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Abstract

Co(mpartiv"e genomne anal ses of the [ralwisella fillarelois subspecies tularensis and subs ecie

holartica populations show that genoIme content is hialhtv conserved and only a relatively small

num~be crhiKtlresxsbp tlrni eome arc absent in other FK

futawensis subspcites. To catalovue differences in g~n r~ranijation that could contribute to

IjQjtjqu viaene charcti stic~s and cegrhi distr tions of the tylayrensis and holarticy

subh.species. we have used Pa ired<L~nd Sequne qMapj~iitLg(PESM~to ident Lfyj-eLJonis of'the

genomne that ate non-contteuous between thse two subspgcces. tlsingý, PLSM. the phvsical

distances between paired-end sequenciriv reads from a library of a wi ldtvpe reference 11K

M(MCh.nSiS subsp. 1ho/adie strain were compared to the predicted len eths between the reads

bae-nmapjj coord inates-of the reads firotn the subsp. tularensis strain Sehu S4 and subsp.

hohirlica strain I NIS gQnoni sc vecs oa f I' di ferent continuous r ions were

identifie in the subspj. hoatica~ eenmel1CRh(,.".Irc are' nonctiuos in thte sub.,jp.

tula cas goenoine. At least six of the seventeen different_ it - ar .postio ned as adiacen

pqi. n the subspecies tularensis ge nome sequence but are tranqlocated in holartica inpiviq~g

that arrangements of th-eCi~~~ arc ancestral in the tularensis subspecies and derived in

holartico. Usingy nested PCR assavs, he conservation of the events was further assessed by

thei anangements of the CRIqtic., are h i gl-Ily conserved. particultarlyv in the holm -ica subspeci es.

consistent with the hypothesis that holartica populations have recently ex)eriencedaerdi

selection event or they have emerged from a recent clonal exniansion. Two unique ridalensis-

like strains were also observed to share soe(~ar.withl the holartica subspecies and others

with the tularens is subspecies, inovi- that thsstanmyteeetanw taxonomic unit.
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In-trodu oc ..... ...................... ..-.---------- .--.---.-------............................--

Francisella tularensis is a non-motile, Gram-negative coccobacillus originally isolated

from ground squirrels in 1911 during a plague investigation in Tulare County, CA [1]. The

geographic distribution of the organism spans the entire Northern Hemisphere, with only a very

recent isolated recovery of the organism occurring in the Southern Hemisphere [2, 31. The

organism is a facultative intracellular pathogen and is believed to affect more animal species than

any other known zoonotic pathogen [4, 5]. It has been isolated from as many as 250 species of

wildlife (reviewed by Oysten, Sjostedt, et. al) [6] including various birds, amphibians, fish and

many mammalian species. The organism can also be found in invertebrates species, including

arthropod vectors such as mosquitoes and ticks (reviewed by Petersen and Schriefer) [7].

Human infection occurs most often through direct exposure to infected animals or by bites from

infected arthropod vectors. Recently, terrestrial and aquatic life cycles have been described for

F. tularensis [8, 9]; and protozoa, such as Acanthamoeba castellanii, may also serve as a host for

maintenance ofF. tularensis in the aquatic cycle [10].

The species F. tularensis is comprised of four recognized subspecies: Subsps. tularensis

(Type A), holarctica (Type B), novicida, and mediaasiatica, the two former of which are

considered clinically significant in humans [11, 12] and by far have been the most studied. F.

tularensis subsp. tularensis is believed to be more virulent in humans than F. tularensis subsp.

holarctica based on epidemiological data and its higher infectivity in animals. F. tularensis

subsp. tularensis and F. tularensis subsp. holarctica also show striking geographic differences in

their distribution, with both the tularensis and holarctica subsp. being found in North America

but only the holarctica subsp. being found in Europe and Asia [7]. Populations of subsp.

mediaasiatica may be even more geographically limited since, as its name suggests, this
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subspecies has only been isolated from the Asian subcontinent. The novicida subspecies has

been found primarily in the U.S. but was recently detected in Australia [11, 13].

Despite the unique geographic and virulence characteristics, known genetic and

phenotypic differences distinguishing the tularensis and holarctica subpopulations seem to be

more limited. Biochemically, the two subspecies have classically been differentiated primarily

on the basis of glycerol fermentation, production of citrulline ureidase, and erythromycin

resistance [11]. High resolution genotyping methods such as pulsed field gel electrophoresis

(PFGE) [14], restriction-fragment length polymorphism (RFLP) [15], Amplified Fragment

Length Polymorphisms (AFLP) [14], and Multi-Locus Variable Number Tandem Repeat

analysis (MLVA) [4, 16, 17], also distinguish the subspecies genotypically and show that they

are divergent, but clonally related.

Given the unique geographical and virulence characteristics, there is tremendous interest

in understanding the genetic basis for these characteristics. Recent comparative genome

hybridization studies identified limited differences in genome content between the two

subspecies, but did include deletion in the pdpD region which is associated with virulence [18,

19]. Comparative genome sequencing efforts are also underway and promise to provide detailed

information with regard to specific strains. To provide a more complete catalogue of the

genomic events which arose early during divergence of the subspecies (true supsbepcies-specific

genomic differences as opposed to strain-level differences), we have applied Paired End

Sequence Mapping (PESM) to identify candidate regions of genomic difference and further used

Comparative Genome PCR (CG-PCR) on a large set of strains to identify regions of genomic

difference that are conserved across multiple isolates. PESM was originally developed as a

method to identify genomic islands of Shigella dysenteriae [20]. The PESM strategy measures
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the physical distance between paired-end reads from a clone library, specifically searching for

clones whose physical distance is incongruent with the predicted distance based on available

genome sequences. In this application, we constructed a library from an F. tularensis subsp.

holarctica strain and compared physical distances with the F. tularensis SHU S4 genome

sequence. Cloned segments with incongruent lengths compared to the map position were further

distinguished as strain-specific versus potentially subspecies-specific by comparison to the F.

tularensis subsp. holarctica strain LVS genome sequence. In instances where the length

difference was conserved in the reference strain and the LVS holarctica strain, the segments

were further tested among a panel of holarctica and tularensis strains to confirm that the genome

difference was broadly conserved across the subspecies. Using this strategy, we identified

seventeen regions in the genome that are continuous in 66 of 67 subspecies holarctica strains

examined, but which are discontinuous in tularensis strains. These regions, termed CRholarica,

have arisen through massive insertion/deletion, translocation, and rearrangement events and their

conservation among holarctica strains of distinct temporal and geographic origin implies that

this subspecies has likely been through a recent periodic selection event.
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Materials & Methods

Bacterial strains and growth conditions. Cultures for this study were propagated on chocolate agar at

37°C in 5% CO2. Glycerol fermentation of the limited number of isolates was performed either as

described [19], or by using Biolog® (Biolog, Inc., Hayward, CA) according to manufacturer's

instructions. A summary of spatial, temporal, host, and other pertinent demographic information, as well

as prior subspecies determinations of all strains and/or DNA used in this study, is listed in supplemental

Table 1 (Table sl).

Subspecies-specifie PCR. To confirm the subspecies desiknation of all thc strains in our collection, we

subs.ppeices [l.1$j, All RQ I re-sults;are included in Table sl, Primers tor RDII were those same asý

pI hli••dby BrockhitP.Linjt ql. L18L. All RD] PCR reactions were performed in 25 jd volinnes, each

cMntaining 5 ins, MNgCl and 16t0 jliN- ofdeach (INTP (Idaho Technolorme Sl a l)yad nM eacho

forward and reverse primer corinvitrogen (arlad. CA), and ters: Ini tialnm Taq h ond tr95C n)r Each...........I......................................................................................-- .............................. . . ....... ........ . ............ ............. ...............................
reaction %was cond tIeled On 1.5 u1 DNA samples eithier Prepared byLi iiw a m~andtardl larpe-scale bacterial

ge qj icDNAextractnon pratocoLA2.31 or uising l.JRE:GENT F LNL isolatiqfl kits(q•'lJt~~ iytes. Inc..

M in epol isýoh I Ni. 'lhe n o y i g c d to sweremp i iz d adocvclinn ......I.......I. ---.g......... -- ............. .od ti n ...... ..t.n.... an.. ...... e on a--- .... a.. -- R.....r...

Reno, N V) thiertnoevel er accord in g to thle folI lowin g evel ine Laramneters: Initiail hold at 950Cfor 2litii.3(1

sec;.30yc)les of 95XC for 30 sec, 64TC r I m in,.and_'•C for I mi; ial e axtensionat 72..C: and a finial

indefinite hold at 4°C.

Construction of X phage library. Francisella tularensis subsp. holarctica strain MS304 is a human

isolate obtained in 2002 from the State of Missouri. A library was constructed from MS304 genomic

DNA by partial digestion with Sau3Al. After optimization of the partial digestion for 10-15 Kb
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fragments, 7 ug of genomic DNA was digested with Sau3Al at in separate reactions with 0.0625, 0.0312,

and 0.0156 units per microgram for 1 hour at 370C. The partially cut DNA was electrophoresed on a

0.7% agarose gel along with molecular weight markers and the regions containing 10-15 kb fragments

were excised from the gel. The fragments were electroluted, pooled, and then precipitated to concentrate.

Size distribution of the gel-purified fragments was confirmed by agarose gel electrophoresis of a small

portion of the fragments alongside molecular weight standards. The remaining purified fragments were
'j (Forae:Fot Italic

then ligated into Lambda DASH IIBamHI .(Stratagene, La Jolla, CA). The ligations were packaged

using Stratagene's Gigapack III Gold Extract according to the manufacturer's recommendations. The

packaged phage were titered on XL1 -Blue MRA P2 host bacteria (Stratagene). The titer from the

packaging was approximately 5 X 106 PFU/ml. Library diversity was confirmed by restriction digestion

and DNA sequence analysis of inserts from 10 independent plaques. The library was then amplified

once using XL1-Blue MRA P2 host bacteria and DMSO was added to 7% final concentration in the

clarified supematant. The amplified library had a titer of 2.5 x 107 pfu/ml. One ml aliquots were stored

at -80 0C.

Direct-PCR Amplification (DPA) of Cloned Fragments. For high throughput PCR amplification of

individual plaques, the library was diluted and plated onto mid-logarithmic phase P-2 cells (OD600 -0.6)

grown in NZYM Broth with 0.2% maltose. Dilutions of the library stock were made in Lambda

suspension medium (SM) buffer and dilutions yielding approximately 120-150 plaques per plate were

subsequently plated onto several 80 cm Petri dishes using P2 host cells. After solidifying, the plates were

inverted in the incubator overnight at 37'C.

To amplify plaques for length measurement and paired-end sequencing, plaques were chosen

from dilutions giving 120-150 well isolated plaques. Plates with the appropriate number of plaques were

first wrapped with parafilm and inverted at 4°C for a minimum of 4 hours and a maximum of 4 days.

Clearly isolated plaques were further processed by direct-PCR amplification (DPA). DPA was performed

in 96-well PCR plates (Applied Biosystems, Foster City, CA) pre-loaded with PCR master mix. Plaques
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for DPA were loaded by gouging each candidate plaque with a sterile 20 ul pipette tip (such that the tip

contained visible plaque material) and then mixing the tip in a single well of the PCR plate. Long-range

PCR was then performed using a TaKaRa Ex TaqTM Hot Start master mix kit (TaKaRa Mirus Bio,

Madison, WI) containing T3 (5'-AATTAACCCTCACTAAAGGG-3') and T7 (5'-

TAATACGACTCACTATAGGG-3') primers, which prime amplification from the T3 and T7 promoter

regions present in the arms of the lambda cloning vector. PCR reaction mixes were prepared according to

the manufacturer's recipe with each single 25 ul reaction containing 500 nM of each primer.

Thermocycling conditions were optimized and performed on a Dyad (MJ Research, Reno, NV)

thermocycler according to the following cycling parameters: Initial hold at 95'C for 2 mins, 30 sec; 36

cycles of 95*C for 50 sec, 55TC for 50 sec, and 72 0C for 15 mins; final extension at 72TC for 5 mins; and a

final indefinite hold at 4°C.

Following each PCR run, clone-amplicon purification was accomplished using Montage® PCR, 96

Plates (Millipore, Billerica, MA) which were processed on a SAVM 384 Vacuum Manifold (Millipore)

according to the manufacturer's instructions. The final elution was performed using 30 ul of Invitrogen

Distilled DNase-/RNase-free water and plates were sealed with adhesive sealing lids (Bio-Rad, Hercules,

CA) and stored at 4°C.

Clone-Amplicon Sizing Experiments. Amplicon-size determinations were performed by agarose gel

electrophoresis. 15 cm x 25 cm 0.65% agarose gels containing 5 I-wells were made in I x Tris-acetate-

EDTA (TAE). Each gel accommodated 47 clone-amplification reactions along with 4 separate lanes of 1-

15 kb Molecular Ruler (Bio-Rad) for length standardization. Each gel was electrophoresed at 85 V for

approximately 4.5 hours. Ell)idiuin brOmide-stained Igels were imaged using a Sypgene.GeneGenius.

(Synoptics, Frederick, MD) imaging system, and the image was analyzed using the GeneTools

(Synoptics) software package. The band sizes for all clones and DNA standards were exported from

GeneTools into a Microsoft Excel spreadsheet and loaded into the PESM pipeline.
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Paired-End Sequencing. DNA sequencing reactions for all clones were carried out using BigDye'

Terminator v3.1 Cycle Sequencing Kits (Applied Biosystems) with pGEM DNA serving as the sequence

reaction controls. Each sequence reaction experiment was setup in 96-well reaction plates, with each

sample being divided into two reactions - one reaction with T3 primer and the other with T7 primer (both

primers the same as from the initial PCR reactions). Sequence reactions were carried out on the Dyad

(MJ Research) thermocycler, and the sequence reaction plate was cleaned-up using a Montage SEQ 96 Kit

on the SAVM 384 Vacuum Manifold (Millipore). The labeled DNA was then transferred into new

reaction plates and loaded onto an ABI 3100 automated capillary-electrophoresis (CE) sequencer

(Applied Biosystems), which was configured with an 80 cm capillary array and loaded with Performance

Optimized Polymer (POP)-4 (Applied Biosystems). Control sequencing reactions were performed on the

two pGEM vector reactions in each set of 94 sample reactions, and the pGEM control sequences were

evaluated to ensure the sequence reaction and sequence run were successful. The .abi sequence files were

trimmed in Sequencher V. 4.0.5 (Gene Codes, Ann Arbor, MI), merged, and output as a single FASTA

file for further analysis.

Fragment Length and Paired-End Sequence Pipeline. The sizing and sequence files were input into a

Perl-based program, referred to as the Paired-End Sequence Mapping Pipeline (PESMP), to identify

coordinates of the paired end reads from the draft F. tularensis live vaccine strain (LVS) whole genome

sequence 4ft.://bbrn I In] .gov/pub/cbnp/F-tu Iaren si s/F.tul aren sis.htni1) [21] and the completed SCHU S4 ........

genome sequence [22] and then to compare the predicted lengths to the physical length of the cloned

segment. The PESMP input files consisted of a composite FASTA file from the trimmed sequences

resulting from a single 96-well plate along with a corresponding Microsoft Excel file containing the

Long-PCR amplicon sizing data for each clone. The PESMP algorithm then outputs the coordinates and

predicted length of the fragment corresponding to the paired end reads from the two genome sequences

along with the physical measurement of the long PCR amplicon.
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To idcentify clones'with dtserepanetes betwecn phy~sical length 1)etwccen paired-cnd reads and.....~~~ .... ._ .. a....jw -1...... ........... -...---
- Delee~ These values were then

p~redicted leingf._the eoun fm t ht4 e__PSbpjipelin _ _ j•oaded into an Excel spreadsheet and sorted .

according to the paired-end coordinates .fro• t.he..YS gsnotne•s•quence. Clones in which the physical ...... ,f

size showed a > 2 Kb discrepancy from the predicted size of the SCHU S4 genome but not the LVS

genome were chosen for further characterization. cnce oft ihce pulitive regiorns of ...non,.e ............................... "" ,...{ 'i.i...". .....a.........." .... m-....{Deleted: To obtain sequence data from

di ftcrenee was obtained by electronic PCR, usint the coordinates of the • ared -end reads toextract the - '- the cloned segments, paired end reads
from clones with physical lengths
corresponding to length predicted from

Iilgrvctnin' sequence between the rea from the LVS genome sequence. These.electronic, clone - ----- the LVS sequence but not the SCHU S4
sequence were next used to

sequences were then aligned by contig analysis using Sequencher to further delimit the physical ',,,('Deileted: corresponding

' "Deleted: ofthe clone

boundaries of the C]Zholardim. f Deleted:.boundaries~~~~~~~ .fteCh~~ia Qf i:----• .. .............. .. . ............ 4

(Deleted:"
,.{Deleted: genome

Fine-structure genome mapping. To characterize the extent and nature of theevents associated Dithheted.]
---__ .._...__ ...._--------- C led.etceda

CRholarctica, each CRtolarctica was used for BLAST analysis against the SCHU S4 genome. Query

coordinates for all segments/subsegments (shown in Table s2), except for multiple repeats of IS elements

were then used to map the location of the events in the SCHU S4 genome corresponding to the CRholarmtica. Formatted: No underline
{Del .ete.ad .BL.AS ,T ,ed-.

CRhotarctca maps were assembled using the SeqBuilder module of Lazergene V.6.0 (DNASTAR, Madison, Deleted: Subspce-/' eee-"Subspecles-speclflc PCR. To

confirm the subspecies designation of all
WI) to identify corresponding gene/pseudogene content of the CRholaretica from the SCHU S4 annotation. the strains in our collection, we tested

them using an RD I PCR assay previously
, shown to differentiate among all four F.

from SCHU S4 annotation found to be truncated at the flanks dueto the beginnins orending of tularensis subspecies [18]. AnRDI
Sresults are included in Tables sl. Primersfor RD a were those same as published by

the CRholarctfca clones, as well as those found internally due to rearrangements within the CRhstarctica, were fBrorkhuijsen ethal [s18]. All RDpI PCR
; reactions were performed in 25 pil

tionlums, wereh perormedinin 25 1M 90
ued in BLAST analvy_.'ganst the LVS sequence.for homology comparisons. TIGR in-house PerI volumes, each containing 5 mM MgCI

and 160 VM of each dNTP (Idaho
Technology, Salt Lake, UT), 500 nM

scripts were run on a Linux platform to generate graphical representations of all combined CRhonartia each of forward and reverse primer
(Invitrogen, Carlsbad, CA), and 2.5 Units
of Platinum Taq (Invitrogen). Each

mapped on SCHU S4 shown in Fig. 3, and each of 6 individual CRholarica mapped on SCHU S4 shown in reaction was conducted on 1.5 .l DNA
samples either prepared by using a
standard large-scale bacterial genomic

al sF ig. through sFig. 5. The final figures as shown were assembled in Adobe DNA extraction protocol [23] or using
PUREGENEa DNA isolation kits (Gentra

Illustrator 10. Systems, Inc., Minneapolis, MN).
Thermocycling conditions were
optimized and performed on a Dyad (MJ
Research, Reno, NV) thermocycler
according to the following cycling
parameters: Initial hold at 95'C for 2

-------- ... min, 30 sec; 30 cycles of 95C for 30 sec,
64'C for I min, and 72

0
C for I min; final

extension at 72°C; and a final indefinite
hold at 4°C. I
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Comparative Genome PCR (CG-PCR). Confirmation of the CRholarctica was conducted by PCR analysis

on multiple isolates of the jolarctica and tularensis subspecies. For each CRholarCfica, a three-primer .... .-- ..-I .-a -Font:I ta.ic-

nested-PCR assay was designed based on the relative coordinates of the corresponding junctions of the

CRholaretica maps. Primers for all assays were designed using Primer3 software

(http://frodo.wi.mit.edu/cgi-bin/priiner3/trimer3 www.cgi). The assays were designed by first

identifying a primer common to both LVS and SCHU S4, either forward or reverse (designated C-F or C-

R), immediately adjacent to a breakpoint in the SCHU S4 genome sequence where synteny of the

adjacent segment changed or was translocated leaving a SCHU S4-specific region for a SCHU S4-

specific (S) primer, and which likewise left a target for an LVS-specific (L) primer in the adjacent-

contiguous LVS sequence. The design of all assays was such to produce "A"-type bands across all 17 CR

for SCHU S4, and "B"-type bands across all 17 CR for LVS. Since either intact or truncated IS elements
Deleted- at9

or their corresponding repeated elements were present n..•r-ll breakPoints, care was taken to avoid

fDeleted: into sequence enco~d~in**g't~h*e*m,

placement of primers within IS clement',(see Table s3 for all primer coordinates, sequences, and cx.pecilcd and BLAST searches were performed for
---................................ - .................. ............ all prim ers to lim it their placem ent to

[ their intended location
.mplicon sizes). All PCR assays were conventional b.y design and conducted on 1.5 .! of the DNA .......

samples used for RD1 PCR. All CG-PCR reactions were performed in 25 Ptl volumes, each containing 5

mM MgC12 and 160 [tM of each dNTP (Idaho Technology, Salt Lake, UT), 500 nM each of common

primer, LVS-specific primer, and SCHU S4-specific primer (Invitrogen, Carlsbad, CA), and 2.5 Units of

Platinum Taq (Invitrogen). Thermocycling conditions were optimized and performed on a Dyad (MJ

Research, Reno, NV) thermocycler according to the following cycling parameters: Initial hold at 95°C

for 2 min, 30 sec; 32 cycles of 95TC for 30 sec, 60'C for I min, and 72TC for 1 min; final extension at

72°C; and a final indefinite hold at 4°C. Each assay was first tested against SCHU S4 and LVS, and then

against a panel of 91 additional global Francisella strains representing both subspecies as well as subsp.

novicida and a unique holarctica strain from Japan [13, 15, 24], tentatively called subsp. japonica [4],

but for our studies referred to as subsp. holarctica-japan, or "holarc-jap" (see Table sI for panel

composition). The amplicons were visualized on 0.8% - I% agarose gels run in 1X TAE at 85 V for
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approximately 2 hours, or until adequate size-discrimination was accomplished. A I 00-bp PCR

Molecular Ruler ranging from 100 bp to 3 kb (Bio-Rad) was used for size determinations.

........ ...... .................................................. ..... ....................... ......
.. l~eslts .Deleted:¶

Paired-End Sequencing. A total of 752 plaques were picked and subjected to DPA with 551 of the DPA ...............................

yielding amplicons >8 Kb in length that were of sufficient quality and quantity for size determination and

DNA sequence analysis (DPA success rate of 73.3%). The mean amplicon/insert size from the 551

successful DPA reactions was 14,174 bp, which corresponds to approximately 7.8 Mb of coverage, or an

estimated 4.1 X coverage of the 1.89 Mb F. tularensis subsp. tularensis genome [22].

Mapping of Paired-End Sequence Reads. Of the 551 clones with quality paired-end reads, 66 clones

had physical lengths that were not congruent with distance between the paired-end reads relative to the

SCHU S4 genome, but were congruent with distances predicted from the LVS genome. These clones

were further considered as candidates for subspecies-specific genomic events. Alignment of the

sequences from the paired-end reads of candidate clones grouped the 66 cloned segments into 17 different

contiguous regions (CRh0 Iadca¢) which align with the F. tularensis subsp holarctica strain LVS genome but

are non-contiguous or otherwise altered in the F. tularensis subsp. tularensis SCHU S4 genome sequence.

Plotting of the number of CRholharetia identified versus the total number of clones sequenced (Fig. 1),

showed that the number of new CRbolarctica began to decrease sharply after 250 clones were sequenced. Of

the last 301 clones sequenced, only three new CRholartji were identified, suggesting that the library was

nearly saturated.

Comparative Genome PCR (CG-PCR) confirmation of CRboarctlca. Conservation of the CRholarctica in

the MS304 reference strain-which was isolated in 2002, and is temporally and geographically distinct
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from the LVS strain isolated in 1941-leads to the simple hypothesis that these CR likely arose early

during divergence of the tularensis and holarctica subspecies and therefore should be conserved across

most holarctica strains. To confirm this, CG-PCR assays were developed for each CRbhoarctica using nested

primer sets at the junctions of the CR (Table s3). The different CG-PCR reactions for all 17 CRlhoijai

were then run on a panel of DNA samples from SCHU S4 and LVS, and also from 19 different subsp.

tularensis strains, 67 subsp. holarctica strains, 3 subsp. novicida strains, and a single strain each of subsp.

holarctica-japan and F. philomiragia. The results for all 17 CG-PCR panels are shown in Fig. 2. The

colors correspond to different size amplicons produced from each CG-PCR. Overall, the subsp.

holarctica strains produced homogenous results across all 17 CR, with 66 of the strains (98.5%)

producing the expected amplicon based on the LVS genome sequence. The only deviation occurred in F.

tularensis subsp. holarctica strain Tu-42, which produced a subsp. tularensis A-type band. Thus,

excluding this one exception, the CRholarcca identified through the PESM pipeline are indeed highly

conserved.

Unlike the 67 subsp. holarctica strains, the 19 subsp. tularensis strains displayed significantly

more heterogeneity in the CG-PCR assays. At least four different subgroups of the tularensis subspecies
can be resolved. All share the RDI region in commonjipng • a-t----t_-heyIarly true sub _____________._
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subgroup is represented by A88R160, 88R52, 88R144, AK-I1133496, AK- 1100558, AK- 1100559, with

each of these strains sharing an amplicon from the CR10 nested PCR reaction that was unique in size

(denoted by orange squares). All six of these strains were isolated from rabbits or hares, with the three

AK strains derived from Alaska in 2003 and 2004 and the three others isolated from the contiguous

United States. The ATCC 6223 strain was likewise shown to be identical the previous six strains, but it

was originally isolated from a human patient in 1920 and has since lost its virulence [4]. A third

subgroup is represented by the single strain OK-98041035 which matches the SCHU S4 subgroup except

that it failed to produce a CR14 PCR amplicon (denoted by a yellow square). The fourth subgroup
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comprises a very unique set of two isolates, strains WY-00W4114 and WY-WSVL02. These strains both

produced an A-type band at CR3, CR4, CR5, CR6, CR8, CRI I, CRI 5, and CRI 7 (red squares), were

negative at CR1 and CR13 (yellow squares), and produced B-type bands at CR7, CR9, CR12, and CR14

(green squares). Unlike any other strains, they also produced unique bands at CRI 6 (blue-grey) and

CR10 (blue-grey, different in size from orange). These two strains were also distinguishable from one

another in that WY-00W4114 produced a B-type band at CR2 (green) whereas WY-WSVL02 was

negative (yellow). These two strains were also only slightly capable of fermenting glycerol [19].

Collectively, the genetic and biochemical data strongly suggest these two strains represent a new

taxanomic unit. If indeed this is a new taxon, then the population is likely to be virulent since one of the

isolates was obtained from a human clinical sample [19].

As would be expected, the F. tularensis, subsp. novicida, subsp. holarctica-japan, and F.

philomiragia strains showed heterogenous CG-PCR results. F. philomiragia was negative (yellow)

across each of the 17 CR. The three subsp. novicida strains were negative (yellow) for CR1, CR4, CR14,

and CRI6; and they produced a unique size amplicon from (blue-grey) CR3, CR5, CR7, CR8, CR9,

CR10, CR12, CR13, and CR17. All three strains produced a "B"- type allele (green) across CR6 and

CR15 and they all produced an "A"-type allele (red) across CRI 1. CR2 differentiated between the Tu-43

strain, which produced a unique amplicon while the other two novicida strains (from ATCC and

USAMRIID) which were both negative. Consistent with its classification as a separate subspecies [4], the

single subsp. holarctica-japan strain was also distinct from all other strains in this study; it produced a

"B"-type allele (green) across CR1, CR2, CR3, CR5, CR6, CR7, CR9, CR10, CR11, CR12, CR15, CR16,

a unique allele (orange) across CR13, an "A"-type allele (red) across CR17, and was negative (yellow)

across CR4, CR8, and CR14.

Fine Structure Analysis of CRholarctica. Fine-structure mapping and annotation of the CRholarctica was next

conducted by alignment of the CRhoj~roi. contigs from strain LVS genome sequence with the SCHU S4

genome sequence. The corresponding locations of the aligned regions are shown in Fig. 3. The
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combined DNA represented by the 17 CRs corresponds to nearly 230 genes/pseudogenes and over 30 IS-

elements, mainly a combination of ISftul and ISftu2 elements. Most of the of the rearrangements and

translocations are juxtaposed to IS elements, suggesting that many of the events were likely mediated by

these elements, resulting in remarkably large changes in the location of specific genome segments

between SCHU S4 and LVS,_ hut with littie effcct on thce orrespondinrie content ot'thcbetwe n SCH S4 nd LV , butwith lilti effe t on the e rresn ndin, con ent o thc.............. .... ................... ....o.. ................ ...................
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the corresponding regions in the SCHU S4 genome have some remarkable characteristics. First, the CR

in the LVS genome show some positional bias, with thirteen of the seventeen CRlholasi being present in

roughly one-half of the genome (the region between 8 o'clock and 2 o'clock extending from 1.3 Mb to

0.3 Mb). Secondly, there are three notable instances where segments from different CRhoIactica in LVS are
CDIeleted: juxtaposed3

Sadjacen to one another in the SCHU S4 genome. Specifically, segments from CR1 and CR16.-"

are adjacent in the SCHU S4 genome as are segments from CR13 and CR15, and CR4 and CR10, and all

three events are illustrated in sFig. 4. The juxtapositioning of these segments in subsp. tularensis
• [Formatted: Font: Italic

suggests that their organization in theptularensis subspecies was the ancestral state while their

organization in holarctica is a derived state. As shown in sFig. 4c, this notion is further supported by the

finding that both CR13 and CR15 contain genes that are involved in glycerol fermentation and it seems

likely that their ancestral condition would have been functionally clustered.
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function (corresponding to FTT0898c, FTT1 122, FTT0921, and FTTI311). ,SFig. 4c illustrates the region.

of CR13 in SCHU S4 containing the intact oppD and oppF genes which are truncated in the LVS

genome. The aceF gene, encoding the E2 of pyruvate dehydrogenase lies near the junction of CR3

(along with aceE and Ipd) and carries a 300 base in-frame deletion. A fine-structui;genome, comparison ......... .

of the entire CRolWa=r3 mapped onto SCHU S4 is shown in (Fig. _ or sFig. _). The deletion

corresponds to loss of a repeated biotin-binding repeat region, leaving holarctica strains with two biotin-

binding domains while the tularensis strains contain three. Whether the deletion occurred during the

translocation event and whether it affects function of the pyruvate dehydrogenase complex is not clear.

The AceF orthologues from several pathogenic species, including Vibrio, Yersinia, Shigella and E. coli,

do carry three domains. It has, however, been shown that deletion of two of the three domains of AceF in

E. coli has little affect on function [25]. Whether the additional binding domain influences efficiency of

the reaction and whether it could contribute to virulence will require further experimentation. It is worth

noting that the aceF truncation was also identified by comparative genome hybridization studies [12, 18,

19], but the translocation event corresponding to CR3 was not detected, underscoring the importance of

using multiple approaches for comparative genome analyses.

In addition to direct disruption as a consequence of translocation, genes near the junctions of the

translocation events could also be subject to control by unique regulatory machinery. In this light, it is

interesting to note that some of the genes within the CR and near the junctions could have functions

related to physiology and virulence ofF. tularensis. Two different genes encoding pilin subunits (pilE
(Delete: al ..

homologues) of a type IV pilus, are present within the CR2 and CR10, and fine-structurigenome.

comparisons of these CRholarcdca mapped onto SCHU S4 are shown in sFig. _ and sFig. __, respectively.

The gene encoding the pilin subunit pilE5 (FTT0230c) [26] is embedded within CR2. Another member

of thepilE family is also present in CR10 and the region upstream is disrupted by IS elements-. TJ.-_,lS
( Deleted. which also appear to have
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Discussion:

Whole genome sequencing has provided an outstanding resource for comparative genome studies,

allowing high-resolution snapshots of the genetic diversity found within a given species. One of the

drawbacks of comparative genome sequencing, however, is that only limited numbers of strains or taxa

can reasonably be compared, making it difficult to distinguish between strain-level genomic differences

and true lineage or population-specific sets of genes. Comparative genome hybridization using DNA

microarrays circumvents this problem to some degree by providing a single platform for comparison of

multiple strains or taxa. On the other hand, the array approach is limited to assessing the diversity in
Deleted: To overcome the limitations

genetic content that is represented on the array. jjerc. we have shown that PESM can helP circumvent the ' / ofwhole genome sequencing and
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. Deleted: have combined the resolution

application, we scaled PESM for comparative gcsorc ýIudies. Given at least one reference genome . of comparative sequencing by PESM
... ....... with the power of multiple strain

comparison. J
setuence, PESM provides an economical means to identify candidate regions of genomic difference, and

these regions can be further examined in larger strain sets by nested CG-PCR. The PESM library used in

our study carried modest sized fragments of the genome (averaging 14 Kb), such that coverage could be

obtained with a reasonable amount of sequencing without severely limiting the ability to measure physical

size. PESM libraries, however, can be made using different insert sizes in different types of vectors, such
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that coverage per clone can be increased with larger segments while resolution can be increased by

sequencing a larger number of segments from small-fragment libraries.

In addition to economy, the PESM approach allows any strain to be used as a source of the

library, thereby allowing the user to choose the best taxonomic unit as a reference. This is particularly

important when multiple subpopulations of a species may display unique characteristics that are of

interest. Indeed, although we have used PESM in a binary comparison (holarctica compared to

tularensis), it is possible to scaffold multiple libraries into the same PESM pipeline using only a single

reference genome upon which to scaffold the data.

Genome diversity in F. tularensis. Populations of highly virulent bacteria display a wide spectrum with

respect to genetic diversity. On the one hand, populations of species such as Bacillus anthracis display

very little diversity and only a limited number of clones appear to be spread worldwide [27]. These

clones can only be differentiated by examining variation in tandem repeats, which are some of the most

rapidly evolving loci in the genome [28]. With the availability of multiple genome sequences, single

nucleotide polymorphisms will soon complement or displace the MLVA-based approaches. At the other

end of the spectrum are subpopulations of E. coli 0157:H7 which, despite the presence of highly clonal

signatures in their genomic backbone, display substantial genomic diversity, even being detectable by a

relatively low-resolution method as Pulsed Field Gel Electrophoresis [29-31 ].

Based on the data described in our study, we believe that Francisella tularensis maIyIV represent an
e Dtletd: r ep re s ents a n

intriguing model of genome evolution. Previous studies of genetic diversity in F. tularensis detected only ....".

limited diversity [11, 32]. The four F. tularensis subspecies are known to share 98% identity in their 16S

rRNA, show very similar biochemical profiles, and have quite similar antigenic compositions [11, 33].

Only very high resolution methods can provide any phylogenetic signal that reasonably correlates with

biochemical and virulence characteristics.

Despite the apparently limited degree of genetic diversity, the F. tularensis subspecies display

quite distinct geographic distribution and virulence characteristics. Thus, it was initially believed that
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although limited, the diversity in genomic content would parallel phylogeographic and epidemiologic

characteristics and provide clues to the genetic basis for these traits. With the exception of differences in

numbers of pilE-like loci [26] and the loss of the pdpD locus [21], no other obvious candidate virulence

genes [6, 22] emerged from comparative genome hybridization studies [12, 18, 19], and >99% of the

genetic material present in the more virulent subspecies tularensis can also be found in the holarctica

genome.

In the present study, we now show that despite the high degree of genetic conservation, the

genome organization of the tularensis and holarctica subspecies is vastly different. At least 17

substantial genomic events have occurred during divergence of these two subspecies and have been

preserved among multiple strains of each population. The events correspond to extensive translocations

and rearrangements, many if not all of which were mediated by movement of IS elements. As shown in

Fig. 3, the IS elements are plentiful in the SCHU S4 genome, with 50 different copies of ISftul and 16

copies of ISftu2 being distributed around the genome [22]. Given the large number of these elements, it

is therefore not surprising to find them at or near the junctions of all 17 CR. Certainly, IS elements were

also found abutting subspecies-specific regions of genomic difference (RD) observed in comparative

genome hybridization studies [ 18, 19], and our data here further confirm that IS elements are the primary

means through which this genome diversifies.

While the degree of diversity in organization between the genomes of subsp. tularensis and

subsp. holarctica is remarkable, perhaps equally remarkable is the degree to which the unique structure is

preserved across temporally and spatially distinct taxa of holarctica strains. This observation leads to

several interesting possible hypotheses. First, it is possible that population growth is very minimal such

that little diversity has had time to accrue. However, because Francisella is free-living and is also

capable of infecting many different mammalian hosts, slow population turnover in the environment would

seem to be an unlikely explanation. A second explanation is that IS elements move only at a very low

frequency, thus generating diversity only on a very slow timescale. In this instance, the divergence would

have been quite ancestral given the degree of diversity that has accrued. With the number of ISftul and
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