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Abstract—A unified treatment of several least squares
(LS) algorithms is presented for bearings-only tracking of a
target moving at constant acceleration. The close link be-
tween the maximum likelihood (ML) estimator and other
nonlinear and ‘linearized” LS algorithms is explored un-
der the assumption of Gaussian bearing noise. In this con-
text, a new asymptotically unbiased closed-form instrumen-
tal variables (IV) algorithm is derived. Reduced-bias total
least squares (TLS) and constrained TLS (CTLS) algorithms
are developed. The equivalence of the ML algorithm to the
structured TLS (STLS) algorithm is established. Simulation
examples are provided to demonstrate the improved perfor-
mance of the IV and TLS estimators vis-a-vis the pseudolin-
ear estimator.

I. INTRODUCTION

The paper presents a unified treatment of several classical
and new LS algorithms for bearings-only tracking of a tar-
get moving at constant acceleration. Tracking of constant-
velocity targets and stationary target localization are spe-
cial cases of constant-acceleration target tracking. The
key to target tracking is the estimation of target trajectory
from noisy bearing and own-ship location measurements.
For targets moving at constant acceleration, the target tra-
jectory is defined by the target motion parameters, viz.,
position, velocity and acceleration. Target tracking has
many civilian and military applications, such as air traffic
control, surveillance, etc.

Firstly we derive the classical ML estimator for the tar-
get motion parameters. The ML estimator becomes a non-
linear LS estimator for zero-mean Gaussian distributed
bearing noise. While the ML estimator is optimal, it does
not have a closed-form solution because of the nonlinear
relationship between the measurements and the unknown
parameters. Based on the classical ML estimator, a lin-
earized weighted LS estimator is derived under the as-
sumption of small bearing noise, which yields a closed-
form solution. This algorithm is simply an extension of
the target localization algorithm developed by Stansfield
in [1] to tracking of moving targets. A pseudolinear es-
timator is obtained from the Stansfield estimator by re-
moving the weighting matrix. An alternative derivation
for the pseudolinear estimator based on orthogonal vec-
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tor representation yields the equivalent orthogonal vectors
(OV) estimator. The linear LS estimators are known to
be biased [2]. A new closed-form asymptotically unbi-
ased IV estimator is proposed in the paper. The instru-
mental variables are obtained from another estimate such
as LS or TLS. Unlike the algorithms in [2, 3], no recur-
sive computations are required for the new IV estimator.
TLS and CTLS estimators are developed to improve the
performance of the OV estimator by attempting to miti-
gate errors in both the system matrix and the data vec-
tor. A structured TLS estimator is also formulated and the
equivalence between the STLS and ML estimators is es-
tablished. The performance improvement achieved by the
TLS and IV estimators compared with the OV estimator is
demonstrated with simulation examples. The simulations
also show the capability of the IV estimator to outperform
the ML estimator.

II. PROBLEM FORMULATION

The two-dimensional target tracking problem using bear-
ing measurements only is depicted in Fig. 1. The objective
of bearings-only target tracking is to identify the target lo-
cation p;, from noisy bearing and observer position mea-
surements over a finite time interval 0 < k < N — 1.

In Fig. 1, the relation between the bearing angle, ob-
server position and target location is given by the follow-
ing nonlinear equation

A
n-l Yk

0. = ta ,
k A.Tk

k=0,....,N—1 (1)

where Ay £ pyk — Ty ATk = Pok — Toks P =
[Pk Py.k) T is the target location vector and 7 = [y 1,
r,%] is the observer position at k.

We make the following assumptions about the target
tracking problem:

e The target is moving at constant acceleration. Let
Py and vg denote the target position and velocity
vector at k = 0, and a be the constant target ac-
celeration vector. Assuming that the bearing and
observer position measurements are taken at reg-
ular time instants ¢, = k7 where T is the sam-
pling interval, the target location at time tj, k =
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Fig. 1. Two-dimensional bearings-only target tracking ge-
ometry.

0,1,..., N — 1is given by [4]
t2
Pr = Do + trvo + gka (2a)
=My¢§ (2b)
where
1 0 & 0 32 0
Mi=1o1 0 # o 12
and
bo
£=|vo
a

is the 6 x 1 target motion parameter vector to be es-
timated. Given an estimate of &, the target locations
can be obtained from (2).

e The bearing measurements are subject to indepen-
dent zero-mean Gaussian noise:

7] 2

Ok = O +nk,  nk ~N(0,05,) 3)

where the 6, k = 0,...,N — 1, are the bearing
measurements available for target tracking, and ny,
is a Gaussian random variable with zero mean and
variance o2 .
k
e The observer position measurements are subject to
independent bivariate Gaussian noise:

Tr = TE + wg, Wk NN(O,C) @
where the covariance matrix C' is diagonal, i.e., the
errors in z and y coordinates of the observer posi-
tion measurements are independent.

e The observer trajectory is such that the target is ob-
servable.

III. LS TRACKING ALGORITHMS

A. ML Estimator

Assuming that the observer position errors are zero, that
is, wg = 0 in (4), and using the Gaussianity assumption
for bearing measurement noise, the likelihood function for
the bearing measurements can be written as

~ 1
p(0l§) = W

< exp{ (0 0(€) K (0 - 0(¢))}

where . o .
0= [GOa 027 LR GN—I]T

is the N x 1 vector of noisy bearing measurements,

9(5) = [007 023 ey GN—I]T

is the V x 1 vector of bearing angles which are dependent
on the target locations p;, and the target motion parame-
ters £ through (1) and (2), K = diag(o2 ,...,02, )
is the N x N diagonal covariance matrix of the bearing
measurement errors, and | K| is the determinant of K.

The maximum likelihood estimator of the target mo-
tion parameters éML is obtained from maximization of the
likelihood function p(@|¢) over all possible £ [5]. To sim-
plify the maximization problem, the log-likelihood func-
tion is used:

Inp(Ble) = 3 n((2m) | K])

Noting that the first term of the log-likelihood function is
independent of &, the maximization of the log-likelihood
function can be achieved by minimizing the second term
only after sign inversion, leading to

&)

éML = argmin JML(&)
£€R6

where Jy(€) is the ML cost function given by

M€) = 50-0€) K@ -0€).  ©

The minimization of Jyy (&) over € is in fact a nonlin-
ear LS problem. The solution to this minimization prob-

lem satisfies
dJImL(€)
85 E:éML

A closed-form solution to (7) does not exist. This re-
quires the use of numerical gradient-based search tech-
niques. The gradient-based search techniques will yield a
unique solution for EML if the ML cost function is convex
with a unique global minimum. The convexity of the ML
cost function was stated in [6] without proof.

=0. 7)
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B. Stansfield Estimator

Assuming that the bearing errors are very small, i.e., 0, —
05 ~ 0, we can write [7]

ék — 9k ~ sin(ék — Gk).

Substituting this approximation into (6) yields the follow-
ing cost function

N-1
Js(p) = Z
0

sin? (0, — 0) (8a)

202
k= nk
= J(Fe—b)"W(FE~b)

where F' is the N x 6 matrix defined by

(8b)

T
G%MO
a; M, sin 0,

F = P ap = |:_ COS 9k:| ) (9)

T
aN_lMN,1 Nx6

bisthe N x 1 vector

agTO
G{Tl
b= . , (10)
ay_1TN-1
and W is the N x N diagonal weighting vector
dgoz, 0
dioy,
W = (11)
0 d?\,_lofwfl

Here dj, = \/(Azy)? + (Ayy)? denotes the target range
from the observer location at time instant k. The weight-
ing matrix is therefore dependent on &.

To obtain a linear LS solution to the bearings-only tar-
get tracking problem, the dependence of W on the target
motion parameter vector £ is ignored by using the true
range values between the observer and the target, assum-
ing that this information is available. This simplification
allows us to treat (8b) as a weighted LS problem with a
closed-form solution given by

&s = argmin Js(€) (12a)
£ERS
= (F'w'F)'FTw's. (12b)

This estimator is an extension of the Stansfield target lo-
cation estimator [1] to moving targets. We assume that
the matrix F' is full-rank as required by the observability
assumption.

C. OV Estimator

In (3) we formulated the target tracking problem by refer-
ring to a statistical model for the bearing measurement er-
rors. Alternatively we can establish an orthogonal vector

Observer

Fig. 2. Relationship between noisy bearing vector s; and
the target location py,.

sum relationship between the true and measured bearing
vectors as shown in Fig. 2 where s is the noisy (mea-
sured) bearing vector emanating from the observer posi-
tion r; and makes an angle of ék with the z-axis, sj, is the
bearing vector between 7, and the target p,,, and ey, is the
orthogonal error vector (note that e{ék =0).

From Fig. 2 we have

Pp =Tk + Sk (13a)
=rr+38;+eg (13b)
where the orthogonal vector ey, is defined by
er = ||skllz sin(d — 0;) | ™ O (14)
—cos by,
= dk sinnk ag. (15)

Here dy, = ||sk||2 is the range between the observer vector
T, and the target p,, defined after (11), n, = ék — 0y is
the Gaussian bearing noise in (3), and a is the unit vector
orthogonal to §; defined in (9).

To eliminate the noisy bearing vector s from the equa-
tion, multiply (13b) through with the transpose of the or-

thogonal unit vector ag, yielding
ay Py = ag T+ 1k (16)

where 1, = dj sinny is a zero-mean nonlinear Gaussian

noise. Concatenating (16) fork =0,..., N — 1, we get
F¢E=b+n 17)

where F' and b were defined in (9) and (10), respectively,

andn = [no,...,nn_1]7. AnLS solution to (17) is given
by
€15 = argmin [|F€ — b]3 (182)
£ERS
= (FTF)"'F"b (18b)

which is referred to as the orthogonal vectors (OV) esti-
mator or the pseudolinear estimator [2].

Under the small bearing error assumption (i.e., ng ~
0), the errors 7 can be approximated by n; ~ diny
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which suggests a Gaussian 7, with variance dio7 . To
handle errors 7, with different variances, a weighted LS
solution can be constructed:

argmin |W~!/2(F¢ — b)|[3
£ERS
which is identical to the Stansfield solution in (12).

The diagonal weighting matrix W aims to improve
the LS solution by adjusting the contributions of equations
concatenated in (17) according to their noise variances.
The diagonal entries of W2 (ie., the weights) are de-
termined from the reciprocal of noise standard deviations.
If the range information d, is not available, the OV esti-
mator is preferred over the Stansfield estimator as it does
not require the use of the weighting matrix. In practical
applications, the range information for the target is not
usually available. In the absence of this, the weighting
matrix is typically replaced by an identity matrix (assum-
ing identical bearing noise variances), which reduces the
Stansfield estimator to the OV estimator.

D. 1V Estimator
The mean of the OV estimate is
E{§s}=¢— E{(F'F)"'F'n}

where — E{(FT F)~'F"n} is the estimation bias. Even
though we have E{n} = 0, the estimation bias is gener-
ally non-zero because F' and 7 are correlated (the bearing
noise ny, appears in both F' and i) [8]. The OV solution
is obtained from the normal equations

FTF¢ o = FTb.

Since the reason for the bias is the correlation between
F' and m, we can consider the following modified normal
equations:
G'F¢y = GTb

where G is the matrix of instrumental variables. If G is
chosen such that E{G"" F'} is nonsingularand E{G"n} =
0, then £, will be asymptotically unbiased, i.e., E{&, s} =
Eas N — oo.

A simple and appealing choice for the instrumental
variable matrix G is first to obtain an estimate for the tar-
get motion parameters using one of the LS algorithms. In
view of its improved estimation performance, we favour
the TLS solution ETLS which is discussed in the next sec-
tion. The target location estimates pj, = [pu k, Dy.x]” are
then obtained from (2), using éTLS. Given the p,,, we can
construct the instrumental variables matrix:

a5 Mo/d3o2,

~ 72 2
aN—l]V—’Nfl/dN—ﬁ"m\,,1

sin ék
— cos by,

7 i kot _ ) — —1 ﬁy,k_Ty,k
where dj, = ||p;, — T'k||2 and 6 = tan s The

asymptotically unbiased IV estimator is then given by

&v=(G"F)'G"b.

E. TLS Estimator

As common with all LS solutions, the OV estimator im-
plicitly assumes that only b is subject to error. In fact, be-
cause of the presence of errors in bearing measurements,
the system matrix F' is also subject to error. To improve
the accuracy of the OV estimator, the concept of fotal least
squares (TLS) can be invoked to mitigate errors in both F’
and b [9]. Formally, the TLS estimate éTLS is given by the
solution of the following constrained optimization prob-
lem [10, 11]:

min

1 |L[A, =0]T||
(F+A)&ps=b+6

19)

where L = diag(ly,...,Iy)isan N x N diagonal weight-
ing matrix, T' = diag(t1,...,¢7) is a 7 x 7 diagonal
weighting matrix, and || - || » denotes the Frobenius norm.
According to the optimization problem in (19), the TLS
solution is obtained by adding minimal perturbations to F'
and b so that the perturbed matrix equation is consistent.

The TLS solution can be obtained from a singular value
decomposition (SVD) of the augmented N x 7 matrix
LIF,-b|T:

LF,-bT=UxVT (20a)
7
=> o] (20b)
i=1

where U = [u1,...,ur] isan N x 7 unitary matrix, ¥ =
diag(o1,...,07) is the 7 x 7 diagonal matrix of ordered
singular values (i.e., 01 > --- > o7y > 0),and V =

[v1,...,v7] is a7 x 7 unitary matrix. The TLS estimate
is given by
tivi7
Errs = 21
&rLs - (21)
teVe7
where v7 = [v17,...,v77]7 is the seventh column of V.

Equation (21) assumes that the smallest singular value is
unique, i.e., g > o7. This assumption may be violated
on rare occasions. If this happens, alternative solutions
can be obtained (see [11] for details).

The TLS solution in general exhibits smaller estima-
tion bias than the LS solution [12]. In the absence of bear-
ing and observer location errors, we get F',& = b, where
F', and b, are obtained from true bearing angles and ob-
server locations. The noisy matrix F' and vector b are re-
lated to F', and b, through F' = F',+A,and b = b,+46,
where, for n; = 0,

I VgMO

A . cos 0y,

~~ Vi =nk | .
o . : 3 k k sm@k

VN1 M N
[ virg

0, =~ :

T

[VN-1TN-1
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The weighting matrices can be chosen by taking into ac-
count the error variances in ¥ and b. If we set L = I and
T = diag(1,1,¢), where € > 0, and let ¢ — 0, the TLS
solution converges to the LS solution.

F. CTLS Estimator

The perturbed system matrix F' + A and data vector b +
4 that result from TLS do not retain the structure of the
original system matrix and data vector defined in (9) and
(10). The accuracy of the TLS estimate can be improved
if the TLS perturbations are forced to obey the structure of
the system matrix and data vector. The imposition of these
constraints on the TLS solution leads to a constrained TLS
(CTLS) problem that can be formulated as

win |L[A, =8]T | F (22a)
subject to
(F+A)ers=b+96 (22b)
al 0 0
2
a¥l tral bal
F+A= (22¢)
T " T o =T
ay_1 IN-1GNy_1 —5 OGN
laillo =1, i=0,...,N—1 (22d)
dgTo
b+d6= (22¢)
ay_1rN-1

A detailed treatment of CTLS can be found in [9].

A closed-form solution to (22) is not available because
of the nonlinearity of constraints. We therefore seek an
iterative numerical solution based on nonlinear program-
ming and the method of successive projections [9]. The
idea behind successive projections is to obtain the TLS so-
lution and then to project it to vectors satisfying the given
constraints using a least-squares criterion, and repeat the
whole procedure until TLS converges to a solution satis-
fying all the constraints.

The method of successive projections was shown to
produce a vector sequence that always contains a subse-
quence that converges to a vector satisfying the constraints
of the optimization problem under some mild conditions
on the projections [13].

G. STLS Estimator

The CTLS algorithm attempts to maintain the structure
of the system matrix and the data vector while perturbing
them to achieve consistency. The constrained optimiza-
tion problem can be recast as

min || L33 (23a)

250 T T T T T T T
A observer
o O target

200 o

150+ o

L o
100 oOO
O0q,

y-axis (km)
o

AAAA
AAAAAAAAAAAAAﬁﬁA
IN
AADDAD
0 . . . \ AAANAABLALT \
-100 -80 -60 -40 -20 0 20 40 60 80
x-axis (km)

Fig. 3. Simulated target tracking geometry.

subject to
F(0 + 6)égps = b(0 +0) (23b)

where L is an N X N diagonal weighting matrix and

a’ (¢o) M
F(¢) = : (242)
a’ (¢n—1)MnN_1
a® (¢o)ro
b(¢) = : (24b)
aT(¢N—1)7‘N—1
with @ = [0, ..., dn_1]T and a(ep;) = [sin ¢;, — cos ¢;]T.

Equation (24) makes explicit the nonlinear parameteriza-
tion of F' and b in terms of N bearing angles ¢. The
constrained optimization problem in (23) is known as the
structured total least squares problem, and its solution has
been addressed in [14, 15].

The STLS problem is in fact identical to the ML prob-
lem. The equivalence between the STLS and ML solu-
tions can be seen by setting L = K ~1/2 which reduces
(23a) to the minimization of the ML cost function in (6),
and by rewriting (1) as

sin 0y, _ DPyk —Tyk
cosOr  puk — Tk

which shows that the ML solution satisfies the consistency
constraint in (23b).

IV. SIMULATION EXAMPLES

In the simulation examples, we use the target tracking ge-
ometry shown in Fig. 3. The observer trajectory consists
of two constant velocity legs. The target moves at a con-
stant acceleration with motion parameters p, = [50, 100]7,
vo = [~2,—8]T and a = [-0.5,1.5]7. The bearing
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Fig. 4. Average of target track estimates.
TABLE I MSE (¢, = 0.01)
On oV TLS v ML
0.1° 4.8 3.5 3.0 3.0
0.3° 122.0 334 28.1 28.2
0.5° 554.9 99.1 79.2 79.8
0.7° 1267.1 191.5 157.6 159.6
0.9° 2128.5 332.8 2944 302.7
TABLE II Bias of p, Estimate (o,, = 0.01)
On Oov TLS IV ML
0.1° 1.18 0.17 0.01 0.01
0.3° 964 144 0.11 0.16
0.5° 22.08 3.67 0.38 0.55
0.7° 34.17 572 121 1.46
0.9° 4477 897 121 1.60
measurements are taken at t, = k7, where " = 0.5

and £k = 0,...,N — 1. For the moving target, N =
40 bearing measurements are collected by the observer at
marked locations in Fig. 3. The bearing measurements
are subject to i.i.d. zero-mean Gaussian noise with vari-
ance o2. The observer location measurements are cor-
rupted by i.i.d. zero-mean bivariate Gaussian noise with
covariance matrix C' = diag(c?2,02). The target motion
parameters were estimated using the OV, TLS, IV and ML
estimators. The results of 1000 Monte Carlo simulations
for mean-squared error (MSE) and initial velocity estima-
tion bias are listed in Tables I and II for different bearing
noise standard deviations o,, with the observer position
error standard deviation fixed at o, 0.01km. Fig. 4
shows the average of target track estimates for different al-
gorithms at o, = 0.5°. For the target-observer encounter
depicted in Fig. 3, the IV estimator yields the best accu-
racy narrowly outperforming the ML estimator. The TLS
estimator appears to have a much improved performance
compared with the OV estimator.
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