check

Attach handling fixture to booster

Attach handling fixture to 2nd stage

Initial Launch Pad Positioning

Secure MLP to launch platform

Attach erecting mechanism to vehicle

Erect vehicle

Misc

Install ordnance

Load hypergolic fuel

Final TPS or other inspection

Terminal countdown

RP

Fill RP 1st stage

Fill RP 2nd stage

Umbilicals

Wake propellant connections

Leak check propellant connections

Make electrical/comm connections

Verify electrical/fcomm connections

Cryos

1st stage LOX chill and fill

1st stage fuel chill and fill

2nd stage LOX chill and fill

2nd stage fuel chill and fill

Min

81
27
27

27
18
18

27

27
13.5
27
108
9

108
81
36
36
54
27
27
27
54
27
27

324
756

10

108
54

27
4.5
27
27

54

27
27

Mode

30
30
30
30
20
20
30
30
15
30
120
10
120
90
40
40
60
30
30
30
60
30
30

360
840

10

120
60

30

30
30

60

30
30

131

Max
126
42
42
42
28
28
42
42
21
42
168

14
168
126
56
56
54
42
42
42
84
42
42

504
1176

10

168
84

42

42
42

84

42
42

Source

Atlas tour, Delta Il planners guide
Minuterman Il
Minuternan Il

AFRL/author's aircraft maintenance experience
Minuteman Il minus 33%
Minuteman Il minus 33%

Minuteman Il

Atlas tour, Atlas moves at top speed of 2 mph
Atlas tour, Atlas moves at top speed of 2 mph
Atlas tour, Atlas moves at top speed of 2 mph
Atlas/author's aircraft mx experience

Aircraft (U-2) tow

Shuttle/Delta || planners guide

Atlas tour, Delta Il planners guide
Horizontal value plus 33% penalty
Horizontal value plus 33% penalty

AFRL/author's aircraft maintenance experience
AFRL/author's aircraft maintenance experience
AFRL/author's aircraft maintenance experience

AFRL/author's aircraft maintenance experience
Shuttle
Minuternan Il

Atlas
AFRL/author's aircraft maintenance experience
Sea Launch

Atlas
Shuttle
Uncertain—-depends on vehicle requirements

Atlas uses 4 minute terminal count, plus other holds

Atlas
Atlas

Atlas
Atlas
AFRL/author's aircraft maintenance experience
AFRL/author's aircraft maintenance experience

EELV/Shuttle
EELV/Shuttle
EELV/Shuttle
EELV/Shuttle
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operations model. To foster confidence in model credibility, the model was analyzed and validated by a panel of launch vehicle experts. Model
verification was accomplished via an Assertion Checking method that compared model developer intent to actual model operation. The model was
used to conduct three experiments that analyzed how different ground processing scenarios affected RMLV regeneration time.
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